WO2015008372A1 - Arithmetic processing device and control method for arithmetic processing device - Google Patents

Arithmetic processing device and control method for arithmetic processing device Download PDF

Info

Publication number
WO2015008372A1
WO2015008372A1 PCT/JP2013/069604 JP2013069604W WO2015008372A1 WO 2015008372 A1 WO2015008372 A1 WO 2015008372A1 JP 2013069604 W JP2013069604 W JP 2013069604W WO 2015008372 A1 WO2015008372 A1 WO 2015008372A1
Authority
WO
WIPO (PCT)
Prior art keywords
supply voltage
power supply
voltage value
operating frequency
critical path
Prior art date
Application number
PCT/JP2013/069604
Other languages
French (fr)
Japanese (ja)
Inventor
健治 井實
Original Assignee
富士通株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 富士通株式会社 filed Critical 富士通株式会社
Priority to JP2015527120A priority Critical patent/JP6090447B2/en
Priority to PCT/JP2013/069604 priority patent/WO2015008372A1/en
Publication of WO2015008372A1 publication Critical patent/WO2015008372A1/en

Links

Images

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F1/00Details not covered by groups G06F3/00 - G06F13/00 and G06F21/00
    • G06F1/26Power supply means, e.g. regulation thereof
    • G06F1/32Means for saving power
    • G06F1/3203Power management, i.e. event-based initiation of a power-saving mode
    • G06F1/3234Power saving characterised by the action undertaken
    • G06F1/3296Power saving characterised by the action undertaken by lowering the supply or operating voltage
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F1/00Details not covered by groups G06F3/00 - G06F13/00 and G06F21/00
    • G06F1/26Power supply means, e.g. regulation thereof
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F1/00Details not covered by groups G06F3/00 - G06F13/00 and G06F21/00
    • G06F1/26Power supply means, e.g. regulation thereof
    • G06F1/32Means for saving power
    • G06F1/3203Power management, i.e. event-based initiation of a power-saving mode
    • G06F1/3206Monitoring of events, devices or parameters that trigger a change in power modality
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F11/00Error detection; Error correction; Monitoring
    • G06F11/30Monitoring
    • G06F11/3058Monitoring arrangements for monitoring environmental properties or parameters of the computing system or of the computing system component, e.g. monitoring of power, currents, temperature, humidity, position, vibrations
    • G06F11/3062Monitoring arrangements for monitoring environmental properties or parameters of the computing system or of the computing system component, e.g. monitoring of power, currents, temperature, humidity, position, vibrations where the monitored property is the power consumption
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02DCLIMATE CHANGE MITIGATION TECHNOLOGIES IN INFORMATION AND COMMUNICATION TECHNOLOGIES [ICT], I.E. INFORMATION AND COMMUNICATION TECHNOLOGIES AIMING AT THE REDUCTION OF THEIR OWN ENERGY USE
    • Y02D10/00Energy efficient computing, e.g. low power processors, power management or thermal management

Definitions

  • the present invention relates to an arithmetic processing unit and a control method for the arithmetic processing unit.
  • Dynamic voltage / frequency control (DVFS: Dynamic Voltage and Frequency Scaling) that dynamically controls the operating frequency (operating clock frequency) and power supply voltage according to processing load, etc. ) For example, in DVFS, if the operating frequency is high, the power supply voltage is set high, and if the operating frequency is low, the power supply voltage is set low.
  • DVFS Dynamic Voltage and Frequency Scaling
  • ⁇ 1> Estimate by simulation.
  • ⁇ 2> Some operating frequencies and power supply voltage values used in DVFS control are measured by actually performing tests, and the remainder is interpolated by calculating from the measurement results.
  • ⁇ 3> All operating frequencies and power supply voltage values used in DVFS control are measured by actually performing tests.
  • a technique has been proposed in which a change in operating speed due to process variation in a semiconductor integrated circuit is measured using a process monitor circuit, and a power supply voltage is corrected according to the process variation based on the measurement result (for example, , See Patent Document 1). Further, a technique has been proposed in which, when determining the operating frequency and power supply voltage of an arithmetic processing unit, a test is dynamically executed, information obtained by the test is manipulated, and stored in a nonvolatile memory (for example, a patent) Reference 2).
  • FIGS. 13A and 13B are diagrams illustrating setting examples of the power supply voltage value with respect to the operating frequency based on the simulation result.
  • a horizontal axis is an operating frequency and a vertical axis
  • shaft is a voltage value.
  • V101 indicates the power supply voltage value with respect to the operating frequency obtained by simulation.
  • V102 indicates a power supply voltage value when the process variation is fast at the time of manufacturing
  • V103 indicates a power supply voltage value when the process variation is at the slow side during manufacturing.
  • the power supply voltage value with respect to the operating frequency is V103.
  • the power supply voltage value for V is V104.
  • the initial setting values of the operating frequency and the power supply voltage value used in the DVFS control in the arithmetic processing device are (F 0 , V 0 ) to (F 5 , V 5 ) shown in FIG.
  • This may include an unnecessarily large margin for the actual performance of the arithmetic processing unit.
  • it is set with respect to the power supply voltage value V102 with respect to the operating frequency when the process variation varies at the time of manufacturing.
  • the supplied power supply voltage value is the most excessive.
  • an appropriate power supply voltage value corresponding to the process variation of each arithmetic processing device cannot be obtained, and wasteful power is consumed. .
  • FIGS. 14A and 14B refer to FIGS. 14A and 14B for a case where a part of the operating frequency and power supply voltage value used in the DVFS control in the arithmetic processing unit is actually tested and measured, and the rest is obtained by calculation based on the measurement result.
  • 14A and 14B are diagrams illustrating setting examples of the power supply voltage value with respect to the operating frequency based on actual measurement.
  • a horizontal axis is an operating frequency and a vertical axis
  • shaft is a voltage value.
  • the marks indicated by triangles indicate the actual performance of the arithmetic processing device (power supply voltage value that operates normally with respect to the operating frequency).
  • the filled triangles indicate the power supply voltage values with respect to the operating frequencies actually measured by the test, and the broken triangles indicate the power supply voltage values with respect to the unmeasured operating frequencies.
  • power supply voltage values V102 and V104 with respect to the operating frequency correspond to power supply voltage values V102 and V104 with respect to the operating frequency shown in FIGS. 13A and 13B.
  • the power supply voltage value for an unmeasured operating frequency is interpolated with a straight line using the power supply voltage value for the measured operating frequency
  • the power supply voltage value for the operating frequency is V201.
  • the critical path in the arithmetic processing device is determined from all the paths of the arithmetic processing device, the characteristics of the operating frequency and power supply voltage of the critical path are generally not linear. Therefore, when the power supply voltage value for the unmeasured operating frequency is interpolated with a straight line using the power supply voltage value for the measured operating frequency, the power supply voltage value to be set shows the actual performance, for example, 1401 shown in FIG. 14A. It may be lower than the power supply voltage value required for obtaining.
  • V202 In order to avoid the malfunction of the arithmetic processing unit due to this, as shown as V202, a margin is set for the power supply voltage with respect to the measured operating frequency, and the power supply voltage value for the unmeasured operating frequency can be obtained by using a margin. Conceivable. However, the arithmetic processing unit consumes wasted power due to this margin.
  • the power supply voltage value measured at the higher operating frequency is used as the power supply voltage value for the unmeasured operating frequency, the operation of the arithmetic processing unit is guaranteed.
  • the power supply voltage value to be set is excessive with respect to the power supply voltage value required for obtaining the actual performance, and wasteful power is consumed. .
  • An object of the present invention is to provide an arithmetic processing device and a control method for the arithmetic processing device that can perform DVFS control in consideration of process variation while suppressing an increase in test time.
  • One aspect of the arithmetic processing device includes a table that sets a plurality of operating frequencies and power supply voltage values used in DVFS control, a critical path monitor circuit that detects a delay change according to a change in the power supply voltage, and a control circuit.
  • the control circuit calibrates the critical path monitor circuit by setting the operating frequency and power supply voltage value obtained by the measurement in the table, and the operation not measured in the table by the calibrated critical path monitor circuit.
  • the power supply voltage value is adjusted with respect to the frequency, and the adjusted power supply voltage value is set in the table.
  • the critical path monitor calibrated with the measured operating frequency and power supply voltage value can suppress an increase in test time by measuring a part of the plurality of operating frequencies and power supply voltage values used in the DVFS control.
  • By adjusting the power supply voltage value with respect to the operating frequency not measured by the circuit it is possible to set the power supply voltage value in consideration of process variations.
  • FIG. 1 is a diagram illustrating a configuration example of an arithmetic processing device according to an embodiment of the present invention.
  • FIG. 2 is a diagram illustrating a configuration example related to DVFS table setting in the present embodiment.
  • FIG. 3 is a diagram illustrating a configuration example of a DVFS table in the present embodiment.
  • FIG. 4 is a diagram illustrating a configuration example of the CPM circuit in the present embodiment.
  • FIG. 5 is a diagram illustrating a configuration example of the control circuit in the present embodiment.
  • FIG. 6 is a flowchart showing an operation example of setting the DVFS table in the present embodiment.
  • FIG. 7 is a flowchart showing an operation example in step S101 shown in FIG. FIG.
  • FIG. 8 is a flowchart showing an operation example in steps S102 and S103 shown in FIG.
  • FIG. 9 is a diagram for explaining timing margin confirmation in the present embodiment.
  • FIG. 10A is a diagram illustrating a data setting example of a DVFS table in the present embodiment.
  • FIG. 10B is a diagram illustrating a data setting example of the DVFS table in the present embodiment.
  • FIG. 10C is a diagram illustrating a data setting example of the DVFS table in the present embodiment.
  • FIG. 10D is a diagram illustrating a data setting example of the DVFS table in the present embodiment.
  • FIG. 10E is a diagram illustrating a data setting example of the DVFS table in the present embodiment.
  • FIG. 10A is a diagram illustrating a data setting example of a DVFS table in the present embodiment.
  • FIG. 10B is a diagram illustrating a data setting example of the DVFS table in the present embodiment.
  • FIG. 10C is a diagram illustrating
  • FIG. 11 is a diagram illustrating another configuration example of the arithmetic processing device according to the present embodiment.
  • FIG. 12 is a diagram illustrating another configuration example of the arithmetic processing device according to the present embodiment.
  • FIG. 13A is a diagram illustrating an example of setting a voltage value with respect to an operating frequency based on a simulation result.
  • FIG. 13B is a diagram illustrating an example of voltage value setting with respect to an operating frequency based on a simulation result.
  • FIG. 14A is a diagram illustrating an example of voltage value setting with respect to an operating frequency based on actual measurement.
  • FIG. 14B is a diagram illustrating an example of voltage value setting with respect to the operating frequency based on actual measurement.
  • FIG. 15 is a diagram illustrating an example of voltage value setting with respect to the operating frequency in DVFS according to the present embodiment.
  • FIG. 1 shows a CPU (Central Processing Unit) as an arithmetic processing unit according to an embodiment of the present invention. It is a figure which shows the structural example of Processing Unit.
  • the CPU 10 includes a CPU core 11, a DVFS table 12, a control circuit 14, a frequency control unit 15, a scan control unit 17, and a memory 18.
  • the CPU core 11 is supplied with the power supply voltage vdd-c from the voltage control unit 19, operates using the clock signal clk-c supplied from the frequency control unit 15 as an operation clock, and reads a program stored in the memory 18 or the like. And execute.
  • the CPU core 11 includes a critical path monitor (CPM) circuit 13 that detects a delay change (delay change) in accordance with a change in the power supply voltage vdd-c.
  • CCM critical path monitor
  • the DVFS table 12 is a table for setting an operation frequency and a power supply voltage value used in dynamic voltage / frequency control (DVFS: Dynamic Voltage and Frequency Frequency Scaling) for the CPU core 11.
  • the DVFS table 12 stores information on a set of a plurality of operating frequencies and power supply voltage values used in DVFS control. Each set of information includes an operating frequency used in DVFS control, a power supply voltage value for the operating frequency, information indicating the state of the power supply voltage value, a calibration group of the CPM circuit 13, and a calibration value.
  • the control circuit 14 performs various controls related to DVFS control for the CPU core 11. For example, the control circuit 14 performs control of the DVFS table 12, control of the CPM circuit 13, and setting control of the clock signal clk-c and the power supply voltage vdd-c supplied to the CPU core 11.
  • the frequency control unit 15 receives the clock signal CPU CLK and the frequency setting signal fset from the control circuit 14.
  • the frequency control unit 15 controls the multiplication rate (or division ratio) according to the frequency setting signal fset, and generates the clock signal clk-c having the frequency according to the frequency setting signal fset based on the clock signal CPU CLK. And output.
  • the frequency controller 15 is, for example, a PLL (Phase Locked Loop) circuit.
  • the scan control unit 17 controls the scan operation in the CPU 10.
  • the data read from the memory 18 can be written into the DVFS table 12 by the scan shift operation under the control of the scan control unit 17.
  • the memory 18 is, for example, a nonvolatile memory, and stores a program executed by the CPU 11 and initial setting values of the DVFS table 12.
  • the voltage control unit 19 generates and outputs a power supply voltage vdd-c having a voltage value corresponding to the voltage setting signal vset from the control circuit 14 based on the supplied power.
  • the voltage control unit 19 is, for example, a VRM (Voltage Regulator Module) or a DC-DC converter that performs voltage control.
  • the voltage control unit 19 is provided outside the CPU 10, but may be provided inside the CPU 10.
  • a signal tb_wt is a write control signal related to the DVFS table 12
  • a signal tb_sel is a control signal for selecting a set of data (information) in the DVFS table 12.
  • the signal tb_rd is a read control signal related to the DVFS table 12
  • the signal tb_scan is a scan signal for the DVFS table 12.
  • the signal req is a request signal for performing the setting operation of the DVFS table 12, the frequency setting and the voltage setting by the data value in the DVFS table 12, and referring to the DVFS table 12.
  • the signal info is a response signal to the setting request to the DVFS table 12 (setting status, data in the DVFS table 12, etc.).
  • the signal ctr is a control signal for the control circuit 14.
  • the signal cpm_ctr is a control signal for starting and calibrating the CPM circuit 13, and the signal cpm_dly is a timing margin information signal obtained by the operation of the CPM circuit 13.
  • the signal scan is a signal related to data setting by the scan shift operation.
  • FIG. 2 is a diagram showing a configuration example relating to the DVFS table setting in the CPU 10 shown in FIG.
  • a set of the operating frequency and the power supply voltage value measured by actually performing a test is set as an initial value at the time of startup, and the rest is obtained by simulation.
  • a set of the operating frequency and the power supply voltage value is set.
  • the control circuit 14 sets the operating frequency and the power supply voltage value obtained by the measurement and performs the calibration process for the CPM circuit 13.
  • the control circuit 14 diverts the calibration value obtained by the calibration process as a calibration value of a set of the operating frequency and the power supply voltage value obtained by simulation (not measured) and uses the CPM circuit 13. Obtain an appropriate power supply voltage value for the operating frequency that is not being measured.
  • the DVFS table 12 is a table for setting an operating frequency and a power supply voltage value used in DVFS control, and has a plurality of register arrays including a selection decoder 21 and registers 22 to 26 as shown in FIG.
  • FIG. 3 is a diagram showing a configuration example of the DVFS table 12 in the present embodiment. 3, components having the same functions as those shown in FIGS. 1 and 2 are denoted by the same reference numerals.
  • the register 22 is a register that stores an operating frequency used in DVFS control
  • the register 23 is a register that stores a power supply voltage value corresponding to the operating frequency stored in the register 22.
  • the register 24 is a flag register indicating the state of the power supply voltage value stored in the register 23. Examples of the state of the power supply voltage value include a simulation value, an actual measurement value, and a correction value.
  • the register 25 is a register indicating a calibration group of the CPM circuit 13
  • the register 26 is a register for storing a calibration value of the CPM circuit 13.
  • Each register 22 to 26 is combined to form one register group, and each register group includes an operating frequency, a power supply voltage value, a power supply voltage value state used in DVFS control, a calibration group of the CPM circuit 13 and a calibration. Stores the value.
  • the register group (a set of registers 22 to 26) can be arbitrarily selected by selection according to the control signal tb_sel by the selection decoder 21.
  • the registers 22 to 26 in the DVFS table 12 include a signal tb_wt related to write data / control, a signal tb_sel related to selection / control of a register set, and a signal tb_rd related to read data / control from the control circuit 14.
  • a signal tb_wt related to write data / control
  • a signal tb_sel related to selection / control of a register set
  • tb_rd related to read data / control from the control circuit 14.
  • the CPM circuit 13 is a circuit that detects a delay change (delay change) in accordance with a change in the power supply voltage vdd-c.
  • the pulse generator 31, the offset unit 32, the critical path unit 33, the logic It has a product (AND) operation unit 35, a conversion unit 36, and a margin information signal output unit 39.
  • FIG. 4 is a diagram illustrating a configuration example of the CPM circuit 13 in the present embodiment. 4, components having the same functions as those shown in FIGS. 1 and 2 are denoted by the same reference numerals.
  • the pulse generator 31 generates and outputs a pulse signal for timing margin observation in the CPM circuit 13 based on the enable signal enable included in the signal cpm_ctr from the control circuit 14.
  • the offset unit 32 adds a time offset (delay) to the pulse signal generated by the pulse generation unit 31 based on the calibration signal calib included in the signal cpm_ctr from the control circuit 14.
  • the devices of the plurality of replica paths 34-1, 34-2,..., 34-n of the critical path unit 33 are affected by process variations including the devices in the CPU 10, but an offset is added by the offset unit 32. Thus, the timing margin index can be adjusted.
  • the critical path unit 33 has a plurality of replica paths 34-1, 34-2,..., 34-n (n is an integer of 2 or more), and an input pulse signal is input to each replica path 34-1, 34. Propagate at -2, ..., 34-n and output.
  • the replica paths 34-1, 34-2,..., 34-n have different circuit configurations, but the delays in each path are matched.
  • the AND operation unit 35 performs an AND operation on outputs from the plurality of replica paths 34-1, 34-2,..., 34-n of the critical path unit 33, and outputs an operation result. That is, when the AND operation unit 35 detects that the propagated pulse signal is output from all of the replica paths 34-1, 34-2,..., 34-n, the AND operation unit 35 asserts the output. That is, the AND operation unit 35 detects a delay in the worst path among the plurality of replica paths 34-1, 34-2,..., 34-n.
  • the conversion unit 36 includes a plurality of delay circuits 37-1, 37-2,..., And a plurality of flip-flops 38-1, 38-2, ... 38-m (m is an integer of 2 or more).
  • the delay circuits 37-1, 37-2,... are connected in cascade (cascade connection).
  • the output of the AND operation unit 35 is input to the delay circuit 37-1 and the flip-flop 38-1 in the first stage.
  • Each of the flip-flops 38-1, 38-2,..., 38-m takes the input in synchronization and outputs it.
  • the margin information signal output unit 39 generates and outputs a margin information signal cpm_dly based on the plurality of flip-flops 38-1, 38-2,.
  • the control circuit 14 is a circuit that performs various controls related to DVFS control, and includes a DVFS table setting operation control unit 41, a DVFS table control unit 42, and a CPM control unit 43, as shown in FIG.
  • FIG. 5 is a diagram illustrating a configuration example of the control circuit 14 in the present embodiment. In FIG. 5, components having the same functions as those shown in FIGS. 1 and 2 are denoted by the same reference numerals.
  • the DVFS table setting operation control unit 41 controls the operation related to the setting of the DVFS table 12.
  • the DVFS table setting operation control unit 41 includes a sequence control unit 44, a frequency setting register 45, a voltage value setting register 46, a margin confirmation unit 47, a voltage value increase / decrease control unit 48, and a table update data generation unit 49.
  • the sequence control unit 44 controls the calibration operation of the CPM circuit 13 in the setting of the DVFS table 12 and the setting operation of the power supply voltage value using the CPM circuit 13.
  • the frequency setting register 45 is a register indicating a set value of the operating frequency of the apparatus under DVFS control.
  • the frequency setting register 45 is set with the operating frequency setting value read from the DVFS table 12 via the DVFS table control unit 42 and outputs a frequency setting signal fset corresponding to the setting value.
  • the voltage value setting register 46 is a register that indicates a setting value of the power supply voltage of the apparatus under DVFS control.
  • the voltage value setting register 46 sets a power supply voltage setting value read from the DVFS table 12 via the DVFS table control unit 42 or a power supply voltage setting value determined by the timing margin information signal cpm_dly from the CPM circuit 13. Then, a voltage setting signal vset corresponding to the set value is output.
  • the margin confirmation unit 47 determines a margin at the time of DVFS control based on the timing margin information signal cpm_dly from the CPM circuit 13. The margin confirmation unit 47 determines whether to calibrate the CPM circuit 13 based on the timing margin information signal cpm_dly during the calibration operation of the CPM circuit 13. Further, the margin confirmation unit 47 determines the margin of the voltage value from the timing margin information signal cpm_dly and the allowable value when adjusting the power supply voltage value using the CPM circuit 13.
  • the voltage value increase / decrease control unit 48 performs increase / decrease control on the set value of the power supply voltage based on the determination result of the margin confirmation unit 47 when the power supply voltage value is adjusted using the CPM circuit 13.
  • the table update data generation unit 49 generates update data to be written to the DVFS table 12 in the calibration operation of the CPM circuit 13 or the power supply voltage value setting operation using the CPM circuit 13.
  • the table update data generation unit 49 generates, for example, a power supply voltage value, a state of the power supply voltage value, and a calibration value.
  • the DVFS table control unit 42 controls writing and reading of data with respect to the DVFS table 12.
  • the DVFS table control unit 42 includes a write / read control unit 50 and registers 51 and 52. Based on the signal from the DVFS table setting operation control unit 41, the write / read control unit 50 generates and outputs a signal tb_sel for selecting a data set of the DVFS table 12 for writing and reading data.
  • the register 51 is a register that holds write data to the DVFS table 12
  • the register 52 is a register that holds read data from the DVFS table 12.
  • the CPM control unit 43 controls the operation of the CPM circuit 13.
  • the CPM control unit 43 includes a circuit operation control unit 54 and a calibration control unit 55.
  • the circuit operation control unit 54 controls the activation of the CPM circuit 13 according to the activation signal cpm_enb from the DVFS table setting operation control unit 41.
  • the calibration control unit 55 generates and outputs a calibration value of the CPM circuit 13 in accordance with the output of the margin confirmation unit 47 of the DVFS table setting operation control unit 41.
  • FIG. 6 is a flowchart showing an operation example of setting the DVFS table in the present embodiment.
  • each process shown in FIG. 6 performs the process of step S101 at the time of a test, and performs the process of step S102 and S103 at the time of starting of an apparatus after that.
  • a test that is actually operated by the test apparatus is performed by the CPU 10 as an arithmetic processing unit, and a power supply voltage value that operates normally is obtained by measurement with respect to the operating frequency in the DVFS control (S101).
  • the actual measurement of the power supply voltage value by the test in step S101 is performed not for all the operating frequencies that can be controlled in the DVFS control but for some operating frequencies. In this way, it is possible to suppress an increase in test time by performing tests for some operating frequencies instead of performing tests for all operating frequencies.
  • the power supply voltage value with respect to the operating frequency measured by performing the test is stored in an arbitrary storage device or the like in association with the CPU 10 to be measured.
  • the control circuit 14 sets the operating frequency and power supply voltage value (actual measurement value) measured in step S101, and performs calibration processing of the CPM circuit 13 (S102).
  • the calibration value of the CPM circuit 13 for the set of the measured operating frequency and power supply voltage value is obtained.
  • the control circuit 14 writes the obtained calibration value of the CPM circuit 13 in the DVFS table 12.
  • the control circuit 14 can be used for the same group in the DVFS table 12.
  • a calibration value is also written to a set of operating frequency and power supply voltage value that has not been measured.
  • the control circuit 14 sets an operating frequency and a power supply voltage value (simulation value) that are not measured, and uses the CPM circuit 13 to obtain a power supply voltage value that operates normally with respect to the operating frequency ( S103).
  • the control circuit 14 optimizes the power supply voltage value with respect to the operating frequency based on the timing margin information from the CPM circuit 13 calibrated with the calibration value obtained in step S102. In this way, by obtaining the power supply voltage value with respect to the operating frequency using the CPM circuit 13 calibrated with the actually measured values, it is possible to obtain the power supply voltage value in consideration of process variations in the target CPU 10.
  • the control circuit 14 writes the obtained power supply voltage value and the like in the DVFS table 12. As described above, the power supply voltage value with respect to the operating frequency in the DVFS control is set.
  • FIG. 7 is a flowchart showing an operation example in step S101 shown in FIG.
  • a test of the CPU 10 as the arithmetic processing apparatus is started at a part of the operation frequency used in the DVFS control with the operation frequency and the power supply voltage estimated by the simulation (S201). Then, by performing a test while changing the power supply voltage value with the test apparatus, the power supply voltage value that operates normally with respect to the operating frequency is measured including the margin (S202).
  • the power supply voltage value for the operating frequency measured in the test is stored in an arbitrary storage device or the like in association with the CPU 10 as the measurement target (S203). .
  • the power supply voltage value including the margin can be obtained by measurement for a part of the operating frequency used in the DVFS control.
  • FIG. 8 is a flowchart showing an operation example in steps S102 and S103 shown in FIG.
  • steps S301 to S307 correspond to the operation at step S102 shown in FIG. 6
  • steps S308 to S314 correspond to the operation at step S103 shown in FIG.
  • the DVFS table setting operation control unit 41 of the control circuit 14 performs a scan shift operation according to the signals scan and ctr, and sets data in the DVFS table 12 via the signal tb_scan (S301). ).
  • the data set in the DVFS table 12 includes the operating frequency used in DVFS control, the power supply voltage value (simulation value, actual measurement value), the state of the power supply voltage value, the calibration group of the CPM circuit 13, and the calibration value (initial value). Is undefined).
  • the sequence control unit 44 of the DVFS table setting operation control unit 41 reads the data of the DVFS table 12 via the DVFS table control unit 42 and confirms the information in the table 12 (S302). As a result of checking the flag indicating the state of the power supply voltage value of the read data, if the power supply voltage value is an actual measurement value, the sequence control unit 44 determines the operating frequency and the power supply voltage value (actual measurement) of the data read from the DVFS table 12. Value) is set in the frequency setting register 45 and the voltage value setting register 46 (S303). The DVFS table setting operation control unit 41 uses the signal ctr to set the clock signal clk-c and the power supply voltage vdd-c supplied to the CPU core 11 and confirm that they are set correctly.
  • the CPM control unit 43 calibrates the CPM circuit 13 via the signal cpm_ctr. For example, as shown in FIG. 9, the CPM control unit 43 changes the calibration value of the CPM circuit 13 so that the edge where the output value of the conversion unit 36 of the CPM circuit 13 is changing becomes the center (S304).
  • the DVFS table setting operation control unit 41 When the calibration of the CPM circuit 13 is completed, the DVFS table setting operation control unit 41 writes the obtained calibration value into the DVFS table 12 via the DVFS table control unit 42 (S305). At this time, the DVFS table setting operation control unit 41 performs the same calibration for the set of the operating frequency and the power supply voltage value of the same calibration group in addition to the set of the operating frequency and the power supply voltage value of the actual measurement value to be processed. Write the action value. Further, the DVFS table setting operation control unit 41 sets a flag indicating the state of the power supply voltage value in the set of the operation frequency and the power supply voltage value of the actually measured value to be processed to be calibrated (S306).
  • the sequence control unit 44 determines whether or not the DVFS table 12 includes a set of the actual operation frequency and the power supply voltage value that require calibration of the CPM circuit 13 (S307).
  • the sequence control unit 44 does not calibrate the CPM circuit 13 based on the data read from the DVFS table 12, that is, the operation of the actual measurement value in which the flag indicating the state of the power supply voltage value is not calibrated. It is determined whether there is a set of frequency and power supply voltage value.
  • step S303 if there is a set of the measured operating frequency and power supply voltage value that require calibration of the CPM circuit 13, the process returns to step S303 to perform the above-described operation.
  • step S308 if there is no set of the measured operating frequency and power supply voltage value that require calibration of the CPM circuit 13, the process proceeds to step S308. In this way, the calibration of the CPM circuit 13 is performed while confirming the flag indicating the state of the power supply voltage value for each set of the operating frequency and the power supply voltage value in the DVFS table 12, so that the operation of the DVFS table 12 is performed. It is possible to set the calibration value of the CPM circuit 13 for all sets of frequency and power supply voltage value.
  • the sequence control unit 44 reads the data in the DVFS table 12 via the DVFS table control unit 42 and checks the flag indicating the state of the power supply voltage value of the read data (S308). Then, the sequence control unit 44 determines whether or not the DVFS table 12 includes a combination of the operating frequency and the power supply voltage value of the simulation value in which the flag indicating the state of the power supply voltage value has not been calibrated ( S309).
  • the sequence control unit 44 sets the operating frequency and power supply voltage value (simulation value) to the frequency setting register 45 and the voltage value setting. It is set in the register 46 (S310).
  • the DVFS table setting operation control unit 41 uses the signal ctr to set the clock signal clk-c and the power supply voltage vdd-c supplied to the CPU core 11 and confirm that they are set correctly.
  • the CPM control unit 43 operates the CPM circuit 13 via the signal cpm_ctr. At this time, the calibration value of the CPM circuit 13 that has been set in the DVFS table 12 is applied.
  • the margin confirmation unit 47 of the DVFS table setting operation control unit 41 confirms the timing margin for the operation frequency set by the signal cpm_dly (S311).
  • the DVFS table setting operation control unit 41 determines whether or not calibration of the power supply voltage value is necessary (S312). The DVFS table setting operation control unit 41 determines that the power supply voltage value needs to be calibrated when the confirmed timing margin exceeds a predetermined allowable value, and if not, the power supply voltage value need not be calibrated. Judge.
  • the voltage value increase / decrease control unit 48 of the DVFS table setting operation control unit 41 reduces the power supply voltage value if the timing margin is greater than or equal to an allowable value. If the timing margin is less than the allowable value, the power supply voltage value is increased and set in the voltage value setting register 46. Then, by checking the timing margin again, the DVFS table setting operation control unit 41 adjusts the power supply voltage value with respect to the set operating frequency (S313). For example, as shown in FIG. 9, the power supply voltage value is changed so that the edge where the output value of the conversion unit 36 of the CPM circuit 13 is changing becomes the center.
  • the DVFS table setting operation control unit 41 writes the power supply voltage value set in the voltage value setting register 46 to the DVFS table 12 via the DVFS table control unit 42.
  • a flag indicating the state of the power supply voltage value is set to have been calibrated (S314).
  • the power supply voltage value is adjusted repeatedly until there is no longer the combination of the operating frequency and the power supply voltage value of the simulation value for which the flag indicating the state of the power supply voltage value has not been calibrated, and the DVFS table 12
  • the operating frequency and power supply voltage value are set for all of the sets.
  • the DVFS table setting operation control unit 41 notifies the CPU core 11 that the data of the DVFS table 12 has been determined by the signal info.
  • the DVFS table setting operation control unit 41 sets the operation of setting the DVFS table 12 using the signal info.
  • the CPU core 11 may be notified that a problem has occurred. Further, by holding the data of the set DVFS table 12 in a nonvolatile storage device or the like, the calibration of the CPM circuit 13 or the power supply voltage value using the CPM circuit 13 at the time of starting again is obtained. It is possible to omit the operation related to the adjustment.
  • FIG. 10A to FIG. 10E are diagrams showing examples of data changes in the DVFS table 12 due to operations related to the setting of the DVFS table described above.
  • the operating frequency Find for each tap of the index ind (ind is 0, 1, 2,..., Mid-x,..., Mid,..., Max-2, Max-1, Max).
  • the power supply voltage value Vind_sim, Vind_tst, or Vind_cpm, the state of the power supply voltage value, the calibration group of the CPM circuit 13, and the calibration value are stored.
  • the power supply voltage value is indicated by Vind_sim
  • the simulation value is indicated by Vind_tst
  • the correction value obtained by using the CPM circuit 13 is indicated by Vind_cpm.
  • the calibration group of the CPM circuit 13 belongs to the 0th group when the index ind is 0 to 2
  • the setting value where the index ind is Mid-x to Mid is It is assumed that the set values belonging to the second group and the index ind Max-2 to Mid belong to the third group.
  • all the power supply voltage values for the operating frequency Find are Vind_sim, which is a simulation value, and the flag indicating the state of the power supply voltage value is “00” indicating the simulation value.
  • Vind_sim which is a simulation value
  • the flag indicating the state of the power supply voltage value is “00” indicating the simulation value.
  • power supply voltage values for the measured operating frequencies F0, Fmid, and Fmax are measured values V0_tst, Vmid_tst, and Vmax_tst, respectively.
  • the flag indicating the state of the power supply voltage value is “10” indicating the actual measurement value.
  • the same calibration value is written to the same calibration group. For example, the calibration value “zzzzzzz” obtained by the calibration of the CPM circuit 13 performed by setting the measured operating frequency F0 and the power supply voltage value V0_tst is set as the zeroth group calibration value.
  • the calibration value “yyyyyyyyy” obtained by setting the measured operating frequency Fmid and the power supply voltage value Vmid_tst is set as the calibration value of the second group, and set to the measured operating frequency Fmax and the power supply voltage value Vmax_tst.
  • the obtained calibration value “xxxxxxxx” is set as the third group calibration value.
  • the power supply voltage value is adjusted as shown in FIG. 10E.
  • the power supply voltage values for the operating frequencies F1, F2, Fmid-x, Fmax-2, Fmax-1, etc. become the correction values V1_cpm, V2_cpm, Vmid-x_cpm, Vmax-2_cpm, Vmax-1_cpm, and the power supply voltage value
  • the flag indicating the state is “01” indicating the correction value (calibrated).
  • information indicating the state of the power supply voltage value and information relating to calibration of the CPM circuit 13 are set in the DVFS table 12. Then, for some of the plurality of operating frequencies and power supply voltage values used in the DVFS control, an actual test is performed to measure the power supply voltage values for the operating frequencies, and the power supply voltage values for the operating frequencies that are not measured are processed at the time of startup. This makes it possible to suppress an increase in test time. Further, as shown in FIG. 15, the power supply voltage value with respect to the unmeasured operating frequency is adjusted by using the CPM circuit 13 calibrated by the measured operating frequency and the power supply voltage value. Accordingly, an optimized power supply voltage value can be set, and the power performance can be improved.
  • FIG. 15 is a diagram showing a setting example of the power supply voltage value with respect to the operating frequency in the present embodiment.
  • the horizontal axis is the operating frequency
  • the vertical axis is the voltage value.
  • power supply voltage values V102 and V104 with respect to the operating frequency correspond to power supply voltage values V102 and V104 with respect to the operating frequency shown in FIGS. 13A and 13B.
  • Cal0, Cal3, and Cal5 are calibration values obtained by calibrating the CPM circuit 13 with the power supply voltage values for the operating frequencies F0, F3, and F5 actually measured in the test. Further, a mark indicated by a square indicates a power supply voltage value at which the edge of the output of the CPM circuit 13 before the calibration of the CPM circuit 13 is centered.
  • the operation related to the setting of the DVFS table 12 is controlled by the control circuit 14, but is not limited to this.
  • a register for holding a value may be arranged in the control circuit 14, and the operation related to the setting may be controlled by executing a program read from the memory 18 or the like by the CPU core 11.
  • FIG. 11 is a diagram illustrating another configuration example of the arithmetic processing device according to the present embodiment.
  • FIG. 11 shows a configuration example related to the DVFS table setting.
  • components having the same functions as those shown in FIGS. 1 to 5 are denoted by the same reference numerals.
  • the worst path detection unit 56 is provided in the CPM control unit 43, and the worst path detection unit 56 has timing margin information with the lowest timing margin among the plurality of CPM circuits 13-1, 13-2, 13-3,. That is, the worst path timing margin information is detected and output to the margin confirmation unit 47. Thereby, it is possible to set the DVFS table 12 as in the above-described embodiment.
  • FIG. 12 is a diagram illustrating another configuration example of the arithmetic processing device according to the present embodiment.
  • FIG. 12 illustrates a configuration example related to the DVFS table setting. 12, components having the same functions as those shown in FIGS. 1 to 5 are given the same reference numerals.
  • the DVFS table 12-1, the CPM circuit 13-1, and the control circuit 14-1 are combined, and the DVFS table 12-2, the CPM circuit 13-2, and the control circuit 14-2 are combined.
  • the DVFS table 12-3, the CPM circuit 13-3, and the control circuit 14-3 are used as a set, and the DVFS table setting operation described above may be performed independently for each set.
  • this embodiment can be realized by an arithmetic processing device having, for example, a CPU (or MPU) and a memory executing a program stored in the memory or the like, and the program is included in the embodiment of the present invention.
  • a recording medium on which the program is recorded is included in an embodiment of the present invention.
  • the recording medium for recording the program for example, a CD-ROM, a flexible disk, a hard disk, a magnetic tape, a magneto-optical disk, a nonvolatile memory card, or the like can be used.
  • an arithmetic processing unit that performs DVFS control it is possible to suppress an increase in test time for measuring the operating frequency and power supply voltage value used in DVFS control, and an optimum power supply voltage value corresponding to process variations can be set. This makes it possible to perform DVFS control.

Landscapes

  • Engineering & Computer Science (AREA)
  • Theoretical Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • General Engineering & Computer Science (AREA)
  • General Physics & Mathematics (AREA)
  • Power Sources (AREA)
  • Test And Diagnosis Of Digital Computers (AREA)
  • Microcomputers (AREA)

Abstract

This arithmetic processing device has: a dynamic voltage and frequency scaling (DVFS) table in which multiple operating frequencies and supply voltage values used for DVFS control are set; a critical path monitoring (CPM) circuit for detecting a delay variation in accordance with a variation in supply voltage; and a control circuit for controlling operations for configuring the DVFS table. The control circuit calibrates the CPM circuit by setting measured operating frequencies and supply voltage values in the table, adjusts supply voltage values corresponding to unmeasured operating frequencies in the table by using the calibrated CPM circuit, and sets the adjusted supply voltage values in the table. Consequently, an increase in testing time is suppressed, and the DVFS control is performed using appropriate supply voltage values in accordance with process variations.

Description

演算処理装置及び演算処理装置の制御方法Arithmetic processing device and control method of arithmetic processing device
 本発明は、演算処理装置及び演算処理装置の制御方法に関する。 The present invention relates to an arithmetic processing unit and a control method for the arithmetic processing unit.
 演算処理装置で消費電力を抑えるための技術に、処理負荷等に応じて動作周波数(動作クロックの周波数)及び電源電圧を動的に制御する動的電圧・周波数制御(DVFS:Dynamic Voltage and Frequency Scaling)がある。例えば、DVFSでは、動作周波数が高ければ電源電圧を高く設定し、動作周波数が低ければ電源電圧を低く設定する。 Dynamic voltage / frequency control (DVFS: Dynamic Voltage and Frequency Scaling) that dynamically controls the operating frequency (operating clock frequency) and power supply voltage according to processing load, etc. ) For example, in DVFS, if the operating frequency is high, the power supply voltage is set high, and if the operating frequency is low, the power supply voltage is set low.
 DVFS制御で用いる複数の動作周波数と電源電圧値を決定するには、下記<1>~<3>のような方法がある。
<1>シミュレーションにより見積もる。
<2>DVFS制御で用いる一部の動作周波数と電源電圧値を、それぞれ実際に試験を行うことで測定し、残りは測定結果から算出することで補間する。
<3>DVFS制御で用いるすべての動作周波数と電源電圧値を、それぞれ実際に試験を行うことで測定する。
In order to determine a plurality of operating frequencies and power supply voltage values used in DVFS control, there are the following methods <1> to <3>.
<1> Estimate by simulation.
<2> Some operating frequencies and power supply voltage values used in DVFS control are measured by actually performing tests, and the remainder is interpolated by calculating from the measurement results.
<3> All operating frequencies and power supply voltage values used in DVFS control are measured by actually performing tests.
 また、例えば、半導体集積回路でのプロセスばらつきによる動作速度の変化をプロセスモニタ回路を用いて測定し、測定結果を基にプロセスばらつきに応じた電源電圧の補正を行う技術が提案されている(例えば、特許文献1参照)。また、演算処理装置の動作周波数と電源電圧を決める際に、ダイナミックにテストを実行し、テストにより得られた情報を操作して、不揮発性メモリに保管する技術が提案されている(例えば、特許文献2参照)。 In addition, for example, a technique has been proposed in which a change in operating speed due to process variation in a semiconductor integrated circuit is measured using a process monitor circuit, and a power supply voltage is corrected according to the process variation based on the measurement result (for example, , See Patent Document 1). Further, a technique has been proposed in which, when determining the operating frequency and power supply voltage of an arithmetic processing unit, a test is dynamically executed, information obtained by the test is manipulated, and stored in a nonvolatile memory (for example, a patent) Reference 2).
 しかしながら、例えば特許文献1に記載されているような、プロセスばらつきによる動作速度の変化をプロセスモニタ回路で測定し電源電圧を補正する技術では、プロセスモニタ回路と実際の回路動作とを補正する手段がない。そのため、プロセスモニタ回路の回路特性が、プロセスばらつきにより実際に動作する回路の特性に合っていない場合には、最適な電源電圧値が得られない。また、例えば特許文献2に記載されているようなダイナミックにテストを実行して情報を得る技術では、動作周波数及び電源電圧の最適値を求めるために多大な時間を要してしまう。 However, in a technique for measuring a change in operation speed due to process variation by a process monitor circuit and correcting a power supply voltage as described in Patent Document 1, for example, means for correcting the process monitor circuit and the actual circuit operation is provided. Absent. Therefore, when the circuit characteristics of the process monitor circuit do not match the characteristics of the circuit that actually operates due to process variations, an optimum power supply voltage value cannot be obtained. Further, for example, a technique for obtaining information by executing a test dynamically as described in Patent Document 2 requires a lot of time to obtain the optimum values of the operating frequency and the power supply voltage.
 ここで、予めシミュレーションにより、演算処理装置におけるDVFS制御で用いる動作周波数と電源電圧値を決める場合について、図13A及び図13Bを参照して説明する。図13A及び図13Bは、シミュレーション結果に基づく動作周波数に対する電源電圧値の設定例を示す図である。図13A及び図13Bのそれぞれにおいて、横軸が動作周波数であり、縦軸が電圧値である。 Here, the case where the operating frequency and the power supply voltage value used in the DVFS control in the arithmetic processing device are determined in advance by simulation will be described with reference to FIGS. 13A and 13B. 13A and 13B are diagrams illustrating setting examples of the power supply voltage value with respect to the operating frequency based on the simulation result. In each of FIG. 13A and FIG. 13B, a horizontal axis is an operating frequency and a vertical axis | shaft is a voltage value.
 図13Aにおいて、V101がシミュレーションにより得られた、動作周波数に対する電源電圧値を示している。また、V102が製造時にプロセスばらつきが速い側にばらついた場合における電源電圧値を示し、V103が製造時にプロセスばらつきが遅い側にばらついた場合における電源電圧値を示している。製造時にプロセスばらつきが遅い側にばらついたとしても演算処理装置の誤動作を回避するためには、動作周波数に対する電源電圧値はV103となる。さらに、プロセスばらつき以外にも、電源回路及び回路動作に伴う電圧降下やDVFSでの電源電圧遷移によるノイズ等によって発生する、演算処理装置に供給する電源電圧の変動に対するマージン等も考慮すると、動作周波数に対する電源電圧値はV104となる。 In FIG. 13A, V101 indicates the power supply voltage value with respect to the operating frequency obtained by simulation. Further, V102 indicates a power supply voltage value when the process variation is fast at the time of manufacturing, and V103 indicates a power supply voltage value when the process variation is at the slow side during manufacturing. In order to avoid the malfunction of the arithmetic processing unit even if the process variation varies at the time of manufacturing, the power supply voltage value with respect to the operating frequency is V103. Furthermore, in addition to process variations, considering the margin for fluctuations in the power supply voltage supplied to the processing unit, which is caused by voltage drop due to the power supply circuit and circuit operation, noise due to power supply voltage transition in DVFS, etc. The power supply voltage value for V is V104.
 つまり、演算処理装置におけるDVFS制御で用いる動作周波数と電源電圧値の初期設定値は、動作マージンを考慮すると、図13Bに示す(F0,V0)~(F5,V5)となる。これは、演算処理装置の実際の性能に対して必要以上のマージンが含まれる可能性があり、例えば製造時にプロセスばらつきが速い側にばらついた場合の動作周波数に対する電源電圧値V102に対して、設定される電源電圧値は最も過剰となる。このように、シミュレーションによってDVFS制御で用いる動作周波数と電源電圧値を決めると、個々の演算処理装置のプロセスばらつきに応じた適切な電源電圧値が得られず、無駄な電力を消費することとなる。 That is, the initial setting values of the operating frequency and the power supply voltage value used in the DVFS control in the arithmetic processing device are (F 0 , V 0 ) to (F 5 , V 5 ) shown in FIG. This may include an unnecessarily large margin for the actual performance of the arithmetic processing unit. For example, it is set with respect to the power supply voltage value V102 with respect to the operating frequency when the process variation varies at the time of manufacturing. The supplied power supply voltage value is the most excessive. As described above, when the operating frequency and power supply voltage value used in the DVFS control are determined by simulation, an appropriate power supply voltage value corresponding to the process variation of each arithmetic processing device cannot be obtained, and wasteful power is consumed. .
 また、演算処理装置におけるDVFS制御で用いる動作周波数と電源電圧値の一部を実際に試験を行って測定し、残りを測定結果に基づいて計算等により求める場合について、図14A及び図14Bを参照して説明する。図14A及び図14Bは、実測定に基づく動作周波数に対する電源電圧値の設定例を示す図である。図14A及び図14Bのそれぞれにおいて、横軸が動作周波数であり、縦軸が電圧値である。 14A and 14B, refer to FIGS. 14A and 14B for a case where a part of the operating frequency and power supply voltage value used in the DVFS control in the arithmetic processing unit is actually tested and measured, and the rest is obtained by calculation based on the measurement result. To explain. 14A and 14B are diagrams illustrating setting examples of the power supply voltage value with respect to the operating frequency based on actual measurement. In each of FIG. 14A and FIG. 14B, a horizontal axis is an operating frequency and a vertical axis | shaft is a voltage value.
 図14A及び図14Bにおいて、三角で示す印が演算処理装置の実際の性能(動作周波数に対し、正常に動作する電源電圧値)を示している。図14A及び図14Bにおいて、塗りつぶされた三角が実際に試験を行って測定された動作周波数に対する電源電圧値を示し、破線の三角が未測定の動作周波数に対する電源電圧値を示している。また、図14A及び図14Bにおいて、動作周波数に対する電源電圧値V102、V104は、図13A及び図13Bに示した動作周波数に対する電源電圧値V102、V104に対応する。 14A and 14B, the marks indicated by triangles indicate the actual performance of the arithmetic processing device (power supply voltage value that operates normally with respect to the operating frequency). 14A and 14B, the filled triangles indicate the power supply voltage values with respect to the operating frequencies actually measured by the test, and the broken triangles indicate the power supply voltage values with respect to the unmeasured operating frequencies. 14A and 14B, power supply voltage values V102 and V104 with respect to the operating frequency correspond to power supply voltage values V102 and V104 with respect to the operating frequency shown in FIGS. 13A and 13B.
 図14Aに示すように、例えば、未測定の動作周波数に対する電源電圧値を、測定された動作周波数に対する電源電圧値を用いて直線で補間すると、動作周波数に対する電源電圧値はV201となる。ここで、演算処理装置におけるクリティカルパスは、演算処理装置が有するすべてのパスから決まるため、クリティカルパスの動作周波数と電源電圧の特性は一般に線形にはならない。したがって、未測定の動作周波数に対する電源電圧値を、測定された動作周波数に対する電源電圧値を用いて直線で補間すると、例えば図14Aに示す1401のように、設定する電源電圧値が実際の性能を得るために要求される電源電圧値より低くなってしまうことがある。これによる演算処理装置の誤動作を回避するために、V202として示すように、測定された動作周波数に対する電源電圧にマージンを設定し、それを用いて未測定の動作周波数に対する電源電圧値を求めることが考えられる。しかし、演算処理装置は、このマージンにより無駄な電力を消費することとなる。 As shown in FIG. 14A, for example, when the power supply voltage value for an unmeasured operating frequency is interpolated with a straight line using the power supply voltage value for the measured operating frequency, the power supply voltage value for the operating frequency is V201. Here, since the critical path in the arithmetic processing device is determined from all the paths of the arithmetic processing device, the characteristics of the operating frequency and power supply voltage of the critical path are generally not linear. Therefore, when the power supply voltage value for the unmeasured operating frequency is interpolated with a straight line using the power supply voltage value for the measured operating frequency, the power supply voltage value to be set shows the actual performance, for example, 1401 shown in FIG. 14A. It may be lower than the power supply voltage value required for obtaining. In order to avoid the malfunction of the arithmetic processing unit due to this, as shown as V202, a margin is set for the power supply voltage with respect to the measured operating frequency, and the power supply voltage value for the unmeasured operating frequency can be obtained by using a margin. Conceivable. However, the arithmetic processing unit consumes wasted power due to this margin.
 また、図14Bに示すように、例えば、未測定の動作周波数に対する電源電圧値として、高い側の動作周波数で測定された電源電圧値を流用すると、演算処理装置の動作は保証される。しかし、例えば図14Bに示す1402、1403などのように、設定する電源電圧値が実際の性能を得るために要求される電源電圧値に対して過剰になり、無駄な電力を消費することとなる。 As shown in FIG. 14B, for example, if the power supply voltage value measured at the higher operating frequency is used as the power supply voltage value for the unmeasured operating frequency, the operation of the arithmetic processing unit is guaranteed. However, for example, 1402 and 1403 shown in FIG. 14B, the power supply voltage value to be set is excessive with respect to the power supply voltage value required for obtaining the actual performance, and wasteful power is consumed. .
 また、それぞれの演算処理装置で実際に試験を行い、DVFS制御で用いるすべての動作周波数と電源電圧値を測定することで、個々の演算処理装置について動作周波数に対する適切な電源電圧値を得ることは可能である。しかし、DVFS制御で用いるすべての動作周波数と電源電圧値を実際に試験を行って測定すると、多大な試験時間(コスト)を要してしまう。 In addition, it is possible to obtain an appropriate power supply voltage value with respect to the operating frequency for each arithmetic processing unit by actually testing each arithmetic processing unit and measuring all the operating frequencies and power source voltage values used in the DVFS control. Is possible. However, if all the operating frequencies and power supply voltage values used in DVFS control are actually tested and measured, a great amount of test time (cost) is required.
特開2005-322860号公報JP 2005-322860 A 特表2009-526336号公報Special table 2009-526336
 本発明の目的は、試験時間の増大を抑制し、プロセスばらつきを考慮したDVFS制御を行うことができる演算処理装置及び演算処理装置の制御方法を提供することにある。 An object of the present invention is to provide an arithmetic processing device and a control method for the arithmetic processing device that can perform DVFS control in consideration of process variation while suppressing an increase in test time.
 演算処理装置の一態様は、DVFS制御で用いる複数の動作周波数及び電源電圧値を設定するテーブルと、電源電圧の変化に応じて遅延変化を検出するクリティカルパスモニタ回路と、制御回路とを有する。制御回路は、テーブル内の測定して得られた動作周波数及び電源電圧値に設定してクリティカルパスモニタ回路のキャリブレーションを行い、キャリブレーションされたクリティカルパスモニタ回路によりテーブル内の測定していない動作周波数に対する電源電圧値の調整を行って、調整した電源電圧値を前記テーブルに設定する。 One aspect of the arithmetic processing device includes a table that sets a plurality of operating frequencies and power supply voltage values used in DVFS control, a critical path monitor circuit that detects a delay change according to a change in the power supply voltage, and a control circuit. The control circuit calibrates the critical path monitor circuit by setting the operating frequency and power supply voltage value obtained by the measurement in the table, and the operation not measured in the table by the calibrated critical path monitor circuit. The power supply voltage value is adjusted with respect to the frequency, and the adjusted power supply voltage value is set in the table.
 DVFS制御で用いる複数の動作周波数及び電源電圧値の一部を試験により測定することで試験時間の増大を抑制することができ、測定された動作周波数及び電源電圧値によりキャリブレーションされたクリティカルパスモニタ回路により測定していない動作周波数に対する電源電圧値を調整することでプロセスばらつきを考慮した電源電圧値を設定することができる。 The critical path monitor calibrated with the measured operating frequency and power supply voltage value can suppress an increase in test time by measuring a part of the plurality of operating frequencies and power supply voltage values used in the DVFS control. By adjusting the power supply voltage value with respect to the operating frequency not measured by the circuit, it is possible to set the power supply voltage value in consideration of process variations.
図1は、本発明の実施形態における演算処理装置の構成例を示す図である。FIG. 1 is a diagram illustrating a configuration example of an arithmetic processing device according to an embodiment of the present invention. 図2は、本実施形態におけるDVFS用テーブル設定に係る構成例を示す図である。FIG. 2 is a diagram illustrating a configuration example related to DVFS table setting in the present embodiment. 図3は、本実施形態におけるDVFS用テーブルの構成例を示す図である。FIG. 3 is a diagram illustrating a configuration example of a DVFS table in the present embodiment. 図4は、本実施形態におけるCPM回路の構成例を示す図である。FIG. 4 is a diagram illustrating a configuration example of the CPM circuit in the present embodiment. 図5は、本実施形態における制御回路の構成例を示す図である。FIG. 5 is a diagram illustrating a configuration example of the control circuit in the present embodiment. 図6は、本実施形態におけるDVFS用テーブルの設定の動作例を示すフローチャートである。FIG. 6 is a flowchart showing an operation example of setting the DVFS table in the present embodiment. 図7は、図6に示すステップS101での動作例を示すフローチャートである。FIG. 7 is a flowchart showing an operation example in step S101 shown in FIG. 図8は、図6に示すステップS102及びS103での動作例を示すフローチャートである。FIG. 8 is a flowchart showing an operation example in steps S102 and S103 shown in FIG. 図9は、本実施形態におけるタイミングマージン確認を説明するための図である。FIG. 9 is a diagram for explaining timing margin confirmation in the present embodiment. 図10Aは、本実施形態におけるDVFS用テーブルのデータ設定例を示す図である。FIG. 10A is a diagram illustrating a data setting example of a DVFS table in the present embodiment. 図10Bは、本実施形態におけるDVFS用テーブルのデータ設定例を示す図である。FIG. 10B is a diagram illustrating a data setting example of the DVFS table in the present embodiment. 図10Cは、本実施形態におけるDVFS用テーブルのデータ設定例を示す図である。FIG. 10C is a diagram illustrating a data setting example of the DVFS table in the present embodiment. 図10Dは、本実施形態におけるDVFS用テーブルのデータ設定例を示す図である。FIG. 10D is a diagram illustrating a data setting example of the DVFS table in the present embodiment. 図10Eは、本実施形態におけるDVFS用テーブルのデータ設定例を示す図である。FIG. 10E is a diagram illustrating a data setting example of the DVFS table in the present embodiment. 図11は、本実施形態における演算処理装置の他の構成例を示す図である。FIG. 11 is a diagram illustrating another configuration example of the arithmetic processing device according to the present embodiment. 図12は、本実施形態における演算処理装置の他の構成例を示す図である。FIG. 12 is a diagram illustrating another configuration example of the arithmetic processing device according to the present embodiment. 図13Aは、シミュレーション結果に基づく動作周波数に対する電圧値設定の例を示す図である。FIG. 13A is a diagram illustrating an example of setting a voltage value with respect to an operating frequency based on a simulation result. 図13Bは、シミュレーション結果に基づく動作周波数に対する電圧値設定の例を示す図である。FIG. 13B is a diagram illustrating an example of voltage value setting with respect to an operating frequency based on a simulation result. 図14Aは、実測定に基づく動作周波数に対する電圧値設定の例を示す図である。FIG. 14A is a diagram illustrating an example of voltage value setting with respect to an operating frequency based on actual measurement. 図14Bは、実測定に基づく動作周波数に対する電圧値設定の例を示す図である。FIG. 14B is a diagram illustrating an example of voltage value setting with respect to the operating frequency based on actual measurement. 図15は、本実施形態でのDVFSにおける動作周波数に対する電圧値設定の例を示す図である。FIG. 15 is a diagram illustrating an example of voltage value setting with respect to the operating frequency in DVFS according to the present embodiment.
 以下、本発明の実施形態を図面に基づいて説明する。 Hereinafter, embodiments of the present invention will be described with reference to the drawings.
 図1は、本発明の実施形態における演算処理装置としてのCPU(Central
Processing Unit)の構成例を示す図である。CPU10は、CPUコア11、DVFS用テーブル12、制御回路14、周波数制御部15、スキャン制御部17、及びメモリ18を有する。
FIG. 1 shows a CPU (Central Processing Unit) as an arithmetic processing unit according to an embodiment of the present invention.
It is a figure which shows the structural example of Processing Unit. The CPU 10 includes a CPU core 11, a DVFS table 12, a control circuit 14, a frequency control unit 15, a scan control unit 17, and a memory 18.
 CPUコア11は、電圧制御部19から電源電圧vdd-cが供給され、周波数制御部15から供給されるクロック信号clk-cを動作クロックとして動作し、メモリ18等に格納されているプログラムを読み出して実行する。CPUコア11は、電源電圧vdd-cの変化に応じて遅延変化(ディレイ変化)を検出するクリティカルパスモニタ(CPM:Critical Path Monitor)回路13を有する。 The CPU core 11 is supplied with the power supply voltage vdd-c from the voltage control unit 19, operates using the clock signal clk-c supplied from the frequency control unit 15 as an operation clock, and reads a program stored in the memory 18 or the like. And execute. The CPU core 11 includes a critical path monitor (CPM) circuit 13 that detects a delay change (delay change) in accordance with a change in the power supply voltage vdd-c.
 DVFS用テーブル12は、CPUコア11に対する動的電圧・周波数制御(DVFS:Dynamic Voltage and Frequency Scaling)で用いる動作周波数と電源電圧値を設定するテーブルである。DVFS用テーブル12には、DVFS制御で用いる複数の動作周波数と電源電圧値の組の情報が格納されている。各組の情報は、DVFS制御で用いる動作周波数、その動作周波数に対する電源電圧値、その電源電圧値の状態を示す情報、CPM回路13のキャリブレーションのグループ及びキャリブレーション値を含む。 The DVFS table 12 is a table for setting an operation frequency and a power supply voltage value used in dynamic voltage / frequency control (DVFS: Dynamic Voltage and Frequency Frequency Scaling) for the CPU core 11. The DVFS table 12 stores information on a set of a plurality of operating frequencies and power supply voltage values used in DVFS control. Each set of information includes an operating frequency used in DVFS control, a power supply voltage value for the operating frequency, information indicating the state of the power supply voltage value, a calibration group of the CPM circuit 13, and a calibration value.
 制御回路14は、CPUコア11に対するDVFS制御に係る各種の制御を行う。制御回路14は、例えば、DVFS用テーブル12の制御や、CPM回路13の制御や、CPUコア11に供給するクロック信号clk-c及び電源電圧vdd-cの設定制御を行う。 The control circuit 14 performs various controls related to DVFS control for the CPU core 11. For example, the control circuit 14 performs control of the DVFS table 12, control of the CPM circuit 13, and setting control of the clock signal clk-c and the power supply voltage vdd-c supplied to the CPU core 11.
 周波数制御部15は、クロック信号CPU CLKが入力されるとともに、制御回路14からの周波数設定信号fsetが入力される。周波数制御部15は、周波数設定信号fsetに応じて逓倍率(あるいは分周比)を制御して、クロック信号CPU CLKを基に、周波数設定信号fsetに応じた周波数のクロック信号clk-cを生成して出力する。周波数制御部15は、例えばPLL(Phase Locked Loop)回路である。 The frequency control unit 15 receives the clock signal CPU CLK and the frequency setting signal fset from the control circuit 14. The frequency control unit 15 controls the multiplication rate (or division ratio) according to the frequency setting signal fset, and generates the clock signal clk-c having the frequency according to the frequency setting signal fset based on the clock signal CPU CLK. And output. The frequency controller 15 is, for example, a PLL (Phase Locked Loop) circuit.
 スキャン制御部17は、CPU10におけるスキャン動作を制御する。例えば、スキャン制御部17による制御により、メモリ18から読み出したデータ等(scan dat/ctr)をスキャンシフト動作によってDVFS用テーブル12に書き込むことが可能である。メモリ18は、例えば不揮発性メモリであり、CPU11で実行するプログラムやDVFS用テーブル12の初期設定値が格納されている。 The scan control unit 17 controls the scan operation in the CPU 10. For example, the data read from the memory 18 (scan dat / ctr) can be written into the DVFS table 12 by the scan shift operation under the control of the scan control unit 17. The memory 18 is, for example, a nonvolatile memory, and stores a program executed by the CPU 11 and initial setting values of the DVFS table 12.
 電圧制御部19は、供給される電源を基に、制御回路14からの電圧設定信号vsetに応じた電圧値の電源電圧vdd-cを生成して出力する。電圧制御部19は、例えば電圧制御を行うVRM(Voltage Regulator Module)、DC-DCコンバータである。なお、図1において、電圧制御部19は、CPU10の外部に設けているが、CPU10の内部に設けるようにしても良い。 The voltage control unit 19 generates and outputs a power supply voltage vdd-c having a voltage value corresponding to the voltage setting signal vset from the control circuit 14 based on the supplied power. The voltage control unit 19 is, for example, a VRM (Voltage Regulator Module) or a DC-DC converter that performs voltage control. In FIG. 1, the voltage control unit 19 is provided outside the CPU 10, but may be provided inside the CPU 10.
 また、図1において、信号tb_wtは、DVFS用テーブル12に係るライト制御信号であり、信号tb_selは、DVFS用テーブル12内のデータ(情報)の組を選択する制御信号である。信号tb_rdは、DVFS用テーブル12に係るリード制御信号であり、信号tb_scanは、DVFS用テーブル12に対するスキャン信号である。 Further, in FIG. 1, a signal tb_wt is a write control signal related to the DVFS table 12, and a signal tb_sel is a control signal for selecting a set of data (information) in the DVFS table 12. The signal tb_rd is a read control signal related to the DVFS table 12, and the signal tb_scan is a scan signal for the DVFS table 12.
 また、信号reqは、DVFS用テーブル12の設定動作、DVFS用テーブル12内のデータ値による周波数設定及び電圧設定、DVFS用テーブル12の参照を行うための要求信号である。信号infoは、DVFS用テーブル12への設定要求に対する応答信号(設定ステータスやDVFS用テーブル12内のデータ等)である。信号ctrは、制御回路14に対する制御信号である。また、信号cpm_ctrは、CPM回路13を起動及びキャリブレーションする制御信号であり、信号cpm_dlyは、CPM回路13の動作により得られるタイミングマージン情報信号である。信号scanは、スキャンシフト動作によるデータ設定に係る信号である。 The signal req is a request signal for performing the setting operation of the DVFS table 12, the frequency setting and the voltage setting by the data value in the DVFS table 12, and referring to the DVFS table 12. The signal info is a response signal to the setting request to the DVFS table 12 (setting status, data in the DVFS table 12, etc.). The signal ctr is a control signal for the control circuit 14. The signal cpm_ctr is a control signal for starting and calibrating the CPM circuit 13, and the signal cpm_dly is a timing margin information signal obtained by the operation of the CPM circuit 13. The signal scan is a signal related to data setting by the scan shift operation.
 図2は、図1に示したCPU10におけるDVFS用テーブル設定に係る構成例を示す図である。図2において、図1に示した構成要素と同一の機能を有する構成要素には同一の符号を付している。本実施形態においては、DVFS用テーブル12には、起動時の初期値として、一部は実際に試験を行って測定した動作周波数と電源電圧値との組が設定され、残りはシミュレーションにより得られた動作周波数と電源電圧値との組が設定される。そして、CPU10の起動時に、制御回路14は、測定により得られた動作周波数及び電源電圧値を設定してCPM回路13のキャリブレーション処理を行う。制御回路14は、このキャリブレーション処理により得られたキャリブレーション値を、シミュレーションにより得られた(測定していない)動作周波数と電源電圧値との組のキャリブレーション値として流用し、CPM回路13を利用して測定していない動作周波数に対する適切な電源電圧値を求める。 FIG. 2 is a diagram showing a configuration example relating to the DVFS table setting in the CPU 10 shown in FIG. In FIG. 2, components having the same functions as those shown in FIG. In this embodiment, in the DVFS table 12, a set of the operating frequency and the power supply voltage value measured by actually performing a test is set as an initial value at the time of startup, and the rest is obtained by simulation. A set of the operating frequency and the power supply voltage value is set. When the CPU 10 is activated, the control circuit 14 sets the operating frequency and the power supply voltage value obtained by the measurement and performs the calibration process for the CPM circuit 13. The control circuit 14 diverts the calibration value obtained by the calibration process as a calibration value of a set of the operating frequency and the power supply voltage value obtained by simulation (not measured) and uses the CPM circuit 13. Obtain an appropriate power supply voltage value for the operating frequency that is not being measured.
 DVFS用テーブル12は、DVFS制御で用いる動作周波数と電源電圧値を設定するテーブルであり、図3に示すように、選択デコーダ21及びレジスタ22~26を有する複数のレジスタアレイを有する。図3は、本実施形態におけるDVFS用テーブル12の構成例を示す図である。図3において、図1、図2に示した構成要素と同一の機能を有する構成要素には同一の符号を付している。 The DVFS table 12 is a table for setting an operating frequency and a power supply voltage value used in DVFS control, and has a plurality of register arrays including a selection decoder 21 and registers 22 to 26 as shown in FIG. FIG. 3 is a diagram showing a configuration example of the DVFS table 12 in the present embodiment. 3, components having the same functions as those shown in FIGS. 1 and 2 are denoted by the same reference numerals.
 レジスタ22は、DVFS制御で用いる動作周波数を保存するレジスタであり、レジスタ23は、レジスタ22に保存されている動作周波数に対する電源電圧値を保存するレジスタである。レジスタ24は、レジスタ23に保存されている電源電圧値の状態を示すフラグレジスタであり、電源電圧値の状態としては、例えばシミュレーション値、実測値、補正値がある。レジスタ25は、CPM回路13のキャリブレーションのグループを示すレジスタであり、レジスタ26は、CPM回路13のキャリブレーション値を保存するレジスタである。 The register 22 is a register that stores an operating frequency used in DVFS control, and the register 23 is a register that stores a power supply voltage value corresponding to the operating frequency stored in the register 22. The register 24 is a flag register indicating the state of the power supply voltage value stored in the register 23. Examples of the state of the power supply voltage value include a simulation value, an actual measurement value, and a correction value. The register 25 is a register indicating a calibration group of the CPM circuit 13, and the register 26 is a register for storing a calibration value of the CPM circuit 13.
 それぞれ1つのレジスタ22~26を組み合わせて1組のレジスタ群とし、各レジスタ群に、DVFS制御で用いる動作周波数、電源電圧値、電源電圧値の状態、CPM回路13のキャリブレーションのグループ及びキャリブレーション値が格納される。レジスタ群(レジスタ22~26の組)は、選択デコーダ21による制御信号tb_selに応じた選択によって任意に選択可能である。 Each register 22 to 26 is combined to form one register group, and each register group includes an operating frequency, a power supply voltage value, a power supply voltage value state used in DVFS control, a calibration group of the CPM circuit 13 and a calibration. Stores the value. The register group (a set of registers 22 to 26) can be arbitrarily selected by selection according to the control signal tb_sel by the selection decoder 21.
 また、DVFS用テーブル12内のレジスタ22~26は、制御回路14からの、ライトデータ/制御に係る信号tb_wt、レジスタの組の選択/制御に係る信号tb_sel、及びリードデータ/制御に係る信号tb_rdによりデータの書き込みや読み出しが可能である。また、DVFS用テーブル12内のレジスタ22~26は、制御回路14からのスキャン信号/制御に係る信号tb_scanに応じたスキャンシフト動作によってもデータの書き込みや読み出しが可能である。 Further, the registers 22 to 26 in the DVFS table 12 include a signal tb_wt related to write data / control, a signal tb_sel related to selection / control of a register set, and a signal tb_rd related to read data / control from the control circuit 14. Thus, data can be written and read. Further, the registers 22 to 26 in the DVFS table 12 can write and read data by a scan shift operation corresponding to the scan signal / control signal tb_scan from the control circuit 14.
 CPM回路13は、電源電圧vdd-cの変化に応じて遅延変化(ディレイ変化)を検出する回路であり、図4に示すように、パルス発生部31、オフセット部32、クリティカルパス部33、論理積(AND)演算部35、変換部36、及びマージン情報信号出力部39を有する。図4は、本実施形態におけるCPM回路13の構成例を示す図である。図4において、図1、図2に示した構成要素と同一の機能を有する構成要素には同一の符号を付している。 The CPM circuit 13 is a circuit that detects a delay change (delay change) in accordance with a change in the power supply voltage vdd-c. As shown in FIG. 4, the pulse generator 31, the offset unit 32, the critical path unit 33, the logic It has a product (AND) operation unit 35, a conversion unit 36, and a margin information signal output unit 39. FIG. 4 is a diagram illustrating a configuration example of the CPM circuit 13 in the present embodiment. 4, components having the same functions as those shown in FIGS. 1 and 2 are denoted by the same reference numerals.
 パルス発生部31は、制御回路14からの信号cpm_ctrに含まれるイネーブル信号enableに基づいて、CPM回路13におけるタイミングマージン観測のためのパルス信号を発生して出力する。オフセット部32は、制御回路14からの信号cpm_ctrに含まれるキャリブレーション信号calibに基づいて、パルス発生部31で発生したパルス信号に時間的なオフセット(遅延)を付加する。クリティカルパス部33の複数のレプリカパス34-1、34-2、…、34-nが有するデバイスは、CPU10内のデバイスも含めてプロセスばらつきの影響を受けるが、オフセット部32でのオフセットの付加によりタイミングマージンの指標を調整することが可能である。 The pulse generator 31 generates and outputs a pulse signal for timing margin observation in the CPM circuit 13 based on the enable signal enable included in the signal cpm_ctr from the control circuit 14. The offset unit 32 adds a time offset (delay) to the pulse signal generated by the pulse generation unit 31 based on the calibration signal calib included in the signal cpm_ctr from the control circuit 14. The devices of the plurality of replica paths 34-1, 34-2,..., 34-n of the critical path unit 33 are affected by process variations including the devices in the CPU 10, but an offset is added by the offset unit 32. Thus, the timing margin index can be adjusted.
 クリティカルパス部33は、複数のレプリカパス34-1、34-2、…、34-n(nは2以上の整数)を有し、入力されるパルス信号をそれぞれのレプリカパス34-1、34-2、…、34-nにて伝搬して出力する。レプリカパス34-1、34-2、…、34-nは、回路構成が異なるが、各パスにおける遅延(ディレイ)が合わせられている。 The critical path unit 33 has a plurality of replica paths 34-1, 34-2,..., 34-n (n is an integer of 2 or more), and an input pulse signal is input to each replica path 34-1, 34. Propagate at -2, ..., 34-n and output. The replica paths 34-1, 34-2,..., 34-n have different circuit configurations, but the delays in each path are matched.
 AND演算部35は、クリティカルパス部33の複数のレプリカパス34-1、34-2、…、34-nからの出力を論理積演算し、演算結果を出力する。すなわち、AND演算部35は、レプリカパス34-1、34-2、…、34-nのすべてから、伝搬されたパルス信号が出力されたことを検出すると、出力をアサートする。つまり、AND演算部35は、複数のレプリカパス34-1、34-2、…、34-nの内のワーストパスでの遅延を検出する。 The AND operation unit 35 performs an AND operation on outputs from the plurality of replica paths 34-1, 34-2,..., 34-n of the critical path unit 33, and outputs an operation result. That is, when the AND operation unit 35 detects that the propagated pulse signal is output from all of the replica paths 34-1, 34-2,..., 34-n, the AND operation unit 35 asserts the output. That is, the AND operation unit 35 detects a delay in the worst path among the plurality of replica paths 34-1, 34-2,..., 34-n.
 変換部36は、複数の遅延回路37-1、37-2、…、及び複数のフリップフロップ38-1、38-2、…38-m(mは2以上の整数)を有する。遅延回路37-1、37-2、…は、縦属接続(カスケード接続)されている。AND演算部35の出力が、初段の遅延回路37-1及びフリップフロップ38-1に入力される。また、遅延回路37-(i-1)(i=2~mの整数)の出力が、遅延回路37-i及びフリップフロップ38-iに入力される。フリップフロップ38-1、38-2、…38-mのそれぞれは、入力を同期して取り込んで出力する。したがって、フリップフロップ38-1、38-2、…38-mの出力値が変化しているエッジを検出することで、タイミングマージンが観測可能である。マージン情報信号出力部39は、変換部36の複数のフリップフロップ38-1、38-2、…38-mに基づいて、マージン情報信号cpm_dlyを生成し出力する。 The conversion unit 36 includes a plurality of delay circuits 37-1, 37-2,..., And a plurality of flip-flops 38-1, 38-2, ... 38-m (m is an integer of 2 or more). The delay circuits 37-1, 37-2,... Are connected in cascade (cascade connection). The output of the AND operation unit 35 is input to the delay circuit 37-1 and the flip-flop 38-1 in the first stage. The output of the delay circuit 37- (i−1) (i = 2 to m) is input to the delay circuit 37-i and the flip-flop 38-i. Each of the flip-flops 38-1, 38-2,..., 38-m takes the input in synchronization and outputs it. Therefore, the timing margin can be observed by detecting the edge where the output value of the flip-flops 38-1, 38-2,. The margin information signal output unit 39 generates and outputs a margin information signal cpm_dly based on the plurality of flip-flops 38-1, 38-2,.
 制御回路14は、DVFS制御に係る各種の制御を行う回路であり、図5に示すように、DVFSテーブル設定動作制御部41、DVFSテーブル制御部42、及びCPM制御部43を有する。図5は、本実施形態における制御回路14の構成例を示す図である。図5において、図1、図2に示した構成要素と同一の機能を有する構成要素には同一の符号を付している。 The control circuit 14 is a circuit that performs various controls related to DVFS control, and includes a DVFS table setting operation control unit 41, a DVFS table control unit 42, and a CPM control unit 43, as shown in FIG. FIG. 5 is a diagram illustrating a configuration example of the control circuit 14 in the present embodiment. In FIG. 5, components having the same functions as those shown in FIGS. 1 and 2 are denoted by the same reference numerals.
 DVFSテーブル設定動作制御部41は、DVFS用テーブル12の設定に係る動作を制御する。DVFSテーブル設定動作制御部41は、シーケンス制御部44、周波数設定レジスタ45、電圧値設定レジスタ46、マージン確認部47、電圧値の増減制御部48、及びテーブル更新データ生成部49を有する。シーケンス制御部44は、DVFS用テーブル12の設定におけるCPM回路13のキャリブレーション動作やCPM回路13を利用した電源電圧値の設定動作を制御する。 The DVFS table setting operation control unit 41 controls the operation related to the setting of the DVFS table 12. The DVFS table setting operation control unit 41 includes a sequence control unit 44, a frequency setting register 45, a voltage value setting register 46, a margin confirmation unit 47, a voltage value increase / decrease control unit 48, and a table update data generation unit 49. The sequence control unit 44 controls the calibration operation of the CPM circuit 13 in the setting of the DVFS table 12 and the setting operation of the power supply voltage value using the CPM circuit 13.
 周波数設定レジスタ45は、DVFS制御での装置の動作周波数の設定値を示すレジスタである。周波数設定レジスタ45は、DVFSテーブル制御部42を介してDVFS用テーブル12から読み出された動作周波数の設定値が設定され、設定値に応じた周波数設定信号fsetを出力する。 The frequency setting register 45 is a register indicating a set value of the operating frequency of the apparatus under DVFS control. The frequency setting register 45 is set with the operating frequency setting value read from the DVFS table 12 via the DVFS table control unit 42 and outputs a frequency setting signal fset corresponding to the setting value.
 電圧値設定レジスタ46は、DVFS制御での装置の電源電圧の設定値を示すレジスタである。電圧値設定レジスタ46は、DVFSテーブル制御部42を介してDVFS用テーブル12から読み出された電源電圧の設定値、又はCPM回路13からのタイミングマージン情報信号cpm_dlyにより決まる電源電圧の設定値が設定され、設定値に応じた電圧設定信号vsetを出力する。 The voltage value setting register 46 is a register that indicates a setting value of the power supply voltage of the apparatus under DVFS control. The voltage value setting register 46 sets a power supply voltage setting value read from the DVFS table 12 via the DVFS table control unit 42 or a power supply voltage setting value determined by the timing margin information signal cpm_dly from the CPM circuit 13. Then, a voltage setting signal vset corresponding to the set value is output.
 マージン確認部47は、CPM回路13からのタイミングマージン情報信号cpm_dlyに基づいて、DVFS制御時におけるマージンを判断する。マージン確認部47は、CPM回路13のキャリブレーション動作時には、タイミングマージン情報信号cpm_dlyに基づいてCPM回路13のキャリブレーションを行うか否かを判断する。また、マージン確認部47は、CPM回路13を利用した電源電圧値の調整時には、タイミングマージン情報信号cpm_dly及び許容値から電圧値のマージンを判断する。 The margin confirmation unit 47 determines a margin at the time of DVFS control based on the timing margin information signal cpm_dly from the CPM circuit 13. The margin confirmation unit 47 determines whether to calibrate the CPM circuit 13 based on the timing margin information signal cpm_dly during the calibration operation of the CPM circuit 13. Further, the margin confirmation unit 47 determines the margin of the voltage value from the timing margin information signal cpm_dly and the allowable value when adjusting the power supply voltage value using the CPM circuit 13.
 電圧値の増減制御部48は、CPM回路13を利用した電源電圧値の調整時に、マージン確認部47の判断結果に基づいて電源電圧の設定値に対する増減制御を行う。テーブル更新データ生成部49は、CPM回路13のキャリブレーション動作やCPM回路13を利用した電源電圧値の設定動作において、DVFS用テーブル12に書き込む更新データを生成する。テーブル更新データ生成部49は、例えば電源電圧値、電源電圧値の状態、キャリブレーション値を生成する。 The voltage value increase / decrease control unit 48 performs increase / decrease control on the set value of the power supply voltage based on the determination result of the margin confirmation unit 47 when the power supply voltage value is adjusted using the CPM circuit 13. The table update data generation unit 49 generates update data to be written to the DVFS table 12 in the calibration operation of the CPM circuit 13 or the power supply voltage value setting operation using the CPM circuit 13. The table update data generation unit 49 generates, for example, a power supply voltage value, a state of the power supply voltage value, and a calibration value.
 DVFSテーブル制御部42は、DVFS用テーブル12に対するデータの書き込み及び読み出しを制御する。DVFSテーブル制御部42は、ライト/リード制御部50、及びレジスタ51、52を有する。ライト/リード制御部50は、DVFSテーブル設定動作制御部41からの信号に基づいて、データの書き込み及び読み出しを行うDVFS用テーブル12のデータの組を選択するための信号tb_selを生成して出力する。レジスタ51は、DVFS用テーブル12への書き込みデータを保持するレジスタであり、レジスタ52は、DVFS用テーブル12からの読み出しデータを保持するレジスタである。 The DVFS table control unit 42 controls writing and reading of data with respect to the DVFS table 12. The DVFS table control unit 42 includes a write / read control unit 50 and registers 51 and 52. Based on the signal from the DVFS table setting operation control unit 41, the write / read control unit 50 generates and outputs a signal tb_sel for selecting a data set of the DVFS table 12 for writing and reading data. . The register 51 is a register that holds write data to the DVFS table 12, and the register 52 is a register that holds read data from the DVFS table 12.
 CPM制御部43は、CPM回路13の動作を制御する。CPM制御部43は、回路動作制御部54及びキャリブレーション制御部55を有する。回路動作制御部54は、DVFSテーブル設定動作制御部41からの起動信号cpm_enbに応じて、CPM回路13の起動を制御する。キャリブレーション制御部55は、DVFSテーブル設定動作制御部41のマージン確認部47の出力に応じて、CPM回路13のキャリブレーション値を生成して出力する。 The CPM control unit 43 controls the operation of the CPM circuit 13. The CPM control unit 43 includes a circuit operation control unit 54 and a calibration control unit 55. The circuit operation control unit 54 controls the activation of the CPM circuit 13 according to the activation signal cpm_enb from the DVFS table setting operation control unit 41. The calibration control unit 55 generates and outputs a calibration value of the CPM circuit 13 in accordance with the output of the margin confirmation unit 47 of the DVFS table setting operation control unit 41.
 次に、本実施形態におけるDVFS用テーブルの設定に係る動作について説明する。図6は、本実施形態におけるDVFS用テーブルの設定の動作例を示すフローチャートである。なお、図6に示す各処理は、試験時にステップS101の処理が行われ、その後の装置の起動時にステップS102及びS103の処理が行われる。 Next, an operation related to the setting of the DVFS table in the present embodiment will be described. FIG. 6 is a flowchart showing an operation example of setting the DVFS table in the present embodiment. In addition, each process shown in FIG. 6 performs the process of step S101 at the time of a test, and performs the process of step S102 and S103 at the time of starting of an apparatus after that.
 まず、試験装置により実際に動作させる試験を演算処理装置としてのCPU10で行い、DVFS制御での動作周波数に対して、正常に動作する電源電圧値を測定により求める(S101)。このステップS101における試験による電源電圧値の実測は、DVFS制御において制御し得るすべての動作周波数に対しては行わずに、一部の動作周波数に対して行う。このように、すべての動作周波数に対して試験を行うのではなく、一部の動作周波数に対して試験を行うことで、試験時間の増大を抑制することができる。ここで、試験を行うことによって測定された動作周波数に対する電源電圧値は、測定対象となったCPU10と関連付けて、任意の記憶装置等に保存しておく。 First, a test that is actually operated by the test apparatus is performed by the CPU 10 as an arithmetic processing unit, and a power supply voltage value that operates normally is obtained by measurement with respect to the operating frequency in the DVFS control (S101). The actual measurement of the power supply voltage value by the test in step S101 is performed not for all the operating frequencies that can be controlled in the DVFS control but for some operating frequencies. In this way, it is possible to suppress an increase in test time by performing tests for some operating frequencies instead of performing tests for all operating frequencies. Here, the power supply voltage value with respect to the operating frequency measured by performing the test is stored in an arbitrary storage device or the like in association with the CPU 10 to be measured.
 次に、CPU10の起動時に、制御回路14は、ステップS101において測定された動作周波数及び電源電圧値(実測値)を設定して、CPM回路13のキャリブレーション処理を行う(S102)。このステップS102におけるCPM回路13のキャリブレーション処理により、測定された動作周波数及び電源電圧値の組に対するCPM回路13のキャリブレーション値が得られる。制御回路14は、得られたCPM回路13のキャリブレーション値をDVFS用テーブル12に書き込む。また、CPM回路13のキャリブレーション値は、同じキャリブレーションのグループの測定していない動作周波数及び電源電圧値の組に対しても流用するので、制御回路14は、DVFS用テーブル12における同じグループの測定していない動作周波数及び電源電圧値の組に対してもキャリブレーション値を書き込む。 Next, when the CPU 10 is activated, the control circuit 14 sets the operating frequency and power supply voltage value (actual measurement value) measured in step S101, and performs calibration processing of the CPM circuit 13 (S102). By the calibration process of the CPM circuit 13 in step S102, the calibration value of the CPM circuit 13 for the set of the measured operating frequency and power supply voltage value is obtained. The control circuit 14 writes the obtained calibration value of the CPM circuit 13 in the DVFS table 12. In addition, since the calibration value of the CPM circuit 13 is also used for a set of operating frequencies and power supply voltage values that are not measured in the same calibration group, the control circuit 14 can be used for the same group in the DVFS table 12. A calibration value is also written to a set of operating frequency and power supply voltage value that has not been measured.
 次に、制御回路14は、測定していない動作周波数及び電源電圧値(シミュレーション値)を設定して、CPM回路13を利用し、その動作周波数に対して正常に動作する電源電圧値を求める(S103)。制御回路14は、ステップS102において得られたキャリブレーション値でキャリブレーションされたCPM回路13からのタイミングマージン情報に基づき、動作周波数に対する電源電圧値の最適化を行う。このように、実測値によりキャリブレーションされたCPM回路13を用いて動作周波数に対する電源電圧値を求めることで、対象のCPU10におけるプロセスばらつきを考慮した電源電圧値を得ることができる。そして、制御回路14は、得られた電源電圧値等をDVFS用テーブル12に書き込む。以上のようにして、DVFS制御での動作周波数に対する電源電圧値の設定を行う。 Next, the control circuit 14 sets an operating frequency and a power supply voltage value (simulation value) that are not measured, and uses the CPM circuit 13 to obtain a power supply voltage value that operates normally with respect to the operating frequency ( S103). The control circuit 14 optimizes the power supply voltage value with respect to the operating frequency based on the timing margin information from the CPM circuit 13 calibrated with the calibration value obtained in step S102. In this way, by obtaining the power supply voltage value with respect to the operating frequency using the CPM circuit 13 calibrated with the actually measured values, it is possible to obtain the power supply voltage value in consideration of process variations in the target CPU 10. Then, the control circuit 14 writes the obtained power supply voltage value and the like in the DVFS table 12. As described above, the power supply voltage value with respect to the operating frequency in the DVFS control is set.
 以下、前述したステップS101~S103での動作を詳細に説明する。
 図7は、図6に示したステップS101での動作例を示すフローチャートである。試験装置を用いて、DVFS制御で用いる動作周波数の一部について、シミュレーションにより見積もった動作周波数及び電源電圧値で、演算処理装置としてのCPU10の試験を開始する(S201)。そして、試験装置で電源電圧値を変えながら試験を行うことで、動作周波数に対し、正常に動作する電源電圧値をマージンも含めて測定する(S202)。次に、DVFS用テーブル12の設定データとして使用するために、試験で測定された動作周波数に対する電源電圧値を、測定対象となったCPU10と関連付けて、任意の記憶装置等に保存する(S203)。これにより、DVFS制御で用いる動作周波数の一部について、マージンも含めた電源電圧値が測定により求まる。
Hereinafter, the operation in steps S101 to S103 will be described in detail.
FIG. 7 is a flowchart showing an operation example in step S101 shown in FIG. Using the test apparatus, a test of the CPU 10 as the arithmetic processing apparatus is started at a part of the operation frequency used in the DVFS control with the operation frequency and the power supply voltage estimated by the simulation (S201). Then, by performing a test while changing the power supply voltage value with the test apparatus, the power supply voltage value that operates normally with respect to the operating frequency is measured including the margin (S202). Next, in order to use it as setting data in the DVFS table 12, the power supply voltage value for the operating frequency measured in the test is stored in an arbitrary storage device or the like in association with the CPU 10 as the measurement target (S203). . As a result, the power supply voltage value including the margin can be obtained by measurement for a part of the operating frequency used in the DVFS control.
 図8は、図6に示したステップS102及びS103での動作例を示すフローチャートである。図8において、ステップS301~S307が、図6に示したステップS102での動作に対応し、ステップS308~S314が、図6に示したステップS103での動作に対応する。 FIG. 8 is a flowchart showing an operation example in steps S102 and S103 shown in FIG. In FIG. 8, steps S301 to S307 correspond to the operation at step S102 shown in FIG. 6, and steps S308 to S314 correspond to the operation at step S103 shown in FIG.
 まず、CPU10の起動時に、制御回路14のDVFSテーブル設定動作制御部41は、信号scan、ctrに応じてスキャンシフト動作を行い、信号tb_scanを介して、DVFS用テーブル12にデータを設定する(S301)。DVFS用テーブル12に設定するデータには、DVFS制御で用いる動作周波数、電源電圧値(シミュレーション値、実測値)、電源電圧値の状態、CPM回路13のキャリブレーションのグループ、キャリブレーション値(初期値は不定)が含まれる。 First, when the CPU 10 is activated, the DVFS table setting operation control unit 41 of the control circuit 14 performs a scan shift operation according to the signals scan and ctr, and sets data in the DVFS table 12 via the signal tb_scan (S301). ). The data set in the DVFS table 12 includes the operating frequency used in DVFS control, the power supply voltage value (simulation value, actual measurement value), the state of the power supply voltage value, the calibration group of the CPM circuit 13, and the calibration value (initial value). Is undefined).
 次に、DVFSテーブル設定動作制御部41のシーケンス制御部44は、DVFSテーブル制御部42を介してDVFS用テーブル12のデータを読み出し、テーブル12内の情報を確認する(S302)。シーケンス制御部44は、読み出したデータの電源電圧値の状態を示すフラグを確認した結果、電源電圧値が実測値であれば、DVFS用テーブル12から読み出したデータの動作周波数及び電源電圧値(実測値)を周波数設定レジスタ45及び電圧値設定レジスタ46に設定する(S303)。DVFSテーブル設定動作制御部41は、信号ctrを用いて、CPUコア11に供給されるクロック信号clk-c及び電源電圧vdd-cの設定、及び正しく設定されたことの確認を行う。 Next, the sequence control unit 44 of the DVFS table setting operation control unit 41 reads the data of the DVFS table 12 via the DVFS table control unit 42 and confirms the information in the table 12 (S302). As a result of checking the flag indicating the state of the power supply voltage value of the read data, if the power supply voltage value is an actual measurement value, the sequence control unit 44 determines the operating frequency and the power supply voltage value (actual measurement) of the data read from the DVFS table 12. Value) is set in the frequency setting register 45 and the voltage value setting register 46 (S303). The DVFS table setting operation control unit 41 uses the signal ctr to set the clock signal clk-c and the power supply voltage vdd-c supplied to the CPU core 11 and confirm that they are set correctly.
 そして、CPM制御部43は、信号cpm_ctrを介してCPM回路13のキャリブレーションを行う。CPM制御部43は、例えば図9に示すようにCPM回路13の変換部36の出力値が変化しているエッジが中央になるように、CPM回路13のキャリブレーション値を変更する(S304)。 The CPM control unit 43 calibrates the CPM circuit 13 via the signal cpm_ctr. For example, as shown in FIG. 9, the CPM control unit 43 changes the calibration value of the CPM circuit 13 so that the edge where the output value of the conversion unit 36 of the CPM circuit 13 is changing becomes the center (S304).
 CPM回路13のキャリブレーションが完了すると、DVFSテーブル設定動作制御部41は、得られたキャリブレーション値を、DVFSテーブル制御部42を介してDVFS用テーブル12に書き込む(S305)。このとき、DVFSテーブル設定動作制御部41は、処理対象の実測値の動作周波数及び電源電圧値の組に加え、同じキャリブレーションのグループの動作周波数及び電源電圧値の組に対しても、同じキャリブレーション値を書き込む。また、DVFSテーブル設定動作制御部41は、処理対象の実測値の動作周波数及び電源電圧値の組における電源電圧値の状態を示すフラグをキャリブレーション済に設定する(S306)。 When the calibration of the CPM circuit 13 is completed, the DVFS table setting operation control unit 41 writes the obtained calibration value into the DVFS table 12 via the DVFS table control unit 42 (S305). At this time, the DVFS table setting operation control unit 41 performs the same calibration for the set of the operating frequency and the power supply voltage value of the same calibration group in addition to the set of the operating frequency and the power supply voltage value of the actual measurement value to be processed. Write the action value. Further, the DVFS table setting operation control unit 41 sets a flag indicating the state of the power supply voltage value in the set of the operation frequency and the power supply voltage value of the actually measured value to be processed to be calibrated (S306).
 続いて、シーケンス制御部44は、CPM回路13のキャリブレーションが必要な実測値の動作周波数及び電源電圧値の組がDVFS用テーブル12にあるか否かを判断する(S307)。シーケンス制御部44は、DVFS用テーブル12から読み出したデータを基に、CPM回路13のキャリブレーションを行っていない、すなわち電源電圧値の状態を示すフラグがキャリブレーション済となっていない実測値の動作周波数及び電源電圧値の組があるか否かを判断する。 Subsequently, the sequence control unit 44 determines whether or not the DVFS table 12 includes a set of the actual operation frequency and the power supply voltage value that require calibration of the CPM circuit 13 (S307). The sequence control unit 44 does not calibrate the CPM circuit 13 based on the data read from the DVFS table 12, that is, the operation of the actual measurement value in which the flag indicating the state of the power supply voltage value is not calibrated. It is determined whether there is a set of frequency and power supply voltage value.
 判断の結果、CPM回路13のキャリブレーションが必要な実測値の動作周波数及び電源電圧値の組がある場合にはステップS303に戻って前述した動作を行う。一方、CPM回路13のキャリブレーションが必要な実測値の動作周波数及び電源電圧値の組がない場合には、ステップS308に進む。このようにして、CPM回路13のキャリブレーションを、DVFS用テーブル12の動作周波数及び電源電圧値の各組について電源電圧値の状態を示すフラグを確認しながら行うことで、DVFS用テーブル12の動作周波数及び電源電圧値のすべての組についてCPM回路13のキャリブレーション値を設定することが可能である。 As a result of the determination, if there is a set of the measured operating frequency and power supply voltage value that require calibration of the CPM circuit 13, the process returns to step S303 to perform the above-described operation. On the other hand, if there is no set of the measured operating frequency and power supply voltage value that require calibration of the CPM circuit 13, the process proceeds to step S308. In this way, the calibration of the CPM circuit 13 is performed while confirming the flag indicating the state of the power supply voltage value for each set of the operating frequency and the power supply voltage value in the DVFS table 12, so that the operation of the DVFS table 12 is performed. It is possible to set the calibration value of the CPM circuit 13 for all sets of frequency and power supply voltage value.
 次に、シーケンス制御部44は、DVFSテーブル制御部42を介してDVFS用テーブル12のデータを読み出し、読み出したデータの電源電圧値の状態を示すフラグを確認する(S308)。そして、シーケンス制御部44は、DVFS用テーブル12に、電源電圧値の状態を示すフラグがキャリブレーション済となっていないシミュレーション値の動作周波数及び電源電圧値の組があるか否かを判断する(S309)。 Next, the sequence control unit 44 reads the data in the DVFS table 12 via the DVFS table control unit 42 and checks the flag indicating the state of the power supply voltage value of the read data (S308). Then, the sequence control unit 44 determines whether or not the DVFS table 12 includes a combination of the operating frequency and the power supply voltage value of the simulation value in which the flag indicating the state of the power supply voltage value has not been calibrated ( S309).
 シーケンス制御部44は、読み出したデータの電源電圧値の状態を示すフラグが、キャリブレーション済でないシミュレーション値であれば、その動作周波数及び電源電圧値(シミュレーション値)を周波数設定レジスタ45及び電圧値設定レジスタ46に設定する(S310)。DVFSテーブル設定動作制御部41は、信号ctrを用いて、CPUコア11に供給されるクロック信号clk-c及び電源電圧vdd-cの設定、及び正しく設定されたことの確認を行う。 If the flag indicating the state of the power supply voltage value of the read data is a simulation value that has not been calibrated, the sequence control unit 44 sets the operating frequency and power supply voltage value (simulation value) to the frequency setting register 45 and the voltage value setting. It is set in the register 46 (S310). The DVFS table setting operation control unit 41 uses the signal ctr to set the clock signal clk-c and the power supply voltage vdd-c supplied to the CPU core 11 and confirm that they are set correctly.
 そして、CPM制御部43は、信号cpm_ctrを介してCPM回路13を動作させる。このとき、DVFS用テーブル12に設定済みのCPM回路13のキャリブレーション値が適用される。DVFSテーブル設定動作制御部41のマージン確認部47は、信号cpm_dlyにより設定した動作周波数に対するタイミングマージンを確認する(S311)。 Then, the CPM control unit 43 operates the CPM circuit 13 via the signal cpm_ctr. At this time, the calibration value of the CPM circuit 13 that has been set in the DVFS table 12 is applied. The margin confirmation unit 47 of the DVFS table setting operation control unit 41 confirms the timing margin for the operation frequency set by the signal cpm_dly (S311).
 次に、DVFSテーブル設定動作制御部41は、電源電圧値のキャリブレーションが必要であるか否かを判断する(S312)。DVFSテーブル設定動作制御部41は、確認されたタイミングマージンが予め定めた許容値を超えると電源電圧値のキャリブレーションが必要であると判断し、超えていなければ電源電圧値のキャリブレーションが必要ないと判断する。 Next, the DVFS table setting operation control unit 41 determines whether or not calibration of the power supply voltage value is necessary (S312). The DVFS table setting operation control unit 41 determines that the power supply voltage value needs to be calibrated when the confirmed timing margin exceeds a predetermined allowable value, and if not, the power supply voltage value need not be calibrated. Judge.
 判断の結果、電源電圧値のキャリブレーションが必要である場合には、DVFSテーブル設定動作制御部41の電圧値の増減制御部48は、タイミングマージンが許容値以上であれば電源電圧値を下げ、タイミングマージンが許容値以下であれば電源電圧値を上げて、電圧値設定レジスタ46に設定する。そして、タイミングマージンを再度確認することで、DVFSテーブル設定動作制御部41は、設定した動作周波数に対する電源電圧値の調整を行う(S313)。例えば図9に示すようにCPM回路13の変換部36の出力値が変化しているエッジが中央になるように、電源電圧値を変更する。 If the power supply voltage value needs to be calibrated as a result of the determination, the voltage value increase / decrease control unit 48 of the DVFS table setting operation control unit 41 reduces the power supply voltage value if the timing margin is greater than or equal to an allowable value. If the timing margin is less than the allowable value, the power supply voltage value is increased and set in the voltage value setting register 46. Then, by checking the timing margin again, the DVFS table setting operation control unit 41 adjusts the power supply voltage value with respect to the set operating frequency (S313). For example, as shown in FIG. 9, the power supply voltage value is changed so that the edge where the output value of the conversion unit 36 of the CPM circuit 13 is changing becomes the center.
 そして、許容値内にタイミングマージンが入ると、DVFSテーブル設定動作制御部41は、DVFSテーブル制御部42を介してDVFS用テーブル12に、電圧値設定レジスタ46に設定されている電源電圧値を書き込むとともに、その電源電圧値の状態を示すフラグをキャリブレーション済に設定する(S314)。 When the timing margin falls within the allowable value, the DVFS table setting operation control unit 41 writes the power supply voltage value set in the voltage value setting register 46 to the DVFS table 12 via the DVFS table control unit 42. At the same time, a flag indicating the state of the power supply voltage value is set to have been calibrated (S314).
 このようにして、電源電圧値の状態を示すフラグがキャリブレーション済となっていないシミュレーション値の動作周波数及び電源電圧値の組がなくなるまで繰り返して、電源電圧値の調整を行い、DVFS用テーブル12内のすべての組について動作周波数及び電源電圧値を設定する。そして、設定が完了すると、DVFSテーブル設定動作制御部41は、信号infoによりDVFS用テーブル12のデータが確定されたことをCPUコア11に通知する。 In this manner, the power supply voltage value is adjusted repeatedly until there is no longer the combination of the operating frequency and the power supply voltage value of the simulation value for which the flag indicating the state of the power supply voltage value has not been calibrated, and the DVFS table 12 The operating frequency and power supply voltage value are set for all of the sets. When the setting is completed, the DVFS table setting operation control unit 41 notifies the CPU core 11 that the data of the DVFS table 12 has been determined by the signal info.
 なお、電源電圧値を調整する際に、電源電圧値を変化させてもタイミングマージンが許容値に入らない場合には、DVFSテーブル設定動作制御部41が、信号infoによりDVFS用テーブル12の設定動作において不具合が発生したことをCPUコア11に通知するようにしても良い。また、この設定されたDVFS用テーブル12のデータを、不揮発性の記憶装置等に保持しておくことで、再度起動する際にCPM回路13のキャリブレーションやCPM回路13を利用した電源電圧値の調整に係る動作を省くことが可能である。 When adjusting the power supply voltage value, if the timing margin does not fall within the allowable value even if the power supply voltage value is changed, the DVFS table setting operation control unit 41 sets the operation of setting the DVFS table 12 using the signal info. The CPU core 11 may be notified that a problem has occurred. Further, by holding the data of the set DVFS table 12 in a nonvolatile storage device or the like, the calibration of the CPM circuit 13 or the power supply voltage value using the CPM circuit 13 at the time of starting again is obtained. It is possible to omit the operation related to the adjustment.
 図10A~図10Eは、前述したDVFS用テーブルの設定に係る動作によるDVFS用テーブル12のデータ変化の例を示す図である。DVFS用テーブル12には、インデックスind(indは0、1、2、…、Mid-x、…、Mid、…、Max-2、Max-1、Max)の各タップについての、動作周波数Find、電源電圧値Vind_sim、Vind_tst、又はVind_cpm、電源電圧値の状態、CPM回路13のキャリブレーションのグループ、キャリブレーション値が格納されている。 FIG. 10A to FIG. 10E are diagrams showing examples of data changes in the DVFS table 12 due to operations related to the setting of the DVFS table described above. In the DVFS table 12, the operating frequency Find, for each tap of the index ind (ind is 0, 1, 2,..., Mid-x,..., Mid,..., Max-2, Max-1, Max). The power supply voltage value Vind_sim, Vind_tst, or Vind_cpm, the state of the power supply voltage value, the calibration group of the CPM circuit 13, and the calibration value are stored.
 なお、図10A~図10Eにおいて、電源電圧値は、シミュレーション値をVind_simで示し、実測値をVind_tstで示し、CPM回路13を利用して得られた補正値をVind_cpmで示す。また、図10A~図10Eに示す例において、CPM回路13のキャリブレーションのグループは、インデックスindが0~2の設定値は第0グループに属し、インデックスindがMid-x~Midの設定値は第2グループに属し、インデックスindがMax-2~Midの設定値は第3グループに属するものとする。 In FIG. 10A to FIG. 10E, the power supply voltage value is indicated by Vind_sim, the simulation value is indicated by Vind_tst, and the correction value obtained by using the CPM circuit 13 is indicated by Vind_cpm. In the examples shown in FIGS. 10A to 10E, the calibration group of the CPM circuit 13 belongs to the 0th group when the index ind is 0 to 2, and the setting value where the index ind is Mid-x to Mid is It is assumed that the set values belonging to the second group and the index ind Max-2 to Mid belong to the third group.
 実際に試験を行って実測値を測定する前は、図10Aに示すように、動作周波数Findに対する電源電圧値は、すべてシミュレーション値であるVind_simとなっており、電源電圧値の状態を示すフラグは、シミュレーション値であることを示す“00”となっている。実際に試験を行って実測値を測定すると、図10Bに示すように、測定を行った動作周波数F0、Fmid、Fmaxのそれぞれに対する電源電圧値が、実測値であるV0_tst、Vmid_tst、Vmax_tstとなり、さらに図10Cに示すように、電源電圧値の状態を示すフラグが、実測値であることを示す“10”となる。 Before actually measuring and measuring the actual value, as shown in FIG. 10A, all the power supply voltage values for the operating frequency Find are Vind_sim, which is a simulation value, and the flag indicating the state of the power supply voltage value is “00” indicating the simulation value. When actually measured and measured values are measured, as shown in FIG. 10B, power supply voltage values for the measured operating frequencies F0, Fmid, and Fmax are measured values V0_tst, Vmid_tst, and Vmax_tst, respectively. As shown in FIG. 10C, the flag indicating the state of the power supply voltage value is “10” indicating the actual measurement value.
 続いて、実測された動作周波数及び電源電圧値を用いて、装置の起動時にCPM回路13のキャリブレーションを行うと、図10Dに示すように、キャリブレーションを行った電源電圧値の状態を示すフラグが、キャリブレーション済であることを示す“11”となる。また、同じキャリブレーションのグループに同じキャリブレーション値が書き込まれる。例えば、実測した動作周波数F0及び電源電圧値V0_tstに設定して行ったCPM回路13のキャリブレーションにより得られたキャリブレーション値“zzzzzzz”が第0グループのキャリブレーション値とされる。また、実測した動作周波数Fmid及び電源電圧値Vmid_tstに設定して得られたキャリブレーション値“yyyyyyy”が第2グループのキャリブレーション値とされ、実測した動作周波数Fmax及び電源電圧値Vmax_tstに設定して得られたキャリブレーション値“xxxxxxx”が第3グループのキャリブレーション値とされる。 Subsequently, when the CPM circuit 13 is calibrated at the time of starting the apparatus using the actually measured operating frequency and the power supply voltage value, as shown in FIG. 10D, a flag indicating the state of the calibrated power supply voltage value Becomes “11” indicating that calibration has been completed. Also, the same calibration value is written to the same calibration group. For example, the calibration value “zzzzzzz” obtained by the calibration of the CPM circuit 13 performed by setting the measured operating frequency F0 and the power supply voltage value V0_tst is set as the zeroth group calibration value. The calibration value “yyyyyyy” obtained by setting the measured operating frequency Fmid and the power supply voltage value Vmid_tst is set as the calibration value of the second group, and set to the measured operating frequency Fmax and the power supply voltage value Vmax_tst. The obtained calibration value “xxxxxxxx” is set as the third group calibration value.
 そして、測定していない、シミュレーション値の動作周波数及び電源電圧値の組に対してCPM回路13を利用した電源電圧値の調整を行うと、図10Eに示すように、電源電圧値の調整を行った動作周波数F1、F2、Fmid-x、Fmax-2、Fmax-1等に対する電源電圧値が、補正値であるV1_cpm、V2_cpm、Vmid-x_cpm、Vmax-2_cpm、Vmax-1_cpmとなり、電源電圧値の状態を示すフラグが、補正値(キャリブレーション済)であることを示す“01”となる。 Then, when the power supply voltage value is adjusted using the CPM circuit 13 with respect to the set of the operating frequency and the power supply voltage value of the simulation value which is not measured, the power supply voltage value is adjusted as shown in FIG. 10E. The power supply voltage values for the operating frequencies F1, F2, Fmid-x, Fmax-2, Fmax-1, etc. become the correction values V1_cpm, V2_cpm, Vmid-x_cpm, Vmax-2_cpm, Vmax-1_cpm, and the power supply voltage value The flag indicating the state is “01” indicating the correction value (calibrated).
 本実施形態によれば、DVFS用テーブル12に、電源電圧値の状態を示す情報、及びCPM回路13のキャリブレーションに係る情報を設定する。そして、DVFS制御で用いる複数の動作周波数及び電源電圧値の一部について、実際の試験を行って動作周波数に対する電源電圧値を測定し、測定していない動作周波数に対する電源電圧値は、起動時に処理することで、試験時間の増大を抑制することが可能になる。また、図15に示すように、測定していない動作周波数に対する電源電圧値は、測定された動作周波数及び電源電圧値によりキャリブレーションされたCPM回路13を利用して調整することで、プロセスばらつきに応じて最適化された電源電圧値を設定することが可能になり、電力性能を向上させることが可能となる。 According to the present embodiment, information indicating the state of the power supply voltage value and information relating to calibration of the CPM circuit 13 are set in the DVFS table 12. Then, for some of the plurality of operating frequencies and power supply voltage values used in the DVFS control, an actual test is performed to measure the power supply voltage values for the operating frequencies, and the power supply voltage values for the operating frequencies that are not measured are processed at the time of startup. This makes it possible to suppress an increase in test time. Further, as shown in FIG. 15, the power supply voltage value with respect to the unmeasured operating frequency is adjusted by using the CPM circuit 13 calibrated by the measured operating frequency and the power supply voltage value. Accordingly, an optimized power supply voltage value can be set, and the power performance can be improved.
 図15は、本実施形態における動作周波数に対する電源電圧値の設定例を示す図である。図15において、横軸が動作周波数であり、縦軸が電圧値である。また、図15において、動作周波数に対する電源電圧値V102、V104は、図13A及び図13Bに示した動作周波数に対する電源電圧値V102、V104に対応する。図15において、Cal0、Cal3、Cal5は、実際に試験を行って測定された動作周波数F0、F3、F5に対する電源電圧値でCPM回路13をキャリブレーションして得られたキャリブレーション値である。また、四角で示す印は、CPM回路13のキャリブレーション前におけるCPM回路13の出力におけるエッジが中央となる電源電圧値を示す。 FIG. 15 is a diagram showing a setting example of the power supply voltage value with respect to the operating frequency in the present embodiment. In FIG. 15, the horizontal axis is the operating frequency, and the vertical axis is the voltage value. In FIG. 15, power supply voltage values V102 and V104 with respect to the operating frequency correspond to power supply voltage values V102 and V104 with respect to the operating frequency shown in FIGS. 13A and 13B. In FIG. 15, Cal0, Cal3, and Cal5 are calibration values obtained by calibrating the CPM circuit 13 with the power supply voltage values for the operating frequencies F0, F3, and F5 actually measured in the test. Further, a mark indicated by a square indicates a power supply voltage value at which the edge of the output of the CPM circuit 13 before the calibration of the CPM circuit 13 is centered.
 なお、前述した説明では、DVFS用テーブル12の設定に係る動作は、制御回路14が制御して行うようにしているが、これに限定されるものではない。制御回路14内で値を保持するレジスタを配置し、設定に係る動作の制御は、CPUコア11がメモリ18等から読み出したプログラムを実行することで制御を行うようにしても良い。 In the above description, the operation related to the setting of the DVFS table 12 is controlled by the control circuit 14, but is not limited to this. A register for holding a value may be arranged in the control circuit 14, and the operation related to the setting may be controlled by executing a program read from the memory 18 or the like by the CPU core 11.
 なお、前述した実施形態では、演算処理装置としてのCPU10において、1つのCPM回路13を配置する例を示したが、図11に示すように複数のCPM回路13を配置するようにしても良い。例えば、複数のCPUコア11を搭載し、複数のCPUコア11共通でDVFS制御を行う場合などが考えられる。図11は、本実施形態における演算処理装置の他の構成例を示す図である。図11には、DVFS用テーブル設定に係る構成例を図示している。図11において、図1~図5に示した構成要素と同一の機能を有する構成要素には同一の符号を付している。 In the above-described embodiment, an example in which one CPM circuit 13 is arranged in the CPU 10 as the arithmetic processing device has been described. However, a plurality of CPM circuits 13 may be arranged as shown in FIG. For example, a case where a plurality of CPU cores 11 are mounted and DVFS control is performed in common with the plurality of CPU cores 11 can be considered. FIG. 11 is a diagram illustrating another configuration example of the arithmetic processing device according to the present embodiment. FIG. 11 shows a configuration example related to the DVFS table setting. In FIG. 11, components having the same functions as those shown in FIGS. 1 to 5 are denoted by the same reference numerals.
 図11に示す例では、複数のCPM回路13-1、13-2、13-3、…を有するが、DVFS用テーブル12は1つとしている。そのため、CPM制御部43にワーストパス検出部56を設け、ワーストパス検出部56が、複数のCPM回路13-1、13-2、13-3、…の内から最もタイミングマージンが劣るタイミングマージン情報、すなわちワーストパスのタイミングマージン情報を検出してマージン確認部47に出力する。これにより、前述した実施形態と同様にDVFS用テーブル12の設定を行うことが可能である。 11 has a plurality of CPM circuits 13-1, 13-2, 13-3,..., But has only one DVFS table 12. In the example shown in FIG. Therefore, the worst path detection unit 56 is provided in the CPM control unit 43, and the worst path detection unit 56 has timing margin information with the lowest timing margin among the plurality of CPM circuits 13-1, 13-2, 13-3,. That is, the worst path timing margin information is detected and output to the margin confirmation unit 47. Thereby, it is possible to set the DVFS table 12 as in the above-described embodiment.
 また、図12に示すように、DVFS用テーブル12、CPM回路13、及び制御回路14の組を複数配置するようにしても良い。例えば、複数のCPUコア11を搭載し、CPUコア11毎にDVFS制御を行う場合などが考えられる。図12は、本実施形態における演算処理装置の他の構成例を示す図である。図12には、DVFS用テーブル設定に係る構成例を図示している。図12において、図1~図5に示した構成要素と同一の機能を有する構成要素には同一の符号を付している。 Further, as shown in FIG. 12, a plurality of sets of the DVFS table 12, the CPM circuit 13, and the control circuit 14 may be arranged. For example, a case where a plurality of CPU cores 11 are mounted and DVFS control is performed for each CPU core 11 can be considered. FIG. 12 is a diagram illustrating another configuration example of the arithmetic processing device according to the present embodiment. FIG. 12 illustrates a configuration example related to the DVFS table setting. 12, components having the same functions as those shown in FIGS. 1 to 5 are given the same reference numerals.
 図12に示した例では、DVFS用テーブル12-1、CPM回路13-1、及び制御回路14-1を組とし、DVFS用テーブル12-2、CPM回路13-2、及び制御回路14-2を組とし、DVFS用テーブル12-3、CPM回路13-3、及び制御回路14-3を組として、それぞれの組で前述したDVFS用テーブルの設定の動作を独立して行えば良い。 In the example shown in FIG. 12, the DVFS table 12-1, the CPM circuit 13-1, and the control circuit 14-1 are combined, and the DVFS table 12-2, the CPM circuit 13-2, and the control circuit 14-2 are combined. The DVFS table 12-3, the CPM circuit 13-3, and the control circuit 14-3 are used as a set, and the DVFS table setting operation described above may be performed independently for each set.
 なお、本実施形態は、例えばCPU(又はMPU)及びメモリ等を有する演算処理装置が、メモリ等に記憶されたプログラムを実行することで実現でき、前記プログラムは本発明の実施形態に含まれる。また、前記プログラムを記録した記録媒体は本発明の実施形態に含まれる。前記プログラムを記録する記録媒体としては、例えばCD-ROM、フレキシブルディスク、ハードディスク、磁気テープ、光磁気ディスク、不揮発性メモリカード等を用いることができる。 Note that this embodiment can be realized by an arithmetic processing device having, for example, a CPU (or MPU) and a memory executing a program stored in the memory or the like, and the program is included in the embodiment of the present invention. A recording medium on which the program is recorded is included in an embodiment of the present invention. As the recording medium for recording the program, for example, a CD-ROM, a flexible disk, a hard disk, a magnetic tape, a magneto-optical disk, a nonvolatile memory card, or the like can be used.
 また、前記実施形態は、何れも本発明を実施するにあたっての具体化のほんの一例を示したものに過ぎず、これらによって本発明の技術的範囲が限定的に解釈されてはならないものである。すなわち、本発明はその技術思想、またはその主要な特徴から逸脱することなく、様々な形で実施することができる。 In addition, each of the above-described embodiments is merely an example of implementation in carrying out the present invention, and the technical scope of the present invention should not be interpreted in a limited manner. That is, the present invention can be implemented in various forms without departing from the technical idea or the main features thereof.
 DVFS制御を行う演算処理装置にて、DVFS制御で用いる動作周波数及び電源電圧値を測定するための試験時間の増大を抑制することが可能になり、またプロセスばらつきに応じた最適な電源電圧値を設定してDVFS制御を行うことが可能になる。 In an arithmetic processing unit that performs DVFS control, it is possible to suppress an increase in test time for measuring the operating frequency and power supply voltage value used in DVFS control, and an optimum power supply voltage value corresponding to process variations can be set. This makes it possible to perform DVFS control.

Claims (11)

  1.  動的電圧・周波数制御で用いる複数の動作周波数及び前記動作周波数に対する電源電圧値を設定するテーブルと、
     電源電圧の変化に応じて遅延変化を検出するクリティカルパスモニタ回路と、
     前記テーブル内の測定して得られた前記動作周波数及び前記電源電圧値に設定して前記クリティカルパスモニタ回路のキャリブレーションを行い、キャリブレーションされた前記クリティカルパスモニタ回路により前記テーブル内の測定していない前記動作周波数に対する前記電源電圧値の調整を行って、調整した前記電源電圧値を前記テーブルに設定する制御回路とを有することを特徴とする演算処理装置。
    A table for setting a plurality of operating frequencies used in dynamic voltage / frequency control and power supply voltage values for the operating frequencies;
    A critical path monitor circuit that detects a delay change according to a change in the power supply voltage;
    The critical path monitor circuit is calibrated by setting the operating frequency and the power supply voltage value obtained by measurement in the table, and the calibrated critical path monitor circuit performs measurement in the table. And a control circuit that adjusts the power supply voltage value for the non-operating frequency and sets the adjusted power supply voltage value in the table.
  2.  前記テーブル内の前記動作周波数及び前記電源電圧値を、各々が測定して得られた前記動作周波数に対する前記電源電圧値及び測定していない前記動作周波数に対する前記電源電圧値の両方を含む複数のグループに分け、
     前記制御回路は、測定していない前記動作周波数に対する前記電源電圧値の調整を、グループ内の測定して得られた前記動作周波数及び前記電源電圧値によってキャリブレーションされた前記クリティカルパスモニタ回路により行うことを特徴とする請求項1記載の演算処理装置。
    A plurality of groups including both the power supply voltage value for the operating frequency obtained by measuring the operating frequency and the power supply voltage value in the table, respectively, and the power supply voltage value for the operating frequency not measured; Divided into
    The control circuit adjusts the power supply voltage value with respect to the operating frequency that is not measured by the critical path monitor circuit calibrated by the operating frequency and the power supply voltage value obtained by measuring in the group. The arithmetic processing apparatus according to claim 1.
  3.  前記制御回路は、
     前記テーブル内の測定して得られた前記動作周波数及び前記電源電圧値に設定したときの前記クリティカルパスモニタ回路での遅延に応じたマージン情報に基づいてタイミングマージンを判断する判断部と、
     前記判断部での判断結果に基づいて前記クリティカルパスモニタ回路のキャリブレーションを行うキャリブレーション制御部とを有することを特徴とする請求項1記載の演算処理装置。
    The control circuit includes:
    A determination unit that determines a timing margin based on margin information corresponding to a delay in the critical path monitor circuit when the operating frequency and the power supply voltage value obtained by measurement in the table are set;
    The arithmetic processing apparatus according to claim 1, further comprising: a calibration control unit that calibrates the critical path monitor circuit based on a determination result in the determination unit.
  4.  前記制御回路は、
     前記テーブル内の測定していない前記動作周波数及び前記電源電圧値に設定したときの前記クリティカルパスモニタ回路での遅延に応じたマージン情報に基づいてタイミングマージンを判断する判断部と、
     前記判断部での判断結果に基づいて前記動作周波数に対する前記電源電圧値の増減を制御する増減制御部とを有することを特徴とする請求項1記載の演算処理装置。
    The control circuit includes:
    A determination unit that determines a timing margin based on margin information corresponding to a delay in the critical path monitor circuit when the operating frequency and the power supply voltage value not measured in the table are set;
    The arithmetic processing apparatus according to claim 1, further comprising: an increase / decrease control unit that controls increase / decrease of the power supply voltage value with respect to the operating frequency based on a determination result of the determination unit.
  5.  前記制御回路は、
     前記クリティカルパスモニタ回路での遅延に応じたマージン情報に基づいてタイミングマージンを判断する判断部と、
     前記テーブル内の測定して得られた前記動作周波数及び前記電源電圧値に設定したときの前記判断部での判断結果に基づいて前記クリティカルパスモニタ回路のキャリブレーションを行うキャリブレーション制御部と、
     前記テーブル内の測定していない前記動作周波数及び前記電源電圧値に設定したときの前記判断部での判断結果に基づいて前記動作周波数に対する前記電源電圧値の増減を制御する増減制御部とを有することを特徴とする請求項1記載の演算処理装置。
    The control circuit includes:
    A determination unit that determines a timing margin based on margin information corresponding to a delay in the critical path monitor circuit;
    A calibration control unit that calibrates the critical path monitor circuit based on a determination result in the determination unit when the operating frequency and the power supply voltage value obtained by measurement in the table are set;
    An increase / decrease control unit that controls increase / decrease of the power supply voltage value with respect to the operating frequency based on a determination result of the determination unit when the operating frequency and the power supply voltage value that are not measured in the table are set. The arithmetic processing apparatus according to claim 1.
  6.  前記クリティカルパスモニタ回路を複数有し、
     前記制御回路は、複数の前記クリティカルパスモニタ回路の内の1つの前記クリティカルパスモニタ回路を用いて、前記キャリブレーション及び前記電源電圧値の調整を行うことを特徴とする請求項1記載の演算処理装置。
    A plurality of critical path monitor circuits;
    2. The arithmetic processing according to claim 1, wherein the control circuit performs the calibration and the adjustment of the power supply voltage value by using one critical path monitor circuit among the plurality of critical path monitor circuits. apparatus.
  7.  前記テーブル、前記クリティカルパスモニタ回路、及び前記制御回路の組を複数有することを特徴とする請求項1記載の演算処理装置。 The arithmetic processing unit according to claim 1, comprising a plurality of sets of the table, the critical path monitor circuit, and the control circuit.
  8.  前記テーブル内の測定していない測定していない前記動作周波数に対する前記電源電圧値は、シミュレーションにより得られた値であることを特徴とする請求項1記載の演算処理装置。 The arithmetic processing unit according to claim 1, wherein the power supply voltage value with respect to the operating frequency not measured in the table is a value obtained by simulation.
  9.  動的電圧・周波数制御で用いる複数の動作周波数及び前記動作周波数に対する電源電圧値を設定するテーブルと、電源電圧の変化に応じて遅延変化を検出するクリティカルパスモニタ回路とを有する演算処理装置の制御方法であって、
     前記テーブル内の測定して得られた前記動作周波数及び前記電源電圧値に設定して前記クリティカルパスモニタ回路のキャリブレーションを行い、
     キャリブレーションされた前記クリティカルパスモニタ回路により前記テーブル内の測定していない前記動作周波数に対する前記電源電圧値の調整を行い、
     調整された前記電源電圧値を前記テーブルに設定することを特徴とする演算処理装置の制御方法。
    Control of an arithmetic processing unit having a table for setting a plurality of operating frequencies used in dynamic voltage / frequency control and a power supply voltage value for the operating frequency, and a critical path monitor circuit for detecting a delay change according to the change of the power supply voltage A method,
    The critical path monitor circuit is calibrated by setting the operating frequency and the power supply voltage value obtained by measurement in the table,
    Adjusting the power supply voltage value for the operating frequency not measured in the table by the calibrated critical path monitor circuit;
    A control method for an arithmetic processing unit, wherein the adjusted power supply voltage value is set in the table.
  10.  動的電圧・周波数制御で用いる複数の動作周波数及び前記動作周波数に対する電源電圧値を設定するテーブルと、電源電圧の変化に応じて遅延変化を検出するクリティカルパスモニタ回路とを有する演算処理装置に、
     前記テーブル内の測定して得られた前記動作周波数及び前記電源電圧値に設定して前記クリティカルパスモニタ回路のキャリブレーションを行う処理と、
     キャリブレーションされた前記クリティカルパスモニタ回路により前記テーブル内の測定していない前記動作周波数に対する前記電源電圧値の調整を行う処理と、
     調整された前記電源電圧値を前記テーブルに設定する処理とを実行させるためのプログラム。
    In a processing unit having a table for setting a plurality of operating frequencies used in dynamic voltage / frequency control and a power supply voltage value for the operating frequency, and a critical path monitor circuit for detecting a delay change according to a change in the power supply voltage,
    Processing for calibrating the critical path monitor circuit by setting the operating frequency and the power supply voltage value obtained by measurement in the table;
    A process of adjusting the power supply voltage value for the operating frequency not measured in the table by the calibrated critical path monitor circuit;
    A program for executing the process of setting the adjusted power supply voltage value in the table.
  11.  動的電圧・周波数制御で用いる複数の動作周波数及び前記動作周波数に対する電源電圧値を設定するテーブルと、電源電圧の変化に応じて遅延変化を検出するクリティカルパスモニタ回路とを有する演算処理装置に、
     前記テーブル内の測定して得られた前記動作周波数及び前記電源電圧値に設定して前記クリティカルパスモニタ回路のキャリブレーションを行う処理と、
     キャリブレーションされた前記クリティカルパスモニタ回路により前記テーブル内の測定していない前記動作周波数に対する前記電源電圧値の調整を行う処理と、
     調整された前記電源電圧値を前記テーブルに設定する処理とを実行させるためのプログラムを記録したことを特徴とする記録媒体。
    In a processing unit having a table for setting a plurality of operating frequencies used in dynamic voltage / frequency control and a power supply voltage value for the operating frequency, and a critical path monitor circuit for detecting a delay change according to a change in the power supply voltage,
    Processing for calibrating the critical path monitor circuit by setting the operating frequency and the power supply voltage value obtained by measurement in the table;
    A process of adjusting the power supply voltage value for the operating frequency not measured in the table by the calibrated critical path monitor circuit;
    A recording medium on which a program for executing the process of setting the adjusted power supply voltage value in the table is recorded.
PCT/JP2013/069604 2013-07-19 2013-07-19 Arithmetic processing device and control method for arithmetic processing device WO2015008372A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2015527120A JP6090447B2 (en) 2013-07-19 2013-07-19 Arithmetic processing device and control method of arithmetic processing device
PCT/JP2013/069604 WO2015008372A1 (en) 2013-07-19 2013-07-19 Arithmetic processing device and control method for arithmetic processing device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2013/069604 WO2015008372A1 (en) 2013-07-19 2013-07-19 Arithmetic processing device and control method for arithmetic processing device

Publications (1)

Publication Number Publication Date
WO2015008372A1 true WO2015008372A1 (en) 2015-01-22

Family

ID=52345865

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/069604 WO2015008372A1 (en) 2013-07-19 2013-07-19 Arithmetic processing device and control method for arithmetic processing device

Country Status (2)

Country Link
JP (1) JP6090447B2 (en)
WO (1) WO2015008372A1 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10411683B2 (en) 2016-12-19 2019-09-10 Fujitsu Limited Information processing device, information processing method, and computer-readable recording medium
CN114546090A (en) * 2022-02-21 2022-05-27 上海壁仞智能科技有限公司 Adaptive voltage frequency adjustment method and device
CN115328248A (en) * 2022-08-17 2022-11-11 上海燧原科技有限公司 Voltage self-adaptive adjusting method and device of integrated circuit and electronic equipment
CN117555738A (en) * 2024-01-09 2024-02-13 悦芯科技股份有限公司 DPS power supply board for memory FT test

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002359289A (en) * 2001-03-29 2002-12-13 Mitsubishi Electric Corp Semiconductor device equipped with process monitor circuit, and testing method and manufacturing method therefor
JP2004070805A (en) * 2002-08-08 2004-03-04 Fujitsu Ltd Semiconductor integrated circuit with controlled internal power source voltage
JP2008098322A (en) * 2006-10-11 2008-04-24 Nec Corp Optimum control system, lsi optimum control circuit, and lsi optimum control method for use in the circuit
JP2012212291A (en) * 2011-03-31 2012-11-01 Sony Corp Information processor, information processing system, information processor control method and program
JP2013025508A (en) * 2011-07-19 2013-02-04 Fujitsu Ltd Information processor, control program, and control method

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002359289A (en) * 2001-03-29 2002-12-13 Mitsubishi Electric Corp Semiconductor device equipped with process monitor circuit, and testing method and manufacturing method therefor
JP2004070805A (en) * 2002-08-08 2004-03-04 Fujitsu Ltd Semiconductor integrated circuit with controlled internal power source voltage
JP2008098322A (en) * 2006-10-11 2008-04-24 Nec Corp Optimum control system, lsi optimum control circuit, and lsi optimum control method for use in the circuit
JP2012212291A (en) * 2011-03-31 2012-11-01 Sony Corp Information processor, information processing system, information processor control method and program
JP2013025508A (en) * 2011-07-19 2013-02-04 Fujitsu Ltd Information processor, control program, and control method

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
HIROSHI SASAKI ET AL.: "Dynamic Voltage Scaling Method Based on Statistical Analysis", TRANSACTIONS OF INFORMATION PROCESSING SOCIETY OF JAPAN, vol. 47, no. SIG18(, 15 November 2006 (2006-11-15), INFORMATION PROCESSING SOCIETY OF JAPAN, pages 80 - 91, Retrieved from the Internet <URL:http://ci.nii.ac.jp/naid/110004862639> [retrieved on 20130827] *

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10411683B2 (en) 2016-12-19 2019-09-10 Fujitsu Limited Information processing device, information processing method, and computer-readable recording medium
CN114546090A (en) * 2022-02-21 2022-05-27 上海壁仞智能科技有限公司 Adaptive voltage frequency adjustment method and device
CN115328248A (en) * 2022-08-17 2022-11-11 上海燧原科技有限公司 Voltage self-adaptive adjusting method and device of integrated circuit and electronic equipment
CN117555738A (en) * 2024-01-09 2024-02-13 悦芯科技股份有限公司 DPS power supply board for memory FT test
CN117555738B (en) * 2024-01-09 2024-04-05 悦芯科技股份有限公司 DPS power supply board for memory FT test

Also Published As

Publication number Publication date
JPWO2015008372A1 (en) 2017-03-02
JP6090447B2 (en) 2017-03-08

Similar Documents

Publication Publication Date Title
JP4786262B2 (en) Interface circuit
JP5175728B2 (en) Test apparatus, adjustment method, and adjustment program
KR101374465B1 (en) Testing device and testing method
JP6090447B2 (en) Arithmetic processing device and control method of arithmetic processing device
JP2008021309A (en) Memory controller with self-test function, and method of testing memory controller
JP2012522293A (en) Adaptive voltage scaler (AVS)
US8046601B1 (en) Closed loop voltage control using adjustable delay lines
WO2010137330A1 (en) Delay adjustment device and delay adjustment method
JP2010108217A (en) Memory interface and method of operating the same
US7739572B2 (en) Tester for testing semiconductor device
TWI352996B (en) Tester for testing semiconductor device
JP2011170516A (en) Memory controller, semiconductor memory device and memory system including them
JP2009014638A (en) Semiconductor integrated circuit device and test method of same
US8135968B2 (en) Semiconductor apparatus including power management integrated circuit
CN111357052B (en) Direct measurement delay calibration method and apparatus
JP4849996B2 (en) Delay circuit, test apparatus, program, semiconductor chip, initialization method, and initialization circuit
JP5221609B2 (en) Host controller that sets the sampling phase by sharing the DLL
JPWO2009028034A1 (en) Electronic device and diagnostic apparatus
KR20110121185A (en) Semiconductor memory apparatus
JP2023553623A (en) Mission mode VMIN prediction and calibration
KR101086874B1 (en) Semiconductor integrated circuit
JP2011066317A (en) Semiconductor device
JP2010123807A (en) Semiconductor integrated circuit and power source voltage control system
JP2010252444A (en) Device, method, and program for power source management
JPWO2009139101A1 (en) Electronic device system and semiconductor integrated circuit controller

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13889402

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2015527120

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13889402

Country of ref document: EP

Kind code of ref document: A1