WO2015008922A1 - Substrate having excellent thermal conductivity in thickness direction, led device having same, and method for manufacturing same - Google Patents

Substrate having excellent thermal conductivity in thickness direction, led device having same, and method for manufacturing same Download PDF

Info

Publication number
WO2015008922A1
WO2015008922A1 PCT/KR2014/002431 KR2014002431W WO2015008922A1 WO 2015008922 A1 WO2015008922 A1 WO 2015008922A1 KR 2014002431 W KR2014002431 W KR 2014002431W WO 2015008922 A1 WO2015008922 A1 WO 2015008922A1
Authority
WO
WIPO (PCT)
Prior art keywords
substrate
metal
support substrate
graphite particles
thickness direction
Prior art date
Application number
PCT/KR2014/002431
Other languages
French (fr)
Korean (ko)
Inventor
김일호
송진헌
이종관
Original Assignee
엠케이전자 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 엠케이전자 주식회사 filed Critical 엠케이전자 주식회사
Publication of WO2015008922A1 publication Critical patent/WO2015008922A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/48Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor body packages
    • H01L33/64Heat extraction or cooling elements
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/48Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor body packages
    • H01L33/64Heat extraction or cooling elements
    • H01L33/641Heat extraction or cooling elements characterized by the materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/48Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor body packages

Definitions

  • the present invention relates to a substrate made of a metal base composite material having excellent thermal conductivity in the thickness direction, and to a light emitting diode device provided with the substrate. More specifically, the plate-like graphite powder is arranged in the thickness direction in the metal base.
  • a device, in particular an LED device, is attached so that the thickness direction coincides with the heat radiation direction of the device.
  • LED devices Like other luminaires, LED devices generate light at the same time and generate a lot of heat. In particular, in the case of LED devices, various problems such as a decrease in light efficiency, a shift in color coordinates, and a change in thermal resistance occur when the temperature rises.
  • LED lighting fixtures are also emerging as an important problem of rapid heat dissipation due to large area and high brightness.
  • the following patent documents include Ti, Cr, Ni, Al, Pt, Au.
  • a conductive support substrate made of a semiconductor in which W, Cu, Mo, CuW, or impurities are implanted, and a concave-convex portion for radiating heat is formed at a lower portion thereof.
  • metal materials such as Ti, Cr, Ni, Al, Pt, Au, W, Cu, Mo have advantages in heat dissipation due to their good thermal conductivity, but due to their large mass and excessively large coefficient of thermal expansion, they are light in weight.
  • bonding to a layer having a low coefficient of thermal expansion, which is disadvantageous to the upper portion it is easily separated by stress due to a difference in the coefficient of thermal expansion, thereby causing a problem that the reliability of the light emitting device is degraded.
  • the present invention has been made to solve the above-mentioned problems of the prior art, the problem to be solved of the present invention, a metal material as a base, it is possible to constant elastic deformation, the heat radiation characteristics in the thickness direction of the substrate It is very excellent and light compared to metals and the coefficient of thermal expansion is significantly low, and in particular to provide a substrate suitable for substrates for electronic devices that require heat radiation characteristics.
  • another object of the present invention is to provide a high heat dissipation LED device having a support substrate capable of constant elastic deformation, excellent heat dissipation characteristics, and low coefficient of thermal expansion.
  • the first aspect of the present invention for solving the above problems is an electronic device substrate, characterized in that the substrate is made of a composite material having a structure in which graphite particles are oriented parallel to the thickness direction of the substrate on a metal base It is to provide a substrate for an electronic device.
  • the volume fraction of the graphite particles in the composite material may be 30 ⁇ 60%.
  • the metal base may include at least one selected from Cu, Al, Au, Ni, Pd or alloys thereof.
  • the graphite particles may be formed in a plate, flake or scale.
  • the composite material may further comprise at least 10% by weight of one or more selected from AlN, SiC, Al 2 O 3 , BeO.
  • the second aspect of the present invention for solving the other problem is a light emitting device in which a conductive support substrate, a first semiconductor layer, an active layer and a second semiconductor layer formed on the conductive support substrate in sequence, the conductive support substrate It is to provide a light emitting device characterized in that the graphite particles in the metal base has a structure oriented parallel to the thickness direction of the support substrate.
  • the volume fraction of the graphite particles in the composite material may be 30 ⁇ 60%.
  • the metal base may include at least one selected from Cu, Al, Au, Ni, Pd, or an alloy thereof.
  • the graphite particles may be graphite particles consisting of a plate, flake or scale.
  • the conductive support substrate may have a thickness of 200 ⁇ m to 400 ⁇ m.
  • the conductive support substrate may further comprise at least 10% by weight of one or more selected from AlN, SiC, Al 2 O 3 , BeO.
  • a reflective layer may be formed at a portion of the conductive support substrate in contact with the first semiconductor layer.
  • an uneven portion may be formed in a portion of the conductive support substrate in contact with the first semiconductor layer.
  • the reflective layer may be an electroless plating layer of Ni, Ag, or Au.
  • the third aspect of the present invention for solving the other problem is a method of manufacturing a substrate having a structure in which a plurality of graphite particles are oriented parallel to the thickness direction on a metal base, coating a metal on the surface of the plurality of graphite particles Doing; Charging a plurality of graphite particles coated with the metal to a mold; Applying vibration to the mold so that the plurality of graphite particles are oriented in the longitudinal direction; Heating the oriented plurality of graphite particles to sinter the metal coated on the plurality of graphite particles; And cutting in the vertical direction of a direction arranged in the longitudinal direction of the plurality of graphite particles in the sintered body, so that the plurality of graphite particles have a structure oriented in parallel in the thickness direction.
  • the metal may be copper or a copper alloy.
  • the coating of the metal may be by electroless plating.
  • the process of applying vibration to the mold may be performed through an ultrasonic vibrator.
  • the copper or copper alloy may be coated with 20% to 70% by volume.
  • the sintering may be performed by a pressure sintering method.
  • the substrate for an electronic device according to the present invention is made of a composite material in which carbon particles having excellent thermal conductivity and a very low thermal expansion coefficient in a metal base are aligned in parallel in the thickness direction, heat is generated through the carbon particles aligned in the thickness direction. Since this is quickly conducted in the thickness direction, the thermal conductivity in the thickness direction is very excellent compared to the general metal material. That is, the heat dissipation characteristic in the thickness direction is superior to that of a general metal material or a ceramic material, and it can greatly contribute to the improvement of the reliability of an electronic device requiring excellent heat dissipation characteristics such as an LED element.
  • the coefficient of thermal expansion in the direction parallel to the thickness direction is significantly lower than that of the metal material.
  • carbon is lighter than a metal material, and thus can contribute to weight reduction of the device.
  • the defective rate can be greatly reduced in making a large area of an element such as an LED.
  • the structure of the LED device to which the electronic device substrate is applied is excellent in heat dissipation characteristics, the brittleness of the substrate itself is lower and lighter than Si or SiC, and is particularly suitable for large area and high brightness vertical LED devices.
  • FIG. 1 is a schematic cross-sectional view of a substrate for an electronic device according to an embodiment of the present invention.
  • FIG. 2 is a cross-sectional view of a vertical LED device using a substrate for an electronic device according to an embodiment of the present invention as a support substrate.
  • FIG. 3 is a flowchart illustrating a manufacturing process of an electronic device substrate according to an embodiment of the present invention.
  • FIG. 4 is a scanning electron micrograph of a scale-like graphite powder composited on a substrate for an electronic device according to an embodiment of the present invention.
  • FIG. 5 is a view schematically illustrating a state in which a plate-shaped graphite powder coated with a metal is loaded into a mold in which an ultrasonic vibrator is installed.
  • FIG. 6 is a view schematically illustrating a state in which a plate-like graphite powder coated with a metal is inserted into an inside of a mold in which an ultrasonic vibrator is installed, and then the plate-shaped graphite powder is oriented horizontally by applying vibration.
  • FIG. 7 is a view schematically illustrating a step of uniaxially pressing and shaping a plate-shaped graphite powder coated with a horizontally oriented metal.
  • FIG. 8 is a view schematically showing a sintered body obtained by sintering the molded body of FIG. 7.
  • FIG. 9 is a view illustrating a process of making a plate by cutting the sintered body of FIG. 8 in a vertical direction in a direction in which the graphite graphite powder is oriented.
  • FIG. 10 is a scanning electron micrograph of the tissue of the plate obtained through the cutting process of FIG.
  • FIG. 11 is a graph illustrating a coefficient of thermal expansion in a direction perpendicular to the thickness direction of an electronic device substrate according to an exemplary embodiment of the present invention.
  • FIG. 12 is a graph measuring heat resistance characteristics of a substrate for an electronic device according to an embodiment of the present invention.
  • an electronic device substrate 110 according to an embodiment of the present invention has a structure in which graphite particles 112 are oriented parallel to the thickness direction of the substrate on a metal base 111. It is made of composite material.
  • the metal base 111 various elements may be used in consideration of strength and weight, together with thermal conductivity and electrical conductivity, for example, Cu, Al, Au, Ni, Pd, or the like.
  • An alloy of may be used, but is not necessarily limited thereto.
  • the 'alloy' means a metal containing at least 40% by weight of other elements in the element.
  • the graphite particles when the graphite particles are oriented vertically, it is preferable that the graphite particles are formed in a 'plate' so that heat can be quickly conducted through the graphite particles.
  • a 'plate' it is meant to include flake-like, scaly particles, which are shaped like plates.
  • the volume fraction of the graphite particles is preferably 30 to 60%, but if it is less than 30%, it is difficult to maintain sufficient thermal conductivity and low coefficient of thermal expansion in the thickness direction. This is because it is difficult to maintain the basic strength.
  • a more preferable volume fraction is 50 to 60%, and the most preferable volume fraction is 50 to 55%.
  • tissues oriented parallel to the thickness direction means an area fraction of the composite tissue in which particles having an orientation angle ( ⁇ , an angle from the horizontal direction to the vertical direction) indicated on the right side of FIG. It means more than 50% of the tissue, it is preferable that the particles of more than 45 ° is more than 70% in the area fraction of the composite tissue.
  • the conductive support substrate may further include 10 wt% or less of one or more selected from AlN, SiC, Al 2 O 3 , and BeO for the purpose of improving the strength of the support substrate, wherein the component is 10 wt% This is because the thermal conductivity may be lowered when added in excess of%.
  • the LED device 100 includes a conductive support substrate 110, an adhesive layer 120 formed on an upper surface of the conductive support substrate 110, and the adhesive layer ( The reflective layer 130 formed on the 120, the first semiconductor layer 140 formed on the reflective layer 130, the active layer 150 formed on the first semiconductor layer 140, and the second formed on the active layer. And an electrode 170 formed on the semiconductor layer 160 and the second semiconductor layer 160.
  • the conductive support substrate 110 serves as an electrode for supplying power to the LED device 100 and at the same time, a light emitting structure consisting of a first semiconductor layer 140, an active layer 150, and a second semiconductor layer 160. At the same time serves to discharge the heat generated from the external heat dissipation structure, in the embodiment of the present invention, the graphite particles 112 is made of a metal base 111 composite material is oriented in the thickness direction (vertical direction) Substrate 110 is used.
  • the thermal conductivity in the thickness direction is very high, so that heat generated in the light emitting structure It can be discharged quickly by the external heat dissipation structure.
  • the conductive support substrate 110 preferably has a thickness of 200 ⁇ m ⁇ 400 ⁇ m, when the thickness of the support substrate 110 is less than 200 ⁇ m, it is difficult to maintain the strength and rigidity required as a support substrate, This is because sufficient stiffness can be maintained even below 400 ⁇ m, and when it exceeds 400 ⁇ m, the heat conduction distance becomes long, which is disadvantageous for heat radiation.
  • a plurality of uneven parts may be formed on an upper surface of the conductive support substrate 110.
  • the uneven portion serves to prevent the total reflection of the light reflected from the reflective layer 130 formed on the upper portion, so that as much light can be emitted to the outside.
  • the adhesive layer 120 is formed on the conductive support substrate 110 to increase the bonding strength between the light emitting structure formed on the upper layer, for example, Ti, Au, Sn, Ni, Cr, Ga, In A layer comprising at least one of Bi, Cu, Ag or Ta may be formed.
  • the reflective layer 130 reflects the light emitted in the direction of the conductive support substrate 110 of the light generated in the light emitting structure to be emitted to the upper portion of the LED device 100, thereby improving the brightness of the LED device 100 Play a role.
  • Ag, Al, Pt, Pd, Cu, or an alloy thereof may be used as the reflective layer 130, but the present invention is not limited thereto.
  • the reflective layer 130 is provided in the embodiment of the present invention, the reflective layer 130 may be omitted in some cases.
  • the first semiconductor layer 140 is formed of a p-type semiconductor, a p-GaN semiconductor is generally used as the p-type semiconductor, and InAlGaN, AlGaN, InGaN, AlN, InN, etc. may be used. It is not limited to this.
  • the active layer 150 may be formed of at least one of a single quantum well structure, a multi quantum well structure (MQW), a quantum-wire structure, or a Q + uantum dot structure.
  • MQW multi quantum well structure
  • Q + uantum dot structure a quantum-wire structure
  • the present invention is not limited thereto.
  • the second semiconductor layer 160 may be formed of an n-type semiconductor.
  • An n-GaN semiconductor is generally used as the n-type semiconductor, and InAlGaN, AlGaN, InGaN, AlN, InN, etc. may be used. It is not necessarily limited thereto.
  • An electrode 170 may be formed on the second semiconductor layer 160.
  • the electrode 170 may include at least one of aluminum (Al), titanium (Ti), chromium (Cr), nickel (Ni), copper (Cu), and gold (Au). It is not necessarily limited thereto.
  • the manufacturing method of the LED device 100 may be manufactured through a known conventional method, hereinafter, the supporting substrate 110 which is a characteristic configuration of the LED device 100 according to an embodiment of the present invention with reference to the accompanying drawings. Will be described in detail.
  • the manufacturing method of the support substrate according to the present invention the coating step (S10) of coating the metal on the plate-shaped graphite powder, applying the vibration to the metal-coated graphite powder is the plate-shaped graphite powder Orientation step (S20) to be oriented in the horizontal direction, forming step (S30) for pressing the graphite powder oriented in the horizontal direction, sintering step (S40) to sinter the molded graphite powder to make a bulk material, and the horizontal direction It comprises a cutting step (S50) of cutting the bulk material to a predetermined thickness in a direction perpendicular to the direction oriented to make a plate.
  • Coating step (S10) of the graphite powder is a step of forming a metal layer on the surface of the graphite powder.
  • the average particle size of the graphite powder is less than 1 ⁇ m fine powder may be suspended or uneven plating during stirring during plating, if the thickness exceeds 500 ⁇ m the large structure of the graphite powder remains on the plate to thin the final plate Since it adversely affects and strength, it is preferable that it is 1-500 micrometers, and it is more preferable that it is 50-300 micrometers.
  • the metal layer to be formed on the surface of the graphite powder is a metal material having excellent conductivity, and may be made of a metal (pure metal or alloy) having excellent conductivity such as Cu, Al, Au, Ni, Pd, or an alloy thereof.
  • the entire surface of the core particles ie, graphite powder
  • an activation method for the core particles known methods such as heating to a suitable temperature for removing volatiles and adsorption gas, etc. present on the surface of the core particles, using a PdCl 2 solution, adding a organic additive, etc. Various methods can be used.
  • a wet method using a liquid reaction solution and a dry method such as vapor deposition or solid phase deposition may be used as a method of forming a metal layer on the graphite powder.
  • a wet method an electroless plating method, an electroplating method, a hydrogen reduction method of reducing metal ions from a basic solution using hydrogen gas, a chemical precipitation method, and the like may be used.
  • a graphite powder is brought into contact with a metal containing vapor by Various methods may be used, such as a substitution method for coating, a pyrolysis method for decomposing a metal compound vapor through heat to form a coating layer, and a hydrogen reduction method for reducing metal chloride vapor to hydrogen gas.
  • the coating amount of the metal is preferably carried out so that the final composite is light and excellent in thermal conductivity and has no problem in bonding strength with other substrates.
  • the volume ratio of the graphite powder in the metal-coated composite powder is 60%. It is made to be below, Preferably it is 50 to 60%, More preferably, it is set to 50 to 55%.
  • the plate-like graphite powder is oriented in a specific direction by applying vibration to a container in which the metal-coated graphite powder is charged.
  • the container may be a mold for pressurizing and sintering graphite powder coated with a metal layer, or may be a method of sintering after performing orientation and pressure using a separate container.
  • the orientation method applies vibration to the metal-coated graphite powder using vibration means such as an ultrasonic vibrator so that the plate-shaped graphite powder is oriented in a predetermined direction (usually a horizontal direction).
  • vibration means such as an ultrasonic vibrator
  • various vibration generating means may be used according to the capacity of a mold or a container.
  • the forming step (S30) is a step of forming a precursor for subsequent sintering by molding by pressing the metal powder coated graphite powder oriented in a predetermined direction at a predetermined pressure.
  • the pressurization method for molding is preferably uniaxial pressurization in terms of maintaining the oriented structure as it is, but may also use multiaxial pressurization unless a great damage is caused to the state of the oriented graphite powder.
  • the pressurization pressure is less than 80%, the contact ratio of the surfaces of the Cu plating layers which are bonded to each other after extrusion and sintering becomes low, and when it exceeds 110%, graphite may be damaged due to excessive pressure or peeling of the Cu plating layer from the graphite may occur. Therefore, the pressurization pressure is preferably pressurized to a pressure in the range of 80 to 110% of the compressive fracture strength of the metal material coated on the surface of the graphite powder.
  • the molding of the metal-coated graphite powder may also be carried out by a method such as rolling or extrusion.
  • the sintering step (S40) is a step of making a bulk material by sintering the metal coated on the surface of the graphite powder, the sintering may be made through a known method such as energization sintering or high temperature sintering.
  • the sintering temperature is less than 80% of the melting temperature of the coated metal, there is a lack of sintering heat, so that the part cannot be sintered. If the sintering temperature is more than 95%, partial melting may occur due to the influence of the pressing force. It is preferably carried out in the range of 80-95% of the temperature. In addition, the sintering pressure is preferably in the range of 10MPa / mm 2 ⁇ 80MPa / mm 2 so that the relative density of the final sintered compact can be 95% or more.
  • a composite including graphite powder oriented in a substantially horizontal direction is formed in the metal matrix.
  • the cutting step (S50) is a step of cutting the plate-like graphite powder oriented in a predetermined direction in a state arranged in parallel in the thickness direction of the plate material to make a plate material.
  • Cutting can be used in various cutting methods such as diamond wire cutting, laser cutting, precision punching die cutting.
  • the bulk material is cut to a predetermined thickness in the vertical direction of the direction in which the graphite powder is oriented, the bulk material has a structure in which the graphite powder is oriented in parallel in the thickness direction of the cut plate material.
  • graphite powder having an average particle size of 130 ⁇ m was heated at 300 to 400 ° C. for about 30 to 90 minutes using an electric furnace to perform an activation process of the graphite powder.
  • 4 is a scanning electron microscope of the graphite powder used in the embodiment of the present invention. As shown in Figure 4, the shape of the graphite powder used in the embodiment of the present invention is made of a scaly shape.
  • the activated graphite powder is then coated with copper using an electroless copper plating solution.
  • the surface activation treatment is first performed by heat treatment at 380 ° C. for 1 hour. 3wt% glacial acetic acid was added to the copper powder to form a copper coating layer on the surface of the heat-treated graphite powder, and the weight ratio of the graphite powder and glacial acetic acid was 20wt%, and a slurry containing 70wt% CuSO 4 and 10wt% water was used.
  • Zn, Fe and Al granules of 0.7 mm in size which have a higher electronegativity than the metal of the copper salt aqueous solution, were added to the slurry thus prepared so as to be about 20 wt% with respect to the slurry.
  • the plating process is performed by stirring at a speed of about 25 rpm.
  • the copper-coated graphite powder was distilled water, H 2 SO 4 , H 3 PO 4 , and tartaric acid in a weight ratio of 75, respectively. Immerse for 20 minutes in a solution mixed with: 10: 10: 5. Finally, after washing with water to remove the acid remaining on the surface of the graphite powder, heat-dried to 50 ⁇ 60 °C in the air to complete the plated powder production.
  • the copper powder coated graphite powder is charged into a mold as shown in FIG. 5.
  • the copper-coated graphite powder is composed of scales, and as the vibration is applied, the copper powder is oriented in a substantially horizontal direction as shown in FIG. 6.
  • a uniaxial pressing force is applied from the top using a punch to produce a molding precursor for sintering.
  • the bulk material thus obtained is cut at intervals of about 0.3 to 5 mm in thickness in a direction perpendicular to the orientation direction of the graphite powder oriented in the horizontal direction, as shown in FIG.
  • FIG. 10 is a photograph of a cross-sectional structure of a composite plate of copper and graphite powder prepared by the above process using a scanning electron microscope. As shown in Figure 10, it can be seen that the graphite powder in the support substrate manufactured according to the embodiment of the present invention can be produced in a state aligned in the thickness direction.
  • the support substrate manufactured according to the present invention has a thermal conductivity of about 575 W / mK in the thickness direction of the substrate, and about 160 to 200 W / mK of aluminum, which is known to have good thermal conductivity, of copper. Compared with about 380 ⁇ 400W / mK, it is excellent.
  • the coefficient of thermal expansion in the direction perpendicular to the thickness direction of the support substrate manufactured according to the embodiment of the present invention was measured, and the results are shown in FIG. As can be seen from FIG. 11, in the range of 0 ° C. to 300 ° C., which is a possible temperature range that a support substrate used for an LED element can experience, the coefficient of thermal expansion in the direction perpendicular to the thickness direction is about 6.7 ⁇ 10 ⁇ 6 (1 / K) level, and has a coefficient of thermal expansion similar to that of alumina, a nonmetallic material.
  • the coefficient of thermal expansion of the support substrate manufactured according to the embodiment of the present invention is significantly lower than that of the metal, and similar to the non-metallic element formed on the support substrate, it is possible to minimize the peeling due to the difference in the coefficient of thermal expansion, The reliability of the LED device can be significantly increased.
  • the present invention can be suitably used as a substrate for an electronic device and a high heat dissipation LED device requiring heat dissipation characteristics, such as a PCB substrate, a memory, an LED module, an electric electronic device, and the like.

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Power Engineering (AREA)
  • Cooling Or The Like Of Semiconductors Or Solid State Devices (AREA)
  • Led Device Packages (AREA)

Abstract

The present invention relates to a substrate having an excellent thermal conductivity in the thickness direction and made of a metal matrix composite material, and a light emitting diode device having the substrate. The light emitting diode device according to the present invention comprises a conductive support substrate, and a first conductor layer, an active layer, and a second conductor layer, which are sequentially formed on the upper surface of the conductive support substrate, wherein the conductive support substrate has a tissue in which carbon particles are aligned in parallel to the thickness direction of the support substrate on the metal matrix.

Description

두께 방향으로 우수한 열전도 특성을 갖는 기판과 이 기판을 구비한 LED 소자, 그 기판의 제조방법A substrate having excellent thermal conductivity in the thickness direction, an LED device having the substrate, and a method of manufacturing the substrate
본 발명은 두께 방향으로 우수한 열전도 특성을 구비한 금속기지 복합재료로 이루어진 기판과, 이 기판이 구비된 발광다이오드 소자에 관한 것으로, 보다 상세하게 금속기지 내부에 판상의 흑연분말이 두께 방향으로 정렬되어 배치되어 있어 우수한 두께 방향 열전도도를 가짐과 동시에, 두께 방향에 수직한 방향으로는 정렬된 흑연분말이 금속기지의 열팽창을 구속하여 열팽창계수가 매우 낮은 금속기지 복합재료로 이루어진 기판과, 이 기판의 두께방향이 소자의 방열방향과 일치하도록 부착된 장치, 특히 LED 소자에 관한 것이다.The present invention relates to a substrate made of a metal base composite material having excellent thermal conductivity in the thickness direction, and to a light emitting diode device provided with the substrate. More specifically, the plate-like graphite powder is arranged in the thickness direction in the metal base. A substrate made of a metal base composite material having a very low thermal expansion coefficient due to the graphite powder arranged to have excellent thickness direction thermal conductivity and to be aligned in a direction perpendicular to the thickness direction, thereby restraining the thermal expansion of the metal base; A device, in particular an LED device, is attached so that the thickness direction coincides with the heat radiation direction of the device.
기술 진보의 속도가 갈수록 빨라질 뿐 아니라 소비자의 수요가 점점 모바일화와 소형화를 지향함에 따라, 오늘날 전기기기의 주요 구성부품인 PCB 기판, 메모리, LED 모듈, 전기전자기기 등도 집적화와 고출력화가 급속하게 진행되고 있다.As the progress of technology is getting faster and the demand of consumers is becoming more and more mobile and miniaturized, integration and high output of the main components of today's electric devices such as PCB board, memory, LED module and electric and electronic devices are rapidly progressing. It is becoming.
상기 전기전자기기 등은 전자의 이동을 수반하므로, 집적화와 고출력화가 진행될수록, 전기전자기기로부터 발생하는 열량도 증가하기 때문에, 발생하는 열을 신속하게 전기전자기기 외부로 방출시키지 못할 경우, 열에 의한 부품의 열화가 심해져 제품의 성능과 내구 수명이 급격히 저하되어 제품의 신뢰성을 떨어뜨리게 된다.Since the electrical and electronic devices, etc., are accompanied by the movement of electrons, the heat generated from the electrical and electronic devices increases as the integration and the output of the electronic devices increase, so that when the generated heat cannot be quickly released to the outside of the electrical and electronic devices, The deterioration of the parts is severe and the performance and durability life of the product is drastically deteriorated, which lowers the reliability of the product.
LED 소자도 다른 조명기구와 마찬가지로 빛이 발생하는 동시에 열이 많이 발생하는데, 특히 LED 소자의 경우 온도가 올라가면 광 효율의 감소, 색 좌표의 이동, 열 저항의 변화 등 다양한 문제가 발생한다.Like other luminaires, LED devices generate light at the same time and generate a lot of heat. In particular, in the case of LED devices, various problems such as a decrease in light efficiency, a shift in color coordinates, and a change in thermal resistance occur when the temperature rises.
이에 따라 LED 조명기구도 대면적화와 고휘도화에 따른 신속한 방열이 중요한 문제점으로 대두되고 있는데, LED 소자의 방열특성을 향상시키기 위한 방법으로, 하기 특허문헌에는 Ti, Cr, Ni, Al, Pt, Au, W, Cu, Mo, CuW 또는 불순물이 주입된 반도체로 이루어지며 하부에는 방열용 요철부가 형성되어 있는 전도성 지지기판이 개시되어 있다.Accordingly, LED lighting fixtures are also emerging as an important problem of rapid heat dissipation due to large area and high brightness. As a method for improving heat dissipation characteristics of LED devices, the following patent documents include Ti, Cr, Ni, Al, Pt, Au. Disclosed is a conductive support substrate made of a semiconductor in which W, Cu, Mo, CuW, or impurities are implanted, and a concave-convex portion for radiating heat is formed at a lower portion thereof.
이중, Ti, Cr, Ni, Al, Pt, Au, W, Cu, Mo와 같은 금속 소재는 열전도 특성이 양호하여 방열에 유리한 점이 있으나, 금속 특유의 큰 질량과 과도하게 큰 열팽창계수로 인해, 경량화에 불리하고 상부에 위치한 열팽창계수가 낮은 층과의 접합 시, 열팽창계수의 차이에 의한 응력으로 쉽게 분리되어 발광소자의 신뢰성이 저하하는 문제점이 발생한다.Among them, metal materials such as Ti, Cr, Ni, Al, Pt, Au, W, Cu, Mo have advantages in heat dissipation due to their good thermal conductivity, but due to their large mass and excessively large coefficient of thermal expansion, they are light in weight. When bonding to a layer having a low coefficient of thermal expansion, which is disadvantageous to the upper portion, it is easily separated by stress due to a difference in the coefficient of thermal expansion, thereby causing a problem that the reliability of the light emitting device is degraded.
또한, Si, AlN, SiC와 같은 소재는 열전도 특성이 나쁘거나 열전도 특성이 양호하더라도, 탄성 변형이 거의 되지 않아 대면적으로 기판을 제작하는 과정에서 가해지는 충격으로 쉽게 파손되어 불량이 많아, 대면적화를 하기에 적합하지 않은 문제점이 있다.In addition, even if materials such as Si, AlN, and SiC have poor thermal conductivity or good thermal conductivity, they are hardly deformed due to almost no elastic deformation. There is a problem that is not suitable.
이에 따라, LED 소자의 고휘도화 및 대면적화에는, 일정한 탄성 변형이 가능하여 취급이 용이하고, 두께방향으로의 방열특성이 우수하여 LED 소자의 신뢰성을 높일 수 있을 뿐 아니라, 금속에 비해 가볍고 열팽창계수가 낮은 지지기판이 필요하나, 현재까지 이러한 수요에 대응한 소재는 개발되지 못한 상태이다.As a result, high brightness and large area of the LED element can be easily handled due to constant elastic deformation, and excellent heat dissipation characteristics in the thickness direction can enhance the reliability of the LED element, and are lighter than the metal and have a coefficient of thermal expansion. Low support substrates are needed, but materials to meet these demands have not been developed until now.
본 발명은 전술한 종래기술의 문제점을 해결하기 위해 창안된 것으로서, 본 발명의 해결하고자 하는 과제는, 금속 소재를 기지로 포함하고 있어 일정한 탄성 변형이 가능하며, 기판의 두께방향으로의 방열특성이 매우 우수하며, 금속에 비해 가볍고 열팽창계수가 현저하게 낮아, 특히 방열특성이 요구되는 전자소자용 기판에 적합한 기판을 제공하는데 있다.The present invention has been made to solve the above-mentioned problems of the prior art, the problem to be solved of the present invention, a metal material as a base, it is possible to constant elastic deformation, the heat radiation characteristics in the thickness direction of the substrate It is very excellent and light compared to metals and the coefficient of thermal expansion is significantly low, and in particular to provide a substrate suitable for substrates for electronic devices that require heat radiation characteristics.
또한, 본 발명의 다른 과제는, 일정한 탄성 변형이 가능하고 방열특성이 우수하며 열팽창계수가 낮은 지지기판을 구비한 고방열 LED 소자를 제공하는데 있다.In addition, another object of the present invention is to provide a high heat dissipation LED device having a support substrate capable of constant elastic deformation, excellent heat dissipation characteristics, and low coefficient of thermal expansion.
상기 과제를 해결하기 위한 본 발명의 제1측면은, 전자소자용 기판으로, 상기 기판은 금속기지에 흑연입자가 상기 기판의 두께방향으로 평행하게 배향된 조직을 갖는 복합재료로 이루어지는 것을 특징으로 하는 전자소자용 기판을 제공하는 것이다.The first aspect of the present invention for solving the above problems is an electronic device substrate, characterized in that the substrate is made of a composite material having a structure in which graphite particles are oriented parallel to the thickness direction of the substrate on a metal base It is to provide a substrate for an electronic device.
본 발명의 제1측면에 있어서, 상기 복합재료에서 상기 흑연입자의 부피분율은 30~60%일 수 있다.In the first aspect of the present invention, the volume fraction of the graphite particles in the composite material may be 30 ~ 60%.
본 발명의 제1측면에 있어서, 상기 금속기지는 Cu, Al, Au, Ni, Pd 또는 이들의 합금 중에서 선택된 1종 이상을 포함할 수 있다.In the first aspect of the present invention, the metal base may include at least one selected from Cu, Al, Au, Ni, Pd or alloys thereof.
본 발명의 제1측면에 있어서, 상기 흑연입자는 판상, 플레이크상(flake) 또는 비늘상으로 이루어질 수 있다.In the first aspect of the present invention, the graphite particles may be formed in a plate, flake or scale.
본 발명의 제1측면에 있어서, 상기 복합재료는 추가로, AlN, SiC, Al2O3, BeO 중에서 선택된 1종 이상을 10중량% 이하로 포함할 수 있다.In the first aspect of the present invention, the composite material may further comprise at least 10% by weight of one or more selected from AlN, SiC, Al 2 O 3 , BeO.
상기 다른 과제를 해결하기 위한 본 발명의 제2측면은, 전도성 지지기판과, 상기 전도성 지지기판 상에 형성된 제1반도체층, 활성층 및 제2반도체층이 순차적으로 형성된 발광소자로, 상기 전도성 지지기판은 금속기지에 흑연입자가 상기 지지기판의 두께방향으로 평행하게 배향된 조직을 갖는 것을 특징으로 하는 발광소자를 제공하는 것이다.The second aspect of the present invention for solving the other problem is a light emitting device in which a conductive support substrate, a first semiconductor layer, an active layer and a second semiconductor layer formed on the conductive support substrate in sequence, the conductive support substrate It is to provide a light emitting device characterized in that the graphite particles in the metal base has a structure oriented parallel to the thickness direction of the support substrate.
본 발명의 제2측면에 있어서, 상기 복합재료에서 상기 흑연입자의 부피분율은 30~60%일 수 있다.In the second aspect of the present invention, the volume fraction of the graphite particles in the composite material may be 30 ~ 60%.
본 발명의 제2측면에 있어서, 상기 금속기지는 Cu, Al, Au, Ni, Pd 또는 이들의 합금 중에서 선택된 1종 이상을 포함할 수 있다.In the second aspect of the present invention, the metal base may include at least one selected from Cu, Al, Au, Ni, Pd, or an alloy thereof.
본 발명의 제2측면에 있어서, 상기 흑연입자는 판상, 플레이크상(flake) 또는 비늘상으로 이루어진 흑연입자일 수 있다.In the second aspect of the present invention, the graphite particles may be graphite particles consisting of a plate, flake or scale.
본 발명의 제2측면에 있어서, 상기 전도성 지지기판의 두께는 200㎛~400㎛일 수 있다.In the second aspect of the present invention, the conductive support substrate may have a thickness of 200 μm to 400 μm.
본 발명의 제2측면에 있어서, 상기 전도성 지지기판은 추가로, AlN, SiC, Al2O3, BeO 중에서 선택된 1종 이상을 10중량% 이하로 포함할 수 있다.In the second aspect of the present invention, the conductive support substrate may further comprise at least 10% by weight of one or more selected from AlN, SiC, Al 2 O 3 , BeO.
본 발명의 제2측면에 있어서, 상기 전도성 지지기판 중 제1반도체층과 접하는 부분에는 반사층이 형성되어 있을 수 있다.In the second aspect of the present invention, a reflective layer may be formed at a portion of the conductive support substrate in contact with the first semiconductor layer.
본 발명의 제2측면에 있어서, 상기 전도성 지지기판 중 제1반도체층과 접하는 부분에는 요철부가 형성되어 있을 수 있다.In the second aspect of the present invention, an uneven portion may be formed in a portion of the conductive support substrate in contact with the first semiconductor layer.
본 발명의 제2측면에 있어서, 상기 반사층은 Ni, Ag, 또는 Au의 무전해 도금층일 수 있다.In the second aspect of the present invention, the reflective layer may be an electroless plating layer of Ni, Ag, or Au.
상기 다른 과제를 해결하기 위한 본 발명의 제3측면은, 금속기지에 복수의 흑연입자가 두께방향으로 평행하게 배향된 조직을 갖는 기판의 제조방법으로, 상기 복수의 흑연입자의 표면에 금속을 코팅하는 단계; 상기 금속이 코팅된 복수의 흑연입자를 금형에 장입하는 단계; 상기 금형에 진동을 가하여 상기 복수의 흑연입자가 그 길이방향으로 배향되도록 하는 단계; 상기 배향된 복수의 흑연입자를 가열하여, 상기 복수의 흑연입자에 코팅된 금속이 소결되도록 하는 단계; 및 소결체에서 상기 복수의 흑연입자의 길이방향으로 배열된 방향의 수직방향으로 절단하여, 복수의 흑연입자가 두께방향으로 평행하게 배향된 조직을 갖도록 하는 단계;를 포함하는 기판의 제조방법을 제공하는 것이다.The third aspect of the present invention for solving the other problem is a method of manufacturing a substrate having a structure in which a plurality of graphite particles are oriented parallel to the thickness direction on a metal base, coating a metal on the surface of the plurality of graphite particles Doing; Charging a plurality of graphite particles coated with the metal to a mold; Applying vibration to the mold so that the plurality of graphite particles are oriented in the longitudinal direction; Heating the oriented plurality of graphite particles to sinter the metal coated on the plurality of graphite particles; And cutting in the vertical direction of a direction arranged in the longitudinal direction of the plurality of graphite particles in the sintered body, so that the plurality of graphite particles have a structure oriented in parallel in the thickness direction. will be.
본 발명의 제3측면에 있어서, 상기 금속은 구리 또는 구리 합금일 수 있다.In a third aspect of the invention, the metal may be copper or a copper alloy.
본 발명의 제3측면에 있어서, 상기 금속의 코팅은 무전해 도금법에 의할 수 있다.In a third aspect of the invention, the coating of the metal may be by electroless plating.
본 발명의 제3측면에 있어서, 상기 금형에 진동을 가하는 공정은 초음파 진동기를 통해 수행될 수 있다.In the third aspect of the present invention, the process of applying vibration to the mold may be performed through an ultrasonic vibrator.
본 발명의 제3측면에 있어서, 상기 구리 또는 구리 합금은 부피%로 20~70% 코팅될 수 있다.In a third aspect of the present invention, the copper or copper alloy may be coated with 20% to 70% by volume.
본 발명의 제3측면에 있어서, 상기 소결은 가압소결법으로 수행될 수 있다.In the third aspect of the present invention, the sintering may be performed by a pressure sintering method.
본 발명에 따른 전자소자용 기판은, 금속기지에 열전도성이 우수하고 열팽창계수가 매우 낮은 탄소 입자가 두께방향으로 평행하게 정렬된 복합재료로 이루어지기 때문에, 두께 방향으로 정렬된 탄소 입자를 통해 열이 빠르게 두께 방향으로 전도되므로, 두께방향의 열전도성이 일반 금속 소재에 비해 매우 우수하다. 즉, 두께방향의 방열특성이 일반 금속재료나 세라믹 재료에 비해 우수하여, LED 소자와 같이 우수한 방열특성이 요구되는 전자소자의 신뢰성 향상에 크게 기여할 수 있다.Since the substrate for an electronic device according to the present invention is made of a composite material in which carbon particles having excellent thermal conductivity and a very low thermal expansion coefficient in a metal base are aligned in parallel in the thickness direction, heat is generated through the carbon particles aligned in the thickness direction. Since this is quickly conducted in the thickness direction, the thermal conductivity in the thickness direction is very excellent compared to the general metal material. That is, the heat dissipation characteristic in the thickness direction is superior to that of a general metal material or a ceramic material, and it can greatly contribute to the improvement of the reliability of an electronic device requiring excellent heat dissipation characteristics such as an LED element.
또한, 두께방향으로 평행하게 정렬된 탄소입자는 두께방향에 수직한 방향으로의 금속기지의 열팽창을 효과적으로 구속하기 때문에, 두께방향에 평행한 방향의 열팽창계수가 금속재료에 비해 현저하게 낮아, 열팽창계수가 낮은 비금속으로 이루어진 소자에 부착되었을 때, 열팽창계수의 차이로 인한 박리 등의 문제를 방지할 수 있다.In addition, since the carbon particles aligned in parallel in the thickness direction effectively constrain the thermal expansion of the metal base in the direction perpendicular to the thickness direction, the coefficient of thermal expansion in the direction parallel to the thickness direction is significantly lower than that of the metal material. When is attached to the element made of a low base metal, it is possible to prevent problems such as peeling due to the difference in the coefficient of thermal expansion.
또한, 탄소는 금속재료에 비해 가볍기 때문에, 소자의 경량화에도 기여할 수 있다.In addition, carbon is lighter than a metal material, and thus can contribute to weight reduction of the device.
또한, 금속기지를 바탕으로 하고 있어, Si나 SiC와 같은 재료에 비해 취성이 낮기 때문에, LED와 같은 소자의 대면적화를 함에 있어서, 불량률을 크게 줄일 수 있다.In addition, since it is based on a metal base and has low brittleness as compared to materials such as Si and SiC, the defective rate can be greatly reduced in making a large area of an element such as an LED.
또한, 상기한 전자소자용 기판이 적용된 LED 소자의 구조는 방열특성이 우수하고, 기판 자체의 취성이 Si나 SiC에 비해 낮고 가벼워서, 특히 대면적, 고휘도의 수직형 LED 소자에 적합하다.In addition, the structure of the LED device to which the electronic device substrate is applied is excellent in heat dissipation characteristics, the brittleness of the substrate itself is lower and lighter than Si or SiC, and is particularly suitable for large area and high brightness vertical LED devices.
도 1은 본 발명의 실시예에 따른 전자소자용 기판의 개략 단면도이다.1 is a schematic cross-sectional view of a substrate for an electronic device according to an embodiment of the present invention.
도 2는 본 발명의 실시예에 따른 전자소자용 기판을 지지기판으로 사용한 수직형 LED 소자의 단면도이다.2 is a cross-sectional view of a vertical LED device using a substrate for an electronic device according to an embodiment of the present invention as a support substrate.
도 3은 본 발명의 실시예에 따른 전자소자용 기판의 제조과정을 도시한 흐름도이다.3 is a flowchart illustrating a manufacturing process of an electronic device substrate according to an embodiment of the present invention.
도 4는 본 발명의 실시예 따른 전자소자용 기판에 복합화된 비늘상의 흑연분말의 주사전자현미경 사진이다.4 is a scanning electron micrograph of a scale-like graphite powder composited on a substrate for an electronic device according to an embodiment of the present invention.
도 5는 초음파 진동자가 설치된 금형의 내부에 금속이 코팅된 판상의 흑연분말을 장입한 상태를 개략적으로 도시한 도면이다.FIG. 5 is a view schematically illustrating a state in which a plate-shaped graphite powder coated with a metal is loaded into a mold in which an ultrasonic vibrator is installed.
도 6은 초음파 진동자가 설치된 금형의 내부에 금속이 코팅된 판상의 흑연분말을 장입한 후, 진동을 가하여 판상의 흑연분말이 수평으로 배향되도록 한 상태를 개략적으로 도시한 도면이다.6 is a view schematically illustrating a state in which a plate-like graphite powder coated with a metal is inserted into an inside of a mold in which an ultrasonic vibrator is installed, and then the plate-shaped graphite powder is oriented horizontally by applying vibration.
도 7은 수평으로 배향된 금속이 코팅된 판상의 흑연분말을 일축 가압하여 성형하는 단계를 개략적으로 도시한 도면이다.FIG. 7 is a view schematically illustrating a step of uniaxially pressing and shaping a plate-shaped graphite powder coated with a horizontally oriented metal.
도 8은 도 7의 성형체를 소결한 소결체를 개략적으로 도시한 도면이다.8 is a view schematically showing a sintered body obtained by sintering the molded body of FIG. 7.
도 9는 도 8의 소결체를 판상의 흑연분말이 배향된 방향의 수직방향으로 절단하여 판재를 만드는 과정을 도시한 도면이다.FIG. 9 is a view illustrating a process of making a plate by cutting the sintered body of FIG. 8 in a vertical direction in a direction in which the graphite graphite powder is oriented.
도 10은 도 9의 절단 과정을 통해 수득한 판재의 조직의 주사전자현미경 사진이다.10 is a scanning electron micrograph of the tissue of the plate obtained through the cutting process of FIG.
도 11은 본 발명의 실시예에 따른 전자소자용 기판의 두께 방향에 수직한 방향의 열팽창계수를 측정한 그래프이다.11 is a graph illustrating a coefficient of thermal expansion in a direction perpendicular to the thickness direction of an electronic device substrate according to an exemplary embodiment of the present invention.
도 12는 본 발명의 실시예에 따른 전자소자용 기판의 열저항 특성을 측정한 그래프이다.12 is a graph measuring heat resistance characteristics of a substrate for an electronic device according to an embodiment of the present invention.
이하 본 발명의 실시예에 대하여 첨부된 도면을 참고로 그 구성 및 작용을 설명하기로 한다.Hereinafter, the configuration and operation of the present invention will be described with reference to the accompanying drawings.
하기에서 본 발명을 설명함에 있어, 관련된 공지 기능 또는 구성에 대한 구체적인 설명이 본 발명의 요지를 불필요하게 흐릴 수 있다고 판단되는 경우에는 그 상세한 설명을 생략할 것이다. 또한, 어떤 부분이 어떤 구성요소를 "포함"한다고 할 때, 이는 특별히 반대되는 기재가 없는 한 다른 구성요소를 제외하는 것이 아니라 다른 구성요소를 더 포함할 수 있는 것을 의미한다.In the following description of the present invention, if it is determined that a detailed description of a related known function or configuration may unnecessarily obscure the subject matter of the present invention, the detailed description thereof will be omitted. In addition, when a part is said to "include" a certain component, this means that it may further include other components, except to exclude other components unless otherwise stated.
먼저, 본 발명에 따른 전자소자용 기판에 대해 설명한다.First, the electronic device substrate which concerns on this invention is demonstrated.
도 1은 본 발명의 실시예에 따른 전자소자용 기판의 개략 단면도이다. 도 1에 도시된 바와 같이, 본 발명의 일 실시형태에 따른 전자소자용 기판(110)은, 금속기지(111)에 흑연입자(112)가 상기 기판의 두께방향으로 평행하게 배향된 조직을 갖는 복합재료로 이루어진다.1 is a schematic cross-sectional view of a substrate for an electronic device according to an embodiment of the present invention. As shown in FIG. 1, an electronic device substrate 110 according to an embodiment of the present invention has a structure in which graphite particles 112 are oriented parallel to the thickness direction of the substrate on a metal base 111. It is made of composite material.
상기 금속기지(111)로는 사용되는 소자의 종류에 따라, 열전도성, 전기 전도성과 함께 강도와 중량 등을 고려하여 다양한 원소들이 사용될 수 있으며, 예를 들어 Cu, Al, Au, Ni, Pd 또는 이들의 합금이 사용될 수 있으나, 반드시 이에 제한되는 것은 아니다. 한편, 본 발명에 있어서, '합금'이란 상기 원소 내에 타 원소가 40중량% 이상 포함된 금속을 의미한다.As the metal base 111, various elements may be used in consideration of strength and weight, together with thermal conductivity and electrical conductivity, for example, Cu, Al, Au, Ni, Pd, or the like. An alloy of may be used, but is not necessarily limited thereto. On the other hand, in the present invention, the 'alloy' means a metal containing at least 40% by weight of other elements in the element.
또한, 흑연입자는 수직으로 배향되었을 때, 흑연입자를 통해 신속하게 열이 전도될 수 있도록 '판상'으로 이루어지는 것이 바람직한데, 본 발명에 있어서 '판상의 흑연입자'이란 완전한 판상 형상으로 이루어진 입자는 물론, 판상과 유사한 형상인, 플레이크(flake)상, 비늘상 입자를 포함하는 의미이다.In addition, when the graphite particles are oriented vertically, it is preferable that the graphite particles are formed in a 'plate' so that heat can be quickly conducted through the graphite particles. Of course, it is meant to include flake-like, scaly particles, which are shaped like plates.
또한, 상기 복합재료에 있어서, 흑연입자의 부피분율은 30~60%가 바람직한데, 30% 미만일 경우 두께 방향의 충분한 열전도도 및 낮은 열팽창계수를 유지하기 어렵고, 60%를 초과할 경우 기판에 요구되는 기본적인 강도를 유지하기 어렵기 때문이다. 열전도도와 경량화를 고려할 때, 보다 바람직한 부피분율은 50~60%이고, 가장 바람직한 부피분율은 50~55%이다.In addition, in the composite material, the volume fraction of the graphite particles is preferably 30 to 60%, but if it is less than 30%, it is difficult to maintain sufficient thermal conductivity and low coefficient of thermal expansion in the thickness direction. This is because it is difficult to maintain the basic strength. In consideration of thermal conductivity and weight reduction, a more preferable volume fraction is 50 to 60%, and the most preferable volume fraction is 50 to 55%.
또한, 본 발명에 있어서, '두께 방향으로 평행하게 배향된 조직'이란, 도 1의 우측에 표시된 배향각도(α, 수평방향에서 수직방향으로의 각도)가 45°이상인 입자가 복합조직의 면적분율로 50%를 초과한 조직을 의미하며, 45°이상인 입자가 복합조직의 면적분율로 70% 이상인 것이 바람직하다.In the present invention, the term "tissues oriented parallel to the thickness direction" means an area fraction of the composite tissue in which particles having an orientation angle (α, an angle from the horizontal direction to the vertical direction) indicated on the right side of FIG. It means more than 50% of the tissue, it is preferable that the particles of more than 45 ° is more than 70% in the area fraction of the composite tissue.
또한, 상기 전도성 지지기판은 추가로, 지지기판의 강도를 향상시키는 목적으로 AlN, SiC, Al2O3, BeO 중에서 선택된 1종 이상을 10중량% 이하로 포함할 수 있는데, 상기 성분이 10중량%를 초과하여 첨가될 경우, 열전도 특성이 저하될 수 있기 때문이다.In addition, the conductive support substrate may further include 10 wt% or less of one or more selected from AlN, SiC, Al 2 O 3 , and BeO for the purpose of improving the strength of the support substrate, wherein the component is 10 wt% This is because the thermal conductivity may be lowered when added in excess of%.
다음으로, 본 발명에 따른 전자소자용 기판을 지지기판으로 사용한 수직형 LED 소자(100)에 대해 설명한다.Next, a description will be given of the vertical LED device 100 using the electronic device substrate according to the present invention as a support substrate.
도 2는 본 발명의 실시예에 따른 전자소자용 기판을 지지기판으로 사용한 수직형 LED 소자의 단면도이다. 도 2에 도시된 바와 같이, 본 발명의 실시예에 따른 LED 소자(100)는, 전도성 지지기판(110)과, 상기 전도성 지지기판(110)의 상면에 형성된 접착층(120)과, 상기 접착층(120) 상에 형성된 반사층(130)과, 상기 반사층(130) 상에 형성된 제1반도체층(140), 상기 제1반도체층(140) 상에 형성된 활성층(150), 상기 활성층 상에 형성된 제2반도체층(160) 및 상기 제2반도체층(160) 상에 형성된 전극(170)을 포함하여 이루어진다.2 is a cross-sectional view of a vertical LED device using a substrate for an electronic device according to an embodiment of the present invention as a support substrate. As shown in FIG. 2, the LED device 100 according to the embodiment of the present invention includes a conductive support substrate 110, an adhesive layer 120 formed on an upper surface of the conductive support substrate 110, and the adhesive layer ( The reflective layer 130 formed on the 120, the first semiconductor layer 140 formed on the reflective layer 130, the active layer 150 formed on the first semiconductor layer 140, and the second formed on the active layer. And an electrode 170 formed on the semiconductor layer 160 and the second semiconductor layer 160.
상기 전도성 지지기판(110)은 상기 LED 소자(100)에 전원을 공급하는 전극 역할을 수행함과 동시에, 제1반도체층(140), 활성층(150), 제2반도체층(160)으로 이루어진 발광구조에서 발생하는 열을 외부의 방열구조로 배출하는 역할을 동시에 수행하며, 본 발명의 실시예에서는 흑연입자(112)가 두께방향(수직방향)으로 배향되어 있는 금속기지(111) 복합재료로 이루어진 지지기판(110)이 사용된다. 본 발명의 실시예에 따른 지지기판(110)의 경우, 기판 내에 흑연입자가 수직으로 접촉되거나 내지는 근거리에 인접하여 배향되어 있기 때문에, 두께 방향으로의 열전도성이 매우 높아서, 발광구조에서 발생한 열을 외부의 방열구조로 신속하게 배출할 수 있게 된다. 또한, 상기 전도성 지지기판(110)은 200㎛~400㎛의 두께를 갖는 것이 바람직한데, 이는 지지기판(110)의 두께가 200㎛ 미만일 경우, 지지기판으로서 요구되는 강도 및 강성을 유지하기 어렵고, 400㎛ 이하로도 충분한 강성 유지 가능하고 400㎛를 초과할 경우 열전도 거리가 길어져 방열 등에 불리하기 때문이다. 또한, 도시되어 있지 않으나, 상기 전도성 지지기판(110)의 상면에는 다수의 요철부가 형성될 수 있다. 이때 요철부는 그 상부에 형성되는 반사층(130)에서 반사되는 빛의 전반사를 막아, 최대한 많은 빛이 외부로 방출될 수 있도록 하는 역할을 한다.The conductive support substrate 110 serves as an electrode for supplying power to the LED device 100 and at the same time, a light emitting structure consisting of a first semiconductor layer 140, an active layer 150, and a second semiconductor layer 160. At the same time serves to discharge the heat generated from the external heat dissipation structure, in the embodiment of the present invention, the graphite particles 112 is made of a metal base 111 composite material is oriented in the thickness direction (vertical direction) Substrate 110 is used. In the case of the support substrate 110 according to the embodiment of the present invention, since the graphite particles are vertically contacted or oriented adjacent to the near field in the substrate, the thermal conductivity in the thickness direction is very high, so that heat generated in the light emitting structure It can be discharged quickly by the external heat dissipation structure. In addition, the conductive support substrate 110 preferably has a thickness of 200㎛ ~ 400㎛, when the thickness of the support substrate 110 is less than 200㎛, it is difficult to maintain the strength and rigidity required as a support substrate, This is because sufficient stiffness can be maintained even below 400 μm, and when it exceeds 400 μm, the heat conduction distance becomes long, which is disadvantageous for heat radiation. In addition, although not shown, a plurality of uneven parts may be formed on an upper surface of the conductive support substrate 110. At this time, the uneven portion serves to prevent the total reflection of the light reflected from the reflective layer 130 formed on the upper portion, so that as much light can be emitted to the outside.
상기 접착층(120)은, 상기 전도성 지지기판(110)의 상부에 형성되어 상부에 형성되는 발광구조 간에 접합력을 높이기 위한 층으로, 예를 들어, Ti, Au, Sn, Ni, Cr, Ga, In, Bi, Cu, Ag 또는 Ta 중 적어도 하나를 포함하는 층이 형성될 수 있다.The adhesive layer 120 is formed on the conductive support substrate 110 to increase the bonding strength between the light emitting structure formed on the upper layer, for example, Ti, Au, Sn, Ni, Cr, Ga, In A layer comprising at least one of Bi, Cu, Ag or Ta may be formed.
상기 반사층(130)은 발광구조에서 생성되는 빛 중에서 전도성 지지기판(110)의 방향으로 방출되는 빛을 반사시켜 LED 소자(100)의 상부로 방출되도록 함으로써, LED 소자(100)의 휘도를 향상시키는 역할을 수행한다. 상기 반사층(130)으로는 예를 들어 반사율이 높은 Ag, Al, Pt, Pd, Cu 또는 이들의 합금이 사용되나, 반드시 이에 제한되는 것은 아니다. 또한, 본 발명의 실시예에서는 반사층(130)을 구비하였으나, 경우에 따라서는 반사층(130)을 생략할 수도 있다.The reflective layer 130 reflects the light emitted in the direction of the conductive support substrate 110 of the light generated in the light emitting structure to be emitted to the upper portion of the LED device 100, thereby improving the brightness of the LED device 100 Play a role. For example, Ag, Al, Pt, Pd, Cu, or an alloy thereof may be used as the reflective layer 130, but the present invention is not limited thereto. In addition, although the reflective layer 130 is provided in the embodiment of the present invention, the reflective layer 130 may be omitted in some cases.
상기 제1반도체층(140)은 p형 반도체로 이루어지며, 상기 p형 반도체로는 p-GaN 반도체가 일반적으로 사용되며, 그외에도 InAlGaN, AlGaN, InGaN, AlN, InN 등이 사용될 수 있으나, 반드시 이에 한정되는 것은 아니다.The first semiconductor layer 140 is formed of a p-type semiconductor, a p-GaN semiconductor is generally used as the p-type semiconductor, and InAlGaN, AlGaN, InGaN, AlN, InN, etc. may be used. It is not limited to this.
상기 활성층(150)은 단일 양자 우물 구조, 다중 양자 우물 구조(MQW: Multi Quantum Well), 양자 선(Quantum-Wire) 구조, 또는 양자 점(Q+uantum Dot) 구조 중 적어도 어느 하나로 형성될 수 있으나, 반드시 이에 한정되는 것은 아니다.The active layer 150 may be formed of at least one of a single quantum well structure, a multi quantum well structure (MQW), a quantum-wire structure, or a Q + uantum dot structure. However, the present invention is not limited thereto.
상기 제2반도체층(160)은 n형 반도체로 이루어질 수 있으며, 상기 n형 반도체로는 n-GaN 반도체가 일반적으로 사용되며, 그외에도 InAlGaN, AlGaN, InGaN, AlN, InN 등이 사용될 수 있으나, 반드시 이에 한정되는 것은 아니다.The second semiconductor layer 160 may be formed of an n-type semiconductor. An n-GaN semiconductor is generally used as the n-type semiconductor, and InAlGaN, AlGaN, InGaN, AlN, InN, etc. may be used. It is not necessarily limited thereto.
상기 제2반도체층(160) 상에는 전극(170)이 형성될 수 있다. 상기 전극(170)은 예를 들어, 알루미늄(Al), 티타늄(Ti), 크롬(Cr), 니켈(Ni), 구리(Cu), 금(Au) 중 적어도 하나를 포함하여 형성될 수 있으나, 반드시 이에 한정되는 것은 아니다.An electrode 170 may be formed on the second semiconductor layer 160. For example, the electrode 170 may include at least one of aluminum (Al), titanium (Ti), chromium (Cr), nickel (Ni), copper (Cu), and gold (Au). It is not necessarily limited thereto.
상기한 LED 소자(100)의 제조방법은 공지된 통상적인 방법을 통해 제조될 수 있으며, 이하에서는 첨부 도면을 참조하여 본 발명의 실시예에 따른 LED 소자(100)의 특징적 구성인 지지기판(110)의 제조방법에 대해 상세히 설명한다.The manufacturing method of the LED device 100 may be manufactured through a known conventional method, hereinafter, the supporting substrate 110 which is a characteristic configuration of the LED device 100 according to an embodiment of the present invention with reference to the accompanying drawings. Will be described in detail.
도 3은 본 발명의 실시예에 따른 지지기판의 제조과정을 도시한 흐름도이다. 도 3에 도시된 바와 같이, 본 발명에 따른 지지기판의 제조방법은, 판상의 흑연분말에 금속을 코팅하는 코팅단계(S10), 금속이 코팅된 흑연분말에 진동을 가하여 상기 판상의 흑연분말이 수평 방향으로 배향되도록 하는 배향단계(S20), 상기 수평 방향으로 배향된 흑연분말을 가압하는 성형단계(S30), 성형된 흑연분말을 소결하여 벌크재를 만드는 소결단계(S40), 및 상기 수평 방향으로 배향된 방향에 수직한 방향으로 상기 벌크재를 소정 두께로 절단하여 판재를 만드는 절단단계(S50)를 포함하여 이루어진다.3 is a flowchart illustrating a manufacturing process of a support substrate according to an embodiment of the present invention. As shown in Figure 3, the manufacturing method of the support substrate according to the present invention, the coating step (S10) of coating the metal on the plate-shaped graphite powder, applying the vibration to the metal-coated graphite powder is the plate-shaped graphite powder Orientation step (S20) to be oriented in the horizontal direction, forming step (S30) for pressing the graphite powder oriented in the horizontal direction, sintering step (S40) to sinter the molded graphite powder to make a bulk material, and the horizontal direction It comprises a cutting step (S50) of cutting the bulk material to a predetermined thickness in a direction perpendicular to the direction oriented to make a plate.
상기 흑연분말의 코팅단계(S10)는 흑연분말의 표면에 금속층을 형성하는 단계이다.Coating step (S10) of the graphite powder is a step of forming a metal layer on the surface of the graphite powder.
상기 흑연분말의 평균입도는 1㎛ 미만일 경우 분말이 미세하여 도금시 교반과정에서 부유되거나 불균일한 도금이 진행될 수 있고, 500㎛를 초과할 경우 흑연 분말의 거대 조직이 판상에 그대로 남아 최종 판재의 박판화와 강도에 나쁜 영향을 미치므로, 평균입도가 1~500㎛인 것이 바람직하고, 50~300㎛인 것이 보다 바람직하다.If the average particle size of the graphite powder is less than 1㎛ fine powder may be suspended or uneven plating during stirring during plating, if the thickness exceeds 500㎛ the large structure of the graphite powder remains on the plate to thin the final plate Since it adversely affects and strength, it is preferable that it is 1-500 micrometers, and it is more preferable that it is 50-300 micrometers.
상기 흑연분말의 표면에 형성할 금속층은 전도성이 우수한 금속재료로서, Cu, Al, Au, Ni, Pd 또는 이들의 합금과 같이 전도성이 우수한 금속(순금속 또는 합금)으로 이루어질 수 있다.The metal layer to be formed on the surface of the graphite powder is a metal material having excellent conductivity, and may be made of a metal (pure metal or alloy) having excellent conductivity such as Cu, Al, Au, Ni, Pd, or an alloy thereof.
상기 금속층을 형성하여 복합분말을 제조함에 있어서, 연속적이고 균질한 금속층을 얻고 또한 금속의 코팅 효율을 높이기 위해서는, 코어입자(즉, 흑연분말)의 표면 전체가 활성화한 상태로 있을 필요가 있으므로, 이를 위해 금속의 코팅에 앞서 흑연분말에 대한 활성화처리를 수행하는 것이 바람직하다.In the preparation of the composite powder by forming the metal layer, in order to obtain a continuous and homogeneous metal layer and increase the coating efficiency of the metal, the entire surface of the core particles (ie, graphite powder) needs to be in an activated state. It is preferable to perform an activation treatment on the graphite powder before the coating of the metal.
코어 입자에 대한 활성화처리 방법으로는, 코어 입자 표면에 존재하는 휘발성 물질과 흡착 가스 등을 제거할 목적으로 적당한 온도로 가열하는 방법, PdCl2 용액을 이용하는 방법, 유기첨가제를 첨가하는 방법 등 공지된 다양한 방법이 사용될 수 있다.As an activation method for the core particles, known methods such as heating to a suitable temperature for removing volatiles and adsorption gas, etc. present on the surface of the core particles, using a PdCl 2 solution, adding a organic additive, etc. Various methods can be used.
상기 금속을 코팅하는 방법으로는, 흑연분말에 금속층을 형성하는 방법으로는 액상의 반응용액을 이용하는 습식법과, 기상 증착이나 고상 증착과 같은 건식법이 사용될 수 있다. 습식법으로는 무전해도금법, 전해도금법, 수소가스를 이용하여 염기성 용액으로부터 금속이온을 환원시키는 수소환원법, 화학침전법 등이 사용될 수 있고, 건식법으로는 금속을 함유한 증기에 흑연분말을 접촉시켜 금속이 코팅되도록 하는 치환법, 금속화합물 증기를 열을 통해 분해시켜 코팅층을 형성하는 열분해법, 금속염화물 증기를 수소가스로 환원하는 수소환원법과 같은 방법과 같이 다양한 방법이 사용될 수 있다.As a method of coating the metal, a wet method using a liquid reaction solution and a dry method such as vapor deposition or solid phase deposition may be used as a method of forming a metal layer on the graphite powder. As the wet method, an electroless plating method, an electroplating method, a hydrogen reduction method of reducing metal ions from a basic solution using hydrogen gas, a chemical precipitation method, and the like may be used. In the dry method, a graphite powder is brought into contact with a metal containing vapor by Various methods may be used, such as a substitution method for coating, a pyrolysis method for decomposing a metal compound vapor through heat to form a coating layer, and a hydrogen reduction method for reducing metal chloride vapor to hydrogen gas.
금속의 코팅량은, 최종적인 복합체의 특성이 가볍고 열전도도가 우수할 뿐 아니라 타 기판과의 접합력에 문제가 없도록 실시하는 것이 바람직한데, 금속이 코팅된 복합분말에 있어서 흑연분말의 부피비는 60% 이하가 되도록 하며, 바람직하게는 50~60%가 되도록 하며, 보다 바람직하게는 50~55%가 되도록 한다.The coating amount of the metal is preferably carried out so that the final composite is light and excellent in thermal conductivity and has no problem in bonding strength with other substrates. The volume ratio of the graphite powder in the metal-coated composite powder is 60%. It is made to be below, Preferably it is 50 to 60%, More preferably, it is set to 50 to 55%.
상기 흑연분말의 배향단계(S20)는, 금속이 코팅된 흑연분말이 장입된 용기에 진동을 가하여 상기 판상의 흑연분말이 특정한 방향으로 배향이 되도록 하는 단계이다.In the orientation step (S20) of the graphite powder, the plate-like graphite powder is oriented in a specific direction by applying vibration to a container in which the metal-coated graphite powder is charged.
상기 용기는 금속층이 코팅된 흑연분말을 가압 소결하는 금형일 수도 있고, 별개의 용기를 사용하여 배향 및 가압을 한 후, 소결을 하는 방식을 사용할 수도 있다.The container may be a mold for pressurizing and sintering graphite powder coated with a metal layer, or may be a method of sintering after performing orientation and pressure using a separate container.
상기 배향 방법은 금속이 코팅된 흑연분말에 초음파 진동자와 같은 진동수단을 사용하여 진동을 가하여, 판상의 흑연분말이 소정 방향(대개는 수평 방향)으로 배향이 되도록 한다. 본 발명의 실시예에서는 초음파 진동자를 사용하고 있으나, 금형 또는 용기의 용량에 맞추어 다양한 진동발생수단이 사용될 수 있다.The orientation method applies vibration to the metal-coated graphite powder using vibration means such as an ultrasonic vibrator so that the plate-shaped graphite powder is oriented in a predetermined direction (usually a horizontal direction). In the embodiment of the present invention, an ultrasonic vibrator is used, but various vibration generating means may be used according to the capacity of a mold or a container.
상기 성형단계(S30)는, 소정 방향으로 배향된 금속이 코팅된 흑연분말을 소정 압력으로 가압하여 성형함으로써, 후속하는 소결용 전구체를 만드는 단계이다.The forming step (S30) is a step of forming a precursor for subsequent sintering by molding by pressing the metal powder coated graphite powder oriented in a predetermined direction at a predetermined pressure.
성형을 위한 가압방법은 배향 조직을 그대로 유지할 수 있는 측면에서 1축 가압이 바람직하나, 배향된 흑연분말의 상태에 큰 손상을 가하지 않는다면 다축 가압을 사용할 수도 있다. 또한, 가압 압력이 80% 미만일 경우 압출 및 소결 후 상호 접합되는 Cu도금층 표면의 접촉비율이 낮아지고, 110%를 초과할 경우 과도한 압력으로 인해 흑연이 파손되거나 흑연으로부터 Cu 도금층의 박리현상이 나타날 수 있기 때문에, 가압 압력은 흑연분말의 표면에 코팅된 금속소재의 압축 파괴강도의 80~110% 범위 압력으로 가압하는 것이 바람직하다. 또한, 금속이 코팅된 흑연분말의 성형은 압연 또는 압출과 같은 방법을 통해서도 이루어질 수 있다.The pressurization method for molding is preferably uniaxial pressurization in terms of maintaining the oriented structure as it is, but may also use multiaxial pressurization unless a great damage is caused to the state of the oriented graphite powder. In addition, when the pressurization pressure is less than 80%, the contact ratio of the surfaces of the Cu plating layers which are bonded to each other after extrusion and sintering becomes low, and when it exceeds 110%, graphite may be damaged due to excessive pressure or peeling of the Cu plating layer from the graphite may occur. Therefore, the pressurization pressure is preferably pressurized to a pressure in the range of 80 to 110% of the compressive fracture strength of the metal material coated on the surface of the graphite powder. In addition, the molding of the metal-coated graphite powder may also be carried out by a method such as rolling or extrusion.
상기 소결단계(S40)는, 흑연분말의 표면에 코팅된 금속 간을 소결하여 벌크재를 만드는 단계이며, 소결은 통전소결법이나 고온소결법과 같은 공지의 방법을 통해 이루어질 수 있다.The sintering step (S40) is a step of making a bulk material by sintering the metal coated on the surface of the graphite powder, the sintering may be made through a known method such as energization sintering or high temperature sintering.
소결온도는 코팅된 금속 용융온도의 80% 미만일 경우 소결 열량이 부족하여 부분적으로 소결이 되지 않는 부분이 나타나고 95%를 초과할 경우 가압력의 영향 에 의해 부분적인 용융이 발생할 수 있으므로, 코팅된 금속 용융온도의 80~95% 범위로 수행되는 것이 바람직하다. 또한, 소결압력은 최종 소결체의 상대밀도가 95% 이상이 될 수 있도록 10MPa/㎟ ~ 80MPa/㎟의 범위에서 진행하는 것이 바람직하다.If the sintering temperature is less than 80% of the melting temperature of the coated metal, there is a lack of sintering heat, so that the part cannot be sintered. If the sintering temperature is more than 95%, partial melting may occur due to the influence of the pressing force. It is preferably carried out in the range of 80-95% of the temperature. In addition, the sintering pressure is preferably in the range of 10MPa / mm 2 ~ 80MPa / mm 2 so that the relative density of the final sintered compact can be 95% or more.
이와 같은 소결 공정을 수행하게 되면, 금속 기지 조직에 대략 수평 방향으로 배향된 흑연분말이 포함된 복합체가 형성된다.When the sintering process is performed, a composite including graphite powder oriented in a substantially horizontal direction is formed in the metal matrix.
상기 절단단계(S50)는, 소정 방향으로 배향된 판상의 흑연분말이 판재의 두께 방향으로 평행하게 배열된 상태가 되도록 절단하여 판재로 만드는 단계이다. 절단은 다이아몬드 와이어 절단, 레이저 절단, 정밀 타발금형 절단과 같은 다양한 절단 방법에 사용될 수 있다. 벌크재를 흑연분말이 배향된 방향의 수직방향으로 소정 두께로 절단하게 되면, 절단된 판재의 두께 방향으로 흑연분말이 평행하게 배향된 조직을 갖게 된다.The cutting step (S50) is a step of cutting the plate-like graphite powder oriented in a predetermined direction in a state arranged in parallel in the thickness direction of the plate material to make a plate material. Cutting can be used in various cutting methods such as diamond wire cutting, laser cutting, precision punching die cutting. When the bulk material is cut to a predetermined thickness in the vertical direction of the direction in which the graphite powder is oriented, the bulk material has a structure in which the graphite powder is oriented in parallel in the thickness direction of the cut plate material.
[실시예]EXAMPLE
평균 입도 130㎛인 흑연분말 500g을 전기로를 사용하여, 300~400℃에서 30~90분 정도 가열하여, 흑연분말의 활성화 처리를 수행한다. 도 4는 본 발명의 실시예에서 사용한 흑연분말의 주사전자현미경이다. 도 4에 나타난 바와 같이, 본 발명의 실시예에서 사용한 흑연분말의 형상은 비늘상 형상으로 이루어진 것이다.500 g of graphite powder having an average particle size of 130 µm was heated at 300 to 400 ° C. for about 30 to 90 minutes using an electric furnace to perform an activation process of the graphite powder. 4 is a scanning electron microscope of the graphite powder used in the embodiment of the present invention. As shown in Figure 4, the shape of the graphite powder used in the embodiment of the present invention is made of a scaly shape.
이어서, 활성화된 흑연분말을 무전해 구리도금액을 사용하여 구리를 코팅한다. 구체적으로, 먼저 380℃에서 1시간 동안 열처리를 통해 표면활성화 처리를 진행한다. 그리고 열처리한 흑연분말 표면에 구리 코팅층이 잘 형성될 수 있게 3wt% 빙초산을 첨가하여 처리하였으며, 상기 흑연분말과 빙초산의 중량비가 20wt%가 되고, CuSO4 70wt%, 물 10wt%를 포함하는 슬러리를 제조한다. 이와 같이 제조한 제조된 슬러리에 치환 용제로서 구리염 수용액의 금속보다 전기 음성도가 큰 0.7mm 크기의 Zn, Fe, Al 과립물을 상기 슬러리에 대해 약 20wt% 정도가 되도록 첨가한 후, 상온에서 25rpm 정도의 속도로 교반을 진행하여 도금공정을 진행한다.The activated graphite powder is then coated with copper using an electroless copper plating solution. Specifically, the surface activation treatment is first performed by heat treatment at 380 ° C. for 1 hour. 3wt% glacial acetic acid was added to the copper powder to form a copper coating layer on the surface of the heat-treated graphite powder, and the weight ratio of the graphite powder and glacial acetic acid was 20wt%, and a slurry containing 70wt% CuSO 4 and 10wt% water was used. Manufacture. Zn, Fe and Al granules of 0.7 mm in size, which have a higher electronegativity than the metal of the copper salt aqueous solution, were added to the slurry thus prepared so as to be about 20 wt% with respect to the slurry. The plating process is performed by stirring at a speed of about 25 rpm.
그리고 무전해 도금이 완료된 구리 코팅 흑연분말이 대기 중에서 부식되는 것을 방지하기 위해 부동태화를 실시하였는데, 이를 위해 구리 코팅 흑연분말을 증류수, H2SO4, H3PO4, 타르타르산이 무게비로 각각 75:10:10:5로 혼합된 용액에서 20분간 침지한다. 마지막으로, 흑연분말 표면에 잔존하는 산을 제거하기 위해 수세한 후 대기 중에서 50~60℃로 가열 건조하여 도금된 분말제조를 완료한다.In order to prevent corrosion of the electrocoated copper-coated graphite powder in the air, passivation was performed. For this purpose, the copper-coated graphite powder was distilled water, H 2 SO 4 , H 3 PO 4 , and tartaric acid in a weight ratio of 75, respectively. Immerse for 20 minutes in a solution mixed with: 10: 10: 5. Finally, after washing with water to remove the acid remaining on the surface of the graphite powder, heat-dried to 50 ~ 60 ℃ in the air to complete the plated powder production.
이러한 과정을 통해, 구리가 약 50부피% 정도 코팅된 흑연분말을 제조한다.Through this process, graphite powder coated with about 50% by volume of copper is prepared.
이와 같이 구리가 코팅된 흑연분말을 도 5에 도시된 바와 같이, 금형에 장입한다.The copper powder coated graphite powder is charged into a mold as shown in FIG. 5.
그리고, 초음파 진동자를 사용하여 금형에 10 분간 진동을 가한다. 이 경우 구리가 코팅된 흑연분말은 비늘상으로 이루어져 있어, 진동을 가함에 따라 도 6에 도시된 바와 같이 대략 수평 방향으로 배향이 이루어진다.Then, vibration is applied to the mold for 10 minutes using an ultrasonic vibrator. In this case, the copper-coated graphite powder is composed of scales, and as the vibration is applied, the copper powder is oriented in a substantially horizontal direction as shown in FIG. 6.
배향이 어느 정도 이루어진 후에는, 도 7에 도시된 바와 같이, 펀치를 사용하여 상부로부터 일축 가압력을 가하여 소결용 성형 전구체를 제작한다.After the orientation is made to some extent, as shown in Fig. 7, a uniaxial pressing force is applied from the top using a punch to produce a molding precursor for sintering.
이와 같이 제작한 성형 전구체를 930℃, 80MPa 소결조건으로 20분간 통전소결장치를 이용하여 소결하게 되면, 도 8에 도시된 바와 같이, 구리 기지에 흑연분말이 대략 수평하게 배향된 조직을 갖는 벌크재를 얻는다.When the molded precursor prepared as described above is sintered using an energization sintering apparatus at 930 ° C. and 80 MPa sintering conditions for 20 minutes, as shown in FIG. 8, a bulk material having a structure in which graphite powder is oriented approximately horizontally on a copper base Get
이와 같이 얻은 벌크재를 다이아몬드 와이어 절단기를 사용하여, 도 9에 도시된 바와 같이, 수평 방향으로 배향된 흑연분말의 배향 방향에 수직한 방향으로 두께 약 0.3 ~ 5mm 간격으로 절단하여 판재를 만든다.The bulk material thus obtained is cut at intervals of about 0.3 to 5 mm in thickness in a direction perpendicular to the orientation direction of the graphite powder oriented in the horizontal direction, as shown in FIG.
도 10은 상기한 공정을 통해 제조한 구리와 흑연분말의 복합체 판재의 단면 조직을 주사전자현미경으로 관찰한 사진이다. 도 10에 나타난 바와 같이, 본 발명의 실시예에 따라 제조한 지지기판에서 흑연분말은 두께 방향으로 정렬된 상태로 제작될 수 있음을 알 수 있다.10 is a photograph of a cross-sectional structure of a composite plate of copper and graphite powder prepared by the above process using a scanning electron microscope. As shown in Figure 10, it can be seen that the graphite powder in the support substrate manufactured according to the embodiment of the present invention can be produced in a state aligned in the thickness direction.
이와 같이 제조된 구리/흑연 복합재로 이루어진 지지기판의 두께 방향으로의 열전도도를 측정한 결과, 하기 표 1과 같았다.As a result of measuring the thermal conductivity in the thickness direction of the support substrate made of a copper / graphite composite prepared as described above, it was as shown in Table 1.
표 1
열전도도(W/mK)
지지기판(실시예) 575.63
Table 1
Thermal Conductivity (W / mK)
Support substrate (Example) 575.63
표 1에서 상기 열전도도는 5회 측정결과를 평균한 값이다.In Table 1, the thermal conductivity is an average of five measurement results.
상기 표 1에서 확인되는 바와 같이, 본 발명에 따라 제조된 지지기판은 기판의 두께 방향으로의 열전도도가 약 575W/mK로, 열전도도가 양호하다고 알려진 알루미늄의 약 160~200W/mK, 구리의 약 380~400W/mK에 비해서 월등하게 우수함을 알 수 있다.As confirmed in Table 1, the support substrate manufactured according to the present invention has a thermal conductivity of about 575 W / mK in the thickness direction of the substrate, and about 160 to 200 W / mK of aluminum, which is known to have good thermal conductivity, of copper. Compared with about 380 ~ 400W / mK, it is excellent.
또한, 본 발명의 실시예에 따라 제조한 지지기판의 두께방향에 수직한 방향으로의 열팽창계수를 측정하였으며,그 결과는 도 11과 같았다. 도 11에서 확인되는 바와 같이, LED 소자에 사용되는 지지기판이 경험할 수 있는 가능한 온도범위인 0℃~300℃ 범위에서, 두께 방향에 수직한 방향에서의 열팽창계수는 약 6.7×10-6(1/K) 수준으로, 비금속 재료인 알루미나와 유사한 열팽창계수를 가진다. 따라서, 본 발명의 실시예에 따라 제조한 지지기판의 열팽창계수는 금속에 비해 현저하게 낮고, 지지기판 상에 형성되는 비금속 소자와 유사한 수준이므로, 열팽창계수의 차이에 따른 박리를 최소화할 수 있어, LED 소자의 신뢰성을 현저하게 높일 수 있다.In addition, the coefficient of thermal expansion in the direction perpendicular to the thickness direction of the support substrate manufactured according to the embodiment of the present invention was measured, and the results are shown in FIG. As can be seen from FIG. 11, in the range of 0 ° C. to 300 ° C., which is a possible temperature range that a support substrate used for an LED element can experience, the coefficient of thermal expansion in the direction perpendicular to the thickness direction is about 6.7 × 10 −6 (1 / K) level, and has a coefficient of thermal expansion similar to that of alumina, a nonmetallic material. Therefore, the coefficient of thermal expansion of the support substrate manufactured according to the embodiment of the present invention is significantly lower than that of the metal, and similar to the non-metallic element formed on the support substrate, it is possible to minimize the peeling due to the difference in the coefficient of thermal expansion, The reliability of the LED device can be significantly increased.
또한, 본 발명의 실시예에 따라 제조한 지지기판을 적용한 LED 소자의 열저항 특성을 평가하기 위하여, 본 발명의 실시예에 따라 제조된 구리/흑연기판과 함께, 비교를 위하여 구리기판, FR4기판을 지지기판으로 적용하고 그 위에 동일한 종류의 실리콘 산화물계 절연막을 형성한 후, 그 산화물계 절연막 위에 동박을 형성 및 식각하여 각각 3종류의 동일한 M자형 전극패턴을 형성하였으며, 그 위에 1W용량 LED 칩을 솔더링을 통해 접합한 후, 전원을 걸어 발광을 시킨 상태를 유지하고, 이에 따른 열저항 특성을 T3STER(미국 멘토사) 장치를 통하여 측정하였으며, 도 12는 그 결과를 나타낸 것이다.In addition, in order to evaluate the heat resistance characteristics of the LED device to which the support substrate manufactured according to the embodiment of the present invention, together with the copper / graphite substrate prepared according to the embodiment of the present invention, for comparison, copper substrate, FR4 substrate Was applied as a supporting substrate, and the same type of silicon oxide insulating film was formed thereon, and copper foil was formed and etched on the oxide insulating film to form three identical M-shaped electrode patterns, respectively. After bonding through soldering, the state was turned on by the power supply, and the heat resistance characteristic was measured through a T3STER (Mentosa, USA) device, Figure 12 shows the results.
본 열저항 특성 시험은 상대적으로 열전도 특성이 낮은 절연층이 삽입된 시험편을 제조하여 실험에서 나타난 저항값이 절대적인 열저항 값을 나타내는 것은 아니나, 3가지 시험편 모두 동일한 조건으로 수행하여 3가지 시험편 간의 상대적인 차이를 확인하기 위한 것이다.In this thermal resistance test, a test piece in which an insulation layer with relatively low thermal conductivity is inserted is produced, and the resistance value shown in the experiment does not represent an absolute heat resistance value. It is to confirm the difference.
그 결과 도 12에서 확인되는 바와 같이, 본 발명의 실시예에 따른 지지기판을 적용한 경우가, 종래의 FR4 및 구리 지지기판을 적용한 경우에 비해 열저항 특성이 우수하였다.As a result, as shown in Figure 12, the case of applying the support substrate according to the embodiment of the present invention, the heat resistance characteristics were superior to the case of applying the conventional FR4 and copper support substrate.
본 발명은, 방열특성이 요구되는 전자소자용 기판과 고방열 LED 소자로서, PCB 기판, 메모리, LED 모듈, 전기전자기기 등에 적합하게 이용할 수 있는 것이다.INDUSTRIAL APPLICABILITY The present invention can be suitably used as a substrate for an electronic device and a high heat dissipation LED device requiring heat dissipation characteristics, such as a PCB substrate, a memory, an LED module, an electric electronic device, and the like.

Claims (20)

  1. 전자소자용 기판으로,As an electronic device substrate,
    상기 기판은 금속기지에 흑연입자가 상기 기판의 두께방향으로 평행하게 배향된 조직을 갖는 복합재료로 이루어지는 것을 특징으로 하는 전자소자용 기판.The substrate is an electronic device substrate, characterized in that the metal base is made of a composite material having a structure in which the graphite particles are oriented parallel to the thickness direction of the substrate.
  2. 제1항에 있어서,The method of claim 1,
    상기 복합재료에서 상기 흑연입자의 부피분율은 30~60%인 것을 특징으로 하는 전자소자용 기판.The volume fraction of the graphite particles in the composite material is an electronic device substrate, characterized in that 30 to 60%.
  3. 제1항 또는 제2항에 있어서,The method according to claim 1 or 2,
    상기 금속기지는 Cu, Al, Au, Ni, Pd 또는 이들의 합금 중에서 선택된 1종 이상을 포함하는 것을 특징으로 하는 전자소자용 기판.The metal base is an electronic device substrate, characterized in that it comprises at least one selected from Cu, Al, Au, Ni, Pd or alloys thereof.
  4. 제1항 또는 제2항에 있어서,The method according to claim 1 or 2,
    상기 흑연입자는 판상, 플레이크상(flake) 또는 비늘상을 포함하는 것을 특징으로 하는 전자소자용 기판.The graphite particle is an electronic device substrate, characterized in that it comprises a plate, flake (flake) or scale.
  5. 제3항에 있어서,The method of claim 3,
    상기 복합재료는 추가로, AlN, SiC, Al2O3, BeO 중에서 선택된 1종 이상을 10중량% 이하로 포함하는 것을 특징으로 하는 전자소자용 기판.The composite material further comprises at least one selected from AlN, SiC, Al 2 O 3 , BeO to 10% by weight or less substrate for an electronic device.
  6. 전도성 지지기판과, 상기 전도성 지지기판의 상면에 형성된 제1반도체층, 활성층 및 제2반도체층이 순차적으로 형성된 발광소자로,A light emitting device in which a conductive support substrate and a first semiconductor layer, an active layer, and a second semiconductor layer formed on an upper surface of the conductive support substrate are sequentially formed,
    상기 전도성 지지기판은 금속기지에 탄소입자가 상기 지지기판의 두께방향으로 평행하게 배향된 조직을 갖는 것을 특징으로 하는 발광소자.Wherein the conductive support substrate has a structure in which carbon particles are oriented parallel to the thickness direction of the support substrate on a metal substrate.
  7. 제6항에 있어서,The method of claim 6,
    상기 복합재료에서 상기 탄소입자의 부피분율은 30~60%인 것을 특징으로 하는 발광소자.The light emitting device, characterized in that the volume fraction of the carbon particles in the composite material is 30 ~ 60%.
  8. 제6항 또는 제7항에 있어서,The method according to claim 6 or 7,
    상기 금속기지는 Cu, Al, Au, Ni, Pd 또는 이들의 합금 중에서 선택된 1종 이상을 포함하는 것을 특징으로 하는 발광소자.The metal base is a light emitting device comprising at least one selected from Cu, Al, Au, Ni, Pd or alloys thereof.
  9. 제6항 또는 제7항에 있어서,The method according to claim 6 or 7,
    상기 흑연입자는 판상, 플레이크상(flake) 또는 비늘상을 포함하는 것을 특징으로 하는 발광소자.The graphite particles are light-emitting device, characterized in that it comprises a plate, flake (flake) or scale.
  10. 제6항 또는 제7항에 있어서,The method according to claim 6 or 7,
    상기 전도성 지지기판의 두께는 200㎛~400㎛인 것을 특징으로 하는 발광소자.The thickness of the conductive support substrate is a light emitting device, characterized in that 200㎛ ~ 400㎛.
  11. 제8항에 있어서,The method of claim 8,
    상기 전도성 지지기판은 추가로, AlN, SiC, Al2O3, BeO 중에서 선택된 1종 이상을 10중량% 이하로 포함하는 것을 특징으로 하는 발광소자.The conductive support substrate further comprises at least one selected from AlN, SiC, Al 2 O 3 , BeO to 10% by weight or less.
  12. 제6항 또는 제7항에 있어서,The method according to claim 6 or 7,
    상기 전도성 지지기판 중 제1반도체층과 접하는 부분에는 반사층이 형성되어 있는 것을 특징으로 하는 발광소자.A light emitting device according to claim 1, wherein a reflective layer is formed at a portion of the conductive support substrate in contact with the first semiconductor layer.
  13. 제6항 또는 제7항에 있어서,The method according to claim 6 or 7,
    상기 전도성 지지기판 중 제1반도체층과 접하는 부분에는 요철부가 형성되어 있는 것을 특징으로 하는 발광소자.The light emitting device, characterized in that the uneven portion is formed in the portion of the conductive support substrate in contact with the first semiconductor layer.
  14. 제12항에 있어서,The method of claim 12,
    상기 반사층은 Ni, Ag, 또는 Au의 무전해 도금층인 것을 특징으로 하는 발광소자.The reflective layer is a light emitting device, characterized in that the electroless plating layer of Ni, Ag, or Au.
  15. 금속기지에 복수의 흑연입자가 두께방향으로 평행하게 배향된 조직을 갖는 기판의 제조방법으로,In the method of manufacturing a substrate having a structure in which a plurality of graphite particles are oriented parallel to the thickness direction on a metal base,
    상기 복수의 흑연입자의 표면에 금속을 코팅하는 단계;Coating a metal on the surface of the plurality of graphite particles;
    상기 금속이 코팅된 복수의 흑연입자를 금형에 장입하는 단계;Charging a plurality of graphite particles coated with the metal to a mold;
    상기 금형에 진동을 가하여 상기 복수의 흑연입자가 그 길이방향으로 배향되도록 하는 단계;Applying vibration to the mold so that the plurality of graphite particles are oriented in the longitudinal direction thereof;
    상기 배향된 복수의 흑연입자를 가열하여, 상기 복수의 흑연입자에 코팅된 금속이 소결되도록 하는 단계; 및Heating the oriented plurality of graphite particles to sinter the metal coated on the plurality of graphite particles; And
    소결체에서 상기 복수의 흑연입자의 길이방향으로 배열된 방향의 수직방향으로 절단하여, 복수의 흑연입자가 두께방향으로 평행하게 배향된 조직을 갖도록 하는 단계; 를 포함하는 기판의 제조방법.Cutting in the vertical direction of the direction arranged in the longitudinal direction of the plurality of graphite particles in the sintered body, so that the plurality of graphite particles have a structure oriented in parallel in the thickness direction; Method of manufacturing a substrate comprising a.
  16. 제15항에 있어서,The method of claim 15,
    상기 금속은 구리 또는 구리 합금인 기판의 제조방법.The metal is copper or copper alloy manufacturing method of the substrate.
  17. 제15항에 있어서,The method of claim 15,
    상기 금속의 코팅은 무전해 도금법에 의하는 기판의 제조방법.The coating of the metal is a method of manufacturing a substrate by an electroless plating method.
  18. 제15항에 있어서,The method of claim 15,
    상기 금형에 진동을 가하는 공정은 초음파 진동기를 통해 수행되는 기판의 제조방법.The process of applying a vibration to the mold is a method of manufacturing a substrate is performed via an ultrasonic vibrator.
  19. 제16항에 있어서,The method of claim 16,
    상기 구리 또는 구리 합금은 부피%로 20~70% 코팅되는 기판의 제조방법.The copper or copper alloy is a method of manufacturing a substrate that is coated 20 to 70% by volume.
  20. 제15항에 있어서,The method of claim 15,
    상기 소결은 가압소결법으로 수행되는 기판의 제조방법.The sintering method of the substrate is carried out by the pressure sintering method.
PCT/KR2014/002431 2013-07-19 2014-03-24 Substrate having excellent thermal conductivity in thickness direction, led device having same, and method for manufacturing same WO2015008922A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2013-0085250 2013-07-19
KR1020130085250A KR101498130B1 (en) 2013-07-19 2013-07-19 Manufacturing method of light emitting element comprising substrate having excellent thermal conductivity in thickness direction

Publications (1)

Publication Number Publication Date
WO2015008922A1 true WO2015008922A1 (en) 2015-01-22

Family

ID=52346341

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2014/002431 WO2015008922A1 (en) 2013-07-19 2014-03-24 Substrate having excellent thermal conductivity in thickness direction, led device having same, and method for manufacturing same

Country Status (3)

Country Link
KR (1) KR101498130B1 (en)
TW (1) TW201505218A (en)
WO (1) WO2015008922A1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6962803B2 (en) 2017-12-11 2021-11-05 Dowaホールディングス株式会社 Clad material and its manufacturing method

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20100035629A (en) * 2009-12-02 2010-04-05 주식회사 아이오지 Graphite substrate for light emitting diode and light emitting diode using the same
KR20110093006A (en) * 2010-02-11 2011-08-18 삼성엘이디 주식회사 Nitride light emitting device
JP2011199202A (en) * 2010-03-23 2011-10-06 Toyota Central R&D Labs Inc Heat spreading member, radiating member, and cooling device
US20120267421A1 (en) * 2009-11-23 2012-10-25 Hamilton Sundstrand Space Systems International, Inc. Method of joining graphite fibers to a substrate
JP2013004733A (en) * 2011-06-16 2013-01-07 Sanken Electric Co Ltd Heat dissipation substrate

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100710398B1 (en) * 1999-06-11 2007-04-24 도탄카코 가부시키가이샤 Carbon-based metal composite board-shaped material and method for producing the same
JP2012023335A (en) * 2010-06-17 2012-02-02 Sony Chemical & Information Device Corp Thermally conductive sheet and method of producing the same
KR20130007126A (en) * 2011-06-29 2013-01-18 삼성전자주식회사 Semiconductor light emitting device, light emitting apparatus and method for manufacturing semiconductor light emitting device

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20120267421A1 (en) * 2009-11-23 2012-10-25 Hamilton Sundstrand Space Systems International, Inc. Method of joining graphite fibers to a substrate
KR20100035629A (en) * 2009-12-02 2010-04-05 주식회사 아이오지 Graphite substrate for light emitting diode and light emitting diode using the same
KR20110093006A (en) * 2010-02-11 2011-08-18 삼성엘이디 주식회사 Nitride light emitting device
JP2011199202A (en) * 2010-03-23 2011-10-06 Toyota Central R&D Labs Inc Heat spreading member, radiating member, and cooling device
JP2013004733A (en) * 2011-06-16 2013-01-07 Sanken Electric Co Ltd Heat dissipation substrate

Also Published As

Publication number Publication date
KR20150010352A (en) 2015-01-28
KR101498130B1 (en) 2015-03-04
TW201505218A (en) 2015-02-01

Similar Documents

Publication Publication Date Title
CN112839799B (en) Carbonaceous member with metal layer and heat conductive plate
US8029903B2 (en) Silicon nitride substrate, silicon nitride circuit board utilizing the same, and use thereof
WO2007004579A1 (en) Method for producing ceramic sheet, ceramic substrate using ceramic sheet obtained by such method, and use thereof
JP2010076948A (en) Silicon nitride circuit substrate and semiconductor module using the same
CN110731129B (en) Ceramic circuit board
WO2010114238A2 (en) Circuit board, and method for manufacturing same
JP4686996B2 (en) Heating device
US9397279B2 (en) Electric conductive heat dissipation substrate
KR101904538B1 (en) Ceramic circuit board and manufacturing method thereof
WO2014129696A1 (en) Method for manufacturing heat-dissipating plate having excellent heat conductivity in thickness direction and heat-dissipating plate manufactured by method
WO2015008922A1 (en) Substrate having excellent thermal conductivity in thickness direction, led device having same, and method for manufacturing same
JP6105983B2 (en) Manufacturing method of heat dissipation board
JPWO2014073039A1 (en) Light emitting diode substrate
US20170294399A1 (en) POWER MODULE SUBSTRATE WITH Ag UNDERLAYER AND POWER MODULE
JP2006100364A (en) Wiring board for light emitting element, method for manufacturing the same and light emitting element
CN102870210A (en) Substrate on which element is to be mounted, and process for production thereof
JP2004160549A (en) Ceramic-metal complex and high heat-conductive substrate for heat radiation using the same
TW201442582A (en) Method of fabricating multi-facets plated metal layer on ceramic substrate
CN110062955B (en) Electronic component mounting substrate, electronic device, and electronic module
JP2005267931A (en) Heater unit
JP2016031998A (en) Heat dissipation circuit board
JP2012186327A (en) Ceramic substrate and method for manufacturing ceramic substrate
EP4015486B1 (en) Ceramic substrate, circuit board and method for producing same, and power module
Krasniy et al. Research of the DBC joining interface
JP2022166640A (en) Circuit board, method for manufacturing circuit board, and method for manufacturing semiconductor module

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14825869

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14825869

Country of ref document: EP

Kind code of ref document: A1