WO2015010580A1 - Led照明驱动电路 - Google Patents

Led照明驱动电路 Download PDF

Info

Publication number
WO2015010580A1
WO2015010580A1 PCT/CN2014/082572 CN2014082572W WO2015010580A1 WO 2015010580 A1 WO2015010580 A1 WO 2015010580A1 CN 2014082572 W CN2014082572 W CN 2014082572W WO 2015010580 A1 WO2015010580 A1 WO 2015010580A1
Authority
WO
WIPO (PCT)
Prior art keywords
voltage
power
led
current
comparator
Prior art date
Application number
PCT/CN2014/082572
Other languages
English (en)
French (fr)
Inventor
李东明
杨冕
封正勇
龙文涛
宁宁
俞德军
冯纯益
贾永明
Original Assignee
四川新力光源股份有限公司
电子科技大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 四川新力光源股份有限公司, 电子科技大学 filed Critical 四川新力光源股份有限公司
Priority to EA201690262A priority Critical patent/EA201690262A1/ru
Priority to EP14828676.8A priority patent/EP3026985A4/en
Priority to US14/906,493 priority patent/US9485821B2/en
Priority to CA2918101A priority patent/CA2918101A1/en
Publication of WO2015010580A1 publication Critical patent/WO2015010580A1/zh

Links

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B45/00Circuit arrangements for operating light-emitting diodes [LED]
    • H05B45/40Details of LED load circuits
    • H05B45/44Details of LED load circuits with an active control inside an LED matrix
    • H05B45/48Details of LED load circuits with an active control inside an LED matrix having LEDs organised in strings and incorporating parallel shunting devices
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B45/00Circuit arrangements for operating light-emitting diodes [LED]
    • H05B45/30Driver circuits
    • H05B45/395Linear regulators
    • H05B45/397Current mirror circuits
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B45/00Circuit arrangements for operating light-emitting diodes [LED]
    • H05B45/40Details of LED load circuits
    • H05B45/44Details of LED load circuits with an active control inside an LED matrix
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B45/00Circuit arrangements for operating light-emitting diodes [LED]
    • H05B45/60Circuit arrangements for operating LEDs comprising organic material, e.g. for operating organic light-emitting diodes [OLED] or polymer light-emitting diodes [PLED]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B20/00Energy efficient lighting technologies, e.g. halogen lamps or gas discharge lamps
    • Y02B20/30Semiconductor lamps, e.g. solid state lamps [SSL] light emitting diodes [LED] or organic LED [OLED]

Definitions

  • the invention belongs to the field of digital-analog hybrid integrated circuits, and in particular to an LED lighting driving circuit. Background technique
  • High-power LEDs are gradually replacing traditional incandescent lamps, fluorescent lamps, etc. with their advantages of high efficiency, energy saving, environmental protection, long life and high reliability, making them a new generation of illumination sources.
  • high-power illumination LED performance With the improvement of high-power illumination LED performance and the reduction of production cost, its application field is expanding from the field backlight and some landscape lighting fields with low brightness requirements to the ordinary white light illumination field.
  • the driver integrated circuits for power LEDs have also been greatly developed due to the gradual popularization of power LED applications. Therefore, designing an efficient and reliable LED lighting driver circuit is especially critical.
  • the power factor of the lighting equipment is getting more and more attention.
  • the power factor of the lighting equipment reaches the optimal value.
  • the luminous intensity of the LED and the current flowing through the LED are proportional to a certain range.
  • the current flowing through the LED needs to be within a certain range and the effective value is constant.
  • LED lighting drive circuits often use large-capacity transformers to convert energy, occupy a considerable amount of space, and use polarized high-voltage electrolytic capacitors. After long-term use, the life of components is rapidly shortened, which may cause problems such as poor product reliability. .
  • the present invention proposes a novel LED lighting driving circuit, which does not require transformer conversion energy, does not require high voltage electrolytic capacitor, high power factor, and can A new circuit structure for driving high voltage LEDs in a constant current rms mode.
  • an LED illumination driving circuit for supplying power to N sets of LED loads, comprising N current paths, N groups of LEDs, and a constant current portion, N being an integer not less than 2, the N path
  • the current path includes: a voltage dividing portion connected to the half sine wave power source for reducing a power supply voltage of each of the N current paths to a voltage value usable by the current path; a comparator portion including N comparators of the N current paths, one input of each of the comparators is connected to an output end of the voltage dividing portion, and the other input terminal is connected to a reference voltage for outputting correspondingly when the voltage changes a control signal; a logic control unit having N input terminals connected to the N output ends of the comparator portion for respectively outputting N enable signals according to the control signal outputted from the comparator portion; a driving portion, wherein the N input terminals are connected to the N output ends of the logic control portion for providing N voltages according to the N enable signals; and the switch portion includes N switching elements, N input
  • the voltage dividing portion includes N voltage dividing resistors connected in series between the power source and the ground, except that the first resistor R1 is connected to the first current path only at a negative end thereof near the ground end.
  • the ith voltage-divider resistor Ri is also connected to the comparator of the i-1th current path at its positive terminal near the power supply terminal, and to the comparator of the ith current path at its negative terminal, where ⁇
  • a positive phase terminal of each comparator of the comparator portion is connected to a negative terminal of a voltage dividing resistor of a current path, and an inverting terminal of each comparator is connected to a constant reference voltage.
  • the logic control unit includes a NOR gate in the first current path, and sequentially includes one NOR gate and two inverters in each of the ith current path, wherein 2 i Nl, comprising three inverters in sequence in the Nth current path, one input of each of the NOR gates is connected to the output of the comparator in the current path, and the other input is connected to the Between the two inverters at the output of the logic control.
  • the switching element is a power MOS transistor, and a gate of the power MOS transistor is connected to an output end of the driving portion to control the power MOS transistor according to the enable signal. Turning on and off, the drains of the power MOS transistors are respectively connected to the N groups of LEDs, and the source of the power MOS transistors is connected to the output ends of the constant current portions.
  • the constant current portion includes: a voltage dividing resistor Ra and Rb connected in series between a power source and a ground, an error amplifier, a power MOS transistor, and a sampling resistor, a positive phase terminal of the error amplifier Connected between the resistors Ra and Rb, the inverting terminal thereof is connected to the source of the power MOS transistor and one end of the sampling resistor, and the output end thereof is connected to the gate of the power MOS transistor, and the other end of the sampling resistor is grounded, and The drain of the power MOS transistor is connected as an output terminal to the switch portion.
  • the resistor R1 is much larger than the resistor Ri, wherein i N , and the resistor Ra are much larger than the resistor Rb.
  • the power MOS tubes are high voltage power tubes, and the withstand voltage is greater than a maximum threshold of each group of LEDs.
  • the inverting terminal reference voltage of each of the comparators is supplied with a constant magnitude of voltage by another power supply module.
  • the output instantaneous current of the constant current portion is:
  • VAMP is the positive phase terminal instantaneous voltage of the error amplifier
  • R 3 ⁇ 4 « is the resistance of the sampling resistor.
  • the main working process of the LED lighting driving circuit of the present invention is: when the power supply voltage (mains When the bridged rectified half sine wave is zero, the power MOS transistors M1 to M5 are all turned on. As the power supply voltage gradually rises to the turn-on threshold voltage of the first group of high voltage LEDs, the LED 1 is lit, and the current passes through Ml. Tube, M6 tube to ground, the voltage continues to rise. When the voltage reaches the conduction threshold voltage of the second group of high voltage LEDs, the voltage division of the VP1 terminal of the comparator COMP1 is first increased to a constant reference voltage greater than the VREF terminal.
  • the output level of COMP1 jumps.
  • the power MOS transistor M1 is turned off.
  • the power transistors M2, M3, M4, and M5 remain open.
  • the first group and the second group of high-voltage LED groups LED1 and LED2 are Light up. Then the voltage continues to rise.
  • the voltage is divided by the resistor.
  • the voltage of the VP2 terminal of the comparator COMP2 is increased to a constant reference voltage greater than the VREF terminal, and the output level of the comparator COMP2 occurs.
  • the voltage begins to drop, and the power tubes M4, M3, M2, and Ml are turned on in turn, and the high-voltage LED group is sequentially turned off, so that the cycle is reciprocating, because the frequency of the voltage change is faster, exceeding the recognition time of the human eye, and the whole process is not observed.
  • the power tube M5 is always kept open.
  • FIG. 1 is a schematic structural view of an LED illumination driving circuit of the present invention
  • FIG. 2 is a view showing a preferred configuration of a comparator in the LED illumination driving circuit of the present invention
  • FIG. 3 is a view showing a preferred configuration of a logic control portion in the LED illumination driving circuit of the present invention
  • Fig. 4 is a diagram showing current and voltage simulation waveforms in the LED illumination driving circuit of the present invention. detailed description
  • Fig. 1 is a view showing the structure of an LED illumination driving circuit of the present invention.
  • the LED illumination driving circuit of the present invention is used for supplying power to N sets of LED loads, and thus includes N current paths (N is an integer not less than 2), and the power of the entire circuit is a half sine wave after the mains is bridge-rectified.
  • N is an integer not less than 2
  • the power of the entire circuit is a half sine wave after the mains is bridge-rectified.
  • five sets of LED loads are taken as an example for description, but the present invention is not limited thereto. Any N sets of LED loads are applicable to the LED illumination driving circuit of the present invention, and only need to increase current according to similar rules. The number of channels is sufficient.
  • the LED illumination driving circuit includes N current paths and a constant current portion 600.
  • the N current paths respectively drive N groups of LED load lights, and each current path sequentially includes the following parts: a voltage dividing portion 100, a comparator The unit 200, the logic control unit 300, the power drive unit 400, and the switch unit 500.
  • the voltage dividing section 100 is connected to a power source for lowering the power supply voltage to a voltage value usable by the current path.
  • the voltage dividing portion 100 includes N voltage dividing resistors, for example, R1 R R5. These resistors are sequentially connected in series, wherein one end of the first voltage dividing resistor R1 is connected to the power source and is much larger than the other paths. Piezoresistors R2 to R5, one end of the Nth voltage dividing resistor R5 is connected to the ground.
  • the respective ends of the resistors R2 to R5 are sequentially connected to the positive phases of the comparators COMP1, COMP2, COMP3, COMP4, COMP5, respectively.
  • the input end of the comparator unit 200 is connected to the output end of the voltage dividing unit 100 for outputting a corresponding control signal to the logic control unit 300 when the voltage changes, controlling the turn-off and conduction of the switch unit 500, thereby controlling the LEDs of the respective circuits. Lights up and goes out.
  • the comparator unit 200 includes N comparators, such as COMP1 ⁇ COMP5, which respectively belong to the current path of each LED load.
  • the positive phase of each comparator is connected to the negative terminal of the divider resistor of the current path, and the inverting terminal of each comparator is connected to a constant reference voltage VREF.
  • the reference voltage VREF can be supplied by other power supply modules with a constant voltage, which satisfies the output of the comparator. Into the range to ensure that the comparator works properly.
  • the principle of operation of the comparator unit 200 is as follows.
  • the positive phase terminal voltages of each comparator such as VP1, VP2, VP3, VP4
  • VREF comparators COMP1, COMP2, COMP3, COMP4 sequentially output a high level
  • the high level signal is sent to the logic control unit LOGIC 300, thereby controlling the power MOS tubes M1, M2, M3, M4 in the switch unit 500 to be sequentially turned off.
  • the number of lit LED strings is increased sequentially.
  • the voltages of the positive phase terminals of the comparators are sequentially decreased until they are smaller than the reference voltage VREF of the comparator, and the comparators COMP1, COMP2, COMP3, COMP4 The low level is sequentially output, and the low level signal is controlled by the logic control unit 300 to control the power MOS tubes M4, M3, M2, and M1 to be turned on in sequence, so that the number of the lit LED strings is sequentially decreased.
  • the positive phase VP5 of the comparator COMPN for example, comparator COMP5 of the last Nth current path is grounded, and its output is kept low, so that the power MOS transistor M5 of the path remains conductive, when the MOS transistor MN (N When ⁇ 5) is off, the LED of the path where M5 is lit is lit. If one of the MOS transistors MN (N ⁇ 5) is turned on, the LED of the path where M5 is located does not emit light.
  • Fig. 2 is a view showing a preferred configuration of a comparator in the LED illumination driving circuit of the present invention.
  • the comparator preferably used in the present invention is composed of a two-stage operational amplifier and an inverter.
  • the first stage of the two-stage op amp uses a differential input single-ended output structure, and the output of the op amp is shaped by an inverter into a logic signal output.
  • the two-stage amplifier amplifies the difference between the input signal IN+ and the input signal IN-, and the amplified signal is shaped by the inverter into a logic signal output.
  • the logic control section 300 is connected to the output terminal of the comparator section 200, which includes a plurality of NOR gates and an inverter for controlling the sequential opening and the sequential turn-off of the switch section 500 during the voltage change.
  • Fig. 3 is a view showing a preferred configuration of a logic control portion in the LED illumination driving circuit of the present invention.
  • the logic control section 300 includes NOR gates 201 to 204 and inverters 101 to 109. Further, the logic control unit 300 includes one enable terminal El, E2, E3, E4, and E5 in each current path. Each enable terminal outputs a high level or a low level with a voltage change, and after being driven by the power tube driver 1 to 5, the control power MOS tube is turned on or off, respectively, thereby controlling the LED load in the current path to be energized or Power off and extinguish.
  • One input of the NOR gate 201 in the first current path is connected to the comparator COPM1 Output, the other input is connected to the inverter in the next current path (ie, the second current path)
  • the input of 102 and the output of inverter 101, the output of NOR gate 201 is connected to power transistor driver 1 in the current path (i.e., the first current path).
  • One input terminal of the NOR gate 202 in the second current path is connected to the output terminal of the comparator COPM2, and the other input terminal is connected to the input terminal of the inverter 104 in the next current path (ie, the third current path) and the opposite end.
  • the output of the phase detector 103, the output of the NOR gate 202 is connected to the first inverter 101 in the current path (ie, the second current path), and the second inverter 102 is connected to the power tube driver in the current path. 2.
  • One input terminal of the NOR gate 203 in the third current path is connected to the output terminal of the comparator COPM3, and the other input terminal is connected to the input terminal of the inverter 106 in the next current path (ie, the fourth current path) and the opposite end.
  • the output of the NOR gate 203 is connected to the first inverter 103 in the current path (ie, the third current path), and the second inverter 104 is connected to the power tube driver in the current path. 3.
  • One input terminal of the NOR gate 204 in the fourth current path is connected to the output terminal of the comparator COPM4, and the other input terminal is connected to the input terminal of the inverter 109 in the next current path (ie, the fifth current path) and the opposite end.
  • the output of the NOR gate 204 is connected to the first inverter 105 in the fourth current path, and the second inverter 106 is connected to the power tube in the current path (ie, the fourth current path).
  • the logic control portion of the Nth current path (i.e., the fifth current path) includes three inverters 107, 108, and 109.
  • the input end of the first inverter 107 is connected to the output end of the comparator COMP5, and the output end thereof is connected to the current path (ie, the fifth current path) via the second inverter 108.
  • Power tube driver 5 The input end of the first inverter 107 is connected to the output end of the comparator COMP5, and the output end thereof is connected to the current path (ie, the fifth current path) via the second inverter 108. Power tube driver 5.
  • the power driving section 400 is connected to the output of the logic control section 300 for supplying a required gate voltage for turning on and off the power MOSFET.
  • the power driving unit 400 includes a plurality of power tube drivers, for example, drivers 1 to 5, which are respectively disposed in the first to fifth current paths.
  • the output terminals of the power tube drivers 1 to 5 are connected to the gates of the power MOS transistors (M1 to M5) in the current path for controlling the turn-on and turn-off of the power MOS transistors according to the output signals of the enable terminals of the logic control unit 300.
  • the input control terminal of the switch unit 500 is connected to the output of the power drive unit 400 for controlling energization and de-energization of the LED load.
  • the switch unit 500 includes a plurality of power MOS tubes.
  • M1 to M5 are provided in the first to fifth current paths, respectively.
  • the gate of each power MOS transistor is connected to the output of the power transistor driver in the current path, the drain is connected to the LED load in the current path, and the source is connected to the drain of the MOS transistor M6 of the constant current portion 600. pole.
  • the power MOS tubes M1 to M5 preferably employ a high voltage power tube whose withstand voltage needs to be greater than the maximum threshold of all LED loads.
  • the LED illumination driving circuit of the present invention further includes a constant current portion 600 for supplying a constant current to the driving circuit.
  • a constant current section 600 includes voltage dividing resistors Ra and Rb, the error amplifier AMP, MOSM6 and sampling resistor R 3 ⁇ 4.
  • one end of the resistor Ra is connected to the power supply voltage (the mains is bridge-rectified half sine wave)
  • the other end and one end of the Rb are connected to the positive phase input terminal of the error amplifier AMP
  • the other end of the Rb is connected to the reference ground.
  • the inverting input terminal of the error amplifier AMP is connected to the source of the MOS transistor M6 and one end of the sampling resistor R 3 ⁇ 4 , and the output terminal of the error amplifier AMP is connected to the gate input terminal of the MOS transistor M6.
  • the other end of the sampling resistor R 3 ⁇ 43 ⁇ 4 is connected to the reference ground.
  • the drain of the MOS transistor M6 is connected to the switch unit 500 as an output terminal.
  • the voltage dividing resistors Ra and Rb sine waves are used to divide the power supply voltage into voltage values suitable for the operation of the error amplifier AMP, and the voltage generated by the voltage division varies sinusoidally with the power supply voltage.
  • the error amplifier makes its non-inverting input voltage and the inverting input voltage equal, and the current flowing through the sampling resistor R s can be set to VAMP/R.
  • the current flowing through the LED also changes accordingly.
  • the current flowing through the LED string can be sinusoidal and half-wave change with the input AC power source, and the effective value is kept constant.
  • the effective value of the resistor can be adjusted by the resistor R 3 ⁇ 4 3 ⁇ 4 .
  • the power supply voltage is a half sine wave after the mains is bridge-rectified.
  • the outputs of the comparators COMP1 to COMP5 are all "0".
  • the respective enable terminals E1, E2, E3 of the logic control unit 300, E4, E5 output are all high level "1”
  • the control power MOS tubes M1 ⁇ M5 are all turned on, but since the power supply voltage is 0, the threshold voltage of the LED light is not reached. , so the LED light string goes out. As the power supply voltage rises, the LED1 string is first illuminated.
  • the positive phase terminal voltage VP1 of COMP1 is first increased to be greater than its inverting terminal reference voltage VREF.
  • the comparator COMP1 outputs a high level "1", via the NOR gate 201, the enable terminal in the current path.
  • E1 outputs low level "0".
  • the control power MOS tube M1 is cut off.
  • the power MOS tubes M2, M3, M4, M5 remain open, and the high voltage LED group
  • LED1 and LED2 are energized to emit light.
  • the current on the LED is set to ground via M2, M6 and R. Its instantaneous current magnitude is:
  • VAMP is the positive phase terminal instantaneous voltage of the error amplifier AMP.
  • the enable terminal E2 output is "0"
  • the power MOS transistor M2 is cut off, the power tube M3, M4,
  • M5 remains on, at which time the high voltage LED groups LED1, LED2, and LED3 are illuminated.
  • the current on the LED passes through M3, M6 and R3 ⁇ 4 to ground. Its instantaneous current is:
  • VAMP is the positive phase terminal instantaneous voltage of the error amplifier AMP.
  • the power supply voltage continues to rise, and the enable terminals E3 and E4 of the other current paths sequentially output a low level, and the power MOS transistors M3 and M4 are sequentially turned off, and the LEDs 4 and 5 are sequentially turned on.
  • the power supply voltage reaches the maximum value (the peak value of the half sine wave), it starts to fall, and the enable terminals E4, E3, E2, and E1 sequentially output a high level, and the power MOS tubes M4, M3, M2, and M1 are turned on in turn, and are lit.
  • the LED light string is sequentially reduced, and so on.
  • the enable terminal E5 in the last path maintains the output high level, and the MOS transistor M5 remains in the on state, when the MOS transistor MN (N ⁇ 5) When both are off, the LED of the path where M5 is lit is lit. If the MOS transistor MN (N ⁇ 5) has a turn-on, the LED of the path where M5 is located does not emit light.
  • the frequency of the voltage change is faster, it exceeds the recognition time of the human eye, and the whole process is not observed. To the blinking phenomenon. And, with the increase and decrease of the voltage, the power tube M5 is always kept in the on state.
  • the voltage converter is not used in the circuit.
  • the high-voltage LED group is sequentially turned on, and then sequentially turned off, and the cycle changes. Since the variation frequency is fast enough, greater than the recognition time of the human eye, and the current effective value remains constant during the process, the entire LED dot matrix emits light uniformly and stably.
  • Fig. 4 is a view showing a current-voltage simulation waveform in the LED illumination driving circuit of the present invention.
  • the voltage is 220V AC and the waveform after full-wave rectification has a peak value of 310V.
  • a current flows through the LED, and then the current waveform follows a change of the power supply voltage as a sine half-wave, and the frequency of the current change is 100 Hz. Since the current effective value remains unchanged during the process, Thereby ensuring the uniformity and stability of the LED dot matrix. Because the input current and voltage of the circuit are sinusoidal and the same, the circuit can achieve a better power factor.

Landscapes

  • Circuit Arrangement For Electric Light Sources In General (AREA)

Abstract

一种用于对N组LED负载供电的LED照明驱动电路,包括N路电流通路、N组LED、以及恒流部(600),所述N路电流通路包括:分压部(100),其连接到半正弦波电源,用于将电源电压降低到所在电流通路可用的电压值;比较器部(200),其包括N个比较器,用于在电压变化时输出相应的控制信号;逻辑控制部(300),用于根据从所述比较器部(200)输出的所述控制信号分别输出N个使能信号;功率驱动部(400),用于根据所述N个使能信号提供N个电压;开关部(500),用于根据从所述功率驱动部(400)提供的N个电压截止或导通,从而控制所述N组LED的通电或断电,其中所述逻辑控制部(300)通过逻辑控制使得所述N路电流通路的开关部(500)依次开启和依次关断。通过该LED照明驱动电路,LED灯上的电流随市电输入呈正弦半波变化且有效值保持恒定。

Description

LED照明驱动电路
技术领域
本发明属于数模混合集成电路领域, 特别的, 涉及一种 LED照明驱 动电路。 背景技术
大功率 LED 以其高效、 节能、 环保、 寿命长、 可靠性高等优点正在 逐渐取代传统的白炽灯、 荧光灯等, 成为新一代照明光源。 随着大功率照 明 LED性能的提高及生产成本的降低, 其应用领域正由屏幕背光源以及 一些对亮度要求不高的景观照明领域向普通白光照明领域扩展。 与此同 时, 与功率型 LED配套的驱动集成电路的也由于功率 LED应用的逐渐普 及得到了长足发展。 因此, 设计高效、 可靠的 LED照明驱动电路显得尤 为关键。
为了提高电网的工作效率, 照明设备的功率因素越来越受到重视, 当 照明设备的输入电流随输入市电电压呈正弦波变化时, 照明设备的功率因 素达到最佳值。 同时, LED的发光强度和流过 LED的电流大小在一定范 围内成正比, 为了保证 LED灯的寿命和照明效果, 流过 LED的电流需要 满足在一定范围内且有效值恒定。
传统的 LED照明驱动电路, 往往使用大体积的变压器转能, 占用相 当多的空间, 并且使用有极性的高压电解电容, 长时间使用后元件寿命急 速缩短, 容易造成产品可靠性变差等问题。
针对上述传统 LED照明驱动电路的缺点, 需要开发出一种无需使用 高压电解电容, 不需要变压器转能, 具有高功率因子的 LED驱动电路。 发明内容
本发明为了克服传统电路中的不足之处, 提出了一种新型 LED照明 驱动电路, 无需变压器转能, 无需高压电解电容, 高功率因子, 并且能够 以定电流有效值方式驱动高压 LED的新型电路结构。
根据本发明一方面,提供一种用于对 N组 LED负载供电的 LED照明 驱动电路, 包括 N路电流通路、 N组 LED、 以及恒流部, N为不小于 2 的整数, 所述 N路电流通路包括: 分压部, 其连接到半正弦波电源, 用于 将所述 N 路电流通路的每个的电源电压降低到所在电流通路可用的电压 值; 比较器部, 其包括分别用于所述 N路电流通路的 N个比较器, 所述 每个比较器的一个输入端连接到所述分压部的输出端, 另一个输入端与参 考电压连接, 用于在电压变化时输出相应的控制信号; 逻辑控制部, 其 N 个输入端连接到所述比较器部的 N个输出端,用于根据从所述比较器部输 出的所述控制信号分别输出 N个使能信号; 功率驱动部, 其 N个输入端 连接到所述逻辑控制部的 N个输出端,用于根据所述 N个使能信号提供 N 个电压; 开关部, 其包括 N个开关元件, 所述 N个开关元件的 N个输入 端连接到所述功率驱动部的 N个输出端,用于根据从所述功率驱动部提供 的 N个电压截止或导通, 从而控制所述 N组 LED的通电或断电, 其中所 述逻辑控制部通过逻辑控制使得所述 N路电流通路的所述 N个开关元件 依次截止和依次导通, 所述 N组 LED的第一组 LED的一端连接到电源, 另一端与第一电流通路和第二组 LED的一端连接; 第 i组 LED的一端与 第 i-1组 LED和第 i-1电流通路连接,第 i组 LED的另一端与第 i+1组 LED 和第 i电流通路连接, 第 N组 LED的一端与第 N-1组 LED和第 N-1电流 通路连接, 第 N组 LED的另一端与第 N电流通路连接, 其中 2 i N-l, 所述恒流部连接在所述电源与所述开关部之间, 使得流过所述 N组 LED 的电流随输入电源呈正弦半波变化且有效值保持恒定。
根据本发明另一方面, 其中, 所述分压部包括在所述电源与接地之间 串联的 N个分压电阻, 除第一电阻 R1仅在其靠近接地端的负端连接第 1 电流通路的比较器之外,第 i分压电阻 Ri在其靠近电源端的正端还与第 i-1 电流通路的比较器连接、 并在其负端还与第 i电流通路的比较器连接, 其 中 ϋ
根据本发明另一方面, 其中, 所述比较器部的每个比较器的正相端连 接到所在电流通路的分压电阻的负端, 每个比较器的反相端连接到恒定参 考电压, 当电源电压上升时,所述 Ν个比较器的正相端电压依次高于所述 参考电压, 使得所述 N个比较器依次输出高电平, 当电源电压下降时, 所 述 N个比较器的正相端电压依次低于所述参考电压, 使得所述 N个比较 器依次输出低电平。
根据本发明另一方面, 其中, 所述逻辑控制部在第一电流通路中包括 一个或非门,在第 i电流通路的每个中顺序包括一个或非门和两个反相器, 其中 2 i N-l, 在第 N电流通路中顺序包括三个反相器, 每个所述或非 门的一个输入端与所在电流通路中的比较器的输出端连接、其另一个输入 端连接在靠近所述逻辑控制部的输出端的两个反相器之间。
根据本发明另一方面, 其中, 所述开关元件为功率 MOS管, 所述功 率 MOS管的栅极与所述驱动部的输出端连接, 以根据所述使能信号控制 所述功率 MOS管的导通和截止, 所述功率 MOS管的漏极分别与所述 N 组 LED连接, 以及所述功率 MOS管的源极与所述恒流部的输出端连接。
根据本发明另一方面, 其中, 所述恒流部包括: 在电源和接地之间串 联的分压电阻 Ra和 Rb、 误差放大器、 功率 MOS管、 以及采样电阻, 所 述误差放大器的正相端连接在电阻 Ra与 Rb之间、 其反相端与功率 MOS 管的源极和采样电阻的一端连接、 以及其输出端与功率 MOS管的栅极连 接, 所述采样电阻的另一端接地, 以及所述功率 MOS管的漏极作为输出 端与所述开关部连接。
根据本发明另一方面, 其中, 电阻 R1远大于电阻 Ri, 其中 i N, 以 及电阻 Ra远大于电阻 Rb。
根据本发明另一方面, 其中, 所述功率 MOS管均为高压功率管, 其 耐压大于各组 LED的最大阈值。
根据本发明另一方面, 其中, 所述各比较器的反相端参考电压由其它 供电模块提供一个恒定大小的电压。
根据本发明另一方面, 其中, 所述恒流部的输出瞬时电流大小为:
其中 VAMP为误差放大器的正相端瞬时电压, R ¾«为采样电阻的电阻 本发明的 LED照明驱动电路的主要工作过程是: 当电源电压 (市电 经桥式整流后的半正弦波) 为零时, 功率 MOS管 M1~M5全部打开, 随 着电源电压逐渐上升至第一组高压 LED的导通阈值电压时, LED1被点亮, 电流经 Ml管, M6管至地, 电压继续上升, 当电压达到第二组高压 LED 的导通阈值电压时, 由电阻分压, 比较器 COMP1的 VP1端电压率先增高 至大于其 VREF端的恒定参考电压,比较器 COMP1的输出电平发生跳变, 经过逻辑控制, 将功率 MOS管 Ml 关闭, 此时功率管 M2, M3, M4, M5仍然保持打开, 第一组和第二组高压 LED组 LED1,LED2被点亮。 随 后电压继续上升, 当电压达到第三组高压 LED 的导通阈值电压时, 由电 阻分压,比较器 COMP2的 VP2端电压增高至大于其 VREF端的恒定参考 电压, 比较器 COMP2的输出电平发生跳变, 经过逻辑控制, 将功率 MOS 管 M2管关断, 功率管 M3,M4,M5仍然保持打开, 第一组、 第二组和第三 组高压 LED组 LED1,LED2,LED3被点亮。 以此类推, 电压继续升高, 比 较器 COMP3 , COMP4依次响应, 经逻辑控制, MOS管 M3, M4被依次 关断, 第三, 第四和第五组高压 LED被依次点亮。 随后, 电压开始下降, 功率管 M4, M3, M2, Ml又被依次打开, 高压 LED组依次熄灭, 如此 循环往复, 由于电压变化的频率较快, 超过人眼的识别时间, 整个过程中 观察不到闪烁现象。 而伴随电压的升高和降低, 功率管 M5始终保持开通 状态。
由以上电路分析可以看出, 电路中并没有使用电压转换器, 随着电压 的变化, 高压 LED组被依次点亮, 然后依次熄灭, 循环变化。 由于变化 频率足够快, 大于人眼的识别时间, 并且过程中电流有效值保持恒定, 所 以整个 LED点阵发光均匀、 稳定。 附图说明
图 1显示了本发明的 LED照明驱动电路的结构示意图;
图 2示出了本发明 LED照明驱动电路中比较器的优选结构示意图; 图 3示出了本发明 LED照明驱动电路中逻辑控制部的优选结构示意 图; 以及
图 4显示了本发明的 LED照明驱动电路中的电流电压仿真波形图。 具体实施方式
为使本发明的目的、 技术方案和优点更加清楚明了, 下面结合具体实 施方式并参照附图, 对本发明进一歩详细说明。 应该理解, 这些描述只是 示例性的, 而并非要限制本发明的范围。 此外, 在以下说明中, 省略了对 公知结构和技术的描述, 以避免不必要地混淆本发明的概念。
图 1显示了本发明的 LED照明驱动电路的结构示意图。
本发明的 LED照明驱动电路用于对 N组 LED负载供电, 因而包括 N 路电流通路 (N为不小于 2的整数), 整个电路的电源是市电经桥式整流 后的半正弦波。 在本发明的优选实施例中, 以 5组 LED负载为例进行说 明, 但本发明不限制于此, 任意 N组 LED负载均适用于本发明的 LED照 明驱动电路, 只需要按照类似规则增加电流通路的数量即可。
如图 1所示, LED照明驱动电路包括 N路电流通路和恒流部 600, N 路电流通路分别驱动 N组 LED负载发光, 每路电流通路依次包括下述部 分: 分压部 100、 比较器部 200、 逻辑控制部 300、 功率驱动部 400、 开关 部 500。
分压部 100连接到电源, 用于将电源电压降低到所在电流通路可用的 电压值。 如图 1所示, 分压部 100包括 N个分压电阻, 例如 R1〜R5, 这 些电阻为依次串联结构, 其中第 1路分压电阻 R1的一端与电源连接, 并 远大于其他通路的分压电阻 R2〜R5, 第 N路分压电阻 R5的一端与地连 接。 除 R1的电源端, 第 i路电流通路的分压电阻 Ri分别与该路的比较器 COMPi和上一路的比较器 COMPi-1的正相端连接, 这里 i=2,3,4, …, N。 在图 1所示实施例中, 电阻 R2〜R5的各端分别依次与比较器 COMP1 , COMP2, COMP3 , COMP4, COMP5的正相端相连。
比较器部 200的输入端连接到分压部 100的输出端, 用于在电压变化 时输出相应的控制信号给逻辑控制部 300,控制开关部 500的截止和导通, 进而控制各路 LED的点亮和熄灭。 如图 1所示, 比较器部 200包括 N个 比较器, 例如 COMPl〜COMP5, 这些比较器分别属于各个 LED负载所 在电流通路。 每个比较器的正相端连接到所在电流通路的分压电阻的负 端, 每个比较器的反相端连接到恒定参考电压 VREF。 可选的, 参考电压 VREF可以由其它供电模块提供恒定大小的电压, 该电压满足比较器的输 入范围, 以保证比较器正常工作。
比较器部 200的工作原理如下。 当电源电压变化时, 由于分压电阻的 存在, 当电压上升时, 各比较器的正相端电压 (例如 VP1, VP2, VP3 , VP4 ) 依次增大, 直到大于比较器的反相端参考电压 VREF , 比较器 COMPl , COMP2, COMP3 , COMP4 依次输出高电平, 该高电平信号输 送至逻辑控制部 LOGIC 300, 进而控制开关部 500中的功率 MOS管 Ml, M2, M3, M4依次截止, 使得点亮的 LED灯串数量依次增加, 当电压下 降时, 各比较器的正相端电压依次减小, 直到小于比较器的反相端参考电 压 VREF, 各比较器 COMPl , COMP2, COMP3 , COMP4依次输出低电 平, 该低电平信号通过逻辑控制部 300控制功率 MOS管 M4, M3, M2, Ml依次导通, 使得点亮的 LED灯串数量依次减少。 另外, 最后第 N个电 流通路的比较器 COMPN (例如比较器 COMP5 ) 的正相端 VP5接地, 其 输出保持低电平, 使得该通路的功率 MOS管 M5保持导通, 当 MOS管 MN (N<5 )均截止时, M5所在通路的 LED点亮,如果 MOS管 MN (N<5 ) 有一个导通时, M5所在通路的 LED不发光。
图 2示出了本发明 LED照明驱动电路中比较器的优选结构示意图。 如图 2所示, 本发明中优选采用的比较器由两级运放、 反相器构成。 其中两级运放的第一级采用差分输入单端输出结构, 运放输出的信号经过 反相器整形为逻辑信号输出。 两级放大器将输入信号 IN+和输入信号 IN- 的差值放大, 被放大的信号通过反相器整形为逻辑信号输出。
逻辑控制部 300连接到比较器部 200的输出端, 其包括多个或非门和 反相器, 用于电压变化过程中控制开关部 500的依次开启和依次关断。
图 3示出了本发明 LED照明驱动电路中逻辑控制部的优选结构示意 图。
如图 3所示, 逻辑控制部 300包括或非门 201〜204和反相器 101〜 109。 另外, 逻辑控制部 300在每个电流通路中分别包含一个使能端 El、 E2、 E3、 E4、 E5。 每个使能端随着电压变化输出高电平或低电平, 经功 率管驱动器 1〜5驱动后, 控制功率 MOS管分别导通或截止, 进而控制所 在电流通路中的 LED负载通电发光或断电熄灭。
第 1电流通路中的或非门 201的一个输入端连接到比较器 COPM1的 输出端, 另一输入端连接到下一个电流通路(即第 2电流通路) 中反相器
102的输入端和反相器 101的输出端, 或非门 201的输出端连接到所在电 流通路 (即第 1电流通路) 中的功率管驱动器 1。
第 2电流通路中的或非门 202的一个输入端连接到比较器 COPM2的 输出端, 另一输入端连接到下一个电流通路(即第 3电流通路) 中反相器 104的输入端和反相器 103的输出端, 或非门 202的输出端经所在电流通 路 (即第 2电流通路) 中的第一反相器 101, 第二反相器 102连接到所在 电流通路中的功率管驱动器 2。
第 3电流通路中的或非门 203的一个输入端连接到比较器 COPM3的 输出端, 另一输入端连接到下一个电流通路(即第 4电流通路) 中反相器 106的输入端和反相器 105的输出端, 或非门 203的输出端经所在电流通 路 (即第 3电流通路) 中的第一反相器 103, 第二反相器 104连接到所在 电流通路中的功率管驱动器 3。
第 4电流通路中的或非门 204的一个输入端连接到比较器 COPM4的 输出端, 另一输入端连接到下一个电流通路(即第 5电流通路) 中反相器 109的输入端和反相器 108的输出端, 或非门 204的输出端经第 4电流通 路中的第一反相器 105, 第二反相器 106连接到所在电流通路 (即第 4电 流通路) 中的功率管驱动器 4。
第 N个电流通路(即第 5个电流通路)的逻辑控制部包括三个反相器 107、 108和 109。 其中, 第一反相器 107的输入端连接到比较器 COMP5 的输出端, 其输出端经第二反相器 108, 第三反相器 109连接到所在电流 通路 (即第 5电流通路) 中功率管驱动器 5。
功率驱动部 400连接到逻辑控制部 300的输出端, 用于为功率 MOS 管的导通和截止提供所需的栅极电压。 如图 1所示, 功率驱动部 400包括 多个功率管驱动器,例如驱动器 1〜5,分别设置在第 1至第 5电流通路中。 功率管驱动器 1〜5的输出端连接所在电流通路中的功率 MOS管 (Ml〜 M5 )的栅极,用于根据逻辑控制部 300的使能端的输出信号控制功率 MOS 管的导通和截止。
开关部 500的输入控制端连接到功率驱动部 400的输出端, 用于控制 LED负载的通电和断电。如图 1所示,开关部 500包括多个功率 MOS管, 例如 M1〜M5, 分别设置在第 1至第 5电流通路中。 每个功率 MOS管的 栅极连接到所在电流通路中的功率管驱动器的输出端, 漏极连接到所在电 流通路中的 LED负载,源极均连接到与恒流部 600的 MOS管 M6的漏极。 当每个功率 MOS管的导通时, 所在电流通路中的 LED负载不通电发光; 当该功率 MOS管依次截止时,所在电流通路中的 LED负载依次通电发光。 本发明中, 功率 MOS管 M1~M5优选的采用高压功率管, 其耐压需大于 所有 LED负载的最大阈值。
本发明的 LED照明驱动电路还包括恒流部 600,用于为驱动电路提供 恒流电流。 如图 1所示, 恒流部 600包括分压电阻 Ra和 Rb、 误差放大器 AMP, MOSM6和采样电阻 R ¾。 其中, 电阻 Ra的一端连接到电源电压 (市电经桥式整流后的半正弦波)另一端和 Rb的一端与误差放大器 AMP 的正相输入端相连, Rb的另一端连接参考地。 误差放大器 AMP的的反相 输入端连接 MOS管 M6的源极以及采样电阻 R ¾ϊ的一端,误差放大器 AMP 的输出端连接 MOS管 M6的栅极输入端。 采样电阻 R ¾¾的另一端连接参 考地。 MOS管 M6的漏极作为输出端连接开关部 500。 分压电阻 Ra和 Rb 正弦波用于将电源电压分压成适合误差放大器 AMP工作的电压值, 同时 分压所产生的电压随着电源电压呈正弦半波变化。 电流正常工作时, 误差 放大器使其正相输入电压和反相输入电压相等, 进而可以得到流过采样电 阻 R s置的电流为 VAMP/R 设置。 随着电源电压的变化, 流过 LED的电流也在 发生相应的变化, 通过恒流部 600, 可以使流过 LED灯串的电流随输入 AC电源呈正弦半波变化且有效值保持恒定,电流的有效值大小可电阻 R ¾ ¾控制调节。
下面, 结合图 1至图 3介绍本发明的 LED照明驱动电路的工作原理。 电源电压是市电经桥式整流后的半正弦波。 当电源电压为 0时, 比较 器 COMPl〜COMP5输出都为 "0", 通过逻辑控制部 300中的或非门及反 相器之后, 逻辑控制部 300的各个使能端 El, E2 , E3 , E4, E5输出都为 高电平 " 1 ", 经过功率管驱动器 1〜5驱动后, 控制功率 MOS管 M1〜M5 全部导通, 但是由于电源电压为 0, 没有到达 LED灯点亮的阈值电压, 所 以 LED灯串熄灭。 随着电源电压的升高, LED1灯串首先被点亮。
当电源电压进一歩升高, 由 LED器件的电压特性可知, LED1灯串的 电压降保持不变,当电源电压达到 LED1和 LED2两串 LED灯的导通阈值 电压时, 通过设置分压电阻部 100 中各个电阻的值, 保证此时比较器
COMP1的正相端电压 VP1率先增大至大于其反相端参考电压 VREF。 比 较器 COMP1输出高电平 " 1 ", 经或非门 201, 所在电流通路中的使能端
E1输出低电平 "0", 经功率管驱动器 1驱动后, 控制功率 MOS管 Ml截 止, 此时, 功率 MOS管 M2, M3, M4, M5仍然保持打开, 高压 LED组
LED1,LED2通电发光。 LED上的电流经 M2, M6和 R 设置至地。 其瞬时电 流大小为:
j _ V v AMP
¾置
其中 VAMP为误差放大器 AMP的正相端瞬时电压。
随后电源电压继续上升至 LED1、 LED2和 LED3的导通阈值电压时, 由电阻分压, 比较器 COMP2的 VP2端电压增高至大于其反相端的参考电 压 VREF, 比较器 COMP2输出跳变为 " 1 ", 经或非门 202和反相器 101,
102, 使能端 E2输出为 "0", 将功率 MOS管 M2截止, 功率管 M3, M4,
M5仍然保持导通, 此时高压 LED组 LED1,LED2,LED3被点亮。 LED上 的电流经 M3, M6和 R ¾至地。 其瞬时电流大小为:
J _ V v AMP
W设置
其中 VAMP为误差放大器 AMP的正相端瞬时电压。
随后, 电源电压继续升高, 其他电流通路中的使能端 E3, E4依次输 出低电平, 功率 MOS管 M3, M4被依次截止, LED4、 LED5依次点亮。
当电源电压达到最大值 (半正弦波的峰值) 后开始下降, 使能端 E4, E3, E2, E1依次输出高电平, 功率 MOS管 M4, M3, M2, Ml依次导通, 点亮的 LED灯串依次减少, 如此循环往复。
另外, 在电源电压变化的整个过程中, 最后一个通路(即第 5电流通 路)中的使能端 E5保持输出高电平, MOS管 M5保持导通状态, 当 MOS 管 MN (N<5 ) 均截止时, M5所在通路的 LED点亮, 如果 MOS管 MN (N<5 ) 有一个导通时, M5所在通路的 LED不发光。
由于电压变化的频率较快, 超过人眼的识别时间, 整个过程中观察不 到闪烁现象。 并且, 伴随电压的升高和降低, 功率管 M5始终保持开通状 态。
通过以上运行原理可以得知, 电路中并没有使用电压转换器, 随着电 压的变化, 高压 LED组被依次点亮, 然后依次熄灭, 循环变化。 由于变 化频率足够快, 大于人眼的识别时间, 并且过程中电流有效值保持恒定, 所以整个 LED点阵发光均匀、 稳定。
图 4显示了本发明的 LED照明驱动电路中的电流电压仿真波形图。 如图 4所示, 电压为 220V交流电经全波整流后的波形, 其峰值为 310V。 当电压达到第一组 LED的阈值时, LED上开始有电流流过, 随后电流波 形跟随电源电压变化呈正弦半波, 电流变化的频率为 100Hz, 由于在该过 程中电流有效值保持不变, 从而保证了 LED点阵的发光均匀稳定。 又因 为电路输入电流和电压呈正弦半波且同歩变化, 所以电路可以达到较理想 的功率因子。
应当理解的是, 本发明的上述具体实施方式仅仅用于示例性说明或解 释本发明的原理, 而不构成对本发明的限制。 因此, 在不偏离本发明的精 神和范围的情况下所做的任何修改、 等同替换、 改进等, 均应包含在本发 明的保护范围之内。 此外, 本发明所附权利要求旨在涵盖落入所附权利要 求范围和边界、 或者这种范围和边界的等同形式内的全部变化和修改例。

Claims

权 利 要 求 书
1. 一种用于对 N组 LED负载供电的 LED照明驱动电路, 包括 N路 电流通路、 N组 LED、 以及恒流部(600), N为不小于 2的整数, 所述 N 路电流通路包括:
分压部(100), 其连接到半正弦波电源, 用于将所述 N路电流通路的 每个的电源电压降低到所在电流通路可用的电压值;
比较器部(200), 其包括分别用于所述 N路电流通路的 N个比较器, 所述每个比较器的一个输入端连接到所述分压部 (100) 的输出端, 另一 个输入端与参考电压连接, 用于在电压变化时输出相应的控制信号;
逻辑控制部 (300), 其 N个输入端连接到所述比较器部 (200) 的 N 个输出端, 用于根据从所述比较器部 (200) 输出的所述控制信号分别输 出 N个使能信号;
功率驱动部 (400), 其 N个输入端连接到所述逻辑控制部 (300) 的 N个输出端, 用于根据所述 N个使能信号提供 N个电压;
开关部 (500), 其包括 N个开关元件, 所述 N个开关元件的 N个输 入端连接到所述功率驱动部 (400) 的 N个输出端, 用于根据从所述功率 驱动部 (400) 提供的 N个电压截止或导通, 从而控制所述 N组 LED的 通电或断电,
其中所述逻辑控制部 (300) 通过逻辑控制使得所述 N路电流通路的 所述 N个开关元件依次截止和依次导通,
所述 N组 LED的第一组 LED的一端连接到电源,另一端与第一电流 通路和第二组 LED的一端连接; 第 i组 LED的一端与第 i-1组 LED和第 i-1电流通路连接, 第 i组 LED的另一端与第 i+1组 LED和第 i电流通路 连接, 第 N组 LED的一端与第 N-1组 LED和第 N-1电流通路连接, 第 N 组 LED的另一端与第 N电流通路连接, 其中 2 i N-l,
所述恒流部 (600) 连接在所述电源与所述开关部 (500) 之间, 使得 流过所述 N组 LED的电流随输入电源呈正弦半波变化且有效值保持恒定。
2. 根据权利要求 1所述的 LED照明驱动电路,其中,所述分压部( 100) 包括在所述电源与接地之间串联的 N个分压电阻, 除第一电阻 R1仅在其 靠近接地端的负端连接第 1电流通路的比较器之外,第 i分压电阻 Ri在其 靠近电源端的正端还与第 i-1 电流通路的比较器连接、 并在其负端还与第 i电流通路的比较器连接, 其中 i N。
3. 根据权利要求 1所述的 LED照明驱动电路, 其中, 所述比较器部 ( 200) 的每个比较器的正相端连接到所在电流通路的分压电阻的负端, 每个比较器的反相端连接到恒定参考电压, 当电源电压上升时, 所述 N个 比较器的正相端电压依次高于所述参考电压,使得所述 N个比较器依次输 出高电平, 当电源电压下降时, 所述 N个比较器的正相端电压依次低于所 述参考电压, 使得所述 N个比较器依次输出低电平。
4. 根据权利要求 1所述的 LED照明驱动电路, 其中, 所述逻辑控制 部(300)在第一电流通路中包括一个或非门, 在第 i电流通路的每个中顺 序包括一个或非门和两个反相器, 其中 2 i N-l, 在第 N电流通路中顺 序包括三个反相器, 每个所述或非门的一个输入端与所在电流通路中的比 较器的输出端连接、 其另一个输入端连接在靠近所述逻辑控制部 (300 ) 的输出端的两个反相器之间。
5. 根据权利要求 1所述的 LED照明驱动电路, 其中, 所述开关元件 为功率 MOS管, 所述功率 MOS管的栅极与所述驱动部 (400) 的输出端 连接, 以根据所述使能信号控制所述功率 MOS管的导通和截止, 所述功 率 MOS管的漏极分别与所述 N组 LED连接, 以及所述功率 MOS管的源 极与所述恒流部 (600) 的输出端连接。
6.根据权利要求 1所述的 LED照明驱动电路,其中,所述恒流部 ( 600) 包括: 在电源和接地之间串联的分压电阻 Ra和 Rb、 误差放大器、 功率 MOS管、 以及采样电阻, 所述误差放大器的正相端连接在电阻 Ra与 Rb 之间、 其反相端与功率 MOS管的源极和采样电阻的一端连接、 以及其输 出端与功率 MOS管的栅极连接, 所述采样电阻的另一端接地, 以及所述 功率 MOS管的漏极作为输出端与所述开关部 (500) 连接。
7. 根据权利要求 6所述的 LED照明驱动电路, 其中, 电阻 R1远大 于电阻 Ri, 其中 i N, 以及电阻 Ra远大于电阻 Rb。
8.根据权利要求 5所述的 LED照明驱动电路, 其中, 所述功率 MOS 管均为高压功率管, 其耐压大于各组 LED的最大阈值。
9. 根据权利要求 3所述的 LED照明驱动电路, 其中, 所述各比较器 的反相端参考电压由其它供电模块提供一个恒定大小的电压。
10. 根据权利要求 6所述的 LED照明驱动电路, 其中, 所述恒流部
R设置
其中 VAMP为误差放大器的正相端瞬时电压, R ¾«为采样电阻的电阻 值。
PCT/CN2014/082572 2013-07-22 2014-07-21 Led照明驱动电路 WO2015010580A1 (zh)

Priority Applications (4)

Application Number Priority Date Filing Date Title
EA201690262A EA201690262A1 (ru) 2013-07-22 2014-07-21 Схема возбуждения осветительного прибора на основе сид
EP14828676.8A EP3026985A4 (en) 2013-07-22 2014-07-21 Led lighting drive circuit
US14/906,493 US9485821B2 (en) 2013-07-22 2014-07-21 LED lighting drive circuit
CA2918101A CA2918101A1 (en) 2013-07-22 2014-07-21 Led lighting drive circuit

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201310309316.4 2013-07-22
CN201310309316.4A CN104333934B (zh) 2013-07-22 2013-07-22 Led照明驱动电路

Publications (1)

Publication Number Publication Date
WO2015010580A1 true WO2015010580A1 (zh) 2015-01-29

Family

ID=52392717

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2014/082572 WO2015010580A1 (zh) 2013-07-22 2014-07-21 Led照明驱动电路

Country Status (6)

Country Link
US (1) US9485821B2 (zh)
EP (1) EP3026985A4 (zh)
CN (1) CN104333934B (zh)
CA (1) CA2918101A1 (zh)
EA (1) EA201690262A1 (zh)
WO (1) WO2015010580A1 (zh)

Families Citing this family (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104812118B (zh) * 2015-04-17 2017-03-01 华南理工大学 一种采用交流市电的led照明驱动电路及方法
CN105048779B (zh) * 2015-07-09 2018-11-06 成都卓创科微电子有限公司 一种栅电压自适应快速驱动电路
CN105050296B (zh) * 2015-09-07 2017-06-30 电子科技大学 一种具有高功率因数特性的led驱动电路
DE102016122933A1 (de) * 2016-11-28 2018-05-30 SMR Patents S.à.r.l. Steuer- und Überwachungsschaltung zum Steuern einer Beleuchtungsanwendung in einem Fahrzeug
WO2017192513A1 (en) * 2016-05-02 2017-11-09 Lumileds Llc Multi-pad, multi-junction led package with tapped linear driver
CN106658847B (zh) * 2016-12-23 2018-08-14 深圳市思乐数据技术有限公司 彩票机自助终端及其灯光控制方法
US10222405B2 (en) * 2017-06-14 2019-03-05 Otto P. Fest Solid state analog meter
CN110234188A (zh) * 2019-05-08 2019-09-13 深圳市富满电子集团股份有限公司 Led驱动芯片的自动换挡调节电路
CN110264968B (zh) * 2019-05-14 2021-11-02 昆山龙腾光电股份有限公司 信号产生电路
CN113597050B (zh) * 2019-06-06 2024-05-28 上海路傲电子科技有限公司 控制电路、驱动电路、控制方法及照明装置
CN112804781A (zh) * 2019-11-13 2021-05-14 上海路傲电子科技有限公司 控制电路、驱动电路、控制方法及照明装置
JP7302495B2 (ja) * 2020-02-04 2023-07-04 豊田合成株式会社 Led駆動装置
CN112289253B (zh) * 2020-06-02 2022-02-11 深圳市杰理微电子科技有限公司 Led单元的驱动电路、led单元及显示屏
CN113035138A (zh) * 2021-03-09 2021-06-25 京东方科技集团股份有限公司 驱动电路、显示屏和驱动方法
CN112996182B (zh) * 2021-03-11 2023-03-10 广州彩熠灯光股份有限公司 一种光源驱动电路

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101137261A (zh) * 2006-08-29 2008-03-05 安华高科技Ecbuip(新加坡)私人有限公司 用于驱动led的装置以及方法
CN101668373A (zh) * 2009-09-29 2010-03-10 李云霄 交流供电led光源驱动电路
CN101754541A (zh) * 2010-01-27 2010-06-23 英飞特电子(杭州)有限公司 适用于多路并联led的直流母线电压跟随型控制电路
TWM408216U (en) * 2010-11-17 2011-07-21 Leda Photoelectricity Entpr Ltd Driving device for light emitting diodes
US20120068714A1 (en) * 2010-09-20 2012-03-22 Sih-Ting Wang Short Detection Circuit, Light-Emitting Diode Chip, Light-Emitting Diode Device and Short Detection Method
WO2012138200A2 (ko) * 2011-04-08 2012-10-11 주식회사 엠알씨랩 역률 향상을 위한 led 드라이버

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010109168A (ja) * 2008-10-30 2010-05-13 Fuji Electric Systems Co Ltd Led駆動装置、led駆動方法および照明装置
US8305005B2 (en) * 2010-09-08 2012-11-06 Integrated Crystal Technology Inc. Integrated circuit for driving high-voltage LED lamp
TWI444092B (zh) * 2010-10-05 2014-07-01 Control circuit module for light emitting diode lamps
DE102011003937A1 (de) * 2011-02-10 2013-04-25 Osram Ag Ansteuerung mehrerer in Reihe geschalteter Leuchtmittel
JP5720392B2 (ja) * 2011-04-14 2015-05-20 日亜化学工業株式会社 発光ダイオード駆動装置
DE102012109722A1 (de) * 2011-10-18 2013-04-18 Samsung Electronics Co. Ltd. Lichtabgebende Vorrichtung und dieselbe verwendendes LED-Treiberverfahren
CN102497695A (zh) * 2011-11-18 2012-06-13 上海晶丰明源半导体有限公司 一种led线性恒流控制电路及led线性电路
WO2013110052A1 (en) * 2012-01-20 2013-07-25 Osram Sylvania Inc. Lighting systems with uniform led brightness
CN102665324A (zh) * 2012-04-12 2012-09-12 上海晶丰明源半导体有限公司 适用于可控硅调光器的led线性驱动电路及控制方法
US9013109B2 (en) * 2013-02-06 2015-04-21 Iml International Light-emitting diode lighting device with adjustable current settings and switch voltages
US20140265899A1 (en) * 2013-03-15 2014-09-18 Laurence P. Sadwick Linear LED Driver

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101137261A (zh) * 2006-08-29 2008-03-05 安华高科技Ecbuip(新加坡)私人有限公司 用于驱动led的装置以及方法
CN101668373A (zh) * 2009-09-29 2010-03-10 李云霄 交流供电led光源驱动电路
CN101754541A (zh) * 2010-01-27 2010-06-23 英飞特电子(杭州)有限公司 适用于多路并联led的直流母线电压跟随型控制电路
US20120068714A1 (en) * 2010-09-20 2012-03-22 Sih-Ting Wang Short Detection Circuit, Light-Emitting Diode Chip, Light-Emitting Diode Device and Short Detection Method
TWM408216U (en) * 2010-11-17 2011-07-21 Leda Photoelectricity Entpr Ltd Driving device for light emitting diodes
WO2012138200A2 (ko) * 2011-04-08 2012-10-11 주식회사 엠알씨랩 역률 향상을 위한 led 드라이버

Also Published As

Publication number Publication date
CN104333934B (zh) 2016-12-28
US9485821B2 (en) 2016-11-01
EP3026985A4 (en) 2017-03-29
EP3026985A1 (en) 2016-06-01
CN104333934A (zh) 2015-02-04
CA2918101A1 (en) 2015-01-29
US20160165689A1 (en) 2016-06-09
EA201690262A1 (ru) 2016-05-31

Similar Documents

Publication Publication Date Title
WO2015010580A1 (zh) Led照明驱动电路
US20160021713A1 (en) Electronic control to regulate power for solid-state lighting and methods thereof
WO2015024529A1 (zh) Led交流驱动电路
CN104206019A (zh) 包括高效光装置的灯
WO2014067427A1 (zh) 交流电直接驱动led模块的调光驱动电路
WO2018094970A1 (zh) 一种led线性恒流驱动电路及led照明装置
WO2016045644A1 (zh) 一种母线电流控制电路、恒流驱动控制器及led光源
CN103139990A (zh) 一种可调光led驱动电源
CN105142282A (zh) 基于mcu的led分段式交替导通电路及其驱动方法
Hwu et al. A high brightness light-emitting diode driver with power factor and total harmonic distortion improved
CN205005309U (zh) 基于mcu的led分段式交替导通电路
TWI429315B (zh) AC light emitting diode drive
CN103648223A (zh) 多通道led 线性驱动器
TWI492662B (zh) A device for driving a light - emitting diode
CN203590567U (zh) 一种基于ac电源的自动调整照明强度的led驱动电路
KR101123371B1 (ko) 발광다이오드 구동장치
CN202841658U (zh) 十管脚led智能驱动芯片
CN102595713B (zh) 一种倍频调光控制器
WO2009127079A1 (zh) 并联桥式及高压并联桥式电路结构
Wu et al. A linear constant current LED driver without off-chip inductor and capacitor
CN202435684U (zh) 一种倍频调光控制器
TWI760068B (zh) 一種具多工電流平衡控制之led驅動器
Baek et al. Advanced control strategies for balancing LED usage of AC LED driver
Xu et al. Design and evaluation of a solar based single inductor multiple outputs LED lighting
TWM602769U (zh) Led驅動電路

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14828676

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2918101

Country of ref document: CA

WWE Wipo information: entry into national phase

Ref document number: 14906493

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2014828676

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 201690262

Country of ref document: EA