WO2015008658A1 - Method for producing flexible electronic device - Google Patents

Method for producing flexible electronic device Download PDF

Info

Publication number
WO2015008658A1
WO2015008658A1 PCT/JP2014/068139 JP2014068139W WO2015008658A1 WO 2015008658 A1 WO2015008658 A1 WO 2015008658A1 JP 2014068139 W JP2014068139 W JP 2014068139W WO 2015008658 A1 WO2015008658 A1 WO 2015008658A1
Authority
WO
WIPO (PCT)
Prior art keywords
film
polymer film
inorganic substrate
electronic device
substrate
Prior art date
Application number
PCT/JP2014/068139
Other languages
French (fr)
Japanese (ja)
Inventor
奥山 哲雄
中村 宗敦
郷司 前田
Original Assignee
東洋紡株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 東洋紡株式会社 filed Critical 東洋紡株式会社
Priority to JP2014539173A priority Critical patent/JP6372352B2/en
Publication of WO2015008658A1 publication Critical patent/WO2015008658A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/12Mountings, e.g. non-detachable insulating substrates
    • H01L23/14Mountings, e.g. non-detachable insulating substrates characterised by the material or its electrical properties
    • H01L23/145Organic substrates, e.g. plastic
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/18Printed circuits structurally associated with non-printed electric components
    • H05K1/189Printed circuits structurally associated with non-printed electric components characterised by the use of a flexible or folded printed circuit
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/0001Technical content checked by a classifier
    • H01L2924/0002Not covered by any one of groups H01L24/00, H01L24/00 and H01L2224/00
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/02Details
    • H05K1/03Use of materials for the substrate
    • H05K1/0393Flexible materials
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K2203/00Indexing scheme relating to apparatus or processes for manufacturing printed circuits covered by H05K3/00
    • H05K2203/01Tools for processing; Objects used during processing
    • H05K2203/0147Carriers and holders
    • H05K2203/016Temporary inorganic, non-metallic carrier, e.g. for processing or transferring
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K2203/00Indexing scheme relating to apparatus or processes for manufacturing printed circuits covered by H05K3/00
    • H05K2203/13Moulding and encapsulation; Deposition techniques; Protective layers
    • H05K2203/1377Protective layers
    • H05K2203/1383Temporary protective insulating layer
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/007Manufacture or processing of a substrate for a printed circuit board supported by a temporary or sacrificial carrier

Definitions

  • a flexible polymer film is temporarily fixed on a rigid temporary supporting inorganic substrate to form a laminate, and then various electronic devices are formed on the polymer film, and then the polymer film is peeled off together with the electronic device portion.
  • the present invention relates to a manufacturing technique for obtaining a flexible electronic device.
  • Functional elements such as semiconductor elements, MEMS elements, and display elements are used as electronic components in information communication equipment (broadcast equipment, mobile radio, portable communication equipment, etc.), radar, high-speed information processing devices, etc. Conventionally, it is generally formed or mounted on an inorganic substrate such as glass, a silicon wafer, or a ceramic substrate.
  • an inorganic substrate such as glass, a silicon wafer, or a ceramic substrate.
  • a relatively high temperature is often used in the process of forming a functional element.
  • a temperature range of about 120 to 500 ° C. is used in forming functional elements such as polysilicon and oxide semiconductor.
  • heating at about 450 ° C. may be required for dehydrogenation.
  • a temperature range of about 150 to 250 ° C. is required.
  • the temperature range exemplified here is not so high for inorganic materials, but it can be said that it is considerably high for polymer films and adhesives generally used for laminating polymer films. I don't get it.
  • the polymer film solution or precursor solution is applied onto the inorganic substrate and then dried and cured on the inorganic substrate.
  • a technique for forming a film and using it for the application is known.
  • the polymer film obtained by such means is brittle and easily torn, the functional element is often destroyed when it is peeled from the inorganic substrate. In particular, it is extremely difficult to peel off a device having a large area, and it is not possible to obtain a yield that can be industrially established.
  • the present inventors as a laminate of a polymer film and a support for forming a functional element, use a polyimide film that has excellent heat resistance and is strong and can be made into a thin film as a coupling agent.
  • a laminated body obtained by bonding to a support (inorganic layer) made of an inorganic material via a film was proposed (Patent Documents 1 to 3).
  • the polymer film is originally a flexible material, and there is no hindrance to some stretching and bending.
  • an electronic device formed on a polymer film often has a fine structure in which a conductor made of an inorganic material and a semiconductor are combined in a predetermined pattern. The structure is destroyed by the stress, and the device characteristics are impaired. Such stress is likely to occur when the electronic device is peeled from the inorganic substrate together with the polymer film. Therefore, the present inventors have further improved and partially deactivated the inorganic substrate that has been treated with the coupling agent to form a portion with high and low activity of the coupling agent.
  • the laminate described in Patent Documents 1 to 4 described above it is possible to bond a polymer film and an inorganic substrate without using a so-called adhesive or adhesive element, and the laminate is a thin film. Exfoliation of the polymer film does not occur even when exposed to the high temperatures required to fabricate the device. Therefore, the laminate can be subjected to a process for directly forming an electronic device on an inorganic substrate such as a conventional glass plate or silicon wafer.
  • an inorganic substrate such as a conventional glass plate or silicon wafer.
  • the inventors of the present application have found that, even in such a technique, when the size of the inorganic substrate becomes larger than a certain range, problems in industrial production become apparent.
  • a long or large-area polymer film has a non-uniform physical property in the film width direction, generally called bowing. This is because the deformation at the central portion in the width direction of the film precedes the deformation at the end portion in the width direction, or the deformation at the central portion in the width direction of the film is delayed as compared with the deformation at the end portion in the width direction. This is a phenomenon in which distortion remains. Such distortion is called Boeing distortion.
  • Boeing strain is manifested, for example, in the form of anisotropy of the thermal contraction rate of the film and anisotropy of the linear expansion coefficient.
  • anisotropy is not a significant problem when the size of the inorganic substrate is small, that is, when the size of the polymer film is small.
  • the size of the inorganic substrate is increased, specifically, when the size is rectangular and the side exceeds 700 mm, the problem becomes apparent.
  • the polymer film portion of the inorganic substrate / polymer film laminate is stretched and contracted, which causes warpage of the entire laminate.
  • a high-definition device processing technology that combines a printing technology, a photolithographic technology, and the like is required.
  • high-definition processing is performed using an automatic conveyance device without using human resources as much as possible in an environment having a very high degree of cleanliness.
  • What is required here is the flatness of the inorganic substrate / polymer film laminate.
  • there are many problems in automatic conveyance and it is caught in the opening, or the substrate surface touches part of the equipment, or the liquid resist that does not work well under reduced pressure. Many problems occur, such as the coating uniformity of the material being hindered, the focus not being achieved during exposure, and the like, making it difficult to perform the intended high-definition processing.
  • a method for manufacturing a flexible electronic device by temporarily fixing a polymer film to an inorganic substrate, performing device processing, and peeling the polymer film from the inorganic substrate has been described.
  • the technique of temporarily fixing and processing such a polymer film is an excellent technique for manufacturing a flexible electronic device.
  • high-definition processing becomes difficult due to the influence of inhomogeneous distortion due to the bowing phenomenon of the film.
  • the present inventors have found a method for solving such a problem by dividing a polymer film into a plurality of pieces and bonding them to an inorganic substrate. The inventors have found that it is possible to produce fine electronic devices and have completed the present invention.
  • the present invention has the following configuration.
  • the polymer film has a thickness of 12 ⁇ m or more, a Young's modulus of 6 GPa or more, and 400
  • a polymer film is divided into a plurality of sections and bonded to an inorganic substrate to obtain a laminate.
  • a buffer region for thermal deformation (mainly expansion and contraction) of the polymer film can be obtained.
  • a protective film having substantially the same size or width as that of the inorganic substrate is used as a laminated film in which a polymer film is appropriately arranged and temporarily bonded, and the polymer film side of the laminated film is bonded to the inorganic substrate.
  • the labor of the bonding process can be saved.
  • Example 4 of polymer film division. Arrangement example 1 of inorganic substrate, adhesive, and polymer film.
  • An example of attaching a protective film and a polymer film. Polymer film division and pasting process to protective film. A process of attaching a protective film / polymer film bonded product to an inorganic substrate. The process which peels a protective film and makes it a laminated body which consists of a polymer film / adhesive / inorganic substrate.
  • the method for producing a flexible electronic device of the present invention includes an inorganic substrate, a polymer film, a protective film used as necessary, an adhesion means between the inorganic substrate and the polymer film, a means for forming an electronic device on the polymer film surface, a high It comprises molecular film peeling means.
  • an inorganic substrate is used as a support for the polymer film.
  • the inorganic substrate may be any plate-like material that can be used as a substrate made of an inorganic material, for example, a glass plate, a ceramic plate, a semiconductor wafer, a material mainly made of metal, etc., and these glass plates, ceramic plates, Examples of silicon wafers and metal composites include those obtained by laminating them, those in which they are dispersed, and those containing these fibers.
  • the glass plate examples include quartz glass, high silicate glass (96% silica), soda lime glass, lead glass, aluminoborosilicate glass, borosilicate glass (Pyrex (registered trademark)), borosilicate glass (non-alkali), Borosilicate glass (microsheet), aluminosilicate glass and the like are included.
  • Ceramics for substrates such as zero-dur, TiO2, strontium titanate, calcium titanate, magnesium titanate, alumina, MgO, steatite, BaTi4O9, BaTiO3, BaTi4 + CaZrO3, BaSrCaZrTiO3, Ba (TiZr) O3, PMN-PT And PFN-PFW Capacitor materials, PbNb2O6, Pb0.5Be0.5Nb2O6, PbTiO3, BaTiO3, PZT, 0.855PZT-95PT-0.5BT, 0.873PZT-0.97PT-0.3BT, include pie
  • a silicon wafer As the semiconductor wafer, a silicon wafer, a semiconductor wafer, a compound semiconductor wafer, or the like can be used.
  • the silicon wafer is obtained by processing single crystal or polycrystalline silicon on a thin plate, and is n-type or p-type. This includes all doped silicon wafers, intrinsic silicon wafers, etc., and silicon wafers with silicon oxide layers and various thin films deposited on the surface of silicon wafers.
  • the metal examples include single element metals such as W, Mo, Pt, Fe, Ni, and Au, alloys such as Inconel, Monel, Nimonic, carbon copper, Fe—Ni-based Invar alloy, and Super Invar alloy.
  • a multilayer metal plate formed by adding other metal layers and ceramic layers to these metals is also included. In this case, if the total CTE with the additional layer is low, Cu, Al or the like is also used for the main metal layer.
  • the metal used as the additional metal layer is limited as long as it has strong adhesion to the polyimide film, no diffusion, and good chemical resistance and heat resistance. Although it is not, chromium, nickel, TiN, and Mo containing Cu are mentioned as a suitable example.
  • the planar portion of the inorganic substrate is desirably sufficiently flat.
  • the surface roughness Ra is preferably 10 nm or less, preferably 3 nm or less, and more preferably 0.9 nm or less.
  • the PV value of the surface roughness is 50 nm or less, more preferably 20 nm or less, and further preferably 5 nm or less. If it is rougher than this, the adhesive strength between the polymer film and the inorganic substrate may be insufficient.
  • the thickness of the inorganic substrate is not particularly limited, but is preferably 10 mm or less, more preferably 3 mm or less, and still more preferably 1.3 mm or less from the viewpoint of handleability.
  • the thickness is not particularly limited, but 0.07 mm or more, preferably 0.15 mm or more, and more preferably 0.3 mm or more is preferably used.
  • the inorganic substrate in the present invention is desirably a size having an area of at least 4900 cm 2 or more.
  • the inorganic substrate of the present invention is preferably substantially rectangular with at least a short side of 700 mm or more.
  • Preferred inorganic substrate area in the present invention is 5000 cm 2 or more, further 10000 cm 2 or more, even more 18000Cm 2 or more.
  • the length of the short side of the rectangle to which the present invention can be preferably applied is 730 mm or more, more preferably 840 mm or more, and still more preferably 1000 mm or more.
  • substantially rectangular means that a rectangular corner R, a notch, a notch, an orientation flat, and the like are allowed.
  • a glass substrate of 680 ⁇ 880 mm to 730 ⁇ 920 mm called fourth generation in the flat panel display industry
  • a glass substrate of 1000 ⁇ 1200 mm 1100 ⁇ 1250 mm 1300 ⁇ 1500 mm called sixth generation
  • 1370x1670mm to 1500x1800mm glass substrate called
  • 1870x2200mm glass substrate called 7th generation
  • 2160x2460mm to 2200x2500mm glass substrate called 8th generation
  • 2400x2800mm 9th generation
  • glass substrates called 10th generation, glass substrates of 2,880 ⁇ 3,130 mm, called 11th generation, glass substrates of 3,320 ⁇ 3,000 mm or larger. It is.
  • the present invention is not limited to application to an inorganic substrate having a size smaller than the area, size, and rectangular short side length exemplified here.
  • polymer film in the present invention polyethylene, polypropylene, polyethylene terephthalate, polybutylene terephthalate, polyethylene naphthalate, wholly aromatic polyester, other copolymerized polyester, polymethyl methacrylate, other copolymerized acrylate, polycarbonate, polyamide, poly Sulfone, polyether sulfone, polyether ketone, polyamideimide, polyetherimide, aromatic polyimide, alicyclic polyimide, fluorinated polyimide, cellulose acetate, cellulose nitrate, aromatic polyamide, polyvinyl chloride, polyphenol, polyarylate, polyphenylene A film made of sulfide, polyphenylene oxide, polystyrene or the like can be used.
  • a polymer having a heat resistance of 100 ° C. or higher that is, a so-called engineering plastic film.
  • the heat resistance refers to a
  • the Young's modulus (elastic modulus) of the polymer film of the present invention is preferably 6 GPa or more, more preferably 7.4 GPa or more, still more preferably 8.2 GPa or more, and even more preferably 9.1 GPa or more.
  • the Young's modulus is the Young's modulus obtained by pulling. When the Young's modulus is less than this range, when the polymer film is peeled from the inorganic substrate, the polymer film is stretched so that the electronic device is likely to be destroyed.
  • the upper limit of the Young's modulus is not particularly limited, but is practically about 15 GPa. A material having a too high Young's modulus is not suitable as a base material for a flexible electronic device because the film is fragile and often breaks easily.
  • the lower limit of the thickness of the polymer film of the present invention is not particularly limited, but is preferably 4.5 ⁇ m or more in order to maintain the minimum mechanical strength as a base material of an electronic device. In the present invention, it is more preferably 12 ⁇ m or more, further preferably 24 ⁇ m or more, still more preferably 45 ⁇ m or more.
  • the upper limit of the thickness of the polymer film is not particularly limited, but is preferably 250 ⁇ m or less, more preferably 150 ⁇ m or less, and even more preferably 90 ⁇ m or less, as required for a flexible electronic device.
  • the polymer film particularly preferably used in the present invention is a polyimide film, and aromatic polyimide, alicyclic polyimide, polyamideimide, polyetherimide and the like can be used.
  • aromatic polyimide, alicyclic polyimide, polyamideimide, polyetherimide and the like can be used.
  • a polyimide-based resin film having colorless transparency but particularly when forming a back element of a reflective or self-luminous display. This is not the case.
  • a polyimide film is obtained by applying a polyamic acid (polyimide precursor) solution obtained by reacting diamines and tetracarboxylic acids in a solvent to a polyimide film support and drying it to obtain a green film (“precursor film”).
  • a polyamic acid film or a “polyamic acid film”), and further, a green film is subjected to a high temperature heat treatment on a support for forming a polyimide film or in a state of being peeled from the support to cause a dehydration ring-closing reaction.
  • diamine which comprises a polyamic acid there is no restriction
  • combination can be used.
  • aromatic diamines are preferable, and among aromatic diamines, aromatic diamines having a benzoxazole structure are more preferable.
  • aromatic diamines having a benzoxazole structure are used, it is possible to develop a high elastic modulus, a low heat shrinkage, and a low linear expansion coefficient as well as a high heat resistance.
  • Diamines may be used alone or in combination of two or more.
  • the aromatic diamine having a benzoxazole structure is not particularly limited.
  • aromatic diamine other than the aromatic diamine having the benzoxazole structure described above examples include 2,2′-dimethyl-4,4′-diaminobiphenyl, 1,4-bis [2- (4-aminophenyl). ) -2-propyl] benzene (bisaniline), 1,4-bis (4-amino-2-trifluoromethylphenoxy) benzene, 2,2′-ditrifluoromethyl-4,4′-diaminobiphenyl, 4,4 '-Bis (4-aminophenoxy) biphenyl, 4,4'-bis (3-aminophenoxy) biphenyl, bis [4- (3-aminophenoxy) phenyl] ketone, bis [4- (3-aminophenoxy) phenyl ] Sulfide, bis [4- (3-aminophenoxy) phenyl] sulfone, 2,2-bis [4- (3-aminophenoxy) phenyl] Lopan, 2,2-bis
  • Examples of the aliphatic diamines include 1,2-diaminoethane, 1,4-diaminobutane, 1,5-diaminopentane, 1,6-diaminohexane, 1,8-diaminooctane, and the like.
  • Examples of the alicyclic diamines include 1,4-diaminocyclohexane, 4,4′-methylenebis (2,6-dimethylcyclohexylamine), and the like.
  • the total amount of diamines other than aromatic diamines is preferably 20% by mass or less, more preferably 10% by mass or less, and still more preferably 5% by mass or less of the total diamines. It is.
  • the aromatic diamine is preferably 80% by mass or more of the total diamines, more preferably 90% by mass or more, and still more preferably 95% by mass or more.
  • the tetracarboxylic acids constituting the polyamic acid include aromatic tetracarboxylic acids (including acid anhydrides), aliphatic tetracarboxylic acids (including acid anhydrides), and alicyclic tetracarboxylic acids that are commonly used for polyimide synthesis. Acids (including acid anhydrides thereof) can be used. Among them, aromatic tetracarboxylic acid anhydrides and alicyclic tetracarboxylic acid anhydrides are preferable, aromatic tetracarboxylic acid anhydrides are more preferable from the viewpoint of heat resistance, and alicyclic from the viewpoint of light transmission. Group tetracarboxylic acids are more preferred.
  • anhydride structures in the molecule may be one or two, but those having two anhydride structures (dianhydrides) are preferred. Good. Tetracarboxylic acids may be used alone or in combination of two or more.
  • alicyclic tetracarboxylic acids examples include alicyclic tetracarboxylic acids such as cyclobutanetetracarboxylic acid, 1,2,4,5-cyclohexanetetracarboxylic acid, and 3,3 ′, 4,4′-bicyclohexyltetracarboxylic acid. Carboxylic acids and their acid anhydrides are mentioned.
  • dianhydrides having two anhydride structures are preferred.
  • alicyclic tetracarboxylic acids may be used independently and may use 2 or more types together.
  • the alicyclic tetracarboxylic acids are, for example, preferably 80% by mass or more of all tetracarboxylic acids, more preferably 90% by mass or more, and further preferably 95% by mass or more.
  • aromatic tetracarboxylic acids are not particularly limited, but are preferably pyromellitic acid residues (that is, those having a structure derived from pyromellitic acid), and more preferably acid anhydrides thereof.
  • aromatic tetracarboxylic acids include pyromellitic dianhydride, 3,3 ′, 4,4′-biphenyltetracarboxylic dianhydride, 4,4′-oxydiphthalic dianhydride, 3 , 3 ′, 4,4′-benzophenonetetracarboxylic dianhydride, 3,3 ′, 4,4′-diphenylsulfonetetracarboxylic dianhydride, 2,2-bis [4- (3,4-di Carboxyphenoxy) phenyl] propanoic anhydride and the like.
  • the aromatic tetracarboxylic acids are, for example, preferably 80% by mass or more, more preferably 90% by mass or more, and still more preferably 95% by mass or more of all tetracarboxylic acids.
  • the polyimide film of the present invention preferably has a glass transition temperature of 250 ° C. or higher, preferably 300 ° C. or higher, more preferably 350 ° C. or higher, or no glass transition point observed in the region of 500 ° C. or lower.
  • the glass transition temperature in the present invention is determined by differential thermal analysis (DSC).
  • the linear expansion coefficient (CTE) of the polymer film of the present invention is preferably ⁇ 5 ppm / K to +20 ppm / K, more preferably ⁇ 5 ppm / K to +15 ppm / K, and further preferably 1 ppm / K to +10 ppm / K.
  • CTE linear expansion coefficient
  • the breaking strength of the polymer film in the present invention is 60 MPa or more, preferably 120 MP or more, more preferably 240 MPa or more.
  • the upper limit of the breaking strength is not limited, but is practically less than about 1000 MPa.
  • the breaking strength of the polymer film refers to an average value in the vertical direction and the horizontal direction of the polymer film.
  • the heat shrinkage rate of the polymer film of the present invention is preferably 0.5% or less when heated at 400 ° C. for 1 hour.
  • pyromellitic acid is used as a tetracarboxylic dianhydride in an amount of 50 mol% or more and at the same time a paraphenylene diamine or a diamine having a benzoxazole structure is used in an amount of 50 mol% or more, or an aromatic ring is used. It can be obtained by using 1 or 2 tetracarboxylic acid anhydride and 85 mol% or more of paraphenylenediamine as a diamine component.
  • the thickness unevenness of the polymer film in the present invention is preferably 20% or less, more preferably 12% or less, still more preferably 7% or less, and particularly preferably 4% or less. When the thickness unevenness exceeds 20%, it tends to be difficult to apply to narrow portions.
  • the thickness unevenness of a film can be calculated
  • pieces positions from a film to be measured at random with a contact-type film thickness meter, measuring film thickness. Film thickness spots (%) 100 x (maximum film thickness-minimum film thickness) ⁇ average film thickness
  • lubricants are added to and contained in the film to provide fine irregularities on the polymer film surface to ensure slipperiness.
  • the lubricant (particles) are preferably fine particles made of an inorganic substance, such as metals, metal oxides, metal nitrides, metal carbonides, metal acid salts, phosphates, carbonates, talc, mica, clay, and others. Particles made of clay minerals and the like can be used.
  • metal oxides such as silicon oxide, calcium phosphate, calcium hydrogen phosphate, calcium dihydrogen phosphate, calcium pyrophosphate, hydroxyapatite, calcium carbonate, glass filler, phosphates, and carbonates can be used. Only one type of lubricant may be used, or two or more types may be used.
  • the volume average particle diameter of the lubricant (particles) is usually 0.001 to 10 ⁇ m, preferably 0.03 to 2.5 ⁇ m, more preferably 0.05 to 0.7 ⁇ m, still more preferably 0.05 to 0.3 ⁇ m.
  • the volume average particle diameter is based on a measurement value obtained by a light scattering method. If the particle diameter is smaller than the lower limit, industrial production of the polymer film becomes difficult, and if the particle diameter exceeds the upper limit, the surface irregularities become too large and the sticking strength becomes weak, which may cause practical problems.
  • the addition amount of the lubricant is 0.02 to 5% by mass, preferably 0.04 to 1% by mass, more preferably 0.08 to 0. 0% as the addition amount with respect to the polymer component in the polymer film. 4% by mass. If the amount of lubricant added is too small, it is difficult to expect the effect of lubricant addition, and there is a case where the slipperiness is not sufficiently secured, which may hinder the production of polymer film. Even if the slipperiness is ensured, the smoothness may be lowered, the breaking strength or breaking elongation of the polymer film may be lowered, or the CTE may be raised.
  • a single-layer polymer film in which the lubricant is uniformly dispersed may be used.
  • one surface may be a polymer film containing a lubricant. It is good also as a multilayer polymer film comprised by the polymer film which is comprised and the other surface does not contain a lubricant, or contains the lubricant, even if it contains a lubricant.
  • fine unevenness is given to the surface of one layer (film), so that the slipperiness can be secured by the layer (film), and good handling properties and productivity are secured. it can.
  • a multilayer polymer film is first formed into a film using a raw material for a polymer film that does not contain a lubricant, and is placed on the film at least on one side of the process. It can obtain by apply
  • film formation is performed using a polymer film material containing a lubricant, and a film is obtained by applying a polymer film material not containing a lubricant during the process or after film formation is completed.
  • a lubricant preferably an average particle diameter of 0.05 to About 2.5 ⁇ m
  • a lubricant is 0.02 to 50% by mass (preferably 0.04 to 3% by mass, more preferably 0.08 to 1.2% by mass) based on the polymer solid content in the polyamic acid solution.
  • Containing polyamic acid solution and no lubricant or a small amount thereof preferably less than 0.02% by mass, more preferably less than 0.01% by mass with respect to polymer solids in the polyamic acid solution
  • the method of multilayering (lamination) of the multilayer polymer film is not particularly limited as long as no problem occurs in the adhesion between both layers, and any method may be used as long as the adhesion is achieved without using an adhesive layer or the like.
  • a polyimide film for example, i) a method in which one polyimide film is produced and then the other polyamic acid solution is continuously applied onto the polyimide film to imidize, and ii) one polyamic acid solution is cast.
  • the other polyamic acid solution is continuously applied onto the polyamic acid film and then imidized, iii) a method by co-extrusion, iv) a lubricant is not contained or the content thereof is
  • An example is a method of imidizing a polyamic acid solution containing a large amount of a lubricant on a film formed with a small amount of a polyamic acid solution by spray coating, T-die coating, or the like.
  • the ratio of the thickness of each layer in the multi-layer polymer film is not particularly limited, but the polymer layer containing a large amount of the lubricant (a) is a layer, the polymer does not contain the lubricant or the content thereof is small.
  • the layer is the (b) layer
  • the (a) layer / (b) layer is preferably 0.05 to 0.95. If the (a) layer / (b) layer exceeds 0.95, the smoothness of the (b) layer tends to be lost. On the other hand, if it is less than 0.05, the effect of improving the surface properties is insufficient and the slipperiness is lost. May be.
  • the polymer film in the present invention is preferably obtained in the form of being wound as a long film having a width of 300 mm or more and a length of 10 m or more at the time of production, and a rolled polyimide wound on a winding core.
  • a film form is more preferable.
  • a protective film can be used as necessary.
  • the protective film literally plays a role of protecting the main object to be protected from contamination and scratches, but in the present invention, the divided polymer films are further combined and bonded to the inorganic substrate. It plays the role of saving labor in the process of matching.
  • the protective film of this invention consists of a base film and an adhesive.
  • heat-resistant super engineering plastic film such as PPS film, PEEK film, aromatic polyamide film, polyimide film, polyimide benzal sole film, etc., besides PET film, PEN film, polypropylene film, nylon film, etc. Can be used.
  • the substrate of the protective film preferably used in the present invention is a PET film that has been subjected to an annealing treatment for improving dimensional stability, a PEN film that has also been subjected to an annealing treatment, and a polyimide film.
  • the pressure-sensitive adhesive used in the protective film of the present invention known pressure-sensitive adhesives such as silicone-based, acrylic-based, polyurethane-based and the like can be used.
  • the protective film of this invention protects the device formation surface of the polymer film used as the base material of a flexible electronic device. Accordingly, it is preferable to use a type of pressure-sensitive adhesive that minimizes transfer of the pressure-sensitive adhesive component or that can be easily removed by dry or wet cleaning.
  • a pressure-sensitive adhesive using a side chain crystalline polymer having a property that the adhesive strength is reduced by cooling can be used.
  • ⁇ Means for bonding inorganic substrate and polymer film> known adhesives such as silicone resins, epoxy resins, acrylic resins, polyester resins, and pressure-sensitive adhesives can be used as means for bonding the inorganic substrate and the polymer film.
  • a pressure-sensitive adhesive using a side chain crystalline polymer having a property that the adhesive strength is reduced by cooling can be used.
  • a preferable adhesive means in the present invention is an extremely thin adhesive / adhesive layer adhesive means having a thickness of 5 ⁇ m or less, or preferably an adhesive means that does not substantially use an adhesive / adhesive.
  • the inorganic substrate side is subjected to organic treatment such as silane coupling agent treatment and UV ozone treatment, and activation treatment.
  • organic treatment such as silane coupling agent treatment and UV ozone treatment
  • activation treatment such as flame treatment, itro treatment, UV ozone treatment, exposure treatment to an active gas, etc. is performed, and both treatment surfaces are brought into close contact with each other to perform pressurization and heat treatment.
  • the silane coupling agent in the present invention refers to a compound having a function of physically or chemically interposing between the temporary support and the polymer film and enhancing the adhesive force between the two.
  • the silane coupling agent include N-2- (aminoethyl) -3-aminopropylmethyldimethoxysilane, N-2- (aminoethyl) -3-aminopropyltrimethoxysilane, N-2- ( Aminoethyl) -3-aminopropyltriethoxysilane, 3-aminopropyltrimethoxysilane, 3-aminopropyltriethoxysilane, 3-triethoxysilyl-N- (1,3-dimethyl-butylidene) propylamine, 2- (3,4-epoxycyclohexyl) ethyltrimethoxysilane, 3-glycidoxypropyltrime
  • the silane coupling agent preferably used in the present invention is preferably a silane coupling agent having a chemical structure having one silicon atom per molecule of the coupling agent.
  • particularly preferred silane coupling agents include N-2- (aminoethyl) -3-aminopropylmethyldimethoxysilane, N-2- (aminoethyl) -3-aminopropyltrimethoxysilane, N-2 -(Aminoethyl) -3-aminopropyltriethoxysilane, 3-aminopropyltrimethoxysilane, 3-aminopropyltriethoxysilane, 3-triethoxysilyl-N- (1,3-dimethyl-butylidene) propylamine, 2- (3,4-epoxycyclohexyl) ethyltrimethoxysilane, 3-glycidoxypropyltrimethoxysi
  • the environment for heating the silane coupling agent may be under pressure, at about normal pressure, or under reduced pressure, but is preferably at about normal pressure or under reduced pressure in order to promote vaporization of the silane coupling agent. Since many silane coupling agents are flammable liquids, it is preferable to perform the vaporizing operation in an airtight container, preferably after replacing the inside of the container with an inert gas.
  • the time for exposing the inorganic substrate to the silane coupling agent is not particularly limited, but is within 20 hours, preferably within 60 minutes, more preferably within 15 minutes, and even more preferably within 1 minute.
  • the inorganic substrate temperature during exposure of the inorganic substrate to the silane coupling agent is controlled to an appropriate temperature between ⁇ 50 ° C. and 200 ° C.
  • the distance between the light source and the object to be processed is 30 mm or less, preferably 16 mm or less, and more preferably 8 mm or less.
  • the adhesive force between the inorganic substrate and the polymer film becomes too strong, which may hinder peeling. Adjustment is possible by reducing the coating amount of the silane coupling agent, but since processing spots tend to appear, in the present invention, UV ozone treatment or the like is performed after the silane coupling agent treatment and introduced by the silane coupling agent. We recommend a method of deactivating functional groups.
  • wet treatment examples include a treatment in which the film surface is brought into contact with an acid or alkali solution.
  • the surface activation treatment preferably used in the present invention is a plasma treatment, a combination of plasma treatment and wet acid treatment, and UV ozone treatment.
  • a step of assigning a polymer film divided into a plurality of protective films to a single protective film and bonding them to obtain a multilayer laminated film (2) A step of bonding the inorganic substrate and the polymer film side of the multilayer laminated film to obtain a multilayer substrate (3) Realizing a state in which the polymer film divided on the inorganic substrate in the step of peeling the protective film from the multilayer substrate is bonded, (4) Process for forming electronic devices on the polymer film of the multilayer substrate (5) A flexible electronic device can be obtained through a step of peeling the polymer film from the multilayer substrate.
  • ⁇ Lamination of laminate> A rectangular laminate was placed on a surface plate so that the warp was concave upward, and the height of the corner portion from the surface plate was measured with a metal ruler to obtain the height and average value of each corner.
  • ⁇ Transportability> A comprehensive evaluation was made of the transportability of an automatic transport machine for liquid crystal display manufacturing. The evaluation criteria are as follows. ⁇ : Can be transported under standard conditions, no problem. ⁇ : Although there are some problems in conveyance, it can be handled by changing the equipment conditions.
  • Both surfaces of the polyimide film F1 obtained in Production Example 1 were subjected to vacuum plasma treatment, and further subjected to UV ozone treatment on both surfaces to obtain a surface activation-treated film P1.
  • the vacuum plasma treatment is a treatment by RIE mode and RF plasma using parallel plate type electrodes. Nitrogen gas is introduced into the vacuum chamber and high frequency power of 13.54 MHz is introduced, and the treatment time is 3 minutes. It was.
  • the UV ozone treatment uses a UV / O3 cleaning and reforming device (“SKB1102N-01”) and a UV lamp (“SE-1103G05”) manufactured by Run Technical Service Co., Ltd., and is about 20 mm away from the UV lamp. For 5 minutes.
  • UV / O3 cleaning and reforming apparatus no special gas was put in the UV / O3 cleaning and reforming apparatus, and the UV irradiation was performed in an air atmosphere and at room temperature.
  • the UV lamp emits an emission line with a wavelength of 185 nm (short wavelength capable of generating ozone that promotes inactivation treatment) and a wavelength of 254 nm.
  • the illuminance is measured by an illuminometer “ORC UV-M03AUV (254 nm Measured by wavelength) ”.
  • Nitrogen gas was introduced until the temperature reached, then the nitrogen gas was stopped, the pressure in the chamber was reduced to 3 ⁇ 10 ⁇ 4 Pa, and the bat charged with the silane coupling agent was heated to 120 ° C.
  • the glass “G0” for liquid crystal display of 1300 ⁇ 1500 mm horizontally and gently convey it at a speed of 7 mm / sec.
  • clean nitrogen gas is gently introduced into the vacuum chamber to return to atmospheric pressure, and the glass temperature is controlled between 95 ° C and 105 ° C by far-infrared heating and heat treated for about 3 minutes.
  • a substrate “G1” coated with a silane coupling agent was obtained.
  • Example 1 The surface activated films P1a, P1b, P1c, and P1d that were divided into four parts and stuck on a protective film and wound up on a roll were set together with the protective film in a laminator, and were similarly laminated and temporarily adhered to the surface activated substrate G1. Next, the obtained temporary laminate substrate was put in a clean oven and heated at 150 ° C. for 180 minutes, and then allowed to cool to room temperature, and the protective film was carefully peeled off to obtain a laminate L2 of the present invention. Table 4 shows the evaluation results. Shown in
  • Example 2 A roll made of the surface activation film P2 and the protective film adhered in two rows was similarly set on a laminator, and similarly laminated and temporarily bonded to the surface activation substrate G1. Next, the obtained temporary laminate substrate was put in a clean oven and heated at 150 ° C. for 180 minutes, and then allowed to cool to room temperature. The protective film was carefully peeled off to obtain a laminate L3 of the present invention. Table 4 shows the evaluation results. Shown in The laminated body L3 is shown in FIG. FIG. It is the form illustrated in. In this case, even a polymer film having a width less than the minimum width of the glass substrate can be bonded by using such a method, and a polymer film having a chemical structure having such rigidity has a substrate. It can be seen that the deformation is kept to a minimum. (Comparative Example 2) The surface activated film P3 was bonded to G1 in the same manner as in Comparative Example 1 to obtain L4. Table 4 shows the evaluation results. Shown in

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Power Engineering (AREA)
  • Laminated Bodies (AREA)
  • Production Of Multi-Layered Print Wiring Board (AREA)

Abstract

[Problem] To provide a high-quality laminate for forming a flexible electronic device by laminating a polymer film such as a polyimide film or polyester film on an inorganic substrate and peeling the polymer film after device formation. Also, to provide a method for producing the laminate and flexible electronic device. [Solution] Provided is a method for producing a flexible electronic device, in which a polymer film is adhered to an inorganic substrate to form a multilayered substrate, an electronic device is formed on the polymer film of the multilayered substrate, and then the polymer film is peeled from the inorganic substrate, wherein the method is characterized in that the polymer film is adhered to the inorganic substrate so that the film is divided into at least two sections.

Description

フレキシブル電子デバイスの製造方法Method for manufacturing flexible electronic device
 本発明は、フレキシブルな高分子フィルムをリジッドな仮支持用無機基板に仮固定し積層体として、次いで高分子フィルム上に各種電子デバイスを形成した後に、高分子フィルムを電子デバイス部ごと剥離して、フレキシブル電子デバイスを得る製造技術に関する。 In the present invention, a flexible polymer film is temporarily fixed on a rigid temporary supporting inorganic substrate to form a laminate, and then various electronic devices are formed on the polymer film, and then the polymer film is peeled off together with the electronic device portion. The present invention relates to a manufacturing technique for obtaining a flexible electronic device.
 情報通信機器(放送機器、移動体無線、携帯通信機器等)、レーダー、高速情報処理装置等における電子部品として、半導体素子、MEMS素子、ディスプレイ素子などの機能素子(デバイス)が用いられるが、これらは従来、ガラス、シリコンウエハ、セラミック基材等の無機基板上にて形成ないし搭載されるのが一般的であった。しかし、近年、電子部品の軽量化、小型・薄型化、フレキシビリティ化が求められるなか、高分子フィルム上に各種機能素子を形成する試みがなされている。 Functional elements (devices) such as semiconductor elements, MEMS elements, and display elements are used as electronic components in information communication equipment (broadcast equipment, mobile radio, portable communication equipment, etc.), radar, high-speed information processing devices, etc. Conventionally, it is generally formed or mounted on an inorganic substrate such as glass, a silicon wafer, or a ceramic substrate. However, in recent years, attempts have been made to form various functional elements on a polymer film, as electronic components are required to be lighter, smaller, thinner, and flexible.
 各種機能素子を高分子フィルム表面に形成するにあたっては、高分子フィルムの特性であるフレキシビリティを利用した、いわゆるロール・トゥ・ロールプロセスにて加工することが理想とされる。しかしながら、半導体産業、MEMS産業、ディスプレイ産業等の業界においては、これまでウエハベースまたはガラス基板ベース等のリジッドな平面基板を対象としたプロセス技術が主流であった。そこで、既存インフラを利用して各種機能素子を高分子フィルム表面に形成するために、高分子フィルムを無機物(ガラス板、セラミック板、シリコンウエハ、金属板など)からなるリジッドな支持体に貼り合わせておき、所望の素子を形成した後に支持体から剥離するというプロセスが考案された。 When forming various functional elements on the surface of a polymer film, it is ideal to process by a so-called roll-to-roll process using the flexibility that is a characteristic of the polymer film. However, in the industries such as the semiconductor industry, the MEMS industry, and the display industry, a process technology for a rigid flat substrate such as a wafer base or a glass substrate base has been mainstream. Therefore, in order to form various functional elements on the surface of the polymer film using the existing infrastructure, the polymer film is bonded to a rigid support made of an inorganic material (glass plate, ceramic plate, silicon wafer, metal plate, etc.). A process has been devised in which a desired element is formed and then peeled off from the support.
 一般に機能素子を形成する工程においては、比較的高温が用いられることが多い。例えば、ポリシリコンや酸化物半導体などの機能素子の形成においては120~500℃程度の温度域が用いられる。低温ポリシリコン薄膜トランジスターの作製においては脱水素化のために450℃程度の加熱が必要になる場合がある。水素化アモルファスシリコン薄膜の作製においても150~250℃程度の温度域が必要になる。ここに例示した温度域は、無機材料にとってはさほど高い温度ではないが、高分子フィルムや、一般に高分子フィルムの貼り合わせに利用される接着剤にとっては、相当に高い温度であると云わざるを得ない。先に述べた高分子フィルムを無機基板に貼り合わせ、機能素子形成後に剥離するという手法に於いて、用いられる高分子フィルムや貼り合わせに用いられる接着剤、粘着剤にも十分な耐熱性が求められる所以であるが、現実問題としてかかる高温域にて実用に耐える高分子フィルムは限られている。また、従来の貼り合わせ用接着剤、粘着剤に至っては十分な耐熱性を有したものは、きわめて少ないのが現状であった。 In general, a relatively high temperature is often used in the process of forming a functional element. For example, a temperature range of about 120 to 500 ° C. is used in forming functional elements such as polysilicon and oxide semiconductor. In the production of a low-temperature polysilicon thin film transistor, heating at about 450 ° C. may be required for dehydrogenation. Even in the production of a hydrogenated amorphous silicon thin film, a temperature range of about 150 to 250 ° C. is required. The temperature range exemplified here is not so high for inorganic materials, but it can be said that it is considerably high for polymer films and adhesives generally used for laminating polymer films. I don't get it. Adhering the above-mentioned polymer film to an inorganic substrate and peeling off after forming the functional element, the polymer film used, the adhesive used for bonding, and the adhesive also require sufficient heat resistance. As a matter of fact, however, there are limited polymer films that can withstand practical use in such a high temperature range. In addition, there are very few conventional adhesives and adhesives that have sufficient heat resistance.
 高分子フィルムを無機基板に仮貼り付けする耐熱接着手段が得られないため、かかる用途においては、無機基板上に高分子フィルムの溶液、ないし前駆体溶液を塗布して無機基板上で乾燥・硬化させてフィルム化して当該用途に使用する技術が知られている。しかしながら、かかる手段により得られる高分子膜は、脆く裂けやすいため、無機基板から剥離する際に機能素子を破壊してしまう場合が多い。特に大面積のデバイスを剥離することは極めて難度が高く、およそ工業的に成り立つ歩留まりを得ることはできない。
 本発明者らは、このような事情に鑑み、機能素子を形成するための高分子フィルムと支持体との積層体として、耐熱性に優れ強靭で薄膜化が可能なポリイミドフィルムを、カップリング剤を介して無機物からなる支持体(無機層)に貼り合わせてなる積層体を提案した(特許文献1~3)。
Since there is no heat-resistant adhesive means for temporarily attaching the polymer film to the inorganic substrate, in such applications, the polymer film solution or precursor solution is applied onto the inorganic substrate and then dried and cured on the inorganic substrate. A technique for forming a film and using it for the application is known. However, since the polymer film obtained by such means is brittle and easily torn, the functional element is often destroyed when it is peeled from the inorganic substrate. In particular, it is extremely difficult to peel off a device having a large area, and it is not possible to obtain a yield that can be industrially established.
In view of such circumstances, the present inventors, as a laminate of a polymer film and a support for forming a functional element, use a polyimide film that has excellent heat resistance and is strong and can be made into a thin film as a coupling agent. A laminated body obtained by bonding to a support (inorganic layer) made of an inorganic material via a film was proposed (Patent Documents 1 to 3).
 高分子フィルムは元来、柔軟な素材であり、多少の伸縮や曲げ伸ばしに支障はない。一方で高分子フィルム上に形成された電子デバイスは、多くの場合、無機物からなる導電体、半導体、を所定のパターンにて組み合わせた微細な構造を有しており、微小な伸縮や曲げ伸ばしといったストレスによって、その構造は破壊され、デバイスとしての特性は損なわれてしまう。かかるストレスは、電子デバイスを高分子フィルムごと、無機基板から剥離するときに生じやすい。
 そこで本発明者らは、さらに改良を重ね、カップリング剤処理を行った無機基板に、部分的に不活性化処理を行い、カップリング剤の活性度の高い部分と低い部分を形成し、高分子フィルムを貼り合わせた際に、比較的剥離しにくい良接着部分と、比較的剥離しやすい易剥離部とを作り、易剥離部に電子デバイスを形成し、高分子フィルムの易剥離部/良接着部との境目に切り込みを入れて、易剥離部のみを剥離することにより、電子デバイスに与えるストレスを減じた状態にて剥離可能とする技術を提案した(特許文献4)。
The polymer film is originally a flexible material, and there is no hindrance to some stretching and bending. On the other hand, an electronic device formed on a polymer film often has a fine structure in which a conductor made of an inorganic material and a semiconductor are combined in a predetermined pattern. The structure is destroyed by the stress, and the device characteristics are impaired. Such stress is likely to occur when the electronic device is peeled from the inorganic substrate together with the polymer film.
Therefore, the present inventors have further improved and partially deactivated the inorganic substrate that has been treated with the coupling agent to form a portion with high and low activity of the coupling agent. When a molecular film is bonded, a good adhesion part that is relatively difficult to peel off and an easy peel part that is relatively easy to peel off are formed, an electronic device is formed on the easy peel part, and an easy peel part / good part of the polymer film. A technique has been proposed in which cutting is made at the boundary with the bonding portion and only the easy-peeling portion is peeled off so that peeling can be performed in a state where stress applied to the electronic device is reduced (Patent Document 4).
特開2010-283262号公報JP 2010-283262 A 特開2011-11455号公報JP 2011-11455 A 特開2011-245675号公報JP 2011-245675 A 特開2013-010342号公報JP2013-010342A
 上述した特許文献1~4に記載の積層体によれば、所謂接着剤、粘着剤的な要素を用いることなく、高分子フィルムと無機基板との貼り合わせが可能となり、さらにその積層体は薄膜デバイスを製作するに必要な高温に暴露されても、高分子フィルムの剥離は生じない。従って当該積層体を、従来のガラス板やシリコンウエハなどの無機物の基板上に直接電子デバイスを形成するプロセスに供することが可能となる。しかし、かかる技術においても、無機基板の大きさが、ある範囲を超えて大きくなった場合には、工業生産上の問題点が顕在化してくることを本願発明者らは見出した。 According to the laminate described in Patent Documents 1 to 4 described above, it is possible to bond a polymer film and an inorganic substrate without using a so-called adhesive or adhesive element, and the laminate is a thin film. Exfoliation of the polymer film does not occur even when exposed to the high temperatures required to fabricate the device. Therefore, the laminate can be subjected to a process for directly forming an electronic device on an inorganic substrate such as a conventional glass plate or silicon wafer. However, the inventors of the present application have found that, even in such a technique, when the size of the inorganic substrate becomes larger than a certain range, problems in industrial production become apparent.
 長尺あるいは大面積の高分子フィルムには、一般にボーイングと呼ばれるフィルム幅方向での物性の不均一性が内在する。これは、フィルムの幅方向中央部の変形が幅方向端部の変形に比べて先行する、ないし、フィルムの幅方向中央部の変形が幅方向端部の変形に比べて遅延するため、フィルム内部に歪が残る現象である。かかる歪はボーイング歪と呼ばれる。 A long or large-area polymer film has a non-uniform physical property in the film width direction, generally called bowing. This is because the deformation at the central portion in the width direction of the film precedes the deformation at the end portion in the width direction, or the deformation at the central portion in the width direction of the film is delayed as compared with the deformation at the end portion in the width direction. This is a phenomenon in which distortion remains. Such distortion is called Boeing distortion.
 ボーイング歪は、たとえば、フィルムの熱収縮率の異方性、線膨張係数の異方性という形で発現する。かかる異方性は無機基板のサイズが小さい場合、すなわち高分子フィルムのサイズが小さい場合にはさほど大きな問題にはならない。しかし、特に無機基板のサイズが大きくなった場合、具体的には長方形状で一辺700mmを越える大きさになった場合には問題として顕在化する。例えば、電子デバイスの加工時の高温暴露等により、無機基板/高分子フィルム積層体の高分子フィルム部分に伸縮、収縮が生じ、そのために積層体全体に反りが発生する。加熱による伸縮、収縮が均質な場合、反り自体は十分に予見可能であるため、実際の製造工程では、あらかじめ反り量を想定して、条件設定とハンドリング方式を決めることが出来る。しかし、実際にはボーイング現象のため、伸縮、収縮は均質ではなく異方性を持ち、しかもその異方性が特定の方向に偏っているため、ヒネリやネジレを伴う、予想しがたい変形を生じる結果となる。 Boeing strain is manifested, for example, in the form of anisotropy of the thermal contraction rate of the film and anisotropy of the linear expansion coefficient. Such anisotropy is not a significant problem when the size of the inorganic substrate is small, that is, when the size of the polymer film is small. However, particularly when the size of the inorganic substrate is increased, specifically, when the size is rectangular and the side exceeds 700 mm, the problem becomes apparent. For example, due to high-temperature exposure during processing of an electronic device, the polymer film portion of the inorganic substrate / polymer film laminate is stretched and contracted, which causes warpage of the entire laminate. When expansion and contraction due to heating are homogeneous, warpage itself can be sufficiently predicted, and therefore, in an actual manufacturing process, it is possible to determine the condition setting and handling method in advance by assuming the amount of warpage. However, because of the Boeing phenomenon, the expansion and contraction and shrinkage are not homogeneous and have anisotropy, and the anisotropy is biased in a specific direction. Will result.
 本発明が目的とするフレキシブル電子デバイスの加工においては、印刷技術、フォトリソグラフ技術などを高度に組み合わせた高精細なデバイス加工技術が求められる。通常、このような高精細な加工は極めて高いクリーン度を有する環境下にて、極力人手を廃し、自動搬送装置を用いて行われる。ここで必要になるのが無機基板/高分子フィルム積層体の平坦性である。ネジレを伴う複雑に変形した積層体では、自動搬送上の問題が多く、開口部にて引っかかったり、あるいは基板面が機器の一部に接触したり、ないしは、減圧吸着がうまく出来ない、液状レジスト材料の塗布均一性が阻害される、露光時に焦点が合わない等々、多くの問題が生じ目的とする高精細加工を行うことが困難となる。 In the processing of a flexible electronic device that is the object of the present invention, a high-definition device processing technology that combines a printing technology, a photolithographic technology, and the like is required. Usually, such high-definition processing is performed using an automatic conveyance device without using human resources as much as possible in an environment having a very high degree of cleanliness. What is required here is the flatness of the inorganic substrate / polymer film laminate. In a complex deformed laminate with twisting, there are many problems in automatic conveyance, and it is caught in the opening, or the substrate surface touches part of the equipment, or the liquid resist that does not work well under reduced pressure. Many problems occur, such as the coating uniformity of the material being hindered, the focus not being achieved during exposure, and the like, making it difficult to perform the intended high-definition processing.
 以上、高分子フィルムを無機基板に仮固定してデバイス加工を行い、無機基板から高分子フィルムを剥離することによりフレキシブル電子デバイスを製造する方法について述べてきた。かかる高分子フィルムを仮固定して加工する手法は、フレキシブル電子デバイスを製作する方法としては優れた手法である。しかし、特に無機基板のサイズが大きくなった場合にはフィルムのボーイング現象による歪みの不均質の影響により、高精細な加工が困難になる。
 本発明者らは前記課題を解決するために鋭意検討した結果、高分子フィルムを複数に分割して無機基板と貼り合わせることにより、かかる課題を解決する方法を見出し、大面積基板においても、高精細な電子デバイスを生産可能となることを見出し、本発明を完成した。
As described above, a method for manufacturing a flexible electronic device by temporarily fixing a polymer film to an inorganic substrate, performing device processing, and peeling the polymer film from the inorganic substrate has been described. The technique of temporarily fixing and processing such a polymer film is an excellent technique for manufacturing a flexible electronic device. However, particularly when the size of the inorganic substrate is increased, high-definition processing becomes difficult due to the influence of inhomogeneous distortion due to the bowing phenomenon of the film.
As a result of diligent studies to solve the above problems, the present inventors have found a method for solving such a problem by dividing a polymer film into a plurality of pieces and bonding them to an inorganic substrate. The inventors have found that it is possible to produce fine electronic devices and have completed the present invention.
 すなわち本発明は以下の構成からなる。
(1)無機基板に高分子フィルムを接着して多層基板とし、該多層基板の該高分子フィルム上に電子デバイスを形成した後に該高分子フィルムを該無機基板から剥離するフレキシブル電子デバイスの製造方法において、該無機基板に該高分子フィルムを少なくとも2以上の区画に分割して接着することを特徴とする、フレキシブル電子デバイスの製造方法。(2)前記高分子フィルムの厚さが12μm以上、ヤング率が6GPa以上であり、400
℃1時間加熱時の収縮率が0.5%以下であることを特徴とする(1)に記載のフレキシブル電子デバイスの製造方法。
(3)前記無機基板が、面積4900cm以上、少なくとも短辺側が700mm以上の実質的に長方形であることを特徴とする(1)または(2)に記載のフレキシブル電子デバイスの製造方法。
(4)前記無機基板と前記高分子フィルムとの張貼り合わせが、表面活性化処理した無機基板と、表面活性化処理した高分子フィルムとを加熱・加圧することによって行われ(1)~(3)のいずれかに記載のフレキシブル電子デバイスの製造方法。
(5)前記無機基板と前記高分子フィルムとの貼り合わせに、厚さが5μm以下の粘着剤ないし接着剤を用いることを特徴とする(1)~(4)のいずれかに記載のフレキシブル電子デバイスの製造方法。
(6)少なくとも下記(I)~(V)の工程を含む(1)~(5)のいずれかに記載のフレキシブル電子デバイスの製造方法。
 (I) 一枚の保護フィルムに、少なくとも2以上の区画に分割された高分子フィルムを貼り合わせ多層積層フィルムを得る工程、
(II) 無機基板と、前記多層積層フィルムの高分子フィルム側とを接着し、多層基板を得る工程
(III) 前記多層基板から保護フィルムを剥離する工程
(IV)多層基板の高分子フィルム上に電子デバイスを形成する工程
(V) 多層基板から高分子フィルムを剥離する工程
That is, the present invention has the following configuration.
(1) A method of manufacturing a flexible electronic device in which a polymer film is bonded to an inorganic substrate to form a multilayer substrate, an electronic device is formed on the polymer film of the multilayer substrate, and then the polymer film is peeled from the inorganic substrate. The method for producing a flexible electronic device according to claim 1, wherein the polymer film is divided into at least two or more sections and bonded to the inorganic substrate. (2) The polymer film has a thickness of 12 μm or more, a Young's modulus of 6 GPa or more, and 400
(1) The method for producing a flexible electronic device according to (1), wherein a shrinkage rate when heated at 1 ° C. for 1 hour is 0.5% or less.
(3) The method for manufacturing a flexible electronic device according to (1) or (2), wherein the inorganic substrate is substantially rectangular with an area of 4900 cm 2 or more and at least a short side of 700 mm or more.
(4) The inorganic substrate and the polymer film are bonded to each other by heating and pressurizing the surface activated inorganic substrate and the surface activated polymer film. The manufacturing method of the flexible electronic device in any one of 3).
(5) The flexible electronic according to any one of (1) to (4), wherein an adhesive or an adhesive having a thickness of 5 μm or less is used for bonding the inorganic substrate and the polymer film. Device manufacturing method.
(6) The method for manufacturing a flexible electronic device according to any one of (1) to (5), including at least the following steps (I) to (V):
(I) A step of bonding a polymer film divided into at least two or more sections to a single protective film to obtain a multilayer laminated film;
(II) A step of adhering an inorganic substrate and the polymer film side of the multilayer laminated film to obtain a multilayer substrate (III) A step of peeling a protective film from the multilayer substrate (IV) On the polymer film of the multilayer substrate Step of forming electronic device (V) Step of peeling polymer film from multilayer substrate
 本発明では、高分子フィルムを複数の区画に分割して無機基板に貼り合わせることによって積層体を得る。高分子フィルムを分割することにより高分子フィルムの熱変形(主には伸縮、収縮)、の緩衝領域得ることが出来る。また複数に分割したフィルムを無作為に、あるいは、ある程度予想される伸縮、収縮の絶対量と方向が打ち消し合うように配列して貼り合わせることにより、積層体の加熱による変形を抑制、あるいは望む形に変形するように誘導することが可能となる。
 本発明では、無機基板と略同一のサイズ、ないし幅を有する保護フィルムに、高分子フィルムを適宜配列して仮合わせした積層フィルムとし、かかる積層フィルムの高分子フィルム側を、無機基板に貼り合わせることにより、貼り合わせの工程を省力化することができる。
In the present invention, a polymer film is divided into a plurality of sections and bonded to an inorganic substrate to obtain a laminate. By dividing the polymer film, a buffer region for thermal deformation (mainly expansion and contraction) of the polymer film can be obtained. In addition, it is possible to suppress the deformation of the laminate by heating or to arrange it in a desired manner by arranging the films divided into multiple pieces at random or arranging them so that the absolute amount and direction of expansion and contraction expected to some extent cancel each other. It is possible to guide it to be deformed.
In the present invention, a protective film having substantially the same size or width as that of the inorganic substrate is used as a laminated film in which a polymer film is appropriately arranged and temporarily bonded, and the polymer film side of the laminated film is bonded to the inorganic substrate. Thus, the labor of the bonding process can be saved.
高分子フィルムの分割例1。Division example 1 of polymer film. 高分子フィルムの分割例2。Division example 2 of polymer film. 高分子フィルムの分割例3。Example 3 of polymer film division. 高分子フィルムの分割例4。Example 4 of polymer film division. 無機基板、粘着剤、高分子フィルムの配置例1。Arrangement example 1 of inorganic substrate, adhesive, and polymer film. 無機基板、粘着剤、高分子フィルムの配置例2。Arrangement example 2 of inorganic substrate, adhesive, and polymer film. 保護フィルムと高分子フィルムの貼り付け例。An example of attaching a protective film and a polymer film. 保護フィルムへの高分子フィルム分割貼り付け工程。Polymer film division and pasting process to protective film. 保護フィルム/高分子フィルム貼り合わせ品を無機基板に貼り付ける工程。A process of attaching a protective film / polymer film bonded product to an inorganic substrate. 保護フィルムを剥離して、高分子フィルム/粘着剤/無機基板からなる積層体とする工程。The process which peels a protective film and makes it a laminated body which consists of a polymer film / adhesive / inorganic substrate.
 本発明のフレキシブル電子デバイスの製造方法は、無機基板、高分子フィルム、必要に応じて用いられる保護フィルム、無機基板と高分子フィルムの接着手段、高分子フィルム面への電子デバイスの形成手段、高分子フィルムの剥離手段から構成される。 The method for producing a flexible electronic device of the present invention includes an inorganic substrate, a polymer film, a protective film used as necessary, an adhesion means between the inorganic substrate and the polymer film, a means for forming an electronic device on the polymer film surface, a high It comprises molecular film peeling means.
<無機基板>
 本発明においては高分子フィルムの支持体として無機基板を用いる。無機基板とは無機物からなる基板として用いることのできる板状のものであればよく、例えば、ガラス板、セラミック板、半導体ウエハ、金属等を主体としているもの、および、これらガラス板、セラミック板、シリコンウエハ、金属の複合体として、これらを積層したもの、これらが分散されているもの、これらの繊維が含有されているものなどが挙げられる。
<Inorganic substrate>
In the present invention, an inorganic substrate is used as a support for the polymer film. The inorganic substrate may be any plate-like material that can be used as a substrate made of an inorganic material, for example, a glass plate, a ceramic plate, a semiconductor wafer, a material mainly made of metal, etc., and these glass plates, ceramic plates, Examples of silicon wafers and metal composites include those obtained by laminating them, those in which they are dispersed, and those containing these fibers.
 前記ガラス板としては、石英ガラス、高ケイ酸ガラス(96%シリカ)、ソーダ石灰ガラス、鉛ガラス、アルミノホウケイ酸ガラス、ホウケイ酸ガラス(パイレックス(登録商標))、ホウケイ酸ガラス(無アルカリ)、ホウケイ酸ガラス(マイクロシート)、アルミノケイ酸塩ガラス等が含まれる。これらの中でも、線膨張係数が5ppm/K以下のものが望ましく、市販品であれば、液晶用ガラスであるコーニング社製の「コーニング(登録商標)7059」や「コーニング(登録商標)1737」、「EAGLE」、旭硝子社製の「AN100」、日本電気硝子社製の「OA10」、SCHOTT社製の「AF32」などが望ましい。 Examples of the glass plate include quartz glass, high silicate glass (96% silica), soda lime glass, lead glass, aluminoborosilicate glass, borosilicate glass (Pyrex (registered trademark)), borosilicate glass (non-alkali), Borosilicate glass (microsheet), aluminosilicate glass and the like are included. Among these, those having a linear expansion coefficient of 5 ppm / K or less are desirable, and if it is a commercial product, “Corning (registered trademark) 7059” or “Corning (registered trademark) 1737” manufactured by Corning, which is a glass for liquid crystal, “EAGLE”, “AN100” manufactured by Asahi Glass, “OA10” manufactured by Nippon Electric Glass, “AF32” manufactured by SCHOTT, etc. are desirable.
 前記セラミック板としては、Al2O3、Mullite、AlN、SiC、Si3N4、BN、結晶化ガラス、Cordierite、Spodumene、Pb-BSG+CaZrO3+Al2O3、Crystallized glass+Al2O3、Crystallized Ca-BSG、BSG+Quartz、BSG+Quartz、BSG+Al2O3、Pb+BSG+Al2O3、Glass-ceramic、ゼロデュア材などの基板用セラミックス、TiO2、チタン酸ストロンチウム、チタン酸カルシウム、チタン酸マグネシウム、アルミナ、MgO、ステアタイト、BaTi4O9、BaTiO3、BaTi4+CaZrO3、BaSrCaZrTiO3、Ba(TiZr)O3、PMN-PTやPFN-PFWなどのキャパシター材料、PbNb2O6、Pb0.5Be0.5Nb2O6、PbTiO3、BaTiO3、PZT、0.855PZT-95PT-0.5BT、0.873PZT-0.97PT-0.3BT、PLZTなどの圧電材料が含まれる。 As the ceramic plate, Al2O3, Mullite, AlN, SiC, Si3N4, BN, crystallized glass, Cordierite, Spodumene, Pb-BSG + CaZrO3 + Al2O3, Crystallized glass + Al2ZQ, SG + BGSQ, SG + SG2G + SG3G + BGSQ Glass-ceramic, ceramics for substrates such as zero-dur, TiO2, strontium titanate, calcium titanate, magnesium titanate, alumina, MgO, steatite, BaTi4O9, BaTiO3, BaTi4 + CaZrO3, BaSrCaZrTiO3, Ba (TiZr) O3, PMN-PT And PFN-PFW Capacitor materials, PbNb2O6, Pb0.5Be0.5Nb2O6, PbTiO3, BaTiO3, PZT, 0.855PZT-95PT-0.5BT, 0.873PZT-0.97PT-0.3BT, include piezoelectric materials such as PLZT is.
 前記半導体ウエハとしては、シリコンウエハ、半導体ウエハ、化合物半導体ウエハ等を用いることができ、シリコンウエハとしては単結晶ないし多結晶のシリコンを薄板上に加工した物であり、n型或はp型にドーピングされたシリコンウエハ、イントリンシックシリコンウエハ等の全てが含まれ、また、シリコンウエハの表面に酸化シリコン層や各種薄膜が堆積されたシリコンウエハも含まれ、シリコンウエハ以外にも、ゲルマニウム、シリコン-ゲルマニウム、ガリウム-ヒ素、アルミニウム-ガリウム-インジウム、窒素-リン-ヒ素-アンチモン、SiC、InP(インジウム燐)、InGaAs、GaInNAs、LT、LN、ZnO(酸化亜鉛)やCdTe(カドミウムテルル)、ZnSe(セレン化亜鉛) などの半導体ウエハ、化合物半導体ウエハなどを用いることが出来る。 As the semiconductor wafer, a silicon wafer, a semiconductor wafer, a compound semiconductor wafer, or the like can be used. The silicon wafer is obtained by processing single crystal or polycrystalline silicon on a thin plate, and is n-type or p-type. This includes all doped silicon wafers, intrinsic silicon wafers, etc., and silicon wafers with silicon oxide layers and various thin films deposited on the surface of silicon wafers. In addition to silicon wafers, germanium, silicon- Germanium, gallium-arsenic, aluminum-gallium-indium, nitrogen-phosphorus-arsenic-antimony, SiC, InP (indium phosphorus), InGaAs, GaInNAs, LT, LN, ZnO (zinc oxide), CdTe (cadmium tellurium), ZnSe ( Semiconductor wafers such as zinc selenide) It can be used as the object semiconductor wafer.
 前記金属としては、W、Mo、Pt、Fe、Ni、Auといった単一元素金属、インコネル、モネル、ニモニック、炭素銅、Fe-Ni系インバー合金、スーパーインバー合金、といった合金等が含まれる。また、これら金属に、他の金属層、セラミック層を付加してなる多層金属板も含まれる。この場合、付加層との全体のCTEが低ければ、主金属層にCu、Alなども用いられる。付加金属層として使用される金属としては、ポリイミドフィルムとの密着性を強固にするもの、拡散がないこと、耐薬品性や耐熱性が良いこと等の特性を有するものであれば限定されるものではないが、クロム、ニッケル、TiN、Mo含有Cuが好適な例として挙げられる。 Examples of the metal include single element metals such as W, Mo, Pt, Fe, Ni, and Au, alloys such as Inconel, Monel, Nimonic, carbon copper, Fe—Ni-based Invar alloy, and Super Invar alloy. In addition, a multilayer metal plate formed by adding other metal layers and ceramic layers to these metals is also included. In this case, if the total CTE with the additional layer is low, Cu, Al or the like is also used for the main metal layer. The metal used as the additional metal layer is limited as long as it has strong adhesion to the polyimide film, no diffusion, and good chemical resistance and heat resistance. Although it is not, chromium, nickel, TiN, and Mo containing Cu are mentioned as a suitable example.
 前記無機基板の平面部分は、充分に平坦である事が望ましい。具体的には、表面荒さRaが10nm以下、好ましくは3nm以下、さらには0.9nm以下であることが好ましい。また、表面粗さのP-V値が50nm以下、より好ましくは20nm以下、さらに好ましくは5nm以下である。これより粗いと、高分子フィルムと無機基板との接着強度が不充分となる場合がある。
 前記無機基板の厚さは特に制限されないが、取り扱い性の観点より10mm以下の厚さが好ましく、3mm以下がなお好ましく、1.3mm以下がなお好ましい。厚さの加減については特に制限されないが、0.07mm以上、好ましくは0.15mm以上、なお好ましくは0.3mm以上が好ましく用いられる。
The planar portion of the inorganic substrate is desirably sufficiently flat. Specifically, the surface roughness Ra is preferably 10 nm or less, preferably 3 nm or less, and more preferably 0.9 nm or less. Further, the PV value of the surface roughness is 50 nm or less, more preferably 20 nm or less, and further preferably 5 nm or less. If it is rougher than this, the adhesive strength between the polymer film and the inorganic substrate may be insufficient.
The thickness of the inorganic substrate is not particularly limited, but is preferably 10 mm or less, more preferably 3 mm or less, and still more preferably 1.3 mm or less from the viewpoint of handleability. The thickness is not particularly limited, but 0.07 mm or more, preferably 0.15 mm or more, and more preferably 0.3 mm or more is preferably used.
 本発明における無機基板としては、望ましくは、少なくとも面積が4900cm以上のサイズを対象とする。本発明の無機基板は、少なくとも短辺側が700mm以上の実質的に長方形であることが好ましい。本発明において好ましい無機基板面積は5000cm2 以上であり、さらに10000cm2 以上、なおさらに18000cm2 以上が好ましい。また本発明を好ましく適応出来る長方形の短辺側長さは 730mm以上であり、840mm以上がさらに好ましく、なおさらに好ましいのは1000mm以上である。
 なお、ここで「実質的に長方形」とは長方形の角のR、切り欠き、ノッチ、オリフラなどがあることを許容することを意味する。本発明ではフラットパネルディスプレイ業界に於いて第4世代と呼ばれる、680×880mmないし730×920mmのガラス基板、第5世代と呼ばれる、1000×1200mm 1100×1250mm 1300×1500mmのガラス基板、第6世代と呼ばれる1370×1670mmないし1500×1800mmのガラス基板、第7世代と呼ばれる1870×2200mmのガラス基板、第8世代と呼ばれる、2160×2460mmないし2200×2500mmのガラス基板、第9世代と呼ばれる2400×2800mmのガラス基板、第10世代と呼ばれる、2,880×3,130mmのガラス基板、第11世代と呼ばれる、3,320×3,000mmのガラス基板、ないしはそれ以上のサイズを有するガラス基板にも適用される。ただし本発明は、ここに例示した面積、サイズ、長方形の短辺長さより小さいサイズの無機基板への適用を制限されるものではない。
The inorganic substrate in the present invention is desirably a size having an area of at least 4900 cm 2 or more. The inorganic substrate of the present invention is preferably substantially rectangular with at least a short side of 700 mm or more. Preferred inorganic substrate area in the present invention is 5000 cm 2 or more, further 10000 cm 2 or more, even more 18000Cm 2 or more. The length of the short side of the rectangle to which the present invention can be preferably applied is 730 mm or more, more preferably 840 mm or more, and still more preferably 1000 mm or more.
Here, “substantially rectangular” means that a rectangular corner R, a notch, a notch, an orientation flat, and the like are allowed. In the present invention, a glass substrate of 680 × 880 mm to 730 × 920 mm called fourth generation in the flat panel display industry, a glass substrate of 1000 × 1200 mm 1100 × 1250 mm 1300 × 1500 mm, called sixth generation, 1370x1670mm to 1500x1800mm glass substrate called, 1870x2200mm glass substrate called 7th generation, 2160x2460mm to 2200x2500mm glass substrate called 8th generation, 2400x2800mm called 9th generation Also applicable to glass substrates, called 10th generation, glass substrates of 2,880 × 3,130 mm, called 11th generation, glass substrates of 3,320 × 3,000 mm or larger. It is. However, the present invention is not limited to application to an inorganic substrate having a size smaller than the area, size, and rectangular short side length exemplified here.
<高分子フィルム>
 本発明における高分子フィルムとしては、ポリエチレン、ポリプロピレン、ポリエチレンテレフタレート、ポリブチレンテレフタレート、ポリエチレンナフタレート、全芳香族ポリエステル、その他の共重合ポリエステル、ポリメチルメタクリレート、その他の共重合アクリレート、ポリカーボネート、ポリアミド、ポリスルフォン、ポリエーテルスルフォン、ポリエーテルケトン、ポリアミドイミド、ポリエーテルイミド、芳香族ポリイミド、脂環族ポリイミド、フッ素化ポリイミド、酢酸セルロース、硝酸セルロース、芳香族ポリアミド、ポリ塩化ビニル、ポリフェノール、ポリアリレート、ポリフェニレンスルフィド、ポリフェニレンオキシド、ポリスチレン等のフィルムを用いることが出来る。本発明において特に効果が顕著・有用であるものは耐熱性が100℃以上の高分子、所謂エンジニアリングプラスチックのフィルムである。ここに耐熱性とはガラス転移温度ないしは熱変形温度を云う。
<Polymer film>
As the polymer film in the present invention, polyethylene, polypropylene, polyethylene terephthalate, polybutylene terephthalate, polyethylene naphthalate, wholly aromatic polyester, other copolymerized polyester, polymethyl methacrylate, other copolymerized acrylate, polycarbonate, polyamide, poly Sulfone, polyether sulfone, polyether ketone, polyamideimide, polyetherimide, aromatic polyimide, alicyclic polyimide, fluorinated polyimide, cellulose acetate, cellulose nitrate, aromatic polyamide, polyvinyl chloride, polyphenol, polyarylate, polyphenylene A film made of sulfide, polyphenylene oxide, polystyrene or the like can be used. In the present invention, what is particularly remarkable and useful is a polymer having a heat resistance of 100 ° C. or higher, that is, a so-called engineering plastic film. Here, the heat resistance refers to a glass transition temperature or a heat distortion temperature.
 本発明の高分子フィルムのヤング率(弾性率)は6GPa以上であることが好ましく、より好ましくは7.4GPa以上、さらに好ましくは8.2GPa以上、なおさらには9.1GPa以上であることが好ましい。ここに、ヤング率は引っ張りで求めるヤング率である。ヤング率がこの範囲に満たない場合、無機基板から高分子フィルムを剥離する際に、高分子フィルムの伸びが大となり、電子デバイスが破壊される可能性が高くなる。
 本発明において、ヤング率の上限は特に限定されないが、現実的には15GPa程度である。ヤング率が高すぎる素材は、フィルムが脆く、割れやすくなることが多いため、フレキシブル電子デバイス用の基材としては適切でない。
The Young's modulus (elastic modulus) of the polymer film of the present invention is preferably 6 GPa or more, more preferably 7.4 GPa or more, still more preferably 8.2 GPa or more, and even more preferably 9.1 GPa or more. . Here, the Young's modulus is the Young's modulus obtained by pulling. When the Young's modulus is less than this range, when the polymer film is peeled from the inorganic substrate, the polymer film is stretched so that the electronic device is likely to be destroyed.
In the present invention, the upper limit of the Young's modulus is not particularly limited, but is practically about 15 GPa. A material having a too high Young's modulus is not suitable as a base material for a flexible electronic device because the film is fragile and often breaks easily.
 本発明の高分子フィルムの厚さの下限は特に限定されないが、電子デバイスの基材としての最低限の機械的強度を維持するために、4.5μm以上が好ましい。本発明では12μm以上がなお好ましく、さらには24μm以上が好ましく、なおさらには45μm以上が好ましい。高分子フィルムの厚さの上限は特に制限されないが、フレキシブル電子デバイスとしての要求より250μm以下であることが好ましく、さらに150μm以下、なおさらには90μm以下が好ましい。 The lower limit of the thickness of the polymer film of the present invention is not particularly limited, but is preferably 4.5 μm or more in order to maintain the minimum mechanical strength as a base material of an electronic device. In the present invention, it is more preferably 12 μm or more, further preferably 24 μm or more, still more preferably 45 μm or more. The upper limit of the thickness of the polymer film is not particularly limited, but is preferably 250 μm or less, more preferably 150 μm or less, and even more preferably 90 μm or less, as required for a flexible electronic device.
 本発明で特に好ましく用いられる高分子フィルムはポリイミドフィルムであり、芳香族ポリイミド、脂環族ポリイミド、ポリアミドイミド、ポリエーテルイミドなどを用いることが出来る。本発明を特にフレキシブルディスプレイ素子製造に用いる場合には、無色透明性を有するポリイミド系樹脂フィルムを用いることが好ましいが、反射型、ないし自発光型のディスプレイの背面素子を形成する場合においては、特にこの限りではない。 The polymer film particularly preferably used in the present invention is a polyimide film, and aromatic polyimide, alicyclic polyimide, polyamideimide, polyetherimide and the like can be used. When the present invention is used particularly for the production of flexible display elements, it is preferable to use a polyimide-based resin film having colorless transparency, but particularly when forming a back element of a reflective or self-luminous display. This is not the case.
 一般にポリイミドフィルムは、溶媒中でジアミン類とテトラカルボン酸類とを反応させて得られるポリアミド酸(ポリイミド前駆体)溶液を、ポリイミドフィルム作製用支持体に塗布、乾燥してグリーンフィルム(「前駆体フィルム」または「ポリアミド酸フィルム」ともいう)となし、さらにポリイミドフィルム作製用支持体上で、あるいは該支持体から剥がした状態でグリーンフィルムを高温熱処理して脱水閉環反応を行わせることによって得られる。 In general, a polyimide film is obtained by applying a polyamic acid (polyimide precursor) solution obtained by reacting diamines and tetracarboxylic acids in a solvent to a polyimide film support and drying it to obtain a green film (“precursor film”). Or a “polyamic acid film”), and further, a green film is subjected to a high temperature heat treatment on a support for forming a polyimide film or in a state of being peeled from the support to cause a dehydration ring-closing reaction.
 ポリアミド酸を構成するジアミン類としては、特に制限はなく、ポリイミド合成に通常用いられる芳香族ジアミン類、脂肪族ジアミン類、脂環式ジアミン類等を用いることができる。耐熱性の観点からは、芳香族ジアミン類が好ましく、芳香族ジアミン類の中では、ベンゾオキサゾール構造を有する芳香族ジアミン類がより好ましい。ベンゾオキサゾール構造を有する芳香族ジアミン類を用いると、高い耐熱性とともに、高弾性率、低熱収縮性、低線膨張係数を発現させることが可能になる。ジアミン類は、単独で用いてもよいし二種以上を併用してもよい。 There is no restriction | limiting in particular as diamine which comprises a polyamic acid, The aromatic diamine, aliphatic diamine, alicyclic diamine etc. which are normally used for a polyimide synthesis | combination can be used. From the viewpoint of heat resistance, aromatic diamines are preferable, and among aromatic diamines, aromatic diamines having a benzoxazole structure are more preferable. When aromatic diamines having a benzoxazole structure are used, it is possible to develop a high elastic modulus, a low heat shrinkage, and a low linear expansion coefficient as well as a high heat resistance. Diamines may be used alone or in combination of two or more.
 ベンゾオキサゾール構造を有する芳香族ジアミン類としては、特に限定はなく、例えば、5-アミノ-2-(p-アミノフェニル)ベンゾオキサゾール、6-アミノ-2-(p-アミノフェニル)ベンゾオキサゾール、5-アミノ-2-(m-アミノフェニル)ベンゾオキサゾール、6-アミノ-2-(m-アミノフェニル)ベンゾオキサゾール、2,2'-p-フェニレンビス(5-アミノベンゾオキサゾール)、2,2'-p-フェニレンビス(6-アミノベンゾオキサゾール)、1-(5-アミノベンゾオキサゾロ)-4-(6-アミノベンゾオキサゾロ)ベンゼン、2,6-(4,4'-ジアミノジフェニル)ベンゾ[1,2-d:5,4-d']ビスオキサゾール、2,6-(4,4'-ジアミノジフェニル)ベンゾ[1,2-d:4,5-d']ビスオキサゾール、2,6-(3,4'-ジアミノジフェニル)ベンゾ[1,2-d:5,4-d']ビスオキサゾール、2,6-(3,4'-ジアミノジフェニル)ベンゾ[1,2-d:4,5-d']ビスオキサゾール、2,6-(3,3'-ジアミノジフェニル)ベンゾ[1,2-d:5,4-d']ビスオキサゾール、2,6-(3,3'-ジアミノジフェニル)ベンゾ[1,2-d:4,5-d']ビスオキサゾール等が挙げられる。 The aromatic diamine having a benzoxazole structure is not particularly limited. For example, 5-amino-2- (p-aminophenyl) benzoxazole, 6-amino-2- (p-aminophenyl) benzoxazole, 5 -Amino-2- (m-aminophenyl) benzoxazole, 6-amino-2- (m-aminophenyl) benzoxazole, 2,2'-p-phenylenebis (5-aminobenzoxazole), 2,2 ' -P-phenylenebis (6-aminobenzoxazol), 1- (5-aminobenzoxazolo) -4- (6-aminobenzoxazolo) benzene, 2,6- (4,4'-diaminodiphenyl) benzo [1,2-d: 5,4-d ′] bisoxazole, 2,6- (4,4′-diaminodiphenyl) benzo [1,2-d: 4 5-d '] bisoxazole, 2,6- (3,4'-diaminodiphenyl) benzo [1,2-d: 5,4-d'] bisoxazole, 2,6- (3,4'-diamino Diphenyl) benzo [1,2-d: 4,5-d ′] bisoxazole, 2,6- (3,3′-diaminodiphenyl) benzo [1,2-d: 5,4-d ′] bisoxazole 2,6- (3,3′-diaminodiphenyl) benzo [1,2-d: 4,5-d ′] bisoxazole and the like.
 上述したベンゾオキサゾール構造を有する芳香族ジアミン類以外の芳香族ジアミン類としては、例えば、2,2'-ジメチル-4,4'-ジアミノビフェニル、1,4-ビス[2-(4-アミノフェニル)-2-プロピル]ベンゼン(ビスアニリン)、1,4-ビス(4-アミノ-2-トリフルオロメチルフェノキシ)ベンゼン、2,2'-ジトリフルオロメチル-4,4'-ジアミノビフェニル、4,4'-ビス(4-アミノフェノキシ)ビフェニル、4,4'-ビス(3-アミノフェノキシ)ビフェニル、ビス[4-(3-アミノフェノキシ)フェニル]ケトン、ビス[4-(3-アミノフェノキシ)フェニル]スルフィド、ビス[4-(3-アミノフェノキシ)フェニル]スルホン、2,2-ビス[4-(3-アミノフェノキシ)フェニル]プロパン、2,2-ビス[4-(3-アミノフェノキシ)フェニル]-1,1,1,3,3,3-ヘキサフルオロプロパン、m-フェニレンジアミン、o-フェニレンジアミン、p-フェニレンジアミン、m-アミノベンジルアミン、p-アミノベンジルアミン、3,3'-ジアミノジフェニルエーテル、3,4'-ジアミノジフェニルエーテル、4,4'-ジアミノジフェニルエーテル、3,3'-ジアミノジフェニルスルフィド、3,3'-ジアミノジフェニルスルホキシド、3,4'-ジアミノジフェニルスルホキシド、4,4'-ジアミノジフェニルスルホキシド、3,3'-ジアミノジフェニルスルホン、3,4'-ジアミノジフェニルスルホン、4,4'-ジアミノジフェニルスルホン、3,3'-ジアミノベンゾフェノン、3,4'-ジアミノベンゾフェノン、4,4'-ジアミノベンゾフェノン、3,3'-ジアミノジフェニルメタン、3,4'-ジアミノジフェニルメタン、4,4'-ジアミノジフェニルメタン、ビス[4-(4-アミノフェノキシ)フェニル]メタン、1,1-ビス[4-(4-アミノフェノキシ)フェニル]エタン、1,2-ビス[4-(4-アミノフェノキシ)フェニル]エタン、1,1-ビス[4-(4-アミノフェノキシ)フェニル]プロパン、1,2-ビス[4-(4-アミノフェノキシ)フェニル]プロパン、1,3-ビス[4-(4-アミノフェノキシ)フェニル]プロパン、2,2-ビス[4-(4-アミノフェノキシ)フェニル]プロパン、1,1-ビス[4-(4-アミノフェノキシ)フェニル]ブタン、1,3-ビス[4-(4-アミノフェノキシ)フェニル]ブタン、1,4-ビス[4-(4-アミノフェノキシ)フェニル]ブタン、2,2-ビス[4-(4-アミノフェノキシ)フェニル]ブタン、2,3-ビス[4-(4-アミノフェノキシ)フェニル]ブタン、2-[4-(4-アミノフェノキシ)フェニル]-2-[4-(4-アミノフェノキシ)-3-メチルフェニル]プロパン、2,2-ビス[4-(4-アミノフェノキシ)-3-メチルフェニル]プロパン、2-[4-(4-アミノフェノキシ)フェニル]-2-[4-(4-アミノフェノキシ)-3,5-ジメチルフェニル]プロパン、2,2-ビス[4-(4-アミノフェノキシ)-3,5-ジメチルフェニル]プロパン、2,2-ビス[4-(4-アミノフェノキシ)フェニル]-1,1,1,3,3,3-ヘキサフルオロプロパン、1,4-ビス(3-アミノフェノキシ)ベンゼン、1,3-ビス(3-アミノフェノキシ)ベンゼン、1,4-ビス(4-アミノフェノキシ)ベンゼン、4,4'-ビス(4-アミノフェノキシ)ビフェニル、ビス[4-(4-アミノフェノキシ)フェニル]ケトン、ビス[4-(4-アミノフェノキシ)フェニル]スルフィド、ビス[4-(4-アミノフェノキシ)フェニル]スルホキシド、ビス[4-(4-アミノフェノキシ)フェニル]スルホン、ビス[4-(3-アミノフェノキシ)フェニル]エーテル、ビス[4-(4-アミノフェノキシ)フェニル]エーテル、1,3-ビス[4-(4-アミノフェノキシ)ベンゾイル]ベンゼン、1,3-ビス[4-(3-アミノフェノキシ)ベンゾイル]ベンゼン、1,4-ビス[4-(3-アミノフェノキシ)ベンゾイル]ベンゼン、4,4'-ビス[(3-アミノフェノキシ)ベンゾイル]ベンゼン、1,1-ビス[4-(3-アミノフェノキシ)フェニル]プロパン、1,3-ビス[4-(3-アミノフェノキシ)フェニル]プロパン、3,4'-ジアミノジフェニルスルフィド、2,2-ビス[3-(3-アミノフェノキシ)フェニル]-1,1,1,3,3,3-ヘキサフルオロプロパン、ビス[4-(3-アミノフェノキシ)フェニル]メタン、1,1-ビス[4-(3-アミノフェノキシ)フェニル]エタン、1,2-ビス[4-(3-アミノフェノキシ)フェニル]エタン、ビス[4-(3-アミノフェノキシ)フェニル]スルホキシド、4,4'-ビス[3-(4-アミノフェノキシ)ベンゾイル]ジフェニルエーテル、4,4'-ビス[3-(3-アミノフェノキシ)ベンゾイル]ジフェニルエーテル、4,4'-ビス[4-(4-アミノ-α,α-ジメチルベンジル)フェノキシ]ベンゾフェノン、4,4'-ビス[4-(4-アミノ-α,α-ジメチルベンジル)フェノキシ]ジフェニルスルホン、ビス[4-{4-(4-アミノフェノキシ)フェノキシ}フェニル]スルホン、1,4-ビス[4-(4-アミノフェノキシ)フェノキシ-α,α-ジメチルベンジル]ベンゼン、1,3-ビス[4-(4-アミノフェノキシ)フェノキシ-α,α-ジメチルベンジル]ベンゼン、1,3-ビス[4-(4-アミノ-6-トリフルオロメチルフェノキシ)-α,α-ジメチルベンジル]ベンゼン、1,3-ビス[4-(4-アミノ-6-フルオロフェノキシ)-α,α-ジメチルベンジル]ベンゼン、1,3-ビス[4-(4-アミノ-6-メチルフェノキシ)-α,α-ジメチルベンジル]ベンゼン、1,3-ビス[4-(4-アミノ-6-シアノフェノキシ)-α,α-ジメチルベンジル]ベンゼン、3,3'-ジアミノ-4,4'-ジフェノキシベンゾフェノン、4,4'-ジアミノ-5,5'-ジフェノキシベンゾフェノン、3,4'-ジアミノ-4,5'-ジフェノキシベンゾフェノン、3,3'-ジアミノ-4-フェノキシベンゾフェノン、4,4'-ジアミノ-5-フェノキシベンゾフェノン、3,4'-ジアミノ-4-フェノキシベンゾフェノン、3,4'-ジアミノ-5'-フェノキシベンゾフェノン、3,3'-ジアミノ-4,4'-ジビフェノキシベンゾフェノン、4,4'-ジアミノ-5,5'-ジビフェノキシベンゾフェノン、3,4'-ジアミノ-4,5'-ジビフェノキシベンゾフェノン、3,3'-ジアミノ-4-ビフェノキシベンゾフェノン、4,4'-ジアミノ-5-ビフェノキシベンゾフェノン、3,4'-ジアミノ-4-ビフェノキシベンゾフェノン、3,4'-ジアミノ-5'-ビフェノキシベンゾフェノン、1,3-ビス(3-アミノ-4-フェノキシベンゾイル)ベンゼン、1,4-ビス(3-アミノ-4-フェノキシベンゾイル)ベンゼン、1,3-ビス(4-アミノ-5-フェノキシベンゾイル)ベンゼン、1,4-ビス(4-アミノ-5-フェノキシベンゾイル)ベンゼン、1,3-ビス(3-アミノ-4-ビフェノキシベンゾイル)ベンゼン、1,4-ビス(3-アミノ-4-ビフェノキシベンゾイル)ベンゼン、1,3-ビス(4-アミノ-5-ビフェノキシベンゾイル)ベンゼン、1,4-ビス(4-アミノ-5-ビフェノキシベンゾイル)ベンゼン、2,6-ビス[4-(4-アミノ-α,α-ジメチルベンジル)フェノキシ]ベンゾニトリル、および上記芳香族ジアミンの芳香環上の水素原子の一部もしくは全てが、ハロゲン原子、炭素数1~3のアルキル基またはアルコキシル基、シアノ基、またはアルキル基またはアルコキシル基の水素原子の一部もしくは全部がハロゲン原子で置換された炭素数1~3のハロゲン化アルキル基またはアルコキシル基で置換された芳香族ジアミン等が挙げられる。 Examples of the aromatic diamine other than the aromatic diamine having the benzoxazole structure described above include 2,2′-dimethyl-4,4′-diaminobiphenyl, 1,4-bis [2- (4-aminophenyl). ) -2-propyl] benzene (bisaniline), 1,4-bis (4-amino-2-trifluoromethylphenoxy) benzene, 2,2′-ditrifluoromethyl-4,4′-diaminobiphenyl, 4,4 '-Bis (4-aminophenoxy) biphenyl, 4,4'-bis (3-aminophenoxy) biphenyl, bis [4- (3-aminophenoxy) phenyl] ketone, bis [4- (3-aminophenoxy) phenyl ] Sulfide, bis [4- (3-aminophenoxy) phenyl] sulfone, 2,2-bis [4- (3-aminophenoxy) phenyl] Lopan, 2,2-bis [4- (3-aminophenoxy) phenyl] -1,1,1,3,3,3-hexafluoropropane, m-phenylenediamine, o-phenylenediamine, p-phenylenediamine, m-aminobenzylamine, p-aminobenzylamine, 3,3′-diaminodiphenyl ether, 3,4′-diaminodiphenyl ether, 4,4′-diaminodiphenyl ether, 3,3′-diaminodiphenyl sulfide, 3,3′- Diaminodiphenyl sulfoxide, 3,4'-diaminodiphenyl sulfoxide, 4,4'-diaminodiphenyl sulfoxide, 3,3'-diaminodiphenyl sulfone, 3,4'-diaminodiphenyl sulfone, 4,4'-diaminodiphenyl sulfone, 3 , 3'-Diaminobenzophenone, 3,4'-diamino Nzophenone, 4,4′-diaminobenzophenone, 3,3′-diaminodiphenylmethane, 3,4′-diaminodiphenylmethane, 4,4′-diaminodiphenylmethane, bis [4- (4-aminophenoxy) phenyl] methane, 1, 1-bis [4- (4-aminophenoxy) phenyl] ethane, 1,2-bis [4- (4-aminophenoxy) phenyl] ethane, 1,1-bis [4- (4-aminophenoxy) phenyl] Propane, 1,2-bis [4- (4-aminophenoxy) phenyl] propane, 1,3-bis [4- (4-aminophenoxy) phenyl] propane, 2,2-bis [4- (4-amino) Phenoxy) phenyl] propane, 1,1-bis [4- (4-aminophenoxy) phenyl] butane, 1,3-bis [4- (4-aminophen) Xyl) phenyl] butane, 1,4-bis [4- (4-aminophenoxy) phenyl] butane, 2,2-bis [4- (4-aminophenoxy) phenyl] butane, 2,3-bis [4- (4-aminophenoxy) phenyl] butane, 2- [4- (4-aminophenoxy) phenyl] -2- [4- (4-aminophenoxy) -3-methylphenyl] propane, 2,2-bis [4 -(4-aminophenoxy) -3-methylphenyl] propane, 2- [4- (4-aminophenoxy) phenyl] -2- [4- (4-aminophenoxy) -3,5-dimethylphenyl] propane, 2,2-bis [4- (4-aminophenoxy) -3,5-dimethylphenyl] propane, 2,2-bis [4- (4-aminophenoxy) phenyl] -1,1,1,3,3 , 3- Hexafluoropropane, 1,4-bis (3-aminophenoxy) benzene, 1,3-bis (3-aminophenoxy) benzene, 1,4-bis (4-aminophenoxy) benzene, 4,4′-bis ( 4-aminophenoxy) biphenyl, bis [4- (4-aminophenoxy) phenyl] ketone, bis [4- (4-aminophenoxy) phenyl] sulfide, bis [4- (4-aminophenoxy) phenyl] sulfoxide, bis [4- (4-aminophenoxy) phenyl] sulfone, bis [4- (3-aminophenoxy) phenyl] ether, bis [4- (4-aminophenoxy) phenyl] ether, 1,3-bis [4- ( 4-aminophenoxy) benzoyl] benzene, 1,3-bis [4- (3-aminophenoxy) benzoyl] benzene, 1,4-bis [4- (3-aminophenoxy) benzoyl] benzene, 4,4′-bis [(3-aminophenoxy) benzoyl] benzene, 1,1-bis [4- (3-aminophenoxy) phenyl ] Propane, 1,3-bis [4- (3-aminophenoxy) phenyl] propane, 3,4'-diaminodiphenyl sulfide, 2,2-bis [3- (3-aminophenoxy) phenyl] -1,1 , 1,3,3,3-hexafluoropropane, bis [4- (3-aminophenoxy) phenyl] methane, 1,1-bis [4- (3-aminophenoxy) phenyl] ethane, 1,2-bis [4- (3-aminophenoxy) phenyl] ethane, bis [4- (3-aminophenoxy) phenyl] sulfoxide, 4,4′-bis [3- (4-aminophenoxy) ben Yl] diphenyl ether, 4,4′-bis [3- (3-aminophenoxy) benzoyl] diphenyl ether, 4,4′-bis [4- (4-amino-α, α-dimethylbenzyl) phenoxy] benzophenone, 4, 4′-bis [4- (4-amino-α, α-dimethylbenzyl) phenoxy] diphenylsulfone, bis [4- {4- (4-aminophenoxy) phenoxy} phenyl] sulfone, 1,4-bis [4 -(4-aminophenoxy) phenoxy-α, α-dimethylbenzyl] benzene, 1,3-bis [4- (4-aminophenoxy) phenoxy-α, α-dimethylbenzyl] benzene, 1,3-bis [4 -(4-Amino-6-trifluoromethylphenoxy) -α, α-dimethylbenzyl] benzene, 1,3-bis [4- (4-amino-6-fluoro) (Luorophenoxy) -α, α-dimethylbenzyl] benzene, 1,3-bis [4- (4-amino-6-methylphenoxy) -α, α-dimethylbenzyl] benzene, 1,3-bis [4- (4-Amino-6-cyanophenoxy) -α, α-dimethylbenzyl] benzene, 3,3′-diamino-4,4′-diphenoxybenzophenone, 4,4′-diamino-5,5′-diphenoxy Benzophenone, 3,4'-diamino-4,5'-diphenoxybenzophenone, 3,3'-diamino-4-phenoxybenzophenone, 4,4'-diamino-5-phenoxybenzophenone, 3,4'-diamino-4 -Phenoxybenzophenone, 3,4'-diamino-5'-phenoxybenzophenone, 3,3'-diamino-4,4'-dibiphenoxybenzophenone, 4,4'-di Mino-5,5′-dibiphenoxybenzophenone, 3,4′-diamino-4,5′-dibiphenoxybenzophenone, 3,3′-diamino-4-biphenoxybenzophenone, 4,4′-diamino-5-bi Phenoxybenzophenone, 3,4'-diamino-4-biphenoxybenzophenone, 3,4'-diamino-5'-biphenoxybenzophenone, 1,3-bis (3-amino-4-phenoxybenzoyl) benzene, 1,4 -Bis (3-amino-4-phenoxybenzoyl) benzene, 1,3-bis (4-amino-5-phenoxybenzoyl) benzene, 1,4-bis (4-amino-5-phenoxybenzoyl) benzene, 1, 3-bis (3-amino-4-biphenoxybenzoyl) benzene, 1,4-bis (3-amino-4-biphenoxybenzo) L) benzene, 1,3-bis (4-amino-5-biphenoxybenzoyl) benzene, 1,4-bis (4-amino-5-biphenoxybenzoyl) benzene, 2,6-bis [4- (4 -Amino-α, α-dimethylbenzyl) phenoxy] benzonitrile, and part or all of the hydrogen atoms on the aromatic ring of the aromatic diamine are halogen atoms, alkyl groups having 1 to 3 carbon atoms or alkoxyl groups, cyano And an aromatic diamine substituted with an alkyl group or a halogenated alkyl group having 1 to 3 carbon atoms in which part or all of the hydrogen atoms of the alkyl group or alkoxyl group are substituted with a halogen atom.
 前記脂肪族ジアミン類としては、例えば、1,2-ジアミノエタン、1,4-ジアミノブタン、1,5-ジアミノペンタン、1,6-ジアミノヘキサン、1,8-ジアミノオクタン等が挙げられる。
 前記脂環式ジアミン類としては、例えば、1,4-ジアミノシクロヘキサン、4,4'-メチレンビス(2,6-ジメチルシクロヘキシルアミン)等が挙げられる。
 芳香族ジアミン類以外のジアミン(脂肪族ジアミン類および脂環式ジアミン類)の合計量は、全ジアミン類の20質量%以下が好ましく、より好ましくは10質量%以下、さらに好ましくは5質量%以下である。換言すれば、芳香族ジアミン類は全ジアミン類の80質量%以上が好ましく、より好ましくは90質量%以上、さらに好ましくは95質量%以上である。
Examples of the aliphatic diamines include 1,2-diaminoethane, 1,4-diaminobutane, 1,5-diaminopentane, 1,6-diaminohexane, 1,8-diaminooctane, and the like.
Examples of the alicyclic diamines include 1,4-diaminocyclohexane, 4,4′-methylenebis (2,6-dimethylcyclohexylamine), and the like.
The total amount of diamines other than aromatic diamines (aliphatic diamines and alicyclic diamines) is preferably 20% by mass or less, more preferably 10% by mass or less, and still more preferably 5% by mass or less of the total diamines. It is. In other words, the aromatic diamine is preferably 80% by mass or more of the total diamines, more preferably 90% by mass or more, and still more preferably 95% by mass or more.
 ポリアミド酸を構成するテトラカルボン酸類としては、ポリイミド合成に通常用いられる芳香族テトラカルボン酸類(その酸無水物を含む)、脂肪族テトラカルボン酸類(その酸無水物を含む)、脂環族テトラカルボン酸類(その酸無水物を含む)を用いることができる。中でも、芳香族テトラカルボン酸無水物類、脂環族テトラカルボン酸無水物類が好ましく、耐熱性の観点からは芳香族テトラカルボン酸無水物類がより好ましく、光透過性の観点からは脂環族テトラカルボン酸類がより好ましい。これらが酸無水物である場合、分子内に無水物構造は1個であってもよいし2個であってもよいが、好ましくは2個の無水物構造を有するもの(二無水物)がよい。テトラカルボン酸類は単独で用いてもよいし、二種以上を併用してもよい。 The tetracarboxylic acids constituting the polyamic acid include aromatic tetracarboxylic acids (including acid anhydrides), aliphatic tetracarboxylic acids (including acid anhydrides), and alicyclic tetracarboxylic acids that are commonly used for polyimide synthesis. Acids (including acid anhydrides thereof) can be used. Among them, aromatic tetracarboxylic acid anhydrides and alicyclic tetracarboxylic acid anhydrides are preferable, aromatic tetracarboxylic acid anhydrides are more preferable from the viewpoint of heat resistance, and alicyclic from the viewpoint of light transmission. Group tetracarboxylic acids are more preferred. In the case where these are acid anhydrides, the number of anhydride structures in the molecule may be one or two, but those having two anhydride structures (dianhydrides) are preferred. Good. Tetracarboxylic acids may be used alone or in combination of two or more.
 脂環族テトラカルボン酸類としては、例えば、シクロブタンテトラカルボン酸、1,2,4,5-シクロヘキサンテトラカルボン酸、3,3',4,4'-ビシクロヘキシルテトラカルボン酸等の脂環族テトラカルボン酸、およびこれらの酸無水物が挙げられる。これらの中でも、2個の無水物構造を有する二無水物(例えば、シクロブタンテトラカルボン酸二無水物、1,2,4,5-シクロヘキサンテトラカルボン酸二無水物、3,3',4,4'-ビシクロヘキシルテトラカルボン酸二無水物等)が好適である。なお、脂環族テトラカルボン酸類は単独で用いてもよいし、二種以上を併用してもよい。
 脂環式テトラカルボン酸類は、透明性を重視する場合には、例えば、全テトラカルボン酸類の80質量%以上が好ましく、より好ましくは90質量%以上、さらに好ましくは95質量%以上である。
Examples of the alicyclic tetracarboxylic acids include alicyclic tetracarboxylic acids such as cyclobutanetetracarboxylic acid, 1,2,4,5-cyclohexanetetracarboxylic acid, and 3,3 ′, 4,4′-bicyclohexyltetracarboxylic acid. Carboxylic acids and their acid anhydrides are mentioned. Among these, dianhydrides having two anhydride structures (for example, cyclobutanetetracarboxylic dianhydride, 1,2,4,5-cyclohexanetetracarboxylic dianhydride, 3,3 ′, 4,4 '-Bicyclohexyltetracarboxylic dianhydride etc.) are preferred. In addition, alicyclic tetracarboxylic acids may be used independently and may use 2 or more types together.
In the case where importance is attached to transparency, the alicyclic tetracarboxylic acids are, for example, preferably 80% by mass or more of all tetracarboxylic acids, more preferably 90% by mass or more, and further preferably 95% by mass or more.
 芳香族テトラカルボン酸類としては、特に限定されないが、ピロメリット酸残基(すなわちピロメリット酸由来の構造を有するもの)であることが好ましく、その酸無水物であることがより好ましい。このような芳香族テトラカルボン酸類としては、例えば、ピロメリット酸二無水物、3,3',4,4'-ビフェニルテトラカルボン酸二無水物、4,4'-オキシジフタル酸二無水物、3,3',4,4'-ベンゾフェノンテトラカルボン酸二無水物、3,3',4,4'-ジフェニルスルホンテトラカルボン酸二無水物、2,2-ビス[4-(3,4-ジカルボキシフェノキシ)フェニル]プロパン酸無水物等が挙げられる。
 芳香族テトラカルボン酸類は、耐熱性を重視する場合には、例えば、全テトラカルボン酸類の80質量%以上が好ましく、より好ましくは90質量%以上、さらに好ましくは95質量%以上である。
The aromatic tetracarboxylic acids are not particularly limited, but are preferably pyromellitic acid residues (that is, those having a structure derived from pyromellitic acid), and more preferably acid anhydrides thereof. Examples of such aromatic tetracarboxylic acids include pyromellitic dianhydride, 3,3 ′, 4,4′-biphenyltetracarboxylic dianhydride, 4,4′-oxydiphthalic dianhydride, 3 , 3 ′, 4,4′-benzophenonetetracarboxylic dianhydride, 3,3 ′, 4,4′-diphenylsulfonetetracarboxylic dianhydride, 2,2-bis [4- (3,4-di Carboxyphenoxy) phenyl] propanoic anhydride and the like.
In the case of placing importance on heat resistance, the aromatic tetracarboxylic acids are, for example, preferably 80% by mass or more, more preferably 90% by mass or more, and still more preferably 95% by mass or more of all tetracarboxylic acids.
 本発明のポリイミドフィルムは、ガラス転移温度が250℃以上、好ましくは300℃以上、さらに好ましくは350℃以上であり、あるいは500℃以下の領域においてガラス転移点が観測されないことが好ましい。本発明におけるガラス転移温度は、示差熱分析(DSC)により求めるものである。 The polyimide film of the present invention preferably has a glass transition temperature of 250 ° C. or higher, preferably 300 ° C. or higher, more preferably 350 ° C. or higher, or no glass transition point observed in the region of 500 ° C. or lower. The glass transition temperature in the present invention is determined by differential thermal analysis (DSC).
 本発明の高分子フィルムの線膨張係数(CTE)は、好ましくは、-5ppm/K~+20ppm/Kであり、より好ましくは-5ppm/K~+15ppm/Kであり、さらに好ましくは1ppm/K~+10ppm/Kである。CTEが前記範囲であると、一般的な支持体との線膨張係数の差を小さく保つことができ、熱を加えるプロセスに供してもポリイミドフィルムと無機物からなる支持体とが剥がれることを回避できる。 The linear expansion coefficient (CTE) of the polymer film of the present invention is preferably −5 ppm / K to +20 ppm / K, more preferably −5 ppm / K to +15 ppm / K, and further preferably 1 ppm / K to +10 ppm / K. When the CTE is in the above range, the difference in coefficient of linear expansion from a general support can be kept small, and the polyimide film and the support made of an inorganic material can be prevented from being peeled even when subjected to a process of applying heat. .
 本発明における高分子フィルムの破断強度は、60MPa以上、好ましくは120MP以上、さらに好ましくは240MPa以上である。破断強度の上限に制限は無いが、事実上1000MPa程度未満である。なお、ここで前記高分子フィルムの破断強度とは、高分子フィルムのタテ方向とヨコ方向の平均値をさす。 The breaking strength of the polymer film in the present invention is 60 MPa or more, preferably 120 MP or more, more preferably 240 MPa or more. The upper limit of the breaking strength is not limited, but is practically less than about 1000 MPa. Here, the breaking strength of the polymer film refers to an average value in the vertical direction and the horizontal direction of the polymer film.
 本発明の高分子フィルムの熱収縮率は、400℃1時間加熱時において0.5%以下であることが好ましい。かかる特性は、ポリイミドフィルムの原料の内、テトラカルボン酸二無水物としてピロメリット酸を50mol%以上用い、同時にパラフェニレンジアミンないしベンゾオキサゾール構造を有するジアミンを50mol%以上用いるか、あるいは、芳香環を1ないし2有するテトラカルボン酸無水物と、ジアミン成分としてパラフェニレンジアミンを85mol%以上使用することにより得ることができる。 The heat shrinkage rate of the polymer film of the present invention is preferably 0.5% or less when heated at 400 ° C. for 1 hour. Such a characteristic is that among the raw materials for the polyimide film, pyromellitic acid is used as a tetracarboxylic dianhydride in an amount of 50 mol% or more and at the same time a paraphenylene diamine or a diamine having a benzoxazole structure is used in an amount of 50 mol% or more, or an aromatic ring is used. It can be obtained by using 1 or 2 tetracarboxylic acid anhydride and 85 mol% or more of paraphenylenediamine as a diamine component.
 本発明における高分子フィルムの厚さ斑は、20%以下であることが好ましく、より好ましくは12%以下、さらに好ましくは7%以下、特に好ましくは4%以下である。厚さ斑が20%を超えると、狭小部へ適用し難くなる傾向がある。なお、フィルムの厚さ斑は、例えば接触式の膜厚計にて被測定フィルムから無作為に10点程度の位置を抽出してフィルム厚を測定し、下記式に基づき求めることができる。
 フィルムの厚さ斑(%)
 =100×(最大フィルム厚-最小フィルム厚)÷平均フィルム厚
The thickness unevenness of the polymer film in the present invention is preferably 20% or less, more preferably 12% or less, still more preferably 7% or less, and particularly preferably 4% or less. When the thickness unevenness exceeds 20%, it tends to be difficult to apply to narrow portions. In addition, the thickness unevenness of a film can be calculated | required based on the following formula, for example, extracting about 10 points | pieces positions from a film to be measured at random with a contact-type film thickness meter, measuring film thickness.
Film thickness spots (%)
= 100 x (maximum film thickness-minimum film thickness) ÷ average film thickness
 高分子フィルムにおいては、ハンドリング性および生産性を確保する為、フィルム中に滑材(粒子)を添加・含有させて、高分子ドフィルム表面に微細な凹凸を付与して滑り性を確保することが好ましい。前記滑材(粒子)とは、好ましくは無機物からなる微粒子であり、金属、金属酸化物、金属窒化物、金属炭素化物、金属酸塩、リン酸塩、炭酸塩、タルク、マイカ、クレイ、その他粘土鉱物、等からなる粒子を用いることができる。好ましくは、酸化珪素、リン酸カルシウム、リン酸水素カルシウム、リン酸二水素カルシウム、ピロリン酸カルシウム、ヒドロキシアパタイト、炭酸カルシウム、ガラスフィラーなどの金属酸化物、リン酸塩、炭酸塩を用いることができる。滑材は1種のみであってもよいし、2種以上であってもよい。 In polymer films, in order to ensure handling and productivity, lubricants (particles) are added to and contained in the film to provide fine irregularities on the polymer film surface to ensure slipperiness. Is preferred. The lubricant (particles) are preferably fine particles made of an inorganic substance, such as metals, metal oxides, metal nitrides, metal carbonides, metal acid salts, phosphates, carbonates, talc, mica, clay, and others. Particles made of clay minerals and the like can be used. Preferably, metal oxides such as silicon oxide, calcium phosphate, calcium hydrogen phosphate, calcium dihydrogen phosphate, calcium pyrophosphate, hydroxyapatite, calcium carbonate, glass filler, phosphates, and carbonates can be used. Only one type of lubricant may be used, or two or more types may be used.
 前記滑材(粒子)の体積平均粒子径は、通常0.001~10μmであり、好ましくは0.03~2.5μm、より好ましくは0.05~0.7μm、さらに好ましくは0.05~0.3μmである。かかる体積平均粒子径は光散乱法で得られる測定値を基準とする。粒子径が下限より小さいと高分子フィルムの工業的生産が困難となり、また上限を超えると表面の凹凸が大きくなりすぎて貼り付け強度が弱くなり、実用上の支障が出る虞がある。 The volume average particle diameter of the lubricant (particles) is usually 0.001 to 10 μm, preferably 0.03 to 2.5 μm, more preferably 0.05 to 0.7 μm, still more preferably 0.05 to 0.3 μm. The volume average particle diameter is based on a measurement value obtained by a light scattering method. If the particle diameter is smaller than the lower limit, industrial production of the polymer film becomes difficult, and if the particle diameter exceeds the upper limit, the surface irregularities become too large and the sticking strength becomes weak, which may cause practical problems.
 前記滑材の添加量は、高分子フィルム中の高分子成分に対する添加量として、0.02~5質量%であり、好ましくは0.04~1質量%、より好ましくは0.08~0.4質量%である。滑材の添加量が少なすぎると滑材添加の効果が期待し難く、滑り性の確保がそれほどなく高分子フィルム製造に支障をきたす場合があり、多すぎると、フィルムの表面凹凸が大きくなり過ぎて、滑り性の確保が見られても平滑性の低下を招いたり、高分子フィルムの破断強度や破断伸度の低下を招いたり、CTEの上昇を招くなどの課題を招く場合がある。 The addition amount of the lubricant is 0.02 to 5% by mass, preferably 0.04 to 1% by mass, more preferably 0.08 to 0. 0% as the addition amount with respect to the polymer component in the polymer film. 4% by mass. If the amount of lubricant added is too small, it is difficult to expect the effect of lubricant addition, and there is a case where the slipperiness is not sufficiently secured, which may hinder the production of polymer film. Even if the slipperiness is ensured, the smoothness may be lowered, the breaking strength or breaking elongation of the polymer film may be lowered, or the CTE may be raised.
 高分子フィルムに滑材(粒子)を添加・含有させる場合、滑材が均一に分散した単層の高分子フィルムとしてもよいが、例えば、一方の面が滑材を含有させた高分子フィルムで構成され、他方の面が滑材を含有しないか含有していても滑材含有量が少量である高分子フィルムで構成された多層の高分子フィルムとしてもよい。このような多層高分子のフィルムにおいては、一方の層(フィルム)表面に微細な凹凸が付与されて該層(フィルム)で滑り性を確保することができ、良好なハンドリング性や生産性を確保できる。 When a lubricant (particles) is added to and contained in a polymer film, a single-layer polymer film in which the lubricant is uniformly dispersed may be used. For example, one surface may be a polymer film containing a lubricant. It is good also as a multilayer polymer film comprised by the polymer film which is comprised and the other surface does not contain a lubricant, or contains the lubricant, even if it contains a lubricant. In such a multilayer polymer film, fine unevenness is given to the surface of one layer (film), so that the slipperiness can be secured by the layer (film), and good handling properties and productivity are secured. it can.
 多層高分子フィルムは、溶融延伸製膜法に製造されるフィルムの場合、例えばまず、滑剤含有しない高分子フィルム原料を用いてフィルム化を行い、その工程途上に置いて少なくともフィルムの片面に、滑剤を含有する樹脂層を塗布することにより得ることが出来る。もちろん、この逆で、滑剤を含有する高分子フィルム原料を用いてフィルム化を行い、その工程途上、ないし、フィルム化が完了した後に、滑剤を含有しない高分子フィルム原料を塗布してフィルムを得ることも出来る。
 ポリイミドフィルムのような溶液製膜法を用いて得られる高分子フィルムの場合にも同様で、例えば、ポリアミド酸溶液(ポリイミドの前駆体溶液)として、滑材(好ましくは平均粒子径0.05~2.5μm程度)をポリアミド酸溶液中のポリマー固形分に対して0.02質量%~50質量%(好ましくは0.04~3質量%、より好ましくは0.08~1。2質量%)含有したポリアミド酸溶液と、滑材を含有しないか又はその含有量が少量(好ましくはポリアミド酸溶液中のポリマー固形分に対して0.02質量%未満、より好ましくは0.01質量%未満)である2種のポリアミド酸溶液を用いて製造することができる。
In the case of a film produced by a melt-stretching film-forming method, for example, a multilayer polymer film is first formed into a film using a raw material for a polymer film that does not contain a lubricant, and is placed on the film at least on one side of the process. It can obtain by apply | coating the resin layer containing this. Of course, conversely, film formation is performed using a polymer film material containing a lubricant, and a film is obtained by applying a polymer film material not containing a lubricant during the process or after film formation is completed. You can also
The same applies to a polymer film obtained using a solution casting method such as a polyimide film. For example, as a polyamic acid solution (a precursor solution of polyimide), a lubricant (preferably an average particle diameter of 0.05 to About 2.5 μm) is 0.02 to 50% by mass (preferably 0.04 to 3% by mass, more preferably 0.08 to 1.2% by mass) based on the polymer solid content in the polyamic acid solution. Containing polyamic acid solution and no lubricant or a small amount thereof (preferably less than 0.02% by mass, more preferably less than 0.01% by mass with respect to polymer solids in the polyamic acid solution) Can be produced using two types of polyamic acid solutions.
 多層高分子フィルムの多層化(積層)方法は、両層の密着に問題が生じなければ、特に限定されるものではなく、かつ接着剤層などを介することなく密着するものであればよい。
 ポリイミドフィルムの場合、例えば、i)一方のポリイミドフィルムを作製後、このポリイミドフィルム上に他方のポリアミド酸溶液を連続的に塗布してイミド化する方法、ii)一方のポリアミド酸溶液を流延しポリアミド酸フィルムを作製後このポリアミド酸フィルム上に他方のポリアミド酸溶液を連続的に塗布した後、イミド化する方法、iii)共押し出しによる方法、iv)滑材を含有しないか又はその含有量が少量であるポリアミド酸溶液で形成したフィルムの上に、滑材を多く含有するポリアミド酸溶液をスプレーコート、Tダイ塗工などで塗布してイミド化する方法などを例示できる。本発明では、上記i)ないし上記ii)の方法を用いることが好ましい。
The method of multilayering (lamination) of the multilayer polymer film is not particularly limited as long as no problem occurs in the adhesion between both layers, and any method may be used as long as the adhesion is achieved without using an adhesive layer or the like.
In the case of a polyimide film, for example, i) a method in which one polyimide film is produced and then the other polyamic acid solution is continuously applied onto the polyimide film to imidize, and ii) one polyamic acid solution is cast. After producing the polyamic acid film, the other polyamic acid solution is continuously applied onto the polyamic acid film and then imidized, iii) a method by co-extrusion, iv) a lubricant is not contained or the content thereof is An example is a method of imidizing a polyamic acid solution containing a large amount of a lubricant on a film formed with a small amount of a polyamic acid solution by spray coating, T-die coating, or the like. In the present invention, it is preferable to use the methods i) to ii).
 多層の高分子フィルムにおける各層の厚さの比率は、特に限定されないが、滑材を多く含有する高分子層を(a)層、滑材を含有しないか又はその含有量が少量である高分子層を(b)層とすると、(a)層/(b)層は0.05~0.95が好ましい。(a)層/(b)層が0.95を超えると(b)層の平滑性が失われがちとなり、一方0.05未満の場合、表面特性の改良効果が不足し易滑性が失われることがある。 The ratio of the thickness of each layer in the multi-layer polymer film is not particularly limited, but the polymer layer containing a large amount of the lubricant (a) is a layer, the polymer does not contain the lubricant or the content thereof is small. When the layer is the (b) layer, the (a) layer / (b) layer is preferably 0.05 to 0.95. If the (a) layer / (b) layer exceeds 0.95, the smoothness of the (b) layer tends to be lost. On the other hand, if it is less than 0.05, the effect of improving the surface properties is insufficient and the slipperiness is lost. May be.
 本発明における高分子フィルムは、その製造時において幅が300mm以上、長さが10m以上の長尺フィルムとして巻き取られた形態で得られるものが好ましく、巻取りコアに巻き取られたロール状ポリイミドフィルムの形態のものがより好ましい。 The polymer film in the present invention is preferably obtained in the form of being wound as a long film having a width of 300 mm or more and a length of 10 m or more at the time of production, and a rolled polyimide wound on a winding core. A film form is more preferable.
<保護フィルム>
 本発明では必要に応じて保護フィルムを用いる事が出来る。保護フィルムは、文字通り、主体となる被保護物を、汚染やキズから保護する役割を担う物であるが、本発明に於いては、さらに、分割された高分子フィルムをまとめ、無機基板と貼り合わせる工程を省力化する働きを担う。
 本発明の保護フィルムは、基材フィルムと粘着剤からなる。基材フィルムとしては極一般的なPETフィルム、PENフィルム、ポリプロピレンフィルム、ナイロンフィルム等の他、PPSフィルム、PEEKフィルム、芳香族ポリアミドフィルム、ポリイミドフィルム、ポリイミドベンザソールフィルム等の耐熱性スーパーエンジニアリングプラスチックフィルムを用いることができる。
 本発明で好ましく用いられる保護フィルムの基材は、寸法安定性改善のためのアニール処理を行ったPETフィルム、同じくアニール処理を行ったPENフィルム、ポリイミドフィルムである。
 本発明の保護フィルムに用いられる粘着剤としては、シリコーン系、アクリル系、ポリウレタン系、等など公知の粘着剤を用いることが出来る。本発明の保護フィルムは、フレキシブル電子デバイスの基材となる高分子フィルムのデバイス形成面を保護する。したがって、粘着剤成分の転写が極少になるように、あるいは転写成分がドライ、ないしはウエット洗浄にて簡単に除去できるタイプの粘着剤を使用することが好ましい。本発明では、たとえば、冷却することによって粘着力が減じる性質を有する側鎖結晶性高分子を用いた粘着剤を用いることができる。
<Protective film>
In the present invention, a protective film can be used as necessary. The protective film literally plays a role of protecting the main object to be protected from contamination and scratches, but in the present invention, the divided polymer films are further combined and bonded to the inorganic substrate. It plays the role of saving labor in the process of matching.
The protective film of this invention consists of a base film and an adhesive. As the base film, heat-resistant super engineering plastic film such as PPS film, PEEK film, aromatic polyamide film, polyimide film, polyimide benzal sole film, etc., besides PET film, PEN film, polypropylene film, nylon film, etc. Can be used.
The substrate of the protective film preferably used in the present invention is a PET film that has been subjected to an annealing treatment for improving dimensional stability, a PEN film that has also been subjected to an annealing treatment, and a polyimide film.
As the pressure-sensitive adhesive used in the protective film of the present invention, known pressure-sensitive adhesives such as silicone-based, acrylic-based, polyurethane-based and the like can be used. The protective film of this invention protects the device formation surface of the polymer film used as the base material of a flexible electronic device. Accordingly, it is preferable to use a type of pressure-sensitive adhesive that minimizes transfer of the pressure-sensitive adhesive component or that can be easily removed by dry or wet cleaning. In the present invention, for example, a pressure-sensitive adhesive using a side chain crystalline polymer having a property that the adhesive strength is reduced by cooling can be used.
<無機基板と高分子フィルムの接着手段>
 本発明において無機基板と高分子フィルムとの接着手段としては、シリコーン樹脂、エポキシ樹脂、アクリル樹脂、ポリエステル樹脂などの公知の接着剤、粘着剤を用いることができる。本発明では、たとえば、冷却することによって粘着力が減じる性質を有する側鎖結晶性高分子を用いた粘着剤を用いることができる。
 本発明で好ましい接着手段は、厚さが5μm以下の、極薄い、接着・粘着層による接着手段、ないしは、好ましくは実質的に接着剤・粘着剤を用いない、接着手段が好ましい。
 本発明では、無機基板側に、シランカップリング剤処理、UVオゾン処理などの有機化処理、活性化処理を行い、同様に高分子フィルム側にも真空プラズマ処理、大気圧プラズマ処理、コロナ処理、火炎処理、イトロ処理、UVオゾン処理、活性ガスへの暴露処理などの活性化処理を行い、両処理面を密着させて加圧、加熱処理を行う接合方法を用いることができる。
<Means for bonding inorganic substrate and polymer film>
In the present invention, known adhesives such as silicone resins, epoxy resins, acrylic resins, polyester resins, and pressure-sensitive adhesives can be used as means for bonding the inorganic substrate and the polymer film. In the present invention, for example, a pressure-sensitive adhesive using a side chain crystalline polymer having a property that the adhesive strength is reduced by cooling can be used.
A preferable adhesive means in the present invention is an extremely thin adhesive / adhesive layer adhesive means having a thickness of 5 μm or less, or preferably an adhesive means that does not substantially use an adhesive / adhesive.
In the present invention, the inorganic substrate side is subjected to organic treatment such as silane coupling agent treatment and UV ozone treatment, and activation treatment. Similarly, the polymer film side is also subjected to vacuum plasma treatment, atmospheric pressure plasma treatment, corona treatment, It is possible to use a joining method in which activation treatment such as flame treatment, itro treatment, UV ozone treatment, exposure treatment to an active gas, etc. is performed, and both treatment surfaces are brought into close contact with each other to perform pressurization and heat treatment.
<シランカップリング剤>
 本発明におけるシランカップリング剤は、仮支持体と高分子フィルムとの間に物理的ないし化学的に介在し、両者間の接着力を高める作用を有する化合物を云う。
 シランカップリング剤の好ましい具体例としては、N-2-(アミノエチル)-3-アミノプロピルメチルジメトキシシラン、N-2-(アミノエチル)-3-アミノプロピルトリメトキシシラン、N-2-(アミノエチル)-3-アミノプロピルトリエトキシシラン、3-アミノプロピルトリメトキシシラン、3-アミノプロピルトリエトキシシラン、3-トリエトキシシリル-N-(1,3-ジメチル-ブチリデン)プロピルアミン、2-(3,4-エポキシシクロへキシル)エチルトリメトキシシラン、3-グリシドキシプロピルトリメトキシシラン、3-グリシドキシプロピルメチルジエトキシシラン、3-グリシドキシプロピルトリエトキシシラン、ビニルトリクロルシラン、ビニルトリメトキシシラン、ビニルトリエトキシシラン、2-(3,4-エポキシシクロヘキシル)エチルトリメトキシシラン、3-グリシドキシプロピルトリメトキシシラン、3-グリシドキシプロピルメチルジエトキシシラン、3-グリシドキシプロピルトリエトキシシラン、p-スチリルトリメトキシシラン、3-メタクリロキシプロピルメチルジメトキシシラン、3-メタクリロキシプロピルトリメトキシシラン、3-メタクリロキシプロピルメチルジエトキシシラン、3-メタクリロキシプロピルトリエトキシシラン、3-アクリロキシプロピルトリメトキシシラン、N-フェニル-3-アミノプロピルトリメトキシシラン、N-(ビニルベンジル)-2-アミノエチル-3-アミノプロピルトリメトキシシラン塩酸塩、3-ウレイドプロピルトリエトキシシラン、3-クロロプロピルトリメトキシシラン、3-メルカプトプロピルメチルジメトキシシラン、3-メルカプトプロピルトリメトキシシラン、ビス(トリエトキシシリルプロピル)テトラスルフィド、3-イソシアネートプロピルトリエトキシシラン、トリス-(3-トリメトキシシリルプロピル)イソシアヌレート、クロロメチルフェネチルトリメトキシシラン、クロロメチルトリメトキシシラン、アミノフェニルトリメトキシシラン、アミノフェネチルトリメトキシシラン、アミノフェニルアミノメチルフェネチルトリメトキシシラン、ヘキサメチルジシラザンなどが挙げられる。
<Silane coupling agent>
The silane coupling agent in the present invention refers to a compound having a function of physically or chemically interposing between the temporary support and the polymer film and enhancing the adhesive force between the two.
Preferable specific examples of the silane coupling agent include N-2- (aminoethyl) -3-aminopropylmethyldimethoxysilane, N-2- (aminoethyl) -3-aminopropyltrimethoxysilane, N-2- ( Aminoethyl) -3-aminopropyltriethoxysilane, 3-aminopropyltrimethoxysilane, 3-aminopropyltriethoxysilane, 3-triethoxysilyl-N- (1,3-dimethyl-butylidene) propylamine, 2- (3,4-epoxycyclohexyl) ethyltrimethoxysilane, 3-glycidoxypropyltrimethoxysilane, 3-glycidoxypropylmethyldiethoxysilane, 3-glycidoxypropyltriethoxysilane, vinyltrichlorosilane, Vinyltrimethoxysilane, vinyltriethoxysila 2- (3,4-epoxycyclohexyl) ethyltrimethoxysilane, 3-glycidoxypropyltrimethoxysilane, 3-glycidoxypropylmethyldiethoxysilane, 3-glycidoxypropyltriethoxysilane, p-styryl Trimethoxysilane, 3-methacryloxypropylmethyldimethoxysilane, 3-methacryloxypropyltrimethoxysilane, 3-methacryloxypropylmethyldiethoxysilane, 3-methacryloxypropyltriethoxysilane, 3-acryloxypropyltrimethoxysilane, N-phenyl-3-aminopropyltrimethoxysilane, N- (vinylbenzyl) -2-aminoethyl-3-aminopropyltrimethoxysilane hydrochloride, 3-ureidopropyltriethoxysilane, 3-chloropropyl Limethoxysilane, 3-mercaptopropylmethyldimethoxysilane, 3-mercaptopropyltrimethoxysilane, bis (triethoxysilylpropyl) tetrasulfide, 3-isocyanatopropyltriethoxysilane, tris- (3-trimethoxysilylpropyl) isocyanurate Chloromethylphenethyltrimethoxysilane, chloromethyltrimethoxysilane, aminophenyltrimethoxysilane, aminophenethyltrimethoxysilane, aminophenylaminomethylphenethyltrimethoxysilane, hexamethyldisilazane and the like.
n-プロピルトリメトキシシラン、ブチルトリクロロシラン、2-シアノエチルトリエトキシシラン、シクロヘキシルトリクロロシラン、デシルトリクロロシラン、ジアセトキシジメチルシラン、ジエトキシジメチルシラン、ジメトキシジメチルシラン、ジメトキシジフェニルシラン、ジメトキシメチルフェニルシラン、ドデシルリクロロシラン、ドデシルトリメトキシラン、エチルトリクロロシラン、ヘキシルトリメトキシシラン、オクタデシルトリエトキシシラン、オクタデシルトリメトキシシラン、n-オクチルトリクロロシラン、n-オクチルトリエトキシシラン、n-オクチルトリメトキシシラン、トリエトキシエチルシラン、トリエトキシメチルシラン、トリメトキシメチルシラン、トリメトキシフェニルシラン、ペンチルトリエトキシシラン、ペンチルトリクロロシラン、トリアセトキシメチルシラン、トリクロロヘキシルシラン、トリクロロメチルシラン、トリクロロオクタデシルシラン、トリクロロプロピルシラン、トリクロロテトラデシルシラン、トリメトキシプロピルシラン、アリルトリクロロシラン、アリルトリエトキシシラン、アリルトリメトキシシラン、ジエトキシメチルビニルシラン、ジメトキシメチルビニルシラン、トリクロロビニルシラン、トリエトキシビニルシラン、ビニルトリス(2-メトキシエトキシ)シラン、トリクロロ-2-シアノエチルシラン、ジエトキシ(3-グリシジルオキシプロピル)メチルシラン、3-グリシジルオキシプロピル(ジメトキシ)メチルシラン、3-グリシジルオキシプロピルトリメトキシシラン、などを使用することもできる。 n-propyltrimethoxysilane, butyltrichlorosilane, 2-cyanoethyltriethoxysilane, cyclohexyltrichlorosilane, decyltrichlorosilane, diacetoxydimethylsilane, diethoxydimethylsilane, dimethoxydimethylsilane, dimethoxydiphenylsilane, dimethoxymethylphenylsilane, dodecyl Lichlorosilane, dodecyltrimethoxysilane, ethyltrichlorosilane, hexyltrimethoxysilane, octadecyltriethoxysilane, octadecyltrimethoxysilane, n-octyltrichlorosilane, n-octyltriethoxysilane, n-octyltrimethoxysilane, triethoxyethyl Silane, triethoxymethylsilane, trimethoxymethylsilane, trimethoxyphenylsilane, pentyltri Toxisilane, pentyltrichlorosilane, triacetoxymethylsilane, trichlorohexylsilane, trichloromethylsilane, trichlorooctadecylsilane, trichloropropylsilane, trichlorotetradecylsilane, trimethoxypropylsilane, allyltrichlorosilane, allyltriethoxysilane, allyltrimethoxysilane , Diethoxymethylvinylsilane, dimethoxymethylvinylsilane, trichlorovinylsilane, triethoxyvinylsilane, vinyltris (2-methoxyethoxy) silane, trichloro-2-cyanoethylsilane, diethoxy (3-glycidyloxypropyl) methylsilane, 3-glycidyloxypropyl (dimethoxy) ) Methylsilane, 3-glycidyloxypropyltrimethoxysilane, etc. It is also possible to use.
 かかるシランカップリング剤の中で、本発明にて好ましく用いられるシランカップリング剤はカップリング剤の、一分子あたりに一個の珪素原子を有する化学構造のシランカップリング剤が好ましい。
 本発明では、特に好ましいシランカップリング剤としては、N-2-(アミノエチル)-3-アミノプロピルメチルジメトキシシラン、N-2-(アミノエチル)-3-アミノプロピルトリメトキシシラン、N-2-(アミノエチル)-3-アミノプロピルトリエトキシシラン、3-アミノプロピルトリメトキシシラン、3-アミノプロピルトリエトキシシラン、3-トリエトキシシリル-N-(1,3-ジメチル-ブチリデン)プロピルアミン、2-(3,4-エポキシシクロへキシル)エチルトリメトキシシラン、3-グリシドキシプロピルトリメトキシシラン、3-グリシドキシプロピルメチルジエトキシシラン、3-グリシドキシプロピルトリエトキシシラン、アミノフェニルトリメトキシシラン、アミノフェネチルトリメトキシシラン、アミノフェニルアミノメチルフェネチルトリメトキシシランなどが挙げられる。プロセスで特に高い耐熱性が要求される場合、Siとアミノ基の間を芳香族基でつないだものが望ましい。
 なお本発明では必要に応じて、リン系カップリング剤、チタネート系カップリング剤等を併用しても良い。
Among such silane coupling agents, the silane coupling agent preferably used in the present invention is preferably a silane coupling agent having a chemical structure having one silicon atom per molecule of the coupling agent.
In the present invention, particularly preferred silane coupling agents include N-2- (aminoethyl) -3-aminopropylmethyldimethoxysilane, N-2- (aminoethyl) -3-aminopropyltrimethoxysilane, N-2 -(Aminoethyl) -3-aminopropyltriethoxysilane, 3-aminopropyltrimethoxysilane, 3-aminopropyltriethoxysilane, 3-triethoxysilyl-N- (1,3-dimethyl-butylidene) propylamine, 2- (3,4-epoxycyclohexyl) ethyltrimethoxysilane, 3-glycidoxypropyltrimethoxysilane, 3-glycidoxypropylmethyldiethoxysilane, 3-glycidoxypropyltriethoxysilane, aminophenyl Trimethoxysilane, aminophenethyltrimethoxysilane Emissions, such as aminophenyl aminomethyl phenethyltrimethoxysilane the like. In the case where particularly high heat resistance is required in the process, it is desirable to use an aromatic group between Si and an amino group.
In the present invention, if necessary, a phosphorus coupling agent, a titanate coupling agent, or the like may be used in combination.
<シランカップリング剤の塗布方法>
 本発明におけるシランカップリング剤の塗布方法としては、液相での塗布方法、気相での塗布方法を用いることが出来る。
 液相での塗布方法としては、シランカップリング剤をアルコールなどの溶媒で希釈した溶液を用いて、スピンコート法、カーテンコート法、ディップコート法、スリットダイコート法、グラビアコート法、バーコート法、コンマコート法、アプリケーター法、スクリーン印刷法、スプレーコート法等の一般的な液体塗布方法を例示することが出来る。液相での塗布方法を用いた場合、塗布後に速やかに乾燥し、さらに100±30℃程度で数十秒~10分程度の熱処理を行うことが好ましい。熱処理により、シランカップリング剤と被塗布面の表面とが化学反応により結合される。
<Application method of silane coupling agent>
As a coating method of the silane coupling agent in the present invention, a liquid phase coating method or a gas phase coating method can be used.
As a coating method in a liquid phase, using a solution obtained by diluting a silane coupling agent with a solvent such as alcohol, a spin coating method, a curtain coating method, a dip coating method, a slit die coating method, a gravure coating method, a bar coating method, Common liquid coating methods such as a comma coating method, an applicator method, a screen printing method, and a spray coating method can be exemplified. When a coating method in a liquid phase is used, it is preferable to quickly dry after coating, and further to perform heat treatment at about 100 ± 30 ° C. for about several tens of seconds to 10 minutes. By the heat treatment, the silane coupling agent and the surface of the coated surface are bonded by a chemical reaction.
 本発明ではシランカップリング剤を気相を介して塗布することができる。気相法による塗布は、基板をシランカップリング剤の蒸気、すなわち実質的に気体状態のシランカップリング剤に暴露することによる。シランカップリング剤の蒸気は、液体状態のシランカップリング剤を40℃~シランカップリング剤の沸点程度までの温度に加温することによって得ることが出来る。シランカップリング剤の沸点は、化学構造によって異なるが、概ね100~250℃の範囲である。ただし200℃以上の加熱は、シランカップリング剤の有機基がわの副反応を招く恐れがあるため好ましくない。
 シランカップリング剤を加温する環境は、加圧下、略常圧下、減圧下のいずれでも構わないが、シランカップリング剤の気化を促進する場合には略常圧下ないし減圧下が好ましい。多くのシランカップリング剤は可燃性液体であるため、密閉容器内にて、好ましくは容器内を不活性ガスで置換した後に気化作業を行うことが好ましい。
 無機基板をシランカップリング剤に暴露する時間は特に制限されないが、20時間以内、好ましくは60分以内、さらに好ましくは15分以内、なおさらに好ましくは1分以内である。
 無機基板をシランカップリング剤に暴露する間の無機基板温度は、シランカップリング剤の種類と、求めるシランカップリング剤層の厚さにより-50℃から200℃の間の適正な温度に制御することが好ましい。
 シランカップリング剤に暴露された無機基板は、好ましくは、暴露後に、70℃~200℃、さらに好ましくは75℃~150℃に加熱される。かかる加熱によって、無機基板表面の水酸基などと、シランカップリング剤のアルコキシ基やシラザン基が反応し、シランカップリング剤処理が完了する。加熱に要する時間は10秒以上10分程度以内である。温度が高すぎたり、時間が長すぎる場合にはカップリング剤の劣化が生じる場合がある。また短すぎると処理効果が得られない。なお、シランカップリング剤に暴露中の基板温度が既に80℃以上である場合には、事後の加熱を省略することも出来る。
 本発明では、無機基板のシランカップリング剤塗布面を下向きに保持してシランカップリング剤蒸気に暴露することが好ましい。液相の塗布方法では、必然的に塗布中および塗布前後に無機基板の塗布面が上を向くため、作業環境下の浮遊異物などが無機基板表面に沈着する可能性を否定できない。しかしながら気相による塗布方法では無機基板を下向きに保持することが出来るため。環境中の異物付着を大幅に減ずることが可能となる。
 なおシランカップリング剤処理前の無機基板表面を短波長UV/オゾン照射などの手段により清浄化すること、ないしは液体洗浄剤で清浄化すること等は、有意義な好ましい操作である。
In the present invention, the silane coupling agent can be applied via the gas phase. The application by the vapor phase method is by exposing the substrate to the vapor of the silane coupling agent, that is, the silane coupling agent in a substantially gaseous state. The vapor of the silane coupling agent can be obtained by heating the silane coupling agent in a liquid state to a temperature from 40 ° C. to about the boiling point of the silane coupling agent. The boiling point of the silane coupling agent varies depending on the chemical structure, but is generally in the range of 100 to 250 ° C. However, heating at 200 ° C. or higher is not preferable because the organic group of the silane coupling agent may cause a side reaction.
The environment for heating the silane coupling agent may be under pressure, at about normal pressure, or under reduced pressure, but is preferably at about normal pressure or under reduced pressure in order to promote vaporization of the silane coupling agent. Since many silane coupling agents are flammable liquids, it is preferable to perform the vaporizing operation in an airtight container, preferably after replacing the inside of the container with an inert gas.
The time for exposing the inorganic substrate to the silane coupling agent is not particularly limited, but is within 20 hours, preferably within 60 minutes, more preferably within 15 minutes, and even more preferably within 1 minute.
The inorganic substrate temperature during exposure of the inorganic substrate to the silane coupling agent is controlled to an appropriate temperature between −50 ° C. and 200 ° C. depending on the type of the silane coupling agent and the desired thickness of the silane coupling agent layer. It is preferable.
The inorganic substrate exposed to the silane coupling agent is preferably heated to 70 ° C. to 200 ° C., more preferably 75 ° C. to 150 ° C. after the exposure. By such heating, the hydroxyl group on the surface of the inorganic substrate reacts with the alkoxy group or silazane group of the silane coupling agent, and the silane coupling agent treatment is completed. The time required for heating is about 10 seconds to 10 minutes. If the temperature is too high or the time is too long, the coupling agent may be deteriorated. If it is too short, the treatment effect cannot be obtained. If the substrate temperature being exposed to the silane coupling agent is already 80 ° C. or higher, the subsequent heating can be omitted.
In the present invention, it is preferable to expose the inorganic substrate to the silane coupling agent vapor while holding the silane coupling agent application surface of the inorganic substrate downward. In the liquid phase coating method, the coating surface of the inorganic substrate is inevitably facing upward during and before coating, and therefore it is impossible to deny the possibility that floating foreign substances or the like in the working environment are deposited on the surface of the inorganic substrate. However, the coating method using the gas phase can hold the inorganic substrate downward. It is possible to greatly reduce the adhesion of foreign substances in the environment.
Cleaning the surface of the inorganic substrate before the silane coupling agent treatment by means such as short wavelength UV / ozone irradiation or cleaning with a liquid cleaning agent is a significant preferable operation.
 カップリング剤の塗布量、厚さについては理論上は1分子層あれば事足り、機械設計的には無視できるレベルの厚さで十分である。一般的には400nm未満(0.4μm未満)であり、200nm以下(0.2μm以下)が好ましく、さらに実用上は100nm以下(0.1μm以下)が好ましく、より好ましくは50nm以下、さらに好ましくは10nm以下である。ただし計算上5nm以下の領域になるとカップリング剤が均一な塗膜としてではなく、クラスター状に存在するケースが想定され、余り好ましくはない。カップリング剤層の膜厚は、エリプソメトリー法または塗布時のカップリング剤溶液の濃度と塗布量から計算して求めることができる。 Theoretically, a single molecular layer is sufficient for the coating amount and thickness of the coupling agent, and a negligible thickness is sufficient for mechanical design. Generally, it is less than 400 nm (less than 0.4 μm), preferably 200 nm or less (0.2 μm or less), more practically 100 nm or less (0.1 μm or less), more preferably 50 nm or less, still more preferably 10 nm or less. However, when the calculation is in the region of 5 nm or less, it is assumed that the coupling agent is present not in the form of a uniform coating but in a cluster shape, which is not preferable. The film thickness of the coupling agent layer can be determined by ellipsometry or calculation from the concentration of the coupling agent solution at the time of coating and the coating amount.
 本発明では、シランカップリング剤処理を行った無機基板、ないしは未処理の無機基板、さらには、超純水などによる洗浄処理が行われた無機基板に、UVオゾン処理を行うことにより活性化した無機基板を用いることができる。本発明におけるUVオゾン処理とは、酸素存在下において、波長が270nm以下、好ましくは210nm以下、なお好ましくは180nm以下の波長の紫外線を比較的近距離で照射する処理を意味する。短波長の紫外線は、雰囲気中の酸素をオゾン化し、紫外線自身は減衰するため、光源と被処理物との距離を離すと効果が得られない。本発明では光源と被処理物との間隔は30mm以下、好ましくは16mm以下、なお好ましくは8mm以下である。
本発明では、シランカップリング剤処理のみでは、無機基板と高分子フィルムの接着力が強くなり過ぎ、剥離に支障をきたす場合がある。シランカップリング剤の塗布量を減じることにより調整は可能であるが、処理斑が出やすいため、本発明ではシランカップリング剤処理の後に、UVオゾン処理などを行い、シランカップリング剤により導入される官能基の減活性化を行う手法を推奨する。
In the present invention, an inorganic substrate that has been treated with a silane coupling agent, an untreated inorganic substrate, or an inorganic substrate that has been cleaned with ultrapure water or the like is activated by performing UV ozone treatment. An inorganic substrate can be used. The UV ozone treatment in the present invention means a treatment in which ultraviolet rays having a wavelength of 270 nm or less, preferably 210 nm or less, more preferably 180 nm or less are irradiated at a relatively short distance in the presence of oxygen. Short wavelength ultraviolet rays ozonize oxygen in the atmosphere, and the ultraviolet rays themselves attenuate. Therefore, if the distance between the light source and the object to be processed is increased, the effect cannot be obtained. In the present invention, the distance between the light source and the object to be processed is 30 mm or less, preferably 16 mm or less, and more preferably 8 mm or less.
In the present invention, only with the silane coupling agent treatment, the adhesive force between the inorganic substrate and the polymer film becomes too strong, which may hinder peeling. Adjustment is possible by reducing the coating amount of the silane coupling agent, but since processing spots tend to appear, in the present invention, UV ozone treatment or the like is performed after the silane coupling agent treatment and introduced by the silane coupling agent. We recommend a method of deactivating functional groups.
<高分子フィルムの表面活性化処理>
 本発明において用いられる高分子フィルムには表面活性化処理を行うことが好ましい。該表面活性化処理によって、高分子フィルム表面は官能基が存在する状態(いわゆる活性化した状態)に改質され、無機基板に対する接着性が向上する。
 本発明における表面活性化処理とは、乾式、ないし湿式の表面処理である。本発明の乾式処理としては、紫外線、電子線、X線などの活性エネルギー線を表面に照射する処理、コロナ処理、真空プラズマ処理、常圧プラズマ処理、火炎処理、イトロ処理等を用いることが出来る。湿式処理としては、フィルム表面を酸ないしアルカリ溶液に接触させる処理を例示できる。本発明に置いて好ましく用いられる表面活性化処理は、プラズマ処理であり、プラズマ処理と湿式の酸処理の組み合わせ、UVオゾン処理である。
<Surface activation treatment of polymer film>
The polymer film used in the present invention is preferably subjected to a surface activation treatment. By the surface activation treatment, the surface of the polymer film is modified to a state in which a functional group is present (so-called activated state), and adhesion to the inorganic substrate is improved.
The surface activation treatment in the present invention is a dry or wet surface treatment. As the dry treatment of the present invention, treatment of irradiating active energy rays such as ultraviolet rays, electron beams, and X-rays on the surface, corona treatment, vacuum plasma treatment, atmospheric pressure plasma treatment, flame treatment, and intro treatment can be used. . Examples of the wet treatment include a treatment in which the film surface is brought into contact with an acid or alkali solution. The surface activation treatment preferably used in the present invention is a plasma treatment, a combination of plasma treatment and wet acid treatment, and UV ozone treatment.
 プラズマ処理は、特に限定されるものではないが、真空中でのRFプラズマ処理、マイクロ波プラズマ処理、マイクロ波ECRプラズマ処理、大気圧プラズマ処理、コロナ処理などがあり、フッ素を含むガス処理、イオン源を使ったイオン打ち込み処理、PBII法を使った処理、熱プラズマに暴露する火炎処理、イトロ処理なども含める。これらの中でも真空中でのRFプラズマ処理、マイクロ波プラズマ処理、大気圧プラズマ処理が好ましい。 The plasma treatment is not particularly limited, but includes RF plasma treatment in vacuum, microwave plasma treatment, microwave ECR plasma treatment, atmospheric pressure plasma treatment, corona treatment, etc., gas treatment containing fluorine, ion Includes ion implantation using a source, treatment using PBII, flame treatment exposed to thermal plasma, and intro treatment. Among these, RF plasma treatment, microwave plasma treatment, and atmospheric pressure plasma treatment in vacuum are preferable.
 プラズマ処理の適当な条件としては、酸素プラズマ、CF4、C2F6などフッ素を含むプラズマなど化学的にエッチング効果が高いことが知られるプラズマ、或はArプラズマのように物理的なエネルギーを高分子表面に与えて物理的にエッチングする効果の高いプラズマによる処理が望ましい。また、CO2、H2、N2などプラズマ、およびこれらの混合気体や、さらに水蒸気を付加することも好ましい。短時間での処理を目指す場合、プラズマのエネルギー密度が高く、プラズマ中のイオンの持つ運動エネルギーが高いもの、活性種の数密度が高いプラズマが望ましい。この観点からは、マイクロ波プラズマ処理、マイクロ波ECRプラズマ処理、高いエネルギーのイオンを打ち込みやすいイオン源によるプラズマ照射、PBII法なども望ましい。 Appropriate conditions for the plasma treatment include oxygen plasma, plasma containing fluorine such as CF4 and C2F6, plasma known to have a high etching effect, or physical energy such as Ar plasma on the polymer surface. It is desirable to use plasma with a high effect of applying and physically etching. Further, it is also preferable to add plasma such as CO2, H2, and N2, a mixed gas thereof, and further water vapor. When aiming at processing in a short time, a plasma having a high plasma energy density, a high kinetic energy of ions in the plasma, and a high number density of active species are desirable. From this point of view, microwave plasma treatment, microwave ECR plasma treatment, plasma irradiation with an ion source that easily implants high-energy ions, PBII method, and the like are also desirable.
 本発明においては複数の表面活性化処理を組み合わせて行っても良い。本発明で好ましい組み合わせは、真空プラズマ処理とUVオゾン処理の組み合わせである。
 かかる表面活性化処理は高分子表面を清浄化し、さらに活性な官能基を生成する。生成した官能基は、カップリング剤層と水素結合ないし化学反応により結びつき、高分子フィルム層とカップリング剤層とを接着することが可能となる。
 本発明では、プラズマ処理のみでは、無機基板と高分子フィルムの接着力が強くなり過ぎ、剥離に支障をきたす場合がある。プラズマ処理における処理時間の短縮、投入パワーの低減などにより調整は可能であるが、処理斑が出やすいため、本発明ではプラズマ処理の後に、UVオゾン処理などを行いプラズマ処理効果の変成を行う手法を推奨する。
 プラズマ処理においては高分子フィルム表面をエッチングする効果も得ることが出来る。特に滑剤粒子を比較的多く含む高分子フィルムにおいては、滑剤による突起が、フィルムと無機基板との接着を阻害する場合がある。この場合、プラズマ処理によって高分子フィルム表面を薄くエッチングし、滑剤粒子の一部を露出せしめた上で、フ酸にて処理を行えば、フィルム表面近傍の滑剤粒子を除去することが可能である。
In the present invention, a plurality of surface activation treatments may be combined. A preferred combination in the present invention is a combination of vacuum plasma treatment and UV ozone treatment.
Such surface activation treatment cleans the polymer surface and produces more active functional groups. The generated functional group is bonded to the coupling agent layer by hydrogen bonding or chemical reaction, and the polymer film layer and the coupling agent layer can be bonded.
In the present invention, the plasma treatment alone may cause the adhesive strength between the inorganic substrate and the polymer film to be too strong, which may hinder peeling. Although adjustment is possible by shortening the processing time in plasma processing, reducing input power, etc., since processing spots are likely to appear, in the present invention, a method of modifying the plasma processing effect by performing UV ozone processing etc. after plasma processing Is recommended.
In the plasma treatment, the effect of etching the surface of the polymer film can also be obtained. In particular, in a polymer film containing a relatively large amount of lubricant particles, protrusions due to the lubricant may inhibit the adhesion between the film and the inorganic substrate. In this case, it is possible to remove the lubricant particles in the vicinity of the film surface by thinly etching the surface of the polymer film by plasma treatment to expose a part of the lubricant particles and then treating with hydrofluoric acid. .
 表面活性化処理は、高分子フィルムの片面のみに施してもよいし、両面に施してもよい。片面にプラズマ処理を行う場合、並行平板型電極でのプラズマ処理で片側の電極上に高分子フィルムを接して置くことにより、高分子フィルムの電極と接していない側の面のみにプラズマ処理を施すことができる。また2枚の電極間の空間に電気的に浮かせる状態で高分子フィルムを置くようにすれば、両面にプラズマ処理が行える。また、高分子フィルムの片面に保護フィルムを貼った状態でプラズマ処理を行うことで片面処理が可能となる。なお保護フィルムとしては粘着剤付のPETフィルム、PENフィルム、オレフィンフィ
ルム、ポリイミドフィルムなどが使用できる。
The surface activation treatment may be performed only on one side of the polymer film or on both sides. When plasma treatment is performed on one side, the polymer film is placed in contact with the electrode on one side in the plasma treatment with parallel plate electrodes, so that only the side of the polymer film not in contact with the electrode is subjected to plasma treatment. be able to. If a polymer film is placed in a state where it is electrically floated in the space between the two electrodes, plasma treatment can be performed on both sides. Moreover, single-sided processing becomes possible by performing plasma processing in the state which stuck the protective film on the single side | surface of the polymer film. In addition, as a protective film, PET film with adhesive, PEN film, olefin film, polyimide film, etc. can be used.
 本発明では、活性化処理を行う際に、一部をマスキングしたり、あるいは活性化処理の強弱、処理時間などを部分的に変化させ、比較的接着力の強い部分と比較的接着力が弱い部分を意図的に作ることができる。 In the present invention, when the activation process is performed, a part of the mask is masked, or the strength of the activation process and the process time are partially changed, so that the relatively strong adhesive force and the relatively weak adhesive force are obtained. Parts can be made intentionally.
<フィルムラミネート方法>
 本発明では、活性化された無機基板表面と、活性化された高分子フィルム表面を重ね合わせ、加熱・加圧することにより接着を行うことができる。
 加圧・加熱処理は、例えば、大気圧雰囲気下あるいは真空中で、プレス、ラミネート、ロールラミネート等を、加熱しながら行えばよい。またフレキシブルなバッグに入れた状態で加圧加熱する方法も応用できる。生産性の向上や、高い生産性によりもたらされる低加工コスト化の観点からは、大気雰囲気下でのプレスまたはロールラミネートが好ましく、特にロールを用いて行う方法(ロールラミネート等)が好ましい。
<Film laminating method>
In the present invention, the surface of the activated inorganic substrate and the surface of the activated polymer film can be superposed and bonded by heating and pressurizing.
The pressurizing / heating treatment may be performed while heating a press, a laminate, a roll laminate, or the like, for example, in an atmospheric atmosphere or in a vacuum. A method of heating under pressure in a flexible bag can also be applied. From the viewpoint of improving productivity and reducing the processing cost brought about by high productivity, press or roll lamination in an air atmosphere is preferable, and a method using rolls (roll lamination or the like) is particularly preferable.
 加圧加熱処理の際の圧力としては、1MPa~20MPaが好ましく、さらに好ましくは3MPa~10MPaである。圧力が高すぎると、支持体を破損するおそれがあり、圧力が低すぎると、密着しない部分が生じ、接着が不充分になる場合がある。
 加圧加熱処理の際の温度としては、用いる高分子フィルムの耐熱温度を超えない範囲にて行う。非熱可塑性のポリイミドフィルムの場合には150℃~400℃、さらに好ましくは250℃~350℃での処理が好ましい。
 また加圧加熱処理は、上述のように大気圧雰囲気中で行うこともできるが、全面の安定した接着強度を得る為には、真空下で行うことが好ましい。このとき真空度は、通常の油回転ポンプによる真空度で充分であり、10Torr以下程度あれば充分である。
 加圧加熱処理に使用することができる装置としては、真空中でのプレスを行うには、例えば井元製作所製の「11FD」等を使用でき、真空中でのロール式のフィルムラミネーターあるいは真空にした後に薄いゴム膜によりガラス全面に一度に圧力を加えるフィルムラミネーター等の真空ラミネートを行うには、例えば名機製作所製の「MVLP」等を使用できる。
The pressure during the pressure heat treatment is preferably 1 MPa to 20 MPa, more preferably 3 MPa to 10 MPa. If the pressure is too high, the support may be damaged. If the pressure is too low, a non-adhering part may be produced, resulting in insufficient adhesion.
The temperature during the pressure heat treatment is within a range not exceeding the heat resistance temperature of the polymer film to be used. In the case of a non-thermoplastic polyimide film, treatment at 150 ° C. to 400 ° C., more preferably 250 ° C. to 350 ° C. is preferred.
The pressure heat treatment can be performed in an atmospheric pressure atmosphere as described above, but is preferably performed under vacuum in order to obtain a stable adhesive strength on the entire surface. At this time, the degree of vacuum by a normal oil rotary pump is sufficient, and about 10 Torr or less is sufficient.
As an apparatus that can be used for pressure heat treatment, for example, “11FD” manufactured by Imoto Seisakusho can be used to perform pressing in a vacuum, and a roll-type film laminator in vacuum or a vacuum is used. For example, “MVLP” manufactured by Meiki Seisakusho Co., Ltd. can be used to perform vacuum laminating such as a film laminator that applies pressure to the entire glass surface at once with a thin rubber film.
 前記加圧加熱処理は加圧プロセスと加熱プロセスとに分離して行うことが可能である。この場合、まず、比較的低温(例えば120℃未満、より好ましくは95℃以下の温度)で高分子フィルムと無機基板とを加圧(好ましくは0.2~50MPa程度)して両者の密着確保し、その後、低圧(好ましくは0.2MPa未満、より好ましくは0.1MPa以下)もしくは常圧にて比較的高温(例えば120℃以上、より好ましくは120~250℃、さらに好ましくは150~230℃)で加熱することにより、密着界面の化学反応が促進されて高分子フィルムと仮支持用無機基板とを積層できる。 The pressure heat treatment can be performed separately in a pressure process and a heating process. In this case, first, the polymer film and the inorganic substrate are pressurized (preferably about 0.2 to 50 MPa) at a relatively low temperature (eg, a temperature of less than 120 ° C., more preferably 95 ° C. or less) to ensure adhesion between the two. Thereafter, at a low pressure (preferably less than 0.2 MPa, more preferably 0.1 MPa or less) or a relatively high temperature at normal pressure (for example, 120 ° C. or more, more preferably 120 to 250 ° C., still more preferably 150 to 230 ° C.). ), The chemical reaction at the adhesion interface is promoted, and the polymer film and the temporary supporting inorganic substrate can be laminated.
 なお、本発明において高分子フィルムと無機基板とを貼り合わせる際の高分子フィルムの吸湿率を1.8%以下に制御することが好ましい。かかる高分子フィルムの吸湿率は、高分子フィルムと無機基板を圧着する直前状態での吸湿率を意味する。高分子フィルムの吸湿率は、高分子フィルムが放置された室内の気温と湿度に依存する。また吸湿・放湿には時間を要するため、当該測定は、一定条件下に十分に長い時間、少なくとも24時間程度以上放置された後に評価することが肝要である。
 かかる吸湿された水分は、その量が多すぎると、後工程で熱が加わった際に、ブリスターの原因となる。一方で量が少なすぎると、無機基板との接着性が安定になる場合がある。すなわち、高分子フィルムと無機基板との各々の表面における化学的反応は、高分子フィルムに内包された水分によって影響されるのである。高分子フィルムの吸湿率は1.5%如何好ましく1.2%以下が好ましい。また吸湿率の下限は0.1%、好ましくは0.2%、さらに好ましくは0.4%である。
In the present invention, the moisture absorption rate of the polymer film when the polymer film and the inorganic substrate are bonded to each other is preferably controlled to 1.8% or less. The moisture absorption rate of such a polymer film means the moisture absorption rate immediately before the polymer film and the inorganic substrate are pressure-bonded. The moisture absorption rate of the polymer film depends on the temperature and humidity in the room where the polymer film is left. In addition, since it takes time to absorb and release moisture, it is important to evaluate the measurement after being left for at least about 24 hours or longer under a certain condition.
If the amount of moisture absorbed is too large, blisters are caused when heat is applied in the subsequent process. On the other hand, if the amount is too small, the adhesion to the inorganic substrate may become stable. That is, the chemical reaction on the surfaces of the polymer film and the inorganic substrate is affected by the moisture contained in the polymer film. The polymer film has a moisture absorption rate of 1.5%, preferably 1.2% or less. The lower limit of the moisture absorption rate is 0.1%, preferably 0.2%, more preferably 0.4%.
<高分子フィルムと無機基板の接着プロセス>
 本発明の無機基板と高分子フィルムの積層体は、無機基板1枚に対して、高分子フィルムを少なくとも2以上の区画に分割して接着されていることが特徴である。
 このような積層体を得る方法としては、以下の方法を例示出来る。
(1)無機基板に、ほぼ等しいサイズの高分子フィルムを貼り合わせ、レーザー、ないし機
械的切削刃等において高分子フィルムのみを分割する方法。
 この場合、高分子フィルムの製造時に存在したボーイング歪の分布自体はそのまま残るが、高分子フィルムが分割されることにより、高分子フィルムの伸縮、収縮が生じた場合に於いても、引っ張り応力が分割部分で遮断されるため、無機基板に加わる応力は細分化され、全体の変形を押さえることが出来る。
(2)予め、分割した高分子フィルムを、直接無機基板の所定の位置に貼り合わせる。
 高分子フィルムを分割し、無作為に、ないしは予想されるボーイング歪みを打ち消すように配置して貼り合わせることが可能となるため、高分子フィルムの伸縮、収縮による、引っ張り応力を、無機基板全体に均質化して分散出来るため、さらに全体の変形を押さえることが出来る。
(3)予め分割した高分子フィルムを、無機基板とほぼ等しいサイズの保護フィルムなどの
中間媒体上の所定の位置に配列して貼り付け、中間媒体に配列された状態のまま無機基板に貼り付けた後に中間媒体を剥離する方法。
 基本的には前(2)項と同じであるが、無機基板に貼り合わせる工程が一度で済むため、無機基板の貼り付け面ならびに、先に貼り付けられた高分子フィルム表面の汚染が防止される。
<Adhesion process between polymer film and inorganic substrate>
The laminate of the inorganic substrate and the polymer film of the present invention is characterized in that the polymer film is divided into at least two or more sections and bonded to one inorganic substrate.
Examples of methods for obtaining such a laminate include the following methods.
(1) A method in which a polymer film of approximately the same size is bonded to an inorganic substrate, and only the polymer film is divided with a laser or a mechanical cutting blade.
In this case, although the distribution of the bowing strain that existed at the time of manufacturing the polymer film remains as it is, the tensile stress is reduced even when the polymer film is divided to cause expansion and contraction of the polymer film. Since it is blocked at the divided portions, the stress applied to the inorganic substrate is subdivided, and the entire deformation can be suppressed.
(2) The polymer film divided in advance is directly bonded to a predetermined position of the inorganic substrate.
It is possible to divide the polymer film, arrange it randomly or to cancel the expected bowing distortion, and bond them together, so that the tensile stress due to the expansion and contraction of the polymer film is applied to the entire inorganic substrate. Since it can be homogenized and dispersed, the overall deformation can be further suppressed.
(3) A polymer film divided in advance is arranged and pasted at a predetermined position on an intermediate medium such as a protective film having a size substantially equal to that of the inorganic substrate, and is stuck on the inorganic substrate while being arranged on the intermediate medium. After which the intermediate medium is peeled off.
Basically the same as (2) above, but since the process of attaching to the inorganic substrate is only once, contamination of the inorganic substrate attachment surface and the polymer film surface previously attached is prevented. The
<分割形態>
 高分子フィルムを分割する形態としては、基板サイズにたいして2分割、3分割、4分割、ないしそれ以上の分割が可能である。分割された個々の領域の形状は、無機基板の形状に相似形とすることが出来る。例えば長方形の無機基板において、縦横をそれぞれ等数で分割すれば、4分割、9分割、16分割というように分割することができる。すべての領域の形状、サイズが同じである必要はなく、製造するフレキシブル電子デバイスの形状、サイズに応じて設計上、余白部が少なくなるように配置すれば良い。好ましいフィルム形状は、外形が直線で構成される多角形であり、正方形、長方形、特には縦横比が4対3ないし16対9の長方形が好ましい。
 本発明では、高分子フィルムを一方向だけに細長く分割し、無機基板上に縞模様上に配置することもできる。この場合、分割された高分子フィルムをロール状に巻き上げることが可能となり、保護フィルムもロール形状とすることで、両者をロールトゥロール式に連続的に貼り合わせることが出来るため、保護フィルムへの分割高分子フィルムの配置が容易となる。すなわち、
(1) 一枚の保護フィルムに、複数に分割された高分子フィルムを割り付けて貼り合わせ多層積層フィルムを得る工程
(2) 無機基板と、前記多層積層フィルムの高分子フィルム側とを接着し、多層基板を得る工程
(3) 前記多層基板から保護フィルムを剥がす工程にて無機基板上に分割された高分子フィルムが張り合わされた状態を実現し、
(4) 多層基板の高分子フィルム上に電子デバイスを形成する工程
(5) 多層基板から高分子フィルムを剥離する工程
を経ることによってフレキシブル電子デバイスを得ることが可能となる。
<Division form>
As a form of dividing the polymer film, it is possible to divide into two, three, four, or more than the substrate size. The shape of each divided region can be similar to the shape of the inorganic substrate. For example, in a rectangular inorganic substrate, if the vertical and horizontal directions are divided by an equal number, it can be divided into four divisions, nine divisions, and 16 divisions. The shape and size of all the regions do not have to be the same, and they may be arranged so that the margin portion is reduced in design according to the shape and size of the flexible electronic device to be manufactured. A preferable film shape is a polygon having a straight outer shape, and is preferably a square or a rectangle, particularly a rectangle having an aspect ratio of 4 to 3 to 16 to 9.
In the present invention, the polymer film can be elongated in only one direction and arranged on the inorganic substrate in a striped pattern. In this case, it becomes possible to roll up the divided polymer film into a roll shape, and by making the protective film into a roll shape, both can be continuously bonded in a roll-to-roll manner, Arrangement of the divided polymer film becomes easy. That is,
(1) A step of assigning a polymer film divided into a plurality of protective films to a single protective film and bonding them to obtain a multilayer laminated film
(2) A step of bonding the inorganic substrate and the polymer film side of the multilayer laminated film to obtain a multilayer substrate
(3) Realizing a state in which the polymer film divided on the inorganic substrate in the step of peeling the protective film from the multilayer substrate is bonded,
(4) Process for forming electronic devices on the polymer film of the multilayer substrate
(5) A flexible electronic device can be obtained through a step of peeling the polymer film from the multilayer substrate.
 本発明の主旨は、このようにして、高分子フィルムの有するボーイング歪を、配置を工夫することによって打ち消し、高分子フィルム/無機基板からなる積層体の変形を抑制することにあるが、例えば、無機基板の短辺よりも狭い幅にて製造された複数の高分子フィルムを無機基板に直接並べて貼り合わせる、ないし、保護フィルム上に並べて貼り合わせてから無機基板と貼り合わせる事により、狭い幅の高分子フィルムでも、大きなサイズの無機基板を用いてデバイスを作成することが可能となる。この場合に於いても、高分子フィルムはボーイング歪みを打ち消す方向に貼り合わせられることが好ましい。 Thus, the gist of the present invention is to cancel the bowing strain of the polymer film by devising the arrangement and suppress the deformation of the laminate composed of the polymer film / inorganic substrate. A plurality of polymer films manufactured with a width narrower than the short side of the inorganic substrate are directly aligned and bonded to the inorganic substrate, or are aligned and bonded on the protective film, and then bonded to the inorganic substrate, so that the width of the narrow film is reduced. Even with a polymer film, a device can be formed using a large-sized inorganic substrate. Even in this case, it is preferable that the polymer film is bonded in a direction that cancels the bowing distortion.
 なお、収率を確保するために当然ではあるが、本発明では分割された高分子フィルムどうしの間の間隙は極力小さい方が好ましく、5mm以下、さらには2mm以下、なおさらには0.7mm以下とすることが好ましい。 In order to secure the yield, of course, in the present invention, the gap between the divided polymer films is preferably as small as possible, preferably 5 mm or less, more preferably 2 mm or less, and even more preferably 0.7 mm or less. It is preferable that
<フレキシブル電子デバイスの製造手段>
 本発明の積層体を用いると、既存の電子デバイス製造用の設備、プロセスを用いて積層体の高分子フィルム上に電子デバイスを形成し、積層体から高分子フィルムごと剥離することで、フレキシブルな電子デバイスを作製することができる。
 本発明における電子デバイスとは、電気配線を担う配線基板、トランジスタ、ダイオードなどの能動素子や、抵抗、キャパシタ、インダクタなどの受動デバイスを含む電子回路、他、圧力、温度、光、湿度などをセンシングするセンサー素子、発光素子、液晶表示、電気泳動表示、自発光表示などの画像表示素子、無線、有線による通信素子、演算素子、記憶素子、MEMS素子、太陽電池、薄膜トランジスタなどを云う。
<Means for manufacturing flexible electronic devices>
When the laminate of the present invention is used, an electronic device is formed on the polymer film of the laminate using existing equipment and processes for manufacturing electronic devices, and the polymer film is peeled off from the laminate, so that the flexible film is flexible. An electronic device can be fabricated.
The electronic device in the present invention refers to an electronic circuit including an active element such as a wiring board, a transistor, and a diode that carries electric wiring, and a passive device such as a resistor, a capacitor, and an inductor, and others such as pressure, temperature, light, and humidity. An image display element such as a sensor element, a light emitting element, a liquid crystal display, an electrophoretic display, and a self-luminous display, a wireless, wired communication element, an arithmetic element, a memory element, a MEMS element, a solar cell, a thin film transistor, and the like.
<無機基板からの高分子フィルムの剥離手段>
 高分子フィルムを支持体から剥離する手段については特に限定されず、公知の方法を用いればよい。積層体から高分子フィルムを剥離する方法としては、無機基板側から強い光を照射し、無機基板と高分子フィルム間の接着部位を熱分解、ないし光分解させて剥離する方法、あらかじめ接着強度を弱めておき、高分子フィルムの弾性強度限界値未満の力で高分子フィルムを引きはがす方法、加熱水、加熱蒸気などに晒し、無機基板と高分子フィルム界面の結合強度を弱めて剥離させる方法などを例示することが出来る。
 剥離の際の「きっかけ」を作る方法としては、ピンセットなどで端から捲る方法、デバイス付きの高分子フィルムの切り込み部分の1辺に粘着テープを貼着させた後にそのテープ部分から捲る方法、デバイス付きの高分子フィルムの切り込み部分の1辺を真空吸着した後にその部分から捲る方法、あるいは予め高分子フィルムの一部を無機板に接着しない、ないし高分子フィルムの一部を無機基板からはみ出させることにより掴みシロを得る方法等を採用できる。
<Means for peeling polymer film from inorganic substrate>
The means for peeling the polymer film from the support is not particularly limited, and a known method may be used. As a method of peeling a polymer film from a laminate, a method in which strong light is radiated from the inorganic substrate side and the adhesive part between the inorganic substrate and the polymer film is thermally decomposed or photodecomposed and peeled off is used. Weaker, peel off the polymer film with a force less than the elastic strength limit value of the polymer film, expose to heated water, heated steam, etc., weaken the bond strength between the inorganic substrate and the polymer film interface, etc. Can be illustrated.
As a method of creating a “chock” for peeling, a method of rolling from the edge with tweezers, a method of sticking an adhesive tape on one side of a cut portion of a polymer film with a device, and then winding from the tape portion, a device A method in which one side of the cut portion of the attached polymer film is vacuum-adsorbed and then removed from the portion, or a part of the polymer film is not bonded to the inorganic plate in advance, or a part of the polymer film is protruded from the inorganic substrate. For example, a method for obtaining a gripping white can be adopted.
 本発明では、無機基板と高分子フィルムの90度剥離における接着強度が所定の範囲であることが好ましい。高分子フィルとして熱可塑性のフィルム、たとえばPETフィルム、PENフィルムなどを用いた場合には、半導体としてアモルファスシリコンないしは有機半導体を用いることを想定し、140℃30分間の熱処理後の接着力が、また本発明で高分子フィルムとしてポリイミドフィルムを用いる場合には、アモルフェスシリコンの脱水素工程と多結晶化工程を想定した420℃30分間の加熱処理後の接着力が、各々、90度剥離モードにおいて、1.0N/cm未満、好ましくは0.6N/cm未満、なお好ましくは0.4N/cm未満、さらに好ましくは0.3N/cm未満である。 In the present invention, it is preferable that the adhesive strength at 90 ° peeling between the inorganic substrate and the polymer film is within a predetermined range. When a thermoplastic film such as a PET film or a PEN film is used as the polymer film, it is assumed that an amorphous silicon or an organic semiconductor is used as the semiconductor, and the adhesive strength after heat treatment at 140 ° C. for 30 minutes is When a polyimide film is used as the polymer film in the present invention, the adhesive strength after heat treatment at 420 ° C. for 30 minutes assuming the dehydrogenation step and the crystallization step of amorphous silicon is 90 ° peeling mode, respectively. , Less than 1.0 N / cm, preferably less than 0.6 N / cm, more preferably less than 0.4 N / cm, and still more preferably less than 0.3 N / cm.
 また、本発明では剥離の際の剥離角がπ/6ラジアン(30度)以下とすることが推奨され、π/12ラジアン(15度)以下とすることがより好ましく、さらにπ/24ラジアン(7.5度)以下とすることがなおさらに好ましい。剥離角度の下限が0の場合は自然剥離に相当し、この場合には電子デバイス加工工程中でブリスター発生やフィルムの剥離などのトラブルが出やすくなる。本発明の剥離角度の下限は1.0度、更に好ましくは2度程度である。 In the present invention, it is recommended that the peeling angle at the time of peeling is π / 6 radians (30 degrees) or less, more preferably π / 12 radians (15 degrees) or less, and more preferably π / 24 radians ( More preferably, it is 7.5 degrees or less. When the lower limit of the peeling angle is 0, it corresponds to natural peeling. In this case, troubles such as generation of blisters and peeling of the film easily occur during the electronic device processing step. The lower limit of the peeling angle of the present invention is 1.0 degree, more preferably about 2 degrees.
 本発明では、剥離する部分に予め別の補強基材を貼りつけて、補強基材ごと剥離する方法も有用である。剥離するフレキシブル電子デバイスが、表示デバイスのバックプレーンである場合、あらかじめ表示デバイスのフロントプレーンを貼りつけて、無機基板上で一体化した後に両者を同時に剥がし、フレキシブルな表示デバイスを得ることも可能である。 In the present invention, it is also useful to apply another reinforcing base material to the part to be peeled in advance and peel the whole reinforcing base material. When the flexible electronic device to be peeled off is the backplane of the display device, it is also possible to obtain a flexible display device by pasting the front plane of the display device in advance and integrating them on the inorganic substrate before peeling them off at the same time. is there.
 本発明において、無機基板側、ないし、高分子フィルム側、さらには両方にパターン化処理を行うことが出来る。本発明に於けるパターン化とは、高分子フィルム、あるいは無機基板、あるいは双方の表面処理の程度を制御して、接着力が比較的強い部分と弱い部分とを作り出すことを意味する。本発明ではパターン化処理により高分子フィルムと無機基板との接着力が低くなる領域(易剥離部と呼ぶ)に電子デバイスを形成し、次いで、その領域の外周部に切り込みを入れ、高分子フィルムの電子デバイスが形成されたエリアを無機基板から剥離する事によりフレキシブル電子デバイスを得ることが出来る。該方法により、高分子フィルムと無機基板の剥離がより容易になる。 In the present invention, patterning treatment can be performed on the inorganic substrate side, the polymer film side, or both. Patterning in the present invention means that a portion having a relatively strong adhesive force and a weak portion are produced by controlling the degree of surface treatment of the polymer film or the inorganic substrate or both. In the present invention, an electronic device is formed in a region where an adhesive force between the polymer film and the inorganic substrate is lowered by patterning (referred to as an easily peelable portion), and then a cut is made in the outer peripheral portion of the region. A flexible electronic device can be obtained by peeling the area where the electronic device is formed from the inorganic substrate. By this method, peeling of the polymer film and the inorganic substrate becomes easier.
 積層体の易剥離部の外周に沿って高分子フィルムに切り込みを入れる方法としては、刃物などの切削具によって高分子フィルムを切断する方法や、レーザーと積層体を相対的にスキャンさせることにより高分子フィルムを切断する方法、ウォータージェットと積層体を相対的にスキャンさせることにより高分子フィルムを切断する方法、半導体チップのダイシング装置により若干ガラス層まで切り込みつつ高分子フィルムを切断する方法などを用いることができる。また、これらの方法の組み合わせや、切削具に超音波を重畳させたり、往復動作や上下動作などを付け加えて切削性能を向上させる等の手法を適宜採用することもできる。 As a method of cutting the polymer film along the outer periphery of the easily peelable portion of the laminate, a method of cutting the polymer film with a cutting tool such as a blade or a method of relatively scanning the laser and the laminate can be used. A method of cutting a molecular film, a method of cutting a polymer film by relatively scanning a water jet and a laminate, a method of cutting a polymer film while cutting a glass layer slightly with a semiconductor chip dicing device, etc. are used. be able to. In addition, a combination of these methods, a method of superimposing ultrasonic waves on a cutting tool, or adding a reciprocating operation or an up / down operation to improve cutting performance can be appropriately employed.
 積層体の易剥離部外周の高分子フィルムに切り込みを入れるにあたり、切り込みを入れる位置は、少なくとも易剥離部の一部を含んでいればよく、基本的には所定のパターンに従って切断すれば良いが、誤差の吸収、生産性の観点などより、適宜判断すればよい。 When cutting into the polymer film on the outer periphery of the easily peelable portion of the laminate, the position where the cut is made only needs to include at least part of the easily peelable portion, and basically may be cut according to a predetermined pattern. From the viewpoint of error absorption, productivity, etc., it may be determined as appropriate.
 以下、図を用いて本発明について説明する。図1.図2.図3.図4.は本発明に於ける高分子フィルムの分割例である。図1.では縦横をそれぞれ2分割し、全4分割とした例である。図2.は縦横をそれぞれ3分割とし、全9分割とした例である。図3.は大きさの異なる領域を設けた分割例である。図4は、単純に2分割した例である。図面は模式図であり、分割した領域間の間隙を強調して図示してある。現実には、間隙は極力小さくするように努めるのが常道である。
 図5.図6.粘着剤を用いて高分子フィルムを無機基板に貼り付けた例である。図5.においては、無機基板側に粘着剤を塗布ないしラミネートし、その上に分割された高分子フィルムを貼り付けた様子を例示している。図6.は高分子フィルム側に粘着剤を塗布ないしラミネートし、その後、無機基板に貼り合わせた様子を例示している。
Hereinafter, the present invention will be described with reference to the drawings. FIG. FIG. FIG. FIG. Is an example of dividing a polymer film in the present invention. FIG. In this example, the vertical and horizontal directions are each divided into two, so that all four are divided. FIG. Is an example in which the vertical and horizontal directions are each divided into three and a total of nine. FIG. Is an example of division in which regions of different sizes are provided. FIG. 4 is an example of simple division into two. The drawing is a schematic view, with the gap between the divided regions highlighted. In reality, it is usual to try to make the gap as small as possible.
FIG. FIG. This is an example in which a polymer film is attached to an inorganic substrate using an adhesive. FIG. Shows a state in which an adhesive is applied or laminated on the inorganic substrate side, and a divided polymer film is attached thereon. FIG. Exemplifies a state in which an adhesive is applied or laminated on the polymer film side and then bonded to an inorganic substrate.
 図7.は、ロール状に巻かれた保護フィルムに、連続的に2分割された高分子フィルムを貼り付けている様子を示した模式図である。張り合わされた高分子フィルムと保護フィルムからなる積層フィルムは、再びロール状に巻き上げることができる。 Figure 7. These are the schematic diagrams which showed a mode that the polymer film divided | segmented into 2 continuously is affixed on the protective film wound by roll shape. The laminated film composed of the polymer film and the protective film that are bonded together can be rolled up again.
 図8、図9、図10は、分割された高分子フィルムを保護フィルムを介して無機基板に貼り付ける様子を示した模式図である。図8.は保護フィルムに分割した高分子フィルムを貼り付け、再びロールに巻き上げている様子を示した模式図である。図示するための都合上、高分子フィルムはロールの長手方向に分割されているが、分割方向が限定されるわけではなく、図7.に図示した様に、幅方向に分割することも可能である。図9.は、ロールに巻き上げられた保護フィルムを介して、高分子フィルムを、粘着剤層が設けられた無機基板に貼り付けている様子を示した模式図である。ラミネート直後に保護フィルムを断裁すれば、以後の工程では無機基板を支持体とした枚葉状態でハンドリングできる。図10.は保護フィルムを剥離している様子を示す。ここでは剥がした保護フィルムをロール状に巻き取る例を示しているが、必ずしも巻き取らなければならない訳ではない。 FIG. 8, FIG. 9, and FIG. 10 are schematic views showing a state in which the divided polymer film is attached to the inorganic substrate through the protective film. FIG. FIG. 4 is a schematic view showing a state in which a polymer film divided into protective films is attached and wound on a roll again. For convenience of illustration, the polymer film is divided in the longitudinal direction of the roll, but the dividing direction is not limited, and FIG. It is also possible to divide in the width direction as shown in FIG. FIG. These are the schematic diagrams which showed a mode that the polymer film was affixed on the inorganic substrate in which the adhesive layer was provided through the protective film wound up by the roll. If the protective film is cut immediately after lamination, it can be handled in a single wafer state using an inorganic substrate as a support in the subsequent steps. FIG. Indicates a state where the protective film is peeled off. Here, an example of winding the peeled protective film into a roll shape is shown, but it is not always necessary to wind the protective film.
 以下、実施例及び比較例を示して本発明をより具体的に説明するが、本発明は以下の実施例によって限定されるものではない。なお、以下の実施例における物性の評価方法は下記の通りである。 Hereinafter, the present invention will be described more specifically with reference to examples and comparative examples, but the present invention is not limited to the following examples. In addition, the evaluation method of the physical property in the following examples is as follows.
<ポリアミド酸溶液の還元粘度>
 ポリマー濃度が0.2g/dlとなるようにN,N-ジメチルアセトアミドに溶解した溶液についてウベローデ型の粘度管を用いて30℃で測定した。
<Reduced viscosity of polyamic acid solution>
A solution dissolved in N, N-dimethylacetamide so that the polymer concentration was 0.2 g / dl was measured at 30 ° C. using an Ubbelohde type viscosity tube.
<高分子フィルムの厚さ>
 高分子フィルムの厚さは、マイクロメーター(ファインリューフ社製「ミリトロン1245D」)を用いて測定した。
<Thickness of polymer film>
The thickness of the polymer film was measured using a micrometer ("Millitron 1245D" manufactured by FineLuf).
<高分子フィルムの引張弾性率、引張強度および引張破断伸度>
 測定対象とする高分子フィルムから、流れ方向(MD方向)及び幅方向(TD方向)がそれぞれ100mm×10mmである短冊状の試験片を切り出し、引張試験機(島津製作所社製「オートグラフ(登録商標);機種名AG-5000A」)を用い、引張速度50mm/分、チャック間距離40mmの条件で、MD方向、TD方向それぞれについて、引張弾性率、引張強度および引張破断伸度を測定した。
<Tensile modulus, tensile strength and tensile elongation at break of polymer film>
A strip-shaped test piece having a flow direction (MD direction) and a width direction (TD direction) each of 100 mm × 10 mm was cut out from a polymer film to be measured, and a tensile tester (manufactured by Shimadzu Corporation “Autograph (registered) (Trademark); model name AG-5000A "), tensile modulus, tensile strength and tensile elongation at break in each of MD and TD directions were measured under the conditions of a tensile speed of 50 mm / min and a chuck distance of 40 mm.
<高分子フィルムの線膨張係数(CTE)>
 測定対象とする高分子フィルムの流れ方向(MD方向)および幅方向(TD方向)について、下記条件にて伸縮率を測定し、15℃の間隔(30℃~45℃、45℃~60℃、…)での伸縮率/温度を測定し、この測定を300℃まで行って、MD方向およびTD方向で測定した全測定値の平均値を線膨張係数(CTE)として算出した。
  機器名    ; MACサイエンス社製「TMA4000S」
  試料長さ   ; 20mm
  試料幅    ; 2mm
  昇温開始温度 ; 25℃
  昇温終了温度 ; 400℃
  昇温速度   ; 5℃/分
  雰囲気    ; アルゴン
  初荷重    ; 34.5g/mm2
<Linear expansion coefficient (CTE) of polymer film>
For the flow direction (MD direction) and width direction (TD direction) of the polymer film to be measured, the stretch rate was measured under the following conditions, and the intervals of 15 ° C. (30 ° C. to 45 ° C., 45 ° C. to 60 ° C., ...) was measured, and this measurement was performed up to 300 ° C., and an average value of all measured values measured in the MD direction and the TD direction was calculated as a linear expansion coefficient (CTE).
Device name: “TMA4000S” manufactured by MAC Science
Sample length; 20mm
Sample width: 2 mm
Temperature rise start temperature: 25 ° C
Temperature rising end temperature: 400 ° C
Temperature increase rate: 5 ° C./min Atmosphere: Argon initial load: 34.5 g / mm 2
<高分子フィルムの熱収縮率>
 IEC 61189-2,Test 2X02 に規定される方法で、加熱条件を400℃1時間として、測定した。
<Heat shrinkage of polymer film>
It was measured by the method specified in IEC 61189-2, Test 2X02, with heating conditions at 400 ° C. for 1 hour.
<高分子フィルムの吸湿率>
JIS K7251に規定されるA法にて測定した。
<Hygroscopic rate of polymer film>
It was measured by the A method defined in JIS K7251.
<積層体の反り>
 長方形の積層体を定盤上に、反りが上向きに凹となるように置き、角部分の、定盤からの高さを金尺にて測定し、各角の高さと平均値を求めた。
<搬送性>
 液晶ディスプレイ製造用の自動搬送機械における搬送性を総合評価した。評価基準は以下の通り。
  ○:標準条件にて搬送可能、問題なし。
  △:搬送に一部問題はあるが、装置条件変更にて対応可能
  ×:搬送出来ない。
<Lamination of laminate>
A rectangular laminate was placed on a surface plate so that the warp was concave upward, and the height of the corner portion from the surface plate was measured with a metal ruler to obtain the height and average value of each corner.
<Transportability>
A comprehensive evaluation was made of the transportability of an automatic transport machine for liquid crystal display manufacturing. The evaluation criteria are as follows.
○: Can be transported under standard conditions, no problem.
Δ: Although there are some problems in conveyance, it can be handled by changing the equipment conditions.
<接着強度 90度剥離法>
 積層板から、測定に供する部分を100mm四方程度に切り取り、無機基板と高分子フィルムとの接着強度を、JIS C6481に記載の90度剥離法に従い、下記条件で測定した。
  装置名     : 島津製作所社製「オートグラフ(登録商標)AG-IS」
  測定温度    : 室温
  剥離速度    : 50mm/分
  雰囲気     : 大気
  測定サンプル幅 : 10mm
<Adhesive strength 90 degree peeling method>
From the laminate, a portion to be measured was cut out to about 100 mm square, and the adhesive strength between the inorganic substrate and the polymer film was measured under the following conditions according to the 90-degree peeling method described in JIS C6481.
Device name: “Autograph (registered trademark) AG-IS” manufactured by Shimadzu Corporation
Measurement temperature: Room temperature Peeling speed: 50 mm / min Atmosphere: Atmosphere Measurement sample width: 10 mm
<ポリイミドフィルムの製造>
〔製造例1〕
(ポリアミド酸溶液の調製)
 窒素導入管、温度計、攪拌棒を備えた反応容器内を窒素置換した後、3,3',4,4'-ビフェニルテトラカルボン酸二無水物(BPDA)398質量部と、パラフェニレンジアミン(PDA)147質量部とを、4600質量部のN、N-ジメチルアセトアミドに溶解させて加え、滑材としてコロイダルシリカをジメチルアセトアミドに分散してなる分散体(日産化学工業製「スノーテックス(登録商標)DMAC-ST30」)をシリカ(滑材)がポリアミド酸溶液中のポリマー固形分総量に対して0.08質量%になるように加え、25℃の反応温度で24時間攪拌して、表1に示す還元粘度を有する褐色で粘調なポリアミド酸溶液V1を得た。
<Manufacture of polyimide film>
[Production Example 1]
(Preparation of polyamic acid solution)
After the inside of the reaction vessel equipped with a nitrogen introduction tube, a thermometer, and a stirring rod was purged with nitrogen, 398 parts by mass of 3,3 ′, 4,4′-biphenyltetracarboxylic dianhydride (BPDA), paraphenylenediamine ( PDA) 147 parts by mass is dissolved in 4600 parts by mass of N, N-dimethylacetamide, and a dispersion obtained by dispersing colloidal silica in dimethylacetamide as a lubricant (Snowtex (registered trademark) manufactured by Nissan Chemical Industries, Ltd.) ) DMAC-ST30 ”) was added so that the silica (lubricant) was 0.08% by mass with respect to the total amount of polymer solids in the polyamic acid solution, and stirred at a reaction temperature of 25 ° C. for 24 hours. A brown and viscous polyamic acid solution V1 having a reduced viscosity as shown in FIG.
(ポリイミドフィルムの作製)
 上記で得られたポリアミド酸溶液V1を、スリットダイを用いて幅1500mmの長尺ポリエステルフィルム(東洋紡績株式会社製「A-4100」)の平滑面(無滑材面)上に、最終膜厚(イミド化後の膜厚)が25μmとなるように塗布し、105℃にて20分間乾燥した後、ポリエステルフィルムから剥離して、幅1420mmの自己支持性のポリアミド酸フィルムを得た。
 次いで得られた自己支持性ポリアミド酸フィルムを、搬送ロールの速度差により、長さ方向に1.1倍に引き延ばし、次いで、ピンテンターによって幅方向に1.05倍引き延ばし、150℃~420℃の温度領域で段階的に昇温させて(1段目180℃×5分、2段目270℃×10分、3段目420℃×5分間)熱処理を施してイミド化させ、両端のピン把持部分をスリットにて落とし、幅1290mmの長尺ポリイミドフィルムF1(1000m巻き)を得た。得られたフィルムF1の特性を表2.に示す。
(Preparation of polyimide film)
The final thickness of the polyamic acid solution V1 obtained above is applied to a smooth surface (non-sliding material surface) of a long polyester film (“A-4100” manufactured by Toyobo Co., Ltd.) having a width of 1500 mm using a slit die. The film was applied so that (film thickness after imidization) was 25 μm, dried at 105 ° C. for 20 minutes, and then peeled from the polyester film to obtain a self-supporting polyamic acid film having a width of 1420 mm.
Next, the obtained self-supporting polyamic acid film was stretched 1.1 times in the length direction due to the speed difference of the transport rolls, and then stretched 1.05 times in the width direction by a pin tenter, and a temperature of 150 ° C. to 420 ° C. The temperature is increased stepwise in the region (1st stage 180 ° C. × 5 minutes, 2nd stage 270 ° C. × 10 minutes, 3rd stage 420 ° C. × 5 minutes). Was dropped with a slit to obtain a long polyimide film F1 (1000 m roll) having a width of 1290 mm. Table 2 shows the characteristics of the obtained film F1. Shown in
〔製造例2〕
(ポリアミド酸溶液の調製)
 窒素導入管、温度計、攪拌棒を備えた反応容器内を窒素置換した後、5-アミノ-2-(p-アミノフェニル)ベンゾオキサゾール(DAMBO)223質量部と、N,N-ジメチルアセトアミド4416質量部とを加えて完全に溶解させ、次いで、ピロメリット酸二無水物(PMDA)217質量部とともに、滑材としてコロイダルシリカをジメチルアセトアミドに分散してなる分散体(日産化学工業製「スノーテックス(登録商標)DMAC-ST30」)とをシリカ(滑材)がポリアミド酸溶液中のポリマー固形分総量にて0.09質量%になるように加え、25℃の反応温度で36時間攪拌して、表1に示す還元粘度を有する褐色で粘調なポリアミド酸溶液V2を得た。
[Production Example 2]
(Preparation of polyamic acid solution)
After purging the inside of the reaction vessel equipped with a nitrogen introduction tube, a thermometer, and a stirring rod with nitrogen, 223 parts by mass of 5-amino-2- (p-aminophenyl) benzoxazole (DAMBO), N, N-dimethylacetamide 4416 Next, a dispersion formed by dispersing colloidal silica in dimethylacetamide as a lubricant together with 217 parts by mass of pyromellitic dianhydride (PMDA) (“Snowtex” manufactured by Nissan Chemical Industries, Ltd.) (Registered trademark) DMAC-ST30 ”) and silica (lubricant) so that the total amount of polymer solids in the polyamic acid solution is 0.09% by mass and stirred at a reaction temperature of 25 ° C. for 36 hours. A brown and viscous polyamic acid solution V2 having a reduced viscosity shown in Table 1 was obtained.
<ポリイミドフィルムの作製>
 ポリアミド酸溶液V1に代えて、上記で得られたポリアミド酸溶液V2を用い、スリットダイを用いて幅800mmの長尺ポリエステルフィルム(東洋紡績株式会社製「A-4100」)の平滑面(無滑材面)上に、最終膜厚(イミド化後の膜厚)が38μmとなるように塗布し、105℃にて25分間乾燥した後、ポリエステルフィルムから剥離して、ピンテンターによって、1段目150℃×5分、2段目220℃×5分、3段目495℃×10分間)熱処理を施してイミド化させ、両端のピン把持部分をスリットにて落とし、幅645mmの長尺ポリイミドフィルムF2(1000m巻き)を得た。得られたフィルムF2の特性を表2.に示す。
<Preparation of polyimide film>
Using the polyamic acid solution V2 obtained above instead of the polyamic acid solution V1, using a slit die, a smooth surface (non-slip) of a long polyester film 800 mm wide (“A-4100” manufactured by Toyobo Co., Ltd.) The final film thickness (film thickness after imidization) is applied on the material surface), dried at 105 ° C. for 25 minutes, peeled off from the polyester film, and the first stage 150 by a pin tenter. ℃ × 5 minutes, 2nd stage 220 ° C × 5 minutes, 3rd stage 495 ° C × 10 minutes) Imidize by applying heat treatment, drop pin holding parts at both ends with slits, long polyimide film F2 with 645mm width (1000 m winding) was obtained. Table 2 shows the characteristics of the obtained film F2. Shown in
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
<表面活性化処理フィルムの製造>
 製造例1で得られたポリイミドフィルムF1の両面に真空プラズマ処理を行い、さらに両面にUVオゾン処理を施して、表面活性化処理フィルムP1を得た。
 真空プラズマ処理は、平行平板型の電極を使ったRIEモード、RFプラズマによる処理であり、真空チャンバー内に窒素ガスを導入し、13.54MHzの高周波電力を導入するようにし、処理時間は3分間とした。
 UVオゾン処理には、 ランテクニカルサービス株式会社製のUV/O3洗浄改質装置(「SKB1102N-01」)とUVランプ(「SE-1103G05」)とを用い、該UVランプから20mm程度離れた距離から5分間行った。照射時にはUV/O3洗浄改質装置内には特別な気体は入れず、UV照射は、大気雰囲気、室温で行った。なお、UVランプは185nm(不活性化処理を促進するオゾンを発生させうる短波長)と254nmの波長の輝線を出しており、このとき照度は、照度計「ORC社製UV-M03AUV(254nmの波長で測定)」にて20mW/cm2であった。
<Manufacture of surface activated film>
Both surfaces of the polyimide film F1 obtained in Production Example 1 were subjected to vacuum plasma treatment, and further subjected to UV ozone treatment on both surfaces to obtain a surface activation-treated film P1.
The vacuum plasma treatment is a treatment by RIE mode and RF plasma using parallel plate type electrodes. Nitrogen gas is introduced into the vacuum chamber and high frequency power of 13.54 MHz is introduced, and the treatment time is 3 minutes. It was.
The UV ozone treatment uses a UV / O3 cleaning and reforming device (“SKB1102N-01”) and a UV lamp (“SE-1103G05”) manufactured by Run Technical Service Co., Ltd., and is about 20 mm away from the UV lamp. For 5 minutes. At the time of irradiation, no special gas was put in the UV / O3 cleaning and reforming apparatus, and the UV irradiation was performed in an air atmosphere and at room temperature. The UV lamp emits an emission line with a wavelength of 185 nm (short wavelength capable of generating ozone that promotes inactivation treatment) and a wavelength of 254 nm. At this time, the illuminance is measured by an illuminometer “ORC UV-M03AUV (254 nm Measured by wavelength) ”.
 ポリイミドフィルムF1に代えてポリイミドフィルムF2を用いたこと以外は同様にして、表面活性化処理ポリイミドフィルムP2を得た。さらに、市販のポリイミドフィルム:カプトンH、(東レデュポン社製)、市販のPENフィルム(帝人・デュポン社製)、市販の全芳香族ポリエステルフィルム(LCP、住友化学社製)を用いて同様に表面処理を行った。結果を表2.表3.に示す A surface activated polyimide film P2 was obtained in the same manner except that the polyimide film F2 was used instead of the polyimide film F1. Furthermore, using a commercially available polyimide film: Kapton H (made by Toray DuPont), a commercially available PEN film (made by Teijin / DuPont), and a commercially available wholly aromatic polyester film (LCP, made by Sumitomo Chemical Co., Ltd.) Processed. The results are shown in Table 2. Table 3. Shown in
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000003
<保護フィルムと高分子フィルムの貼り合わせ>
 表面活性化処理フィルムP1の内25mを、幅方向に4分割にスリットして巻き上げ、幅322.5mmとした。なお得られた4本のロールはそれぞれ、フィルム作製時のフィルム進行方向の左側からP1a、P1b、P1c、P1dとした。
 2対のシリコンゴムローラーを備えたフィルムラミネーターの巻出し部に、幅1300mmの保護フィルムをセットした。用いた保護フィルムは、150℃にてアニール処理を行った50μm厚の東洋紡株式会社製PETフィルム、E5100を基材とし、厚さ10μmのシリコーン系粘着剤を片面にコーティングしたものである。
 フィルムラミネーターのもう一方の巻出し部に、先にスリットした322.5mm幅のポリイミドフィルムを、保護フィルム巻きだし方向の左側から、P1b、P1d、P1a、P1cの順で、フィルム間隙が2mmとなるように配置した。
 次いで、保護フィルムとポリイミドフィルムとを貼り合わせを行い、再びロール状に巻き上げた。ラミネートは線速5m/分、保護フィルム側とポリイミドフィルム側のテンションは等しくし、ローラー温度は室温とした。
 同様に、幅1300mmの保護フィルムに対して、表面活性化フィルムP2を幅方向に、間隙を1mmとして2列に並べ、ラミネートし、ロールに巻き上げた。
<Lamination of protective film and polymer film>
25 m of the surface activation-treated film P1 was slit into four parts in the width direction and wound up to a width of 322.5 mm. The four rolls thus obtained were designated as P1a, P1b, P1c, and P1d from the left side of the film traveling direction during film production.
A protective film having a width of 1300 mm was set on the unwinding part of a film laminator equipped with two pairs of silicon rubber rollers. The protective film used was a 50 μm thick Toyobo Co., Ltd. PET film, E5100 annealed at 150 ° C., and coated on one side with a 10 μm thick silicone adhesive.
At the other unwinding part of the film laminator, a polyimide film having a width of 322.5 mm previously slit is 2 mm in order of P1b, P1d, P1a, P1c from the left side in the protective film unwinding direction. Arranged.
Then, the protective film and the polyimide film were bonded together and wound up again in a roll shape. The lamination was performed at a linear speed of 5 m / min, the tension on the protective film side and the polyimide film side were equal, and the roller temperature was room temperature.
Similarly, with respect to the protective film having a width of 1300 mm, the surface activated film P2 was arranged in two rows in the width direction with a gap of 1 mm, laminated, and wound up on a roll.
<無機基板への表面活性化処理>
 気相塗布によるシランカップリング剤処理とUVオゾン処理にて無機基板の表面活性化処理を行った。なお、無機基板として1300×1500mmのコーニング社製 Lotus Glass を用いた。
<シランカップリング剤塗布>
 以下の条件にて無機基板へのシランカップリング剤塗布を行った。シランカップリング剤(信越化学工業株式会社製「KBM-903」:3-アミノプロピルトリメトキシシラン)100質量部をチャンバー内の蒸発バットに仕込み、大気圧にて酸素濃度が0.1%以下となるまで窒素ガスを導入し、次いで窒素ガスを止め、チャンバー内を3×10-4Paまで減圧し、シランカップリング剤を仕込んだバットを120℃まで昇温した。次いでシランカップリング剤の液面から垂直方向に100mm離れた箇所を、1300×1500mmの液晶ディスプレイ用ガラス「G0」を水平に保持し、7mm/秒の速度で静かに搬送してシランカップリング剤蒸気への暴露を行い、その後、真空チャンバー内にクリーンな窒素ガスを静かに導入して大気圧まで戻し、遠赤外線加熱によりガラス温度を95℃~105℃の間に制御して約3分間熱処理を行い、表面活性化処理としてシランカップリング剤を塗布した基板「G1」を得た。
<Surface activation treatment for inorganic substrates>
Surface activation treatment of the inorganic substrate was performed by silane coupling agent treatment by vapor phase coating and UV ozone treatment. In addition, as an inorganic substrate, 1300 × 1500 mm Corning Lotus Glass was used.
<Silane coupling agent application>
The silane coupling agent was applied to the inorganic substrate under the following conditions. 100 parts by mass of a silane coupling agent (“KBM-903” manufactured by Shin-Etsu Chemical Co., Ltd .: 3-aminopropyltrimethoxysilane) was charged into an evaporation bat in the chamber, and the oxygen concentration was 0.1% or less at atmospheric pressure. Nitrogen gas was introduced until the temperature reached, then the nitrogen gas was stopped, the pressure in the chamber was reduced to 3 × 10 −4 Pa, and the bat charged with the silane coupling agent was heated to 120 ° C. Next, at a position 100 mm away from the liquid surface of the silane coupling agent, hold the glass “G0” for liquid crystal display of 1300 × 1500 mm horizontally, and gently convey it at a speed of 7 mm / sec. After exposure to vapor, clean nitrogen gas is gently introduced into the vacuum chamber to return to atmospheric pressure, and the glass temperature is controlled between 95 ° C and 105 ° C by far-infrared heating and heat treated for about 3 minutes. As a surface activation treatment, a substrate “G1” coated with a silane coupling agent was obtained.
 得られたシランカップリング剤塗布基板G1に、ランテクニカルサービス株式会社製のUV/O3洗浄改質装置を用い、大気雰囲気内にて、該UVランプから20mm程度離れた距離からUV照射を5分間行い、表面活性化基板G2を得た。なお、UVランプは185nm(不活性化処理を促進するオゾンを発生させうる短波長)と254nmの波長の輝線を出しており、このとき照度は、照度計「ORC社製UV-M03AUV(254nmの波長で測定)」にて20mW/cm2であった。 The obtained silane coupling agent-coated substrate G1 is subjected to UV irradiation for 5 minutes from a distance of about 20 mm from the UV lamp in an air atmosphere using a UV / O3 cleaning and reforming apparatus manufactured by Lan Technical Service Co., Ltd. The surface activated substrate G2 was obtained. The UV lamp emits an emission line with a wavelength of 185 nm (short wavelength capable of generating ozone that promotes inactivation treatment) and a wavelength of 254 nm. At this time, the illuminance is measured by an illuminometer “ORC UV-M03AUV (254 nm Measured by wavelength) ”.
(比較例1)
<積層体の製作と初期特性の評価>
 表面活性化フィルムP1と表面活性化基板G1の、活性面通しを合わせるように重ね、MCK社製ロールラミネータを用いて、無機基板側温度100℃、ロール圧力5kg/cm2、ロール速度5mm/秒にて仮ラミネートした。仮ラミネート後の高分子フィルムはフィルムの自重では剥がれないが、フィルム端部を引っ掻くと簡単に剥がれる程度の接着性であった。その後、得られた仮ラミネート基板をクリーンオーブンに入れ、200℃にて30分間加熱した後、室温まで放冷して、積層体L1を得た。
 得られた積層体の外観品位の観察、反りの測定、およびフィルムと基板との90度剥離接着強度、さらにオーブンで420℃30分処理後の90度剥離接着強度と反りについて評価した。結果を表4.に示す。
 なお、積層体の製作は、温度25℃±2℃、湿度55%±3%に保たれている実験室で行い、表面活性化フィルムは当実験室に24時間以上放置した後に積層を行った。 
(Comparative Example 1)
<Production of laminate and evaluation of initial characteristics>
The surface activated film P1 and the surface activated substrate G1 are overlapped so that the active surfaces pass through each other, and using an MCK roll laminator, the inorganic substrate side temperature is 100 ° C., the roll pressure is 5 kg / cm 2, and the roll speed is 5 mm / second. And temporarily laminated. The polymer film after temporary lamination did not peel off due to its own weight, but had such adhesiveness that it was easily peeled off when the film edge was scratched. Thereafter, the obtained temporary laminate substrate was put in a clean oven, heated at 200 ° C. for 30 minutes, and then allowed to cool to room temperature to obtain a laminate L1.
Observation of appearance quality of the obtained laminate, measurement of warpage, 90 ° peel adhesion strength between the film and the substrate, and 90 ° peel adhesion strength and warpage after treatment at 420 ° C. for 30 minutes in an oven were evaluated. The results are shown in Table 4. Shown in
The laminate was produced in a laboratory maintained at a temperature of 25 ° C. ± 2 ° C. and a humidity of 55% ± 3%, and the surface activated film was laminated after being left in this laboratory for more than 24 hours. .
(実施例1)
 4分割され、保護フィルムに貼られてロールに巻き上げられた表面活性化フィルムP1a、P1b、P1c、P1d を保護フィルムごとラミネータにセットし、同様に表面活性化基板G1にラミネートして仮接着した。次いで得られた仮ラミネート基板をクリーンオーブンに入れ、150℃にて180分間加熱した後、室温まで放冷し、注意深く保護フィルムを剥離して、本発明の積層体L2を得た。評価結果を表4.に示す。
Example 1
The surface activated films P1a, P1b, P1c, and P1d that were divided into four parts and stuck on a protective film and wound up on a roll were set together with the protective film in a laminator, and were similarly laminated and temporarily adhered to the surface activated substrate G1. Next, the obtained temporary laminate substrate was put in a clean oven and heated at 150 ° C. for 180 minutes, and then allowed to cool to room temperature, and the protective film was carefully peeled off to obtain a laminate L2 of the present invention. Table 4 shows the evaluation results. Shown in
(実施例2)
 2列に並べて貼り付けされた表面活性化フィルムP2と保護フィルムからなるロールを同様にラミネータにセットし、同様に表面活性化基板G1にラミネートして仮接着した。次いで得られた仮ラミネート基板をクリーンオーブンに入れ、150℃にて180分間加熱した後、室温まで放冷し、注意深く保護フィルムを剥離して、本発明の積層体L3を得た。評価結果を表4.に示す。積層体L3は、図4.、図7.に例示した形態である。この場合、ガラス基板の最小幅に満たない幅の高分子フィルムでも、このような手法を用いれば貼り合わせが可能であることと、かかる剛直性を有する化学構造を持つ高分子のフィルムでは、基板変形が最小限に留められることが理解出来る。
(比較例2)
 表面活性化フィルムP3を、比較例1と同様の方法にてG1と貼り合わせてL4を得た。評価結果を表4.に示す。
(Example 2)
A roll made of the surface activation film P2 and the protective film adhered in two rows was similarly set on a laminator, and similarly laminated and temporarily bonded to the surface activation substrate G1. Next, the obtained temporary laminate substrate was put in a clean oven and heated at 150 ° C. for 180 minutes, and then allowed to cool to room temperature. The protective film was carefully peeled off to obtain a laminate L3 of the present invention. Table 4 shows the evaluation results. Shown in The laminated body L3 is shown in FIG. FIG. It is the form illustrated in. In this case, even a polymer film having a width less than the minimum width of the glass substrate can be bonded by using such a method, and a polymer film having a chemical structure having such rigidity has a substrate. It can be seen that the deformation is kept to a minimum.
(Comparative Example 2)
The surface activated film P3 was bonded to G1 in the same manner as in Comparative Example 1 to obtain L4. Table 4 shows the evaluation results. Shown in
(実施例3)
 表面活性化フィルムP3を、無機基板の縦横3分割になるサイズに分割し、間隙を1.0mmとして保護フィルム上に無作為に配列して貼り合わせたロールを製作し、同様にラミネータにセットし、同様に表面活性化基板G1にラミネートして仮接着した。次いで得られた仮ラミネート基板をクリーンオーブンに入れ、150℃にて120分間加熱した後、室温まで放冷し、注意深く保護フィルムを剥離して、本発明の積層体L5を得た。評価結果を表4.に示す。
(比較例3)
 未処理のガラス板G0の表面にアクリル系粘着剤を塗布し、表面活性化フィルムP4をラミネートし積層体L6を得た。評価結果を表4.に示す。なお、本フィルムは420℃の耐熱性を有していないため、加熱試験は行っていない。
Example 3
The surface activated film P3 is divided into a size that is divided into three vertical and horizontal dimensions of the inorganic substrate, and a roll is prepared by randomly arranging and bonding the protective film on the protective film with a gap of 1.0 mm, and similarly set on a laminator. Similarly, it was laminated on the surface activated substrate G1 and temporarily adhered. Next, the obtained temporary laminate substrate was put in a clean oven, heated at 150 ° C. for 120 minutes, then allowed to cool to room temperature, and the protective film was carefully peeled off to obtain a laminate L5 of the present invention. Table 4 shows the evaluation results. Shown in
(Comparative Example 3)
An acrylic pressure-sensitive adhesive was applied to the surface of the untreated glass plate G0, and the surface activation film P4 was laminated to obtain a laminate L6. Table 4 shows the evaluation results. Shown in In addition, since this film does not have 420 degreeC heat resistance, the heating test is not performed.
(実施例4)
 未処理のガラス板G0の表面にアクリル系粘着剤を塗布し、表面活性化フィルムP4を実施例3に倣って3×3分割し、G0にラミネートし積層体L7を得た。評価結果を表4.に示す。なお、本フィルムは420℃の耐熱性を有していないため、加熱試験は行っていない。
(比較例4)
 表面活性化フィルムP5を用い、比較例3と同様の方法で積層体L8を得た。評価結果を表4.に示す。なお、本フィルムは420℃の耐熱性を有していないため、加熱試験は行っていない。
(実施例5)
 表面活性化フィルムP5を用い、比較例3と同様の方法で、ただし分割数は4×4、配列は無作為として積層体L9を得た。評価結果を表4.に示す。なお、本フィルムは420℃の耐熱性を有していないため、加熱試験は行っていない。
Example 4
An acrylic pressure-sensitive adhesive was applied to the surface of the untreated glass plate G0, and the surface activated film P4 was divided into 3 × 3 according to Example 3 and laminated to G0 to obtain a laminate L7. Table 4 shows the evaluation results. Shown in In addition, since this film does not have 420 degreeC heat resistance, the heating test is not performed.
(Comparative Example 4)
A laminate L8 was obtained in the same manner as in Comparative Example 3 using the surface activated film P5. Table 4 shows the evaluation results. Shown in In addition, since this film does not have 420 degreeC heat resistance, the heating test is not performed.
(Example 5)
Using the surface activated film P5, a laminate L9 was obtained in the same manner as in Comparative Example 3, except that the number of divisions was 4 × 4 and the arrangement was random. Table 4 shows the evaluation results. Shown in In addition, since this film does not have 420 degreeC heat resistance, the heating test is not performed.
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000004
 本発明のフレキシブル電子デバイスの製造方法によれば、仮支持用の無機基板に仮固定した高分子フィルム上に電子デバイスを作成した後に無機基板から電子デバイス付き高分子フィルムを、電子デバイスにストレスを与えることなく剥離することが可能であり、特にフレキシブルな電子デバイスを製造する上で産業界への寄与は極めて大である。 According to the method for manufacturing a flexible electronic device of the present invention, after an electronic device is formed on a polymer film temporarily fixed to an inorganic substrate for temporary support, the polymer film with the electronic device is applied from the inorganic substrate, and stress is applied to the electronic device. It is possible to peel without giving, and the contribution to the industry is extremely large especially in manufacturing a flexible electronic device.
1 無機基板
2 高分子フィルム
3 粘着剤
4 保護フィルム
1 Inorganic substrate 2 Polymer film 3 Adhesive 4 Protective film

Claims (6)

  1.  無機基板に高分子フィルムを接着して多層基板とし、該多層基板の該高分子フィルム上に電子デバイスを形成した後に該高分子フィルムを該無機基板から剥離するフレキシブル電子デバイスの製造方法において、該無機基板に該高分子フィルムを少なくとも2以上の区画に分割して接着することを特徴とする、フレキシブル電子デバイスの製造方法。 In a method of manufacturing a flexible electronic device, a polymer film is bonded to an inorganic substrate to form a multilayer substrate, and after the electronic device is formed on the polymer film of the multilayer substrate, the polymer film is peeled from the inorganic substrate. A method for producing a flexible electronic device, wherein the polymer film is divided into at least two or more sections and bonded to an inorganic substrate.
  2.  前記高分子フィルムの厚さが12μm以上、ヤング率が6GPa以上であり、400℃1時間加熱時の収縮率が0.5%以下であることを特徴とする請求項1に記載のフレキシブル電子デバイスの製造方法。 2. The flexible electronic device according to claim 1, wherein the polymer film has a thickness of 12 μm or more, a Young's modulus of 6 GPa or more, and a shrinkage ratio of 0.5% or less when heated at 400 ° C. for 1 hour. Manufacturing method.
  3.  前記無機基板が、面積4900cm以上、少なくとも短辺側が700mm以上の実質的に長方形であることを特徴とする請求項1または2に記載のフレキシブル電子デバイスの製造方法。 The method for manufacturing a flexible electronic device according to claim 1, wherein the inorganic substrate is substantially rectangular with an area of 4900 cm 2 or more and at least a short side of 700 mm or more.
  4.  前記無機基板と前記高分子フィルムとの張貼り合わせが、表面活性化処理した無機基板と、表面活性化処理した高分子フィルムとを加熱・加圧することによって行われる請求項1~3のいずれかに記載のフレキシブル電子デバイスの製造方法。 4. The method according to claim 1, wherein the bonding between the inorganic substrate and the polymer film is performed by heating and pressurizing the surface activated inorganic substrate and the surface activated polymer film. The manufacturing method of the flexible electronic device as described in any one of.
  5.  前記無機基板と前記高分子フィルムとの貼り合わせに、厚さが5μm以下の粘着剤ないし接着剤を用いることを特徴とする請求項1~4のいずれかに記載のフレキシブル電子デバイスの製造方法。 The method for producing a flexible electronic device according to any one of claims 1 to 4, wherein a pressure-sensitive adhesive or adhesive having a thickness of 5 µm or less is used for bonding the inorganic substrate and the polymer film.
  6.  少なくとも下記(1)~(5)の工程を含む請求項1~5のいずれかに記載のフレキシブル電子デバイスの製造方法。
     (1) 一枚の保護フィルムに、少なくとも2以上の区画に分割された高分子フィルムを貼り合わせ多層積層フィルムを得る工程、
     (2) 無機基板と、前記多層積層フィルムの高分子フィルム側とを接着し、多層基板を得る工程
     (3) 前記多層基板から保護フィルムを剥離する工程
     (4) 多層基板の高分子フィルム上に電子デバイスを形成する工程
     (5) 多層基板から高分子フィルムを剥離する工程
    The method for producing a flexible electronic device according to any one of claims 1 to 5, comprising at least the following steps (1) to (5).
    (1) A step of attaching a polymer film divided into at least two or more sections to a single protective film to obtain a multilayer laminated film;
    (2) A step of bonding the inorganic substrate and the polymer film side of the multilayer laminated film to obtain a multilayer substrate (3) A step of peeling the protective film from the multilayer substrate (4) On the polymer film of the multilayer substrate Step of forming electronic device (5) Step of peeling polymer film from multilayer substrate
PCT/JP2014/068139 2013-07-16 2014-07-08 Method for producing flexible electronic device WO2015008658A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014539173A JP6372352B2 (en) 2013-07-16 2014-07-08 Method for manufacturing flexible electronic device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2013-147483 2013-07-16
JP2013147483 2013-07-16

Publications (1)

Publication Number Publication Date
WO2015008658A1 true WO2015008658A1 (en) 2015-01-22

Family

ID=52346126

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/068139 WO2015008658A1 (en) 2013-07-16 2014-07-08 Method for producing flexible electronic device

Country Status (3)

Country Link
JP (1) JP6372352B2 (en)
TW (1) TWI635582B (en)
WO (1) WO2015008658A1 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101848039B1 (en) * 2016-03-31 2018-04-11 동우 화인켐 주식회사 Manufacturing apparatus for sheet type product
JP2021512485A (en) * 2018-01-30 2021-05-13 プラグマティック プリンティング エルティーディーPragmatic Printing Ltd Manufacturing process of integrated circuits on flexible boards
WO2021124865A1 (en) * 2019-12-17 2021-06-24 東洋紡株式会社 Laminate body
WO2022009451A1 (en) * 2020-07-06 2022-01-13 東洋紡株式会社 Polymer film releasing method, electronic device production method, and releasing device
WO2023135179A1 (en) * 2022-01-17 2023-07-20 Soitec Method for producing a donor substrate for transferring a piezoelectric layer, and method for transferring a piezoelectric layer to a carrier substrate

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI811636B (en) * 2020-03-31 2023-08-11 日商東洋紡股份有限公司 Inorganic substrate/engineering plastic film laminate with protective film, stacking of laminates, storage method of laminates, and transportation method of laminates

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005129625A (en) * 2003-10-22 2005-05-19 Denki Kagaku Kogyo Kk Circuit board with slit and manufacturing method therefor
WO2011104895A1 (en) * 2010-02-26 2011-09-01 住友化学株式会社 Active matrix display device and method for manufacturing active matrix display device
WO2012141248A1 (en) * 2011-04-15 2012-10-18 東洋紡績株式会社 Laminate, method for producing same, and method for producing device structure using same
JP2012226013A (en) * 2011-04-15 2012-11-15 Sony Corp Methods of manufacturing electronic device and display apparatus

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20060122491A (en) * 2005-05-27 2006-11-30 삼성전자주식회사 Method of manufacturing flexible display device
TWI276191B (en) * 2005-08-30 2007-03-11 Ind Tech Res Inst Alignment precision enhancement of electronic component process on flexible substrate device and method thereof the same
JP2008268666A (en) * 2007-04-23 2008-11-06 Fujifilm Corp Element manufacturing method and display device manufacturing method using the same
US20090087938A1 (en) * 2007-09-28 2009-04-02 Texas Instruments Incorporated Method for Manufacturing Microdevices or Integrated Circuits on Continuous Sheets
KR101022017B1 (en) * 2008-10-01 2011-03-16 한국기계연구원 Apparatus for manufacturing hierarchical structure
CN103299448B (en) * 2010-09-29 2016-09-07 Posco公司 Use the manufacture method of flexible electronic device, flexible electronic device and the flexible base board of roll shape mother substrate

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005129625A (en) * 2003-10-22 2005-05-19 Denki Kagaku Kogyo Kk Circuit board with slit and manufacturing method therefor
WO2011104895A1 (en) * 2010-02-26 2011-09-01 住友化学株式会社 Active matrix display device and method for manufacturing active matrix display device
WO2012141248A1 (en) * 2011-04-15 2012-10-18 東洋紡績株式会社 Laminate, method for producing same, and method for producing device structure using same
JP2012226013A (en) * 2011-04-15 2012-11-15 Sony Corp Methods of manufacturing electronic device and display apparatus

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101848039B1 (en) * 2016-03-31 2018-04-11 동우 화인켐 주식회사 Manufacturing apparatus for sheet type product
JP2021512485A (en) * 2018-01-30 2021-05-13 プラグマティック プリンティング エルティーディーPragmatic Printing Ltd Manufacturing process of integrated circuits on flexible boards
US11990484B2 (en) 2018-01-30 2024-05-21 Pragmatic Printing Ltd. Integrated circuit on flexible substrate manufacturing process
JP7442194B2 (en) 2018-01-30 2024-03-04 プラグマティック セミコンダクター リミテッド Manufacturing process of integrated circuits on flexible substrates
CN113950409A (en) * 2019-12-17 2022-01-18 东洋纺株式会社 Laminated body
JP7151904B2 (en) 2019-12-17 2022-10-12 東洋紡株式会社 laminate
JP2022180528A (en) * 2019-12-17 2022-12-06 東洋紡株式会社 Laminate body
JP7268791B2 (en) 2019-12-17 2023-05-08 東洋紡株式会社 laminate
JPWO2021124865A1 (en) * 2019-12-17 2021-12-16 東洋紡株式会社 Laminate
WO2021124865A1 (en) * 2019-12-17 2021-06-24 東洋紡株式会社 Laminate body
JPWO2022009451A1 (en) * 2020-07-06 2022-01-13
WO2022009451A1 (en) * 2020-07-06 2022-01-13 東洋紡株式会社 Polymer film releasing method, electronic device production method, and releasing device
JP7400976B2 (en) 2020-07-06 2023-12-19 東洋紡株式会社 Polymer film peeling method, electronic device manufacturing method, and peeling device
WO2023135179A1 (en) * 2022-01-17 2023-07-20 Soitec Method for producing a donor substrate for transferring a piezoelectric layer, and method for transferring a piezoelectric layer to a carrier substrate
FR3131980A1 (en) * 2022-01-17 2023-07-21 Soitec Process for manufacturing a donor substrate for transferring a piezoelectric layer and process for transferring a piezoelectric layer onto a support substrate

Also Published As

Publication number Publication date
TWI635582B (en) 2018-09-11
TW201517220A (en) 2015-05-01
JP6372352B2 (en) 2018-08-15
JPWO2015008658A1 (en) 2017-03-02

Similar Documents

Publication Publication Date Title
JP6447135B2 (en) LAMINATE, METHOD FOR PRODUCING LAMINATE, AND METHOD FOR PRODUCING FLEXIBLE ELECTRONIC DEVICE
KR102366549B1 (en) Polymer film coated with layer of silane coupling agent
JP6210201B2 (en) Method for manufacturing flexible electronic device
JP6372352B2 (en) Method for manufacturing flexible electronic device
JP7167693B2 (en) LAMINATED FILM, LAMINATE, AND LAMINATE MANUFACTURING METHOD
WO2015041190A1 (en) Rigid composite laminate plate, method for manufacturing same, laminate, and method for manufacturing device using laminate
JP6181984B2 (en) Polymer film laminated substrate
JPWO2016031746A6 (en) Silane coupling agent layer laminated polymer film
JP2015178237A (en) Laminated inorganic substrate, laminate, method of producing laminate and method of producing flexible electronic device
JP6332617B2 (en) Polyimide precursor film layer / inorganic substrate laminate, and method for producing the same, polyimide film layer / inorganic substrate laminate, and flexible electronic device
JP7013875B2 (en) Laminated body, manufacturing method of laminated body, manufacturing method of flexible electronic device
JP6688450B2 (en) Laminate, electronic device, and flexible electronic device manufacturing method
JP6638415B2 (en) Method for manufacturing flexible electronic device
JP6746920B2 (en) Flexible electronic device manufacturing method
KR102234132B1 (en) Laminate of polyimide film and inorganic substrate
KR102476038B1 (en) Manufacturing method of polymer film laminated substrate and flexible electronic device
JP2018126922A (en) Laminate
JP7205687B2 (en) LAMINATED PRODUCT, LAMINATED PRODUCTION METHOD, AND HEAT-RESISTANT POLYMER FILM WITH METAL-CONTAINING LAYER
JP6878870B2 (en) Laminates, methods for manufacturing laminates and methods for manufacturing flexible devices
JP6969111B2 (en) Polyimide / inorganic substrate laminate with gas barrier layer and its manufacturing method
JP2018099800A (en) Laminate, laminate production method, and flexible device production method
JP2018099801A (en) Laminate, laminate production method, and flexible device production method
US11833795B2 (en) Multilayer body and method for producing flexible device
JP7116889B2 (en) Heat-resistant polymer film, method for producing surface-treated heat-resistant polymer film, and heat-resistant polymer film roll
JP2018094790A (en) Laminate, production method of laminate, and production method of flexible device

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2014539173

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14826788

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14826788

Country of ref document: EP

Kind code of ref document: A1