WO2015010406A1 - 一种含水污泥和/或废弃物回收利用的方法 - Google Patents

一种含水污泥和/或废弃物回收利用的方法 Download PDF

Info

Publication number
WO2015010406A1
WO2015010406A1 PCT/CN2013/088163 CN2013088163W WO2015010406A1 WO 2015010406 A1 WO2015010406 A1 WO 2015010406A1 CN 2013088163 W CN2013088163 W CN 2013088163W WO 2015010406 A1 WO2015010406 A1 WO 2015010406A1
Authority
WO
WIPO (PCT)
Prior art keywords
sludge
coal
waste
mill
water
Prior art date
Application number
PCT/CN2013/088163
Other languages
English (en)
French (fr)
Inventor
尹无忌
Original Assignee
Yin Wuji
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority to US14/376,989 priority Critical patent/US20160145154A1/en
Priority claimed from CN2013103159392A external-priority patent/CN103396019A/zh
Priority claimed from CN201310323996.5A external-priority patent/CN103361144B/zh
Application filed by Yin Wuji filed Critical Yin Wuji
Publication of WO2015010406A1 publication Critical patent/WO2015010406A1/zh

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B7/00Hydraulic cements
    • C04B7/24Cements from oil shales, residues or waste other than slag
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F11/00Treatment of sludge; Devices therefor
    • C02F11/008Sludge treatment by fixation or solidification
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B7/00Hydraulic cements
    • C04B7/36Manufacture of hydraulic cements in general
    • C04B7/38Preparing or treating the raw materials individually or as batches, e.g. mixing with fuel
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10LFUELS NOT OTHERWISE PROVIDED FOR; NATURAL GAS; SYNTHETIC NATURAL GAS OBTAINED BY PROCESSES NOT COVERED BY SUBCLASSES C10G, C10K; LIQUEFIED PETROLEUM GAS; ADDING MATERIALS TO FUELS OR FIRES TO REDUCE SMOKE OR UNDESIRABLE DEPOSITS OR TO FACILITATE SOOT REMOVAL; FIRELIGHTERS
    • C10L1/00Liquid carbonaceous fuels
    • C10L1/32Liquid carbonaceous fuels consisting of coal-oil suspensions or aqueous emulsions or oil emulsions
    • C10L1/326Coal-water suspensions
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10LFUELS NOT OTHERWISE PROVIDED FOR; NATURAL GAS; SYNTHETIC NATURAL GAS OBTAINED BY PROCESSES NOT COVERED BY SUBCLASSES C10G, C10K; LIQUEFIED PETROLEUM GAS; ADDING MATERIALS TO FUELS OR FIRES TO REDUCE SMOKE OR UNDESIRABLE DEPOSITS OR TO FACILITATE SOOT REMOVAL; FIRELIGHTERS
    • C10L5/00Solid fuels
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10LFUELS NOT OTHERWISE PROVIDED FOR; NATURAL GAS; SYNTHETIC NATURAL GAS OBTAINED BY PROCESSES NOT COVERED BY SUBCLASSES C10G, C10K; LIQUEFIED PETROLEUM GAS; ADDING MATERIALS TO FUELS OR FIRES TO REDUCE SMOKE OR UNDESIRABLE DEPOSITS OR TO FACILITATE SOOT REMOVAL; FIRELIGHTERS
    • C10L5/00Solid fuels
    • C10L5/02Solid fuels such as briquettes consisting mainly of carbonaceous materials of mineral or non-mineral origin
    • C10L5/34Other details of the shaped fuels, e.g. briquettes
    • C10L5/36Shape
    • C10L5/366Powders
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10LFUELS NOT OTHERWISE PROVIDED FOR; NATURAL GAS; SYNTHETIC NATURAL GAS OBTAINED BY PROCESSES NOT COVERED BY SUBCLASSES C10G, C10K; LIQUEFIED PETROLEUM GAS; ADDING MATERIALS TO FUELS OR FIRES TO REDUCE SMOKE OR UNDESIRABLE DEPOSITS OR TO FACILITATE SOOT REMOVAL; FIRELIGHTERS
    • C10L9/00Treating solid fuels to improve their combustion
    • C10L9/08Treating solid fuels to improve their combustion by heat treatments, e.g. calcining
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10LFUELS NOT OTHERWISE PROVIDED FOR; NATURAL GAS; SYNTHETIC NATURAL GAS OBTAINED BY PROCESSES NOT COVERED BY SUBCLASSES C10G, C10K; LIQUEFIED PETROLEUM GAS; ADDING MATERIALS TO FUELS OR FIRES TO REDUCE SMOKE OR UNDESIRABLE DEPOSITS OR TO FACILITATE SOOT REMOVAL; FIRELIGHTERS
    • C10L9/00Treating solid fuels to improve their combustion
    • C10L9/10Treating solid fuels to improve their combustion by using additives
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10LFUELS NOT OTHERWISE PROVIDED FOR; NATURAL GAS; SYNTHETIC NATURAL GAS OBTAINED BY PROCESSES NOT COVERED BY SUBCLASSES C10G, C10K; LIQUEFIED PETROLEUM GAS; ADDING MATERIALS TO FUELS OR FIRES TO REDUCE SMOKE OR UNDESIRABLE DEPOSITS OR TO FACILITATE SOOT REMOVAL; FIRELIGHTERS
    • C10L2290/00Fuel preparation or upgrading, processes or apparatus therefore, comprising specific process steps or apparatus units
    • C10L2290/24Mixing, stirring of fuel components
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10LFUELS NOT OTHERWISE PROVIDED FOR; NATURAL GAS; SYNTHETIC NATURAL GAS OBTAINED BY PROCESSES NOT COVERED BY SUBCLASSES C10G, C10K; LIQUEFIED PETROLEUM GAS; ADDING MATERIALS TO FUELS OR FIRES TO REDUCE SMOKE OR UNDESIRABLE DEPOSITS OR TO FACILITATE SOOT REMOVAL; FIRELIGHTERS
    • C10L2290/00Fuel preparation or upgrading, processes or apparatus therefore, comprising specific process steps or apparatus units
    • C10L2290/28Cutting, disintegrating, shredding or grinding
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10LFUELS NOT OTHERWISE PROVIDED FOR; NATURAL GAS; SYNTHETIC NATURAL GAS OBTAINED BY PROCESSES NOT COVERED BY SUBCLASSES C10G, C10K; LIQUEFIED PETROLEUM GAS; ADDING MATERIALS TO FUELS OR FIRES TO REDUCE SMOKE OR UNDESIRABLE DEPOSITS OR TO FACILITATE SOOT REMOVAL; FIRELIGHTERS
    • C10L5/00Solid fuels
    • C10L5/02Solid fuels such as briquettes consisting mainly of carbonaceous materials of mineral or non-mineral origin
    • C10L5/04Raw material of mineral origin to be used; Pretreatment thereof
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10LFUELS NOT OTHERWISE PROVIDED FOR; NATURAL GAS; SYNTHETIC NATURAL GAS OBTAINED BY PROCESSES NOT COVERED BY SUBCLASSES C10G, C10K; LIQUEFIED PETROLEUM GAS; ADDING MATERIALS TO FUELS OR FIRES TO REDUCE SMOKE OR UNDESIRABLE DEPOSITS OR TO FACILITATE SOOT REMOVAL; FIRELIGHTERS
    • C10L5/00Solid fuels
    • C10L5/40Solid fuels essentially based on materials of non-mineral origin
    • C10L5/42Solid fuels essentially based on materials of non-mineral origin on animal substances or products obtained therefrom, e.g. manure
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10LFUELS NOT OTHERWISE PROVIDED FOR; NATURAL GAS; SYNTHETIC NATURAL GAS OBTAINED BY PROCESSES NOT COVERED BY SUBCLASSES C10G, C10K; LIQUEFIED PETROLEUM GAS; ADDING MATERIALS TO FUELS OR FIRES TO REDUCE SMOKE OR UNDESIRABLE DEPOSITS OR TO FACILITATE SOOT REMOVAL; FIRELIGHTERS
    • C10L5/00Solid fuels
    • C10L5/40Solid fuels essentially based on materials of non-mineral origin
    • C10L5/44Solid fuels essentially based on materials of non-mineral origin on vegetable substances
    • C10L5/445Agricultural waste, e.g. corn crops, grass clippings, nut shells or oil pressing residues
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10LFUELS NOT OTHERWISE PROVIDED FOR; NATURAL GAS; SYNTHETIC NATURAL GAS OBTAINED BY PROCESSES NOT COVERED BY SUBCLASSES C10G, C10K; LIQUEFIED PETROLEUM GAS; ADDING MATERIALS TO FUELS OR FIRES TO REDUCE SMOKE OR UNDESIRABLE DEPOSITS OR TO FACILITATE SOOT REMOVAL; FIRELIGHTERS
    • C10L5/00Solid fuels
    • C10L5/40Solid fuels essentially based on materials of non-mineral origin
    • C10L5/46Solid fuels essentially based on materials of non-mineral origin on sewage, house, or town refuse
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P40/00Technologies relating to the processing of minerals
    • Y02P40/10Production of cement, e.g. improving or optimising the production methods; Cement grinding

Definitions

  • the present invention relates to an aqueous sludge and/or waste recycling method, and more particularly to the use of an aqueous sludge and/or waste for improving vertical grinding conditions or improving the combustion properties of pulverized coal. Background technique
  • water-containing sludge In addition to some clay-based inorganic substances, water-containing sludge also contains organic matter, pathogenic microorganisms or toxic and harmful substances. Due to its high water content and flocculated water-preserving structure, it is extremely difficult to treat harmlessly, and it is more difficult to directly implement resource utilization.
  • the treatment method of water-containing sludge, in addition to landfill, composting, ceramsite, etc., the world's first water-containing sludge treatment technology is roughly divided into three categories.
  • the first type is to use the thermal waste heat or the waste heat of the cement S furnace to set up a sludge drying equipment system to dry the water sludge as an alternative fuel.
  • the use of cement to produce waste gas drying and disposal sludge system disclosed in Chinese patent CN102173554 A is characterized in that it comprises a novel dry process cement clinker burning system, a wet sludge drying system, a thousand sludge storage and a feed cement kiln. System, electric drag and automatic control system.
  • the sludge is dried after the addition of a special drying device and the waste heat of the grate cooler of the cement kiln.
  • the water-containing sludge drying in the flocculated water-retaining structure is actually difficult and the drying efficiency is low.
  • the second type is that the water-containing sludge is directly added into the cement kiln, that is, the water-containing sludge is directly added into the grate cooler or the kiln tail gas chamber or the decomposition furnace or the kiln connecting pipe. It will seriously affect the normal operation of the kiln condition.
  • the third type is the use of high temperature and high pressure catalytic oxidation treatment, which has a large investment and a limited processing capacity.
  • Chinese patent CN1868939A discloses a method for directly treating sludge by high-temperature clinker in a cement production process, which is to directly add sludge to a high-temperature clinker pouring zone or chilling in a cement production process.
  • the method is difficult to uniformly mix the wet sludge with the high temperature clinker, the heat exchange is poor, and the treatment amount is low. Due to the large moisture content of the wet sludge, the sludge moisture is greatly entered into the kiln, which will seriously affect the normal operation of the kiln condition and even affect the cement. product quality.
  • Chinese patent CN)] 172790A discloses a new process for producing cement by using secondary sludge of wet sludge waste residue. It is treated with wet industrial waste or urban sewage sludge or water after pressure filtration or centrifugal dewatering or after leaching. The sludge is used as raw material and other raw materials that have been ground by the first-level ingredients, and then mixed with two-stage wet ingredients, and uniformly mixed to form a raw material rod or raw material ball. After drying with waste heat, it enters the shaft kiln of the vertical kiln cement production line. Burn the mature material. The method utilizes secondary ingredients in the production of cement for wet sludge production, has a long process flow, and utilizes a machine shaft kiln process, which is not suitable for the production of thousands of cements. Process.
  • the material to be ground is generally required to contain 3 wt% to 15 wt%.
  • the comprehensive moisture content and corresponding plasticity of the material the comprehensive moisture content is less than 3%, the vertical grinding can not effectively form the rolling layer, which is easy to generate vibration and difficult to run stably, and can not exert the grinding advantage of vertical grinding.
  • shale, sandstone, silica and other ridged siliceous materials are used.
  • the water content of the shale is mostly low, and the largest limestone raw material is generally less than 1%, and the comprehensive moisture content of the material is mostly less than 3%.
  • the present invention provides a novel method for the recovery and reuse of aqueous sludge and Z or waste.
  • the aqueous sludge and/or waste can be used in the production of dry cement to adjust the comprehensive moisture and material plasticity of the raw material vertical mill or coal mill material, and in heating or thermal power In the preparation and application of pulverized coal in boilers, it is used to adjust the combustion performance of pulverized coal.
  • the present invention provides a method for recycling water-containing sludge and/or waste, comprising: adding the aqueous sludge and/or waste to a raw material or a raw material at the same time as the raw material is produced Adding to the vertical mill for mixing and grinding, so that the moisture content of the mixture is 3-15% by weight, thereby adjusting the comprehensive moisture and material plasticity of the mixture in the vertical mill to prepare the raw meal powder containing sludge, Then, the obtained raw meal powder is conventionally calcined into cement clinker; or the coal block and the aqueous sludge and/or waste are mixed and ground to adjust the moisture and plasticity of the coal material and improve the combustion performance of the coal powder.
  • the coal block and the aqueous sludge and/or waste are simultaneously added to the coal vertical mill for adjusting the moisture and plasticity of the coal material to prepare the coal powder containing the sludge.
  • the aqueous sludge and/or waste is added to the coal mill to form pulverized coal containing water sludge and/or waste to improve the combustion performance of the pulverized coal;
  • the water-containing sludge and/or waste is blended in an amount of from 1 to 30% by weight of the coal.
  • the sludge and/or waste is added to the granulated coal combustion and grinded together with the granular coal combustion to form sludge and/or waste. Coal powder.
  • the invention is based on the characteristics of various types of sludge wastes in different regions, and the coal grinding conditions of the vertical grinding, heating or thermal power production lines of the thousands of cement production lines in different regions, and specifically targeting the specific effective utilization schemes of different types of sludges or wastes, Make full use of all types of water-containing sludge and / or waste.
  • the sludge is sludge having a water content of ⁇ 99%, preferably sludge having a water content of ⁇ 90%.
  • the aqueous sludge and/or waste is selected from the group consisting of municipal water treatment sludge, agricultural product processing waste, petrochemical sludge, organic sludge of printing and dyeing plant, kitchen waste, industrial Oil ester waste and sedimentation sludge in river channel pool.
  • the aqueous sludge and/or waste is formulated in an amount from 2% to 20% by weight of the raw milled material.
  • the amount of water-containing sludge such as the hardness and water content of limestone, the water content and plasticity index of sandstone or shale or clay, etc.
  • the actual conditions of the type and traits of the water-containing sludge determine the amount of water-containing sludge to meet the requirements for comprehensive moisture and material plasticity of the raw material.
  • the aqueous sludge and/or waste is mixed into the raw material or the vertical mill in the raw material shed or the raw material storage to the raw material vertical grinding section, according to the moisture content or solid content of the aqueous sludge, and the flow Physical properties such as sex or plasticity; ⁇ Use general equipment or equipment, and use conventional methods.
  • the chemical components of the inorganic component are Si0 2 , Ai 2 () 3 , Fe 2 0 3 , CaO, MgO, K 2 0, ⁇ 0, ⁇ 2 0 5 content is included in the calculation of normal raw material ingredients; when the water content of the aqueous sludge is ⁇ 95%, or the inorganic content is in the raw material ingredients Within the error range, it is ignored.
  • the aqueous sludge and/or waste is blended in an amount of 5 to 20% by weight of the coal.
  • the fineness of the pulverized coal of the aqueous sludge and/or waste is controlled by 80 ⁇ sieve residue ⁇ 18%.
  • the organic matter added to the coal block is selected from the group consisting of organic sludge and/or waste having a moisture content of ⁇ 99% by weight, sludge having a content of ⁇ 40% by weight of organic matter; Optimized sewage treatment ⁇ sludge, petrochemical sludge, organic sludge from printing and dyeing plants, kitchen waste, industrial oil ester waste, agricultural and forestry medicine processing waste, such as cassava residue, sugar slag waste liquid, oil filter residue, dregs, clam shell And plant slag, biogas rot and poultry manure, etc.
  • the organic matter added to the granulated coal is selected from the group consisting of moisture content ⁇ ) 9% by weight and the dry organic content > 40% by weight of the aqueous sludge and / or waste.
  • the water-containing sludge and/or waste is allocated in the space section of the raw coal dump shed to the coal mill feed inlet, and refers to the general equipment or device (such as metering / 3 ⁇ 4 material device, forklift, Reclaiming the cloth machine, the cloth truck, the mud pump, the pump truck, etc., in the normal way, in the original coal pile shed to the coal mill feed port space section one or more locations, the sludge or waste is added to the block according to the proposed proportion
  • the aqueous sludge or the broken slurry waste is directly sprayed into a coal mill with a rolling mechanism, a hammering mechanism or a fan grinding mechanism.
  • the coal mill is a coal mill that uses hot air to heat the pulverized coal, such as a coal vertical mill or a wind sweep of a cement enterprise for pulverizing coal powder, and a steel ball drum coal mill for pulverized coal powder by a thermal power enterprise.
  • a coal vertical mill or a wind sweep of a cement enterprise for pulverizing coal powder and a steel ball drum coal mill for pulverized coal powder by a thermal power enterprise.
  • ball or bowl or flat or roller type medium speed coal mill hammer or shaft type or fan mill type high speed coal mill.
  • the present invention provides a cement raw meal powder prepared by the process described, which comprises from 2 to 20 parts by weight of said aqueous sludge and/or waste.
  • the present invention provides a pulverized coal prepared by the method, which comprises -30% by weight of the aqueous sludge and/or waste.
  • the biggest problem in the treatment or utilization of sludge with high water content is that its flocculated structure has strong water retention capacity, dehydration and dryness are extremely difficult, and the second is its plastic viscosity.
  • the use of the moisture and plastic viscosity contained in the aqueous sludge itself can provide the appropriate plasticity and corresponding plasticity of the raw material for the raw material of the millennium cement production line or the vertical mill material, which can meet the requirements of vertical grinding.
  • the requirements of the crushed material layer are realized to realize the resource utilization of the water-containing sludge; and the squeezing limestone, sandstone, etc.
  • the raw meal powder produced by the thousand-method cement can be compatible with partially uniformly dispersed organic matter particles and various inorganic particles, and only need to consider the characteristics of the total content of inorganic chemical components, so that the sludge in the raw material
  • the organic matter contained in the preheater to the decomposition furnace is decomposed and burned, and the heat generated by the combustion is utilized; at the same time, the sludge organic matter rich in ammonia nitrogen compounds and hydrocarbons in the raw material is used as the denitration component, and the same Good denitrification; let the inorganic matter contained in the sludge in the raw material as the raw material component and finally enter the rotary kiln into the clinker component, and the harmful heavy metal elements are solidified in the clinker mineral;
  • the exhaust gas is effective in the preheater and dust removal system of the Qianfa cement production system. Reason.
  • the use of industrial coal is a brittle material and has a sucking effect of the complex polymer, similar to the organic matter in the sludge and waste, after repeated intense pressure impact or grinding to form a relatively uniform Microparticles and adsorb low molecular weight species such as odor molecules;
  • the coal particles completely destroy the flocculated water-retaining structure in the sludge or waste, and release free water to make the sludge or waste dispersed in the coal particles. It is easy to dry under the hot air with higher temperature in the coal mill and achieve the sterilization and disinfection effect. For the sludge or waste added by the coal vertical mill, it also adjusts the comprehensive moisture and coal plasticity of the coal in the vertical mill. Function to save industrial water;
  • the characteristics of the ridge and sucking properties of the brittle coal used in the industrial S furnace, and the coal mill generally adapts to the water content of the coal material 4 ⁇ 15%, and the coal mill can be applied to the highest moisture content of 15% ⁇ 25%. , Control the amount of cold air into the grinding amount or appropriately increase the amount of heat and heat into the grinding, and dissolve the influence of the water brought by the organic sludge to the coal mill capacity.
  • the raw material section adopts stacker forklift homogenization, forklift grabbing material, silo batching, vertical grinding and grinding process.
  • the raw material is made of limestone, clay, sandstone and sulfuric acid slag.
  • the raw mill vertical mill yield is about 90t/h. It is said that the water is sprayed every hour in the vertical mill.
  • the decomposing furnace in the cement kiln system is denitrated with ⁇ % ammonia water.
  • the ammonia water is about 200kg per hour (! ⁇ (online detection 380 ⁇ 450mg/m 3 ) .
  • the clay was removed from the above raw material ingredients and formulated into 20% by weight of aged sludge.
  • the sludge is taken from the aged sludge stored in the open air of the sewage treatment plant, and the average moisture content of the aged sludge is 37.3% by weight.
  • Use the forklift to shovel the sludge and raw material in the stacker, mix it evenly, and then feed it into the raw material vertical mill after grinding (no water spray). After %, the vertical mill output is stable at 90tZh, and the raw meal fineness is reduced from 17% to 14%.
  • a ⁇ 3.5 ⁇ 52 ⁇ thousand method cement production line the raw material ingredients use four components of limestone, shale, slag and steel slag.
  • the limestone ⁇ two grades of gravel are homogenized by forklift in the limestone shed, phosphorus slag and The steel slag is evenly mixed with a forklift in the stacker.
  • the output of the raw material vertical grinding table is about 120 tons. It turns out that when the climate is dry, the spray in the vertical mill is about 9 tons per hour.
  • the decomposing furnace of the cement kiln system uses 17.5% ammonia water to denitrate, and consumes about 220 kg of ammonia per hour. : ⁇ 3 ⁇ 4 online detection of about 400mg / Nm 3 or so.
  • sludge having a weight ratio of 6% is added to the above-mentioned ingredients, and the sludge is treated with a biochemical sludge of a treatment plant, and the water content is 85.3% on average.
  • the sludge in the tanker is directly sprayed on the gravel pile, shoveled with a forklift, and fed into the raw material vertical grinding powder (without water spray) after being mixed with shale, phosphorus slag and steel slag, vertical mill
  • the yield and raw meal fineness of the table were basically unchanged.
  • the raw meal powder containing sludge is sent to the kiln system in a normal manner, and the amount of ammonia in the decomposition furnace is directly reduced by 50%.
  • the kiln condition and the quality of the production are unchanged, and the tailings consumption is used.
  • the on-line detection of N() x content is stable below DOmg/Nm 3 . That is to say, the biochemical sludge with a water content of 6% and a water content of 85.3% solves the problem of water spray humidification of the raw material vertical mill, without any adverse effect on the kiln system, and the cost of the denitrification material is reduced by 50%. decline.
  • a sewage sludge having a weight-to-weight ratio of 1133% by weight is blended into the above-mentioned compounding material, and the sludge is muddy.
  • the sewage sludge in the sewage sludge tank can be pumped and transported by the mud slurry pump, and evenly spread and spread in the distribution of the raw material distribution system.
  • the stone lime-lime stone material layer on the belt is conveyed, and then mixed with sandstone rock, coal ash ash and sulfur sulphuric acid SS, and then sent to In-situ raw material erect grinding powder grinding ((not spray water)), the stand-up grinding table is stable and stable at the same time, while the raw material fineness is reduced and lowered. .. 55%%. . Under the condition that the number of parameters of the art-control control parameters of the kiln system is adjusted and adjusted, the raw material powder containing the sludge will be normal.
  • the square mode is sent to the kiln system, and the ammonia ammonia water of the decomposition furnace is directly reduced by the amount directly reduced to a fraction of a fraction, and the kiln condition Moreover, there is no change in the quality and quality of the product, and the NN0O Xx content in the online line inspection is stable and stable at 440000mmgg//NNmm 33 or less. . That is to use the ii33%% water-containing water rate rate of 8866..77%% of the digestion of sewage sludge solution to solve the problem of the raw material erected water spray water humidification The problem of wet questioning, the impact on the kiln system is not adverse, but detached
  • Example 4 A 0>4x60m dry process cement production line uses raw materials for limestone, shale, phosphorus slag and steel slag.
  • the output of the raw material vertical grinding table is about 2] 0 tons. It turns out that the water spray in the vertical mill fluctuates at about 5 to 13 tons per hour.
  • the decomposing furnace of the cement kiln system uses 17.5% ammonia water to denitrate, and consumes about 290 kg of ammonia per hour.
  • the cement line 1 ⁇ online inspection 380 ⁇ -480mg/Nm 3 o
  • sludge having a weight ratio of 8% was blended into the above-mentioned ingredients, and the sludge was treated with cassava processing waste liquid, and the water content was 78.2% on average.
  • the waste liquid in the sludge tank is separately distributed by the mud pump pipe to the raw material vertical grinding feed port and the lock air feeding branch wheel under the feeding port, and the waste liquid of the two waste liquid adding points is evenly distributed.
  • the vertical grinding powder is added to the vertical grinding powder (without spraying water), the vertical grinding air volume is increased by about 1%, and the vertical grinding table yield and raw material fineness are basically unchanged.
  • the raw meal powder containing cassava waste is sent to the kiln system in a normal manner, and the amount of gas in the decomposition furnace is directly reduced to one-third of the amount, and the kiln condition and production quality are not change line detected NO x content of the stabilizer in the 400mg / Nm 3 or less. That is to say, the cassava processing waste liquid with 8% water content of 78.2% solves the problem of water spray humidification of the raw material vertical mill, and has no adverse effect on the kiln system, and the cost of the denitrification material is reduced by two points.
  • sludge having a weight ratio of i0% is blended into the above-mentioned ingredients, and the sludge is deposited in an urban river channel with an average moisture content of 73.7%.
  • renovation of the vertical grinding water spray system that is, the nozzle hole is enlarged, and the sludge and mud pump in the sludge tank is transported to the original water inlet pipe of the raw material vertical mill, and the vertical grinding water spray after the ffl transformation
  • the system injects sludge into the mill.
  • the vertical mill air volume is increased by about 1%, and the output and raw meal fineness are basically unchanged during the vertical grinding table.
  • the raw meal powder containing sludge is sent to the kiln system in a normal manner, and the amount of ammonia in the decomposition furnace is directly reduced to 30%, and the kiln condition and production quality are unchanged.
  • the detected NOx content was stabilized below 400 mg/Nni 3 . That is to say, the 10% water content of 73.7% of urban river channel sediment sludge solves the problem of water spray humidification of the raw material vertical mill, which has no adverse effect on the kiln system, and the cost of the niobium nitrate material is reduced by 70%.
  • Dry sludge treatment plant sludge powder (dry matter content 73,9%) 5101;
  • Printing and dyeing plant has sludge
  • test results of the laboratory show that the pulverized coal produced by mixing sludge and waste into anthracite coal has significantly improved combustion performance and showed satisfactory results.
  • the coal mill of a 2500t Qianfa Cement Plant is a vertical mill.
  • the original production of bituminous coal and coal vertical mill is 45t i, and the fineness of coal powder is controlled by 80 ⁇ .
  • the coal source is an anthracite with an average volatile content of 6.9% and an average calorific value of 5600K ca l/g.
  • the coal is sprayed on the coal vertical grinding belt.
  • the coal grinding output is 40 ⁇ , and the fineness of the coal powder is 80 ⁇ . When the vibration is small, the vibration is reduced to a minimum.
  • the vertical grinding amplitude of the coal is reduced to less than 0.8 mm.
  • the average calorific value of pulverized coal into the kiln is 5560K C a Kg.
  • the flame temperature in the kiln is low, the flying sand is large, the crust of the S tail chamber is serious, and the kiln has a long crust in the back of the kiln.
  • the clinker conversion heat consumption is 820KcaMig.
  • the municipal sewage treatment plant sludge is used.
  • the average moisture content of the sampled sludge is 85.6%
  • the organic matter content of the 1000-base sludge is 75%
  • the calorific value of the dry-base sludge is 3207K C al/Kg.
  • the sludge is transported into the sludge pumping tank, and the water is stopped on the feeding belt. According to the weight of the granular anthracite, 12% of the sludge pump pipe is separately distributed from the grinding feed belt and the coal vertical grinding.
  • the feed port is divided into two positions, and half of the amount is continuously added to the sludge.
  • the coal mill output is stabilized to 45 ⁇ .
  • the average calorific value of pulverized coal powder in kiln is 5530Kcal/g.
  • the kiln containing sludge pulverized coal is bright, the flying sand in the kiln is small, the crust of the ash chamber is small, and the ring in the kiln is slowly taken off.
  • the raw materials basically disappeared.
  • the clinker conversion heat loss is reduced to 781Kea1 ⁇ 2 g .
  • the aged sewage stored in the open-air storage of the municipal sewage treatment plant is used.
  • the average moisture content of the sampled sludge is 43.7%
  • the organic matter content of the thousand-base sludge is 67.3%
  • the calorific value of the dry-base sludge is 3215KxalKg.
  • the sludge is transported into the slag coal shed, and the coal and sludge are metered and shoveled with a forklift, and 10% of the weight of the loose coal is blended.
  • the sludge containing coal after the coal pile is homogenized is continuously fed. Grinding in the wind mill, the fineness of the obtained pulverized coal powder is controlled at 80% ⁇ .
  • the municipal sewage treatment ⁇ digested sludge the average moisture content of the sampled sludge is 83.6%
  • the organic matter content of the 1000-base sludge is 72%
  • the calorific value of the 1000-base sludge is 3307Kxa] Kg.
  • the sludge is transported into the thermal power plant and pumped into the sludge tank. According to the 13% of the weight of the loose coal, the sludge is continuously injected into the sludge at the position of the coal slurry feeding port.
  • the hot air volume was increased by 2%, and the fineness of the pulverized coal containing sludge after grinding was controlled at 12% of the R90 sieve, and the coal mill output was still stable at 48%.
  • the average calorific value of the pulverized coal into the furnace is 4,450 ag.
  • the diesel fuel is not sprayed, the flame in the furnace is stable, the loss of slag is reduced to 3 to 6%, and the loss of fly ash is reduced to 3 ⁇ 5%, coal consumption per degree is reduced to ().43Kg. Note After the sludge with 13% coal weight is added, the combustion performance of pulverized coal is obviously improved, and the burnout rate is obviously improved. In the test phase, the coal consumption per kWh is 10.8%.
  • the imported No. 923 shallow bowl coal mill is used, with coal blending, the output of a single coal mill is 6 ⁇ , and the fineness of coal fines is 10%.
  • the average volcanic value of pulverized coal into the boiler is 8%, and the average calorific value is 4350Kcai g. Due to poor coal quality, the furnace is easily extinguished, and diesel fuel is often required to assist combustion.
  • the loss of the original slag is 5 ⁇ 7%, the loss of fly ash is 3 ⁇ 9%, and the electricity consumption per kW is about 0.45kg.
  • the sewage sludge treatment plant of the city of Wl is digested, and the average moisture content of the sampled sludge is 84,6%.
  • the organic matter content is 76%, and the dry sludge thermal value is 31] 0KcaMK_g.
  • the water-containing sludge is transported into the thermal power plant, pumped into the sludge tank, and 10% of the weight of the loose-grained coal is continuously injected into the sludge by the sludge pump in the center of the coal mill.
  • the amount of hot air is increased by 2%.
  • the fineness of the pulverized coal containing sludge is controlled to 10% of the R90 sieve, and the coal mill output is still stable at 60i h.
  • the calorific value of the pulverized coal containing sludge is 4350 K. C ag / g.
  • the diesel fuel is not sprayed, the flame in the furnace is stable, and the slag loss is reduced to 2 to 5%.
  • the ash burn loss is reduced to 1 to 3%, and the power consumption per kW is reduced to 0.43Kg. It shows that after the sludge with i0% of coal weight is added, the combustion performance of pulverized coal is obviously improved, the burnout rate is increased, and the unit power generation saves 4.4% of raw coal.
  • an S-type fan coal mill is used to make the coal blending and pulverized coal fineness R90 sieve 15%.
  • the average volcanic value of pulverized coal into the boiler is ⁇ %, and the average calorific value is 4150Kca1 ⁇ 2 g. Due to the poor quality of coal, the furnace is easily extinguished and it is necessary to spray diesel to assist combustion.
  • the loss of the original slag is 7 ⁇ 10%, the loss of fly ash is 7 ⁇ 12%, and the coal consumption per kilowatt is about 0,45kg.
  • the organic waste in the vegetable market is used, and the average moisture content of the sample waste is 57.6%, and the dry heat value is 4586K C aM g.
  • the organic waste in the vegetable market is transported into the raw coal shed of the thermal power plant, and the pile is homogenized by the forklift.
  • the mixed coal is obtained by blending 15% of the weight of the loose coal, and the mixed coal is continuously fed through the feeder.
  • the fan mill the amount of hot air is increased by 3%, and the fineness control of the pulverized coal containing sludge after grinding is unchanged, and the coal mill output is equivalent.
  • the average calorific value of pulverized coal into the furnace is 4180 Kcai g.
  • the diesel fuel is not sprayed, the flame in the furnace is stable, the loss of furnace S is reduced to 1 ⁇ 3%, and the loss of fly ash is reduced. 2%, the coal consumption per kilowatt hour is reduced to 0.42Kg. It shows that after the waste with 15% coal weight is added, the combustion performance of pulverized coal is obviously improved, the burnout rate is increased, and the unit power generation saves 6.7% of raw coal.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Ceramic Engineering (AREA)
  • Environmental & Geological Engineering (AREA)
  • Materials Engineering (AREA)
  • Structural Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Hydrology & Water Resources (AREA)
  • Water Supply & Treatment (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Geology (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • General Chemical & Material Sciences (AREA)
  • Treatment Of Sludge (AREA)

Abstract

一种含水污泥和/或废弃物回收利用的方法及所述方法制备的水泥生料粉和煤粉。该方法包括:在干法水泥生产过程中,将所述含水污泥和/或废弃物加入生料原料中或与生料同时加入立磨内进行混合粉磨,使得所述混合物料的水分含量为3-15重量%,制成含污泥的生料粉,然后将得到的生料粉常规煅烧成水泥熟料;或者将煤块和所述煤块重量1-30%的含水污泥和/或废弃物混合研磨,制成含有污泥和/或废弃物的煤粉。

Description

种含水污泥和 /或废弃物回收利用的方法 技术领域
本发明涉及一种含水污泥和 /或废弃物回收再利 方法, 尤其是涉及一种含水污泥和 / 或废弃物在改善立磨工况或改善煤粉的燃烧性能中的应用。 背景技术
含水污泥除含有部分粘土类无机物外, 还含有有机物、 病原体微生物或有毒有害物 质, 由于水分含量高, 且呈絮凝状保水结构, 无害化处理极困难, 更难以直接实施资源 化利用。
目前, 含水污泥的处理方法, 除填埋、 堆肥、 制陶粒等外, 世界先迸的含水污泥处 理技术大致分为:三大类。 第一类是, 利用火电余热或水泥 S炉废气余热设置污泥专用烘 干装备系统, 将含水污泥烘干做为替代性燃料。 如中国专利 CN102173554 A公开的利用 水泥生产废气烘千和处置污泥系统, 其特征在于它包括新型干法水泥熟料烧成系统、 湿 污泥烘千系统、 千污泥储存和喂入水泥窑系统、 电力拖动和自动控制系统。 通过添置 - - 套专用烘千装置、 利用水泥窑的篦冷机余热将污泥烘千后进行处理, 然而, 呈絮凝状保 水结构的含水污泥烘千实际上比较困难, 烘千效率低。 第二类是, 将含水污泥直接加入 水泥窑炉内, 即将含水污泥直接加入篦冷机内或窑尾烟室或分解炉内或窑炉连接管道 内, 由于含水污泥水分含量多, 会严重影响窑况的正常运行。 第三类是,利用高温高压催 化氧化处理, 投资大, 处理量很有限。
中国专利 CN1868939A 公幵了一种用水泥生产过程中高温熟料直接处置污泥的方 法, 其是将污泥直接密闭输送添加到水泥生产过程中的高温熟料倾出区或篦冷 上。 该 方法难于使湿污泥与高温熟料均匀混合, 热交换差, 处理量低, 由于湿污泥水分含量 多, 污泥水分大量入窑炉, 会严重影响窑况的正常运行, 甚至影响水泥产品质量。
中国专利 CN )】 172790A 公开了一种利用湿态污泥废渣二级配料生产水泥的新工 艺, 采用压滤后或离心脱水后或沥千后的湿态工业废渣或城市下水道污泥或水处理污泥 作为原料与其它经过一级配料粉磨的原料再进行二级千湿配料, 混合均匀, 制成生料棒 或生料球, 利用余热烘千后, 进入立窑水泥生产线机立窑內烧成熟料。 该方法利 ¾湿态 污泥生产水泥采用二级配料, 工艺流程长, 且是利用机立窑工艺, 不适合千法水泥生产 工艺。
以上方法, 实际应用的效果不佳, 且投资大, 工艺复杂。
另一方面, 干法水泥生产线上的生料立磨或煤立磨工作时, 由于立磨的结构特征和 工作原理特殊, 被粉磨的物料, ·般需要含有 3 重量%〜15 重量%的物料综合水分和相 应塑性, 综合水分含量低于 3%, 立磨内不能有效形成辗压料层, 易产生震动而难以稳定 运行, 无法发挥立磨的粉磨优势。 目前, 多采用页岩、 砂岩、 硅石等脊性硅质原料, 它 ί门的含水量大多较低, 而其中最大宗的石灰石原料含水量一般小于 1%, 其物料综合水分 大多低于 3%, 因此, 立磨内设有喷水加湿系统, 以对物料适度加水增湿, 提高立磨物料 的综合水分含量, 形成较稳定的碾压物料料层, 而形成较好的碾压物料料层, 才能有效 发挥立磨的粉磨优势。 再者, 当前干法水泥生产线普遍采用的氨水、 尿素脱硝方法, 不 仅消耗热量, 增加成本, 亦与农业争肥。
此外, 研究表明, 污泥及废弃物含有大量的可燃物, 其 、 Η、 0、 Ν元素成分含量 高, 着火温度低, 大多着火温度仅 300〜500°C , 且其干基热值大多波动在 2800Kcal/kg〜 4500Kcal/kg., 少数热值高达 7000Kcai/kg, 其干基物的燃烧性能大多优于褐煤, 是一种可 改善无烟煤及劣质煤燃烧性能的有利用价值的可再生能源。但是, 目前还末找到 ·种有效 的低成本、简单易行的利用方法,而关于主动利用污泥或废弃物改善煤粉燃烧性能的研究 或应用也未见报道。 发明内容
为了更好的回收利用含水污泥和 /或废弃物, 解决现有技术中含水污泥和 /或废弃物利 用率不足、 投资大以及工艺复杂等问题。 本发明提供了一种全新的含水污泥和 Z或废弃物 回收再利用的方法。 通过本发明的方法, 可在干法水泥生产中, 将所述含水污泥和 /或废 弃物用于调整生料立磨或煤磨物料的综合水份和物料塑性,及在供热或火电锅炉的煤粉制 备与应用过程中, 用于调整煤粉的燃烧性能。
本发明提供了一种含水污泥和 /或废弃物回收利用的方法, 包括: 在千法水泥生产过 程中, 将所述含水污泥和 /或废弃物加入生料原料中或与生料同时加入立磨内进行混合粉 磨, 使得所述混合物料的水分含量为 3-15重量%, 以此调整立磨中的混合物料的综合水 分和物料塑性, 制成含污泥的生料粉, 然后将得到的生料粉常规煅烧成水泥熟料; 或者将 煤块和所述含水污泥和 /或废弃物混合研磨, 以调整煤料的水份和塑性和改善煤粉的燃烧 性能,制成含有污泥和 /或废弃物的煤粉;其中所述含水污泥和 /或废弃物的配入量为所述煤 块重量的 1〜30%。 在本发明的一个优选实施方式中, 在煤立磨中同时加入煤块和所述含水污泥和 /或废 弃物,用于调整煤料的水份和塑性,制成含有污泥的煤粉;或者在锅炉煤粉的制备过程中, 将含水污泥和 /或废弃物加入煤磨中, 制成含水污泥和 /或废弃物的煤粉, 以改善煤粉的燃 烧性能; 其中所述含水污泥和 /或废弃物的配入量为所述煤块重量的 1〜30%。优选在供热 /火电锅炉的煤粉制备过程中, 将所述污泥和 /或废弃物加入块粒状燃煤中与所述块粒状燃 煤一起粉磨, 制成含有污泥和 /或废弃物的煤粉。
本发明根据不同区域各类污泥废弃物特征,及不同区域千法水泥生产线立磨、供热或 火电生产线煤磨情况,针对性优选不同类污泥或废弃物的具体的有效利用方案, 以充分利 用各类含水污泥和 /或废弃物。
在本发明的一个优选实施方式中, 所述污泥为含水率≤99%的污泥, 优选含水率≤90% 的污泥。
在本发明的进一步的优选实施方式中, 所述含水污泥和 /或废弃物选自市政水处理污 泥、 农产品加工废弃物、 石化污泥、 印染厂有机污泥、 生活厨余物、 工业油酯废料和河道 湖池沉积污泥。
在本发明的进一歩的优选实施方式中, 含水污泥和 /或废弃物配入量为生料立磨物料 重量的 2%〜20%。 根据具体的千法水泥生产线的原料特征及含水污泥的物理特性, 确定 含水污泥的配入量,如石灰石的硬度与含水量、砂岩或页岩或粘土等的含水量与塑性指数 等及含水污泥种类、性状等实际情况, 确定含水污泥配入量, 满足生料立磨物料综合水分 和物料塑性的要求。
在本发明的方法中, 将含水污泥和 /或废弃物在原料棚或原料库至生料立磨区段配入 原料中或立磨内, 根据含水污泥水分含量或含固量、流动性或塑粘性等物理特性; 釆用通 用的设备或装备, 运用常规方式配入。 在本发明中, 当含水污泥和 /或废弃物含水率 ^95% 时,或无 物成分含量影响超出配料控制误差范围,无机物组分的各化学成分 Si02、Ai2()3、 Fe203 , CaO、 MgO、 K20、 Ν 0、 Ρ205的含量纳入正常的生料配料成分计算; 当含水污 泥含水率≥95%时, 或无机物成分含量在生料配料误差范 内, 则忽略不计。
在本发明的一个优选实施方式中, 所述含水污泥和 /或废弃物的配入量为煤块重量的 5〜20%。
在本发明的一个优选实施方式中,所述含水污泥和 /或废弃物的煤粉的细度控制 80μηι 筛余≤18%。
在本发明的一个优选实施方式中, 所述加入煤块中的有机物选自水分含量≤99重量% 的含有机物的污泥和 /或废弃物, 千基有机物含量≥40重量%的污泥, 优选巿政污水处理 Γ污泥、石化污泥、印染厂有机污泥、生活厨余物、工业油酯废料、农林医药加工废弃物, 如木薯渣、糖 Γ滤渣废液、搾油滤渣、药渣、苽壳谷屑及植物碎渣、沼气腐渣及禽畜粪等 [: 进一步, 所述加入块粒状燃煤中的有机物选自水分含量^ )9重量%且干基有机物含量 >40重量%的含水污泥和 /或废弃物。
进 ·歩, 所述含水污泥和 /或废弃物在原煤堆棚至煤磨机进料口空间区段配入, 是指 采 通用的设备或装置 (如计量/ ¾料装置、 铲车、 取料布料机、 布料车、 泥浆泵、 泵车 等)运 常规方式, 在原煤堆棚至煤磨机进料口空间区段一个或多个位置, 把污泥或废弃 物按拟定比例加入块粒状或散粒状燃煤中,或采用泥浆泵把含水污泥或打碎的浆料状废弃 物直接喷入带碾压机构、 锤击式机构或风扇磨机构的煤磨机中。
进一步,所述煤磨 为利用热风供热磨制煤粉的煤磨机,如水泥企业粉磨煤粉的煤立 磨或风扫磨,火电企业粉磨煤粉用的钢球滚筒煤磨机、滚球式或碗式或平盘式或滚轮式中 速煤磨机、 锤击式或竖井式或风扇磨类高速煤磨机。
本发明提供了一种所述的方法制备得到的水泥生料粉, 其原料中包括 2-20重量' ½的 所述含水污泥和 /或废弃物。
此外, 本发明还提供了一种所述的方法制备得到的煤粉, 其原料中包括 〗-30重量% 的所述含水污泥和 /或废弃物。
经本发明的发明人的研究,本发明的技术原理可能如下,但以下解释并不能对本发明 构成任何限定。
1、 针对含水率高的污泥的处理或利用的最大难题, 一是其絮凝状结构保水能力强, 脱水和千燥极困难, 二是它的塑粘性。利用含水污泥本身所含的这些水分和塑粘性, 正好 可提供千法水泥生产线其生料立磨物料或煤立磨物料所需适宜的水分和物料的相应塑性, 可满足立磨形成较好碾压料层的要求,实现含水污泥的资源化利用;并籍生料立磨内物料 中的脊性石灰石、砂岩等与污泥在强力碾压下的挤压摩擦,或籍煤立磨无烟煤劣质煤脊性 颗粒挤压摩擦, 破坏污泥中的絮凝状保水结构, 释放出自由水, 而使其在立磨内废热气流 中变得易于干燥, 制成灭菌的含污泥的生料粉或煤粉。
2、 利用千法水泥生产的生料粉, 可兼容部分均匀分散的有机物徵粒和各类无机物徵 粒,旦只需考虑无机物各化学成分总含量多少的特性,让生料中污泥所含的有机物在预热 器至分解炉内分解燃尽, 其燃烧产生的热量得以利用; 同时, 以生料中富含氨氮化合物、 碳氢化合物的污泥有机物作为脱硝成分, 同歩起到良好的脱硝作用;让生料中污泥所含的 无机物作为生料成分随生料最终进入回转窑内转化为熟料成分,有害的重金属元素固瑢于 熟料矿物中; 有 物燃尽的废气在千法水泥生产系统的预热器及除尘系统中得到有效处 理。
3、 利用工业用燃煤是脆性料且有吸跗作用的复杂的高分子聚合物, 与污泥及废弃物 中的有机物的相似相融特性,经反复剧烈辗压撞击或研磨形成相对均匀的微粒,并吸附低 分子量物质如异味分子;
4、 利用煤磨内的强烈地反复挤压摩擦作用, 借煤粒彻底破坏污泥或废弃物中的絮凝 状保水结构, 释放出自由水, 以使分散于煤粒中的污泥或废弃物, 在煤磨内较高温度的热 风下易于干燥, 并达到灭菌消毒效果; 对于煤立磨加入的污泥或废弃物, 同时起到调整煤 立磨内煤料综合水分和煤料塑性的作用, 以节约工业用水;
5、 利用与燃煤微粒结合在一起及相对均匀分布于煤微粒中的可燃性好、 低着火温度 的污泥或废弃物中的有机物, 降低煤粉的着火温度, 并提供热量供煤中的碳素升温, 以改 善煤粉可燃烧性, 提高燃尽率, 并同时使煤粒吸附的异味燃尽, 污泥或废弃物中的重金属 等圏熔于煤粉燃烧后的灰渣中;
6、 利用工业 S炉用脆性燃煤的物料脊性和吸跗性特征, 以及煤磨机一般适应煤料含 水 4〜15%, 且煤磨机最高可适用 15%〜25%物料水分的特点, 控制冷风入磨量禾或适当 加大入磨余热热风量, 化解有机质污泥废弃物所带来的水分对煤磨机产能的影响。 具体实施方式
以下将结合实施例来详细说明本发明的实施方式,借此对本发明如何应用技术手段来 解决技术问题, 并达成技术效果的实现过程能充分理解并据以实施。 需要说明的是, 只要 不构成冲突,本发明中的各个实施例以及各实施例中的各个特征可以相互结合,所形成的 技术方案均在本发明的保护范围之内。
实施例 1
某 0>3.0x47m千法水泥生产线,生料工段采用堆棚铲车均化、铲车抓运料、料仓配料、 立磨粉磨工艺。 生料原料采用石灰石、 粘土、 砂岩和硫酸渣配料, 生料立磨产量约 90t/h。 原来立磨内每小时喷水约 水泥窑系统分解炉内采用 Π%的氨水脱硝, 每小时用氨水 约 200kg„ !^( 在线检测 380〜450mg/ m3
在上述生料原料配料中取消粘土, 配入重量比 20%的陈化污泥。 所述污泥取自污水 处理厂露天堆存的陈化污泥, 该陈化污泥平均含水率为 37.3% (重量) 。 用铲车在堆棚内 把所述污泥和生料原料先铲和,混合均匀,经配料后连续送入生料立磨内粉磨(不喷水), 在立磨拉风约增加 0.5%后, 立磨产量稳定在 90tZh, 出磨生料细度从 17%降至 14%。 待含 污泥的生料粉入窑后, 分解炉内不喷氨水, NOx在线检测仍稳定在 400mg/Nm3左右, 窑 系统拉风未变化, 产量没变化, 窑况正常, 实物煤耗降低约 2%, 熟料质量检测正常。 即 用 20%含水率为 37,3%的陈化污泥解决了生料立磨的喷水增湿问题,且对 S况及产质量无 任何不利影响, 而脱 旨成本得以节省, 并节约了燃煤和粘土。
实施例 2
某 Φ3.5κ52ηι千法水泥生产线,生料配料采用石灰石、页岩、廣渣和钢渣四组分配料, 其石灰石釆 两种品位的碎石在石灰石堆棚内以铲车均化,磷渣和钢渣在堆棚內用铲车搭 配均匀。 生料立磨台时产量约 120吨。 原来, 气候干燥时立磨内喷水每小时约 9吨。 水泥 窑系统的分解炉内采用 17.5%的氨水脱硝, 每小时耗氨水约 220kg。 :^¾在线检测 400mg/Nm3左右。
在本实施例中, 在上述配料中加入重量比 6%的污泥, 所述污泥采用处理厂的生化污 泥, 含水率平均 85.3%。 将罐车内所述污泥直接淋撒在碎石料堆上, 用铲车铲匀, 在与页 岩、 磷渣和钢渣配料后送入生料立磨粉磨(不喷水), 立磨台时产量和生料细度基本没变 化。在窑系统工艺控制参数未做调整的情况下,将含污泥的生料粉以正常的方式送入窑系 统, 分解炉氨水用量直接降低 50%, 窑況及产质量无变化, 尾煤用量降低 2%, 在线检测 N()x含量稳定在 DOmg/Nm3以下。 即用重量含量为 6%含水率为 85.3%的生化污泥解决了 生料立磨的喷水增湿问题, 对窑系统无任何不利影响, 而脱硝材料成本降低了 50%, 燃 料 量有所下降。
实施例 3
某某 ΦΦ44..33χχ6644ηη 千千法法水水泥泥生生产产线线,, 生生料料配配料料采采用用石石灰灰石石、、 砂砂岩岩、、 煤煤灰灰和和硫硫酸酸渣渣四四组组分分配配 料料。。生生料料立立磨磨台台时时产产量量约约 225500吨吨。。原原来来,, 立立磨磨 ήή喷喷水水加加湿湿自自动动调调整整系系统统喷喷水水量量波波动动在在每每小小 时时约约 99〜〜1177吨吨。。 水水泥泥窑窑系系统统的的分分解解炉炉内内采采用用 1177..55%%的的氣氣水水脱脱硝硝,, 每每小小时时耗耗氨氨水水约约 333300kkgg。。
NN00XX在在线线检检溯溯 338800〜〜445500mmgg//NNmm33。。
在在本本实实施施例例中中,, 将将重重量量比比 1133%%的的污污泥泥配配入入上上述述配配料料中中,, 所所述述污污泥泥釆釆用用污污水水处处理理 ΓΓ的的 消消化化污污泥泥,, 含含水水率率平平均均 8866..77%%。。将将污污泥泥罐罐内内所所述述污污泥泥用用泥泥浆浆泵泵输输送送,, 均均匀匀撒撒布布在在生生料料配配料料 系系统统的的输输送送皮皮带带上上的的石石灰灰石石料料层层上上,, 然然后后与与砂砂岩岩、、煤煤灰灰和和硫硫酸酸 SS配配料料,, 再再送送入入生生料料立立磨磨粉粉 磨磨 ((不不喷喷水水)) ,, 立立磨磨台台时时产产量量稳稳定定而而生生料料细细度度降降低低 11..55%%。。 在在窑窑系系统统工工艺艺控控制制参参数数末末做做调调 整整的的情情况况下下,,将将含含污污泥泥的的生生料料粉粉以以正正常常的的方方式式送送入入窑窑系系统统,,分分解解炉炉氨氨水水用用量量直直接接降降低低至至 分分之之一一 ^^量量,,窑窑况况及及产产质质量量无无变变化化,,在在线线检检测测 NN0OXx含含量量稳稳定定在在 440000mmgg//NNmm33以以下下。。即即用用 ii33%% 含含水水率率为为 8866..77%%的的消消化化污污泥泥解解决决了了生生料料立立磨磨的的喷喷水水增增湿湿问问题题,, 对对窑窑系系统统无无不不利利影影响响,, 而而脱脱
Figure imgf000007_0001
实施例 4 某 0>4x60m干法水泥生产线, 生料配料采用石灰石、 页岩、 磷渣和钢渣四组分配料。 生料立磨台时产量约 2】0吨。原来, 立磨内喷水波动在每小时约 5〜13吨。水泥窑系统的 分解炉内采用 17.5%的氨水脱硝, 每小时耗氨水约 290kg。 该水泥线 1^( 在线检溯 380~-480mg/Nm3 o
在本实施例中, 将重量比 8%的污泥配入上述配料中, 所述污泥釆用木薯加工废液, 含水率平均 78.2%。将污泥罐内所述废液用泥浆泵管道分流分别输送至生料立磨喂料口和 喂料口下面的锁风喂料分格轮下,两个废液加入点的废液均匀撒布在生料原料配料中, 随 混合配料一起入立磨粉磨 (不喷水) , 立磨拉风量增大约 1%, 立磨台时产量和生料细度 基本没变化。在窑系统工艺控制参数未做调整的情况下,将含木薯废料的生料粉以正常的 方式送入窑系统, 分解炉氣水用量直接降低至三分之一用量, 窑况及产质量无变化, 在线 检测 NOx含量稳定在 400mg/Nm3以下。即用 8%含水率为 78.2%的木薯加工废液解决了生 料立磨的喷水增湿问题, 对窑系统无不利影响, 而脱硝材料成本下降了 Ξ:分之二。
实施例 5
0)4.8X74m干法水泥生产线, 生料配料采用石灰石、页岩、磷渣、硫酸渣四组分配料。 两台 3840型号生料立磨, 每台产量约 220吨 /时。 原来, 每台立磨内喷水波动在每小时 约 5〜13吨。 水泥窑系统的分解炉内采用 17.5%的氨水脱硝, 每小时耗氨水约 390kg。 该 水泥线:^( 在线检测 300~500mg/Nm3
在本实施例中, 将重量比 i0%的污泥配入上述配料中, 所述污泥釆用市区河道沆积 污泥, 含水率平均 73.7%。 改造立磨内喷水系统, 即把喷水管孔加大, 将污泥罐内所述污 泥 ^泥浆泵输送至生料立磨的原进水管道, ffl改造后的立磨内喷水系统向磨内喷入污泥。 立磨拉风量增大约 1%, 立磨台时产量和生料细度基本无变化。 在窑系统工艺控制参数未 做调整的情况下,将含污泥的生料粉以正常的方式送入窑系统,分解炉氨水用量直接降低 至 30%用量, 窑况及产质量无变化, 在线检测 NOx含量稳定在 400mg/Nni3以下。 即用 10%含水率为 73,7%的市区河道沉积污泥解决了生料立磨的喷水增湿问题, 对窑系统无不 利影响, 而鋭硝材料成本下降了 70%。
实施例 6
在试验室模拟回转窑气流中着火燃烧状况, 即将煤粉以悬浮状喷入电炉中,试验测得 各类煤粉着火温度如下:
煤的种类 著 日
挥发分为 49.1%的褐煤 560V
挥发分为 39.4%烟煤 650 "C 挥发分为 30.2%烟煤 750 U 挥发分为 20.6%烟煤 8301;
挥发分为 15.1%的半烟煤 890 TJ
挥发分为 4.5%的无烟煤 970 "C
干基污水处理厂污泥粉 (干基有 物含量 73,9%) 5101;
挥发分 4.5%的无烟煤配煤重量 30% (含水率 56%的 810°C
污水处理厂压滤脱水) 的污泥
挥发分 4,5%的无烟煤配煤重量 7% (含水率 67%) 的 860 °C
印染厂有 污泥
挥发分 4.5%的无烟煤配煤重量 1.0%的废机油 890 u
挥发分 4.5%的无烟煤配煤重量 6%的搾茶油滤渣 870 °C
挥发分 4.5%的无烟煤配煤重量 6%的湿.牛粪 890 °C
试验室的试验结果说明,污泥和废弃物配入无烟煤中制成的煤粉,燃烧性能得以显著 改善, 表现出较理想的效果。
实施倒 7
某 2500t 千法水泥厂煤磨为立磨,原使 烟煤,煤立磨产量 45t i,煤粉细度控制 80μηι 筛余 2〜3%。 煤源为挥发分平均 6。9%、 热值平均 5600Kcal/ g的无烟煤, 在入煤立磨皮 带上对煤料淋水, 煤磨产量为 40 ι、 煤粉细度 80μηι筛余 3%时振动较小基本稳定, 煤磨 产量降至 36 ι、煤粉细度 80μιη筛余降至 2%以下时煤立磨振幅降至 0.8mm以下安全状况。 入窑煤粉热值平均 5560KCa Kg,釆用无烟煤特制燃烧器烧无烟煤后,窑内火焰温度偏低、 飞砂大, S尾烟室结皮严重, 窑后段结皮长圈, 窑尾出现倒料, 熟料包心料还原料多。 熟 料折算热耗 820KcaMig。
本实施例采用市污水处理厂污泥, 取样污泥检测平均含水率 85.6%, 千基污泥有机物 含量 75%, 干基污泥热值 3207KCal/Kg。 将所述污泥运进厂泵入污泥罐内, 停止在喂料皮 带上淋水, 按散粒状无烟煤重量的 12% 污泥泵管道分流分别从入磨喂料皮带上和煤立 磨进料口分格轮下两个位置,各一半量连续加入所述污泥,得到的含污泥的煤粉细度控制 80μηι筛余 2%以下时,煤磨产量逐歩稳定至 45 ι,入窑含污泥煤粉热值平均 5530Kcal/ g, 用此含污泥煤粉 窑头亮, 窑内飞砂小, 烟室结皮小, 窑内结的圈慢慢脱掉, 包心料还 原料基本消失。熟料折算热耗降至 781Kea½ g。说明配入煤重量 12%的含水率 85,6%的污 泥后, 煤粉燃烧性能明显改善, 燃尽率提高, 节约原煤达 5%。 某 1500 1干法水泥厂煤磨为风扫磨, 使用无烟煤和烟煤按 2:1配煤, 在煤堆棚用铲 车计量搭配并铲匀布煤堆, 风扫磨产量 16 h, 煤粉细度 80μπι筛余 1〜3%, 入窑煤粉挥 发分平均 14.5%、 热值平均 5100KCaM g。 窑内火焰温度偏低、 飞砂大, 窑尾烟室结皮严 重, 窑后段结皮长圈, 窑尾经常倒料, 熟料包心料还原料较多。熟料折算热耗 830KCaMig。
本实施例采用市污水处理厂露天堆存的陈化污泥, 取样污泥检测平均含水率 43.7%, 千基污泥有机物含量 67.3%, 干基污泥热值 3215KxalKg。 将污泥运进 Γ煤堆棚内, 用铲 车计量搭配煤和污泥后铲匀, 按散粒状煤重量的 10%配入, 均化布好煤堆后的含污泥煤 连续送入风扫磨内粉磨, 得到的含污泥的煤粉细度控制在 80μη 筛余 2%时, 煤磨产量稳 定在 16t¾, 入窑煤粉热值平均 5095Kcak g, 用此含污泥煤粉^, 窑内飞砂明显降低, 烟 室结皮小, 窑內结的圈慢慢脱掉, 解决了窑尾倒料问题, 包心料还原料基本消失。熟料折 算热耗降至 792KCal g, 实物煤耗节省 6%。 说明配入散煤重量 10%的陈化污泥后, 煤粉 燃烧性能明显改善, 燃尽率提高, 有显著节煤效果。
实施例 9
某 6万千瓦火电车间, 采用钢球滚筒磨煤机, 使用配煤, 单台煤磨机产量 48t , 煤 粉细度 R.90筛余 12%。 入锅炉煤粉挥发分平均 7.9%、 热值平均 4450KcaM g, 因煤质差, 炉内易熄火, 需经常性喷柴油助燃。 原炉渣烧失量 6〜15% (烧失量 焦炭含量) , 粉煤 灰烧失量 9〜: 7%, 每度电耗煤约 0.47kg。
本实施例采 市污水处理 Γ消化污泥, 取样污泥检测平均含水率 83.6%, 千基污泥有 机物含量 72%, 千基污泥热值 3307Kxa] Kg。 将所述污泥运进火电车间, 泵入污泥罐内, 按散粒状煤重量的 13%用污泥泵^煤磨喂料 煤粒落料口位置连续喷入所述污泥, 入磨 热风量调大 2%, 经粉磨后含污泥的煤粉细度控制在 R90筛余 12%, 煤磨产量仍稳定在 48 。 入炉煤粉热值平均 4450 a g, 用此含污泥煤粉时, 未喷柴油助燃, 炉内火焰稳 定, 炉渣烧失量降至 3〜6%, 粉煤灰烧失量降至 3〜5%, 每度电耗煤降至 ().43Kg。 说明 配入煤重量 13%的污泥后, 煤粉燃烧性能明显改善, 燃尽率明显提高, 试验阶段每度电 节约原煤达 10.8%。
实施例】0
某火电厂, 采用进口 923号浅碗式磨煤机, 使用配煤, 单台煤磨机产量 6ίΜι, 煤粉 细度 R90筛余 10%。 入锅炉煤粉挥发分平均 8%、 热值平均 4350Kcai g, 因煤质差, 炉 内易熄火, 经常需喷柴油助燃。 原炉渣烧失量 5〜7%, 粉煤灰烧失量 3〜9%, 每度电耗 煤约 0.45kg。
本实施例采 ffl市污水处理厂消化污泥, 取样污泥检测平均含水率 84,6%, 千基污泥有 机物含量 76%, 干基污泥热值 31】0KcaMK_g。 将含水污泥运进火电厂, 泵入污泥罐内, 按 散粒状煤重量的 10%用污泥泵认煤磨机中心的落煤管顺落煤方向连续喷入所述污泥, 入 磨热风量调大 2%, 经粉磨后将含污泥的煤粉细度控制在 R90筛余 10%, 煤磨产量仍稳定 在 60i h。 入炉含污泥煤粉热值平均 4350 K.Cal/ g, 用此含污泥煤粉时, 未喷柴油助燃, 炉 内火焰稳定,炉渣烧失量降至 2〜5%,粉煤灰烧失量降至 1〜3%,每度电耗煤降至 0.43Kg。 说明配入煤重量 i0%的污泥后, 煤粉燃烧性能明显改善, 燃尽率提高, 单位发电量节约 原煤 4.4%。
实施倒 1 1
某火电厂, 采用 S型风扇磨煤机, 使 ^配煤, 煤粉细度 R90筛余 15%。 入锅炉煤粉 挥发分平均 Π%、 热值平均 4150Kca½ g, 因煤质差, 炉內易熄火, 需经常喷柴油助燃。 原炉渣烧失量 7〜10%, 粉煤灰烧失量 7〜12%, 每度电耗煤约 0,45kg。
本实施例采用菜市场有机废弃物, 取样废弃物打碎检测平均含水率 57.6%, 干基热值 4586KCaM g。 将菜市场有机废弃物运进火电厂原煤堆棚, 用铲车配料均化布堆, 按散粒 状煤重量的 15%配入得到混合煤料, 将该混合煤料经喂料机一起连续喂入风扇磨, 热风 量加大 3%,经粉磨后含污泥的煤粉细度控制不变,煤磨产量相当。入炉煤粉热值平均 4180 Kcai g, 用此含废弃物煤粉时, 未喷柴油助燃, 炉内火焰稳定, 炉 S烧失量降至 1〜3%, 粉煤灰烧失量降至卜 2%, 每度电耗煤降至 0.42Kg。 说明配入煤重量 15%的废弃物后, 煤粉燃烧性能明显改善, 燃尽率提高, 单位发电量节约原煤 6.7%。

Claims

权利要求书
1 . 一种含水污泥和 /或废弃物回收利用的方法, 包括: 在干法水泥生产过程中, 将所 述含水污泥和 /或废弃物加入生料原料中或与生料同时加入立磨内进行混合粉磨, 使得所 述混合物料的水分含量为 3-15重量%, 以此调整立磨中的混合物料的综合水分和物料塑 性, 制成含污泥的生料粉, 然后将得到的生料粉常规煅烧成水泥熟料; 或者将煤块和所述 含水污泥和 /或废弃物混合研磨, 以调整煤料的水份和塑性和改善煤粉的燃烧性能, 制成 含有污泥和 /或废弃物的煤粉; 其中所述含水污泥和 /或废弃物的配入量为所述煤块重量的 i〜30%。
2. 根据权利要求 1所述的方法, 其特征在于, 所述含水污泥和 /或废弃物配入量为生 料立磨物料重量的 2%〜20%。
3. 根据权利要求 1 所述的方法, 其特征在于, 所述含水污泥和 /或废弃物为含水率 99'½的含水污泥和 /或废弃物, 优选含水率 ^90%的含水污泥和 /或废弃物。
4. 根据权利要求 -3中任一项所述的方法, 其特征在于, 所述含水污泥和 /或废弃物 选自市政水处理污泥、 农产品加工废弃物、 石化污泥、 印染厂有机污泥、 生活厨余物、 工 业油酯废料和河道湖池沉积污泥。
5. 根据权利要求 4所述的方法, 其特征在于, 所述农产品加工废弃物选自木薯渣、 糖厂滤渣废液、榨油滤渣、药渣、瓜壳谷屑及植物碎渣、沼气腐渣及禽畜粪中的至少一种。
6. 根据权利要求 1中任一项所述的方法, 其特征在于, 在块粒状燃煤中加入的含水 污泥和 /或废弃物选自千基有机物含量≥40重量%的含水污泥和 /或废弃物。
7. 根据权利要求 1或 6所述的方法, 其特征在于, 采 ^煤磨机迸行所述粉磨。
8. 根据权利要求 7所述的方法, 其特征在于, 所述煤磨机选自煤立磨、 风扫磨、 钢 球滚筒煤磨机、 滚球式煤磨 、 碗式煤磨机、 平盘式煤磨机、 滚轮式煤磨 、 锤击式煤磨 机、 竖井式煤磨机或风扇磨类煤磨机。
9. 一种根据权利要求 1-5中任一项所述的方法制备得到的水泥生料粉, 其原料中包 括 2-20重量%的所述含水污泥和 /或废弃物。
10. 一种根据权利要求 1、 6-8中任一项所述的方法制备得到的煤粉, 其原料中包括 1-30重量%的所述含水污泥和 /或废弃物。
PCT/CN2013/088163 2013-07-25 2013-11-29 一种含水污泥和/或废弃物回收利用的方法 WO2015010406A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US14/376,989 US20160145154A1 (en) 2013-07-25 2013-07-25 Process for recycling aqueous sludge and/or waste

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
CN2013103159392A CN103396019A (zh) 2013-07-25 2013-07-25 一种含水污泥资源化利用的方法
CN201310315939.2 2013-07-25
CN201310323996.5A CN103361144B (zh) 2013-07-30 2013-07-30 用污泥或废弃物改善煤粉燃烧性能的方法
CN201310323996.5 2013-07-30

Publications (1)

Publication Number Publication Date
WO2015010406A1 true WO2015010406A1 (zh) 2015-01-29

Family

ID=52392658

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2013/088163 WO2015010406A1 (zh) 2013-07-25 2013-11-29 一种含水污泥和/或废弃物回收利用的方法

Country Status (2)

Country Link
US (1) US20160145154A1 (zh)
WO (1) WO2015010406A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016191516A (ja) * 2015-03-31 2016-11-10 住友大阪セメント株式会社 固体廃棄物系燃料のセメント製造設備への供給方法
CN106186746A (zh) * 2016-06-30 2016-12-07 浙江新业管桩有限公司 一种利用印染污泥制备水泥熟料的方法

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107974325B (zh) * 2017-12-07 2021-09-10 河北千捷润化工科技有限公司 电厂用环保节煤助燃剂及其制备方法
CN113698069B (zh) * 2021-10-29 2022-01-28 国能龙源环保有限公司 一种燃煤电厂协同处理含油污泥的掺烧系统和掺烧方法
CN115353271B (zh) * 2022-07-15 2023-05-16 合肥水泥研究设计院有限公司 利用水泥窑低品位余热真空脱水处置市政污泥系统

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101216177A (zh) * 2008-01-09 2008-07-09 浙江大学 利用电站煤粉锅炉系统焚烧处理污泥的方法
CN101580346A (zh) * 2009-06-29 2009-11-18 浙江大学 一种在水泥生产中协同处理污泥的方法
CN101723570A (zh) * 2009-12-18 2010-06-09 浙江大学 利用电厂磨煤机干燥污泥并用于发电的污泥处理方法
CN103396019A (zh) * 2013-07-25 2013-11-20 尹无忌 一种含水污泥资源化利用的方法

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
IL204790A (en) * 2010-03-28 2014-07-31 Airgreen Ltd A method for processing and drying waste in a continuous circular process
CN102899118B (zh) * 2012-10-12 2014-12-17 苏武民 污泥合成燃料及其制备方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101216177A (zh) * 2008-01-09 2008-07-09 浙江大学 利用电站煤粉锅炉系统焚烧处理污泥的方法
CN101580346A (zh) * 2009-06-29 2009-11-18 浙江大学 一种在水泥生产中协同处理污泥的方法
CN101723570A (zh) * 2009-12-18 2010-06-09 浙江大学 利用电厂磨煤机干燥污泥并用于发电的污泥处理方法
CN103396019A (zh) * 2013-07-25 2013-11-20 尹无忌 一种含水污泥资源化利用的方法

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016191516A (ja) * 2015-03-31 2016-11-10 住友大阪セメント株式会社 固体廃棄物系燃料のセメント製造設備への供給方法
CN106186746A (zh) * 2016-06-30 2016-12-07 浙江新业管桩有限公司 一种利用印染污泥制备水泥熟料的方法

Also Published As

Publication number Publication date
US20160145154A1 (en) 2016-05-26

Similar Documents

Publication Publication Date Title
CN105859105B (zh) 一种污泥处理及资源化方法
CN102206091B (zh) 一种利用污泥制作陶粒的方法
WO2005085143A1 (fr) Procede de traitement des boues d'epuration par combustion en lit fluidise circulant
KR101941319B1 (ko) 인산비료 및 인산비료의 제조방법
WO2009052671A1 (fr) Nouveau procédé de production de scorie de ciment au moyen de boues en état hygrométrique et de mélange en deux étapes
CN101962590B (zh) 一种用炼油厂的多种含油污泥生产的再生煤及其制造方法
CN102070352A (zh) 一种资源化处理脱水污泥、河道底泥和粉煤灰的方法
WO2015010406A1 (zh) 一种含水污泥和/或废弃物回收利用的方法
CN101786786A (zh) 城市污水处理厂污泥处理和利用方法
CN106746802B (zh) 利用城市废物和工业固废制备硫铝酸盐水泥的系统及方法
WO2005080875A1 (fr) Procede de combustion en lit fluidise circulant de liqueur residuaire issue de la production de papier, de cuir, d'impression et de coloration
CN106830722B (zh) 有机废水协同工业固废制备超高水充填材料的系统及方法
CN103361144B (zh) 用污泥或废弃物改善煤粉燃烧性能的方法
CN107880967A (zh) 一种污泥生物质混合燃料的生产方法
CN107032756A (zh) 一种使用建筑垃圾制备烧结砖的工艺
CN108101510A (zh) 一种污泥砖的制作方法
CN101886811A (zh) 新型干法旋窑协同处理高含水率污泥的方法
CN101598339A (zh) 一种农作物秸秆与污水污泥调理共焚烧处置资源化的方法
CN110041051A (zh) 一种河道底泥和建筑泥浆陶粒及其制备方法
CN101914405B (zh) 一种污泥成型燃料及其生产方法和生产系统
CN101134632A (zh) 含油污泥的处理工艺方法
Zhou et al. Waste to worth: a new approach to treat wastewater sludge
JP6391142B2 (ja) りん酸質肥料の製造方法
CN102517117B (zh) 一种利用废漆渣制备水泥替代燃料的方法
CN1238477C (zh) 污泥水煤浆及其制作工艺

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 14376989

Country of ref document: US

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13890086

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 19.07.2016)

122 Ep: pct application non-entry in european phase

Ref document number: 13890086

Country of ref document: EP

Kind code of ref document: A1