WO2015008832A1 - 金属導体と金属端子の接続方法 - Google Patents

金属導体と金属端子の接続方法 Download PDF

Info

Publication number
WO2015008832A1
WO2015008832A1 PCT/JP2014/069046 JP2014069046W WO2015008832A1 WO 2015008832 A1 WO2015008832 A1 WO 2015008832A1 JP 2014069046 W JP2014069046 W JP 2014069046W WO 2015008832 A1 WO2015008832 A1 WO 2015008832A1
Authority
WO
WIPO (PCT)
Prior art keywords
metal
terminal
wire
metal terminal
contact resistance
Prior art date
Application number
PCT/JP2014/069046
Other languages
English (en)
French (fr)
Inventor
浩之 因
芙美代 西岡
克将 新本
弘基 北原
雅之 津志田
新二 安藤
俊文 小川
Original Assignee
大電株式会社
国立大学法人 熊本大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 大電株式会社, 国立大学法人 熊本大学 filed Critical 大電株式会社
Publication of WO2015008832A1 publication Critical patent/WO2015008832A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22FCHANGING THE PHYSICAL STRUCTURE OF NON-FERROUS METALS AND NON-FERROUS ALLOYS
    • C22F1/00Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working
    • C22F1/04Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working of aluminium or alloys based thereon
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01RELECTRICALLY-CONDUCTIVE CONNECTIONS; STRUCTURAL ASSOCIATIONS OF A PLURALITY OF MUTUALLY-INSULATED ELECTRICAL CONNECTING ELEMENTS; COUPLING DEVICES; CURRENT COLLECTORS
    • H01R4/00Electrically-conductive connections between two or more conductive members in direct contact, i.e. touching one another; Means for effecting or maintaining such contact; Electrically-conductive connections having two or more spaced connecting locations for conductors and using contact members penetrating insulation
    • H01R4/10Electrically-conductive connections between two or more conductive members in direct contact, i.e. touching one another; Means for effecting or maintaining such contact; Electrically-conductive connections having two or more spaced connecting locations for conductors and using contact members penetrating insulation effected solely by twisting, wrapping, bending, crimping, or other permanent deformation
    • H01R4/18Electrically-conductive connections between two or more conductive members in direct contact, i.e. touching one another; Means for effecting or maintaining such contact; Electrically-conductive connections having two or more spaced connecting locations for conductors and using contact members penetrating insulation effected solely by twisting, wrapping, bending, crimping, or other permanent deformation by crimping
    • H01R4/187Electrically-conductive connections between two or more conductive members in direct contact, i.e. touching one another; Means for effecting or maintaining such contact; Electrically-conductive connections having two or more spaced connecting locations for conductors and using contact members penetrating insulation effected solely by twisting, wrapping, bending, crimping, or other permanent deformation by crimping combined with soldering or welding
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01RELECTRICALLY-CONDUCTIVE CONNECTIONS; STRUCTURAL ASSOCIATIONS OF A PLURALITY OF MUTUALLY-INSULATED ELECTRICAL CONNECTING ELEMENTS; COUPLING DEVICES; CURRENT COLLECTORS
    • H01R43/00Apparatus or processes specially adapted for manufacturing, assembling, maintaining, or repairing of line connectors or current collectors or for joining electric conductors
    • H01R43/02Apparatus or processes specially adapted for manufacturing, assembling, maintaining, or repairing of line connectors or current collectors or for joining electric conductors for soldered or welded connections
    • H01R43/0207Ultrasonic-, H.F.-, cold- or impact welding
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01RELECTRICALLY-CONDUCTIVE CONNECTIONS; STRUCTURAL ASSOCIATIONS OF A PLURALITY OF MUTUALLY-INSULATED ELECTRICAL CONNECTING ELEMENTS; COUPLING DEVICES; CURRENT COLLECTORS
    • H01R43/00Apparatus or processes specially adapted for manufacturing, assembling, maintaining, or repairing of line connectors or current collectors or for joining electric conductors
    • H01R43/04Apparatus or processes specially adapted for manufacturing, assembling, maintaining, or repairing of line connectors or current collectors or for joining electric conductors for forming connections by deformation, e.g. crimping tool
    • H01R43/048Crimping apparatus or processes
    • H01R43/0484Crimping apparatus or processes for eyelet contact members
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01RELECTRICALLY-CONDUCTIVE CONNECTIONS; STRUCTURAL ASSOCIATIONS OF A PLURALITY OF MUTUALLY-INSULATED ELECTRICAL CONNECTING ELEMENTS; COUPLING DEVICES; CURRENT COLLECTORS
    • H01R4/00Electrically-conductive connections between two or more conductive members in direct contact, i.e. touching one another; Means for effecting or maintaining such contact; Electrically-conductive connections having two or more spaced connecting locations for conductors and using contact members penetrating insulation
    • H01R4/58Electrically-conductive connections between two or more conductive members in direct contact, i.e. touching one another; Means for effecting or maintaining such contact; Electrically-conductive connections having two or more spaced connecting locations for conductors and using contact members penetrating insulation characterised by the form or material of the contacting members
    • H01R4/62Connections between conductors of different materials; Connections between or with aluminium or steel-core aluminium conductors

Definitions

  • the present invention reduces a contact resistance (connection resistance) between a metal conductor and a metal terminal formed using a metal different from the metal conductor, and maintains a low contact resistance over a long period of time. And a method of connecting metal terminals.
  • the contact resistance between the terminal and the stranded wire is the contact resistance between the terminal and the strand directly contacting the terminal, the strand contacting the terminal, It is affected by the contact resistance with other wires (wire group) and the contact resistance within the wire group. And even if a fine protrusion is provided on the inner surface of the crimping portion of the terminal, it can be expected that a decrease in contact resistance is a contact resistance between the terminal and the wire that is in direct contact with the terminal. It does not contribute greatly to the decrease in contact resistance between the two. In particular, when the wire diameter is as small as about 25 to 500 ⁇ m, for example, the number of strands increases even if the strand diameter is the same. There is a problem that the contact resistance between the wires increases.
  • An object of the present invention is to provide a method for connecting a metal conductor and a metal terminal.
  • the end portion of the metal conductor is inserted into the crimping portion of the metal terminal, and is used together with the caulking and joining to the joint portion of the metal conductor and the metal terminal.
  • the metal conductor has a strand having a wire diameter of 25 ⁇ m or more and 500 ⁇ m or less, and the strand has a conductivity of 50% IACS or more, and is subjected to a compressive stress of 120 MPa at a temperature of 110 ° C. for 5 hours.
  • a metal terminal made of copper or a copper alloy.
  • metal plating such as gold
  • an aluminum-based alloy having a conductivity of 50% IACS or more and having creep resistance can be produced by adding, for example, magnesium, iron, zirconium, chromium, or the like to aluminum in a predetermined range.
  • the metal conductor is a stranded wire formed by twisting a plurality of strands
  • the electrical resistance of the stranded wire having a constant length is inversely proportional to the cross-sectional area of the stranded wire.
  • the rate is less than 50% IACS, it is necessary to increase the cross-sectional area of the stranded wire, that is, to increase the diameter of the stranded wire, and the storability of the stranded wire (cable) in the housing or the like is extremely deteriorated. , Virtually unusable.
  • the electrical conductivity of an aluminum-based alloy (element wire) is specified to be 50% IACS or more, thereby suppressing an increase in the cross-sectional area of the stranded wire.
  • the reason why the wire diameter is set to 25 ⁇ m or more and 500 ⁇ m or less is, for example, to achieve both the realization of a cable having sufficient flexibility and bending resistance that can be used as a robot cable and the securing of productivity. .
  • the property of the wire that is difficult to be plastically deformed is evaluated as the deformation rate (creep resistance) of the compression creep, and the temperature of the wire, the clamping force (compression stress) applied to the wire,
  • the relationship between the deformation rate when the temperature rise period was used as a parameter and whether or not conditions 1 to 3 were satisfied was obtained.
  • the conditions 1 to 3 are all satisfied if the temperature of the wire is 110 ° C. and the deformation rate is 1% or less when a compressive stress of 120 MPa is applied to the wire for 5 hours. did.
  • the evaluation standard of creep resistance of the strand was determined to be a deformation rate of 1% or less when a compressive stress of 120 MPa was applied at a temperature of 110 ° C. for 5 hours.
  • the remaining area excluding the junction from the metal terminal is kept at a temperature of 50 to 250 ° C. for at least 0.1 second so that the junction is super-existing. It is preferable to apply sonic vibration.
  • a region that can be measured by a temperature measuring means such as an image sensor or an infrared camera is set as the temperature measurement target area.
  • a temperature measuring means such as an image sensor or an infrared camera
  • the temperature of the joint exceeds 250 ° C., but the generated heat can flow out to the outside through the strand, so the joint from the metal terminal
  • the temperature of the remaining region except for can be maintained at 250 ° C. or lower.
  • the temperature of the remaining region excluding the joint from the metal terminal is changed to a metal element (a metal terminal and a wire are formed at the interface of the joint, respectively. It is possible to maintain the temperature at which the diffusion of the element) can proceed sufficiently. Further, by setting the temperature of the remaining region excluding the joint from the metal terminal to 250 ° C. or less, the grain growth of the crystal grains forming the strands can be suppressed. And the remaining area
  • the aluminum-based alloy (element wire) contains 0.1 to 10% by mass of nanoparticles having a particle size of 1 to 999 nm. It is preferable.
  • the nanoparticles are fullerene, carbon nanotube, carbon nanoparticle, silicon nanoparticle, transition metal nanoparticle, compound nanoparticle composed of a compound with aluminum, oxide nanoparticle composed of an oxide of aluminum, or nitriding of aluminum Any one of nitride nanoparticles made of a material.
  • the reason why the particle size of the nanoparticles is 1 nm or more is to prevent microscopic intra-granular destruction and grain boundary destruction against macroscopic stress deformation, and the main reason for the particle size to be 999 nm or less. This is to prevent uneven stress concentration within the crystal grains and at the grain boundaries.
  • the reason why the content of nanoparticles is 0.1% by mass or more is to prevent microscopic intragranular destruction and intergranular fracture, and the content of 10% by mass or less is the main crystal. This is to prevent uneven stress concentration in the grain boundaries and grain boundaries.
  • the metal conductor is formed of an aluminum-based alloy having creep resistance
  • ultrasonic vibration is performed in an environment in which a tightening force of caulking is applied. Even if the temperature of the strand rises due to the application of, the plastic deformation of the strand can be suppressed, and the ultrasonic vibration energy can be efficiently transmitted to the strand. Thereby, the ends of the strands are rubbed together, and the oxide film present on the surface layer of the ends of the strands can be reliably removed, and a clean surface can appear at the ends of each strand. For this reason, each strand can contact directly via a clean surface, and the contact resistance between strands can be reduced.
  • ultrasonic vibration is applied to the joint so that the remaining region excluding the joint from the metal terminal is maintained at a temperature of 50 to 250 ° C. for at least 0.1 second.
  • an alloy layer can be formed by causing thermal diffusion at the interface between the clean surface formed on the wire and the clean surface formed on the metal terminal, and plastic deformation of the metal conductor (wire). Is suppressed, and a decrease in the tightening force of the caulking joint can be prevented. As a result, a strong connection is possible between the metal conductor and the metal terminal.
  • the aluminum-based alloy contains nanoparticles having a particle size of 1 nm to 999 nm in an amount of 0.1% by mass to 10% by mass,
  • the stress concentration is less likely to occur in (line), and the occurrence of stress corrosion cracking and the like can be suppressed.
  • corrosion resistance can be enhanced electrochemically.
  • the method for connecting a metal conductor and a metal terminal according to the first embodiment of the present invention is an example of a metal conductor as shown in FIG. 1, and the end of the stranded wire 11 exposed at the end of the electric wire 10.
  • a load is applied to the crimping part 13 from the outside, and the end part of the stranded wire 11 is fastened by the crimping part 13 for use in the caulking joint.
  • the ultrasonic vibration is applied to the joint part 13).
  • the ultrasonic vibration is generated by an ultrasonic oscillator (not shown) and applied to the joint portion via a wave guide (not shown).
  • the stranded wire 11 is configured by using a strand 14 having a wire diameter of 25 ⁇ m or more and 500 ⁇ m or less, and the strand 14 has a conductivity of 50% IACS or more and a compressive stress of 120 MPa at a temperature of 110 ° C. Is formed of an aluminum-based alloy having creep resistance with a deformation rate of 1% or less when loaded for 5 hours. Details will be described below.
  • a highly creep-resistant aluminum-based alloy having an electrical conductivity of 50% IACS or more is produced by adding an alloying metal such as magnesium, iron, zirconium, or chromium to aluminum and casting it.
  • the amount of magnesium added is in the range of 0.1 mass% to 1 mass%, and the conductivity is 55 to 62% IACS. And since magnesium dissolves in the aluminum crystal grains in the aluminum-based alloy structure, the creep resistance is improved.
  • the conductivity is 59% IACS, and a constant pressure load of 120 MPa is applied at 110 ° C. by occupying a bolt on a 5 mm thick plate made from this aluminum base alloy.
  • the creep resistance was evaluated based on the measured thickness change rate (deformation rate) of the plate after cooling for 5 hours (determined that the creep resistance was sufficiently high when the thickness change rate was 1% or less) In this case, the thickness change rate is 0.5%, which shows sufficiently high creep resistance.
  • the amount of iron added ranges from 0.2% by mass to 1% by mass, and the conductivity is 60 to 62% IACS. And since iron dissolves in an aluminum crystal grain within an aluminum base alloy structure, creep resistance improves. For example, in an aluminum base alloy to which 0.6 mass% of iron is added, the conductivity is 58% IACS, and when creep resistance is evaluated in the same manner as in the case of a magnesium-based aluminum base alloy, the thickness change rate is 0.1. %, Showing sufficiently high creep resistance.
  • the amount of zirconium added ranges from 0.1% by mass to 0.5% by mass, and the conductivity is 53 to 59% IACS. And since zirconium dissolves in the aluminum crystal grains in the aluminum-based alloy structure, the creep resistance is improved. For example, in an aluminum-based alloy to which 0.3% by mass of zirconium is added, the conductivity is 56% IACS, and when creep resistance is evaluated in the same manner as in the case of a magnesium-based aluminum-based alloy, the rate of change in thickness is 0.2. %, Showing sufficiently high creep resistance.
  • the aluminum-based alloy preferably contains 0.1 to 10% by mass of nanoparticles having a particle size of 1 to 999 nm.
  • the nanoparticles are, for example, fullerene, carbon nanotube, carbon nanoparticle, silicon nanoparticle, transition metal nanoparticle (for example, gold nanoparticle), compound nanoparticle composed of a compound with aluminum (intermetallic compound), aluminum Any one of alumina nanoparticles composed of oxides of aluminum and aluminum nitride nanoparticles composed of nitrides of aluminum.
  • the nanoparticles are present at one or both of the crystal grain boundary and the crystal grain of the aluminum-based alloy.
  • scandium When scandium is added to aluminum in the range of 0.1 mass% or more and 1 mass% or less, scandium is present in the form of nanoparticles (Al 3 Sc) in the aluminum-based alloy structure (at the grain boundaries of the aluminum crystal grains).
  • the conductivity is 58 to 62% IACS.
  • the conductivity becomes 61% IACS, and when the creep resistance is evaluated in the same manner as in the case of a magnesium-based aluminum-based alloy, the thickness change rate becomes 0.2%. High enough creep resistance.
  • nanoparticles present in the aluminum-based alloy By making nanoparticles present in the aluminum-based alloy, vibration or bending acts on the electric wire 10 (twisted wire 11), and even if stress is generated at a specific part in the electric wire 10 (stranded wire 11), it is specified. Stress generated by the nanoparticles present in the site is dispersed, and stress concentration is difficult to occur. As a result, resistance to stress corrosion cracking is improved, and corrosion resistance against electrochemical corrosion (deterioration) under the action of stress is increased.
  • the temperatures of the surface layers of the rubbing strand 14 and the crimping portion 13 rise to a temperature range in which diffusion bonding can be performed, but the frictional heat is transferred to the outside via the strand 14 and the crimping portion 13. Therefore, by adjusting the application time of the ultrasonic vibration, the remaining region excluding the joint portion from the metal terminal 12 can be held at a temperature of 50 to 250 ° C. for at least 0.1 second.
  • an alloy layer can be formed by causing thermal diffusion at the interface between the clean surface formed on the wire 14 and the clean surface formed on the crimping portion 13 of the metal terminal 12.
  • the plastic deformation is suppressed, and a reduction in the tightening force of the caulking joint can be prevented.
  • a strong connection is possible between the stranded wire 11 (element wire 14) and the crimping portion 13 of the metal terminal 12.
  • the grain growth of the crystal grains constituting the strand 14 can be suppressed, and the strength of the strand 14 is reduced. Further, it is possible to prevent a decrease in fatigue fracture resistance.
  • the vibration direction of the ultrasonic vibration is parallel to the longitudinal direction of the stranded wire 11. It may be orthogonal to the longitudinal direction of the stranded wire 11 or may be inclined with respect to the longitudinal direction of the stranded wire 11.
  • the frequency of the ultrasonic vibration is 39.5 kHz, for example.
  • the energy of ultrasonic vibration to be applied is 5 joules or more and 5000 joules or less, and if the energy is less than 5 joules, the effect of breaking the oxide film of the wire is not sufficient.
  • the application time of the ultrasonic vibration includes the outer diameter of the stranded wire 11, the number of strands 14 constituting the stranded wire 11, the composition of the aluminum-based alloy forming the strand 14, the crimp height (the metal after connection The height of the terminal 12) and the material of the insulating material 15 covering the stranded wire 11 are determined as appropriate. For example, when the energy of ultrasonic vibration is in the range of 5 joules to 5000 joules, it is 0.1 to 5 seconds. To be selected.
  • the material of the metal terminal 12 For example, copper or a copper alloy can be used for the base material of the metal terminal 12. Furthermore, the surface of the base material may be subjected to metal plating such as gold, tin, nickel, or chromium.
  • the ultrasonic vibration is applied to the end of the stranded wire 11 exposed at the end of the electric wire 10 so that the ends of the strands 14 are connected to each other.
  • the oxide film present on the surface layer at the end of the strand 14 can be removed, so that a clean surface can appear at the end of each strand 14.
  • the edge part of each strand 14 can contact directly via a clean surface, and the contact resistance between the edge parts of the strand 14 can be reduced.
  • thermal diffusion occurs at the interfaces between the ends of the strands 14 to form diffusion bonding. Thereby, the contact resistance between the edge parts of the strand 14 further reduces.
  • the end portion of the wire 14 and the crimping portion 13 rub against each other so that a clean surface can also appear on the crimping portion 13.
  • the direct contact between the clean surface of the strand 14 and the clean surface of the crimping portion 13 allows Contact resistance between the wire 14 and the crimping part 13 can be reduced.
  • thermal diffusion occurs at the interface between the strand 14 and the crimping part 13, an alloy layer is formed, and a strong connection can be formed. It becomes possible.
  • the element wire 14 is an aluminum-based alloy having a high creep resistance with a conductivity of 50% IACS or more (the deformation rate when a compressive stress of 120 MPa is applied for 5 hours at a temperature of 110 ° C. is 1% or less). Since it is formed, even if the temperature at the end of the strand 14 rises, the strand 14 is difficult to be plastically deformed, and ultrasonic vibration energy is efficiently transmitted between the ends of the stranded wire 11 (strand 14). can do. As a result, removal of the oxide film, diffusion bonding between the ends of the wire 14, and formation of an alloy layer at the interface between the wire 14 and the crimping portion 13 can be promoted, and a load is applied to the crimping portion 13 from the outside.
  • the aluminum-based alloy forming the wire 14 has high creep resistance, it is generated when the electric wire 10 is used under the condition that a high tightening force is applied to the stranded wire 11 by the crimping portion 13. Even if the temperature of the stranded wire 11 (element wire 14) rises due to Joule heat, the deformation of the stranded wire 11 (element wire 14) can be suppressed. As a result, it is possible to prevent loosening between the stranded wire 11 and the crimping portion 13, and to maintain a low contact resistance between the stranded wire 11 and the crimping portion 13 over a long period of time. It becomes possible to maintain.
  • the connection method between the metal conductor and the metal terminal according to the second embodiment of the present invention is such that the end of the stranded wire 11 is connected to the crimping portion 13. It is characterized in that ultrasonic vibration is applied to the joint portion after crimping and insertion. For this reason, the description about the method of caulking and connecting the metal terminal 12 to the end of the stranded wire 11 is omitted, and only the operation of the method for connecting the metal conductor and the metal terminal according to the second embodiment of the present invention will be described.
  • the end portion of the stranded wire 11 is connected. Since the ultrasonic vibration is applied to the crimping portion 13, the end of the strand 14 existing on the outer peripheral portion of the stranded wire 11 and the inner surface of the crimping portion 13 rub against each other and exist on the surface layer of the end of the strand 14. The oxide film is removed and a clean surface appears, and a clean surface also appears on the inner surface of the crimping part 13. Further, the ends of the strands 14 constituting the stranded wire 11 are also rubbed together, and the oxide film present on the surface layer of the ends of the strands 14 is removed, so that a clean surface appears.
  • the ends of the strands 14 can be in direct contact with each other via the clean surface, and the contact resistance between the ends of the strands 14 can be reduced.
  • the temperature rises due to rubbing between clean surfaces appearing at the ends of the strands 14 thermal diffusion occurs at the interfaces between the ends of the strands 14 to form diffusion bonding.
  • the contact resistance between the edge parts of the strand 14 further reduces.
  • the direct contact between the clean surface of the wire 14 and the clean surface of the crimping portion 13 can reduce the contact resistance between the strand 14 and the crimping portion 13.
  • the strand 14 is formed of an aluminum-based alloy having a conductivity of 50% IACS or higher and having high creep resistance, the strand 14 is deformed even if the temperature of the end portion of the strand 14 rises. It is difficult, and ultrasonic vibration energy can be efficiently transmitted between the ends of the stranded wire 11 (elementary wire 14). Thereby, removal of the oxide film, diffusion bonding between the ends of the strand 14, and formation of an alloy layer at the interface between the strand 14 and the crimping portion 13 can be promoted, and the stranded wire is interposed via the crimping portion 13.
  • the aluminum-based alloy forming the wire 14 has high creep resistance, it is generated when the electric wire 10 is used under the condition that a high tightening force is applied to the stranded wire 11 by the crimping portion 13. Even if the temperature of the stranded wire 11 (element wire 14) rises due to Joule heat, the deformation of the stranded wire 11 (element wire 14) can be suppressed. As a result, it is possible to prevent loosening between the stranded wire 11 and the crimping portion 13, and to maintain a low contact resistance between the stranded wire 11 and the crimping portion 13 over a long period of time. It becomes possible to maintain.
  • Example 1 An aluminum-based alloy ingot was cast by adding 0.6% by mass of iron to 99.9% purity aluminum.
  • the conductivity of the obtained aluminum-based alloy was 58% IACS.
  • the thickness change rate was 0.2%.
  • the thickness change rate was 85%. Therefore, it was confirmed that the aluminum-based alloy cast by adding iron has high creep resistance.
  • a twisted wire with a wire diameter of 0.81 mm is produced, and copper metal terminals are set in three stages at the end of the obtained twisted wire
  • the crimping force was adjusted by an applicator with a press machine having a press pressure of 2 tons so as to obtain a crimp height.
  • the contact resistance increases as the set value of the crimp height decreases, but excessive caulking results in damage to the terminal tensile strength, so that an optimum setting is required.
  • the average contact resistance is 2.0 ⁇ 0.4 m ⁇ , and the terminal tensile strength is 50 N.
  • the crimp height is 0.9 mm, the average contact resistance is 1.8 ⁇ 0.5 m ⁇ , and the terminal tensile strength is 65 N
  • the crimp height is 1.0 mm, the average contact resistance is 2.0 ⁇ 0.5 m ⁇ , and the terminal tensile strength is 70 N.
  • Example 2 An aluminum-based alloy ingot was cast by adding 0.5% by mass of magnesium and 0.3% by mass of scandium to 99.9% pure aluminum.
  • the conductivity of the obtained aluminum-based alloy was 59% IACS when magnesium was added and 61% IACS when scandium was added.
  • the thickness change rate is 0.5% when magnesium is added, and the thickness change rate is 0.2% when scandium is added. there were. Since the thickness change rate of aluminum with a purity of 99.9% is 85%, the creep resistance of all aluminum-based alloys is improved. However, the aluminum group with scandium added more than the aluminum-based alloy with magnesium added. It can be seen that the alloy is superior in creep resistance.
  • a stranded wire having a wire diameter of 0.81 mm was prepared by using a strand having a wire diameter of 180 ⁇ m, each prepared from an ingot of each aluminum base alloy and an aluminum ingot having a purity of 99.9%. Then, a copper metal terminal with gold plating applied to the crimping portion was crimped and connected to the end of the stranded wire by adjusting the applicator so that the crimp height was about 0.9 mm. Next, ultrasonic vibration (frequency 39.5 kHz, ultrasonic vibration energy 50 joules) was applied to the end of the stranded wire and the copper metal terminal for 0.5 seconds. And the contact resistance (initial contact resistance) between a strand wire and a metal terminal was measured.
  • ultrasonic vibration frequency 39.5 kHz, ultrasonic vibration energy 50 joules
  • compression-bonding part was caulked and connected was heated at 85 degreeC, and the contact resistance after 50, 100, 150, and 200-hour progress was measured, respectively.
  • the initial contact resistance was 3.5 m ⁇ and the terminal tensile strength was 40 N.
  • the contact resistance was 5 m ⁇
  • the terminal tensile strength was 40 N
  • the contact resistance was 8.5m ⁇
  • terminal tensile strength 41N contact resistance 12.7m ⁇ after 150 hours
  • terminal tensile strength 38N contact resistance 18.2m ⁇
  • terminal tensile strength 36N after 200 hours, heating time elapsed
  • the terminal tensile strength decreased.
  • the initial contact resistance was 2.0 m ⁇ and the terminal tensile strength was 37 N, but after 50 hours, the contact resistance was 2.2 m ⁇ , and the terminal tensile strength was 65 N, and after 100 hours, the contact was Resistance is 2.8m ⁇ , terminal tensile strength is 65N, contact resistance is 2.9m ⁇ after 150 hours, terminal tensile strength is 64N, contact resistance is 3.2m ⁇ and terminal tensile strength is 65N after 200 hours, heating time has passed Even so, the increase in contact resistance could be suppressed.
  • the initial contact resistance was 1.8 m ⁇ and the terminal tensile strength was 68 N.
  • the contact resistance was 1.9 m ⁇ , and the terminal tensile strength was 68 N, and after 100 hours, the contact. Resistance is 1.9 m ⁇ , terminal tensile strength is 68 N, contact resistance is 1.9 m ⁇ after 150 hours, terminal tensile strength is 67 N, contact resistance is 1.9 m ⁇ after 200 hours, terminal tensile strength is 68 N, and heating time has elapsed Even so, the increase in contact resistance could be suppressed.
  • the contact resistance was 16.1 m ⁇ and the terminal tensile strength was 37 N, and after 100 hours, the contact was obtained. Resistance is 22.0 m ⁇ , terminal tensile strength is 32 N, contact resistance is 31.2 m ⁇ after 150 hours, terminal tensile strength is 29 N, contact resistance is 35.2 m ⁇ and terminal tensile strength is 27 N after 200 hours. As the contact resistance increased.
  • the initial contact resistance was 13.7 m ⁇ and the terminal tensile strength was 45 N, but after 50 hours the contact resistance was 14.0 m ⁇ and the terminal tensile strength was 43 N, and after 100 hours the contact was Resistance 16.0m ⁇ , terminal tensile strength 42N, contact resistance 18.0m ⁇ after 150 hours, terminal tensile strength 42N, contact resistance 20.0m ⁇ and terminal tensile strength 41N after 200 hours, time elapsed As the contact resistance increased.
  • the initial contact resistance was 15.2 m ⁇ and the terminal tensile strength was 45 N, but after 50 hours, the contact resistance was 14.0 m ⁇ , the terminal tensile strength was 44 N, and after 100 hours, the contact. Resistance is 16.0 m ⁇ , terminal tensile strength is 43 N, contact resistance is 16.5 m ⁇ after 150 hours, terminal tensile strength is 43 N, contact resistance is 18.0 m ⁇ and terminal tensile strength is 42 N after 200 hours. As the contact resistance increased.
  • the strand forming the stranded wire is formed of an aluminum-based alloy having excellent creep resistance, and the copper metal terminal plated with gold is simply caulked and connected to the end of the stranded wire,
  • the initial contact resistance was increased and the contact resistance was greatly increased under heating. Therefore, in order to reduce the contact resistance between the metal conductor and the metal terminal and to maintain this low contact resistance value over a long period of time, a metal conductor having excellent creep resistance is used, and a joint portion after caulking is joined. It can be seen that it is necessary to apply ultrasonic vibrations.
  • Example 3 Connect the copper metal terminal to the end of the stranded wire used in Experimental Example 1 by adjusting the applicator so that the crimp height is about 0.9 mm, and then connect the end of the stranded wire and the copper metal terminal to the end of the stranded wire.
  • Ultrasonic vibration (frequency 39.5 kHz) was applied for 1 second.
  • the ultrasonic output is 10 W, 30 W, and 50 W so that the temperature of the remaining region excluding the joint from the metal terminal is 40 ° C., 50 ° C., and 60 ° C.
  • Three stages were set. And when the contact resistance and terminal tensile strength between a strand wire and a metal terminal were each measured, the following result was obtained.
  • the contact resistance can be lowered and the low contact resistance can be maintained over a long period of time, thereby improving the reliability of wiring.

Abstract

金属導体11の端部を金属端子12の圧着部13に挿入し、かしめ接合に併用して接合部に超音波振動を印加する又はかしめ接合後に接合部に超音波振動を印加する金属導体と金属端子の接続方法において、金属導体11は、線径が25μm以上500μm以下の素線14を有し、しかも、素線14は導電率が50%IACS以上であって、温度110℃で120MPaの圧縮応力を5時間負荷した際の変形率が1%以下の耐クリープ性を備えたアルミニウム基合金で形成されている。

Description

金属導体と金属端子の接続方法
本発明は、金属導体と、金属導体とは異種の金属を用いて形成された金属端子との間の接触抵抗(接続抵抗)を低下させると共に、長期に亘って低接触抵抗を維持する金属導体と金属端子の接続方法に関する。
例えば、自動車用のワイヤハーネスの電線をアルミニウムやアルミニウム合金を用いて形成した場合、電線の表面には電気抵抗の大きい酸化被膜が強固に生成しているため、銅製の端子を電線に圧着して接続した際の接触抵抗が大きくなるという問題が生じる。このため、電線と接触する端子の圧着部の内面に鋸歯状の微細突起を設け、圧着時に圧着部の微細突起を電線の表面に押し当てて酸化被膜を破壊することで、電線表面と端子の圧着部とが直接接触するようにして、電線と端子との間の接触抵抗の増大を防止している(例えば、特許文献1参照)。
特開2003-249284号公報
しかしながら、鋸歯状の微細突起を圧着時に電線の表面に押し当てて酸化被膜を破壊する方法では、電線と端子を接続する度に電線表面と端子の圧着部との直接接触状態の生成を常に一定割合で再現することは困難で、電線と端子との間の接触抵抗のばらつきが大きく、長期信頼性も銅製の電線と銅製の端子の接続の場合に比較して著しく劣るという問題がある。また、端子の圧着部の内面に鋸歯状の微細突起を設けて電線との接続性を改良した場合でも、電気的腐食を起こしやすいため、ワイヤハーネスでは完全な水密防水コネクタを取り付けるなど、万全の態勢をとる必要がある。それでも、振動や屈曲など応力集中が発生する環境下では、電線に対する腐食速度が加速し物理的破損が発生し易くなるという問題がある。更に、自動車用電線は、使用時の温度変動(ジュール熱の発生により100℃前後の温度になる)に伴う熱履歴(膨張と収縮)が長期間繰り返されることから、例えば、使用中に端子の圧着部に緩みが発生し、長期間に亘り接続信頼性を確保することが困難になるという問題がある。
ここで、電線が素線を用いた撚り線の場合、端子と撚り線との間の接触抵抗は、端子と端子に直接接触する素線との間の接触抵抗、端子に接触する素線とそれ以外の素線(素線群)との間の接触抵抗、及び素線群内の接触抵抗の影響を受ける。そして、端子の圧着部の内面に微細突起を設けても、接触抵抗の低下が期待できるのは、端子と端子に直接接触する素線との間の接触抵抗であって、端子と撚り線との間の接触抵抗の低下には大きく寄与しない。特に、素線の線径が、例えば、25~500μm程度と細径になると、撚り線の径が同一でも素線の本数が増えるため、素線同士の接触の回数が増加し、端子と撚り線との間の接触抵抗が増加するという問題がある。
本発明はかかる事情に鑑みてなされたもので、金属導体と、金属導体とは異種の金属を用いた端子との間の接触抵抗を低下させると共に、長期に亘って低接触抵抗を維持することが可能な金属導体と金属端子の接続方法を提供することを目的とする。
前記目的に沿う本発明に係る金属導体と金属端子の接続方法は、金属導体の端部を金属端子の圧着部に挿入し、かしめ接合に併用して前記金属導体と前記金属端子の接合部に超音波振動を印加する又は該かしめ接合後に該接合部に超音波振動を印加する金属導体と金属端子の接続方法において、
前記金属導体は、線径が25μm以上500μm以下の素線を有し、しかも、前記素線は導電率が50%IACS以上であって、温度110℃で120MPaの圧縮応力を5時間負荷した際の変形率が1%以下の耐クリープ性を備えたアルミニウム基合金で形成されている。ここで、金属端子は銅又は銅合金からなっているものを使用することが好ましい。また、金属端子の母材表面に金、錫、ニッケル、又はクロム等の金属めっきを施してもよい。
ここで、導電率が50%IACS以上で耐クリープ性を備えたアルミニウム基合金は、アルミニウムに、例えば、マグネシウム、鉄、ジルコニウム、クロム等を所定範囲で添加することにより作製することができる。
また、金属導体が複数の素線を撚って形成した撚り線である場合、長さが一定の撚り線の電気抵抗は撚り線の断面積に反比例するため、金属導体(素線)の導電率が50%IACS未満となると、撚り線の断面積を増加させること、即ち、撚り線の大径化が必要になり、撚り線(ケーブル)の筐体等への収納性が極端に悪化し、実質的に使用できなくなる。このため、アルミニウム基合金(素線)の導電率を50%IACS以上と規定して、撚り線の断面積増加を抑制する。そして、素線の線径を25μm以上500μm以下としたのは、例えば、ロボット用ケーブルとして使用できる十分な柔軟性及び耐屈曲性を有するケーブルの実現と、生産性の確保を両立させるためである。
かしめ接合に併用して又はかしめ接合後に超音波振動を印加すると、素線の温度が上昇するので、超音波振動エネルギーを素線の端部間に効率的に伝達すること(条件1)ができると共に、素線に圧着部を介して負荷される高い締め付け力が維持される(条件2)ためには、素線が塑性変形し難い特性を有することが必要になる。また、素線に高い締め付け力が負荷された下で、素線に電流を流してジュール熱により素線の温度が上昇しても、素線と圧着部の間に緩みが発生しない(条件3)ようにするには、素線が塑性変形し難い特性を有することが必要になる。そこで、素線の塑性変形し難い特性を圧縮クリープの変形率(耐クリープ性)として評価することにして、素線の温度、素線に負荷される締め付け力(圧縮応力)、及び素線の温度上昇の期間をパラメータとした際の変形率と条件1~3の成立有無との関係を求めた。その結果、素線の温度が110℃で、素線に120MPaの圧縮応力が5時間負荷された際の変形率が1%以下であれば、条件1~3が全て満たされることが実験から判明した。このため、素線の耐クリープ性の評価基準を、温度110℃で120MPaの圧縮応力を5時間負荷した際の変形率が1%以下であることとした。
本発明に係る金属導体と金属端子の接続方法において、前記金属端子から前記接合部を除いた残りの領域を50~250℃の温度に少なくとも0.1秒間保持するように、前記接合部に超音波振動を印加することが好ましい。
超音波振動が印加されて素線と擦れ合う金属端子側の接合部の温度を直接測定することは困難であるため、例えば、イメージセンサ、赤外線カメラ等の温度測定手段で測定が可能な領域(金属端子から接合部を除いた残りの領域)を温度測定の対象領域に設定する。超音波振動が印加されて接合部と素線が擦れ合うと、接合部の温度は250℃を超えるが、発生した熱は素線を介して外部に流出させることができるので、金属端子から接合部を除いた残りの領域の温度は250℃以下に保持できる。
ここで、金属端子から接合部を除いた残りの領域の温度を50℃以上にすることにより、接合部の温度を、接合部の界面において金属元素(金属端子と素線をそれぞれ形成している元素)の拡散が十分に進行可能となる温度に保つことができる。また、金属端子から接合部を除いた残りの領域の温度を250℃以下とすることにより、素線を形成している結晶粒の粒成長を抑制することができる。そして、金属端子から接合部を除いた残りの領域を50℃以上250℃以下の温度範囲に少なくとも0.1秒間保持することにより、金属元素に、拡散に必要な熱エネルギーを供給することができる。
本発明に係る金属導体と金属端子の接続方法において、前記アルミニウム基合金(素線)には、1nm以上999nm以下の粒径のナノ粒子が0.1質量%以上10質量%以下含有されていることが好ましい。
ここで、ナノ粒子は、フラーレン、カーボンナノチューブ、カーボンナノ粒子、シリコンナノ粒子、遷移金属ナノ粒子、アルミニウムとの化合物からなる化合物ナノ粒子、アルミニウムの酸化物からなる酸化物ナノ粒子、又はアルミニウムの窒化物からなる窒化物ナノ粒子のいずれか1である。
ナノ粒子の粒径を1nm以上とするのは、巨視的な応力変形に対抗して微視的な粒内破壊や粒界破壊を防ぐためであり、粒径を999nm以下とするのは、主たる結晶の粒内、粒界への不均一な応力集中を防ぐためである。また、ナノ粒子の含有量を0.1質量%以上とするのは、微視的な粒内破壊や粒界破壊を防ぐためであり、含有量を10質量%以下とするのは、主たる結晶の粒内、粒界への不均一な応力集中を防ぐためである。
本発明に係る金属導体と金属端子の接続方法においては、金属導体が、耐クリープ性を備えたアルミニウム基合金で形成されているので、かしめ接合の締め付け力が作用する環境下で、超音波振動が印加されて素線の温度が上昇しても、素線の塑性変形を抑制することができ、超音波振動エネルギーを素線に効率的に伝達することができる。これにより、素線の端部同士を擦り合せ、素線の端部の表層に存在する酸化被膜を確実に除去することができ、各素線の端部に清浄面を出現させることができる。このため、各素線は清浄面を介して直接接触することができ、素線間の接触抵抗を低減することができる。ここで、素線の清浄面同士の擦り合せにより温度が上昇すると、素線同士の界面で熱拡散が起こり拡散接合が形成されるため、素線間の接触抵抗が更に低減する。また、素線の端部と圧着部が擦れ合うことで、素線の端部に出現した清浄面と圧着部に出現した清浄面が直接接触することができ、素線と金属端子(圧着部)の接触抵抗を低減することができる。そして、素線の端部と圧着部の擦り合せにより温度が上昇すると、素線と圧着部の界面で熱拡散が起こり合金層が形成されるため、素線と金属端子の間の接触抵抗が更に低減すると共に、強固な接続が形成される。
そして、使用時には、発生するジュール熱による温度変動に伴う熱履歴(膨張と収縮)が長期間に亘り繰り返されても、かしめ接合の締め付け力に伴う素線の変形を抑制することができ、金属導体と金属端子間に緩みが発生することを防止できる。その結果、金属導体と金属端子間の低接触抵抗が長期間に亘り維持でき、長期の接続信頼性を確保することが可能になる。
本発明に係る金属導体と金属端子の接続方法において、金属端子から接合部を除いた残りの領域を50~250℃の温度に少なくとも0.1秒間保持するように、接合部に超音波振動を印加する場合、素線に形成される清浄面と金属端子に形成される清浄面との界面で熱拡散を生じさせて合金層を形成することができると共に、金属導体(素線)の塑性変形が抑制されて、かしめ接合の締め付け力の低下を防止することができる。その結果、金属導体と金属端子の間に強固な接続が可能になる。
本発明に係る金属導体と金属端子の接続方法において、アルミニウム基合金に、1nm以上999nm以下の粒径のナノ粒子が0.1質量%以上10質量%以下含有されている場合、金属導体(素線)において応力集中が起き難く、応力腐食割れ等の発生を抑制することができる。更に、電気化学的にも耐腐食性を高めることができる。
本発明の第1、第2の実施例に係る金属導体と金属端子の接続方法を用いて撚り線に取り付けた金属端子の説明図である。
続いて、添付した図面を参照しつつ、本発明を具体化した実施例につき説明し、本発明の理解に供する。
本発明の第1の実施例に係る金属導体と金属端子の接続方法は、図1に示すように、金属導体の一例であり、電線10の端部に露出している撚り線11の端部を金属端子12の圧着部13に挿入し、圧着部13に外部から荷重を加えて撚り線11の端部を圧着部13で締め付けるかしめ接合に併用して、撚り線11と金属端子12(圧着部13)の接合部に超音波振動を印加している。なお、超音波振動は、図示しない超音波発振子で発生させてウエーブガイド(図示せず)を介して接合部に印加する。ここで、撚り線11は、線径が25μm以上500μm以下の素線14を用いて構成され、しかも、素線14は導電率が50%IACS以上であって、温度110℃で120MPaの圧縮応力を5時間負荷した際の変形率が1%以下の耐クリープ性を備えたアルミニウム基合金で形成されている。以下、詳細に説明する。
導電率が50%IACS以上である耐クリープ性の高いアルミニウム基合金は、アルミニウムに、例えば、マグネシウム、鉄、ジルコニウム、クロム等の合金化金属を添加して鋳造することにより作製される。
マグネシウム系のアルミニウム基合金の場合、マグネシウムの添加量は0.1質量%以上1質量%以下の範囲であり、導電率は55~62%IACSとなる。そして、マグネシウムがアルミニウム基合金組織内でアルミニウム結晶粒中に固溶するために耐クリープ性が向上する。例えば、マグネシウムを0.5質量%添加したアルミニウム基合金では、導電率は59%IACSとなり、このアルミニウム基合金から作製した厚さ5mmの板材にボルト占め付けにより120MPaの定圧荷重を110℃の雰囲気中で5時間保持し、冷却後の板材の厚さ変化率(変形率)の測定値から耐クリープ性を評価(厚さ変化率が1%以下となるときを十分高い耐クリープ性と判定)した場合、厚さ変化率は0.5%となって十分高い耐クリープ性を示す。
鉄系のアルミニウム基合金の場合、鉄の添加量は0.2質量%以上1質量%以下の範囲であり、導電率は60~62%IACSとなる。そして、鉄がアルミニウム基合金組織内でアルミニウム結晶粒中に固溶するために耐クリープ性が向上する。例えば、鉄を0.6質量%添加したアルミニウム基合金では、導電率は58%IACSとなり、マグネシウム系のアルミニウム基合金の場合と同様に耐クリープ性を評価すると、厚さ変化率は0.1%となって十分高い耐クリープ性を示す。
ジルコニウム系のアルミニウム基合金の場合、ジルコニウムの添加量は0.1質量%以上0.5質量%以下の範囲であり、導電率は53~59%IACSとなる。そして、ジルコニウムがアルミニウム基合金組織内でアルミニウム結晶粒中に固溶するために耐クリープ性が向上する。例えば、ジルコニウムを0.3質量%添加したアルミニウム基合金では、導電率は56%IACSとなり、マグネシウム系のアルミニウム基合金の場合と同様に耐クリープ性を評価すると、厚さ変化率は0.2%となって十分高い耐クリープ性を示す。
更に、アルミニウム基合金には、1nm以上999nm以下の粒径のナノ粒子が0.1質量%以上10質量%以下含有されているのがよい。ここで、ナノ粒子は、例えば、フラーレン、カーボンナノチューブ、カーボンナノ粒子、シリコンナノ粒子、遷移金属ナノ粒子(例えば、金ナノ粒子)、アルミニウムとの化合物(金属間化合物)からなる化合物ナノ粒子、アルミニウムの酸化物からなるアルミナナノ粒子、又はアルミニウムの窒化物からなる窒化アルミニウムナノ粒子のいずれか1である。なお、ナノ粒子は、アルミニウム基合金の結晶粒界及び結晶粒内のいずれか一方又は双方に存在する。
アルミニウムにスカンジウムを0.1質量%以上1質量%以下の範囲で添加すると、スカンジウムはアルミニウム基合金組織内で(アルミニウム結晶粒の粒界に)ナノ粒子(AlSc)を形成して存在し、導電率は58~62%IACSとなる。例えば、スカンジウムを0.3質量%添加すると、導電率は61%IACSとなり、マグネシウム系のアルミニウム基合金の場合と同様に耐クリープ性を評価すると、厚さ変化率は0.2%となって十分高い耐クリープ性を示す。
アルミニウム基合金中にナノ粒子を存在させることにより、電線10(撚り線11)に振動や屈曲等が作用して、電線10(撚り線11)内の特定部位に応力が発生しても、特定部位に存在するナノ粒子により発生する応力が分散され、応力集中が起き難くなる。その結果、応力腐食割れに対する抵抗が向上し、応力作用下における電気化学的な腐食(劣化)に対する耐腐食性も高くなる。
圧着部13又は撚り線11の例えば、表面(外側)から超音波振動を印加して、撚り線11の端部と圧着部13の接合部に超音波振動を与えると、撚り線11を構成している素線14の端部同士が擦れ合うと共に、素線14の端部と圧着部13の内面が擦れ合って、素線14の端部の表層及び圧着部13の内面にそれぞれ存在する酸化被膜が除去され、清浄面が形成される。更に、摩擦熱の発生により、素線14の端部と圧着部13の温度が上昇する。ここで、擦れ合っている素線14及び圧着部13のそれぞれの表層部の温度は拡散接合が可能な温度範囲にまで上昇するが、摩擦熱は素線14及び圧着部13を介して外部に流出させることができるので、超音波振動の印加時間を調節することにより、金属端子12から接合部を除いた残りの領域を50~250℃の温度に少なくとも0.1秒間保持することができる。
その結果、素線14に形成される清浄面と金属端子12の圧着部13に形成される清浄面との界面で熱拡散を生じさせて合金層を形成することができると共に、素線14の塑性変形が抑制されて、かしめ接合の締め付け力の低下を防止することができる。その結果、撚り線11(素線14)と金属端子12の圧着部13の間に強固な接続が可能になる。更に、金属端子12から接合部を除いた残りの領域を250℃以下に保持することにより、素線14を構成している結晶粒の粒成長を抑制することができ、素線14の強度低下、疲労破壊抵抗の低下等を防止することができる。
撚り線11の端部及び圧着部13に超音波振動を印加する場合、超音波振動の振動方向に制約はなく、超音波振動の振動方向は、撚り線11の長手方向と平行にしても、撚り線11の長手方向と直交させても、又は撚り線11の長手方向と傾斜させてもよい。
超音波振動の振動数は、例えば、39.5kHzである。また、印加する超音波振動のエネルギーは5ジュール以上5000ジュール以下であり、エネルギーが5ジュール未満では素線の酸化被膜を破る効果が十分でなく、5000ジュールを超えると圧着部13を含む金属端子12の過剰発熱を誘発するだけでなく、印加時間の調節も困難となるため好ましくない。
超音波振動の印加時間は、撚り線11の外径、撚り線11を構成している素線14の本数、素線14を形成しているアルミニウム基合金の組成、クリンプハイト(接続後の金属端子12の高さ)、撚り線11を被覆する絶縁材料15の材質等により適宜決定するが、例えば、超音波振動のエネルギーが5ジュール以上5000ジュール以下の範囲では、0.1~5秒の間で選定される。
なお、金属端子12の材質に制約はなく、金属端子12の母材には、例えば、銅又は銅合金を使用することができる。更に、母材表面に金、錫、ニッケル、又はクロム等の金属めっきを施してもよい。
続いて、本発明の第1の実施例に係る金属導体と金属端子の接続方法の作用について説明する。
第1の実施例に係る金属導体と金属端子の接続方法においては、電線10の端部に露出している撚り線11の端部に超音波振動を印加して素線14の端部同士を擦り合せて、素線14の端部の表層に存在する酸化被膜を除去することができるので、各素線14の端部に清浄面を出現させることができる。このため、各素線14の端部は清浄面を介して直接接触することができ、素線14の端部間の接触抵抗を低減させることができる。そして、素線14の端部に表れた清浄面同士の擦り合せにより温度が上昇すると、素線14の端部同士の界面で熱拡散が起こり拡散接合が形成される。これにより、素線14の端部間の接触抵抗が更に低減する。
また、素線14の端部と圧着部13が擦れ合って、圧着部13にも清浄面を出現させることができ、素線14の清浄面と圧着部13の清浄面の直接接触により、素線14と圧着部13との間の接触抵抗を低減させることができる。そして、素線14の清浄面と圧着部13の清浄面の温度が上昇すると、素線14と圧着部13との界面で熱拡散が起こり合金層が形成され、強固な接続を形成することが可能になる。その結果、素線14の端部と圧着部13(金属端子12)との接触抵抗を低減することが可能になる。
ここで、素線14が、導電率が50%IACS以上の耐クリープ性の高い(温度110℃で120MPaの圧縮応力を5時間負荷した際の変形率が1%以下である)アルミニウム基合金で形成されているので、素線14の端部の温度が上昇しても素線14は塑性変形し難く、超音波振動エネルギーを撚り線11(素線14)の端部間に効率的に伝達することができる。これにより、酸化被膜の除去、素線14の端部同士の拡散接合、素線14と圧着部13との界面における合金層の形成を促進することができると共に、圧着部13に外部から荷重を加えて撚り線11の端部を圧着部13で締め付けても、素線14の端部の変形が抑制され、圧着部13を介して撚り線11の端部に高い締め付け力を負荷することができる。その結果、撚り線11の端部に圧着部13を強固にかしめ接続することができる。
更に、素線14を形成しているアルミニウム基合金が高い耐クリープ性を有しているので、圧着部13により撚り線11に高い締め付け力が負荷される条件下で、電線10の使用時に発生するジュール熱により撚り線11(素線14)の温度が上昇しても、撚り線11(素線14)の変形を抑制することができる。これにより、撚り線11と圧着部13間に緩みが発生することを防止でき、撚り線11と圧着部13との間の低接触抵抗が長期間に亘り維持でき、長期間の接続信頼性を維持することが可能になる。
本発明の第2の実施例に係る金属導体と金属端子の接続方法は、第1の実施例に係る金属導体と金属端子の接続方法と比較して、撚り線11の端部を圧着部13に挿入し、かしめ接合後に接合部に超音波振動を印加することが特徴となっている。このため、撚り線11の端部に金属端子12をかしめ接続する方法に関する説明は省略し、本発明の第2の実施例に係る金属導体と金属端子の接続方法の作用についてのみ説明する。
第2の実施例に係る金属導体と金属端子の接続方法においては、電線10の端部に露出している撚り線11の端部に圧着部13をかしめ接続した後に、撚り線11の端部及び圧着部13に超音波振動を印加するので、撚り線11の外周部に存在する素線14の端部と圧着部13の内面が擦れ合って、素線14の端部の表層に存在する酸化被膜が除去されて清浄面が出現し、圧着部13の内面にも清浄面が出現する。また、撚り線11を構成している素線14の端部同士も擦り合って、素線14の端部の表層に存在する酸化被膜も除去されて清浄面が出現する。
その結果、各素線14の端部は清浄面を介して直接接触することができ、素線14の端部間の接触抵抗を低減させることができる。そして、素線14の端部に表れた清浄面同士の擦り合せにより温度が上昇すると、素線14の端部同士の界面で熱拡散が起こり拡散接合が形成される。これにより、素線14の端部間の接触抵抗が更に低減する。また、素線14の清浄面と圧着部13の清浄面の直接接触により、素線14と圧着部13との間の接触抵抗を低減させることができる。そして、素線14の清浄面と圧着部13の清浄面の温度が上昇すると、素線14と圧着部13との界面で熱拡散が起こり合金層が形成され、強固な接続を形成することが可能になる。
ここで、素線14が、導電率が50%IACS以上の耐クリープ性の高いアルミニウム基合金で形成されているので、素線14の端部の温度が上昇しても素線14は変形し難く、超音波振動エネルギーを撚り線11(素線14)の端部間に効率的に伝達することができる。これにより、酸化被膜の除去、素線14の端部同士の拡散接合、素線14と圧着部13との界面における合金層の形成を促進することができると共に、圧着部13を介して撚り線11の端部が高い締め付け力で締め付けられていても、素線14の端部の変形が抑制でき、かしめ接続当初の高い締め付け力を維持することができる。その結果、撚り線11の端部と圧着部13を強固にかしめ接続することができる。
更に、素線14を形成しているアルミニウム基合金が高い耐クリープ性を有しているので、圧着部13により撚り線11に高い締め付け力が負荷される条件下で、電線10の使用時に発生するジュール熱により撚り線11(素線14)の温度が上昇しても、撚り線11(素線14)の変形を抑制することができる。これにより、撚り線11と圧着部13間に緩みが発生することを防止でき、撚り線11と圧着部13との間の低接触抵抗が長期間に亘り維持でき、長期間の接続信頼性を維持することが可能になる。
実験例
(実験例1)
純度99.9%のアルミニウムに、鉄を0.6質量%添加してアルミニウム基合金のインゴットを鋳造した。得られたアルミニウム基合金の導電率は58%IACSであった。また、アルミニウム基合金から作製した試験片を用いて耐クリープ性を評価すると、厚さ変化率は0.2%であった。なお、比較のため、純度99.9%のアルミニウムのインゴットから同様の試験片を作製し、同様の評価を行うと厚さ変化率は85%であった。従って、鉄を添加して鋳造したアルミニウム基合金は、高い耐クリープ性を有することが確認できた。
アルミニウム基合金のインゴットから作製した線径180μmの素線を用いて、線径が0.81mmの撚り線を作製し、得られた撚り線の端部に銅製の金属端子を、3段階に設定したクリンプハイトが得られるようにプレス圧2トンの圧接機の締め付け力をアプリケーターで調節してかしめ接続した。一般に、クリンプハイトの設定値が小さくなるに従い接触抵抗は向上するが、過度なかしめは端子引張強度を損なう結果となるため最適な設定が必要となる。次いで、撚り線の端部と銅製の金属端子に超音波振動(振動数39.5kHz、超音波振動エネルギー50ジュール)を0.3秒印加した後、撚り線と金属端子間の接触抵抗及び端子引張強度をそれぞれ測定したところ次の結果が得られた。
(1)クリンプハイトが0.8mmの場合、平均接触抵抗は2.0±0.4mΩ、端子引張強度は50N
(2)クリンプハイトが0.9mmの場合、平均接触抵抗は1.8±0.5mΩ、端子引張強度は65N
(3)クリンプハイトが1.0mmの場合、平均接触抵抗は2.0±0.5mΩ、端子引張強度は70N
(比較例1)
アルミニウム基合金のインゴットから作製した線径180μmの素線を用いて、線径が0.81mmの撚り線を作製し、得られた撚り線の端部に銅製の金属端子を、3段階に設定したクリンプハイトが得られるようにアプリケーターで調節してかしめ接続した。
設定した締め付け力(かしめ強さ)でかしめ接続し、撚り線と金属端子間の接触抵抗を測定したところ下記の結果が得られた。そして、撚り線と金属端子間の接触抵抗は、クリンプハイトに依存し、クリンプハイトが大きいと接触抵抗及びバラツキが共に増大する結果となった。
(1)クリンプハイトが0.8mmの場合、平均接触抵抗は12.9±1.5mΩ、端子引張強度は35N
(2)クリンプハイトが0.9mmの場合、平均接触抵抗は14.3±1.8mΩ、端子引張強度は45N
(3)クリンプハイトが1.0mmの場合、平均接触抵抗は19.0±2.2mΩ、端子引張強度は55N
以上の結果から、撚り線の端部に銅製の金属端子をかしめ接続した後に、撚り線の端部及び銅製の金属端子に超音波振動を印加することにより、クリンプハイトに依存せずに、撚り線と金属端子との間の接触抵抗のバラツキを低減すると共に略一定(1.8mΩ)の値まで低下できることが確認できた。
(実験例2)
純度99.9%のアルミニウムに、マグネシウムを0.5質量%、スカンジウムを0.3質量%それぞれ添加してアルミニウム基合金のインゴットを鋳造した。得られたアルミニウム基合金の導電率は、マグネシウムを添加した場合で59%IACS、スカンジウムを添加した場合で61%IACSあった。また、耐クリープ性を実験例1と同様の方法で評価すると、マグネシウムを添加した場合で厚さ変化率は0.5%で、スカンジウムを添加した場合で厚さ変化率は0.2%であった。純度99.9%のアルミニウムの厚さ変化率は85%であるため、いずれのアルミニウム基合金も耐クリープ性が向上しているが、マグネシウムを添加したアルミニウム基合金より、スカンジウムを添加したアルミニウム基合金の方が耐クリープ性に優れることが分かる。
各アルミニウム基合金のインゴット及び純度99.9%のアルミニウムのインゴットからそれぞれ作製した線径180μmの素線を用いて、線径が0.81mmの撚り線を作製した。そして、圧着部に金めっきを施した銅製の金属端子を撚り線の端部にクリンプハイトが約0.9mmになるようにアプリケーターを調節してかしめ接続した。次いで、撚り線の端部と銅製の金属端子に超音波振動(振動数39.5kHz、超音波振動エネルギー50ジュール)を0.5秒印加した。そして、撚り線と金属端子間の接触抵抗(初期接触抵抗)を測定した。また、圧着部に金めっきを施した銅製の金属端子がかしめ接続された撚り線を85℃に加熱し、50、100、150、及び200時間経過後における接触抵抗をそれぞれ測定した。
その結果、素線がアルミニウムの場合、初期接触抵抗は3.5mΩ、端子引張強度は40Nであったが、50時間後では接触抵抗が5mΩ、端子引張強度が40N、100時間後では接触抵抗がは8.5mΩ、端子引張強度は41N、150時間後では接触抵抗が12.7mΩ、端子引張強度が38N、200時間後では接触抵抗が18.2mΩ、端子引張強度が36Nとなり、加熱時間の経過と共に接触抵抗は増加し、端子引張強度は低下した。
一方、マグネシウム添加アルミニウム基合金の場合、初期接触抵抗は2.0mΩ、端子引張強度は37Nであったが、50時間後では接触抵抗が2.2mΩ、端子引張強度が65N、100時間後では接触抵抗が2.8mΩ、端子引張強度が65N、150時間では接触抵抗が2.9mΩ、端子引張強度が64N、200時間後では接触抵抗が3.2mΩ、端子引張強度が65Nとなり、加熱時間が経過しても、接触抵抗の増加を抑制することができた。
また、スカンジウム添加アルミニウム基合金の場合、初期接触抵抗は1.8mΩ、端子引張強度は68Nであったが、50時間後では接触抵抗が1.9mΩ、端子引張強度が68N、100時間後では接触抵抗が1.9mΩ、端子引張強度が68N、150時間では接触抵抗が1.9mΩ、端子引張強度が67N、200時間後では接触抵抗が1.9mΩ、端子引張強度が68Nとなり、加熱時間が経過しても、接触抵抗の増加を抑制することができた。
(比較例2)
実験例2と同様の方法で作製した各撚り線の端部に金めっきを施した銅製の金属端子を同様の方法でかしめ接続した後、撚り線と金属端子間の接触抵抗(初期接触抵抗)を測定した。また、金めっきを施した銅製の金属端子が端部にかしめ接続された撚り線を、実験例2と同一の温度に加熱し、50、100、150、及び200時間経過後における接触抵抗をそれぞれ測定した。その結果、素線がアルミニウムの場合、初期接触抵抗は14.3mΩ、端子引張強度は37Nであったが、50時間後では接触抵抗が16.1mΩ、端子引張強度が37N、100時間後では接触抵抗が22.0mΩ、端子引張強度が32N、150時間後では接触抵抗が31.2mΩ、端子引張強度が29N、200時間後では接触抵抗が35.2mΩ、端子引張強度が27Nとなり、時間の経過と共に接触抵抗が増加した。
一方、マグネシウム添加アルミニウム基合金の場合、初期接触抵抗は13.7mΩ、端子引張強度が45Nであったが、50時間後では接触抵抗が14.0mΩ、端子引張強度が43N、100時間後では接触抵抗が16.0mΩ、端子引張強度が42N、150時間後では接触抵抗が18.0mΩ、端子引張強度が42N、200時間後では接触抵抗が20.0mΩ、端子引張強度が41Nとなり、時間の経過と共に接触抵抗が増加した。
また、スカンジウム添加アルミニウム基合金の場合、初期接触抵抗が15.2mΩ、端子引張強度が45Nであったが、50時間後では接触抵抗が14.0mΩ、端子引張強度が44N、100時間後では接触抵抗が16.0mΩ、端子引張強度が43N、150時間後では接触抵抗が16.5mΩ、端子引張強度が43N、200時間後では接触抵抗が18.0mΩ、端子引張強度が42Nとなり、時間の経過と共に接触抵抗が増加した。
以上の結果から、撚り線を形成する素線を耐クリープ性に優れるアルミニウム基合金で形成し、この撚り線の端部に金めっきを施した銅製の金属端子をかしめ接続しただけでは、即ち、かしめ接続した後に超音波振動を印加しない場合、初期接触抵抗が高くなることと共に、加熱下において接触抵抗が大きく増加することが確認できた。従って、金属導体と金属端子の間の接触抵抗を低下させると共に、この低接触抵抗値を長期間に亘って維持するためには、耐クリープ性に優れる金属導体を用いると共に、かしめ接合後に接合部に超音波振動を印加する必要があることが分かる。
(実験例3)
実験例1で使用した撚り線の端部に銅製の金属端子をクリンプハイトが約0.9mmになるようにアプリケーターを調節してかしめ接続し、次いで、撚り線の端部と銅製の金属端子に超音波振動(振動数39.5kHz)を1秒間印加した。なお、超音波振動を印加することにより、金属端子から接合部を除いた残りの領域の温度が40℃、50℃、及び60℃となるように、超音波出力を10W、30W、及び50Wの3段階に設定した。そして、撚り線と金属端子との間の接触抵抗及び端子引張強度をそれぞれ測定したところ次の結果が得られた。
(1)金属端子から接合部を除いた残りの領域の温度が40℃の場合、平均接触抵抗は7.0±1.5mΩ、端子引張強度は50N
(2)金属端子から接合部を除いた残りの領域の温度が50℃の場合、平均接触抵抗は2.2±0.9mΩ、端子引張強度は60N
(3)金属端子から接合部を除いた残りの領域の温度が60℃の場合、平均接触抵抗は1.8±0.5mΩ、端子引張強度は65N
以上の結果から、金属端子から接合部を除いた残りの領域の温度が50℃以上となると、低い接触抵抗と高い端子引張強度を達成できることが確認された。この結果は、素線に形成されている酸化被膜の破壊(除去)が行われると共に、素線と接合部との界面において、金属元素の熱拡散が起こり合金層が形成されて強固な接続状態が形成されていることを示している。従って、金属端子の接合部は、超音波振動の印加により、金属元素の熱拡散が可能な温度領域まで加熱されていることが確認できた。
以上、本発明を、実施例を参照して説明してきたが、本発明は何ら上記した実施例に記載した構成に限定されるものではなく、請求の範囲に記載されている事項の範囲内で考えられるその他の実施例や変形例も含むものである。
更に、本実施例とその他の実施例や変形例にそれぞれ含まれる構成要素を組合わせたものも、本発明に含まれる。
本発明に係る金属導体と金属端子の接続方法を、自動車用のワイヤハーネスの電線に適用した場合、接触抵抗を低下させると共に、長期にわたって低接触抵抗を維持でき、配線の信頼性を向上できる。
10:電線、11:撚り線、12:金属端子、13:圧着部、14:素線、15:絶縁材料

Claims (4)

  1. 金属導体の端部を金属端子の圧着部に挿入し、かしめ接合に併用して前記金属導体と前記金属端子の接合部に超音波振動を印加する又は該かしめ接合後に該接合部に超音波振動を印加する金属導体と金属端子の接続方法において、
    前記金属導体は、線径が25μm以上500μm以下の素線を有し、しかも、前記素線は導電率が50%IACS以上であって、温度110℃で120MPaの圧縮応力を5時間負荷した際の変形率が1%以下の耐クリープ性を備えたアルミニウム基合金で形成されていることを特徴とする金属導体と金属端子の接続方法。
  2. 請求項1記載の金属導体と金属端子の接続方法において、前記金属端子から前記接合部を除いた残りの領域を50~250℃の温度に少なくとも0.1秒間保持するように、前記接合部に超音波振動を印加することを特徴とする金属導体と金属端子の接続方法。
  3. 請求項1又は2記載の金属導体と金属端子の接続方法において、前記アルミニウム基合金には、1nm以上999nm以下の粒径のナノ粒子が0.1質量%以上10質量%以下含有されていることを特徴とする金属導体と金属端子の接続方法。
  4. 請求項1~3のいずれか1記載の金属導体と金属端子の接続方法において、前記金属端子の母材が銅又は銅合金であることを特徴とする金属導体と金属端子の接続方法。
PCT/JP2014/069046 2013-07-18 2014-07-17 金属導体と金属端子の接続方法 WO2015008832A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2013-149707 2013-07-18
JP2013149707A JP5659274B1 (ja) 2013-07-18 2013-07-18 金属導体と金属端子の接続方法

Publications (1)

Publication Number Publication Date
WO2015008832A1 true WO2015008832A1 (ja) 2015-01-22

Family

ID=52346274

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/069046 WO2015008832A1 (ja) 2013-07-18 2014-07-17 金属導体と金属端子の接続方法

Country Status (2)

Country Link
JP (1) JP5659274B1 (ja)
WO (1) WO2015008832A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20200295340A1 (en) * 2019-03-11 2020-09-17 Toyota Jidosha Kabushiki Kaisha Sealed battery and manufacturing method thereof

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6738758B2 (ja) * 2017-03-31 2020-08-12 古河電気工業株式会社 電線接続構造体およびその製造方法
JP6989605B2 (ja) 2017-06-21 2022-01-05 古河電気工業株式会社 電線接続構造体
JP2021082462A (ja) * 2019-11-19 2021-05-27 古河電気工業株式会社 管端子付き電線およびその製造方法
JP7436430B2 (ja) 2021-07-20 2024-02-21 矢崎総業株式会社 端子、端子付電線、及び、接続構造

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2002071563A1 (fr) * 2001-03-01 2002-09-12 The Furukawa Electric Co., Ltd. Ensemble de distribution d'energie
JP2003086259A (ja) * 2001-09-06 2003-03-20 Furukawa Electric Co Ltd:The アルミニウム撚線導体と端子との接続部およびその接続方法
JP2006172927A (ja) * 2004-12-16 2006-06-29 Yazaki Corp 電線の超音波接合方法及び超音波接合装置
JP2011192638A (ja) * 2010-02-16 2011-09-29 Hitachi Cable Ltd 端子付き電線とその製造方法
JP2011258468A (ja) * 2010-06-10 2011-12-22 Hitachi Cable Ltd 端子および端子付き電線とその製造方法
WO2013002272A1 (ja) * 2011-06-30 2013-01-03 大電株式会社 耐屈曲性導電材料及びそれを用いたケーブル

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2002071563A1 (fr) * 2001-03-01 2002-09-12 The Furukawa Electric Co., Ltd. Ensemble de distribution d'energie
JP2003086259A (ja) * 2001-09-06 2003-03-20 Furukawa Electric Co Ltd:The アルミニウム撚線導体と端子との接続部およびその接続方法
JP2006172927A (ja) * 2004-12-16 2006-06-29 Yazaki Corp 電線の超音波接合方法及び超音波接合装置
JP2011192638A (ja) * 2010-02-16 2011-09-29 Hitachi Cable Ltd 端子付き電線とその製造方法
JP2011258468A (ja) * 2010-06-10 2011-12-22 Hitachi Cable Ltd 端子および端子付き電線とその製造方法
WO2013002272A1 (ja) * 2011-06-30 2013-01-03 大電株式会社 耐屈曲性導電材料及びそれを用いたケーブル

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20200295340A1 (en) * 2019-03-11 2020-09-17 Toyota Jidosha Kabushiki Kaisha Sealed battery and manufacturing method thereof

Also Published As

Publication number Publication date
JP5659274B1 (ja) 2015-01-28
JP2015022880A (ja) 2015-02-02

Similar Documents

Publication Publication Date Title
WO2015008832A1 (ja) 金属導体と金属端子の接続方法
JP5428789B2 (ja) 端子金具付き電線及び端子金具付き電線の製造方法
US20100003867A1 (en) Connector for use with light-weight metal conductors
JP5078572B2 (ja) 銅電線とアルミニウム電線とのジョイント構造およびジョイント方法
JP5741502B2 (ja) 端子付き電線およびその製造方法
TWI431647B (zh) Coil coil and copper wire washing machine with electrical connection mechanism
JP2009152052A (ja) アルミニウム電線に対する端子圧着方法
JP5914942B2 (ja) 端子付きアルミ電線
WO2013031885A1 (ja) 端子金具、端子金具付き電線、および端子金具と電線の接続方法
WO2016098606A1 (ja) 端子付き電線、及び端子付き電線の製造方法
US20150060135A1 (en) Method of attaching a wire cable terminal to a multi-strand wire cable, wire cable formed during said method, and apparatus for forming said wire cable
JP2010244895A (ja) アルミニウム導体用圧縮接続端子とその接続方法
JP5369637B2 (ja) 端子金具付き電線及びその製造方法
JP5076072B2 (ja) 圧着端子、及びこの圧着端子を用いた圧着構造
US20130231012A1 (en) Crimping Sleeve for Crimped Connections
JP5065124B2 (ja) 圧着端子
JP5030232B2 (ja) アルミ電線用圧着端子
JP5219494B2 (ja) メッキ端子圧着方法
WO2015019850A1 (ja) アルミニウム電線の接続構造
JP5119532B2 (ja) アルミ電線用圧着端子
JP5786590B2 (ja) 電線、端子金具付き電線、および端子金具付き電線の製造方法
JP5041537B2 (ja) 圧着端子の被覆電線への接続構造
JP5128523B2 (ja) 高強度細径線用圧着端子
JP5695987B2 (ja) 単芯電線及び単芯電線の端子圧着構造
JP2009218072A (ja) 圧着端子を用いた圧着方法、及び圧着端子を用いた圧着構造

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14826774

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14826774

Country of ref document: EP

Kind code of ref document: A1