WO2015010469A1 - 无线通信的方法、有线传输检测的方法及相关设备 - Google Patents
无线通信的方法、有线传输检测的方法及相关设备 Download PDFInfo
- Publication number
- WO2015010469A1 WO2015010469A1 PCT/CN2014/072470 CN2014072470W WO2015010469A1 WO 2015010469 A1 WO2015010469 A1 WO 2015010469A1 CN 2014072470 W CN2014072470 W CN 2014072470W WO 2015010469 A1 WO2015010469 A1 WO 2015010469A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- service
- parameter
- transmission
- base station
- delay
- Prior art date
Links
- 230000005540 biological transmission Effects 0.000 title claims abstract description 805
- 238000000034 method Methods 0.000 title claims abstract description 126
- 230000006854 communication Effects 0.000 title claims abstract description 97
- 238000001514 detection method Methods 0.000 title claims abstract description 84
- 238000004891 communication Methods 0.000 title claims abstract description 78
- 238000004364 calculation method Methods 0.000 claims description 12
- 238000001228 spectrum Methods 0.000 claims description 12
- 230000004913 activation Effects 0.000 claims description 9
- 230000008569 process Effects 0.000 description 21
- 230000003595 spectral effect Effects 0.000 description 19
- 230000015654 memory Effects 0.000 description 14
- 230000008859 change Effects 0.000 description 10
- 238000010586 diagram Methods 0.000 description 10
- 230000006870 function Effects 0.000 description 10
- 230000003111 delayed effect Effects 0.000 description 6
- 238000003860 storage Methods 0.000 description 6
- 238000012545 processing Methods 0.000 description 4
- 230000011664 signaling Effects 0.000 description 4
- 230000008878 coupling Effects 0.000 description 3
- 238000010168 coupling process Methods 0.000 description 3
- 238000005859 coupling reaction Methods 0.000 description 3
- 238000005516 engineering process Methods 0.000 description 3
- 230000002452 interceptive effect Effects 0.000 description 3
- 238000012544 monitoring process Methods 0.000 description 3
- 238000012935 Averaging Methods 0.000 description 2
- 238000004590 computer program Methods 0.000 description 2
- 238000005457 optimization Methods 0.000 description 2
- 230000002123 temporal effect Effects 0.000 description 2
- 238000012937 correction Methods 0.000 description 1
- 125000004122 cyclic group Chemical group 0.000 description 1
- 230000001934 delay Effects 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 230000003993 interaction Effects 0.000 description 1
- 230000007774 longterm Effects 0.000 description 1
- 230000003287 optical effect Effects 0.000 description 1
- 238000002360 preparation method Methods 0.000 description 1
- 239000000700 radioactive tracer Substances 0.000 description 1
- 238000004904 shortening Methods 0.000 description 1
- 238000006467 substitution reaction Methods 0.000 description 1
- 238000012546 transfer Methods 0.000 description 1
Classifications
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04W—WIRELESS COMMUNICATION NETWORKS
- H04W28/00—Network traffic management; Network resource management
- H04W28/16—Central resource management; Negotiation of resources or communication parameters, e.g. negotiating bandwidth or QoS [Quality of Service]
- H04W28/24—Negotiating SLA [Service Level Agreement]; Negotiating QoS [Quality of Service]
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04W—WIRELESS COMMUNICATION NETWORKS
- H04W72/00—Local resource management
- H04W72/50—Allocation or scheduling criteria for wireless resources
- H04W72/54—Allocation or scheduling criteria for wireless resources based on quality criteria
- H04W72/542—Allocation or scheduling criteria for wireless resources based on quality criteria using measured or perceived quality
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L43/00—Arrangements for monitoring or testing data switching networks
- H04L43/08—Monitoring or testing based on specific metrics, e.g. QoS, energy consumption or environmental parameters
- H04L43/0823—Errors, e.g. transmission errors
- H04L43/0829—Packet loss
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L47/00—Traffic control in data switching networks
- H04L47/10—Flow control; Congestion control
- H04L47/18—End to end
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L65/00—Network arrangements, protocols or services for supporting real-time applications in data packet communication
- H04L65/80—Responding to QoS
Definitions
- Wireless communication method Wireless communication method, wired transmission detection method and related equipment
- the present invention relates to the field of communications, and in particular, to a method of wireless communication, a method of wired transmission detection, and related equipment.
- LTE Long Term Evolution
- the LTE system defines several different QoS characteristics.
- the QoS feature indicates that different types of user equipment data packets are transmitted in user equipment (UE) and Policy and Charging Enforcement Function (PCEF).
- UE user equipment
- PCEF Policy and Charging Enforcement Function
- PGW packet data network gateway
- the transmission delay between the two is too long, which also causes the user equipment experience to be unsatisfactory.
- LTE systems unlike previous second-generation wireless communication systems, LTE systems only support PS connections and no longer support CS connections.
- the prior art provides a method for improving call quality during two-way conversation.
- the method checks the information flow of the call during the call, so that at least one interactive characteristic of the call process is monitored, and then the characteristics of the specific interactive feature are detected. Based on the detected interaction Feature characteristics, determine the maximum end-to-end delay, and introduce the maximum end-to-end delay into the call. If the delay is allowed, increase the call quality, such as forward error correction codec, to enhance the call. Experience.
- this method is the same as the QoS feature defined by the LTE system, and the end-to-end delay cannot be guaranteed.
- the interactive feature of the call is performed after the call starts, so the adjustment of the call delay is also It is only a small-scale adjustment. If the transmission network itself has a problem of low transmission quality when the call is connected, this method cannot guarantee the quality of service.
- Embodiments of the present invention provide a method for wireless communication, a method for wired transmission detection, and related devices, which can ensure end-to-end delay in a wireless communication process and improve service quality in a wireless communication process.
- an embodiment of the present invention uses the following technical solution:
- a method for wireless communication includes: a policy and a charging rule entity PCRF acquires a first parameter, where the a parameter is a performance parameter of the quality of service QoS of the first service requested by the current user equipment; acquiring a second parameter, wherein the second parameter is a transmission characteristic parameter that represents the wired transmission of the first service;
- the service includes the a service and a current service of the base station; if it is determined that the condition for guaranteeing the QoS of the service is satisfied, the user equipment is allowed to provide the service of the first service with corresponding QoS guarantee; if it is determined that the QoS of the service is guaranteed If the condition is not met, perform the first operation.
- the acquiring the second parameter includes: Requesting acquisition by sending a first request message to other network nodes; or
- the acquiring the status information of the current service of the base station includes:
- the performing the first operation specifically includes: sending The third request message is sent to the server to re-determine the first parameter; the first parameter that is re-determined by the server is obtained; and the current service of the base station is combined according to the re-determined first parameter and the second parameter Status information, determining whether the condition for securing the service Q o S is satisfied until it is determined that the condition for securing the service Q o S is satisfied; or
- the performing the first operation specifically includes: denying access to the first service.
- the first parameter specifically includes: an end-to-end delay, an end-to-end packet loss rate, and At least one of future network transmission rates.
- the combining, according to the first parameter and the second parameter, combining state information of a current service of the base station To determine whether the conditions for securing the business Q o S are met
- the method includes: obtaining, according to the first parameter and the second parameter, a maximum air interface transmission delay and a maximum packet loss rate; and determining, according to the maximum air interface transmission delay and status information of the current service of the base station, The condition of the air interface transmission delay of the first service is satisfied, and determining, according to the maximum packet loss rate and the current service state information of the base station, that the condition for guaranteeing the maximum packet loss rate of the first service is satisfied, determining The conditions for ensuring the business's Q o S are met.
- the determining, according to the maximum air interface transmission delay and status information of a current service of the base station, The condition of the air interface transmission delay of the first service is specifically: according to the maximum air interface transmission delay, combined with the status information of the current service of the base station, the number required to meet the maximum air interface transmission delay of the first service is calculated. a bandwidth; adding the first bandwidth to a maximum bandwidth required by the current service of the base station to obtain a second bandwidth; if the second bandwidth does not exceed a bandwidth of the base station, determining to ensure the first The condition of the air interface transmission delay of the service is satisfied.
- the status information of the current service of the base station includes a correspondence between a transmission delay and a scheduled average spectral efficiency;
- the maximum air interface transmission delay combined with the status information of the current service of the base station, and the calculation of the first bandwidth required to meet the maximum air interface transmission delay, specifically: according to the maximum air interface transmission delay and the transmission time Determining a correspondence between the average spectral efficiency and the scheduling average spectral efficiency, and determining a scheduling average spectral efficiency corresponding to the maximum air interface delay;
- the first service is a one-way download service; The obtaining the maximum air interface transmission delay and the maximum packet loss rate by the first parameter and the second parameter, specifically: calculating, according to the second parameter, a first wired transmission delay and a first wired transmission loss rate, where The first wired transmission delay is a delay of the wired transmission of the server to the base station, and the first wired packet loss rate is a packet loss rate of the wired transmission from the server to the base station; Deducting the first wired transmission delay from the end-to-end delay in the first parameter, acquiring the maximum air interface transmission delay; and subtracting the end-to-end packet loss rate in the first parameter The first wired transmission packet loss rate is obtained, and the maximum packet loss rate is obtained.
- the second parameter specifically includes: a base station to a server transmission characteristic parameter; or
- Packet data gateway PGW to server transmission characteristics parameters and PGW to base station transmission characteristics parameters.
- the transmission characteristic parameter of the PGW to the base station specifically includes the first path of the PGW to the base station a transmission characteristic parameter; the first path is determined by the PGW according to the PGW-to-server transmission characteristic parameter and the end-to-end delay in the first parameter, and the end-to-end packet loss rate.
- the future network transmission rate specifically includes: a maximum transmission rate, Average transmission rate, mean square error of transmission rate variation, and transmission At least one of the time correlations of the rate changes
- the first service is a two-way communication service
- the first parameter and the second parameter further include: acquiring a call delay and a call loss rate guaranteed by the opposite base station of the base station; The obtaining the maximum air interface transmission delay and the maximum packet loss rate by the first parameter and the second parameter, specifically: calculating, according to the second parameter, a first wired transmission delay and a first wired transmission loss rate, where The first wired transmission delay is a delay of the wired transmission of the current base station to the opposite base station, and the first wired packet loss rate is a packet loss rate of the wired transmission of the current base station to the opposite base station;
- the second parameter includes: a transmission characteristic parameter of the current base station to the opposite base station.
- the future network transmission rate includes: a voice maximum transmission At least one of a rate and a voice activation factor.
- the transmission characteristic parameter includes: an average transmission delay, a transmission delay mean square error, and an average At least one of the transmission packet loss rates One.
- the method further includes: Describe the performance parameters of the Q o S of the first service, and determine the corresponding charging standard.
- a second aspect provides a method for detecting a wired transmission, the method comprising: receiving, by a device for detecting a wired transmission, a first request message, the first request canceling, requesting to acquire a third parameter, where the third parameter And determining, by the device that is detected by the wired transmission, a transmission characteristic parameter of the first network node, where the first request message carries an identifier of the first network node; and according to the identifier of the first network node, indexes a pre-stored service node a transmission performance record table, determining whether the third parameter exists, wherein the service node transmission performance record table records transmission characteristic parameters of the device for detecting the wired transmission to each service node, where the service node is the cable a network node that has been detected by the device for detecting the transmission; if the third parameter is determined to be present, the third parameter is sent; if it is determined that the third parameter is not present, the third parameter is detected, and the third parameter is sent .
- the serving node transmission performance record table records a transmission characteristic parameter of the first time corresponding to the first serving node
- the method further includes: a transmission characteristic parameter of the second time corresponding to the first service node; if the deviation between the transmission characteristic parameter of the first time and the transmission characteristic parameter of the second time is greater than the first threshold, sending the first indication message to the policy and The charging rule entity PCRF, the first indication message instructing the PCRF to re-acquire the first parameter, where the first parameter is a performance parameter of the quality of service Q o S of the first service requested by the current user equipment.
- the first network node in combination with the second aspect or the first possible implementation manner of the second aspect, is specifically a server, and the device for detecting the wired transmission is deployed in the base station.
- the third parameter specifically includes: a transmission characteristic parameter of the base station to the server.
- the first network node in combination with the second aspect or the first possible implementation manner of the second aspect, is specifically a server, and the device for detecting the wired transmission is deployed in the packet data.
- the gateway P GW; the third parameter specifically includes:
- the first network node is a second base station, and the device for detecting the wired transmission is deployed in the first The third parameter specifically includes: a transmission characteristic parameter of the first base station to the second base station.
- the transmission characteristic parameter includes: an average transmission delay, a transmission delay average variance, and an average transmission loss. At least one of the packet rates.
- the first parameter specific body includes:
- At least one of end-to-end delay, end-to-end packet loss rate, and future network transmission rate is provided.
- the third aspect provides a policy and charging rule entity PCRF, where the PCRF includes: an obtaining unit, a determining unit, a determining unit, and an executing unit; the obtaining unit is configured to acquire the first parameter, and the first Sending the parameter to the determining unit, where the first parameter is the first requested by the current user equipment a performance parameter of the QoS of the service; acquiring a second parameter, and sending the second parameter to the determining unit, where the second parameter is a transmission characteristic parameter that represents the wired transmission of the first service; The status information of the current service of the base station, and the status information of the current service of the base station is sent to the determining unit; the determining unit is configured to use, according to the first parameter acquired by the acquiring unit, the second And determining, by the parameter and the status information of the current service of the base station, whether the condition for ensuring the QoS of the service is satisfied, where the service includes the first service and the current service of the base station; When the determining unit determines that the condition for ensuring the
- the PCRF further includes a sending unit or a reading unit, where the acquiring unit is specifically configured to: send, by using the sending unit, the first node to another network node. Requesting a message requesting to acquire the second parameter;
- the PCRF further includes a sending unit or a reading unit, where the acquiring unit is specifically configured to: Sending, by the sending unit, a second request message to the base station, requesting acquiring state information of a current service of the base station;
- the executing unit is specifically configured to: send a third request message to the server to request to re-determine the first parameter; acquire the server to determine The first parameter is determined according to the re-determined first parameter and the second parameter, and combined with the status information of the current service of the base station, whether the condition for securing the service Q o S is satisfied, until the guaranteed service Q o S is determined. The conditions are met; or
- the executing unit is specifically configured to: deny access to the first service.
- the first parameter specifically includes: an end-to-end delay, an end-to-end packet loss rate, and At least one of future network transmission rates.
- the determining unit includes: an obtaining module, a first determining module, a second determining module, and a third determining module;
- the obtaining module is used to:
- the first determining module is configured to:
- the second determining module is configured to: determine that the maximum packet loss of the first service is ensured according to the maximum packet loss rate obtained by the acquiring module and status information of the current service of the base station acquired by the acquiring unit Whether the conditions of the rate are met;
- the third determining module is configured to: determine, by the first determining module, that a condition for ensuring an air interface transmission delay of the first service is satisfied, and that the second determining module determines to ensure a maximum packet loss rate of the first service When the conditions are met, it is determined that the condition of the guaranteed service Q s is satisfied.
- the first determining module includes a first calculating submodule, a first acquiring submodule, and a first determining submodule;
- the first calculating sub-module is configured to: calculate, according to the maximum air interface transmission delay, a first bandwidth required to meet a maximum air interface transmission delay of the first service, in combination with status information of a current service of the base station;
- the first obtaining sub-module is configured to: add the first bandwidth calculated by the first calculating sub-module and the maximum bandwidth required by the current service of the base station, to obtain a second bandwidth;
- the sub-module is configured to: if the second bandwidth does not exceed the bandwidth of the base station, determine that the condition for ensuring the air interface transmission delay of the first service is met.
- the status information of the current service of the base station includes a correspondence between a transmission delay and a scheduled average spectral efficiency;
- the calculation sub-module is specifically configured to: determine, according to the maximum air interface transmission delay and the correspondence between the transmission delay and the scheduled average spectral efficiency, the scheduled average spectral efficiency corresponding to the maximum air interface delay;
- the first service is a one-way download service;
- the acquiring module is configured to calculate a first wired transmission delay and a first wired transmission loss rate according to the second parameter, where the first wired transmission delay is a cable from the server to the base station a delay of transmission, the first wired packet loss rate is a packet loss rate of the wired transmission from the server to the base station; and the end-to-end delay in the first parameter is subtracted from the first The wired transmission delay is obtained, and the maximum air interface transmission delay is obtained. The end-to-end packet loss rate in the first parameter is subtracted from the first wired transmission packet loss rate, and the maximum packet loss rate is obtained.
- the second parameter specifically includes: a base station to a server transmission characteristic parameter; or
- Packet data gateway PGW to server transmission characteristics parameters and PGW to base station transmission characteristics parameters.
- the transmission characteristic parameter of the PGW to the base station specifically includes the first path of the PGW to the base station a transmission characteristic parameter; the first path is determined by the PGW according to the PGW-to-server transmission characteristic parameter and the end-to-end delay in the first parameter, and the end-to-end packet loss rate.
- the future network transmission rate specifically includes: a maximum transmission rate, At least one of an average transmission rate, a mean square error of the transmission rate change, and a temporal correlation of the transmission rate change.
- the first service is a two-way communication service;
- the acquiring unit is further configured to: obtain a call delay and a call loss rate guaranteed by the peer base station of the base station; and the acquiring module is specifically configured to: calculate the first wired transmission delay according to the second parameter And a first wired transmission packet loss rate, where the first wired transmission delay is a delay of a current wired transmission from the base station to the opposite base station, and the first wired packet loss rate is the current base station to the pair Packet loss rate of wired transmission of the end base station;
- the second parameter includes: a transmission characteristic parameter of the current base station to the opposite base station.
- the future network transmission rate includes: a voice maximum transmission At least one of a rate and a voice activation factor.
- the transmission characteristic parameter includes: an average transmission delay, a transmission delay mean square error, and an average At least one of the transmission packet loss rates.
- the determining unit is further configured to: according to the Q o of the first service, in combination with the fifth aspect to the fifteenth possible implementation manner of the third aspect, The performance parameters of S determine the corresponding charging standard.
- a device for wired transmission detection is provided, where the apparatus for detecting a wired transmission includes a receiving unit, a serving node indexing unit, and a serving node transmission performance record.
- a receiving unit configured to receive a first request message, where the first request message requests to acquire a third parameter, where the third parameter is a device for detecting the wired transmission
- the first request message carries the identifier of the first network node
- the serving node index unit is configured to use the identifier of the first network node received by the receiving unit Determining, by a pre-stored service node transmission performance record table, determining whether the third parameter exists, wherein the service node transmission performance record table records transmission characteristic parameters of the wired transmission detection device to each service node,
- the service node is a network node that has been detected by the device for detecting the wired transmission;
- the transmission performance detecting unit is configured to detect a third parameter when the serving node indexing unit determines that the third parameter does not exist;
- a sending unit configured to send a third parameter determined by the serving node index unit or the transmission performance The third parameter detected by the detecting unit.
- the serving node transmission performance record table records a transmission characteristic parameter of the first time corresponding to the first serving node; the transmission performance detecting unit further a transmission characteristic parameter used to detect a second time corresponding to the first serving node; the sending unit is further configured to: the deviation between the transmission characteristic parameter at the first moment and the transmission characteristic parameter at the second moment is greater than
- the first threshold is sent to the policy and charging rule entity PC RF, and the first indication message indicates that the PC RF reacquires the first parameter, where the first parameter is requested by the current user equipment.
- the first service quality of service Q o S performance parameters are sent to the policy and charging rule entity PC RF, and the first indication message indicates that the PC RF reacquires the first parameter, where the first parameter is requested by the current user equipment.
- the first network node in combination with the fourth aspect or the first possible implementation manner of the fourth aspect, is specifically a server, and the device for detecting the wired transmission is deployed in the base station.
- the third parameter specifically includes: a transmission characteristic parameter of the base station to the server.
- the first network node in combination with the fourth aspect or the first possible implementation manner of the fourth aspect, is specifically a server, and the device for detecting the wired transmission is deployed in the packet data.
- the third parameter specifically includes: a transmission characteristic parameter of the PGW to the server.
- the first network node is a second base station
- the device for detecting the wired transmission is deployed in the first
- the third parameter specifically includes: a transmission characteristic parameter of the first base station to the second base station.
- the transmission characteristic parameter includes: an average transmission delay, a transmission delay average variance, and an average transmission loss. At least one of the packet rates.
- the first parameter specifically includes: an end-to-end delay, At least one of an end-to-end packet loss rate and a future network transmission rate.
- the fifth aspect provides a system for wireless communication, where the system includes the policy and charging rule entity PCRF according to any one of the third aspects, the device for wired transmission detection according to any one of the fourth aspects, and the IP multimedia.
- a sixth aspect provides a system for wireless communication, where the system includes a first policy and charging rule entity PCRF, a second PCRF, a first wired transmission detection device, a second wired transmission detection device, a first base station, a second base station, a first packet data gateway PGW, a second PGW, a first serving gateway SGW, a second SGW, a first user equipment UE, a second UE, and a server, where the first/second PCRF is specifically The PCRF according to any one of the third aspect, wherein the first/second wired transmission detecting device is specifically The apparatus for wired transmission detection according to any of the fourth aspects.
- An embodiment of the present invention provides a method, an apparatus, and a system for wireless communication, where the method includes: acquiring, by a PCRF, a first parameter, a second parameter, and status information of a current service of a base station, and according to the first parameter, the And determining, by the second parameter, status information of the current service of the base station, whether the condition for ensuring the QoS of the service is satisfied, and if it is determined that the condition for guaranteeing the QoS of the service is satisfied, allowing the user equipment to provide the first QoS guarantee The service of the service, if it is determined that the condition for ensuring the QoS of the service is not met, the method for performing the first operation, where the first parameter is a performance parameter of the QoS of the first service requested by the current user equipment, and the second The parameter is a transmission characteristic parameter characterizing the first service wired transmission.
- FIG. 1 is a method of wireless communication according to an embodiment of the present invention
- FIG. 2 is a method for detecting wired transmission according to an embodiment of the present invention
- FIG. 3 is a schematic diagram of wireless communication according to an embodiment of the present invention
- FIG. 4 is a method of wireless communication according to an embodiment of the present invention
- FIG. 5 is a system for wireless communication according to an embodiment of the present invention
- FIG. 6 is another wireless communication according to an embodiment of the present invention.
- FIG. 7 is a system for wireless communication according to an embodiment of the present invention
- FIG. 8 is a schematic diagram of another method for wireless communication according to an embodiment of the present invention
- FIG. 9 is a schematic structural diagram of a PCRF according to an embodiment of the present invention.
- FIG. 10 is a schematic structural diagram of another PCRF according to an embodiment of the present invention.
- FIG. 11 is a schematic structural diagram of another PCRF according to an embodiment of the present invention.
- FIG. 12 is a schematic structural diagram of a determining unit inside a PCRF according to an embodiment of the present invention;
- FIG. 13 is a schematic structural diagram of a first determining submodule inside a determining unit according to an embodiment of the present disclosure
- FIG. 14 is a schematic structural diagram of a device for detecting a wired transmission according to an embodiment of the present invention
- FIG. 15 is a schematic structural diagram of a PCRF according to an embodiment of the present invention
- FIG. 16 is a schematic structural diagram of a device for detecting wired transmission according to an embodiment of the present invention.
- the technical solutions in the embodiments of the present invention are clearly and completely described in the following with reference to the accompanying drawings in the embodiments of the present invention. It is obvious that the described embodiments are only a part of the embodiments of the present invention, and not all of the embodiments. example. All other embodiments obtained by those skilled in the art based on the embodiments of the present invention without creative efforts are within the scope of the present invention.
- Embodiment 1 The embodiment of the present invention provides a method for wireless communication, where the method is applied to a Pol icy and Charging Rules Function (PCRF), as shown in FIG. 1 , which includes:
- PCRF Charging Rules Function
- the PCRF obtains the first parameter, where the first parameter is a performance parameter of the QoS of the first service requested by the current user equipment.
- the server may abstract, according to the first service request message, a statistical parameter, that is, the first parameter, that is required to ensure the first service QoS.
- the first parameter may specifically include: at least one of an end-to-end delay, an end-to-end packet loss rate, and a future network transmission rate, and then the server sends the first parameter to the PCRF, so that the The PCRF acquires the first parameter.
- the future network transmission rate may specifically include: at least one of a maximum transmission rate, an average transmission rate, a mean square error of the transmission rate change, and a time correlation of the transmission rate change. ;
- the specific network transmission rate may include: at least one of a voice maximum transmission rate and a voice activation factor.
- the parameters for characterizing the future network transmission rate are not limited to the above parameters, which are not specifically limited in the embodiment of the invention.
- the PCRF obtains a second parameter, where the second parameter is a transmission characteristic parameter that represents the first service wired transmission.
- the second parameter is a transmission characteristic parameter that represents the first service wired transmission.
- the transmission characteristic parameter of the wired transmission of the first service is specifically a transmission characteristic parameter of the base station to the server; when the first service is a two-way communication service, the first The transmission characteristic parameter of the wired transmission of a service is specifically a transmission characteristic parameter of the current base station to the opposite base station.
- the second parameter may be all detected by the device for detecting the wired transmission, or may be partially detected by the device for detecting the wired transmission, which is not specifically limited by the embodiment of the present invention, and specifically, the device for detecting the wired transmission
- the location of the deployment is related.
- the transmission characteristic parameter of the base station to the server can be detected only by the device for detecting the wired transmission;
- the device for transmitting detection is deployed at the packet data gateway PGW, and the device for wired transmission detection only detects the transmission characteristic parameter of the PGW to the server, and the transmission characteristic parameter of the PGW to the base station may be detected and detected by the detection unit of other network nodes.
- the second parameter may be obtained by sending a first request message to another network node, or may be obtained by reading a record of the second parameter stored in the real-time monitoring, which is not specifically limited in this embodiment of the present invention.
- the other network node When the first service is a one-way download service, the other network node may be a PGW or a base station, etc.; when the first service is a two-way call service, the other network node may be the first/first
- the second base station is not specifically limited in this embodiment of the present invention.
- the PCRF acquires state information of a current service of the base station. Specifically, in the process of determining, by the PCRF, whether the first service is admitted, To obtain status information of the current service of the base station. For example, a table of relationship between transmission delay and scheduling efficiency established according to the state of the current service of the base station is as shown in Table 1: Table 1
- step 101 the first parameter is obtained, the second parameter is obtained in step 102, and the state information of the current service of the base station in step 103 is not in a certain order, and the first parameter may be acquired first.
- the second parameter may be obtained first, and the status information of the current service of the base station may be acquired first, which is not specifically limited in this embodiment of the present invention.
- the status information of the current service of the base station may be obtained by sending a second request message to the base station, or may be obtained by reading the record of the real-time monitored base station service status information, which is not specifically limited in this embodiment of the present invention.
- the PCRF determines, according to the first parameter, the second parameter, and status information of the current service of the base station, whether the condition for ensuring the QoS of the service is satisfied, where the service includes the first service and the base station. Current business. When it is determined that the condition for ensuring the QoS of the service is satisfied, the process proceeds to 105; when it is determined that the condition for ensuring the QoS of the service is not satisfied, the process proceeds to 106.
- the PCRF determining, according to the first parameter, the second parameter, and the status information of the current service of the base station, whether the condition for ensuring the QoS of the service is satisfied may include: according to the first parameter and the second And determining, by the parameter, the maximum air interface transmission delay and the maximum packet loss rate; and determining, according to the maximum air interface transmission delay and the status information of the current service of the base station, that the condition for ensuring the air interface transmission delay of the first service is satisfied, And determining, according to the maximum packet loss rate and status information of the current service of the base station, that the guarantee is If the condition of the maximum packet loss rate of the first service is satisfied, it is determined that the condition of the guaranteed service Q s is satisfied.
- the determining, according to the maximum air interface transmission delay and the status information of the current service of the base station, that the condition for ensuring the air interface transmission delay of the first service is satisfied may specifically include: according to the maximum air interface transmission And calculating, according to the status information of the current service of the base station, a first bandwidth required to meet the maximum air interface transmission delay of the first service; and the first bandwidth and a maximum bandwidth required by the current service of the base station Adding, obtaining a second bandwidth; if the second bandwidth does not exceed the bandwidth of the base station, determining that the condition for ensuring the air interface transmission delay of the first service is satisfied.
- the status information of the current service of the base station includes a correspondence between the transmission delay and the scheduled average spectrum efficiency; and the calculating, according to the maximum air interface transmission delay, combined with the status information of the current service of the base station,
- the first bandwidth required for the maximum air interface transmission delay may include: determining a scheduling average corresponding to the maximum air interface delay according to the maximum air interface transmission delay and the correspondence between the transmission delay and the scheduled average spectral efficiency. Spectral efficiency;
- the determining, according to the maximum packet loss rate and the status information of the current service of the base station, that the condition for ensuring the maximum packet loss rate of the first service is satisfied may include: determining, according to the packet loss size of the current service, The packet loss rate of the current service; if the packet loss rate of the current service is not greater than the maximum packet loss rate, the condition that the maximum packet loss rate of the first service is guaranteed may be determined.
- the method for determining whether the condition of the QoS of the service is satisfied is determined by the state information of the current service of the base station, which is not specifically limited in this embodiment of the present invention.
- the PCRF allows the user equipment to be provided with the service of the first service with corresponding QoS guarantee. Specifically, the PCRF, as the service policy decision subject, determines that the user equipment is provided with the service of the first service with corresponding QoS guarantee after determining that the condition for ensuring the service QoS is satisfied.
- the PCRF can configure the performance parameters on each network node, for example, the parameters required for configuring the QoS of the first service on the PGW and the SGW.
- the PCRF may send the end-to-end delay and the end-to-end packet loss rate to the base station to configure the base station.
- the embodiment of the present invention does not specifically limit the process of configuring the performance parameters on each network node.
- the PCRF performs the first operation.
- the performing the first operation may include: sending a third request message to the server, the third request message requesting re-determining the first parameter; acquiring the server re-determined Determining, according to the re-determined first parameter and the second parameter, combining the status information of the current service of the base station, whether the condition for guaranteeing the service QoS is satisfied, until determining that the condition for guaranteeing the service QoS is satisfied, and determining Allowing the user equipment to provide the service of the first service with corresponding QoS guarantee, wherein the service includes the first service and the current service of the base station; in another embodiment of the present invention, The performing the first operation specifically includes: denying access to the first service.
- the embodiment of the present invention further provides a method for detecting a wired transmission, where the method is applied to a device for detecting a wired transmission, as shown in FIG. 2, which includes:
- the device for wired transmission detection receives a first request message, where the first request is The message requesting the third parameter, where the third parameter is a transmission characteristic parameter of the device for detecting the wired transmission to the first network node, where the first request message carries an identifier of the first network node.
- the device for detecting the wired transmission may detect the transmission characteristic parameter of the first network node, where the first network node may be a server, a PGW, an SGW, or the like, which is not specifically limited in this embodiment of the present invention.
- the apparatus for detecting the wired transmission may be deployed in the base station, or may be deployed in the PGW.
- the deployment location of the device for detecting the wired transmission is not specifically limited in this embodiment of the present invention.
- the third parameter is specifically a transmission characteristic parameter of the base station to the server;
- a network node is a server, and the device for detecting the wired transmission is deployed in the PGW, and the third parameter is specifically a transmission characteristic parameter of the PGW to the server;
- the third parameter is specifically the first base station to the second base station.
- the transmission characteristic parameters of the base station. Specifically, the transmission characteristic parameter may include: at least one of an average transmission delay, a transmission delay mean variance, and an average transmission packet loss ratio.
- the device for detecting the wired transmission detects the pre-transmitted service node transmission performance record table according to the identifier of the first network node, and determines whether the third parameter exists, wherein the service node transmission performance record table records And transmitting, by the wired transmission detecting device, a transmission characteristic parameter of each serving node, where the serving node is a network node that the device for detecting the wired transmission has detected.
- the third parameter exists, it enters 2 03; when it is determined that the third parameter does not exist, it enters 2 04.
- the wired transmission detection device includes a service node transmission performance record table
- the service node transmission performance record table may be various storage media, including a hard disk, a fixed disk, a random access memory, a magnetic tape, etc.
- the transmission characteristic parameters include: average transmission delay, transmission delay mean square error and average transmission packet loss rate.
- a service node transmission performance record table is exemplarily given, as shown in Table 2:
- service node transmission performance record table may also be presented in other forms, which is not specifically limited in the embodiment of the present invention.
- the transmission performance parameter is recorded in the transmission performance record table of the service node.
- the network node is already included in the service node list information, only the transmission performance parameter corresponding to the network node may be updated; if the network node is not included in the service node list information, the network node is The identifier is recorded in the service node list information, and then the transmission performance parameter is stored in the transmission performance list location corresponding to the network node.
- the third parameter If it is determined that the third parameter exists, send the third parameter.
- the first request message requests to acquire a transmission characteristic parameter of the server, and at present, other user equipments in the base station request and obtain the server from the server.
- the service may query the transmission characteristic parameter from the server to the base station in the service node transmission performance record table, and the device for detecting the wired transmission may directly send the third parameter to send the first request message.
- Network node
- the third parameter does not exist, detect the third parameter, and send the third parameter. Specifically, if the service node index included in the device for detecting the wired transmission detection The element does not index the identifier of the first network node in the serving node transmission performance record table, and the serving node index unit starts the transmission performance detecting unit to perform performance detection for the first network node. Specifically, the transmission performance detecting unit may obtain a required transmission performance parameter by continuously issuing 100 pi ng instructions to the first network node. By averaging the delay times of all responding packets and dividing by 2, the average transmission delay can be obtained, and then the variance of the delay can be obtained.
- the transmission performance detecting unit may record the identifier of the first network node and its transmission performance parameter in the service node transmission performance record table, The next query, and send the transmission performance parameter to the network node that sends the first request message.
- the network node that sends the first request message is a PCRF
- the device for detecting the wired transmission sends the third parameter to the PCRF, so that the PCRF acquires the third parameter. Further determining whether the first service can be admitted.
- the device for detecting wired transmission has a function of monitoring transmission characteristics of an external network, and it is assumed that the current transmission performance record table of the service node records the first time corresponding to the first service node.
- the method further includes: a transmission characteristic parameter of the second time corresponding to the first serving node; if the deviation between the transmission characteristic parameter of the first time and the transmission characteristic parameter of the second time is greater than a first threshold, the device for detecting the wired transmission sends the An indication Sending a message to the policy and charging rule entity PCRF, the first indication message instructing the PCRF to re-acquire the first parameter, where the first parameter is a performance parameter of the quality of service QoS of the first service requested by the current user equipment Specifically, it may include at least one of an end-to-end delay, an end-to-end packet loss rate, and a parameter of a future network transmission rate.
- a method for wireless communication includes: acquiring, by a PCRF, a first parameter, a second parameter, and status information of a current service of a base station, and according to the first parameter, the second parameter, and And determining, by the status information of the current service of the base station, whether the condition for ensuring the QoS of the service is satisfied, and if it is determined that the condition for ensuring the QoS of the service is satisfied, allowing the user equipment to provide the service of the first service with corresponding QoS guarantee If the condition for ensuring the QoS of the service is not met, performing the first operation, where the first parameter is a performance parameter of the QoS of the first service requested by the current user equipment, and the second parameter is to represent the The transmission characteristic parameter of the first service wired transmission.
- Embodiment 2 The embodiment of the present invention provides a method for wireless communication, where the first service is a one-way download service, and the method is specifically described in the system 300 for wireless communication as shown in FIG.
- the system for wireless communication includes a UE 301, a base station 302, an SGW 303, a PCRF 304, a PGW 305, a server 306, a wired transmission detection device 307, and an IMS 308, wherein the wired transmission check device 307 is deployed in the base station 302.
- the method is specifically shown in FIG. 4, and includes:
- the UE sends a first service request message to the IMS.
- the first service request message belongs to the service control signaling, and is sent to an IP Multimedia Subsystem (IMS), where the application function (AF) unit in the IMS is responsible for parsing the specific meaning of the service.
- IMS IP Multimedia Subsystem
- AF application function
- the IMS parses the first service request message. Specifically, after receiving the first service request message, the IMS parses the first service request message, and learns the meaning represented by the related signaling of the first service.
- the IMS sends the parsed first service request message to the server. Specifically, the IMS sends the parsed first service request message to the server, so that the server knows how to provide services for the user.
- the server determines, according to the first service request message, a first parameter, where the first parameter is a performance parameter of the QoS of the first service.
- the first parameter may include an end-to-end delay T E2E , an end-to-end packet loss rate PL E2E, and a future network transmission rate characteristic, including a maximum transmission rate MBR, and an average transmission rate.
- R avg the mean square error D r of the change in transmission rate.
- the server sends the first parameter to the PCRF.
- the PCRF acquires the first parameter.
- the PCRF sends a first request message to the base station, where the first request message requests to acquire a third parameter, where the first request message carries an identifier of the server, and the third parameter is the base station to the server.
- the third parameter which is an overall transmission characteristic parameter of a wired transmission from the server to the base station, may include an average transmission delay T of the wired transmission from the server to the base station.
- Ut transmission delay mean variance RT.
- Ut average transmission loss rate PL. Ut .
- the second parameter is a transmission characteristic parameter that is used to represent the first service wired transmission
- the first service wired transmission part is specifically the server to the base station.
- the third parameter is an overall transmission characteristic parameter of the wired transmission from the server to the base station, so the third parameter in the embodiment of the present invention is the second parameter.
- the base station receives the first request message.
- the device for detecting the wired transmission is deployed in the base station, so from the physical interface, the base station receives the first request message, but from the logical interface, the first request is finally The message will be received by the device for wired transmission detection. 409.
- the apparatus for detecting a wired transmission in the base station according to the identifier of the server, indexing a pre-stored service node transmission performance record table, determining whether the third parameter exists, where the service node transmission performance record table records the location
- the transmission characteristic parameter of the device for wired transmission detection to each service node, wherein the service node is a network node that has been detected by the device for detecting the wired transmission.
- step 410 If it is determined that the third parameter does not exist, the device for wired transmission detection in the base station detects the third parameter. It should be noted that if it is determined that the third parameter exists, step 410 is not performed, and step 411 is directly executed. The method of wireless communication shown in Fig. 4 is described in the case where it is determined that the third parameter does not exist, and the case where it is determined that the third parameter exists is not described again.
- the base station sends the third parameter to the PCRF, where the third parameter is the same as the second parameter, and the second parameter is a transmission characteristic parameter that represents the wired transmission of the first service.
- the PCRF acquires the second parameter.
- the PCRF sends a second request message to the base station, where the second request message requests to acquire status information of the current service of the base station.
- the status information of the current service of the base station may be as shown in Table 1, and details are not described herein again.
- the sending of the first request message and the sending of the second request message in step 413 are not in a certain order, and the first request message may be sent first, or the second request message may be sent first. This example does not specifically limit this.
- the base station receives the second request message.
- the base station sends status information of the current service of the base station to the PCRF.
- the PCRF acquires state information of a current service of the base station.
- the PCRF determines, according to the first parameter, the second parameter, and status information of a current service of the base station, whether a condition for ensuring a service QoS is met, where the service includes the first service and the base station.
- Current business Specifically, in combination with the description of step 104, determining, according to the first parameter, the second parameter, and status information of the current service of the base station, whether the condition for ensuring the QoS of the service is satisfied, the first parameter is first determined according to the first parameter.
- the second parameter Obtaining, by the second parameter, the maximum air interface transmission delay and the maximum packet loss rate, including: calculating, according to the second parameter, a first wired transmission delay and a first wired transmission loss ratio, where the first The wired transmission delay is a delay of the wired transmission of the server to the base station, and the first wired packet loss rate is a packet loss rate of the wired transmission from the server to the base station; The end-to-end delay minus the first wired transmission delay, obtaining the maximum air interface transmission delay; and subtracting the end-to-end packet loss rate in the first parameter from the first wired transmission The packet loss rate is obtained, and the maximum packet loss rate is obtained.
- determining, according to the first parameter, the second parameter, and status information of the current service of the base station, whether the condition for ensuring the QoS of the service is satisfied may be as follows:
- T max T - (T ou t + k X RT 0U t )
- PLmax PL ⁇ PL ou t can get the upper limit of the packet loss rate that needs to be guaranteed when transmitting in the air interface, that is, the maximum packet loss rate.
- the packet loss rate of the first service can be made. Not greater than the maximum packet loss rate.
- the base station determines that a 24-bit CRC check can be applied when the CRC check in the physical layer channel coding, thereby ensuring the number of transmissions through the CRC check. According to the bit error probability less than 6xl0- 8, thereby ensuring a sufficiently low packet error rate, and packet loss rate.
- the PCRF can query the relationship between the transmission delay and the average spectrum efficiency as shown in Table 1.
- Table 1 When the maximum air interface transmission delay is 100 ms and the average channel condition is OdB.
- the average spectral efficiency of the corresponding scheduling is found to be 0. 93b/s/Hz.
- the average rate of downloading the real-time streaming media service is 400 kbps
- the maximum transmission rate is 1.2 Mbps
- the mean square error of the change of the transmission rate is 150 kbps
- the PCRF allows the UE to provide a service service corresponding to the QoS guarantee.
- the PCRF determines that the UE provides the QoS guaranteed service service for the UE after determining that the condition for ensuring the service QoS is satisfied. It should be noted that, after the PCRF decision allows the UE to provide the service service of the corresponding QoS guarantee, the PCRF can configure the performance parameters on each network node, for example, the parameters required for configuring the QoS of the first service on the PGW and the SGW.
- the PCRF may send the end-to-end delay and the end-to-end packet loss rate to the base station to configure the base station.
- the embodiment of the present invention does not specifically limit the process of configuring the performance parameters on each network node. It should be noted that, because it is determined that the condition for ensuring the QoS of the service is satisfied, the first service may be accessed, and the performance on each network node is configured according to the first parameter. After the parameters, go to step 419.
- the PCRF performs the first operation
- the embodiment of the present invention only discusses the condition that the PCRF determines that the condition for ensuring the service QoS is satisfied, and the PCRF performs the first operation for determining that the condition for ensuring the QoS of the service is not satisfied.
- the embodiment shown in FIG. 1 reference may be made to the description of the embodiment shown in FIG. 1 , and details are not described herein again.
- the UE sends a first service data request message to the server, where the first service data request message requests the server to send the first service data.
- the server receives the first service data request message.
- the server sends the first service data packet to the PGW. Specifically, after the PCRF determines that the condition for ensuring the service quality of the service is satisfied, and the decision allows the user equipment to provide the service of the first service with the corresponding QoS guarantee, the server sends the first service data packet to the PGW.
- the PGW sends the first service data packet to the base station according to the configuration of the PCRF.
- the base station collects a delay and a packet loss size that the first service data packet has experienced.
- the base station sends the first service data packet, so that the first service data packet arrives at the UE before the required time delay.
- the UE receives the first service data packet.
- the PCRF determines that the condition for ensuring the service quality of the service is satisfied, and the decision is to allow the user equipment to provide the service data packet transmission process after the service of the first service with the corresponding QoS guarantee.
- a time stamp is added to the data packet.
- the data may be RTP encapsulated by a Real-Time Transport Protocol (RTP) protocol.
- RTP Real-Time Transport Protocol
- the base station can calculate by timestamp that the packet has been delayed in the previous transmission link (for example, from the server to the PGW to the base station). For a long time, if the end-to-end delay requirement cannot be greater than 150ms and the packet has been delayed by 70ms, the base station knows that the packet must be guaranteed within the next 80ms. The UE is sent to the UE. Otherwise, the end-to-end delay requirement cannot be guaranteed. The processing for the packet loss rate is similar. According to the previously reported data packet loss, the base station can appropriately decide whether the current data packet can be discarded. The embodiment will not be described again.
- the embodiment of the present invention provides a method for wireless communication, where the first service is a one-way download service, and the method is specifically described in the wireless communication system 500 shown in FIG. 5, where the wireless communication is performed.
- the system includes a UE 301, a base station 302, a SGW 303, a PCRF 304, a PGW 305, a server 306, a wired transmission detection device 307, and an IMS 308, wherein the wired transmission check device 307 is deployed in the PGW 305, and the method is specific.
- it includes:
- the UE sends a first service request message to the IMS.
- the first service request message belongs to the service control signaling, and is sent to the IMS, where the application function AF unit responsible for parsing the specific meaning of the service in the IMS parses the first service request message.
- the IMS parses the first service request message. Specifically, after receiving the first service request message, the IMS parses the first service request message, and learns the meaning represented by the related signaling of the first service.
- the IMS sends the parsed first service request message to the server. Specifically, the IMS sends the parsed first service request message to the server, so that the server knows how to provide services for the user.
- the server determines, according to the first service request message, a first parameter, where the first parameter is a performance parameter of the QoS of the first service.
- the first parameter may include an end-to-end delay T E2E , an end-to-end packet loss rate PL E2E, and a future network transmission rate characteristic, including a maximum transmission rate MBR, and an average transmission rate.
- R avg the mean square error D r of the change in transmission rate.
- the server sends the first parameter to the PCRF.
- the PCRF acquires the first parameter.
- the PCRF sends a first request message to the PGW, where the first request message requests to acquire a third parameter, where the first request message carries the identifier of the server and the base station. And the third parameter, the PPG to the transmission characteristic parameter of the server, and the transmission characteristic parameter of the PGW to the base station.
- the second parameter is a transmission characteristic parameter that is used to represent the first service wired transmission, and in the embodiment of the present invention, the first service wired transmission part is specifically a part of the server to the base station
- the third parameter is a transmission characteristic parameter of the PGW to the server and a transmission characteristic parameter of the PGW to the base station, so the second parameter can be obtained by using the third parameter in the embodiment of the present invention. .
- the first request message is sent to the PGW, and the device for establishing the wired transmission detection in the PGW may further acquire the transmission characteristic parameter of the PGW to the base station, if The wired transmission characteristic from the PGW to the base station part is measured by other network nodes, and the first request message may be composed of several sub-messages, that is, the PCRF not only sends a request message to the PGW, but also sends a request message to other network nodes, requesting The obtaining the transmission characteristic parameter of the PGW to the base station is not specifically limited in the embodiment of the present invention.
- the PGW receives the first request message. It should be noted that, in the embodiment of the present invention, the device for detecting the wired transmission is deployed in the base station, so from the physical interface, the PGW receives the first request message, but from the logical interface, the first request is finally The message will be received by the device for wired transmission detection.
- the device for detecting the wired transmission in the PGW indexes the pre-stored service node transmission performance record table to determine whether the third parameter exists, wherein the service node transmission performance record table records And transmitting, by the wired transmission detecting device, a transmission characteristic parameter of each serving node, where the serving node is a network node that the device for detecting the wired transmission has detected.
- the device for wired transmission detection in the PGW detects the third parameter. It should be noted that if it is determined that the third parameter exists, step 6 1 0 does not need to be performed, and step 6 1 1 is directly executed.
- the method of wireless communication shown in FIG. 6 is described in the case where it is determined that the third parameter does not exist, and the case where it is determined that the third parameter exists is not described again.
- the third parameter in the embodiment of the present invention includes two parts, respectively, a transmission characteristic parameter of the PGW to the server and a transmission characteristic parameter of the PGW to the base station, so the wired transmission detection is performed.
- the index unit index pre-stored service node transmission performance record table, determining whether the third parameter is present, the identifier of the server to be carried according to the first request message, and
- the identifier of the base station determines whether there is a transmission characteristic parameter of the PGW to the server and a transmission characteristic parameter of the PGW to the base station, and if there is a transmission characteristic parameter of the PGW to the base station, there is no
- the transmission characteristic parameter of the PGW to the server may only detect the transmission characteristic parameter of the PGW to the server; if there is no transmission characteristic parameter of the PGW to the base station, there is a transmission characteristic parameter of the PGW to the server, Only the transmission characteristic parameter of the PGW to the base station may be detected.
- the third parameter may be an average transmission delay T of the wired transmission of the server to the PGW.
- Ut transmission delay mean variance RT.
- Ut average transmission loss rate PL.
- the PGW or the SGW may include a device for optimizing the wired route
- the wired route optimization device includes: a route query device, providing a base station for a user equipment The possible routes, as well as the transmission performance of the currently measured or recorded routes; the routing table, which can be a variety of storage media, including hard disks, fixed disks, random access memories, tapes, etc., records from the PGW/SGW route to a user device
- Various possible routes of the base station and the transmission performance measured after selecting the route including but not limited to the average transmission delay, the transmission delay variance, the packet loss rate, etc.
- the route balancing device the performance of the route required by the PCRF Selecting a route from the PGW/SGW to the base station where the user equipment is located.
- the wired route optimization device may determine how to route according to the service quality requirement and the transmission characteristics of the external network, and then detect the characteristic parameters on the determined routing path.
- the fourth parameter is obtained, which is not elaborated in the embodiment of the present invention.
- the PGW sends the third parameter to the PCRF, where the second parameter is synthesized by the third parameter group, where the second parameter is a transmission characteristic parameter that represents the wired transmission of the first service.
- the PCRF acquires the second parameter.
- the PCRF sends a second request message to the base station, where the second request message requests to obtain status information of the current service of the base station.
- the status information of the current service of the base station may be as shown in Table 1, and details are not described herein again.
- the sending of the first request message and the sending of the second request message in step 613 are not in a certain order, and the first request message may be sent first, or the second request message may be sent first. This example does not specifically limit this.
- the base station receives the second request message.
- the base station sends status information of the current service of the base station to the PCRF.
- the PCRF acquires state information of a current service of the base station.
- the PCRF determines, according to the first parameter, the second parameter, and status information of a current service of the base station, whether a condition for ensuring a service QoS is met, where the service includes the first service and the base station.
- Current business Specifically, in combination with the descriptions of step 104 and step 417, an example is given herein to determine whether the condition for guaranteeing service QoS is determined according to the first parameter, the second parameter, and status information of a current service of the base station.
- the method of satisfaction can be as follows:
- the packet loss rate of the first service is not greater than the maximum packet loss rate.
- the base station uses the CRC check bit with sufficient precision and ensures the CRC of the receiving end through the hybrid automatic request retransmission technology, the packet loss rate of the first service is not greater than the maximum packet loss rate.
- the base station determines 24bit CRC checksum CRC check in the physical layer channel coding, so as to ensure the transmission of data by a CRC check, the bit error probability less than 6xl0- 8, thereby ensuring a sufficiently low The packet error rate and packet loss rate.
- the PCRF can query the relationship between the transmission delay and the average spectrum efficiency as shown in Table 1.
- Table 1 When the maximum air interface transmission delay is 100 ms and the average channel condition is OdB.
- the average spectral efficiency of the corresponding scheduling is found to be 0. 93b/s/Hz.
- the average rate of downloading the real-time streaming media service is 600 kbps
- the maximum transmission rate is 1.2 Mbps
- the mean square error of the transmission rate change is 150 kbps
- the PCRF decision allows the UE to provide a service service corresponding to the QoS guarantee.
- the PCRF is used as a service policy decision body to determine the guarantee service. After the QoS condition is met, the decision allows the UE to provide the corresponding QoS guaranteed service service.
- the PCRF may configure performance parameters on each network node, for example, parameters required for configuring the QoS of the first service on the PGW and the SGW; Alternatively, the PCRF may send the end-to-end delay and the end-to-end packet loss rate to the base station to configure the base station.
- the embodiment of the present invention does not specifically limit the process of configuring the performance parameters on each network node. It should be noted that, because the condition for ensuring the QoS of the service is satisfied, the first service may be accessed. After the performance parameter on each network node is configured according to the first parameter, step 619 is performed.
- the PCRF performs the first operation
- the embodiment of the present invention only discusses the condition that the PCRF determines that the condition for ensuring the service QoS is satisfied, and the PCRF performs the first operation for determining that the condition for ensuring the QoS of the service is not satisfied.
- the embodiment shown in FIG. 1 reference may be made to the description of the embodiment shown in FIG. 1 , and details are not described herein again.
- the UE sends a first service data request message to the server, where the first service data request message requests the server to send the first service data.
- the server receives the first service data request message.
- the server sends the first service data packet to the PGW.
- the PGW sends the first service data packet to the base station according to the configuration of the PCRF.
- the base station calculates a delay and a packet loss size that the first service data packet has experienced.
- the base station sends the first service data packet, so that the first service data packet arrives at the UE before the required time delay.
- each packet (such as IP packet) is time-stamped when it is sent from the server.
- the RTP protocol can be used to encapsulate the data in the RTP header.
- the RTP header has a timestamp field.
- the base station knows that the packet must be guaranteed for the next 80ms.
- the UE can be delivered to the UE. Otherwise, the end-to-end delay requirement cannot be guaranteed.
- the packet loss rate is similar to the previous one. According to the statistics of the previous data loss, the base station can determine whether the current data packet can be discarded. The embodiments of the invention will not be described again.
- the embodiment of the present invention provides a method for wireless communication, where the first service is a two-way communication service, and the method is specifically described in the system 700 for wireless communication as shown in FIG. 7, the wireless communication system.
- the method is specifically shown in FIG. 8 and includes:
- the UE1 sends a first service request message to the server.
- the first service request message may carry the capability information of the UE1 and the UE2, and the quality of the two-way call that the server can allow is also related to the capabilities of the UE1 and the UE2. For example, if the CPU processing capability of the UE1 is poor, the solution is Without high-definition voice coding, UE1 can't enjoy high-definition calls even if the network can guarantee the transmission quality.
- the embodiments of the present invention are based on the fact that the capabilities of UE1 and UE2 do not affect the quality of the two-way call, and the related content of the capabilities of UE1 and UE2 is not specifically illustrated and limited.
- the server determines, according to the first service request message, a first parameter, where the first parameter is a performance parameter of a QoS of the first service.
- the first parameter may include an end-to-end delay T E2E , an end-to-end packet loss rate PL E2E, and a future network transmission rate characteristic, including Maximum voice transmission rate MBR and voice activation factor r.
- the server sends the first parameter to the PCRF1.
- PCRF1 obtains the first parameter.
- the PCRF1 sends a first request message to the base station 1, and the first request message requests to acquire a third parameter, where the first request message carries the identifier of the base station 2, and the third parameter is the base station 1 to the The transmission characteristic parameters of the base station 2.
- the third parameter is an overall transmission characteristic parameter of the wired transmission of the base station 1 to the base station 2, and includes an average transmission delay T of the wired transmission from the base station 1 to the base station 2.
- Ut transmission delay mean variance RT.
- Ut average transmission loss rate PL. Ut .
- the second parameter is to represent the first service wired transmission transmission characteristic parameter
- the first service wired transmission part is specifically the base station 1 to the base station 2
- the third parameter is the overall transmission characteristic parameter of the wired transmission from the base station 1 to the base station 2, so the third parameter in the embodiment of the present invention is the second parameter.
- the base station 1 receives the first request message. It should be noted that, in the embodiment of the present invention, the device for detecting the wired transmission is deployed in the base station, so from the physical interface, the base station 1 receives the first request message, but from the logical interface, the final A request message is received by the device 1 for wired transmission detection.
- the device 1 for detecting the wired transmission in the base station 1 indexes the pre-stored service node transmission performance record table according to the identifier of the server, and determines whether the third parameter exists.
- the service node transmits a performance record record. And a transmission characteristic parameter of the wired transmission detecting device to each serving node, wherein the serving node is a network node that the device for detecting the wired transmission has detected.
- step 808a If it is determined that the third parameter does not exist, the device 1 for wired transmission detection in the base station 1 detects the third parameter. It should be noted that if it is determined that the third parameter exists, step 808a does not need to be performed, and step 809a is directly executed. The method of wireless communication shown in FIG. 10 is described in the case where it is determined that the third parameter does not exist, and it is determined that the third parameter exists. The situation will not be repeated.
- the base station 1 sends the third parameter to the PCRF1, where the third parameter is the same as the second parameter, and the second parameter is a transmission characteristic parameter that represents the wired transmission of the first service.
- PCRF1 obtains the second parameter.
- the PCRF1 sends a second request message to the base station 1, and the second request message requests to acquire status information of the current service of the base station 1.
- the status information of the current service of the base station 1 is as shown in the following table, and details are not described herein again.
- the base station 1 receives the second request message.
- the base station 1 sends status information of the current service of the base station 1 to the PCRF1.
- the PCRF1 acquires state information of the current service of the base station 1.
- the PCRF1 sends a third request message to the base station 2, where the third request message requests to obtain the call delay and the call loss rate guaranteed by the base station 2.
- the call delay guaranteed by the base station is TUL
- the call loss rate is PL UL .
- the base station 2 receives the third request message.
- the base station 1 sends the call delay and the call loss rate guaranteed by the base station 2 to the PCRF1.
- the sending the first request message in step 805a, the sending the second request message in step 811a, and the sending the third request message in step 815a are not in a certain order, and may first send the first request message, or may The second request message is sent first, and the third request message is also sent first, which is not specifically limited in this embodiment of the present invention.
- the PCRF1 obtains the call delay and the call loss rate guaranteed by the base station 2.
- the PCRF1 determines, according to the first parameter, the second parameter, and status information of the current service of the base station 1, whether the condition for ensuring the QoS of the service is satisfied, where the service includes the first service and the The current service of the base station.
- the condition for guaranteeing service QoS is determined according to the first parameter, the second parameter, and status information of a current service of the base station.
- the method of satisfaction can be as follows:
- the upper limit of the packet loss rate that needs to be guaranteed when the air interface is transmitted from the base station 1 to the UE1 is the maximum packet loss rate.
- the condition for ensuring the maximum packet loss rate of the first service is satisfied.
- the base station 1 may be applied to determine when the 24 bit CRC check in the CRC check physical layer channel coding, so as to ensure the transmission of data by a CRC check, the bit error probability less than 6xl0- 8, thereby ensuring Low enough packet error rate and packet loss rate. Based on this, the base station 1 using the LTE protocol can actively discard some data packets according to the current packet loss size when transmitting data packets in the downlink, thereby shortening the data as much as possible under the premise that the packet loss rate is satisfied. The delay of packet transmission.
- PCRF1 can query the relationship between the transmission delay and the average spectrum efficiency as shown in Table 1.
- the system can also measure the corresponding transmission rate characteristics for the characteristics of the speech coding rate and the activation factor, such as counting the actual transmission rate in 99% of the time to determine the bandwidth requirement.
- the second bandwidth determines that the condition for ensuring the air interface transmission delay of the first service is satisfied. It should be noted that the above is merely an example of determining a one-way calling line that guarantees the UE2 to the UE1 according to the first parameter, the second parameter, and status information of the current service of the base station 1. Method for satisfying the condition of the QoS, and of course, there may be a method for determining, by the other PCRF1, whether the condition for guaranteeing the service QoS is satisfied according to the first parameter and the second parameter, combined with the state information of the current service of the base station 1. The embodiment of the present invention does not specifically limit this.
- the PCRF1 allows the UE1 to provide the corresponding QoS guaranteed service service.
- the PCRF1 is used as the service policy decision subject. If it is determined that the QoS condition of the guaranteed service is satisfied, the QoS of the downlink voice service of the UE1 can be guaranteed, and the decision is made to provide the UE1 with the corresponding QoS guaranteed service.
- the PCRF1 can configure the performance parameters on each network node, for example, the parameters required for configuring the QoS of the first service on PGW1 and SGW1. Alternatively, the PCRF1 may send the end-to-end delay and the end-to-end packet loss rate to the base station 1 to configure the base station 1.
- the embodiment of the present invention does not specifically limit the process of configuring the performance parameters on each network node.
- the PCRF1 performs the first operation
- the embodiment of the present invention only discusses the case where the condition that the QoS of the guaranteed service is satisfied by the PCRF1 is satisfied, and the PCRF performs the first operation for determining that the condition for ensuring the QoS of the service is not satisfied.
- the embodiment shown in FIG. 1 reference may be made to the description of the embodiment shown in FIG. 1 , and details are not described herein again.
- Steps 803b-820b are steps for determining whether the QoS of the downlink voice service of the UE2 can be guaranteed. For details, reference may be made to 803a-820a for determining whether the QoS of the downlink voice service of the UE1 can be guaranteed. Let me repeat.
- step 821 can be performed.
- the UE1 sends a first service data packet to the base station 2.
- the base station 2 collects a delay and a packet loss size that the first service data packet has experienced.
- the base station 2 sends the first service data packet, so that the first service data packet arrives at the UE2 before the required time delay.
- the UE2 receives the first service data packet. It should be noted that, in steps 821-824, the QoS of the downlink voice service of the UE1 can be guaranteed, and the QoS of the downlink voice service of the UE2 can be guaranteed. If the PCRF1 and the PCRF2 configure parameters for each network node, the call is assumed.
- the process of receiving the UE1 speech by the UE2 after the start, of course, the process of receiving the UE2 speech by the UE1 is similar to this, and the embodiment of the present invention does not repeat this.
- the data packet is time stamped.
- the data can be RTP encapsulated through the RTP protocol, and there is time in the RTP header.
- the field of the stamp when the data packet is sent to the base station, the base station can calculate by timestamp, how long the data packet has been delayed in the previous transmission link (for example, from the server to the PGW to the base station), if the end The end delay requirement cannot be greater than 150ms, and the data packet has been delayed by 70ms.
- the base station knows that the data packet must be delivered to the UE within the next 80ms. Otherwise, the end-to-end delay requirement cannot be guaranteed.
- the packet loss rate is similar to that of the previous method.
- the base station can determine whether the current data packet can be discarded according to the statistics of the data loss.
- the PCRF may first determine the initial service level before determining whether the condition for guaranteeing the service QoS is satisfied, that is, the PCRF may initially determine the user information stored by the operator, such as the user level. Whether the service of the first service request can be provided for the user, and only after initially determining that the service provider can provide the service of the first service request for the user, further determining whether the network can meet the condition for guaranteeing the service QoS, so Before the sending, by the PCRF, the first request message, the method further includes:
- the PCRF obtains the user identifier of the current user equipment
- the PCRF queries the pre-stored user corresponding to the user according to the user identifier.
- the PCRF determines, according to the user profile, whether the quality of service of the first service can be provided for the user; if it is determined that the quality of service of the first service can be provided for the user, the PCRF performs the sending of the first request cancellation, .A step of.
- the method further includes:
- the PCRF determines a corresponding charging standard according to the relevant performance parameter of the QoS of the first service. Specifically, the PCRF may determine whether to charge according to the end-to-end delay and the packet loss rate, and determine a corresponding charging standard according to the transmission rate.
- the device for detecting wired transmission has a function of monitoring transmission characteristics of an external network, and it is assumed that the transmission performance record table of the service node records the transmission characteristics of the first time corresponding to the first service node.
- a parameter if the second time time detects the transmission characteristic parameter of the second time corresponding to the first serving node, and after comparing, the transmission characteristic deviation between the first time and the second time is found to be large, which may also result in guaranteeing the first The condition of the QoS of the service is not satisfied. Therefore, when the transmission performance record table of the service node records the transmission characteristic parameter of the first time corresponding to the first service node, the method further includes: detecting, by the device of the wired transmission detection, the first service node Corresponding second time transmission characteristic parameter;
- the apparatus for detecting a wired transmission sends a first indication message to the policy and charging rule entity PCRF,
- the first indication message indicates that the PCRF reacquires the first parameter, where the first parameter is a performance parameter of the quality of service QoS of the first service requested by the current user equipment, and may specifically include an end-to-end delay and an end-to-end delay. At least one of a packet loss rate and a parameter of a future network transmission rate.
- a method for wireless communication provided by an embodiment of the present invention, where the method includes:
- the PCRF obtains the first parameter, the second parameter, and status information of the current service of the base station, and determines, according to the first parameter, the second parameter, and status information of the current service of the base station, whether the condition for ensuring the service QoS is met. If it is determined that the condition for ensuring the QoS of the service is satisfied, the user equipment is allowed to provide the service of the first service with the corresponding QoS guarantee, and if it is determined that the condition for guaranteeing the QoS of the service is not satisfied, performing the first operation,
- the first parameter is a performance parameter of the QoS of the first service requested by the current user equipment
- the second parameter is a transmission characteristic parameter that represents the wired transmission of the first service.
- the embodiment of the present invention provides a PCRF 900.
- the PCRF 900 includes an obtaining unit 901, a determining unit 902, a decision unit 903, and an executing unit 904.
- the obtaining unit 901 is configured to acquire the first parameter, and send the first parameter to the determining unit 902, where the first parameter is the quality of service QoS of the first service requested by the current user equipment.
- the determining unit 902 is configured to determine, according to the first parameter that is acquired by the acquiring unit 901, the second parameter, and status information of the current service of the base station, whether the condition for ensuring the QoS of the service is satisfied, where The service includes the first service and a current service of the base station.
- the determining unit 903 is configured to, when the determining unit 902 determines that the condition for guaranteeing the service QoS is satisfied, decide to provide the user equipment with the service of the first service with corresponding QoS guarantee.
- the executing unit 904 is configured to determine, in the determining unit 902, the protection of the industry When the condition of Qo S is not satisfied, the first operation is performed.
- the PCRF further includes a sending unit 905.
- the obtaining unit 901 is specifically configured to: send, by using the sending unit 905, a first request message to other network nodes to obtain the second parameter.
- the PCRF further includes a reading unit 906.
- the obtaining unit 901 is specifically configured to:
- the second parameter is acquired by the reading unit reading the recorded data of the stored second parameter.
- the acquiring unit 901 is specifically configured to: send, by using the sending unit 905, a second request message to the base station to obtain status information of a current service of the base station.
- the reading unit 960 reads the stored record data of the current service status information of the base station, and acquires status information of the current service of the base station.
- the executing unit 94 is specifically configured to: send a third request message to the server to request to re-determine the first parameter. Obtaining the first parameter that is re-determined by the server. And determining, according to the re-determined first parameter and the second parameter, whether the condition of the guaranteed service Qo S is met, in combination with the status information of the current service of the base station, until it is determined that the condition of the guaranteed service Qo S is met.
- the executing unit 904 is specifically configured to: deny access to the first service.
- the first parameter specifically includes:
- At least one of end-to-end delay, end-to-end packet loss rate, and future network transmission rate is provided.
- the determining unit 902 specifically includes an obtaining module 902, a first determining module 902, a second determining module 9023, and a third determining module. 9 024.
- the obtaining module 902 1 is configured to: obtain a maximum air interface transmission delay and a maximum packet loss rate according to the first parameter and the second parameter.
- the first determining module 9 022 is configured to: determine, according to the maximum air interface transmission delay acquired by the acquiring module 902 1 and status information of the current service of the base station acquired by the acquiring unit 901 Whether the condition of the air interface transmission delay of the first service is satisfied.
- the second determining module 902 is configured to: determine, according to the maximum packet loss rate obtained by the acquiring module 902 1 and state information of the current service of the base station acquired by the acquiring unit 901 Whether the condition of the maximum packet loss rate of the first service is satisfied.
- the third determining module 9 024 is configured to: determine, by the first determining module 9 022, that the condition for ensuring the air interface transmission delay of the first service is satisfied, and the second determining module 903 determines that the first When the condition of the maximum packet loss rate of the service is satisfied, it is determined that the condition of the guaranteed service Qo S is satisfied.
- the first determining module 9 022 includes a first calculating submodule 9 022 a, a first obtaining submodule 9 022 b, and a first determining submodule 9 022 c.
- the first calculating sub-module 9 022 a is configured to: calculate, according to the maximum air interface transmission delay, the first information required to meet the maximum air interface transmission delay of the first service, in combination with the current service state information of the base station bandwidth.
- the first obtaining sub-module 9 022 b is configured to: add the first bandwidth calculated by the first calculating sub-module 9 022 a and the maximum bandwidth required by the current service of the base station, to obtain a second bandwidth.
- the first determining sub-module 9 022 c is configured to: if the second bandwidth does not exceed the bandwidth of the base station, determine that the condition for ensuring the air interface transmission delay of the first service is satisfied. Further, the status information of the current service of the base station includes a correspondence between a transmission delay and a scheduled average spectral efficiency.
- the first calculating sub-module 9 022 a is specifically configured to: determine, according to the maximum air interface transmission delay and the correspondence between the transmission delay and the scheduled average spectral efficiency, the scheduling average spectral efficiency corresponding to the maximum air interface delay .
- the first service is a one-way download service.
- the acquiring module 902 is specifically configured to: calculate, according to the second parameter, a first wired transmission delay and a first wired transmission loss ratio, where the first wired transmission delay is the server to the location The delay of the wired transmission of the base station, where the first wired packet loss rate is a packet loss rate of the wired transmission from the server to the base station. And subtracting the first wired transmission delay from the end-to-end delay in the first parameter to obtain the maximum air interface transmission delay. And subtracting the first wired transmission packet loss rate from the end-to-end packet loss rate in the first parameter to obtain the maximum packet loss rate.
- the second parameter specifically includes: a base station to server transmission characteristic parameter. Or
- Packet data gateway PGW to server transmission characteristics parameters and PGW to base station transmission characteristics parameters.
- the transmission characteristic parameter of the PGW to the base station specifically includes a transmission characteristic parameter of the first path of the PGW to the base station.
- the first path is determined by the PGW according to the PGW-to-server transmission characteristic parameter and the end-to-end delay in the first parameter, and the end-to-end packet loss rate.
- the future network transmission rate specifically includes: At least one of a maximum transmission rate, an average transmission rate, a mean square error of the transmission rate change, and a temporal correlation of the transmission rate change.
- the first service is a two-way call service.
- the acquiring unit 910 is further configured to: obtain a call delay and a call loss rate guaranteed by the peer base station of the base station; and the acquiring module 9 0 2 1 is specifically configured to: according to the second parameter, Calculating a first wired transmission delay and a first wired transmission loss ratio, where the first wired transmission delay is a delay of a wired transmission from the current base station to the opposite base station, and the first wired packet loss rate is The packet loss rate of the wired transmission from the current base station to the opposite base station.
- the end-to-end delay in the first parameter is obtained by subtracting the sum of the first wired transmission delay and the guaranteed call delay of the opposite base station to obtain the maximum air interface transmission delay.
- the end-to-end packet loss ratio of the first parameter is subtracted from the sum of the first wired transmission packet loss rate and the call loss rate guaranteed by the opposite base station to obtain a maximum packet loss rate.
- the second parameter includes: a transmission characteristic parameter of the current base station to the opposite base station.
- the future network transmission rate includes: at least one of a voice maximum transmission rate and a voice activation factor.
- the transmission characteristic parameter includes: at least one of an average transmission delay, a transmission delay mean variance, and an average transmission packet loss ratio.
- the determining unit 902 is further configured to: determine a corresponding charging standard according to a performance parameter of the Q s of the first service.
- the method for performing the wireless communication by using the PC RF may refer to the descriptions of the first embodiment and the second embodiment, and details are not described herein again.
- An embodiment of the present invention provides a PC RF, including an acquiring unit, a determining unit, and Policy unit, execution unit.
- the obtaining unit acquires the first parameter, the second parameter, and status information of the current service of the base station, where the determining unit is configured to: according to the first parameter, the second parameter, and status information of a current service of the base station, Determine the guarantee business
- the decision unit determines that the user equipment is provided with the service of the first service with corresponding QoS guarantee, and if the QoS of the guaranteed service is determined The condition is not satisfied, and the execution unit performs the first operation.
- the first parameter is a performance parameter of the QoS of the first service requested by the current user equipment
- the second parameter is a transmission characteristic parameter that represents the wired transmission of the first service. Because the PCRF can determine whether the condition of the guaranteed service QoS is satisfied on the basis of acquiring the wired transmission characteristic, the PCRF can ensure the end-to-end delay in the wireless communication process and improve the service quality of the wireless communication process. .
- Embodiment 4 The embodiment of the present invention provides a wired transmission detection apparatus 1400.
- the apparatus 1400 includes: a receiving unit 1401, a serving node indexing unit 1402, a serving node transmission performance recording table 1403, and a transmission performance detecting unit 1404. And a transmitting unit 1405.
- the receiving unit 1401 is configured to receive a first request message, where the first request message requests to acquire a third parameter, where the third parameter is a transmission characteristic of the wired transmission detecting device 1400 to the first network node.
- the parameter, the first request message carries an identifier of the first network node.
- the first network node may be a server, a PGW, an SGW, or the like, which is not specifically limited in this embodiment of the present invention.
- the wired transmission detection device 1400 may be deployed in the base station, or may be deployed in the PGW. The deployment location of the device 1400 for detecting the wired transmission is not specifically limited in this embodiment of the present invention.
- the third parameter is specifically a transmission characteristic parameter of the base station to the server;
- the first network node is a server, and the device for detecting the wired transmission
- the 1400 is deployed in the PGW, and the third parameter is specifically a transmission characteristic parameter of the PGW to the server;
- the third parameter is specifically the first base station to the first The transmission characteristic parameters of the two base stations.
- the transmission characteristic parameter may include: at least one of an average transmission delay, a transmission delay mean variance, and an average transmission packet loss ratio.
- the serving node indexing unit 1402 is configured to: according to the identifier of the first network node received by the receiving unit 1401, index a pre-stored serving node transmission performance record table 1403, and determine whether the third parameter exists, where
- the service node transmission performance record table 1403 records transmission characteristic parameters of the wired transmission detecting apparatus 1400 to each serving node, and the service node is a network node that the wired transmission detection apparatus 1400 has detected.
- the wired transmission detection apparatus 1400 includes a service node transmission performance record table 1403, and the service node transmission performance record table 1403 may be various storage media, including a hard disk, a fixed disk, a random access memory, a magnetic tape, and the like. The embodiment of the present invention does not specifically limit this.
- the transmission characteristic parameters include: an average transmission delay, a transmission delay mean square error, and an average transmission packet loss ratio.
- a feasible service node transmission performance record table may be as shown in the above table 2, which is not specifically limited in this embodiment of the present invention. . After the wired transmission detection device 1400 detects the transmission performance parameter of a certain network node, the transmission performance parameter is recorded in the service node transmission performance record table 1403.
- the transmission performance detecting unit 1404 is configured to detect the third parameter when the serving node indexing unit 1402 determines that the third parameter does not exist.
- Performance detection unit 1404 performs performance probing for the first network node. Specifically, the transmission performance detecting unit 1404 may obtain the required transmission performance parameter by continuously issuing 100 ping commands to the first network node. By averaging the delay times of all responding packets and dividing by 2, the average transmission delay can be obtained, and the variance of the delay can be obtained. In addition to the ping command, you can also use the traceroute command to obtain the delay parameter, or use the server's echo service to reflect the measured data of the delay.
- the sending unit 1405 is configured to send the third parameter determined by the serving node indexing unit 1402 or the third parameter detected by the transmission performance detecting unit 1404.
- the first request message requests to acquire a transmission characteristic parameter of the server, and at the moment, other user equipments in the base station request and obtain the server from the server.
- the service of the server may query the transmission characteristic parameter from the server to the base station in the service node transmission performance record table 1403, and the device 1400 for detecting the wired transmission may directly send the third parameter to the sending A network node that requests a message.
- the transmission performance detecting unit 1404 may record the identifier of the first network node and its transmission performance parameter in the service node transmission performance record table 1403, in preparation for the next query, and send the The transmission performance parameter is given to the network node that sent the first request message. Further, the serving node transmission performance record table 1403 records the transmission characteristic parameter of the first moment corresponding to the first serving node. The transmission performance detecting unit 1404 is further configured to detect a transmission characteristic parameter of the second moment corresponding to the first serving node.
- the sending unit 1405 is further configured to: if the deviation between the transmission characteristic parameter of the first moment and the transmission characteristic parameter of the second moment is greater than a first threshold, send a first indication message to the policy and charging rule entity PCRF, The first indication message indicates the The PCRF re-acquires the first parameter, where the first parameter is a related performance parameter of the quality of service QoS of the first service requested by the current user equipment, including end-to-end delay, end-to-end packet loss rate, and future network transmission.
- the parameter of the rate may refer to the descriptions of the first embodiment and the second embodiment, and details are not described herein again.
- the apparatus for detecting a wired transmission detects the characteristics of the transmission of the external network by using the apparatus for detecting the wired transmission, so that the PCRF can determine the QoS of the guaranteed service based on the acquired characteristics of the wired transmission. Whether the conditions are met, thereby ensuring end-to-end delay in the wireless communication process and improving the quality of service of the wireless communication process.
- FIG. 15 illustrates a structure of a PCRF according to an embodiment of the present invention, including at least one processor 1502 (for example, a CPU), at least one network interface 1505 or other communication interface, a memory 1506, and at least one communication bus 1503. Used to implement connection communication between these devices.
- the processor 1502 is configured to execute executable modules, such as computer programs, stored in the memory 1506.
- the memory 1506 may include a high speed random access memory (RAM: Random Access Memory), and may also include a non-volat memory, such as at least one disk memory.
- RAM Random Access Memory
- the communication connection between the system gateway and at least one other network element is implemented by at least one network interface 1505 (which may be wired or wireless), and may use an Internet, a wide area network, a local network, a metropolitan area network, or the like.
- the memory 1506 stores a program 15061.
- the program 15061 can be executed by the processor 1502.
- the program includes: the policy and charging rule entity PCRF obtains the first parameter, where the first parameter is the current user equipment.
- Obtaining a performance parameter of the quality of service QoS of the first service acquiring a second parameter, where the second parameter is a transmission characteristic parameter that characterizes the first service wired transmission; and acquiring state information of a current service of the base station; Determining, by the first parameter, the second parameter, and status information of the current service of the base station, whether the condition for ensuring the QoS of the service is satisfied, The service includes the first service and the current service of the base station; if it is determined that the condition for ensuring the QoS of the service is satisfied, the service of the first service with the corresponding QoS guarantee is allowed to be provided to the user equipment. If it is determined that the condition for guaranteeing the QoS of the service is not satisfied, the first operation is performed.
- the method for performing the wireless communication by using the PCRF may refer to the descriptions of the first embodiment and the second embodiment, and details are not described herein again.
- the PCRF can determine whether the condition of the guaranteed service QoS is satisfied on the basis of acquiring the wired transmission characteristic, so that the end-to-end in the wireless communication process can be ensured by the PCRF. Delay, improve the quality of service in the wireless communication process.
- FIG. 16 illustrates a structure of an apparatus for wired transmission detection according to an embodiment of the present invention, including at least one processor 1602 (eg, a CPU), at least one network interface 1605 or other communication interface, a memory 1606, and at least one communication bus 1603, Used to implement connection communication between these devices.
- the processor 1602 is configured to execute an executable module, such as a computer program, stored in the memory 1606.
- the memory 1606 may include a high speed random access memory (RAM: Random Access Memory), and may also include a non-volat memory, for example, at least one disk memory.
- RAM Random Access Memory
- the communication connection between the system gateway and at least one other network element is implemented by at least one network interface 1605 (which may be wired or wireless), and may use an Internet, a wide area network, a local network, a metropolitan area network, or the like.
- the memory 1606 stores a program 16061 that can be executed by the processor 1602.
- the program includes: the device for wired transmission detection receives a first request message, the first request message requesting acquisition of a third parameter, wherein
- the third parameter is a transmission characteristic parameter of the device for detecting the wired transmission to the first network node, where the first request message carries an identifier of the first network node; according to the identifier of the first network node, Indexing a pre-stored service node transmission performance record table, determining whether the third parameter exists, wherein the service node transmission performance record table records transmission characteristics of the wired transmission detection device to each service node And the service node is a network node that has been detected by the device for detecting the wired transmission; if it is determined that the third parameter exists, the third parameter is sent; if it is determined that the third parameter is not present, detecting the Three parameters, and the third parameter is sent.
- the method for performing the wireless communication by the device for detecting the wired transmission can refer to the descriptions of the first embodiment and the second embodiment, and details are not described herein again.
- the device for detecting a wired transmission detects the characteristics of the transmission of the external network by using the device for detecting the wired transmission, so that the PCRF can determine the guaranteed service Qo S based on the acquired characteristics of the wired transmission. Whether the conditions are met, thereby ensuring end-to-end delay in the wireless communication process, and improving the quality of service of the wireless communication process.
- Embodiment 7 The embodiment of the present invention provides a system for wireless communication. As shown in FIG. 3 or FIG. 5, the system includes a policy and charging rule entity PCRF 304, a device for wired transmission detection, and an IP multimedia sub-device. System I MS 3 08, base station 302, packet data gateway PGW 305, monthly service gateway SGW 303, server 3 06, user equipment UE 301.
- the PCRF 304 is configured to obtain the first parameter, the second parameter, and status information of the current service of the base station 302, and according to the first parameter, the second parameter, and status information of the current service of the base station 302 Determining whether the condition for securing the service Qo S is satisfied, wherein the service includes the first service and the current service of the base station 302; if it is determined that the condition of the security service Qo S is satisfied, the UE 301 is allowed.
- the first parameter is the first requested by the current UE 3 01
- the performance parameter of the quality of service Q o S, the second parameter is a transmission characteristic parameter characterizing the first service wired transmission.
- the wired transmission detection device 307 is configured to receive a first request message, where the first request message requests to acquire a third parameter, where the third parameter is the wired transmission detection device 307 to the first network node
- the transmission characteristic parameter, the first request message carries an identifier of the first network node; and according to the identifier of the first network node, indexes a pre-stored service node transmission performance record table to determine whether the a third parameter, wherein the service node transmission performance record table records transmission characteristic parameters of the wired transmission detection device to each service node, and the service node is a network node that the wired transmission detection device has detected; If it is determined that the third parameter exists, the third parameter is sent; if it is determined that the third parameter is not present, the third parameter is detected, and the third parameter is sent.
- the device for detecting the wired transmission may be deployed in the base station, or may be deployed in the PGW, and may also be deployed in other network nodes.
- FIG. 3 and FIG. 5 only show two kinds of wired transmissions by way of example.
- the deployment location of the detected device is not specifically limited in the embodiment of the present invention.
- the method for performing the wireless communication by the wireless communication system may refer to the descriptions of the first embodiment and the second embodiment, and details are not described herein again.
- the system for wireless communication provided by the embodiment of the present invention detects the transmission characteristics of the external network by the wired transmission detection device in the system, and the PCRF can determine the condition of the guaranteed service QoS on the basis of acquiring the wired transmission characteristic. Whether it is satisfied, the end-to-end delay under the one-way download service can be guaranteed, and the service quality of the wireless communication process is improved.
- Embodiment 8 The embodiment of the present invention provides a system 700 for wireless communication.
- the system 700 includes a first policy and charging rule entity PCRF 704, a second PCRF 709, and a first wired transmission detection device. 712.
- the first/second PCRF is configured to acquire first information, a second parameter, status information of a current service of the first/second base station, and according to the first parameter, the second parameter, and the And determining, by the status information of the current service of the second/second base station, whether the condition for ensuring the QoS of the service is satisfied, where the service includes the current service and the current service of the base station; And allowing the first/second UE to provide the service of the first service with corresponding QoS guarantee; If the condition of the guaranteed service Q o S is not met, the first operation is performed, where the first parameter is a performance parameter of the quality of service Q o S of the first service requested by the first/second UE
- the second parameter is a transmission characteristic parameter that characterizes the first service wired transmission.
- the first/second wired transmission detecting apparatus is configured to receive a first request message, where the first request message requests to acquire a third parameter, where the third parameter is the first/second wired transmission And detecting, by the detected device, a transmission characteristic parameter of the first network node, where the first request message carries an identifier of the first network node; and according to the identifier of the first network node, indexes a pre-stored service node transmission performance record table, Determining whether the third parameter exists, wherein the service node transmission performance record table records transmission characteristic parameters of the first/second wired transmission detecting device to each serving node, where the service node is the a network node that has been detected by the device of the first/second wired transmission; if the third parameter is determined to be present, the third parameter is sent; if it is determined that the third parameter is not present, the third parameter is detected and sent The third parameter.
- the apparatus for detecting the first/second wired transmission may be deployed in a base station or may be deployed in other network nodes.
- FIG. 7 is merely an example of a wireless communication system under two-way communication service.
- the architecture of the apparatus for detecting the first/second wired transmission detection is not specifically limited.
- the method for performing the wireless communication by the wireless communication system may refer to the descriptions of the first embodiment and the second embodiment, and details are not described herein again.
- the system for wireless communication provided by the embodiment of the present invention detects the transmission characteristics of the external network by the device for detecting the wired transmission in the system, and the PCRF can determine the guaranteed service Q o S based on the acquired wired transmission characteristic.
- the disclosed system, apparatus, and method may be implemented in other manners.
- the device embodiments described above are merely illustrative.
- the division of the modules or units is only a logical function division.
- there may be another division manner for example, multiple units or components may be used. Combined or can be integrated into another system, or some features can be ignored, or not executed.
- the coupling or direct coupling or communication connection shown or discussed may be an indirect coupling or communication connection through some interface, device or unit, and may be in electrical, mechanical or other form.
- each functional unit in each embodiment of the present invention may be integrated into one processing unit, or each unit may exist physically separately, or two or more units may be integrated into one unit.
- the above integrated unit can be implemented in the form of hardware or in the form of a software functional unit.
- the integrated unit if implemented in the form of a software functional unit and sold or used as a standalone product, may be stored in a computer readable storage medium.
- the technical solution of the present invention may be embodied in the form of a software product in the form of a software product, or a part of the technical solution, which is stored in a storage medium.
- the instructions include a plurality of instructions for causing a computer device (which may be a personal computer, a server, or a network device, etc.) or a processor to perform all or part of the steps of the methods of the various embodiments of the present invention.
- the foregoing storage medium includes: a U disk, a mobile hard disk, a read-only memory (ROM), a random access memory (RAM), a magnetic disk or an optical disk, and the like, which can store program codes. .
Landscapes
- Engineering & Computer Science (AREA)
- Computer Networks & Wireless Communication (AREA)
- Signal Processing (AREA)
- Quality & Reliability (AREA)
- Multimedia (AREA)
- Environmental & Geological Engineering (AREA)
- Mobile Radio Communication Systems (AREA)
Abstract
本发明实施例提供无线通信的方法、有线传输检测的方法及相关设备,能够保证无线通信过程中的端到端时延,提升无线通信过程的服务质量。所述方法包括:PCRF获取第一参数、第二参数、基站的当前业务的状态信息;根据所述第一参数和所述第二参数,结合所述基站的当前业务的状态信息,确定保障业务QoS的条件是否满足;若确定所述保障业务QoS的条件满足,则允许为所述用户设备提供具有相应QoS保障的所述第一业务的服务;若确定所述保障业务QoS的条件不满足,执行第一操作。所述方法应用于通信领域。
Description
无线通信的方法、 有线传输检测的方法及相关设备
本申请要求于 2013 年 7 月 23 日提交中国专利局、 申请号为 201310311794.9、 发明名称为 "无线通信的方法、 有线传输检测的 方法及相关设备" 的中国专利申请的优先权, 其全部内容通过引用 结合在本申请中。
技术领域 本发明涉及通信领域, 尤其涉及无线通信的方法、 有线传输检 测的方法及相关设备。
背景技术
随着无线通信技术的发展,人们对无线通信服务质量( Quality of Service, QoS ) 的要求越来越高, 为了提供不同的 QoS, 长期 演进 ( Long Term Evolution, LTE ) 系统通过将不同业务映射到不 同隧道上, 以实现不同的处理。
LTE 系统定义了几种不同的 QoS特性, 该 Qos特性表征了不同 类型的用户设备数据包在用户设备 ( user equipment, UE ) 与策略 和计费执行实体 ( Policy and Charging Enforcement Function, PCEF ) 中传输的时间延迟上限, 但用户设备所感受到的服务质量, 实际是端到端的体验, 即使 UE和 PCRF之间的传输时延再短, 如果 月良务器与分组数据网关 ( Packet data network Gateway, PGW ) 之 间的传输时延过长, 同样会造成用户设备体验不满意。 另外, 与以 前的二代无线通信系统不同, LTE 系统仅支持 PS 连接, 不再支持 CS连接。但由于 PS连接不预留资源,从而导致在实际系统实现中, UE与 PCEF之间的传输时延也得不到保证, 进而无线通信过程中的 Qos得不到保证。 现有技术提供一种双向通话时提升通话质量的方法,该方法通 过在通话过程中检查通话的信息流,使得通话过程的至少一种互动 特性会被监控, 进而检测具体的互动特性的特点, 根据检测的互动
特性的特点,确定最大端到端时延,将最大端到端时延引入通话中, 在时延允许的前提下, 增加提升通话质量的操作, 如向前纠错编解 码, 即可提升通话体验。 但是, 该方法同 LTE 系统定义的 QoS特性一样, 端到端的时延 无法保证, 另外, 在该方法中, 通话的互动特性是在通话开始后才 执行监控的, 因此对通话时延的调整也仅是小范围的调整, 如果在 通话连接时, 传输网络本身就存在传输质量不高的问题, 该方法也 无法保障服务质量。
发明内容 本发明的实施例提供无线通信的方法、有线传输检测的方法及 相关设备, 能够保证无线通信过程中的端到端时延, 提升无线通信 过程的服务质量。 为达到上述目 的, 本发明的实施例釆用如下技术方案: 第一方面, 提供一种无线通信的方法, 所述方法包括: 策略与计费规则实体 PCRF获取第一参数, 其中, 所述第一参 数是当前用户设备所请求的第一业务的服务质量 QoS的性能参数; 获取第二参数,其中, 所述第二参数是表征所述第一业务有线 传输的传输特性参数;
获取基站的当前业务的状态信息; 根据所述第一参数,所述第二参数以及所述基站的当前业务的 状态信息, 确定保障业务 QoS的条件是否满足, 其中, 所述业务包 括所述第一业务和所述基站的当前业务; 若确定保障所述业务 QoS的条件满足,则允许为所述用户设备 提供具有相应 QoS 保障的所述第一业务的服务; 若确定保障所述业务 QoS的条件不满足, 执行第一操作。
在第一方面第一种可能的实现方式中, 结合第一方面, 所述获 取所述第二参数,具体包括:
通过向其它网络节点发送第一请求消息请求获取; 或
通过读取存储的第二参数的记录数据获取。
在第一方面第二种可能的实现方式中,结合第一方面或第一方 面第一种可能的实现方式,所述获取所述基站的当前业务的状态信 息,具体包括:
通过向所述基站发送第二请求消息请求获取; 或
通过读取存储的基站业务状态信息的记录数据获取。
在第一方面第三种可能的实现方式中,结合第一方面或第一方 面第一种可能的实现方式或第一方面第二种可能的实现方式,所述 执行第一操作具体包括: 发送第三请求消息给服务器请求重新确定所述第一参数; 获取所述服务器重新确定的第一参数; 根据所述重新确定的第一参数和所述第二参数,结合所述基站 的当前业务的状态信息, 确定保障业务 Q o S的条件是否满足, 直到 确定保障业务 Q o S的条件满足为止; 或
所述执行第一操作具体包括: 拒绝接入所述第一业务。
在第一方面第四种可能的实现方式中,结合第一方面至第一方 面第三种可能的实现方式, 所述第一参数具体包括: 端到端时延、端到端丟包率以及未来网络传输速率中的至少一 个。
在第一方面第五种可能的实现方式中,结合第一方面第四种可 能的实现方式, 所述根据所述第一参数和所述第二参数, 结合所述 基站的当前业务的状态信息,确定保障业务 Q o S的条件是否满足具
体包括: 根据所述第一参数和所述第二参数,获取最大空口传输时延和 最大丟包率; 若根据所述最大空口传输时延和所述基站的当前业务的状态 信息, 确定保障所述第一业务的空口传输时延的条件满足, 且根据 所述最大丟包率和所述基站的当前业务的状态信息确定保障所述 第一业务的最大丟包率的条件满足,则确定保障业务的 Q o S的条件 满足。
在第一方面第六种可能的实现方式中,结合第一方面第五种可 能的实现方式,所述根据所述最大空口传输时延和所述基站的当前 业务的状态信息,确定保障所述第一业务的空口传输时延的条件满 足具体包括: 根据所述最大空口传输时延,结合所述基站的当前业务的状态 信息, 计算满足所述第一业务最大空口传输时延所需的第一带宽; 将所述第一带宽和所述基站的当前业务所需的最大带宽相加, 获取第二带宽; 若所述第二带宽未超过所述基站的频带带宽,确定保障所述第 一业务的空口传输时延的条件满足。
在第一方面第七种可能的实现方式中,结合第一方面第六种可 能的实现方式,所述基站的当前业务的状态信息包括传输时延与调 度平均频谱效率的对应关系; 所述根据所述最大空口传输时延,结合所述基站的当前业务的 状态信息,计算满足所述最大空口传输时延所需的第一带宽具体包 括: 根据所述最大空口传输时延和所述传输时延与调度平均频谱 效率的对应关系, 确定所述最大空口时延对应的调度平均频谱效 率;
根据所述调度平均频谱效率和所述未来网络传输速率的参数, 计算满足所述最大空口传输时延所需的第一带宽。
在第一方面第八种可能的实现方式中,结合第一方面第五种可 能的实现方式至第一方面第七种可能的实现方式,所述第一业务为 单向下载业务; 所述根据所述第一参数和所述第二参数,获取最大空口传输时 延和最大丟包率具体包括: 根据所述第二参数,计算第一有线传输时延和第一有线传输丟 包率, 其中, 所述第一有线传输时延为所述服务器到所述基站的有 线传输的时延,所述第一有线丟包率为所述服务器到所述基站的有 线传输的丟包率; 将所述第一参数中的所述端到端时延减去所述第一有线传输 时延, 获取所述最大空口传输时延; 将所述第一参数中的端到端丟包率减去所述第一有线传输丟 包率, 获取所述最大丟包率。
在第一方面第九种可能的实现方式中,结合第一方面第八种可 能的实现方式, 所述第二参数具体包括: 基站到服务器的传输特性参数; 或
分组数据网关 PGW到服务器的传输特性参数和 PGW到基站的传 输特性参数。
在第一方面第十种可能的实现方式中,结合第一方面第九种可 能的实现方式,所述 PGW到所述基站的传输特性参数具体包括所述 P G W到所述基站的第一路径的传输特性参数; 所述第一路径由所述 PGW根据所述 PGW到服务器的传输特性参 数和所述第一参数中的所述端到端时延、 所述端到端丟包率确定。 在第一方面第十一种可能的实现方式中,结合第一方面第八种 可能的实现方式至第一方面第十种可能的实现方式,所述未来网络 传输速率具体包括: 最大传输速率、 平均传输速率、 传输速率变化的均方差和传输
速率变化的时间相关性中的至少
在第一方面第十二种可能的实现方式中,结合第一方面第五种 可能的实现方式至第一方面第七种可能的实现方式,所述第一业务 为双向通话业务; 所述根据所述第一参数和所述第二参数,获取最大空口传输时 延和最大丟包率前, 还包括: 获取所述基站的对端基站保证的通话时延、 通话丟包率; 所述根据所述第一参数和所述第二参数,获取最大空口传输时 延和最大丟包率具体包括: 根据所述第二参数,计算第一有线传输时延和第一有线传输丟 包率, 其中, 所述第一有线传输时延为当前基站到对端基站的有线 传输的时延,所述第一有线丟包率为所述当前基站到所述对端基站 的有线传输的丟包率;
将所述第一参数中的所述端到端时延减去所述第一有线传输 时延和所述对端基站保证的通话时延之和,获取所述最大空口传输 时延; 将所述第一参数中的端到端丟包率减去所述第一有线传输丟 包率和所述对端基站保证的通话丟包率之和, 获取最大丟包率。 在第一方面第十三种可能的实现方式中,结合第一方面第十二 种可能的实现方式, 所述第二参数包括: 所述当前基站到所述对端基站的传输特性参数。
在第一方面第十四种可能的实现方式中,结合第一方面第十二 种可能的实现方式或第一方面第十三种可能的实现方式,所述未来 网络传输速率包括: 语音最大传输速率和语音激活因子中的至少一个。
在第一方面第十五种可能的实现方式中,结合第一方面至第一 方面第十四种可能的实现方式, 所述传输特性参数包括: 平均传输时延、传输时延均方差和平均传输丟包率中的至少一
个。
在第一方面第十六种可能的实现方式中,结合第一方面至第一 方面第十五种可能的实现方式, 若确定保障业务 Q o S的条件满足, 所述方法还包括: 根据所述第一业务的 Q o S的性能参数, 确定相应的收费标准。 第二方面, 提供一种有线传输检测的方法, 所述方法包括: 有线传输检测的装置接收第一请求消息,所述第一请求消 , ¾请 求获取第三参数, 其中, 所述第三参数为所述有线传输检测的装置 到第一网络节点的传输特性参数,所述第一请求消息携带所述第一 网络节点的标识; 根据所述第一网络节点的标识,索引预先存储的服务节点传输 性能记录表, 确定是否存在所述第三参数, 其中, 所述服务节点传 输性能记录表记录了所述有线传输检测的装置到各服务节点的传 输特性参数,所述服务节点为所述有线传输检测的装置已经检测的 网络节点; 若确定存在所述第三参数, 发送所述第三参数; 若确定不存在所述第三参数, 检测所述第三参数, 并发送所述 第三参数。 在第二方面第一种可能的实现方式中, 结合第二方面, 所述服 务节点传输性能记录表记录了第一服务节点对应的第一时刻的传 输特性参数; 所述方法还包括: 检测所述第一服务节点对应的第二时刻的传输特性参数; 若所述第一时刻的传输特性参数与所述第二时刻的传输特性 参数的偏差大于第一阈值,发送第一指示消息给策略与计费规则实 体 P C R F , 所述第一指示消息指示所述 P C R F重新获取第一参数, 其 中, 所述第一参数是当前用户设备所请求的第一业务的服务质量 Q o S的性能参数。
在第二方面第二种可能的实现方式中,结合第二方面或第二方 面第一种可能的实现方式, 所述第一网络节点具体为服务器, 所述 有线传输检测的装置部署在基站内; 所述第三参数具体包括: 所述基站到所述服务器的传输特性参数。 在第二方面第三种可能的实现方式中,结合第二方面或第二方 面第一种可能的实现方式, 所述第一网络节点具体为服务器, 所述 有线传输检测的装置部署在分组数据网关 P GW内; 所述第三参数具体包括:
所述 P GW到所述服务器的传输特性参数。 在第二方面第四种可能的实现方式中,结合第二方面或第二方 面第一种可能的实现方式, 所述第一网络节点为第二基站, 所述有 线传输检测的装置部署在第一基站内; 所述第三参数具体包括: 所述第一基站到所述第二基站的传输特性参数。 在第二方面第五种可能的实现方式中,结合第二方面至第二方 面第四种可能的实现方式, 所述传输特性参数包括: 平均传输时延、传输时延均方差和平均传输丟包率中的至少一 个。
在第二方面第六种可能的实现方式中,结合第二方面第一种可 能的实现方式至第二方面第五种可能的实现方式,所述第一参数具 体包括:
端到端时延、端到端丟包率以及未来网络传输速率中的至少一 个。
第三方面, 提供一种策略与计费规则实体 P C R F , 所述 P C R F 包 括: 获取单元、 确定单元、 决策单元、 执行单元; 所述获取单元, 用于获取第一参数, 并将所述第一参数发送给 所述确定单元, 其中, 所述第一参数是当前用户设备所请求的第一
业务的服务质量 QoS的性能参数; 获取第二参数, 并将所述第二参 数发送给所述确定单元, 其中, 所述第二参数是表征所述第一业务 有线传输的传输特性参数; 获取基站的当前业务的状态信息, 并将 所述基站的当前业务的状态信息发送给所述确定单元; 所述确定单元, 用于根据所述获取单元获取的所述第一参数, 所述第二参数以及所述基站的当前业务的状态信息,确定保障业务 QoS的条件是否满足, 其中, 所述业务包括所述第一业务和所述基 站的当前业务; 所述决策单元, 用于在所述确定单元确定保障所述业务 QoS 的条件满足时, 决策允许为所述用户设备提供具有相应 QoS 保障 的所述第一业务的服务; 所述执行单元, 用于在所述确定单元确定保障所述业务 QoS 的条件不满足时, 执行第一操作。
在第三方面第一种可能的实现方式中, 结合第三方面, 所述 PCRF还包括发送单元或读取单元; 所述获取单元具体用于: 通过所述发送单元向其它网络节点发送第一请求消息请求获 取所述第二参数;
或通过所述读取单元读取存储的第二参数的记录数据获取所 述第二参数。 在第三方面第二种可能的实现方式中,结合第三方面或第三方 面第一种可能的实现方式,所述 PCRF还包括发送单元或读取单元; 所述获取单元具体用于: 通过所述发送单元向所述基站发送第二请求消息请求获取所 述基站的当前业务的状态信息;
或通过所述读取单元读取存储的所述基站的当前业务的状态 信息的记录数据获取所述基站的当前业务的状态信息。 在第三方面第三种可能的实现方式中,结合第三方面或第三方
面第一种可能的实现方式或第三方面第二种可能的实现方式,所述 执行单元具体用于: 发送第三请求消息给服务器请求重新确定所述第一参数; 获取所述服务器重新确定的第一参数; 根据所述重新确定的第一参数和所述第二参数,结合所述基站 的当前业务的状态信息, 确定保障业务 Q o S的条件是否满足, 直到 确定保障业务 Q o S的条件满足为止; 或
所述执行单元具体用于: 拒绝接入所述第一业务。
在第三方面第四种可能的实现方式中,结合第三方面至第三方 面第三种可能的实现方式, 所述第一参数具体包括: 端到端时延、端到端丟包率以及未来网络传输速率中的至少一 个。
在第三方面第五种可能的实现方式中,结合第三方面第四种可 能的实现方式, 所述确定单元具体包括获取模块、 第一确定模块、 第二确定模块、 第三确定模块;
所述获取模块用于:
根据所述第一参数和所述第二参数,获取最大空口传输时延和 最大丟包率; 所述第一确定模块用于:
根据所述获取模块获取的所述最大空口传输时延和所述获取 单元获取的所述基站的当前业务的状态信息,确定保障所述第一业 务的空口传输时延的条件是否满足;
所述第二确定模块用于: 根据所述获取模块获取的所述最大丟包率和所述获取单元获 取的所述基站的当前业务的状态信息,确定保障所述第一业务的最 大丟包率的条件是否满足;
所述第三确定模块用于: 在所述第一确定模块确定保障所述第一业务的空口传输时延 的条件满足,且第二确定模块确定保障所述第一业务的最大丟包率 的条件满足时, 确定保障业务的 Q o S的条件满足。
在第三方面第六种可能的实现方式中,结合第三方面第五种可 能的实现方式, 所述第一确定模块包括第一计算子模块、 第一获取 子模块、 第一确定子模块;
所述第一计算子模块用于: 根据所述最大空口传输时延,结合所述基站的当前业务的状态 信息, 计算满足所述第一业务最大空口传输时延所需的第一带宽; 所述第一获取子模块用于: 将所述第一计算子模块计算获得的所述第一带宽和所述基站 的当前业务所需的最大带宽相加, 获取第二带宽; 所述第一确定子模块用于: 若所述第二带宽未超过所述基站的频带带宽,确定保障所述第 一业务的空口传输时延的条件满足。
在第三方面第七种可能的实现方式中,结合第三方面第六种可 能的实现方式,所述基站的当前业务的状态信息包括传输时延与调 度平均频谱效率的对应关系; 所述第一计算子模块具体用于: 根据所述最大空口传输时延和所述传输时延与调度平均频谱 效率的对应关系, 确定所述最大空口时延对应的调度平均频谱效 率;
根据所述调度平均频谱效率和所述未来网络传输速率的参数, 计算满足所述最大空口传输时延所需的第一带宽。
在第三方面第八种可能的实现方式中,结合第三方面第五种可 能的实现方式至第三方面第七种可能的实现方式,所述第一业务为 单向下载业务;
所述获取模块具体用于 根据所述第二参数,计算第一有线传输时延和第一有线传输丟 包率, 其中, 所述第一有线传输时延为所述服务器到所述基站的有 线传输的时延,所述第一有线丟包率为所述服务器到所述基站的有 线传输的丟包率; 将所述第一参数中的所述端到端时延减去所述第一有线传输 时延, 获取所述最大空口传输时延; 将所述第一参数中的端到端丟包率减去所述第一有线传输丟 包率, 获取所述最大丟包率。
在第三方面第九种可能的实现方式中,结合第三方面第八种可 能的实现方式, 所述第二参数具体包括: 基站到服务器的传输特性参数; 或
分组数据网关 PGW到服务器的传输特性参数和 PGW到基站的传 输特性参数。
在第三方面第十种可能的实现方式中,结合第三方面第九种可 能的实现方式,所述 PGW到所述基站的传输特性参数具体包括所述 P G W到所述基站的第一路径的传输特性参数; 所述第一路径由所述 PGW根据所述 PGW到服务器的传输特性参 数和所述第一参数中的所述端到端时延、 所述端到端丟包率确定。 在第三方面第十一种可能的实现方式中,结合第三方面第八种 可能的实现方式至第三方面第十种可能的实现方式,所述未来网络 传输速率具体包括: 最大传输速率、 平均传输速率、 传输速率变化的均方差和传输 速率变化的时间相关性中的至少一个。
在第三方面第十二种可能的实现方式中,结合第三方面第五种 可能的实现方式至第三方面第七种可能的实现方式,所述第一业务 为双向通话业务;
所述获取单元, 还用于: 获取所述基站的对端基站保证的通话时延、 通话丟包率; 所述获取模块具体用于: 根据所述第二参数,计算第一有线传输时延和第一有线传输丟 包率, 其中, 所述第一有线传输时延为当前基站到对端基站的有线 传输的时延,所述第一有线丟包率为所述当前基站到所述对端基站 的有线传输的丟包率;
将所述第一参数中的所述端到端时延减去所述第一有线传输 时延和所述对端基站保证的通话时延之和,获取所述最大空口传输 时延; 将所述第一参数中的端到端丟包率减去所述第一有线传输丟 包率和所述对端基站保证的通话丟包率之和, 获取最大丟包率。 在第三方面第十三种可能的实现方式中,结合第三方面第十二 种可能的实现方式, 所述第二参数包括: 所述当前基站到所述对端基站的传输特性参数。
在第三方面第十四种可能的实现方式中,结合第三方面第十二 种可能的实现方式或第三方面第十三种可能的实现方式,所述未来 网络传输速率包括: 语音最大传输速率和语音激活因子中的至少一个。
在第三方面第十五种可能的实现方式中,结合第三方面至第三 方面第十四种可能的实现方式, 所述传输特性参数包括: 平均传输时延、传输时延均方差和平均传输丟包率中的至少一 个。
在第三方面第十六种可能的实现方式中,结合第三方面至第三 方面第十五种可能的实现方式, 所述确定单元, 还具体用于: 根据所述第一业务的 Q o S的性能参数, 确定相应的收费标准。 第四方面, 提供一种有线传输检测的装置, 所述有线传输检测 的装置包括接收单元、 服务节点索引单元、 服务节点传输性能记录
表、 传输性能探测单元、 发送单元; 所述接收单元, 用于接收第一请求消息, 所述第一请求消息请 求获取第三参数, 其中, 所述第三参数为所述有线传输检测的装置 到第一网络节点的传输特性参数,所述第一请求消息携带所述第一 网络节点的标识; 所述服务节点索引单元,用于根据所述接收单元接收的所述第 一网络节点的标识, 索引预先存储的服务节点传输性能记录表, 确 定是否存在所述第三参数, 其中, 所述服务节点传输性能记录表记 录了所述有线传输检测的装置到各服务节点的传输特性参数,所述 服务节点为所述有线传输检测的装置已经检测的网络节点; 所述传输性能探测单元,用于在所述服务节点索引单元确定不 存在所述第三参数时, 检测第三参数; 所述发送单元,用于发送所述服务节点索引单元确定的第三参 数或所述传输性能探测单元检测的第三参数。 在第四方面第一种可能的实现方式中, 结合第四方面, 所述服 务节点传输性能记录表记录了第一服务节点对应的第一时刻的传 输特性参数; 所述传输性能探测单元,还用于检测所述第一服务节点对应的 第二时刻的传输特性参数; 所述发送单元,还用于在所述第一时刻的传输特性参数与所述 第二时刻的传输特性参数的偏差大于第一阈值时,发送第一指示消 息给策略与计费规则实体 P C RF , 所述第一指示消息指示所述 P C RF 重新获取第一参数, 其中, 所述第一参数是当前用户设备所请求的 第一业务的服务质量 Q o S的性能参数。 在第四方面第二种可能的实现方式中,结合第四方面或第四方 面第一种可能的实现方式, 所述第一网络节点具体为服务器, 所述 有线传输检测的装置部署在基站内; 所述第三参数具体包括: 所述基站到所述服务器的传输特性参数。
在第四方面第三种可能的实现方式中,结合第四方面或第四方 面第一种可能的实现方式, 所述第一网络节点具体为服务器, 所述 有线传输检测的装置部署在分组数据网关 PGW内; 所述第三参数具体包括: 所述 PGW到所述服务器的传输特性参数。 在第四方面第四种可能的实现方式中,结合第四方面或第四方 面第一种可能的实现方式, 所述第一网络节点为第二基站, 所述有 线传输检测的装置部署在第一基站内; 所述第三参数具体包括: 所述第一基站到所述第二基站的传输特性参数。
在第四方面第五种可能的实现方式中,结合第四方面至第四方 面第四种可能的实现方式, 所述传输特性参数包括: 平均传输时延、传输时延均方差和平均传输丟包率中的至少一 个。
在第四方面第六种可能的实现方式中,结合第四方面第一种可 能的实现方式至第四方面第五种可能的实现方式,所述第一参数具 体包括: 端到端时延、端到端丟包率以及未来网络传输速率中的至少一 个。
第五方面, 提供一种无线通信的系统, 所述系统包括第三方面 任一项所述的策略与计费规则实体 PCRF、 第四方面任一项所述的 有线传输检测的装置、 I P多媒体子系统 I MS、 基站、 分组数据网关 PGW , 服务网关 S GW、 服务器、 用户设备。 第六方面, 提供一种无线通信的系统, 所述系统包括第一策略 与计费规则实体 PCRF、 第二 PCRF、 第一有线传输检测的装置、 第 二有线传输检测的装置、 第一基站、 第二基站、 第一分组数据网关 PGW , 第二 PGW、 第一服务网关 SGW、 第二 SGW、 第一用户设备 UE、 第二 UE、 服务器, 其中, 所述第一 /第二 PCRF 具体为如第三方面 任一项所述的 PCRF , 所述第一 /第二有线传输检测的装置具体为如
第四方面任一项所述的有线传输检测的装置。 本发明实施例提供一种无线通信的方法、 装置及系统, 所述方 法包括: PCRF 获取第一参数、 第二参数和基站的当前业务的状态 信息, 并根据所述第一参数, 所述第二参数以及所述基站的当前业 务的状态信息, 确定保障业务 QoS的条件是否满足, 若确定保障所 述业务 QoS的条件满足, 则允许为所述用户设备提供具有相应 QoS 保障的所述第一业务的服务,若确定保障所述业务 QoS的条件不满 足, 执行第一操作的方法, 其中, 所述第一参数是当前用户设备所 请求的第一业务的 QoS的性能参数,所述第二参数是表征所述第一 业务有线传输的传输特性参数。 通过所述方法, 能够保证无线通信 过程中的端到端时延, 提升无线通信过程的服务质量。 附图说明 图 1为本发明实施例提供的一种无线通信的方法; 图 2为本发明实施例提供的一种有线传输检测的方法; 图 3为本发明实施例提供的一种无线通信的系统; 图 4为本发明实施例提供的另一种无线通信的方法; 图 5为本发明实施例提供的一种无线通信的系统; 图 6为本发明实施例提供的另一种无线通信的方法; 图 7为本发明实施例提供的一种无线通信的系统; 图 8为本发明实施例提供的另一种无线通信的方法; 图 9为本发明实施例提供的一种 PCRF结构示意图; 图 10为本发明实施例提供的另一种 PCRF结构示意图; 图 11为本发明实施例提供的又一种 PCRF结构示意图; 图 12为本发明实施例提供的一种 PCRF内部的确定单元结构示 意图;
图 13为本发明实施例提供的一种确定单元内部的第一确定子 模块的结构示意图;
图 14 为本发明实施例提供的一种有线传输检测的装置结构示 意图;
图 15为本发明实施例提供的一种 PCRF结构示意图; 图 16 为本发明实施例提供的一种有线传输检测的装置结构示 意图。 具体实施方式 下面将结合本发明实施例中的附图,对本发明实施例中的技术 方案进行清楚、 完整地描述, 显然, 所描述的实施例仅仅是本发明 一部分实施例, 而不是全部的实施例。 基于本发明中的实施例, 本 领域普通技术人员在没有做出创造性劳动前提下所获得的所有其 他实施例, 都属于本发明保护的范围。 实施例一、 本发明实施例提供一种无线通信的方法,所述方法应用于策略 与计费规贝 'J实体 ( Pol icy and Charging Rules Function , PCRF ), 具体如图 1 所示, 包括:
101、 PCRF获取第一参数, 其中, 所述第一参数是当前用户设 备所请求的第一业务的 QoS的性能参数。 具体的, 在用户设备向服务器请求第一业务时, 所述服务器可 以根据所述第一业务请求消息, 抽象出需要保证所述第一业务 QoS 所必须的统计参数, 即所述第一参数, 其中, 所述第一参数具体可 以包括: 端到端时延、 端到端丟包率以及未来网络传输速率中的至 少一个, 然后服务器会将所述第一参数发送给 PCRF, 以使得所述 PCRF获取所述第一参数。 具体的, 当所述业务为单向下载业务时, 所述未来网络传输速 率具体可以包括: 最大传输速率、 平均传输速率、 传输速率变化的 均方差和传输速率变化的时间相关性中的至少一个;
当所述业务为双向通话业务时,所述未来网络传输速率的具体 可以包括: 语音最大传输速率和语音激活因子中的至少一个。
当然, 表征未来网络传输速率的参数不限于上述参数, 发明实 施例对此不作具体限定。
102、 PCRF获取第二参数, 其中, 所述第二参数是表征所述第 一业务有线传输的传输特性参数。 具体的,由于评估业务 QoS的端到端时延和端到端丟包率也受 到外界传输特性的影响, 因此在确定能满足用户设备的 QoS之前, 还需要获取所述第一业务的有线传输的传输特性参数。 当所述第一业务为单向下载业务时,所述第一业务的有线传输 的传输特性参数具体为基站到服务器的传输特性参数; 当所述第一业务为双向通话业务时,所述第一业务的有线传输 的传输特性参数具体为当前基站到对端基站的传输特性参数。 具体的,所述第二参数可能全部由有线传输检测的装置检测获 得, 也可能部分由有线传输检测的装置检测获得, 本发明实施例对 此不作具体限定, 具体与所述有线传输检测的装置的部署位置相 关。 示例性的, 在所述第一业务为单向下载业务时, 若有线传输检 测的装置部署在基站处,则仅通过有线传输检测的装置即可检测到 基站到服务器的传输特性参数;若有线传输检测的装置部署在分组 数据网关 PGW处,则有线传输检测的装置仅检测 PGW到服务器的传 输特性参数,而 P G W到基站的传输特性参数则可能由其它网络节点 中的检测单元检测获取。 具体的, 所述第二参数, 可以通过给其它网络节点发送第一请 求消息获取,也可以通过读取实时监控所存储的第二参数的记录获 取, 本发明实施例对此不作具体限定。 其中, 当所述第一业务为单 向下载业务时, 所述其它网络节点可以为 PGW或基站等; 当所述第 一业务为双向通话业务时, 所述其它网络节点可以为第一 /第二基 站, 本发明实施例对此不作具体限定。
103、 PCRF获取基站的当前业务的状态信息。 具体的, 在 PCRF确定所述第一业务是否准入的过程中, 还需
要获取所述基站的当前业务的状态信息。 例如, 根据基站的当前业 务的状态建立的传输时延与调度效率的关系表, 如表一所示: 表一
需要说明的是, 步骤 101 中的获取第一参数, 步骤 102 中的获 取第二参数,步骤 103 中的获取基站的当前业务的状态信息没有必 然的先后顺序, 可以先获取所述第一参数, 也可以先获取所述第二 参数, 还可以先获取所述基站的当前业务的状态信息, 本发明实施 例对此不作具体限定。 具体的,所述基站的当前业务的状态信息可以通过给基站发送 第二请求消息获取,也可以通过读取实时监控的基站业务状态信 , 的记录获取, 本发明实施例对此不作具体限定。
104、 PCRF根据所述第一参数, 所述第二参数以及所述基站的 当前业务的状态信息, 确定保障业务 QoS的条件是否满足, 其中, 所述业务包括所述第一业务和所述基站的当前业务。在确定保障业 务 QoS的条件满足时, 进入 105; 在确定保障业务 QoS的条件不满 足时, 进入 106。 具体的, PCRF 根据所述第一参数, 所述第二参数以及所述基 站的当前业务的状态信息,确定保障业务 QoS的条件是否满足具体 可以包括: 根据所述第一参数和所述第二参数,获取最大空口传输时延和 最大丟包率; 若根据所述最大空口传输时延和所述基站的当前业务的状态 信息, 确定保障所述第一业务的空口传输时延的条件满足, 且根据 所述最大丟包率和所述基站的当前业务的状态信息确定保障所述
第一业务的最大丟包率的条件满足,则确定保障业务的 Q o S的条件 满足。 具体的,所述根据所述最大空口传输时延和所述基站的当前业 务的状态信息,确定保障所述第一业务的空口传输时延的条件满足 具体可以包括: 根据所述最大空口传输时延,结合所述基站的当前业务的状态 信息, 计算满足所述第一业务最大空口传输时延所需的第一带宽; 将所述第一带宽和所述基站的当前业务所需的最大带宽相加, 获取第二带宽; 若所述第二带宽未超过所述基站的频带带宽,确定保障所述第 一业务的空口传输时延的条件满足。 具体的,所述基站的当前业务的状态信息包括传输时延与调度 平均频谱效率的对应关系; 所述根据所述最大空口传输时延,结合所述基站的当前业务的 状态信息,计算满足所述最大空口传输时延所需的第一带宽具体可 以包括: 根据所述最大空口传输时延和所述传输时延与调度平均频谱 效率的对应关系, 确定所述最大空口时延对应的调度平均频谱效 率;
根据所述调度平均频谱效率和所述未来网络传输速率的参数, 计算满足所述最大空口传输时延所需的第一带宽。 具体的,所述根据所述最大丟包率和所述基站的当前业务的状 态信息确定保障所述第一业务的最大丟包率的条件满足具体可以 包括: 根据当前业务的丟包大小, 确定所述当前业务的丟包率; 若所述当前业务的丟包率不大于所述最大丟包率,可以确定保 障所述第一业务的最大丟包率的条件满足。 当然, 还可能存在其它根据所述第一参数和所述第二参数, 结
合所述基站的当前业务的状态信息,确定保障业务 QoS的条件是否 满足的方法, 本发明实施例对此不作具体限定。
105、 PCRF允许为所述用户设备提供具有相应 QoS保障的所述 第一业务的服务。 具体的, PCRF 作为服务策略决策主体, 在确定保障业务 QoS 的条件满足后,决策允许为所述用户设备提供具有相应 QoS保障的 所述第一业务的服务。
需要说明的是, PCRF 决策允许为所述用户设备相应 QoS 保障 的业务服务之后, PCRF 可以配置各网络节点上的性能参数, 比如 在 PGW和 SGW上配置所述第一业务的 QoS所需的参数; 或者, PCRF 可以发送端到端时延和端到端丟包率给基站, 对基站进行配置, 本 发明实施例对配置各网络节点上的性能参数的过程不作具体限定。
106、 PCRF执行第一操作。 具体的, 在本发明的一个实施例中, 执行第一操作具体可以包 括: 发送第三请求消息给服务器,所述第三请求消息请求重新确定 所述第一参数; 获取所述服务器重新确定的第一参数; 根据所述重新确定的第一参数和所述第二参数,结合所述基站 的当前业务的状态信息, 确定保障业务 QoS的条件是否满足, 直到 确定保障业务 QoS的条件满足,决策允许为所述用户设备提供具有 相应 QoS保障的所述第一业务的服务为止, 其中, 所述业务包括所 述第一业务和所述基站的当前业务; 在本发明的另一个实施例中, 执行第一操作具体包括: 拒绝接入所述第一业务。 本发明实施例还提供一种有线传输检测的方法,所述方法应用 于有线传输检测的装置, 具体如图 2所示, 包括:
201、 有线传输检测的装置接收第一请求消息, 所述第一请求
消息请求获取第三参数, 其中, 所述第三参数为所述有线传输检测 的装置到第一网络节点的传输特性参数,所述第一请求消息携带所 述第一网络节点的标识。 具体的,所述有线传输检测的装置可以检测到第一网络节点的 传输特性参数, 其中, 所述第一网络节点可以为服务器, PGW , SGW 等, 本发明实施例对此不作具体限定。 具体的, 所述有线传输检测的装置可以部署在基站内, 也可以 部署在 PGW内, 对于所述有线传输检测的装置的部署位置, 本发明 实施例对此也不作具体限定。 示例性的, 若所述第一网络节点为服务器, 所述有线传输检测 的装置部署在基站内,则所述第三参数具体为所述基站到所述服务 器的传输特性参数; 若所述第一网络节点为服务器,所述有线传输检测的装置部署 在 PGW内,则所述第三参数具体为所述 PGW到所述服务器的传输特 性参数;
在双向通话业务下, 若所述第一网络节点为第二基站, 所述有 线传输检测的装置部署在第一基站内,则所述第三参数具体为所述 第一基站到所述第二基站的传输特性参数。 具体的, 所述传输特性参数可以包括: 平均传输时延、 传输时 延均方差和平均传输丟包率中的至少一个。
2 02、 有线传输检测的装置根据所述第一网络节点的标识, 索 引预先传输的服务节点传输性能记录表,确定是否存在所述第三参 数, 其中, 所述服务节点传输性能记录表记录了所述有线传输检测 的装置到各服务节点的传输特性参数,所述服务节点为所述有线传 输检测的装置已经检测的网络节点。 在确定存在所述第三参数时, 进入 2 03 ; 在确定不存在所述第三参数时, 进入 2 04。 具体的,所述有线传输检测的装置中包含服务节点传输性能记 录表, 所述服务节点传输性能记录表可以是各种存储介质, 包括硬 盘, 固盘, 随机存取存储器, 磁带等, 本发明实施例对此不作具体 限定。
假设传输特性参数包括: 平均传输时延、 传输时延均方差和平 均传输丟包率, 这里示例性的给出一种服务节点传输性能记录表, 如表二所示:
需要说明的是,所述服务节点传输性能记录表也可能以其它形 式呈现, 本发明实施例对此不作具体限定。
所述有线传输检测的装置检测到某一网络节点的传输性能参 数后, 则会在所述服务节点传输性能记录表中记录该传输性能参 数。
需要说明的是, 若服务节点列表信息中已经包含该网络节点, 则可以只更新该网络节点对应的传输性能参数;若所述服务节点列 表信息中不包含该网络节点,则将该网络节点的标识记录在服务节 点列表信息中,然后将传输性能参数存储在该网络节点对应的传输 性能列表位置。
2 03、 若确定存在所述第三参数, 发送所述第三参数。 示例性的, 若所述有线传输检测的装置部署在基站内, 所述第 一请求消息请求获取到服务器的传输特性参数,而此刻该基站内已 经有其它用户设备向服务器请求并获得了该服务器的业务,则在服 务节点传输性能记录表中可以查询到从所述服务器到所述基站的 传输特性参数,则所述有线传输检测的装置可以直接发送所述第三 参数给发送第一请求消息的网络节点。
2 04、 若确定不存在所述第三参数, 检测所述第三参数, 并发 送所述第三参数。 具体的,若所述有线传输检测的装置中包含的服务节点索引单
元在服务节点传输性能记录表中没有索引所述第一网络节点的标 识,则所述服务节点索引单元启动传输性能探测单元执行针对所述 第一网络节点的性能探测。 具体的,所述传输性能探测单元可以通过向所述第一网络节点 连续发出 1 00次 p i ng指令, 获取所需的传输性能参数。 通过对所 有回应的数据包的延迟时间进行平均再除以 2 , 可以得到平均传输 时延, 并进而得到时延的方差。 除了 p i ng 指令外, 也可以使用 t r a c e r ou t e 指令获得时延参数, 或利用服务器的 e cho 服务反射 得到时延的测量数据。 本发明实施例对此不作具体限定。 通过对没 有回应的数据包进行统计, 可以得到丟包率的大小。 需要说明的是,传输性能探测单元在获得所述第一网络节点的 传输性能参数后,可以将所述第一网络节点的标识及其传输性能参 数记录在服务节点传输性能记录表中, 以备下次查询, 并发送所述 传输性能参数给发送第一请求消息的网络节点。 需要说明的是, 本发明中, 发送所述第一请求消息的网络节点 为 PCRF , 所以所述有线传输检测的装置会发送所述第三参数给 PCRF , 以使得 PCRF获取所述第三参数, 进而确定所述第一业务能 否准入。 需要说明的是, 在无线通信的过程中, 所述有线传输检测的装 置具有监测外网传输特性的功能,假设当前所述服务节点传输性能 记录表记录了第一服务节点对应的第一时刻的传输特性参数,如果 第二时刻检测到所述第一服务节点对应的第二时刻的传输特性参 数后, 经过比较发现第一时刻与第二时刻的传输特性偏差较大, 也 可能导致保障所述第一业务的 Q o S的条件不满足,所以在所述服务 节点传输性能记录表记录了第一服务节点对应的第一时刻的传输 特性参数时, 还包括: 有线传输检测的装置检测所述第一服务节点对应的第二时刻 的传输特性参数; 若所述第一时刻的传输特性参数与所述第二时刻的传输特性 参数的偏差大于第一阈值,所述有线传输检测的装置发送第一指示
消息给策略与计费规则实体 PCRF, 所述第一指示消息指示所述 PCRF 重新获取第一参数, 其中, 所述第一参数是当前用户设备所 请求的第一业务的服务质量 QoS的性能参数,具体可以包括端到端 时延、 端到端丟包率以及未来网络传输速率的参数中的至少一个。 进而使得所述 PCRF重新开始进行协商所述第一业务 QoS 的过 程。 本发明实施例提供的一种无线通信的方法, 所述方法包括: PCRF 获取第一参数、 第二参数和基站的当前业务的状态信息, 并 根据所述第一参数,所述第二参数以及所述基站的当前业务的状态 信息, 确定保障业务 QoS 的条件是否满足, 若确定保障所述业务 QoS的条件满足, 则允许为所述用户设备提供具有相应 QoS保障的 所述第一业务的服务, 若确定保障所述业务 QoS的条件不满足, 执 行第一操作, 其中, 所述第一参数是当前用户设备所请求的第一业 务的 QoS的性能参数,所述第二参数是表征所述第一业务有线传输 的传输特性参数。 通过该方法, 能够保证无线通信过程中的端到端 时延, 提升无线通信过程的服务质量。
实施例二、 本发明实施例提供一种无线通信的方法,所述方法中第一业务 为单向下载业务, 所述方法具体在如图 3 所示的无线通信的系统 300 下进行说明, 所述无线通信的系统包括 UE301, 基站 302、 SGW303 , PCRF304 , PGW305, 月良务器 306, 有线传输检测的装置 307, IMS 308, 其中, 所述有线传输检查的装置 307部署在所述基站 302 内, 所述方法具体如图 4所示, 包括:
401、 UE发送第一业务请求消息给 IMS。 具体的, 该第一业务请求消息属于业务控制信令, 被发送到 IP多媒体子系统 ( IP Multimedia Subsystem , IMS ) 中, 由 IMS 中负责解析业务具体含义的应用功能( application function, AF ) 单元解析所述第一业务请求消息。
402、 IMS解析所述第一业务请求消息。
具体的, IMS在接收所述第一业务请求消息后, 解析所述第一 业务请求消息, 获知所述第一业务的相关信令所代表的的意义。
403、 IMS发送解析后的第一业务请求消息给服务器。 具体的, IMS发送解析后的第一业务请求消息给服务器, 以使 得所述服务器知道该如何为用户提供服务。
404、 服务器根据所述第一业务请求消息, 确定第一参数, 其 中, 所述第一参数是所述第一业务的 QoS的性能参数。 具体的, 在本发明实施例中, 所述第一参数可以包括端到端时 延 TE2E、 端到端丟包率 PLE2E 以及未来网络传输速率的特性, 包括 最大传输速率 MBR, 平均传输速率 Ravg,传输速率变化的均方差 Dr。
405、 服务器发送所述第一参数给 PCRF。
406、 PCRF获取所述第一参数。
407、 PCRF发送第一请求消息给基站, 所述第一请求消息请求 获取第三参数, 其中, 所述第一请求消息携带服务器的标识, 所述 第三参数为所述基站到所述服务器的传输特性参数。 具体的, 所述第三参数, 为服务器到基站的有线传输的总体传 输特性参数,可以包括从所述服务器到所述基站的有线传输的平均 传输时延 T。ut, 传输时延均方差 RT。ut, 平均传输丟包率 PL。ut。 需要说明的是,因为所述第二参数为表征所述第一业务有线传 输的传输特性参数, 而本发明实施例中, 所述第一业务有线传输部 分具体为所述服务器到所述基站的部分,所述第三参数为服务器到 基站的有线传输的总体传输特性参数,所以本发明实施例中的所述 第三参数即为第二参数。
408、 基站接收所述第一请求消息。 需要说明的是, 本发明实施例中, 有线传输检测的装置部署在 基站内, 所以从物理接口来说, 基站接收所述第一请求消息, 但是 从逻辑接口来说,最终所述第一请求消息会被有线传输检测的装置 接收。
409、 基站中的有线传输检测的装置根据所述服务器的标识, 索引预先存储的服务节点传输性能记录表,确定是否存在所述第三 参数, 其中, 所述服务节点传输性能记录表记录了所述有线传输检 测的装置到各服务节点的传输特性参数,所述服务节点为所述有线 传输检测的装置已经检测的网络节点。
410、 若确定不存在所述第三参数, 基站中的有线传输检测的 装置检测所述第三参数。 需要说明的是, 若确定存在所述第三参数, 则不需要执行步骤 410, 直接执行步骤 411。 图 4 所示的无线通信的方法在确定不存 在所述第三参数的情况下进行说明,对于确定存在所述第三参数的 情况, 就不再赘述。
411、 基站发送所述第三参数给 PCRF, 其中, 所述第三参数与 第二参数相同,所述第二参数为表征所述第一业务有线传输的传输 特性参数。
412、 PCRF获取所述第二参数。
413、 PCRF发送第二请求消息给基站, 所述第二请求消息请求 获取基站的当前业务的状态信息。 具体的, 所述基站的当前业务的状态信息可以如表一所示, 本 发明实施例在此不再赘述。
需要说明的是, 步骤 407 中的发送第一请求消息与步骤 413 中的发送第二请求消息没有必然的先后顺序,可以先发送第一请求 消息, 也可以先发送第二请求消息, 本发明实施例对此不作具体限 定。
414、 基站接收所述第二请求消息。
415、 基站发送所述基站的当前业务的状态信息给 PCRF。
416、 PCRF获取所述基站的当前业务的状态信息。
417、 PCRF根据所述第一参数, 所述第二参数以及所述基站的 当前业务的状态信息, 确定保障业务 QoS的条件是否满足, 其中, 所述业务包括所述第一业务和所述基站的当前业务。
具体的, 结合步骤 104 的描述, 根据所述第一参数, 所述第二 参数以及所述基站的当前业务的状态信息,确定保障业务 QoS的条 件是否满足时, 需要首先根据所述第一参数和所述第二参数, 获取 最大空口传输时延和最大丟包率, 包括: 根据所述第二参数,计算第一有线传输时延和第一有线传输丟 包率, 其中, 所述第一有线传输时延为所述服务器到所述基站的有 线传输的时延,所述第一有线丟包率为所述服务器到所述基站的有 线传输的丟包率; 将所述第一参数中的所述端到端时延减去所述第一有线传输 时延, 获取所述最大空口传输时延; 将所述第一参数中的端到端丟包率减去所述第一有线传输丟 包率, 获取所述最大丟包率。
示例性的, 结合步骤 104的描述, 根据所述第一参数, 所述第 二参数以及所述基站的当前业务的状态信息, 确定保障业务 QoS 的条件是否满足的方法可以如下:
PCRF需要计算
Tmax = T - (Tou t + k X RT0U t) 得到在空口传输时需要保证的传输时延上限,即最大空口传输 时延, 其中 k 为线性系数, 可以根据经验选择常数, 如 k=3 , 也 可以实时更新该系数, 以获得最佳效果。 通过计算
PLmax = PL ~~ PLout 可以得到在空口传输时需要保证的丟包率上限, 即最大丟包 率。
若基站釆用足够精度的循环冗余校验 ( Cyclic Redundancy Check, CRC )校验比特位, 并通过混合自动请求重传技术保证接收 端 CRC校验通过, 则可以使第一业务的丟包率不大于最大丟包率。 一般在 LTE 系统中, 基站确定在物理层信道编码中的 CRC校 验时可以应用 24bit CRC 校验, 从而保证通过 CRC校验的传输数
据中, 比特错误概率低于 6xl0—8, 进而保证足够低的误包率和丟包 率。
根据所述最大空口传输时延和所述最大丟包率, PCRF 可以查 询如表一所示的传输时延与平均频谱效率的关系, 当最大空口传输 时延为 100ms , 平均信道条件为 OdB时, 从表一中可以查到对应的 调度平均频谱效率为 0. 93b/s/Hz。 针对下载实时流媒体业务的平 均速率为 400kbps , 最大传输速率为 1. 2Mbps , 传输速率变化的均 方 差 为 150kbps 的 情 况 , 可 以 计 算 第 一 带 宽 Bmax = 1. 2Mbps/0. 93b/s/Hz = 1. 29MHz, 或者 97. 7% 置信区间所需的第 一带宽 Bo.977 = (400 + 150 X 2) / 0. 93 = 967KHz。 将第一带宽与所述基站的当前业务所需的最大带宽相加,获取 第二带宽, 若所述第二带宽未超过所述基站的频带带宽, 确定保障 所述第一业务的空口传输时延的条件满足。 需要说明的是, 上述仅是示例性的给出一种根据所述第一参 数, 所述第二参数以及所述基站的当前业务的状态信息, 确定保障 业务 QoS 的条件是否满足的方法, 当然还可能存在其它 PCRF根据 所述第一参数和所述第二参数,结合所述基站的当前业务的状态信 息, 确定保障业务 QoS的条件是否满足的方法, 本发明实施例对此 不作具体限定。
418、 若确定保障业务 QoS 的条件满足, PCRF 允许为所述 UE 提供相应 QoS保障的业务服务。 具体的, PCRF 作为服务策略决策主体, 在确定保障业务 QoS 的条件满足后,决策允许为所述 UE提供相应 QoS保障的业务服务。 需要说明的是, PCRF决策允许为所述 UE提供相应 QoS保障的 业务服务之后, PCRF 可以配置各网络节点上的性能参数, 比如在 PGW 和 SGW 上配置所述第一业务的 QoS 所需的参数; 或者, PCRF 可以发送端到端时延和端到端丟包率给基站, 对基站进行配置, 本 发明实施例对配置各网络节点上的性能参数的过程不作具体限定。 需要说明的是, 因为确定保障业务 QoS的条件满足, 所以所述 第一业务可以接入,在根据所述第一参数配置各网络节点上的性能
参数后, 执行步骤 419。 当然, 若确定保障业务 QoS 的条件不满足, PCRF 执行第一操 作, 本发明实施例仅讨论 PCRF确定保障业务 QoS 的条件满足的情 况, 对于确定保障业务 QoS 的条件不满足, PCRF 执行第一操作的 具体过程可参考图 1 所示的实施例的描述,本发明实施例在此不再 赘述。
419、 UE发送第一业务数据请求消息给服务器, 所述第一业务 数据请求消息请求所述服务器发送所述第一业务数据。
420、 服务器接收所述第一业务数据请求消息。
421、 服务器发送所述第一业务数据包给 PGW。 具体的, 在 PCRF确定保障业务服务质量的条件满足, 决策允 许为所述用户设备提供具有相应 QoS 保障的所述第一业务的服务 后, 服务器才会发送第一业务数据包给 PGW。
422、 PGW根据 PCRF的配置, 将所述第一业务数据包发送给基 站。
423、基站统计所述第一业务数据包已经历的时延和丟包大小。
424、 基站发送所述第一业务数据包, 使所述第一业务数据包 在要求时延前到达 UE。
425、 UE接收所述第一业务数据包。 具体的, 步骤 419-425为 PCRF确定保障业务服务质量的条件 满足,决策允许为所述用户设备提供具有相应 QoS保障的所述第一 业务的服务后, 进行的业务数据包的传输过程。 该过程中在每个数 据包 (如 IP packet ) 从服务器发出时, 会给数据包加入时间戳, 例如可以通过实时传输协议( Real-Time Transport Protocol , RTP ) 协议, 对数据进行 RTP封装, 在 RTP header 中有时间戳的字段, 当该数据包送到基站时, 基站就可以通过时间戳计算出, 该数据包 在之前的传输环节 (例如从服务器到 PGW再到基站) 中已经延迟了 多长时间, 如果端到端时延要求不能大于 150ms, 而该数据包已经 延迟了 70ms, 则基站就知道, 必须保证该数据包在未来的 80ms 内
送达 UE, 否则端到端时延要求就不能保证了, 针对丟包率的处理 与此类似, 根据之前统计的数据丟包情况, 基站可以适当决定是否 可以丟弃当前的数据包, 本发明实施例对此不再赘述。 本发明实施例提供一种无线通信的方法,所述方法中第一业务 为单向下载业务, 所述方法具体在如图 5 所示的无线通信的系统 500 下进行说明, 所述无线通信的系统包括 UE301 , 基站 302、 SGW303 , PCRF304 , PGW305, 月良务器 306, 有线传输检测的装置 307, IMS 308, 其中, 所述有线传输检查的装置 307部署在所述 PGW305 内, 所述方法具体如图 6所示, 包括:
601、 UE发送第一业务请求消息给 IMS。 具体的, 该第一业务请求消息属于业务控制信令, 被发送到 IMS 中, 由 IMS 中负责解析业务具体含义的应用功能 AF单元解析 所述第一业务请求消息。
602、 IMS解析所述第一业务请求消息。 具体的, IMS在接收所述第一业务请求消息后, 解析所述第一 业务请求消息, 获知所述第一业务的相关信令所代表的的意义。
603、 IMS发送解析后的第一业务请求消息给服务器。 具体的, IMS发送解析后的第一业务请求消息给服务器, 以使 得所述服务器知道该如何为用户提供服务。
604、 服务器根据所述第一业务请求消息, 确定第一参数, 其 中, 所述第一参数是所述第一业务的 QoS的性能参数。 具体的, 在本发明实施例中, 所述第一参数可以包括端到端时 延 TE2E、 端到端丟包率 PLE2E 以及未来网络传输速率的特性, 包括 最大传输速率 MBR, 平均传输速率 Ravg,传输速率变化的均方差 Dr。
605、 服务器发送所述第一参数给 PCRF。
606、 PCRF获取所述第一参数。
607、 PCRF发送第一请求消息给 PGW, 所述第一请求消息请求 获取第三参数, 其中, 所述第一请求消息携带服务器的标识和基站
的标识,所述第三参数所述 PGW到所述服务器的传输特性参数以及 所述 PGW到所述基站的传输特性参数。 具体的,因为所述第二参数为表征所述第一业务有线传输的传 输特性参数, 而本发明实施例中, 所述第一业务有线传输部分具体 为所述服务器到所述基站的部分,所述第三参数为所述 PGW到所述 服务器的传输特性参数以及所述 PGW到所述基站的传输特性参数, 所以通过本发明实施例中的所述第三参数, 即可获得第二参数。 需要说明的是, 本发明实施中发送第一请求消息给 PGW , 建立 在所述部署在 PGW 内的有线传输检测的装置还可以获取所述 PGW 到所述基站的传输特性参数的基础上,若从 PGW到基站部分的有线 传输特性是由其它网络节点测得,则所述第一请求消息可能由几个 子消息构成, 即 PCRF 不仅发送请求消息给 PGW , 还发送请求消息 给其它网络节点, 请求获取所述 P G W到所述基站的传输特性参数, 本发明实施例对获取第二参数时的信令不作具体限定。
6 08、 PGW接收所述第一请求消息。 需要说明的是, 本发明实施例中, 有线传输检测的装置部署在 基站内, 所以从物理接口来说, PGW接收所述第一请求消息, 但是 从逻辑接口来说,最终所述第一请求消息会被有线传输检测的装置 接收。
6 09、 PGW 中的有线传输检测的装置根据所述服务器的标识, 索引预先存储的服务节点传输性能记录表,确定是否存在所述第三 参数, 其中, 所述服务节点传输性能记录表记录了所述有线传输检 测的装置到各服务节点的传输特性参数,所述服务节点为所述有线 传输检测的装置已经检测的网络节点。
6 1 0、 若确定不存在所述第三参数, PGW 中的有线传输检测的 装置检测所述第三参数。 需要说明的是, 若确定存在所述第三参数, 则不需要执行步骤 6 1 0 , 直接执行步骤 6 1 1。 图 6 所示的无线通信的方法在确定不存 在所述第三参数的情况下进行说明,对于确定存在所述第三参数的 情况, 就不再赘述。
具体的, 因为本发明实施例中的所述第三参数包含两部分, 分 别为所述 PGW到所述服务器的传输特性参数以及所述 PGW到所述基 站的传输特性参数,所以在有线传输检测的装置中包含的服务节, ^ 索引单元索引预先存储的服务节点传输性能记录表,确定是否存在 所述第三参数的过程中,要根据所述第一请求消息携带的所述服务 器的标识和所述基站的标识,分别确定是否存在所述 PGW到所述服 务器的传输特性参数和所述 PGW到所述基站的传输特性参数,若存 在所述 PGW到所述基站的传输特性参数,不存在 PGW到所述服务器 的传输特性参数, 可以只检测 PGW到所述服务器的传输特性参数; 若不存在所述 PGW到所述基站的传输特性参数,存在 PGW到所述服 务器的传输特性参数,可以只检测所述 P G W到所述基站的传输特性 参数即可。 具体的,所述第三参数可以为所述服务器到所述 PGW的有线传 输的平均传输时延 T。u t , 传输时延均方差 RT。u t , 平均传输丟包率 PL。u t 以及所述 PGW 到所述基站部分的有线传输的平均传输时延
TGW , 传输时延均方差 RT„, 平均传输丟包率 PLCW。 具体的, PGW或 SGW中可以包含有线路由优化的装置, 有线路 由优化装置包含: 路由查询设备, 提供针对某用户设备所在基站的 可能的路由, 以及目前测量或记录的路由的传输性能; 路由表, 可 以是各种存储介质, 包括硬盘, 固盘, 随机存取存储器, 磁带等, 记录从 PGW/ SGW路由到某用户设备所在基站的各种可能的路由,以 及选择该路由后测量得到的传输性能, 包括且不限于传输平均时 延, 传输时延方差, 丟包率等; 路由均衡设备, 针对 PCRF要求的 路由的性能, 选择从 PGW/ SGW 到某用户设备所在基站的路由。 所述有线路由优化的装置,可以根据业务服务质量的要求和外 网传输特性, 决定如何路由, 然后检测确定的路由路径上的特性参 数, 获取第四参数, 本发明实施例对此不作详细阐述。 示例性的, 针对服务质量高的业务, 如语音通话, 或 PGW到服 务器部分传输特性不太好的场景,可以选择传输时延较短的路由路 径, 而对服务质量要求不高的业务, 如网页浏览, 可以选择其它传 输时延较长的路由, 避免对实时语音通话业务的数据传输造成拥
塞。
611、 PGW发送所述第三参数给 PCRF, 其中, 由所述第三参数 组合成第二参数,所述第二参数为表征所述第一业务有线传输的传 输特性参数。
612、 PCRF获取所述第二参数。
613、 PCRF发送第二请求消息给基站, 所述第二请求消息请求 获取基站的当前业务的状态信息。 具体的, 所述基站的当前业务的状态信息可以如表一所示, 本 发明实施例在此不再赘述。 需要说明的是, 步骤 607 中的发送第一请求消息与步骤 613 中的发送第二请求消息没有必然的先后顺序,可以先发送第一请求 消息, 也可以先发送第二请求消息, 本发明实施例对此不作具体限 定。
614、 基站接收所述第二请求消息。
615、 基站发送所述基站的当前业务的状态信息给 PCRF。
616、 PCRF获取所述基站的当前业务的状态信息。
617、 PCRF根据所述第一参数, 所述第二参数以及所述基站的 当前业务的状态信息, 确定保障业务 QoS的条件是否满足, 其中, 所述业务包括所述第一业务和所述基站的当前业务。 具体的, 结合步骤 104和步骤 417的描述, 这里示例性的给出 一种根据所述第一参数,所述第二参数以及所述基站的当前业务的 状态信息, 确定保障业务 QoS的条件是否满足的方法可以如下:
PCRF需要计算
Lax = TE2E - (Tout+kxRTout) - (Tcw+kxRTcw) 得到在空口传输时需要保证的传输时延上限,即最大空口传输 时延, 其中 k 为线性系数, 可以根据经验选择常数, 如 k=3, 也 可以实时更新该系数, 以获得最佳效果。 通过计算
可以得到在空口传输时需要保证的丟包率上限, 即最大丟包 率。
若基站釆用足够精度的 CRC 校验比特位, 并通过混合自动请 求重传技术保证接收端 CRC 校验通过, 则可以使第一业务的丟包 率不大于最大丟包率。 一般在 LTE 系统中, 基站确定在物理层信道编码中的 CRC校 验时可以应用 24bit CRC 校验, 从而保证通过 CRC校验的传输数 据中, 比特错误概率低于 6xl0—8, 进而保证足够低的误包率和丟包 率。
根据所述最大空口传输时延和所述最大丟包率, PCRF 可以查 询如表一所示的传输时延与平均频谱效率的关系, 当最大空口传输 时延为 100ms , 平均信道条件为 OdB时, 从表一中可以查到对应的 调度平均频谱效率为 0. 93b/s/Hz。 针对下载实时流媒体业务的平 均速率为 600kbps , 最大传输速率为 1. 2Mbps , 传输速率变化的均 方 差 为 150kbps 的 情 况 , 可 以 计 算 第 一 带 宽 Bmax = 1. 2Mbps/0. 93b/s/Hz = 1. 29MHz, 或者 99% 置信区间所需的第一 带宽 B0. 977 = (600 + 150 x 2. 576) / 0. 93 = 1060KHz。 将第一带宽与所述基站的当前业务所需的最大带宽相加,获取 第二带宽, 若所述第二带宽未超过所述基站的频带带宽, 确定保障 所述第一业务的空口传输时延的条件满足。 需要说明的是, 上述仅是示例性的给出一种根据所述第一参 数, 所述第二参数以及所述基站的当前业务的状态信息, 确定保障 业务 QoS 的条件是否满足的方法, 当然还可能存在其它 PCRF根据 所述第一参数和所述第二参数,结合所述基站的当前业务的状态信 息, 确定保障业务 QoS的条件是否满足的方法, 本发明实施例对此 不作具体限定。
618、 若确定保障业务 QoS的条件满足, PCRF决策允许为所述 UE提供相应 QoS保障的业务服务。 具体的, PCRF 作为服务策略决策主体, 在确定所述保障业务
QoS 的条件满足后, 决策允许为所述 UE提供相应 QoS保障的业务 服务。
需要说明的是, PCRF决策允许为所述 UE相应 QoS保障的业务 服务之后, PCRF 可以配置各网络节点上的性能参数, 比如在 PGW 和 SGW上配置所述第一业务的 QoS 所需的参数; 或者, PCRF 可以 发送端到端时延和端到端丟包率给基站, 对基站进行配置, 本发明 实施例对配置各网络节点上的性能参数的过程不作具体限定。 需要说明的是, 因为确定保障业务 QoS的条件满足, 所以所述 第一业务可以接入,在根据所述第一参数配置各网络节点上的性能 参数后, 执行步骤 619。
当然, 若确定保障业务 QoS 的条件不满足, PCRF 执行第一操 作, 本发明实施例仅讨论 PCRF确定保障业务 QoS 的条件满足的情 况, 对于确定保障业务 QoS 的条件不满足, PCRF 执行第一操作的 具体过程可参考图 1 所示的实施例的描述,本发明实施例在此不再 赘述。
619、 UE发送第一业务数据请求消息给服务器, 所述第一业务 数据请求消息请求所述服务器发送所述第一业务数据。
620、 服务器接收所述第一业务数据请求消息。
621、 服务器发送所述第一业务数据包给 PGW。
622、 PGW根据 PCRF的配置, 将所述第一业务数据包发送给基 站。
623、基站统计所述第一业务数据包已经历的时延和丟包大小。
624、 基站发送所述第一业务数据包, 使所述第一业务数据包 在要求时延前到达 UE。
625、 UE接收所述第一业务数据包。 具体的, 步骤 619-625为 PCRF确定保障业务服务质量的条件 满足,决策允许为所述用户设备提供具有相应 QoS保障的所述第一 业务的服务后, 进行的业务数据包的传输过程。 该过程中在每个数 据包 (如 IP packet ) 从服务器发出时, 会给数据包加入时间戳,
例如可以通过 RTP 协议, 对数据进行 RTP 封装, 在 RTP header 中有时间戳的字段, 当该数据包送到基站时, 基站就可以通过时间 戳计算出, 该数据包在之前的传输环节 (例如从服务器到 PGW再到 基站 ) 中 已经延迟了多长时间, 如果端到端时延要求不能大于 150ms , 而该数据包已经延迟了 70ms , 则基站就知道, 必须保证该 数据包在未来的 80ms 内送达 UE,否则端到端时延要求就不能保证 了, 针对丟包率的处理与此类似, 根据之前统计的数据丟包情况, 基站可以适当决定是否可以丟弃当前的数据包,本发明实施例对此 不再赘述。 本发明实施例提供一种无线通信的方法,所述方法中第一业务 为双向通话业务, 所述方法具体在如图 7 所示的无线通信的系统 700下进行说明, 所述无线通信的系统包括 UE1 701 , 基站 1 702、 SGW1 703 , PCRF1 704、 PGW1 705, UE2 706, 基站 2 707、 SGW2 708 , PCRF2 709、 PGW2 710、 服务器 711、 有线传输检测的装置 1 712, 有线传输检测的装置 2 713, 其中, 所述有线传输检查的装置 1 712 部署在所述基站 1 702 内, 所述有线传输检查的装置 2 713部署在 所述基站 2 707 内, 以 UE2通向 UE 1 的单向通话为例进行说明, 所 述方法具体如图 8所示, 包括:
801、 UE1发送第一业务请求消息给服务器。 需要说明的是,所述第一业务请求消息可能携带 UE1和 UE2 的 能力信息, 最终服务器能够允许的双向通话质量, 也与 UE1和 UE2 的能力有关, 比如如果 UE1 的 CPU 处理能力较差, 解不了高清 话音编码, 则即使网络能够保证传输质量, UE1也享受不了高清通 话。 本发明实施例建立在 UE1和 UE2 的能力不影响双向通话质量 的基础上, 对有关 UE1 和 UE2 的能力的相关内容不作具体阐述和 限定。
802、 服务器根据所述第一业务请求消息, 确定第一参数, 其 中, 所述第一参数是所述第一业务的 QoS的性能参数。 具体的, 在本发明实施例中, 所述第一参数可以包括端到端时 延 TE2E、 端到端丟包率 PLE2E 以及未来网络传输速率的特性, 包括
最大语音传输速率 MBR和语音激活因子 r。
803a, 服务器发送所述第一参数给 PCRF1。 804a, PCRF1获取所述第一参数。
805a, PCRF1发送第一请求消息给基站 1, 所述第一请求消息 请求获取第三参数, 其中, 所述第一请求消息携带基站 2 的标识, 所述第三参数为所述基站 1到所述基站 2 的传输特性参数。 具体的, 所述第三参数, 为基站 1到基站 2的有线传输的总体 传输特性参数, 包括从所述基站 1到所述基站 2 的有线传输的平均 传输时延 T。ut, 传输时延均方差 RT。ut, 平均传输丟包率 PL。ut。 需要说明的是,因为所述第二参数为表征所述第一业务有线传 输传输特性参数, 而本发明实施例中, 所述第一业务有线传输部分 具体为所述基站 1 到所述基站 2 的部分, 所述第三参数为基站 1 到基站 2的有线传输的总体传输特性参数,所以本发明实施例中的 所述第三参数即为第二参数。
806a, 基站 1接收所述第一请求消息。 需要说明的是, 因为本发明实施例中, 有线传输检测的装置部 署在基站内,所以从物理接口来说,基站 1接收所述第一请求消息, 但是从逻辑接口来说,最终所述第一请求消息会被有线传输检测的 装置 1接收。
807a、基站 1 中的有线传输检测的装置 1根据所述服务器的标 识, 索引预先存储的服务节点传输性能记录表, 确定是否存在所述 第三参数, 其中, 所述服务节点传输性能记录表记录了所述有线传 输检测的装置到各服务节点的传输特性参数,所述服务节点为所述 有线传输检测的装置已经检测的网络节点。
808a, 若确定不存在所述第三参数, 基站 1 中的有线传输检测 的装置 1检测所述第三参数。 需要说明的是, 若确定存在所述第三参数, 则不需要执行步骤 808a, 直接执行步骤 809a。 图 10所示的无线通信的方法在确定不 存在所述第三参数的情况下进行说明,对于确定存在所述第三参数
的情况, 就不再赘述。
809a, 基站 1发送所述第三参数给 PCRF1 , 其中, 所述第三参 数与第二参数相同,所述第二参数为表征所述第一业务有线传输的 传输特性参数。
810a, PCRF1获取所述第二参数。
811a, PCRF1发送第二请求消息给基站 1 , 所述第二请求消息 请求获取基站 1 的当前业务的状态信息。
具体的, 所述基站 1 的当前业务的状态信息可以如表一所示, 本发明实施例在此不再赘述。
812a, 基站 1接收所述第二请求消息。
813a、基站 1发送所述基站 1的当前业务的状态信息给 PCRF1。
814a, PCRF1获取所述基站 1 的当前业务的状态信息。
815a, PCRF1发送第三请求消息给基站 2, 所述第三请求消息 请求获取所述基站 2保证的通话时延、 通话丟包率。 具体的, 这里可以假设所述基站保证的通话时延为 TUL, 通话丟包率 为 PLUL。
816a, 基站 2接收所述第三请求消息。
817a, 基站 1发送所述基站 2保证的通话时延、 通话丟包率给 PCRF1。 需要说明的是, 步骤 805a 中的发送第一请求消息、 步骤 811a 中的发送第二请求消息、 步骤 815a 中的发送第三请求消息没有必 然的先后顺序, 可以先发送第一请求消息, 也可以先发送第二请求 消息, 还可以先发送第三请求消息, 本发明实施例对此不作具体限 定。
818a, PCRF1获取所述基站 2保证的通话时延、 通话丟包率。
819a, PCRF1根据所述第一参数, 所述第二参数以及所述基站 1 的当前业务的状态信息, 确定保障业务 QoS的条件是否满足, 其 中, 所述业务包括所述第一业务和所述基站的当前业务。
具体的, 结合步骤 104和步骤 417的描述, 这里示例性的给出 一种根据所述第一参数,所述第二参数以及所述基站的当前业务的 状态信息, 确定保障业务 QoS的条件是否满足的方法可以如下:
PCRF需要计算
Tmax = - (Tout+k xRTout) - T 得到在基站 1到 UE1 的空口传输时需要保证的传输时延上限, 即最大空口传输时延, 其中 k 为线性系数, 可以根据经验选择常 数, 如 k=3, 也可以实时更新该系数, 以获得最佳效果。 通过计算
PLmax = PL ~~ PLout ~~ PLuL
可以得到在基站 1 到 UE1 的空口传输时需要保证的丟包率上 限, 即最大丟包率。
若基站 1当前的 CRC校验可以使第一业务的丟包率不大于最大 丟包率, 确定保障所述第一业务的最大丟包率的条件满足。
一般在 LTE 系统中, 基站 1 确定在物理层信道编码中的 CRC 校验时可以应用 24 b i t CRC校验,从而保证通过 CRC校验的传输数据中, 比特错误概率低于 6xl0—8, 进而保证足够低的误包率和丟包率。 基于此, 釆用 LTE协议的基站 1可以在下行发射数据包时,根据当前丟包大 小的情况, 主动丟弃部分数据包, 从而在保证丟包率满足的限制条 件的前提下, 尽量缩短数据包传输的时延。
根据所述最大空口传输时延和所述最大丟包率, PCRF1可以查 询如表一所示的传输时延与平均频谱效率的关系, 当最大空口传输 时延为 80ms, 平均信道条件为 OdB 时, 从表一中可以查到对应的 调度平均频谱效率为 0.93b/ s /Hz。 若最大语音编码速率为 14.4kbps,由于语音激活因子不为 1,在第一带宽满足 Bmax= 14.4/0.93 = 15.5KHz 的条件下, 即可保证语音通话服务质量要求。 系统也可以针 对语音编码速率和激活因子的特点, 统计相应传输速率特性, 例如统 计 99%时间内的实际传输速率, 以确定带宽需求。 将第一带宽与所述基站的当前业务所需的最大带宽相加,获取
第二带宽, 若所述第二带宽未超过所述基站 1 的频带带宽, 确定保 障所述第一业务的空口传输时延的条件满足。 需要说明的是, 上述仅是示例性的给出一种根据所述第一参 数, 所述第二参数以及所述基站 1 的当前业务的状态信息, 确定保 障 UE2通向 UE1 的单向通话线路的 QoS的条件是否满足的方法, 当 然还可能存在其它 PCRF1根据所述第一参数和所述第二参数,结合 所述基站 1 的当前业务的状态信息,确定保障业务 QoS的条件是否 满足的方法, 本发明实施例对此不作具体限定。
820a, 若确定保障业务 QoS的条件满足, PCRF1允许为 UE1提 供相应 QoS保障的业务服务。 具体的, PCRF1作为服务策略决策主体, 若确定所述保障业务 QoS的条件满足, 则说明对 UE1 的下行语音业务的 QoS可以保障, 则决策允许为所述 UE1提供相应 QoS保障的业务服务。 需要说明的是, PCRF1 决策允许为所述 UE1提供相应 QoS保障 的业务服务之后, PCRF1可以配置各网络节点上的性能参数, 比如 在 PGW1 和 SGW1 上配置所述第一业务的 QoS 所需的参数; 或者, PCRF1 可以发送端到端时延和端到端丟包率给基站 1 , 对基站 1 进 行配置,本发明实施例对配置各网络节点上的性能参数的过程不作 具体限定。
当然, 若确定保障业务 QoS的条件不满足, PCRF1执行第一操 作,本发明实施例仅讨论 PCRF1确定保障业务 QoS的条件满足的情 况, 对于确定保障业务 QoS 的条件不满足, PCRF 执行第一操作的 具体过程可参考图 1 所示的实施例的描述,本发明实施例在此不再 赘述。
803b-820b: 步骤 803b-820b 为确定 UE2 的下行语音业务的 QoS是否可以保障的步骤, 具体可参考 803a-820a确定 UE1 的下行 语音业务的 QoS 是否可以保障的步骤, 本发明实施例对此不再赘 述。
在确定 UE1 的下行语音业务的 QoS可以保障,且 UE2 的下行语 音业务的 QoS可以保障的前提下, 可以执行步骤 821。
821、 UE1发送第一业务数据包给基站 2。
822、 基站 2统计所述第一业务数据包已经历的时延和丟包大 小。
823、 基站 2发送所述第一业务数据包, 使所述第一业务数据 包在要求时延前到达 UE2。
824、 UE2接收所述第一业务数据包。 需要说明的是,步骤 821-824为在确定 UE1 的下行语音业务的 QoS可以保障,且确定 UE2的下行语音业务的 QoS可以保障, PCRF1 和 PCRF2为各网络节点配置好参数的情况下, 假设通话开始后 UE1 讲话被 UE2接收的过程, 当然, UE2讲话被 UE1接收的过程与此类 似, 本发明实施例对此就不再赘述。 在业务数据包的传输过程中, 在每个数据包 (如 IP packet ) 从服务器发出时, 会给数据包加入时间戳, 例如可以通过 RTP 协 议, 对数据进行 RTP 封装, 在 RTP header 中有时间戳的字段, 当该数据包送到基站时, 基站就可以通过时间戳计算出, 该数据包 在之前的传输环节 (例如从服务器到 PGW再到基站) 中已经延迟了 多长时间, 如果端到端时延要求不能大于 150ms , 而该数据包已经 延迟了 70ms , 则基站就知道, 必须保证该数据包在未来的 80ms 内 送达 UE, 否则端到端时延要求就不能保证了, 针对丟包率的处理 与此类似, 根据之前统计的数据丟包情况, 基站可以适当决定是否 可以丟弃当前的数据包, 本发明实施例对此不再赘述。 进一步的, 从通信运营商层面, PCRF可能在确定保障业务 QoS 的条件是否满足之前, 会首先进行初步服务等级判断, 即 PCRF 可 以根据运营商存储的用户信息, 比如用户等级, 缴费多少, 初步判 定是否可以为该用户提供所述第一业务请求的服务,仅在初步判定 运营商可以为该用户提供所述第一业务请求的服务后,才进一步判 断网络是否可以满足保障业务 QoS的条件 ,所以在所述 PCRF发送 第一请求消息之前, 所述方法还包括:
PCRF获取所述当前用户设备的用户标识;
PCRF 根据所述用户标识, 查询预存储的所述用户对应的用户
资料;
PCRF 根据所述用户资料, 确定是否能为所述用户提供所述第 一业务的服务质量; 若确定能为所述用户提供所述第一业务的服务质量, PCRF 执 行发送第一请求消, I.的步骤。
进一步的, PCRF 若确定保障业务 QoS 的条件满足, 所述方法 还包括:
PCRF根据所述第一业务的 QoS 的相关性能参数, 确定相应的 收费标准。 具体的, PCRF 可以根据端到端时延和丟包率确定是否收费, 根据传输速率确定相应的计费标准。
进一步的, 在无线通信的过程中, 所述有线传输检测的装置具 有监测外网传输特性的功能,假设当前所述服务节点传输性能记录 表记录了第一服务节点对应的第一时刻的传输特性参数,如果第二 时刻检测到所述第一服务节点对应的第二时刻的传输特性参数后, 经过比较发现第一时刻与第二时刻的传输特性偏差较大,也可能导 致保障所述第一业务的 QoS的条件不满足,所以在所述服务节点传 输性能记录表记录了第一服务节点对应的第一时刻的传输特性参 数时, 还包括: 有线传输检测的装置检测所述第一服务节点对应的第二时刻 的传输特性参数;
若所述第一时刻的传输特性参数与所述第二时刻的传输特性 参数的偏差大于第一阈值,所述有线传输检测的装置发送第一指示 消息给策略与计费规则实体 PCRF, 所述第一指示消息指示所述 PCRF 重新获取第一参数, 其中, 所述第一参数是当前用户设备所 请求的第一业务的服务质量 QoS的性能参数,具体可以包括端到端 时延、 端到端丟包率以及未来网络传输速率的参数中的至少一个。
进而使得所述 PCRF重新开始进行协商所述第一业务 QoS 的过 程。
本发明实施例提供的一种无线通信的方法, 所述方法包括:
PCRF 获取第一参数、 第二参数和基站的当前业务的状态信息, 并 根据所述第一参数,所述第二参数以及所述基站的当前业务的状态 信息, 确定保障业务 QoS 的条件是否满足, 若确定保障所述业务 QoS的条件满足, 则允许为所述用户设备提供具有相应 QoS保障的 所述第一业务的服务, 若确定保障所述业务 QoS的条件不满足, 执 行第一操作, 其中, 所述第一参数是当前用户设备所请求的第一业 务的 QoS的性能参数,所述第二参数是表征所述第一业务有线传输 的传输特性参数。 通过该方法, 能够保证无线通信过程中的端到端 时延, 提升无线通信过程的服务质量。
实施例三、 本发明实施例提供一种 PCRF 900 , 具体如图 9 所示, 所述 PCRF900 包括获取单元 901、 确定单元 902、 决策单元 903、 执行单 元 904。 所述获取单元 901, 用于获取第一参数, 并将所述第一参数发 送给所述确定单元 902, 其中, 所述第一参数是当前用户设备所请 求的第一业务的服务质量 QoS的性能参数; 获取第二参数, 并将所 述第二参数发送给所述确定单元 902, 其中, 所述第二参数是表征 所述第一业务有线传输的传输特性参数;获取基站的当前业务的状 态信息,并将所述基站的当前业务的状态信息发送给所述确定单元 902。 所述确定单元 902, 用于根据所述获取单元 901获取的所述第 一参数, 所述第二参数以及所述基站的当前业务的状态信息, 确定 保障业务 QoS的条件是否满足, 其中, 所述业务包括所述第一业务 和所述基站的当前业务。
所述决策单元 903, 用于在所述确定单元 902确定保障所述业 务 QoS的条件满足时,决策允许为所述用户设备提供具有相应 QoS 保障的所述第一业务的服务。 所述执行单元 904, 用于在所述确定单元 902确定保障所述业
务 Qo S的条件不满足时, 执行第一操作。 进一步的, 如图 1 0所示, 所述 PCRF还包括发送单元 9 05。 所述获取单元 9 01具体用于: 通过所述发送单元 9 05 向其它网络节点发送第一请求消息请 求获取所述第二参数。
或如图 1 1所示, 所述 PCRF还包括读取单元 9 06。 所述获取单元 9 01具体用于:
通过所述读取单元读取存储的第二参数的记录数据获取所述 第二参数。
进一步的, 所述获取单元 9 01具体用于: 通过所述发送单元 9 05 向所述基站发送第二请求消息请求获 取所述基站的当前业务的状态信息。 或通过所述读取单元 9 06 读取存储的所述基站的当前业务的 状态信息的记录数据获取所述基站的当前业务的状态信息。
进一步的, 所述执行单元 9 04具体用于: 发送第三请求消息给服务器请求重新确定所述第一参数。 获取所述服务器重新确定的第一参数。 根据所述重新确定的第一参数和所述第二参数,结合所述基站 的当前业务的状态信息, 确定保障业务 Qo S的条件是否满足, 直到 确定保障业务 Qo S的条件满足为止。
或所述执行单元 9 04具体用于: 拒绝接入所述第一业务。 进一步的, 所述第一参数具体包括:
端到端时延、端到端丟包率以及未来网络传输速率中的至少一 个。
进一步的, 如图 1 2所示, 所述确定单元 9 02具体包括获取模 块 9 02 1、 第一确定模块 9 02 2、 第二确定模块 9 02 3、 第三确定模块
9 024。 所述获取模块 9 02 1用于: 根据所述第一参数和所述第二参数,获取最大空口传输时延和 最大丟包率。
所述第一确定模块 9 022用于: 根据所述获取模块 9 02 1 获取的所述最大空口传输时延和所述 获取单元 9 01获取的所述基站的当前业务的状态信息,确定保障所 述第一业务的空口传输时延的条件是否满足。
所述第二确定模块 9 02 3用于: 根据所述获取模块 9 02 1 获取的所述最大丟包率和所述获取单 元 9 01获取的所述基站的当前业务的状态信息,确定保障所述第一 业务的最大丟包率的条件是否满足。
所述第三确定模块 9 024用于: 在所述第一确定模块 9 022确定保障所述第一业务的空口传输 时延的条件满足, 且第二确定模块 9 02 3确定保障所述第一业务的 最大丟包率的条件满足时, 确定保障业务的 Qo S的条件满足。
进一步的, 如图 1 3所示, 所述第一确定模块 9 022 包括第一计 算子模块 9 022 a、 第一获取子模块 9 022 b、 第一确定子模块 9 022 c。 所述第一计算子模块 9 022 a用于: 根据所述最大空口传输时延,结合所述基站的当前业务的状态 信息, 计算满足所述第一业务最大空口传输时延所需的第一带宽。
所述第一获取子模块 9 022 b用于: 将所述第一计算子模块 9 022 a 计算获得的所述第一带宽和所 述基站的当前业务所需的最大带宽相加, 获取第二带宽。
所述第一确定子模块 9 022 c用于: 若所述第二带宽未超过所述基站的频带带宽,确定保障所述第 一业务的空口传输时延的条件满足。
进一步的,所述基站的当前业务的状态信息包括传输时延与调 度平均频谱效率的对应关系。 所述第一计算子模块 9 022 a具体用于: 根据所述最大空口传输时延和所述传输时延与调度平均频谱 效率的对应关系, 确定所述最大空口时延对应的调度平均频谱效 率。
根据所述调度平均频谱效率和所述未来网络传输速率的参数, 计算满足所述最大空口传输时延所需的第一带宽。 进一步的, 所述第一业务为单向下载业务。
所述获取模块 9 02 1具体用于: 根据所述第二参数,计算第一有线传输时延和第一有线传输丟 包率, 其中, 所述第一有线传输时延为所述服务器到所述基站的有 线传输的时延,所述第一有线丟包率为所述服务器到所述基站的有 线传输的丟包率。 将所述第一参数中的所述端到端时延减去所述第一有线传输 时延, 获取所述最大空口传输时延。 将所述第一参数中的端到端丟包率减去所述第一有线传输丟 包率, 获取所述最大丟包率。 进一步的, 所述第二参数具体包括: 基站到服务器的传输特性参数。 或
分组数据网关 PGW到服务器的传输特性参数和 PGW到基站的传 输特性参数。
进一步的 ,所述 PGW到所述基站的传输特性参数具体包括所述 P G W到所述基站的第一路径的传输特性参数。 所述第一路径由所述 PGW根据所述 PGW到服务器的传输特性参 数和所述第一参数中的所述端到端时延、 所述端到端丟包率确定。 进一步的, 所述未来网络传输速率具体包括:
最大传输速率、 平均传输速率、 传输速率变化的均方差和传输 速率变化的时间相关性中的至少一个。 可选的, 所述第一业务为双向通话业务。 所述获取单元 9 0 1 , 还用于: 获取所述基站的对端基站保证的通话时延、 通话丟包率; 所述获取模块 9 0 2 1具体用于: 根据所述第二参数,计算第一有线传输时延和第一有线传输丟 包率, 其中, 所述第一有线传输时延为当前基站到对端基站的有线 传输的时延,所述第一有线丟包率为所述当前基站到所述对端基站 的有线传输的丟包率。
将所述第一参数中的所述端到端时延减去所述第一有线传输 时延和所述对端基站保证的通话时延之和,获取所述最大空口传输 时延。 将所述第一参数中的端到端丟包率减去所述第一有线传输丟 包率和所述对端基站保证的通话丟包率之和, 获取最大丟包率。 进一步的, 所述第二参数包括: 所述当前基站到所述对端基站的传输特性参数。 进一步的, 所述未来网络传输速率包括: 语音最大传输速率和语音激活因子中的至少一个。 进一步的, 所述传输特性参数包括: 平均传输时延、传输时延均方差和平均传输丟包率中的至少一 个。
进一步的, 所述确定单元 9 0 2 , 还具体用于: 根据所述第一业务的 Q o S的性能参数, 确定相应的收费标准。 具体的, 通过所述 P C RF进行无线通信的方法可参考实施例一 和实施例二的描述, 本发明实施例对此不再赘述。 本发明实施例提供一种 P C RF , 包括获取单元、 确定单元、
策单元、 执行单元。 其中, 所述获取单元获取第一参数、 第二参数 和基站的当前业务的状态信息, 所述确定单元根据所述第一参数, 所述第二参数以及所述基站的当前业务的状态信息,确定保障业务
QoS的条件是否满足, 若确定所述保障业务 QoS的条件满足, 所述 决策单元决策允许为所述用户设备提供具有相应 QoS 保障的所述 第一业务的服务, 若确定所述保障业务 QoS的条件不满足, 所述执 行单元执行第一操作。 其中, 所述第一参数是当前用户设备所请求 的第一业务的 QoS的性能参数,所述第二参数是表征所述第一业务 有线传输的传输特性参数。 因为所述 PCRF 能够在获取有线传输特 性的基础上确定所述保障业务 QoS的条件是否满足, 因此通过所述 PCRF, 能够保证无线通信过程中的端到端时延, 提升无线通信过程 的服务质量。
实施例四、 本发明实施例提供一种有线传输检测的装置 1400, 具体如图 14所示, 包括: 接收单元 1401、 服务节点索引单元 1402、 服务节 点传输性能记录表 1403、传输性能探测单元 1404、发送单元 1405。 所述接收单元 1401 , 用于接收第一请求消息, 所述第一请求 消息请求获取第三参数, 其中, 所述第三参数为所述有线传输检测 的装置 1400到第一网络节点的传输特性参数, 所述第一请求消息 携带所述第一网络节点的标识。 具体的, 所述第一网络节点可以为服务器, PGW, SGW 等, 本 发明实施例对此不作具体限定。 具体的, 所述有线传输检测的装置 1400可以部署在基站内, 也可以部署在 PGW 内, 对于所述有线传输检测的装置 1400的部署 位置, 本发明实施例对此也不作具体限定。 示例性的, 若所述第一网络节点为服务器, 所述有线传输检测 的装置 1400部署在基站内, 则所述第三参数具体为所述基站到所 述服务器的传输特性参数; 若所述第一网络节点为服务器, 所述有线传输检测的装置
1400部署在 PGW 内, 则所述第三参数具体为所述 PGW到所述服务 器的传输特性参数;
在双向通话业务下, 若所述第一网络节点为第二基站, 所述有 线传输检测的装置 1400部署在第一基站内, 则所述第三参数具体 为所述第一基站到所述第二基站的传输特性参数。 具体的, 所述传输特性参数可以包括: 平均传输时延、 传输时 延均方差和平均传输丟包率中的至少一个。
所述服务节点索引单元 1402, 用于根据所述接收单元 1401接 收的所述第一网络节点的标识,索引预先存储的服务节点传输性能 记录表 1403, 确定是否存在所述第三参数, 其中, 所述服务节点 传输性能记录表 1403记录了所述有线传输检测的装置 1400到各服 务节点的传输特性参数,所述服务节点为所述有线传输检测的装置 1400 已经检测的网络节点。 具体的, 所述有线传输检测的装置 1400 中包含服务节点传输 性能记录表 1403, 所述服务节点传输性能记录表 1403 可以是各种 存储介质, 包括硬盘, 固盘, 随机存取存储器, 磁带等, 本发明实 施例对此不作具体限定。 假设传输特性参数包括: 平均传输时延、 传输时延均方差和平 均传输丟包率,一种可行的服务节点传输性能记录表可以如上述表 二所示, 本发明实施例对此不作具体限定。 所述有线传输检测的装置 1400检测到某一网络节点的传输性 能参数后, 则会在所述服务节点传输性能记录表 1403 中记录该传 输性能参数。 需要说明的是, 若服务节点列表信息中已经包含该网络节点, 则可以只更新该网络节点对应的传输性能参数;若所述服务节点列 表信息中不包含该网络节点,则将该网络节点的标识记录在服务节 点列表信息中,然后将传输性能参数存储在该网络节点对应的传输 性能列表位置。 所述传输性能探测单元 1404, 用于在所述服务节点索引单元 1402确定不存在所述第三参数时, 检测所述第三参数。
具体的, 若所述有线传输检测的装置 1400 中包含的服务节点 索引单元 1402在服务节点传输性能记录表 1403中没有索引所述第 一网络节点的标识, 则所述服务节点索引单元 1402 启动传输性能 探测单元 1404执行针对所述第一网络节点的性能探测。 具体的, 所述传输性能探测单元 1404可以通过向所述第一网 络节点连续发出 100次 ping指令, 获取所需的传输性能参数。 通 过对所有回应的数据包的延迟时间进行平均再除以 2, 可以得到平 均传输时延, 并进而得到时延的方差。 除了 ping指令外, 也可以 使用 traceroute 指令获得时延参数, 或利用服务器的 echo 服 务反射得到时延的测量数据。 本发明实施例对此不作具体限定。 通 过对没有回应的数据包进行统计, 可以得到丟包率的大小。 所述发送单元 1405, 用于发送所述服务节点索引单元 1402确 定的第三参数或所述传输性能探测单元 1404检测的第三参数。 示例性的, 若所述有线传输检测的装置 1400部署在基站内, 所述第一请求消息请求获取到服务器的传输特性参数,而此刻该基 站内已经有其它用户设备向服务器请求并获得了该服务器的业务, 则在服务节点传输性能记录表 1403 中可以查询到从所述服务器到 所述基站的传输特性参数, 则所述有线传输检测的装置 1400 可以 直接发送所述第三参数给发送第一请求消息的网络节点。
或者传输性能探测单元 1404在获得所述第三参数后, 可以将 所述第一网络节点的标识及其传输性能参数记录在服务节点传输 性能记录表 1403 中, 以备下次查询, 并发送所述传输性能参数给 发送第一请求消息的网络节点。 进一步的, 所述服务节点传输性能记录表 1403记录了第一服 务节点对应的第一时刻的传输特性参数。 所述传输性能探测单元 1404, 还用于检测所述第一服务节点 对应的第二时刻的传输特性参数。 所述发送单元 1405, 还用于若所述第一时刻的传输特性参数 与所述第二时刻的传输特性参数的偏差大于第一阈值,发送第一指 示消息给策略与计费规则实体 PCRF, 所述第一指示消息指示所述
PCRF 重新获取第一参数, 其中, 所述第一参数是当前用户设备所 请求的第一业务的服务质量 QoS 的相关性能参数, 包括端到端时 延、 端到端丟包率以及未来网络传输速率的参数。 具体的, 通过所述有线传输检测的装置 1400进行无线通信的 方法可参考实施例一和实施例二的描述,本发明实施例对此不再赘 述。 基于本发明实施例提供的一种有线传输检测的装置,通过所述 有线传输检测的装置检测外网传输的特性, 使得所述 PCRF 能够在 获取有线传输特性的基础上确定所述保障业务 QoS 的条件是否满 足, 进而能够保证无线通信过程中的端到端时延, 提升无线通信过 程的服务质量。
实施例五、 图 15描述了本发明一个实施例提供的 PCRF的结构,包括至少 一个处理器 1502 (例如 CPU ), 至少一个网络接口 1505或者其他通 信接口, 存储器 1506, 和至少一个通信总线 1503, 用于实现这些 装置之间的连接通信。处理器 1502用于执行存储器 1506 中存储的 可执行模块, 例如计算机程序。 存储器 1506 可能包含高速随机存 取存储器 ( RAM: Random Access Memory ), 也可能还包括非不稳定 的存储器 ( non-volat i le memory ), 例如至少一个磁盘存储器。 通 过至少一个网络接口 1505 (可以是有线或者无线) 实现该系统网 关与至少一个其他网元之间的通信连接,可以使用互联网,广域网, 本地网, 城域网等。 在一些实施方式中,存储器 1506存储了程序 15061,程序 15061 可以被处理器 1502执行,这个程序包括:策略与计费规则实体 PCRF 获取第一参数, 其中, 所述第一参数是当前用户设备所请求的第一 业务的服务质量 QoS 的性能参数; 获取第二参数,其中, 所述第二 参数是表征所述第一业务有线传输的传输特性参数;获取基站的当 前业务的状态信息; 根据所述第一参数, 所述第二参数以及所述基 站的当前业务的状态信息, 确定保障业务 QoS的条件是否满足, 其
中, 所述业务包括所述第一业务和所述基站的当前业务; 若确定保 障所述业务 QoS的条件满足,则允许为所述用户设备提供具有相应 QoS保障的所述第一业务的服务; 若确定保障所述业务 QoS的条件 不满足, 执行第一操作。 具体的, 通过该 PCRF进行无线通信的方法可参考实施例一和 实施例二的描述, 此处不再赘述。 基于本发明实施例提供的 PCRF, 因为所述 PCRF能够在获取有 线传输特性的基础上确定所述保障业务 QoS的条件是否满足, 因此 通过所述 PCRF, 能够保证无线通信过程中的端到端时延, 提升无 线通信过程的服务质量。
实施例六、
图 16描述了本发明一个实施例提供的有线传输检测的装置的 结构, 包括至少一个处理器 1602 (例如 CPU ), 至少一个网络接口 1605或者其他通信接口,存储器 1606, 和至少一个通信总线 1603, 用于实现这些装置之间的连接通信。 处理器 1602 用于执行存储器 1606 中存储的可执行模块, 例如计算机程序。 存储器 1606可能包 含高速随机存取存储器 ( RAM: Random Access Memory ), 也可能还 包括非不稳、定的存储器 ( non-volat i le memory ), 例 ¾口至少一个磁 盘存储器。 通过至少一个网络接口 1605 (可以是有线或者无线) 实现该系统网关与至少一个其他网元之间的通信连接,可以使用互 联网, 广域网, 本地网, 城域网等。 在一些实施方式中,存储器 1606存储了程序 16061,程序 16061 可以被处理器 1602执行, 这个程序包括: 有线传输检测的装置接 收第一请求消息, 所述第一请求消息请求获取第三参数, 其中, 所 述第三参数为所述有线传输检测的装置到第一网络节点的传输特 性参数, 所述第一请求消息携带所述第一网络节点的标识; 根据所 述第一网络节点的标识, 索引预先存储的服务节点传输性能记录 表, 确定是否存在所述第三参数, 其中, 所述服务节点传输性能记 录表记录了所述有线传输检测的装置到各服务节点的传输特性参
数, 所述服务节点为所述有线传输检测的装置已经检测的网络节 点; 若确定存在所述第三参数, 发送所述第三参数; 若确定不存在 所述第三参数, 检测所述第三参数, 并发送所述第三参数。 具体的,通过该有线传输检测的装置进行无线通信的方法可参 考实施例一和实施例二的描述, 此处不再赘述。 基于本发明实施例提供的一种有线传输检测的装置,通过所述 有线传输检测的装置检测外网传输的特性, 使得所述 PCRF 能够在 获取有线传输特性的基础上确定所述保障业务 Qo S 的条件是否满 足, 进而能够保证无线通信过程中的端到端时延, 提升无线通信过 程的服务质量。
实施例七、 本发明实施例提供一种无线通信的系统, 具体如图 3 或图 5 所示, 所述系统包括策略与计费规则实体 PCRF 304、 有线传输检测 的装置 3 07、 I P 多媒体子系统 I MS 3 08、 基站 302、 分组数据网关 PGW 305 , 月良务网关 SGW 303、 月良务器 3 06、 用户设备 UE 301。 所述 PCRF 304 , 用于获取第一参数、 第二参数、 基站 302的当 前业务的状态信息, 并根据所述第一参数, 所述第二参数以及所述 基站 3 02的当前业务的状态信息,确定保障业务 Qo S的条件是否满 足,其中,所述业务包括所述第一业务和所述基站 302 的当前业务; 若确定所述保障业务 Qo S的条件满足,则允许为所述 UE 301提供具 有相应 Qo S保障的所述第一业务的服务;若确定所述保障业务 Qo S 的条件不满足, 执行第一操作, 其中, 所述第一参数是当前 UE 3 01 所请求的第一业务的服务质量 Q o S的性能参数,所述第二参数是表 征所述第一业务有线传输的传输特性参数。 所述有线传输检测的装置 307 , 用于接收第一请求消息, 所述 第一请求消息请求获取第三参数, 其中, 所述第三参数为所述有线 传输检测的装置 307到第一网络节点的传输特性参数,所述第一请 求消息携带所述第一网络节点的标识;根据所述第一网络节点的标 识, 索引预先存储的服务节点传输性能记录表, 确定是否存在所述
第三参数, 其中, 所述服务节点传输性能记录表记录了所述有线传 输检测的装置到各服务节点的传输特性参数,所述服务节点为所述 有线传输检测的装置已经检测的网络节点;若确定存在所述第三参 数, 发送所述第三参数; 若确定不存在所述第三参数, 检测所述第 三参数, 并发送所述第三参数。 需要说明的是, 所述有线传输检测的装置可以部署在基站内, 也可以部署在 PGW 内, 还可以部署在其它网络节点, 图 3 和图 5 仅是示例性的给出了两种有线传输检测的装置的部署位置,本发明 实施例对所述有线传输检测的装置的部署位置不作具体限定。 具体的, 通过所述无线通信的系统进行无线通信的方法, 可参 考实施例一和实施例二的描述, 本发明实施例对此不再赘述。 基于本发明实施例提供的无线通信的系统,通过所述系统中的 有线传输检测的装置对外网传输特性的检测, 所述 PCRF 能够在获 取有线传输特性的基础上确定所述保障业务 QoS的条件是否满足, 因此能够保证单向下载业务下的的端到端时延,提升无线通信过程 的服务质量。
实施例八、 本发明实施例提供一种无线通信的系统 700,具体如图 7所示, 所述系统 700 包括第一策略与计费规则 实体 PCRF704、 第二 PCRF709 , 第一有线传输检测的装置 712、 第二有线传输检测的装 置 713、 第一基站 702、 第二基站 707、 第一分组数据网关 PGW705、 第二 PGW710、 第一服务网关 SGW703、 第二 SGW708、 第一用户设备 UE70K 第二 UE706、 月良务器 711。 所述第一 /第二 PCRF, 用于获取第一参数、 第二参数、 第一 / 第二基站的当前业务的状态信息, 并根据所述第一参数, 所述第二 参数以及所述第一 /第二基站的当前业务的状态信息, 确定保障业 务 QoS的条件是否满足, 其中, 所述业务包括所述第一业务和所述 基站的当前业务; 若确定所述保障业务 QoS的条件满足, 则允许为 所述第一 /第二 UE提供具有相应 QoS保障的所述第一业务的服务;
若确定所述保障业务 Q o S的条件不满足, 执行第一操作, 其中, 所 述第一参数是所述第一 /第二 U E所请求的第一业务的服务质量 Q o S 的性能参数,所述第二参数是表征所述第一业务有线传输的传输特 性参数。 所述第一 /第二有线传输检测的装置,用于接收第一请求消息, 所述第一请求消息请求获取第三参数, 其中, 所述第三参数为所述 第一 /第二有线传输检测的装置到第一网络节点的传输特性参数, 所述第一请求消息携带所述第一网络节点的标识;根据所述第 ―网 络节点的标识, 索引预先存储的服务节点传输性能记录表, 确定是 否存在所述第三参数, 其中, 所述服务节点传输性能记录表记录了 所述第一 /第二有线传输检测的装置到各服务节点的传输特性参 数, 所述服务节点为所述第一 /第二有线传输检测的装置已经检测 的网络节点; 若确定存在所述第三参数, 发送所述第三参数; 若确 定不存在所述第三参数,检测所述第三参数,并发送所述第三参数。 需要说明的是, 所述第一 /第二有线传输检测的装置可以部署 在基站内, 也可以部署在其它网络节点, 图 7仅是示例性的给出一 种双向通话业务下的无线通信系统的架构, 对所述第一 /第二有线 传输检测的装置的部署位置不作具体限定。 具体的, 通过所述无线通信的系统进行无线通信的方法, 可参 考实施例一和实施例二的描述, 本发明实施例对此不再赘述。 基于本发明实施例提供的无线通信的系统,通过所述系统中的 有线传输检测的装置对外网传输特性的检测, 所述 P C R F 能够在获 取有线传输特性的基础上确定所述保障业务 Q o S的条件是否满足, 因此能够保证双向通话业务下的的端到端时延,提升无线通信过程 的服务质量。 所属领域的技术人员可以清楚地了解到, 为描述的方便和简 洁, 上述描述的装置, 仅以上述各功能模块的划分进行举例说明, 实际应用中,可以根据需要而将上述功能分配由不同的功能模块完 成, 即将装置的内部结构划分成不同的功能模块, 以完成以上描述 的全部或者部分功能。 上述描述的系统、 装置和单元的具体工作过
程, 可以参考前述方法实施例中的对应过程, 在此不再赘述。
在本申请所提供的几个实施例中,应该理解到,所揭露的系统, 装置和方法, 可以通过其它的方式实现。 例如, 以上所描述的装置 实施例仅仅是示意性的, 例如, 所述模块或单元的划分, 仅仅为一 种逻辑功能划分, 实际实现时可以有另外的划分方式, 例如多个单 元或组件可以结合或者可以集成到另一个系统,或一些特征可以忽 略, 或不执行。 另一点, 所显示或讨论的相互之间的耦合或直接耦 合或通信连接可以是通过一些接口,装置或单元的间接耦合或通信 连接, 可以是电性, 机械或其它的形式。 所述作为分离部件说明的单元可以是或者也可以不是物理上 分开的, 作为单元显示的部件可以是或者也可以不是物理单元, 即 可以位于一个地方, 或者也可以分布到多个网络单元上。 可以根据 实际的需要选择其中的部分或者全部单元来实现本实施例方案的 目 的。 另外,在本发明各个实施例中的各功能单元可以集成在一个处 理单元中, 也可以是各个单元单独物理存在, 也可以两个或两个以 上单元集成在一个单元中。上述集成的单元既可以釆用硬件的形式 实现, 也可以釆用软件功能单元的形式实现。 所述集成的单元如果以软件功能单元的形式实现并作为独立 的产品销售或使用时, 可以存储在一个计算机可读取存储介质中。 基于这样的理解,本发明的技术方案本质上或者说对现有技术做出 贡献的部分或者该技术方案的全部或部分可以以软件产品的形式 体现出来, 该计算机软件产品存储在一个存储介质中, 包括若干指 令用以使得一台计算机设备(可以是个人计算机, 服务器, 或者网 络设备等) 或处理器 ( processor ) 执行本发明各个实施例所述方 法的全部或部分步骤。 而前述的存储介质包括: U盘、 移动硬盘、 只读存储器 ( ROM, Read-Only Memory ), 随机存取存储器 ( RAM, Random Access Memory ), 磁碟或者光盘等各种可以存储程序代码 的介质。
以上所述, 仅为本发明的具体实施方式, 但本发明的保护范围
并不局限于此,任何熟悉本技术领域的技术人员在本发明揭露的技 术范围内, 可轻易想到变化或替换, 都应涵盖在本发明的保护范围 之内。因此,本发明的保护范围应以所述权利要求的保护范围为准。
Claims
1、 一种无线通信的方法, 其特征在于, 所述方法包括: 策略与计费规则实体 PCRF获取第一参数, 其中, 所述第一参数 是当前用户设备所请求的第一业务的服务质量 QoS的性能参数; 获取第二参数,其中,所述第二参数是表征所述第一业务有线传 输的传输特性参数;
获取基站的当前业务的状态信息;
根据所述第一参数, 所述第二参数以及所述基站的当前业务的 状态信息, 确定保障业务 QoS 的条件是否满足, 其中, 所述业务包 括所述第一业务和所述基站的当前业务;
若确定保障所述业务 QoS 的条件满足, 则允许为所述用户设备 提供具有相应 QoS 保障的所述第一业务的服务;
若确定保障所述业务 QoS的条件不满足, 执行第一操作。
2、 根据权利要求 1所述的方法, 其特征在于, 所述获取所述第 二参数,具体包括:
通过向其它网络节点发送第一请求消息请求获取;
或
通过读取存储的第二参数的记录数据获取。
3、 根据权利要求 1或 2所述的方法, 其特征在于, 所述获取所 述基站的当前业务的状态信息,具体包括:
通过向所述基站发送第二请求消息请求获取;
或
通过读取存储的基站业务状态信息的记录数据获取。
4、 根据权利要求 1-3任一项所述的方法, 其特征在于, 所述执 行第一操作具体包括:
发送第三请求消息给服务器请求重新确定所述第一参数; 获取所述服务器重新确定的第一参数;
根据所述重新确定的第一参数和所述第二参数, 结合所述基站 的当前业务的状态信息, 确定保障业务 QoS 的条件是否满足, 直到 确定保障业务 QoS的条件满足为止;
或
所述执行第一操作具体包括:
拒绝接入所述第一业务。
5、 根据权利要求 1 -4任一项所述的方法, 其特征在于, 所述第 一参数具体包括:
端到端时延、 端到端丟包率以及未来网络传输速率中的至少一 个。
6、 根据权利要求 5所述的方法, 其特征在于, 所述根据所述第 一参数和所述第二参数, 结合所述基站的当前业务的状态信息, 确 定保障业务 Qo S的条件是否满足具体包括:
根据所述第一参数和所述第二参数, 获取最大空口传输时延和 最大丟包率;
若根据所述最大空口传输时延和所述基站的当前业务的状态信 息, 确定保障所述第一业务的空口传输时延的条件满足, 且根据所 述最大丟包率和所述基站的当前业务的状态信息确定保障所述第一 业务的最大丟包率的条件满足,则确定保障业务的 Qo S的条件满足。
7、 根据权利要求 6 所述的方法, 其特征在于, 所述根据所述 最大空口传输时延和所述基站的当前业务的状态信息, 确定保障所 述第一业务的空口传输时延的条件满足具体包括:
根据所述最大空口传输时延, 结合所述基站的当前业务的状态 信息, 计算满足所述第一业务最大空口传输时延所需的第一带宽; 将所述第一带宽和所述基站的当前业务所需的最大带宽相加, 获取第二带宽;
若所述第二带宽未超过所述基站的频带带宽, 确定保障所述第 一业务的空口传输时延的条件满足。
8、 根据权利要求 7所述的方法, 其特征在于, 所述基站的当前 业务的状态信息包括传输时延与调度平均频谱效率的对应关系; 所述根据所述最大空口传输时延, 结合所述基站的当前业务的 状态信息, 计算满足所述最大空口传输时延所需的第一带宽具体包 括:
根据所述最大空口传输时延和所述传输时延与调度平均频谱效 率的对应关系, 确定所述最大空口时延对应的调度平均频谱效率; 根据所述调度平均频谱效率和所述未来网络传输速率的参数, 计算满足所述最大空口传输时延所需的第一带宽。
9、 根据权利要求 6 - 8任一项所述的方法, 其特征在于, 所述第 一业务为单向下载业务;
所述根据所述第一参数和所述第二参数, 获取最大空口传输时 延和最大丟包率具体包括:
根据所述第二参数, 计算第一有线传输时延和第一有线传输丟 包率, 其中, 所述第一有线传输时延为所述服务器到所述基站的有 线传输的时延, 所述第一有线丟包率为所述服务器到所述基站的有 线传输的丟包率;
将所述第一参数中的所述端到端时延减去所述第一有线传输时 延, 获取所述最大空口传输时延;
将所述第一参数中的端到端丟包率减去所述第一有线传输丟包 率, 获取所述最大丟包率。
1 0、 根据权利要求 9 所述的方法, 其特征在于, 所述第二参数 具体包括:
基站到服务器的传输特性参数;
或
分组数据网关 PGW到服务器的传输特性参数和 P GW到基站的传 输特性参数。
1 1、 根据权利要求 1 0所述的方法, 其特征在于, 所述 P GW到所 述基站的传输特性参数具体包括所述 P GW到所述基站的第一路径的 传输特性参数;
所述第一路径由所述 PGW根据所述 P GW到服务器的传输特性参 数和所述第一参数中的所述端到端时延、 所述端到端丟包率确定。
1 2、 根据权利要求 9 - 1 1任一项所述的方法, 其特征在于, 所述 未来网络传输速率具体包括:
最大传输速率、 平均传输速率、 传输速率变化的均方差和传输 速率变化的时间相关性中的至少一个。
1 3、 根据权利要求 6 - 8任一项所述的方法, 其特征在于, 所述 第一业务为双向通话业务;
所述根据所述第一参数和所述第二参数, 获取最大空口传输时 延和最大丟包率前, 还包括:
获取所述基站的对端基站保证的通话时延、 通话丟包率;
所述根据所述第一参数和所述第二参数, 获取最大空口传输时 延和最大丟包率具体包括:
根据所述第二参数, 计算第一有线传输时延和第一有线传输丟 包率, 其中, 所述第一有线传输时延为当前基站到对端基站的有线 传输的时延, 所述第一有线丟包率为所述当前基站到所述对端基站 的有线传输的丟包率;
将所述第一参数中的所述端到端时延减去所述第一有线传输时 延和所述对端基站保证的通话时延之和, 获取所述最大空口传输时 延;
将所述第一参数中的端到端丟包率减去所述第一有线传输丟包 率和所述对端基站保证的通话丟包率之和, 获取最大丟包率。
14、 根据权利要求 13所述的方法, 其特征在于, 所述第二参数 包括:
所述当前基站到所述对端基站的传输特性参数。
15、 根据权利要求 13或 14所述的方法, 其特征在于, 所述未 来网络传输速率包括:
语音最大传输速率和语音激活因子中的至少一个。
16、 根据权利要求 1-15任一项所述的方法, 其特征在于, 所述 传输特性参数包括:
平均传输时延、 传输时延均方差和平均传输丟包率中的至少一 个。
17、 根据权利要求 1-16任一项所述的方法, 其特征在于, 若确 定保障业务 QoS的条件满足, 所述方法还包括:
根据所述第一业务的 QoS的性能参数, 确定相应的收费标准。
18、 一种有线传输检测的方法, 其特征在于, 所述方法包括: 有线传输检测的装置接收第一请求消息, 所述第一请求消 , ¾请 求获取第三参数, 其中, 所述第三参数为所述有线传输检测的装置 到第一网络节点的传输特性参数, 所述第一请求消息携带所述第 ― 网络节点的标识;
根据所述第一网络节点的标识, 索引预先存储的服务节点传输 性能记录表, 确定是否存在所述第三参数, 其中, 所述服务节点传 输性能记录表记录了所述有线传输检测的装置到各服务节点的传输
特性参数, 所述服务节点为所述有线传输检测的装置已经检测的网 络节点;
若确定存在所述第三参数, 发送所述第三参数;
若确定不存在所述第三参数, 检测所述第三参数, 并发送所述 第三参数。
19、 根据权利要求 18所述的方法, 其特征在于, 所述服务节点 传输性能记录表记录了第一服务节点对应的第一时刻的传输特性参 数;
所述方法还包括:
检测所述第一服务节点对应的第二时刻的传输特性参数; 若所述第一时刻的传输特性参数与所述第二时刻的传输特性参 数的偏差大于第一阈值, 发送第一指示消息给策略与计费规则实体 PCRF, 所述第一指示消息指示所述 PCRF重新获取第一参数, 其中, 所述第一参数是当前用户设备所请求的第一业务的服务质量 QoS 的 性能参数。
20、 根据权利要求 18或 19所述的方法, 其特征在于, 所述第 一网络节点具体为服务器,所述有线传输检测的装置部署在基站内; 所述第三参数具体包括:
所述基站到所述服务器的传输特性参数。
21、 根据权利要求 18或 19所述的方法, 其特征在于, 所述第 一网络节点具体为服务器, 所述有线传输检测的装置部署在分组数 据网关 PGW内;
所述第三参数具体包括:
所述 P G W到所述服务器的传输特性参数。
22、 根据权利要求 18或 19所述的方法, 其特征在于, 所述第 一网络节点为第二基站, 所述有线传输检测的装置部署在第一基站 内;
所述第三参数具体包括:
所述第一基站到所述第二基站的传输特性参数。
23、 根据权利要求 18-22任一项所述的方法, 其特征在于, 所 述传输特性参数包括:
平均传输时延、 传输时延均方差和平均传输丟包率中的至少一
24、 根据权利要求 19-23任一项所述的方法, 其特征在于, 所 述第一参数具体包括:
端到端时延、 端到端丟包率以及未来网络传输速率中的至少一 个。
25、 一种策略与计费规则实体 PCRF, 其特征在于, 所述 PCRF 包括: 获取单元、 确定单元、 决策单元、 执行单元;
所述获取单元, 用于获取第一参数, 并将所述第一参数发送给 所述确定单元, 其中, 所述第一参数是当前用户设备所请求的第一 业务的服务质量 QoS 的性能参数; 获取第二参数, 并将所述第二参 数发送给所述确定单元, 其中, 所述第二参数是表征所述第一业务 有线传输的传输特性参数; 获取基站的当前业务的状态信息, 并将 所述基站的当前业务的状态信息发送给所述确定单元;
所述确定单元, 用于根据所述获取单元获取的所述第一参数, 所述第二参数以及所述基站的当前业务的状态信息, 确定保障业务 QoS 的条件是否满足, 其中, 所述业务包括所述第一业务和所述基 站的当前业务;
所述决策单元, 用于在所述确定单元确定保障所述业务 QoS 的 条件满足时, 决策允许为所述用户设备提供具有相应 QoS保障的所 述第一业务的服务;
所述执行单元, 用于在所述确定单元确定保障所述业务 QoS 的 条件不满足时, 执行第一操作。
26、 根据权利要求 25所述的 PCRF, 其特征在于, 所述 PCRF还 包括发送单元或读取单元;
所述获取单元具体用于:
通过所述发送单元向其它网络节点发送第一请求消息请求获取 所述第二参数;
或通过所述读取单元读取存储的第二参数的记录数据获取所述 第二参数。
27、根据权利要求 25或 26所述的 PCRF,其特征在于,所述 PCRF 还包括发送单元或读取单元;
所述获取单元具体用于:
通过所述发送单元向所述基站发送第二请求消息请求获取所述 基站的当前业务的状态信息;
或通过所述读取单元读取存储的所述基站的当前业务的状态信 息的记录数据获取所述基站的当前业务的状态信息。
28、 根据权利要求 25 -27 任一项所述的 PCRF , 其特征在于, 所述执行单元具体用于:
发送第三请求消息给服务器请求重新确定所述第一参数; 获取所述服务器重新确定的第一参数;
根据所述重新确定的第一参数和所述第二参数, 结合所述基站 的当前业务的状态信息, 确定保障业务 Qo S 的条件是否满足, 直到 确定保障业务 Qo S的条件满足为止;
或
所述执行单元具体用于:
拒绝接入所述第一业务。
29、 根据权利要求 25- 28任一项所述的 PCRF , 其特征在于, 所 述第一参数具体包括:
端到端时延、 端到端丟包率以及未来网络传输速率中的至少一 个。
30、 根据权利要求 29 所述的 PCRF , 其特征在于, 所述确定单 元具体包括获取模块、 第一确定模块、 第二确定模块、 第三确定模 块;
所述获取模块用于:
根据所述第一参数和所述第二参数, 获取最大空口传输时延和 最大丟包率;
所述第一确定模块用于:
根据所述获取模块获取的所述最大空口传输时延和所述获取单 元获取的所述基站的当前业务的状态信息, 确定保障所述第一业务 的空口传输时延的条件是否满足;
所述第二确定模块用于:
根据所述获取模块获取的所述最大丟包率和所述获取单元获取 的所述基站的当前业务的状态信息, 确定保障所述第一业务的最大 丟包率的条件是否满足;
所述第三确定模块用于:
在所述第一确定模块确定保障所述第一业务的空口传输时延的 条件满足, 且第二确定模块确定保障所述第一业务的最大丟包率的 条件满足时, 确定保障业务的 Q o S的条件满足。
3 1、 根据权利要求 3 0 所述的 PC RF , 其特征在于, 所述第一确 定模块包括第一计算子模块、 第一获取子模块、 第一确定子模块; 所述第一计算子模块用于:
根据所述最大空口传输时延, 结合所述基站的当前业务的状态 信息, 计算满足所述第一业务最大空口传输时延所需的第一带宽; 所述第一获取子模块用于:
将所述第一计算子模块计算获得的所述第一带宽和所述基站的 当前业务所需的最大带宽相加, 获取第二带宽;
所述第一确定子模块用于:
若所述第二带宽未超过所述基站的频带带宽, 确定保障所述第 一业务的空口传输时延的条件满足。
3 2、 根据权利要求 3 1 所述的 PC RF , 其特征在于, 所述基站的 当前业务的状态信息包括传输时延与调度平均频谱效率的对应关 系;
所述第一计算子模块具体用于:
根据所述最大空口传输时延和所述传输时延与调度平均频谱效 率的对应关系, 确定所述最大空口时延对应的调度平均频谱效率; 根据所述调度平均频谱效率和所述未来网络传输速率的参数, 计算满足所述最大空口传输时延所需的第一带宽。
3 3、 根据权利要求 3 0- 3 2任一项所述的 P C RF , 其特征在于, 所 述第一业务为单向下载业务;
所述获取模块具体用于:
根据所述第二参数, 计算第一有线传输时延和第一有线传输丟 包率, 其中, 所述第一有线传输时延为所述服务器到所述基站的有 线传输的时延, 所述第一有线丟包率为所述服务器到所述基站的有 线传输的丟包率;
将所述第一参数中的所述端到端时延减去所述第一有线传输时 延, 获取所述最大空口传输时延;
将所述第一参数中的端到端丟包率减去所述第一有线传输丟包 率, 获取所述最大丟包率。
34、 根据权利要求 3 3 所述的 PCRF , 其特征在于, 所述第二参 数具体包括:
基站到服务器的传输特性参数;
或
分组数据网关 PGW到服务器的传输特性参数和 PGW到基站的传 输特性参数。
35、 根据权利要求 34 所述的 PCRF , 其特征在于, 所述 PGW到 所述基站的传输特性参数具体包括所述 PGW到所述基站的第一路径 的传输特性参数;
所述第一路径由所述 PGW根据所述 PGW到服务器的传输特性参 数和所述第一参数中的所述端到端时延、 所述端到端丟包率确定。
36、 根据权利要求 3 3- 35任一项所述的 PCRF , 其特征在于, 所 述未来网络传输速率具体包括:
最大传输速率、 平均传输速率、 传输速率变化的均方差和传输 速率变化的时间相关性中的至少一个。
37、 根据权利要求 30- 32任一项所述的 PCRF , 其特征在于, 所 述第一业务为双向通话业务;
所述获取单元, 还用于:
获取所述基站的对端基站保证的通话时延、 通话丟包率; 所述获取模块具体用于:
根据所述第二参数, 计算第一有线传输时延和第一有线传输丟 包率, 其中, 所述第一有线传输时延为当前基站到对端基站的有线 传输的时延, 所述第一有线丟包率为所述当前基站到所述对端基站 的有线传输的丟包率;
将所述第一参数中的所述端到端时延减去所述第一有线传输时 延和所述对端基站保证的通话时延之和, 获取所述最大空口传输时 延;
将所述第一参数中的端到端丟包率减去所述第一有线传输丟包 率和所述对端基站保证的通话丟包率之和, 获取最大丟包率。
38、 根据权利要求 37 所述的 PCRF , 其特征在于, 所述第二参
数包括:
所述当前基站到所述对端基站的传输特性参数。
39、 根据权利要求 37或 38所述的 PCRF , 其特征在于, 所述未 来网络传输速率包括:
语音最大传输速率和语音激活因子中的至少一个。
4 0、 根据权利要求 25- 39任一项所述的 PCRF , 其特征在于, 所 述传输特性参数包括:
平均传输时延、 传输时延均方差和平均传输丟包率中的至少一 个。
4 1、 根据权利要求 25 -40任一项所述的 PCRF , 其特征在于, 所述确定单元, 还具体用于:
根据所述第一业务的 QoS的性能参数, 确定相应的收费标准。
42、 一种有线传输检测的装置, 其特征在于, 所述有线传输检 测的装置包括接收单元、 服务节点索引单元、 服务节点传输性能记 录表、 传输性能探测单元、 发送单元;
所述接收单元, 用于接收第一请求消息, 所述第一请求消息请 求获取第三参数, 其中, 所述第三参数为所述有线传输检测的装置 到第一网络节点的传输特性参数, 所述第一请求消息携带所述第 ― 网络节点的标识;
所述服务节点索引单元, 用于根据所述接收单元接收的所述第 一网络节点的标识, 索引预先存储的服务节点传输性能记录表, 确 定是否存在所述第三参数, 其中, 所述服务节点传输性能记录表记 录了所述有线传输检测的装置到各服务节点的传输特性参数, 所述 服务节点为所述有线传输检测的装置已经检测的网络节点;
所述传输性能探测单元, 用于在所述服务节点索引单元确定不 存在所述第三参数时, 检测第三参数;
所述发送单元, 用于发送所述服务节点索引单元确定的第三参 数或所述传输性能探测单元检测的第三参数。
4 3、根据权利要求 42所述的有线传输检测的装置,其特征在于, 所述服务节点传输性能记录表记录了第一服务节点对应的第一时刻 的传输特性参数;
所述传输性能探测单元, 还用于检测所述第一服务节点对应的
第二时刻的传输特性参数;
所述发送单元, 还用于在所述第一时刻的传输特性参数与所述 第二时刻的传输特性参数的偏差大于第一阈值时, 发送第一指示消 息给策略与计费规则实体 PCRF , 所述第一指示消息指示所述 PCRF 重新获取第一参数, 其中, 所述第一参数是当前用户设备所请求的 第一业务的服务质量 Qo S的性能参数。
44、 根据权利要求 42或 4 3所述的有线传输检测的装置, 其特 征在于, 所述第一网络节点具体为服务器, 所述有线传输检测的装 置部署在基站内;
所述第三参数具体包括:
所述基站到所述服务器的传输特性参数。
45、 根据权利要求 42或 4 3所述的有线传输检测的装置, 其特 征在于, 所述第一网络节点具体为服务器, 所述有线传输检测的装 置部署在分组数据网关 PGW内;
所述第三参数具体包括:
所述 P G W到所述服务器的传输特性参数。
46、 根据权利要求 42或 4 3所述的有线传输检测的装置, 其特 征在于, 所述第一网络节点为第二基站, 所述有线传输检测的装置 部署在第一基站内;
所述第三参数具体包括:
所述第一基站到所述第二基站的传输特性参数。
47、 根据权利要求 42-46任一项所述的有线传输检测的装置, 其特征在于, 所述传输特性参数包括:
平均传输时延、 传输时延均方差和平均传输丟包率中的至少一 个。
48、 根据权利要求 4 3-47任一项所述的有线传输检测的装置, 其特征在于, 所述第一参数具体包括:
端到端时延、 端到端丟包率以及未来网络传输速率中的至少一 个。
49、 一种无线通信的系统, 其特征在于, 所述系统包括如权利 要求 25-41 任一项所述的策略与计费规则实体 PCRF、 如权利要求 42-48 任一项所述的有线传输检测的装置、 I P 多媒体子系统 IMS、
基站、 分组数据网关 PGW、 服务网关 SGW、 服务器、 用户设备。
5 0、 一种无线通信的系统, 其特征在于, 所述系统包括第一策 略与计费规则实体 PCRF、 第二 PCRF、 第一有线传输检测的装置、 第 二有线传输检测的装置、 第一基站、 第二基站、 第一分组数据网关 PGW , 第二 PGW、 第一服务网关 SGW、 第二 SGW、 第一用户设备 UE、 第二 UE、服务器,其中,所述第一 /第二 PCRF具体为如权利要求 25 -4 1 任一项所述的 PCRF , 所述第一 /第二有线传输检测的装置具体为如 权利要求 42-48任一项所述的有线传输检测的装置。
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
EP14828706.3A EP2999261B1 (en) | 2013-07-23 | 2014-02-24 | Policy and charging rules entity, wireless communications method and wireless communications system |
US14/971,447 US10028289B2 (en) | 2013-07-23 | 2015-12-16 | Wireless communications method, wired transmission detection method, and related device and system |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201310311794.9A CN104349400B (zh) | 2013-07-23 | 2013-07-23 | 无线通信的方法、有线传输检测的方法及相关设备 |
CN201310311794.9 | 2013-07-23 |
Related Child Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US14/971,447 Continuation US10028289B2 (en) | 2013-07-23 | 2015-12-16 | Wireless communications method, wired transmission detection method, and related device and system |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2015010469A1 true WO2015010469A1 (zh) | 2015-01-29 |
Family
ID=52392674
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/CN2014/072470 WO2015010469A1 (zh) | 2013-07-23 | 2014-02-24 | 无线通信的方法、有线传输检测的方法及相关设备 |
Country Status (4)
Country | Link |
---|---|
US (1) | US10028289B2 (zh) |
EP (1) | EP2999261B1 (zh) |
CN (1) | CN104349400B (zh) |
WO (1) | WO2015010469A1 (zh) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP3370457A4 (en) * | 2015-12-17 | 2018-11-07 | Huawei Technologies Co., Ltd. | Qos guarantee method and gateway |
Families Citing this family (12)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP2876965B1 (en) * | 2012-07-18 | 2023-09-06 | Huawei Technologies Co., Ltd. | Data connection management method, device and system |
CN106161285B (zh) * | 2015-03-31 | 2019-06-21 | 华为技术有限公司 | 一种网络资源分配方法及装置 |
CN106506434B (zh) * | 2015-09-07 | 2019-12-24 | 华为技术有限公司 | 业务数据传输方法及装置 |
CN106550410B (zh) * | 2015-09-17 | 2020-07-07 | 华为技术有限公司 | 一种通信控制方法和控制器、用户设备、相关装置 |
CN108353245A (zh) * | 2015-11-27 | 2018-07-31 | 华为技术有限公司 | 一种信息内容传输方法和装置 |
CN107547478B (zh) * | 2016-06-28 | 2020-09-11 | 华为技术有限公司 | 报文传输方法、装置及系统 |
US11290921B2 (en) * | 2018-03-28 | 2022-03-29 | Nec Corporation | Management server, wireless access node, communication system, communication method, resource management method, and computer readable medium |
CN111343645B (zh) * | 2018-12-19 | 2023-03-24 | 中国电信股份有限公司 | 用于业务质量保障的方法和系统 |
CN112929227A (zh) * | 2019-12-06 | 2021-06-08 | 上海大唐移动通信设备有限公司 | 一种rtp丢包检测方法、装置、电子设备及存储介质 |
CN111756580B (zh) * | 2020-06-28 | 2021-02-12 | 涵涡智航科技(玉溪)有限公司 | 一种多节点系统的协同作业同步方法及系统 |
US11570674B1 (en) | 2021-04-01 | 2023-01-31 | T-Mobile Usa, Inc. | Dynamic management of telecommunication services at user equipment |
US11844102B2 (en) * | 2021-09-23 | 2023-12-12 | Qualcomm Incorporated | Adaptive network coding for sidelink communications |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN1739310A (zh) * | 2003-01-11 | 2006-02-22 | Lg电子株式会社 | 用于控制分组传输的分组业务系统和方法 |
CN102263672A (zh) * | 2010-05-26 | 2011-11-30 | 华为技术有限公司 | 一种ieee 1588链路检测方法、系统和ieee 1588链路装置 |
CN102595518A (zh) * | 2011-01-14 | 2012-07-18 | 中兴通讯股份有限公司 | 一种保证家庭基站用户服务质量的方法和系统 |
Family Cites Families (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101188518B (zh) | 2004-09-08 | 2010-12-08 | 华为技术有限公司 | 下一代网络中动态协商服务质量的系统及其实现方法 |
US20080273520A1 (en) * | 2007-05-04 | 2008-11-06 | Samsung Electronics Co. Ltd. | NETWORK ARCHITECTURE FOR DYNAMICALLY SETTING END-TO-END QUALITY OF SERVICE (QoS) IN A BROADBAND WIRELESS COMMUNICATION SYSTEM |
WO2009128753A1 (en) | 2008-04-17 | 2009-10-22 | Telefonaktiebolaget Lm Ericsson (Publ) | Coversational interactivity measurement and estimation for real-time media |
US8812001B2 (en) * | 2010-05-25 | 2014-08-19 | Electronics And Telecommunications Research Institute | Dual mode terminal for supporting access in different network, network apparatus and operation method thereof |
US9094812B2 (en) * | 2010-11-02 | 2015-07-28 | Tekelec, Inc. | Methods, systems, and computer readable media for providing interactive user controlled policy |
JP5436485B2 (ja) | 2011-03-30 | 2014-03-05 | アルプス電気株式会社 | 入力装置 |
CN103444228A (zh) * | 2011-04-04 | 2013-12-11 | 瑞典爱立信有限公司 | 使用gn/gp的最大允许服务质量过程 |
US9473986B2 (en) * | 2011-04-13 | 2016-10-18 | Interdigital Patent Holdings, Inc. | Methods, systems and apparatus for managing and/or enforcing policies for managing internet protocol (“IP”) traffic among multiple accesses of a network |
US9749932B2 (en) * | 2011-07-07 | 2017-08-29 | Google Technology Holdings LLC | Wireless communication device, wireless communication system, and related methods |
CN102256314B (zh) * | 2011-07-20 | 2014-03-05 | 上海华为技术有限公司 | 业务编码速率调整方法及通信节点 |
CN103857052A (zh) | 2012-11-28 | 2014-06-11 | 华为技术有限公司 | 一种保证时延服务质量的无线调度方法、装置和基站 |
-
2013
- 2013-07-23 CN CN201310311794.9A patent/CN104349400B/zh not_active Expired - Fee Related
-
2014
- 2014-02-24 WO PCT/CN2014/072470 patent/WO2015010469A1/zh active Application Filing
- 2014-02-24 EP EP14828706.3A patent/EP2999261B1/en not_active Not-in-force
-
2015
- 2015-12-16 US US14/971,447 patent/US10028289B2/en not_active Expired - Fee Related
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN1739310A (zh) * | 2003-01-11 | 2006-02-22 | Lg电子株式会社 | 用于控制分组传输的分组业务系统和方法 |
CN102263672A (zh) * | 2010-05-26 | 2011-11-30 | 华为技术有限公司 | 一种ieee 1588链路检测方法、系统和ieee 1588链路装置 |
CN102595518A (zh) * | 2011-01-14 | 2012-07-18 | 中兴通讯股份有限公司 | 一种保证家庭基站用户服务质量的方法和系统 |
Non-Patent Citations (1)
Title |
---|
See also references of EP2999261A4 * |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP3370457A4 (en) * | 2015-12-17 | 2018-11-07 | Huawei Technologies Co., Ltd. | Qos guarantee method and gateway |
US10917812B2 (en) | 2015-12-17 | 2021-02-09 | Huawei Technologies Co., Ltd. | QOS guarantee method and gateway |
Also Published As
Publication number | Publication date |
---|---|
CN104349400A (zh) | 2015-02-11 |
US10028289B2 (en) | 2018-07-17 |
EP2999261A4 (en) | 2016-05-25 |
EP2999261B1 (en) | 2017-09-06 |
EP2999261A1 (en) | 2016-03-23 |
CN104349400B (zh) | 2019-04-05 |
US20160105899A1 (en) | 2016-04-14 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2015010469A1 (zh) | 无线通信的方法、有线传输检测的方法及相关设备 | |
US10966222B2 (en) | Method, device, and system for processing reflective QoS characteristics | |
US10362507B2 (en) | Systems and method for quality of service monitoring, policy enforcement, and charging in a communications network | |
WO2020177764A1 (zh) | 数据传送的保障方法及通信设备 | |
US11564084B2 (en) | Information transmission method, device, and computer readable storage medium | |
WO2020143788A1 (zh) | 支持时间敏感通信服务质量的方法及通信设备 | |
CN114189908B (zh) | 通信方法、装置、设备及存储介质 | |
KR20160073227A (ko) | 무선 통신 시스템에서 기지국과 단말 간 통신 방법을 결정하는 방법 및 장치 | |
JP2023529472A (ja) | 通信方法、装置、およびシステム | |
WO2018141278A1 (zh) | 无线通信方法、用户设备、接入网设备和网络系统 | |
WO2022012361A1 (zh) | 一种通信方法及装置 | |
KR20230066413A (ko) | 핸드오버 프로세스 기반 메시지 전송 방법 및 장치, 디바이스, 및 매체 | |
WO2021052417A1 (zh) | 信息传输方法及通信设备 | |
WO2017054199A1 (zh) | 一种策略的确定方法及装置 | |
KR20220129583A (ko) | 서비스 품질을 결정하는 방법, 컴퓨터 판독 가능 스토리지 매체 및 디바이스 | |
WO2023050415A1 (zh) | 一种多路径传输方法及装置、通信设备 | |
CN115696462A (zh) | 一种网络编码方法及装置 | |
CN115734282A (zh) | 一种服务质量的处理方法、装置和通信系统 | |
WO2024207313A1 (zh) | 用于无线通信的方法及装置 | |
CN113906783A (zh) | 通信方法、装置及系统 | |
WO2022142657A1 (zh) | 报文传输方法、报文传输系统及存储介质 | |
WO2022067699A1 (zh) | 业务数据流的传输方法、通信装置及通信系统 | |
Horváth et al. | End-to-end QoS signaling for LTE | |
WO2023115283A1 (zh) | 一种通信方法、装置、网元、通信设备及计算机存储介质 | |
WO2024140227A1 (zh) | 一种通信方法及装置 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 14828706 Country of ref document: EP Kind code of ref document: A1 |
|
REEP | Request for entry into the european phase |
Ref document number: 2014828706 Country of ref document: EP |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2014828706 Country of ref document: EP |
|
NENP | Non-entry into the national phase |
Ref country code: DE |