TWI352996B - Tester for testing semiconductor device - Google Patents

Tester for testing semiconductor device Download PDF

Info

Publication number
TWI352996B
TWI352996B TW096128074A TW96128074A TWI352996B TW I352996 B TWI352996 B TW I352996B TW 096128074 A TW096128074 A TW 096128074A TW 96128074 A TW96128074 A TW 96128074A TW I352996 B TWI352996 B TW I352996B
Authority
TW
Taiwan
Prior art keywords
test
data
tester
dut
output
Prior art date
Application number
TW096128074A
Other languages
Chinese (zh)
Other versions
TW200816214A (en
Inventor
Jong Koo Kang
Original Assignee
Unitest Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Unitest Inc filed Critical Unitest Inc
Publication of TW200816214A publication Critical patent/TW200816214A/en
Application granted granted Critical
Publication of TWI352996B publication Critical patent/TWI352996B/en

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L22/00Testing or measuring during manufacture or treatment; Reliability measurements, i.e. testing of parts without further processing to modify the parts as such; Structural arrangements therefor
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/28Testing of electronic circuits, e.g. by signal tracer
    • G01R31/317Testing of digital circuits
    • G01R31/3181Functional testing
    • G01R31/319Tester hardware, i.e. output processing circuits
    • G01R31/31903Tester hardware, i.e. output processing circuits tester configuration
    • G01R31/31905Interface with the device under test [DUT], e.g. arrangements between the test head and the DUT, mechanical aspects, fixture
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/28Testing of electronic circuits, e.g. by signal tracer
    • G01R31/317Testing of digital circuits
    • G01R31/3181Functional testing
    • G01R31/319Tester hardware, i.e. output processing circuits
    • G01R31/3193Tester hardware, i.e. output processing circuits with comparison between actual response and known fault free response
    • G01R31/31932Comparators

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Tests Of Electronic Circuits (AREA)

Description

1352996 九、發明說明: 【發明所屬之技術領域】 本發明係關於一種用於測試一半導體裝置的測試器, 特定言之係關於一種用於測試,其中根據一時間延遲而= 使用複數個時脈產生各種時序以改良測試效率並減少製造 成本之一半導體裝置的測試器。 【先前技術】 一種用於測試一半導體裝置的測試器測試該半導體裝置 是否有缺陷。依據一記憶體裝置之發展狀態來設計並開發 用於測試該半導體裝置的該測試器,特定言之,該記憶體 裝置係一 DRAM,其占大部分記憶體裝置,因為用於測試 半導體裝置的該測試器係主要用於測試記憶體裝置。 DRAM之發展係在從EDO(延伸資料輸出)dram、 SDRAM(同步 DRAM)、Rambus DRAM進行至 DDR(雙資料 速率)DRAM。 為測試DRAM ’該測試器需要高速及高精度以便對應於 向速DRAM »此外,隨著記憶體之容量的增加,用於測試 DRAM戶斤需要的時間亦會增加。因此,亦需要增加測試速 度。此外’應該藉由具體化一小型且經濟的測試來減少用 於測試記憶體的成本。 在用於測試半導體裝置的測試器中,特定的記憶體測試 器係通常用於測試並確認以SIMM或DIMM之形式的一記憶 體組件或一記憶體模組。該測試器偵測該記憶體模組或該 記憶體組件之功能缺陷,然後將其安裝於實際電腦系統 122876-I000318.doc 1352996 中。 立、έ》古、器刀*員成一硬體半導體裝置測試器以及在pc環 ί兄中執二的一軟體診斷程式 '然而,因為當將該記憶體模 或“己It體組件安裝於實際電腦中時該軟體診斷程式診 斷該6己憶體之-狀態’所以主要在半導體記憶體製程期間 使用該硬體半導體裝置測試器。 α將Sx測<4器分類成稱為ATE(自動測試配備)的高端測 試器中間範I己憶體測試器以及低端記憶體測試器。 通4使用的係鬲端測試器的ATE以便實行記憶體裝置之 測試程序。傳統細實行各制試,例如直流測試,其用 於測试直流參數是否適合於電路之數位操作、信號之發射 延遲時間 '以及與設定時間及保持時間相關的交流餘量。 ATE亦產生用於測試的一測試型樣及一時序。然而,ΑΤΕ 的製造成本較高,因為使用專用配備(例如具有大尺寸及 高價格的主機電腦)來製造ATE。 圖1係解說用於測試半導體裝置的傳統測試器之方塊 圖0 如圖1所示’傳統測試器包括一型樣產生器11〇、一時序 產生#120、一格式控制器130、一驅動器140、一比較器 1 5 0、以及一測試結果儲存器16 〇。除此等組件以外,傳統 測s式器還可包括用於直流測試的一電源供應控制器、用於 產生時脈信號的一組件、用於為DUT(待測試裝置)i 8〇之 操作供應電源的一組件、用於將一測試型樣資料轉播至 DUT 1 80並從DUT 180接收一測試結果的一組件、用於從 122876-1000318.doc 1352996 一外部接收一測試型樣程式的一組件、以及用於將該測試 結果發射至該外部的一組件。然而,省略其說明。 型樣產生器110根據該測試型樣程式產生用於測試 180所需的測試型樣資料。例如,將該測試型樣程式寫入 為包含一指令以實行各種操作以便實行測試。型樣產生器 110藉由從(例如)一外部儲存器接收並解譯該測試型樣程式 而產生該測試型樣資料。該測試型樣資料包含諸如一指令 之一資料、位址以及輸入至DUT 18〇的—資料。此外,產 生一預期資料,其對應於所產生的測試型樣資料。 時序產生器120產生一時序邊緣,其係用於將在型樣產 生器110中產生的該測試型樣資料轉換成各種波形的一參 考。使用複數個時脈來產生該時序邊緣以進行順利轉換。 格式控制器1 3 0根據該時序邊緣將該測試型樣資料轉換 成所需波形。 以下詳細地說明該測試型樣資料的轉換。 圖2係解說在用於測試半導體裝置的傳統測試器中轉換 一測s式波形之一範例的圖式。 參考圖2,型樣產生器1丨〇產生該測試型樣資料。另一方 面時序產生器I20使用如圖所示的複數個時脈ACLK、 BCLK及CCLK而產生複數個時序邊緣。因為格式控制器 1 30需要一時序參考以便在所需時刻將該測試型樣資料轉 換成所需測試波形,所以時序產生器12〇使用該複數個時 脈產生該複數個時序邊緣以便組態該時序參考。該複數個 時脈係特定用於為一非同步半導體裝置之測試而產生該型 122876-1000318.doc 1352996 樣資料。 格式控制器130根據該等時序邊緣之每一個將該測試型 樣資料轉換成所需測試波形。例如,當使用時脈ACLK 時’格式控制器130可將該測試型樣資料轉換成nrza或/ NRZA的測試波形。"NRZ"表示一轉換,其中在該測試型 樣資料係"1”的週期中並不返回"0”,一字元"A”表示透過時 脈ACLK轉換該測試型樣資料,而且字元表示倒轉該測 試型樣資料。當使用時脈BCLK時,格式控制器13〇可將該 測試型樣資料轉換成NRZB或/NRZB的測試波形》當使用 時脈CCLK時,格式控制器130可將該測試型樣資料轉換成 NRZC或/NRZC的測試波形。當同時使用時脈bCLk及 CCLK時,格式控制器13〇可將該測試型樣資料轉換成 NRZBC或/NRZBC的測試波形。如以上所說明,使用該複 數個時脈且藉由格式控制器130可將該測試型樣資料轉換 成測試波形。 驅動器140將轉換的測試波形發射至dut 1 80。 比較器150藉由下列方式測試〇υτ 180 :將藉由施加於 DUT 180的測試波形完成DUT 18〇的操作之後從DUT 18〇輸 出的測試輸出資料與在型樣產生器11〇中產生的預期資料 比較。 測試結果儲存器i 60根據比較器i 5〇之比較的結果而儲存 一測試結果。例如,儲存關於有缺陷〇υτ的資訊。 如以上說明,傳統ATE係價格很高的配備。因此較佳 的係,製造商有效率地設計高價ATE以便藉由最小化其製 122876-1000318.doc 13529961352996 IX. Description of the Invention: [Technical Field] The present invention relates to a tester for testing a semiconductor device, in particular for a test in which a plurality of clocks are used according to a time delay A tester for a semiconductor device that produces various timings to improve test efficiency and reduce manufacturing costs. [Prior Art] A tester for testing a semiconductor device tests whether the semiconductor device is defective. The tester for testing the semiconductor device is designed and developed according to the development state of a memory device. Specifically, the memory device is a DRAM, which occupies most of the memory device because it is used for testing the semiconductor device. The tester is primarily used to test memory devices. The development of DRAM is from EDO (Extended Data Output) dram, SDRAM (Synchronous DRAM), Rambus DRAM to DDR (Double Data Rate) DRAM. To test DRAM' the tester requires high speed and high precision to correspond to the directional DRAM. In addition, as the capacity of the memory increases, the time required to test the DRAM is also increased. Therefore, it is also necessary to increase the test speed. In addition, the cost of testing memory should be reduced by embodying a small and economical test. In testers for testing semiconductor devices, a particular memory tester is typically used to test and validate a memory component or a memory module in the form of a SIMM or DIMM. The tester detects functional defects of the memory module or the memory component and then installs it in an actual computer system 122876-I000318.doc 1352996. Li, έ 古 古 古 器 、 、 、 、 、 、 、 、 、 硬 硬 硬 硬 硬 硬 硬 硬 硬 硬 硬 硬 硬 硬 硬 硬 硬 硬 硬 硬 硬 硬 硬 硬 硬 硬 硬 硬 硬 硬 硬 硬 硬 硬 硬 硬 硬 硬In the middle, the software diagnostic program diagnoses the state of the 6-memory body. Therefore, the hardware semiconductor device tester is mainly used during the semiconductor memory system. α classifies the Sx test <4 device into an ATE (automatic test equipment) The high-end tester is the intermediate tester and the low-end memory tester. The ATE of the system tester used in Fig. 4 is used to carry out the test procedure of the memory device. Test, which is used to test whether the DC parameters are suitable for digital operation of the circuit, the delay time of the signal transmission, and the AC margin associated with the set time and hold time. ATE also generates a test pattern and a timing for testing. However, ΑΤΕ is more expensive to manufacture because it uses special equipment (such as a host computer with large size and high price) to manufacture ATE. Figure 1 is a diagram for testing semiconductors. Block diagram of the conventional tester shown in FIG. 1 'The conventional tester includes a pattern generator 11 〇, a timing generator #120, a format controller 130, a driver 140, a comparator 150, And a test result storage device 16. In addition to the components, the conventional test s can also include a power supply controller for DC testing, a component for generating a clock signal, and for the DUT (to be A component of the operational power supply, a component for relaying a test pattern data to the DUT 1 80 and receiving a test result from the DUT 180, for use from 122876-1000318.doc 1352996 Receiving a component of a test pattern program and a component for transmitting the test result to the outside. However, the description thereof is omitted. The pattern generator 110 generates a required test for the test 180 according to the test pattern program. Test pattern data. For example, the test pattern program is written to include an instruction to perform various operations for performing the test. The pattern generator 110 receives and interprets the test pattern from, for example, an external memory. The test pattern data is generated by the program. The test pattern data includes data such as an instruction, an address, and a data input to the DUT 18 。. In addition, an expected data is generated, which corresponds to the generated test type. The timing generator 120 generates a timing edge for converting the test pattern data generated in the pattern generator 110 into a reference of various waveforms. The plurality of clocks are used to generate the timing edge to Smooth conversion is performed. The format controller 1 3 0 converts the test pattern data into a desired waveform according to the timing edge. The conversion of the test pattern data is described in detail below. Figure 2 illustrates the tradition for testing a semiconductor device. A diagram of an example of converting a s-waveform in a tester. Referring to Figure 2, the pattern generator 1 generates the test pattern data. The other timing generator I20 generates a plurality of timing edges using a plurality of clocks ACLK, BCLK, and CCLK as shown. Because the format controller 1 30 requires a timing reference to convert the test pattern data to the desired test waveform at the desired time, the timing generator 12 uses the plurality of clocks to generate the plurality of timing edges to configure the Timing reference. The plurality of clock systems are specifically used to generate the type 122876-1000318.doc 1352996 for testing a non-synchronous semiconductor device. The format controller 130 converts the test pattern data into a desired test waveform based on each of the timing edges. For example, when the clock ACLK is used, the format controller 130 can convert the test pattern data into a test waveform of nrza or /NRZA. "NRZ" indicates a conversion in which no "0" is returned in the period of the test type data "1", and a character "A" indicates that the test pattern data is converted by the clock ACLK. Moreover, the character indicates that the test pattern data is reversed. When the clock BCLK is used, the format controller 13 can convert the test pattern data into a test waveform of NRZB or /NRZB. When using the clock CCLK, the format controller The test pattern data can be converted into a test waveform of NRZC or /NRZC. When the clocks bCLk and CCLK are used simultaneously, the format controller 13 can convert the test pattern data into test waveforms of NRZBC or /NRZBC. As described above, the plurality of clocks are used and the test pattern data can be converted to a test waveform by the format controller 130. The driver 140 transmits the converted test waveform to the dut 1 80. The comparator 150 is used in the following manner Test 180 τ 180 : The test output data output from the DUT 18 之后 after the DUT 18 〇 operation is completed by the test waveform applied to the DUT 180 is compared with the expected data generated in the pattern generator 11 。. The storage i 60 stores a test result based on the result of the comparison of the comparator i 5 . For example, storing information about the defective τ. As explained above, the conventional ATE is a very expensive device. Manufacturers efficiently design high-priced ATEs by minimizing their system 122876-1000318.doc 1352996

造成本來增加競爭力。為有效率地設計ATE,應該最佳化 測試型樣及時序的產生。 特定言之,為具體化時序產生器12〇之時序產生功能, 需要高價組件。此外,即使當使用高價組件時,仍難以具 體化為以高速操作的半導體裝置之測試而產生精確時序的 功能。使用該複數個時脈來產生時序的功能可用於非同步 裝置的測試。然而,使用該複數個時脈來產生時序的功能 對於同步裝置而言並非最佳。 此外’當將轉換的測試波形發射至DUT 180時,測試波 形可延遲一預定週期。該預期資料亦可由比較器i 5〇加以 延遲以便實行與從DUT 180輸出的資料之比較。因為在轉 換後由格式控制器13〇實行延遲,所以驅動器j 4〇或比較器 1 5 0可藉由考量該等延遲之每一個而再次轉換一實際測試 波形或該預期資料。 此外’應該依據DUT 180之通道之每一個(例如DUT 180 之接針)而轉換在型樣產生器丨丨〇中產生的測試型樣資料。 實行對該等接針的轉換,然後將測試型樣資料施加於格式 控制器13 0。在此類情況下’實行欲施加於該等接針之每 一個的測試型樣資料之多工。然而,因為實行多工以對應 於該等接針之每一個,所以會浪費資源。 【發明内容】 本發明之一目的係提供一種用於測試一半導體裝置的測 試器’其中根據一時間延遲而非使用複數個時脈來產生各 時序以改良測試效率並減少製造成本。 122876-1000810.doc 1352996 第096128074號專利申請案 丨一------------ 中文說明書替換頁(100年8'月) j1〇|· | ·#正替ΜCaused by the original increase in competitiveness. In order to design ATE efficiently, the test pattern and timing should be optimized. Specifically, in order to embody the timing generation function of the timing generator 12, expensive components are required. Further, even when a high-priced component is used, it is difficult to be a function of generating accurate timing for testing of a semiconductor device operating at a high speed. The function of generating timing using the plurality of clocks can be used for testing of non-synchronous devices. However, the function of using the plurality of clocks to generate timing is not optimal for the synchronization device. Further, when the converted test waveform is transmitted to the DUT 180, the test waveform can be delayed by a predetermined period. The expected data can also be delayed by the comparator i 5 to perform a comparison with the data output from the DUT 180. Since the delay is implemented by the format controller 13 after the conversion, the driver j 4 or the comparator 150 can again convert an actual test waveform or the expected data by considering each of the delays. In addition, the test pattern data generated in the pattern generator 应该 should be converted in accordance with each of the channels of the DUT 180 (for example, the pins of the DUT 180). The conversion of the pins is performed, and then the test pattern data is applied to the format controller 130. In such cases, multiplexing of the test pattern data to be applied to each of the pins is performed. However, because multiplexing is performed to correspond to each of the pins, resources are wasted. SUMMARY OF THE INVENTION One object of the present invention is to provide a tester for testing a semiconductor device in which various timings are generated in accordance with a time delay instead of using a plurality of clocks to improve test efficiency and reduce manufacturing costs. 122876-1000810.doc 1352996 Patent application No. 096128074 丨一------------ Chinese manual replacement page (100 years 8' month) j1〇|· | ·#正正

為達到本發明之以上說明的目的,提供用於測試一 DUT 的測試器,該測試器包括:一型樣產生器,其用於根據 一測試型樣程式而產生用於該DU丁之測試的一邏輯測試型 樣資料;一資料選擇器,其用於將從該型樣產生器發送的 該邏輯測試型樣資料轉換成一實體測試型樣資料以及轉換 成一預期資料;一格式控制器,其用於根據用於測試的一 時間延遲值集將該實體測試型樣資料轉換成一測試波形; Φ 駆動器’其用於將該測試波形施加於該DUT ; —輸出比 較器,其用於從該DUT接收對應於該測試波形的一輸出以 輸出一測試輸出資料;一測試比較器,其用於將該測試輸 出資料與°亥預期資料比較以決定該DUT係一有缺陷DUT ; 夕工器’其用於多工該測試波形以符合該DUT之一操作 速度,一解多工器,其用於解多工該測試輸出資料以符合 °玄測试輸出資料與該預期資料之比較之一操作速度;一時 _ 序控制器’其用於在將該測試波形施力σ於該多器之前, 實仃該測試波形之一超取樣;以及一位元移位器其用於 在實行該超取樣之後使該測試波形移位一位元之單位以得 以施加於該多工器。 較佳的係,依據本發明之測試器進一步包括一延時控制 、用於藉由控制其延時而將該實體測試型樣資料及該 預期資料分別施加於該格式控制器及該測試比較器。 較佳的係,依據本發明之測試器進一步包括多個抗扭斜 122876-10008l0.doc 135299¾ 096128074號專利申請案 中文說明書替換頁(100年8月)To achieve the above object of the present invention, a tester for testing a DUT is provided, the tester comprising: a pattern generator for generating a test for the DU according to a test pattern program a logic test pattern data; a data selector for converting the logic test pattern data sent from the pattern generator into a physical test pattern data and converting into a expected data; a format controller, Converting the physical test pattern data into a test waveform according to a set of time delay values for testing; a Φ actuator for applying the test waveform to the DUT; and an output comparator for using the DUT Receiving an output corresponding to the test waveform to output a test output data; a test comparator for comparing the test output data with the expected data to determine the DUT is a defective DUT; For multiplexing the test waveform to conform to one of the operating speeds of the DUT, a demultiplexer for demultiplexing the test output data to conform to the hypometric test output data and the expected resource Comparing one of the operating speeds; the one-time sequence controller' is used to supersample one of the test waveforms before applying the test waveform to the multi-device; and the one-bit shifter uses The test waveform is shifted by one unit of the unit after the oversampling is performed to be applied to the multiplexer. Preferably, the tester according to the present invention further comprises a delay control for applying the physical test pattern data and the expected data to the format controller and the test comparator, respectively, by controlling the delay. Preferably, the tester according to the present invention further comprises a plurality of anti-skews. Patent application 122876-1000810.doc 1352993⁄4 096128074 Patent application replacement page (August 100)

控制器,其分別用於在透過該驅動器發射測試波形至DUT 之别以及在透過輸出比較器從該dut接收該測試輸出資料 之後補償在該謝之該等通道之每—個中產生的—時序扭 斜0 較佳而言,抗扭斜控制器藉由設定用於該等通道之每一 個的時序扭斜而補償時序扭斜。 較佳的係,依據本發明之測試器進一步包括多個抗扭斜 控制1§,其分別用於在透過該驅動器將藉由該多工器所多 工的測試波形發射至該請之前以及在透過該輸出比較器 從該DUT接收該測試輸出資料之後補償在該Du丁之該等通 道之每一個中產生的一時序扭斜,而且其中該等抗扭斜控 制器中之每一個係以下列方式與位元移位器相關聯:當該 時序扭斜係大於預定值時,透過位元移位器來部分地補償 該時序扭斜。 較佳而言,抗扭斜控制器藉由設定用於該等通道之每一 個的時序杻斜而補償時序扭斜。 較佳的係,該驅動器以測試波形具有三個位準"高"、 低"及"終止”之一的方式將測試波形施加於該DUT。 較佳而言,輸出比較器將對應於從該DUT接收的測試波 形形式之輸出與一臨界值比較以輸出該測試輸出資料。 較佳的係該臨界值可變。 122876-1000810.doc 1352996 100. C: . 較佳而言,該輸出比較器根據該臨界值組態一視窗且決 定用於該視窗外部的一信號之輸出位準。 較佳的係,該測試比較器包括:_再同步器其用於藉 由考量該測試器與該DUT之間的往返延遲而實行該測試輸 出資料的再同步;以及一往返延遲補償器,其用於依據該 往返延遲而延遲該預期資料。 較佳而言,該測試型樣產生器產生一控制旗標,其用於 根據該DUT之通道之每一個將邏輯測試型樣資料轉換成實 體測試型樣資料以得以發送至該資料選擇器,而且其中該 資料選擇器藉由參考複數個預指定的資料選擇表格將邏輯 測試型樣資料轉換成實體測試型樣資料以根據該控制旗標 且透過該DUT之该等通道之每一個而加以發送。 較佳的係依據本發明之測試器進一步包括一測試結果發 射器,其用於將測試之結果發射至一外部裝置。 【實施方式】 現在參考附圖詳細地說明本發明。 圖3係例證用於測試依據本發明之一半導體裝置的測試 器之測試的方塊圖。 參考圖3’該測試器包括一型樣產生器21〇、一資料選擇 器220、一格式控制器23〇、一驅動器24〇、一輸出比較器 250以及一測試比較器260。此外,該測試器可進一步包括 一延時控制器270、一多工器280、一解多工器29〇、一時 序控制器300、一位元移位器310、抗扭斜控制器32〇a, 320b以及一測試結果發射器33〇。 122876-1000810.doc 12 1352996 ί c^o 彡、π --- 用於測試依據本發明之半導體裝置的測試器之特徵為, 用於實行-測試型樣資料之產生或欲針對其有效率的組態 而加乂最佳化的一格式之轉換的功能。因此該測試器包 3用於下列用途之組件:將其格式經轉換的測試波形施加 於DUT(待測試裝置)380 ;藉由比較從DUT 380接收的一 資料與一預期資料,而決定DUT38〇是否係有缺陷dut。 此外’該測試器包含用於下列用途之組件:將來自驅動 益240的測試波形散發給複數個〇1;丁 ;從該複數個接 收測试之結果。然而,省略其詳細說明。 型樣產生器210根據一測試型樣程式產生用於測試一待 測半導體裝置(即,DUT 38〇)之邏輯測試型樣資料。例 如,型樣產生器210編譯由一程式設計人員所撰寫的一測 試型樣程式,且藉由執行該測試型樣程式產生邏輯測試型 樣資料。邏輯測試型樣資料包含一命令信號 '一位址信號 X及貝料L號。型樣產生器210亦可產生一用於DUT 3 8〇 之通道之每一者(即DUT 380之接針之每一者)之控制旗 標’以待發射至資料選擇器22〇。 資料選擇器220將從型樣產生器21〇發送的邏輯測試型樣 貧料轉換成一實體測試型樣資料以待發送至DUT 38〇以及 轉換成一預期資料。即,由型樣產生器21〇產生的邏輯測 試型樣資料並非照樣發送至DUT 380的全部通道。針對該 等通道之每一者轉換該邏輯測試型樣資料且將其發送至該 等通道之每一者。為達到此點,資料選擇器22〇將該邏輯 測試型樣資料轉換成實體測試型樣資料以得以發送至dut 122876-10003 ] 8.doc 13 1352996 380之通道之每一個。 此外,型樣產器210可產生控制旗標,該控制旗標係被 發射至貢料選擇器22〇。當使用控制旗標時,資料選擇器 220可使用預定轉換程序且根據控制旗標將該邏輯測試型 樣資料轉換成實體測試型樣資料。因此,改良轉換速度。 即,資料選擇器220可藉由參考複數個預指定的資料選擇 表格將該邏輯測試型樣資料轉換成該實體測試型樣資料以 根據控制旗標且透過該DUT之通道之每一個而加以發送。 在此類情況下,可使用具有多工式結構或協定結構的dut 介面。 格式控制器230根據用於實行測試的—時間延遲值集將 該實體測試型樣資料轉換成一測試波形。即,根據該實體 測試型樣資料產生所需測試波形。當寫入測試型樣程式 時,可藉由該程式設計人員來設定該時間延遲值。a controller for respectively transmitting a test waveform to the DUT through the driver and compensating for each of the channels in the channel after receiving the test output data from the dummy through the output comparator Skew 0 Preferably, the anti-skew controller compensates for timing skew by setting a timing skew for each of the channels. Preferably, the tester according to the present invention further includes a plurality of anti-skew control 1 § for respectively transmitting a test waveform multiplexed by the multiplexer to the request through the driver and before Compensating for a timing skew generated in each of the channels of the Du Ding after receiving the test output data from the DUT through the output comparator, and wherein each of the anti-skew controllers is The mode is associated with the bit shifter: the timing skew is partially compensated by the bit shifter when the timing skew is greater than a predetermined value. Preferably, the anti-skew controller compensates for timing skew by setting a timing skew for each of the channels. Preferably, the driver applies a test waveform to the DUT in such a way that the test waveform has one of three levels "high", low " and "terminate". Preferably, the output comparator will The output corresponding to the test waveform form received from the DUT is compared to a threshold value to output the test output data. Preferably, the threshold value is variable. 122876-1000810.doc 1352996 100. C: . Preferably, The output comparator configures a window based on the threshold and determines an output level of a signal for use outside the window. Preferably, the test comparator includes: a resynchronizer for considering the test Performing resynchronization of the test output data with a round trip delay between the device and the DUT; and a round trip delay compensator for delaying the expected data according to the round trip delay. Preferably, the test pattern generator Generating a control flag for converting logical test pattern data into physical test pattern data according to each of the channels of the DUT for transmission to the data selector, and wherein the data selector is Testing a plurality of pre-designated data selection forms to convert logical test pattern data into physical test pattern data for transmission according to the control flag and through each of the channels of the DUT. Preferably, in accordance with the present invention The tester further includes a test result transmitter for transmitting the test result to an external device. [Embodiment] The present invention will now be described in detail with reference to the accompanying drawings. Fig. 3 is an illustration for testing one of the present invention. A block diagram of a tester for a semiconductor device. Referring to FIG. 3', the tester includes a pattern generator 21A, a data selector 220, a format controller 23A, a driver 24A, and an output comparator 250. And a test comparator 260. In addition, the tester may further include a delay controller 270, a multiplexer 280, a demultiplexer 29A, a timing controller 300, a bit shifter 310, and the like. The skew controllers 32A, 320b and a test result transmitter 33. 122876-1000810.doc 12 1352996 ί c^o 彡, π --- for testing the semiconductor device according to the present invention The feature is that it is used to implement the generation of test-type data or to optimize the conversion of a format for its efficient configuration. Therefore, the tester package 3 is used for components of the following purposes. : The formatted converted test waveform is applied to the DUT (device to be tested) 380; and by comparing a data received from the DUT 380 with an expected data, it is determined whether the DUT 38 is defective. Further, the tester includes A component for use in the following applications: a test waveform from the drive benefit 240 is distributed to a plurality of 〇1; D; the result of the test is received from the plurality of. However, the detailed description thereof is omitted. The pattern generator 210 generates logic test pattern data for testing a semiconductor device to be tested (i.e., DUT 38A) according to a test pattern program. For example, pattern generator 210 compiles a test pattern program written by a programmer and generates logical test pattern data by executing the test pattern program. The logic test type data contains a command signal 'A bit signal X and a material L number. The pattern generator 210 can also generate a control flag for each of the channels of the DUTs 3 8 (i.e., each of the pins of the DUT 380) to be transmitted to the data selector 22A. The data selector 220 converts the logical test pattern lean material sent from the pattern generator 21 to a physical test pattern data to be sent to the DUT 38 and converted into a desired data. That is, the logic test pattern data generated by the pattern generator 21 is not sent to all the channels of the DUT 380 as it is. The logical test pattern data is converted for each of the channels and sent to each of the channels. To achieve this, the data selector 22 converts the logical test pattern data into physical test pattern data for transmission to each of the channels of dut 122876-10003] 8.doc 13 1352996 380. In addition, the pattern generator 210 can generate a control flag that is transmitted to the tribute selector 22A. When the control flag is used, the data selector 220 can convert the logical test pattern data into physical test pattern data using a predetermined conversion procedure and based on the control flag. Therefore, the conversion speed is improved. That is, the data selector 220 can convert the logical test pattern data into the physical test pattern data by referring to a plurality of pre-specified data selection forms to be sent according to the control flag and through each of the channels of the DUT. . In such cases, a dut interface with a multiplexed structure or a contracted structure can be used. The format controller 230 converts the physical test pattern data into a test waveform based on a set of time delay values for performing the test. That is, the desired test waveform is generated based on the physical test pattern data. The time delay value can be set by the programmer when writing the test pattern program.

驅動器240將係格式控制器230之輸出的測試波形施加於 DUT 380。例如,驅動器24〇以測試波形具有三個位準 问、,低"及"終止"之一的方式將測試波形施加於DUT 380〇即,當在將測試波形施加於DUT38〇期間欲移除一反 射組件時,選擇位準|,終止"。在另一情況下,選擇位準 "高"或•,低"。 輸出比較器250從DUT 380接收對應於藉由施加於DUT 380的測職形所產生的測試波形之_㉟出信&以輸出__ 測試輸出資料。 輸出比較器250可根據一預定臨界值來實行比較。此 122876-1000318.doc 1352996 外,該臨界值可依據測試環境、通道之特徵或dut 38〇之 特徵加以改變,從而有效率地產生測試輸出資料。此外, 當輸出比較器2 5 0根據該臨界值將對應於測試波形的輸出 信號轉換成測試輸出資料時,一信號針對該臨界值的轉換 可能不會精確。在此類情況下’針對該臨界值組態一視窗 以決定用於該視窗外的—信號之輸出位準,從而產生測試 輸出資料。The driver 240 applies a test waveform output from the format controller 230 to the DUT 380. For example, the driver 24 applies the test waveform to the DUT 380 in a manner that the test waveform has three levels, low " and "terminate", when the test waveform is applied to the DUT 38 When removing a reflective component, select Level |, Terminate ". In another case, choose Level "High" or •, Low". The output comparator 250 receives from the DUT 380 a _35 message & corresponding to the test waveform generated by the profile applied to the DUT 380 to output the __ test output data. Output comparator 250 can perform the comparison based on a predetermined threshold. In addition to the characteristics of the test environment, the characteristics of the channel, or the characteristics of the dut 38〇, the threshold value can be efficiently generated to produce test output data. Furthermore, when the output comparator 250 converts the output signal corresponding to the test waveform into test output data based on the threshold, the conversion of a signal for the threshold may not be accurate. In such cases, a window is configured for the threshold to determine the output level of the signal for use outside the window to generate test output data.

測試比較器260將從輸出比較器25〇輸出的測試輸出資料 與資料選擇器220中的預期資料比較以決定贿係有缺 陷 DUT。 圖4係解說在用於測試依據本發明之半導體裝置的測試 器中轉換測試波形之一範例的圖式。 型樣A及B表示藉由透過資料選擇器22〇轉換在型樣產生 器2 1 0中所產生的邏輯測試型樣資料而獲得實體測試型樣 資料之一範例。The test comparator 260 compares the test output data output from the output comparator 25 to the expected data in the data selector 220 to determine that the bribe has a defective DUT. Fig. 4 is a view showing an example of one of conversion test waveforms in a tester for testing a semiconductor device according to the present invention. Patterns A and B represent an example of obtaining physical test pattern data by converting the logical test pattern data generated in the pattern generator 210 by the data selector 22.

"時脈"表示用於測試波形之轉換的一參考時脈,而且 時間延遲值”表不用於藉由該程式設計人員進行的測試波 形之轉換的數值集。 格式控制器230使用該參考時脈以及延遲值將該實體測 試型才袠貝料轉換成測試波形。例如,nrz、nrzi、rz〇及 RZOI表不根據型樣人轉換的測試波形之範例,而dnrz及 DNRZI表示根據型樣轉換的測試波形之範例。 依據本發明之測試器的特徵為,該測試器並不包含傳統 測試益中所用的時序產生器。即,雖然圖2所示的測試器 122876-1000318.doc •15- 1352996 使用該複數個時脈產生時序以產生測試波形,但是圖4所 示的依據本發明之測試器僅使用該參考時脈而非該複數個 時脈並根據該時間延遲值實行轉換。因此,不需要高價時 序產生器》 依據本發明之測試器可進一步包括組件,其用於除以上 說明的組件以外的測試器之一有效率的具體實施例。 延時控制器270藉由控制其延時將該實體測試型樣資料 及該預期資料分別施加於格式控制器23〇及測試比較器 26〇。可藉由使該實體測試型樣資料及該預期資料延遲一 預定週期來控制延時。 雖然在依據傳統測试益產生測試波形之後使該實體測試 型樣資料及該預期資料延遲該預定週期,但是依據本發 明,可僅根據該參考時脈及該時間延遲值來轉換測試波 形。因此,使該實體測試型樣資料及該預期資料延遲該預 定週期,然後依據本發明轉換測試波形。此外,當使用 FIFO(先進先出)裝置時,自動地實行依據至DUT 3 8〇的寫 入或自DUT 3 8 0的讀取之延時的組態。因此,該程式設計 人員可輕易地具體化該程式而無須特殊組態。 此外,雖然隨著半導體裝置之操作速度變得較高而需要 南速操作,但是主要為低速操作產生測試波形。因此,測 試波形需要加以多工以便對應於半導體裝置之操作速度或 加以解多工以實行該測試輸出資料與該預期資料的比較。 多工器280對測試波形進行多工以符合dut 380之操作 速度,而且解多工器290對測試輸出資料進行解多工以符 122876-1000318.doc 1352996 σ適。於該測4輸出貢料與該預期資料的比較之操作速 度。 在由多工器280進行多工之前’可實行測試波形之超取 樣。即,該測試器可包含時序控制器则,其實行超取樣 以便將低頻率之測試波形施加於以高速操作的多工器 280 ° 超取樣之目的係將低頻率之資料轉換成高頻率之資 料。因此,可將測試波形之超取樣應用於設計成僅以高頻 率操作的多工器280。 »亥測试器可包括位元移位器3〖〇,其用於在實行超取樣 之後使測試波形移位一位元之單位以得以施加於多工器 280。即,位元移位器31〇可使測試波形移位位元之單位以 另外產生一所需波形或設定一時間延遲。 另一方面,出現在DUT 380之通道中的時序扭斜可能因 該等通道之每-個W同。p,因為信號發射環境對於該 等通道之每-個而言並非相同,所以產生時序扭斜。因 此,在透過驅動器24〇將測試波形發射至DUT38〇之前或在 透過輸出比較器250從DUT 380接收測試輪出資料之後,需 要用於補償用於該等通道之每一個的時序扭斜之功能。為 補償時序扭斜,依據本發明之測試器可包含抗扭斜控制器 320a及320b。 較佳而言,抗扭斜控制器320a及320b使用可程式時序延 遲裝置而組態用於DUT 380之該等通道之每—個的時序扭 斜。 122876-1000318.doc 17 1352996 在透過驅動器240將測試波形發射至DUT 380之前,抗 扭斜控制器320a補償時序扭斜。然而,當時序扭斜具有很 大的比例時,抗扭斜控制器320a可能無法補償時序扭斜。 即,由抗担斜控制器320a補償的時序扭斜之範圍可根據可 程式時序延遲裝置而不同。能夠補償大範圍之時序扭斜的 可程式時序延遲裝置之價格很高且具有較差的補償特徵。 因此,當抗扭斜控制器320a補償大於預定值的時序扭斜 時,抗扭斜控制器320可經組態成與位元移位器3ι〇相關聯 以補償時序扭斜。 卩位元移位器3 1 0主要補償在可由抗扭斜控制器32〇a 補償之範圍以外的時序扭斜。在位元移位器31〇實行初次 j償之後,抗扭斜控制器320a可再次補償可由抗扭斜控制 器320a補償之範圍内的時序扭斜。因此,可補償大比例之 時序扭斜》 此外,當在依據本發明的測試器與〇17丁 38〇之間發射測 試波形時’根據測試波形接收該測試輸㈣料,而且藉由 測試比較器260來比較該預期資料與該測試輸出資料,測 試比較器260考量往返延遲。即,測試比較器26〇考量在透 過不同路徑而發射信號的程序期間會發生變化的延遲。因 此’有效率地實行對往返延遲的補償。"clock" denotes a reference clock for testing the conversion of the waveform, and the time delay value" table is not used for the set of values of the conversion of the test waveform by the programmer. The format controller 230 uses the reference The clock and the delay value convert the physical test type into a test waveform. For example, nrz, nrzi, rz〇, and RZOI are not examples of test waveforms converted according to the type, and dnrz and DNRZI indicate according to the pattern. An example of a converted test waveform. A tester according to the present invention is characterized in that the tester does not include a timing generator used in conventional test benefits. That is, although the tester shown in Figure 2 is 122876-1000318.doc • 15 - 1352996 uses the plurality of clocks to generate timing to generate a test waveform, but the tester according to the present invention shown in FIG. 4 uses only the reference clock instead of the plurality of clocks and performs conversion according to the time delay value. No need for a high-priced timing generator. The tester according to the present invention may further comprise an assembly for efficient use of one of the testers other than the components described above. The delay controller 270 applies the physical test pattern data and the expected data to the format controller 23 and the test comparator 26 respectively by controlling the delay. The entity test type data and The expected data is delayed by a predetermined period to control the delay. Although the physical test pattern data and the expected data are delayed by the predetermined period after generating the test waveform according to the conventional test benefit, according to the present invention, only the reference clock may be used according to the present invention. And the time delay value is used to convert the test waveform. Therefore, the physical test pattern data and the expected data are delayed by the predetermined period, and then the test waveform is converted according to the present invention. In addition, when the FIFO (first in first out) device is used, the automatic The configuration is based on the delay of writing to DUT 3 8〇 or reading from DUT 3 80. Therefore, the programmer can easily embody the program without special configuration. The operating speed of the semiconductor device becomes higher and requires south speed operation, but the test waveform is mainly generated for low speed operation. Therefore, the test waveform To be multiplexed to correspond to the operating speed of the semiconductor device or to be demultiplexed to perform a comparison of the test output data with the expected data. The multiplexer 280 multiplexes the test waveform to match the operating speed of the dut 380, and The multiplexer 290 de-multiplexes the test output data to a value of 122876-1000318.doc 1352996 σ. The operating speed of the comparison of the output metrics and the expected data is measured before the multiplexer 280 performs the multiplex. 'Extraction of test waveforms can be implemented. That is, the tester can include a timing controller that performs oversampling to apply low frequency test waveforms to 280 ° oversampling at high speeds. The frequency data is converted into high frequency data. Therefore, oversampling of the test waveform can be applied to the multiplexer 280 designed to operate only at a high frequency. The Hai tester may include a bit shifter 3, which is used to shift the test waveform by one bit unit after the oversampling is performed to be applied to the multiplexer 280. That is, the bit shifter 31 移位 shifts the test waveform by the unit of the bit to additionally generate a desired waveform or set a time delay. On the other hand, the timing skew occurring in the channel of the DUT 380 may be the same for each of the channels. p, because the signal transmission environment is not the same for each of the channels, so that timing skew is generated. Therefore, after transmitting the test waveform to the DUT 38 through the driver 24 or after receiving the test wheel data from the DUT 380 through the output comparator 250, a function for compensating for the timing skew for each of the channels is required. . To compensate for timing skew, the tester in accordance with the present invention can include anti-skew controllers 320a and 320b. Preferably, the anti-skew controllers 320a and 320b configure a timing skew for each of the channels of the DUT 380 using a programmable timing delay device. 122876-1000318.doc 17 1352996 The anti-skew controller 320a compensates for timing skew before transmitting the test waveform to the DUT 380 through the driver 240. However, when the timing skew has a large proportion, the anti-skew controller 320a may not be able to compensate for the timing skew. That is, the range of the timing skew compensated by the anti-slant controller 320a can be different depending on the programmable timing delay means. Programmable timing delay devices capable of compensating for a wide range of timing skews are expensive and have poor compensation characteristics. Thus, when the anti-skew controller 320a compensates for a timing skew greater than a predetermined value, the anti-skew controller 320 can be configured to be associated with the bit shifter 3ι to compensate for the timing skew. The 卩 bit shifter 3 1 0 primarily compensates for timing skew outside of the range that can be compensated by the anti-skew controller 32 〇 a. After the bit shifter 31 〇 performs the initial j compensation, the anti-skew controller 320a can again compensate for the timing skew within the range that can be compensated by the anti-skew controller 320a. Therefore, a large proportion of timing skew can be compensated. In addition, when the test waveform is transmitted between the tester according to the present invention and the 〇17丁38〇, the test input (four) material is received according to the test waveform, and by testing the comparator 260 to compare the expected data with the test output data, the test comparator 260 considers the round trip delay. That is, the test comparator 26 considers the delay that will change during the process of transmitting signals through different paths. Therefore, compensation for round trip delay is efficiently implemented.

示),其用於藉由考量該測試器與DUT 一再同步器(圖中未顯 JT 380之間的往返延遲 122876-I000318.doc •18- 而實行該測試輸出資料的再同步;以及一往返延遲補償器 (圖中未顯示)’其用於依據該往返延遲而延遲該預期資 料°該再同步器及該往返延遲補償器可分別包括FIFO裝 置。 在此類情況下,可藉由該程式設計人員輕易地建立測試 型樣程式而無須特殊組態。 如以上說明’在型樣產生器210中產生的測試型樣資料 包含命令、位址以及資料信號。 在此類情況下,依據本發明之測試器可進一步包括一測 試結果儲存器(圖中未顯示),其用於儲存關於由測試比較 1§ 260所決定之有缺陷DUT的資訊或關於測試型樣程式的 資訊。 關於有缺陷DUT的資訊可能係有缺陷DUT之位置的識別 資訊且可包含有缺陷單元之單元位址。此外,關於測試型 樣程式的資訊可以係當偵測到有缺陷Dut時的對應命令、 位址及資料。 儲存在該測試結果儲存器(圖中未顯示)中的資訊可用於 移除有缺陷DUT或該測試型樣程式的除錯。 依據本發明之測試器可進一步包括測試結果發射器 33〇,其用於發射測試比較器260之測試結果(即關於有缺 陷DUT的資訊)以及一資料資訊至一外部設備,以便使用 者可輕易地檢視測試結果。 圖5係解說用於測試依據本發明之半導體裝置的測試器 之一實際具體實施例的圖式。 122876-1000318.doc 19 1352996 ”ALPG”表示型樣產生器210。型樣產生器210包括:"指 令記憶體",用於儲存藉由編譯該測試型樣程式所獲得的 二進制資料;”序列控制器",用於按順序讀取儲存在"指 令記憶體”中的資料;以及"命令產生器"、"位址產生器"與 "資料產生器",用於產生DUT之測試所需要的命令、位址 或資料。型樣產生器210亦產生”控制旗標"。 "PDS”表示資料選擇器220。如圖所示,資料選擇器220 根據"控制旗標”轉換命令、位址及資料。 ”Latency"表示延時控制器270。該延時控制器使用FIFO 調整延遲。在命令及位址情況下,因為需要將命令及位址 發射至DUT,所以使用DR(驅動)FIFO。在資料情況下,因 為應該將資料發送至DUT且亦比較該資料與預期資料,所 以使用DRE(驅動致能)FIFO以及CPE(比較致能)FIFO。 "FC/TC"表示格式控制器230、多工器280、解多工器 290、時序控制器300及位元移位器310。 ”FCn表示格式控制器230,"TC"表示時序控制器300以及 位元移位器310。此外,”MUX"及"DEMUX"分別對應於多 工器280及解多工器290。 ”Deskew”對應於抗扭斜控制器320,"Drive”對應於驅動 器240,"Comparator"對應於輸出比較器250以及"DCP(數 位比較器)"對應於測試比較器260。 "DFM(資料故障記憶體)"及"AFM(位址故障記憶體)"對 應於測試結果儲存器。 "DCP"及"AFM"之每一項均包括對應於再同步器的 122876-10003J8.doc -20- 1352996Show), which is used to perform resynchronization of the test output data by considering the tester and the DUT repeater (the round trip delay between the JT 380 is not shown in the figure 122876-I000318.doc • 18-; A delay compensator (not shown) is configured to delay the expected data according to the round trip delay. The resynchronizer and the round trip delay compensator may respectively include a FIFO device. In such cases, the program may be The designer can easily create a test pattern program without special configuration. As explained above, the test pattern data generated in the pattern generator 210 contains commands, addresses, and data signals. In such cases, according to the present invention The tester can further include a test result store (not shown) for storing information about the defective DUT determined by test comparison 1 § 260 or information about the test type program. The information may be identification information of the location of the defective DUT and may include the unit address of the defective unit. Further, information about the test type program may be detected. Corresponding command, address and data when the defect is Dut. The information stored in the test result storage (not shown) can be used to remove the defective DUT or the debugging of the test pattern program. The device may further include a test result transmitter 33A for transmitting the test result of the test comparator 260 (ie, information about the defective DUT) and a data message to an external device so that the user can easily view the test result. Figure 5 is a diagram illustrating a practical embodiment of a tester for testing a semiconductor device in accordance with the present invention. 122876-1000318.doc 19 1352996 "ALPG" represents a pattern generator 210. The pattern generator 210 includes: "Instruction Memory" for storing binary data obtained by compiling the test pattern program; "Sequence Controller" for sequentially reading data stored in "Command Memory"; And "command generator", "address generator" and "data generator", the commands, addresses, or resources needed to generate the DUT test The pattern generator 210 also generates a "control flag" "PDS" to indicate the data selector 220. As shown, the data selector 220 converts commands, addresses and data according to "control flags." Latency" represents the delay controller 270. The delay controller uses the FIFO to adjust the delay. In the case of commands and address addresses, the DR (drive) FIFO is used because the command and address need to be transmitted to the DUT. In the case of data, because The data should be sent to the DUT and the data and expected data are also compared, so the DRE (Drive Enable) FIFO and the CPE (Comparative Enable) FIFO are used. "FC/TC" represents format controller 230, multiplexer 280, demultiplexer 290, timing controller 300, and bit shifter 310. "FCn" indicates the format controller 230, "TC" indicates the timing controller 300 and the bit shifter 310. Further, "MUX" and "DEMUX" correspond to the multiplexer 280 and the demultiplexer 290, respectively. "Deskew" corresponds to the anti-skew controller 320, "Drive" corresponds to the driver 240, "Comparator" corresponds to the output comparator 250 and "DCP (Digital Comparator)" corresponds to the test comparator 260. "; DFM (Data Failure Memory) " and "AFM (Address Fault Memory)" corresponds to the test result storage. Each of the "DCP" and "AFM" includes a resynchronizer 122876-10003J8.doc -20- 1352996

Resync FIFO以及對應於往返延遲補償器的"rtd FIFO"。此外,"DCP"比較資料且將有缺陷DUT方面的資訊 儲存在"DFM(資料故障記憶體中,而且發射對應位址並 將其儲存在"AFM"中。 雖然本發明已參考其較佳具體實施例而特定加以顯示並 說明,但是熟習技術人士應瞭解可在其中進行形式上及詳 細内容的各種改變而不脫離本發明之精神與範缚。 如以上說明,依據用於測試本發明之半導體裝置的測試 器,根據時間延遲而非使用複數個時脈來產生各種時序以 改良測試效率並減少製造成本。 【圖式簡單說明】 圖1係解說用於測試半導體裝置的傳統測試器之方塊 圖。 圖2係解說在用於測試半導體裝置的傳統測試器中轉換 一測試波形之一範例的圖式。 圖3係例證用於測試依據本發明之一半導體裝置的測試 器之測試的方塊圖。 圖4係解說在用於測試依據本發明之半導體裝置的測試 器中轉換測試波形之一範例的圖式。 圖5係解說用於測試依據本發明之半導體裝置的測試器 之一實際具體實施例的圖式。 【主要元件符號說明】 110 型樣產生器 120 時序產生器 122876-1000318.doc -21- 1352996Resync FIFO and "rtd FIFO" corresponding to the round trip delay compensator. In addition, "DCP" compares the information and stores the information on the defective DUT in "DFM (data failure memory, and transmits the corresponding address and stores it in "AFM". Although the present invention has referenced it The present invention has been shown and described with reference to the preferred embodiments of the present invention The tester of the semiconductor device of the invention generates various timings according to time delay instead of using a plurality of clocks to improve test efficiency and reduce manufacturing cost. [Schematic Description] FIG. 1 is a diagram illustrating a conventional tester for testing a semiconductor device. Figure 2 is a diagram illustrating an example of converting a test waveform in a conventional tester for testing a semiconductor device. Figure 3 is a diagram illustrating testing of a tester for testing a semiconductor device in accordance with the present invention. Figure 4 is a block diagram showing one of the conversion test waveforms in a tester for testing a semiconductor device in accordance with the present invention. Figure 5 is a diagram illustrating a practical embodiment of a tester for testing a semiconductor device in accordance with the present invention. [Main component symbol description] 110 pattern generator 120 timing generator 122876-1000318. Doc -21- 1352996

130 格式控制器 140 驅動器 150 比較器 160 測試結果儲存Is 180 DUT 210 型樣產生器 220 資料選擇器 230 格式控制器 240 驅動器 250 輸出比較器 260 測試比較器 270 延時控制器 280 多工器 290 解多工器 300 時序控制器 310 位元移位器 320a 抗扭斜控制器 320b 抗扭斜控制器 330 測試結果發射器 380 DUT 122876-1000318.doc -22-130 format controller 140 driver 150 comparator 160 test result storage Is 180 DUT 210 pattern generator 220 data selector 230 format controller 240 driver 250 output comparator 260 test comparator 270 delay controller 280 multiplexer 290 solution The tool 300 timing controller 310 bit shifter 320a anti-skew controller 320b anti-skew controller 330 test result transmitter 380 DUT 122876-1000318.doc -22-

Claims (1)

第096128074號專利申請案 中文申請專利範圍替換本(1〇〇年8月) 十、申請專利範圍: -種用於測試-DUT的測試器,該測試器包括: -型樣產生器’其用於根據—測試型樣程式產生用於 該DUT之-測試的—邏輯測試型樣資料; 資料選擇器,其用於將從該型樣產生器發送的該邏 輯測4型樣貧料轉換成一實體測試型樣資料以及轉換成 一預期資料; 格式控制器,其用於根據用於該測試的一時間延遲 值集將該實體測試型樣資料轉換成一測試波形; 驅動器’其用於將該測試波形施加於該Dut ; 一輸出比較器,其用於從該DUT接收對應於該測試波 开乂的輸出,以輸出一測試輸出資料; 一測試比較器,其用於比較該測試輸出資料與該預期 =貝料,以決定該DIJT係一有缺陷DUT ; 一多工器’其用於多工該測試波形以符合該Dut之一 操作速度; 一解多工器’其用於解多工該測試輸出資料以符合該 測D式輸出資料與該預期資料之比較之一操作速度; 一時序控制器,其用於在將該測試波形施加於該多工 器之前’實行該測試波形之一超取樣;以及 一位元移位器,其用於在實行該超取樣之後使該測試 波形移位—位元之單位以得以施加於該多工器。 2.如睛求項1之測試器,其進一步包括一延時控制器,其 用於藉由控制其延時而將該實體測試型樣資料及該預期 122876-1000810.doc 1352996 日α正铃厂 iiL — hot 資料分別施加於該格式控制器及該測試比較器 3. 如凊求項1之測試器,其進一步包括多個抗扭斜控制 益,該等抗扭斜控制器分別用於在透過該驅動器發射該 /貝J試波形至該DUT之前以及在透過該輸出比較器從該 DUT接收該測試輸出資料之後,補償在該之通道之 每一個中產生的一時序扭斜。 4·如請求項3之測試器’其中該等抗扭斜控制器藉由設定 用於該等通道之每一者的該時序扭斜而補償該時序扭 斜。Patent Application No. 096128074 (Replacement of Chinese Patent Application Scope (August 1st)) X. Application Patent Range: - A tester for testing -DUT, the tester includes: - a type generator Generating a test type data for the test of the DUT according to the test pattern program; and a data selector for converting the logical type 4 poor material sent from the pattern generator into an entity Testing the pattern data and converting it into a expected data; a format controller for converting the physical test pattern data into a test waveform according to a set of time delay values for the test; the driver 'used to apply the test waveform The Dut; an output comparator for receiving an output corresponding to the test wave opening from the DUT to output a test output data; a test comparator for comparing the test output data with the expected = a material to determine the DIJT system is a defective DUT; a multiplexer 'which is used to multiplex the test waveform to match one of the Du operating speeds; a solution multiplexer' which is used to solve the multiplex Testing the output data to match the operating speed of the comparison of the measured D-type output data with the expected data; a timing controller for performing one of the test waveforms before applying the test waveform to the multiplexer Sampling; and a one-bit shifter for shifting the test waveform into units of bits after the oversampling is performed to be applied to the multiplexer. 2. The tester of claim 1, further comprising a delay controller for controlling the physical test pattern data by controlling the delay thereof and the expected 122876-1000810.doc 1352996 day α Zhengling Factory iiL — the hot data is applied to the format controller and the test comparator respectively. 3. The tester of claim 1, further comprising a plurality of anti-skew control benefits, wherein the anti-skew controllers are respectively used to transmit The driver compensates for a timing skew generated in each of the channels before transmitting the test waveform to the DUT and after receiving the test output data from the DUT through the output comparator. 4. The tester of claim 3 wherein the anti-skew controller compensates for the timing skew by setting the timing skew for each of the channels. 5·如請求項1之測試器,其進一步包括多個抗扭斜控制 器,忒專抗扭斜控制器分別用於在透過該驅動器發射由 該多工器所多工的該測試波形至該DUT之前以及在透過 該輸出比較器從該DUT接收該測試輸出資料之後,補償 在該DUT之該等通道之每一者中產生的一時序扭斜,以 及 其中該等抗扭斜控制器中之每一個係以當該時序扭斜 係大於一預定值時透過該位元移位器部分地補償該時序 · 扭斜的方式與該位元移位器相關聯。 6·如請求項5之測試器,其中該等抗扭斜控制器藉由設定 用於該等通道之每一者的該時序扭斜而補償該時序扭 斜。 7.如請求項1之測試器,其中該驅動器以該測試波形具有 二個位準"尚"、”低"及"终止"之一的方式將該測試波形 施加於該DUT。 122876-I000810.doc 該月求項1之測試器,其中該輸出比較器比較對應於從 ο T接收的該測試波形之該輸出與一臨界值,以輸出 該測試輪出資料。 如喷求項8之測試器,其中該臨界值可變。 如明求項8之測試器,其中該輪出比較器根據該臨界值 而組態-視窗且決以於視f外部的—信號之一輸出位 準〇5. The tester of claim 1, further comprising a plurality of anti-skew controllers for respectively transmitting the test waveform multiplexed by the multiplexer through the driver to the Compensating for a timing skew generated in each of the channels of the DUT before and after receiving the test output data from the DUT through the output comparator, and wherein the anti-skew controllers Each is associated with the bit shifter by partially compensating for the timing skew due to the timing skew when the timing skew is greater than a predetermined value. 6. The tester of claim 5, wherein the anti-skew controller compensates for the timing skew by setting the timing skew for each of the channels. 7. The tester of claim 1, wherein the driver applies the test waveform to the DUT in a manner that the test waveform has two levels of "shang" "low" and "terminate" 122876-I000810.doc The tester of item 1 of the present month, wherein the output comparator compares the output corresponding to the test waveform received from ο T with a threshold value to output the test round-out data. The tester of item 8, wherein the threshold value is variable. The tester of claim 8, wherein the turn-out comparator configures the window according to the threshold value and determines the output of the signal outside the f-output Position 如明求項1之測試器’其中該測試比較器包括: 再同步窃,其用於藉由考量該測試器與該DUT之間 的-往返延遲而實行該測試輸出資料之一再同步;以及 一往返延遲補償器’其用於依據該往返延遲而延遲該 預期資料。 12·如明求項1之測試器’其中該測試型樣產生器根據欲發 送至該資料選擇器的該DUT之通道之每一者,產生用於 該邏輯測試型樣資料至該實體測試型樣資料之轉換的一 控制旗標;以及 其争該育料選擇器藉由參考複數個預指定的資料選擇 表格,根據該控制旗標將該邏輯測試型樣詩轉換成要 透過該DUT之該等通道之每一者而加以發送之該實體測 試型樣資料。 13·如請求項1之測試器’其進-步包括用於發射該測試之 結果至.一外部裝置的一測試結果發射器。 122876-1000810.docThe tester of claim 1 wherein the test comparator comprises: resynchronization, which is used to perform resynchronization of one of the test output data by considering a round trip delay between the tester and the DUT; A round trip delay compensator' is used to delay the expected data based on the round trip delay. 12. The tester of claim 1, wherein the test pattern generator generates the logic test pattern data to the entity test type according to each of the channels of the DUT to be sent to the data selector a control flag for converting the sample data; and contending for the feed selector to convert the logical test pattern poem to be transmitted through the DUT by referring to a plurality of pre-specified data selection forms The physical test pattern data sent by each of the equal channels. 13. The tester of claim 1 wherein the step further comprises a test result transmitter for transmitting the result of the test to an external device. 122876-1000810.doc
TW096128074A 2006-08-01 2007-07-31 Tester for testing semiconductor device TWI352996B (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020060072747A KR100736676B1 (en) 2006-08-01 2006-08-01 Tester for testing semiconductor device

Publications (2)

Publication Number Publication Date
TW200816214A TW200816214A (en) 2008-04-01
TWI352996B true TWI352996B (en) 2011-11-21

Family

ID=38503509

Family Applications (1)

Application Number Title Priority Date Filing Date
TW096128074A TWI352996B (en) 2006-08-01 2007-07-31 Tester for testing semiconductor device

Country Status (3)

Country Link
US (1) US7872488B2 (en)
KR (1) KR100736676B1 (en)
TW (1) TWI352996B (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI683113B (en) * 2014-10-20 2020-01-21 美商艾爾測試系統 Tester for device, method of operating switching circuit, and method of testing device

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7365556B2 (en) * 2004-09-02 2008-04-29 Texas Instruments Incorporated Semiconductor device testing
CN101784906B (en) * 2007-08-22 2014-03-12 爱德万测试(新加坡)私人有限公司 Chip tester, test fixture set, apparatus and method for chip test
JP5528539B2 (en) * 2009-04-09 2014-06-25 テラダイン、 インコーポレイテッド Automatic test equipment using test signal transmission channel with built-in series insulation resistor
KR101164116B1 (en) * 2012-02-29 2012-07-12 주식회사 유니테스트 Testing board for burn-in tester
KR102247026B1 (en) * 2014-12-19 2021-04-30 에스케이하이닉스 주식회사 Semiconductor memory device and method of testing the same
KR102374712B1 (en) * 2017-07-03 2022-03-17 삼성전자주식회사 Test interface board having transmission line to merge signals, test system using the same, and test system
KR20200016680A (en) * 2018-08-07 2020-02-17 삼성전자주식회사 Test Device and Test Method reducing peak noise and Semiconductor Device under test
CN112798925B (en) * 2020-12-07 2022-10-28 中国船舶重工集团公司第七0九研究所 Synchronous testing device and method based on automatic testing system

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5285152A (en) * 1992-03-23 1994-02-08 Ministar Peripherals International Limited Apparatus and methods for testing circuit board interconnect integrity
JP3616247B2 (en) * 1998-04-03 2005-02-02 株式会社アドバンテスト Skew adjustment method in IC test apparatus and pseudo device used therefor
US6779140B2 (en) * 2001-06-29 2004-08-17 Agilent Technologies, Inc. Algorithmically programmable memory tester with test sites operating in a slave mode
JP3567923B2 (en) 2001-11-30 2004-09-22 横河電機株式会社 IC test equipment
US6831473B2 (en) * 2002-06-25 2004-12-14 Teradyne, Inc. Ring calibration apparatus and method for automatic test equipment
KR100761894B1 (en) * 2004-03-12 2007-09-28 가부시키가이샤 아드반테스트 Semiconductor device testing apparatus and device interface board
US7595629B2 (en) * 2004-07-09 2009-09-29 Formfactor, Inc. Method and apparatus for calibrating and/or deskewing communications channels

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI683113B (en) * 2014-10-20 2020-01-21 美商艾爾測試系統 Tester for device, method of operating switching circuit, and method of testing device

Also Published As

Publication number Publication date
TW200816214A (en) 2008-04-01
US20080030218A1 (en) 2008-02-07
US7872488B2 (en) 2011-01-18
KR100736676B1 (en) 2007-07-06

Similar Documents

Publication Publication Date Title
TWI352996B (en) Tester for testing semiconductor device
US8045663B2 (en) Circuit and method for removing skew in data transmitting/receiving system
JP4786262B2 (en) Interface circuit
TWI418825B (en) Test device and test method for semiconductor device
US9081516B2 (en) Application memory preservation for dynamic calibration of memory interfaces
US7739572B2 (en) Tester for testing semiconductor device
US7551499B2 (en) Semiconductor memory device capable of performing low-frequency test operation and method for testing the same
KR101009335B1 (en) Semiconductor memory device and the method for operating the same
KR101617374B1 (en) Adjustment of memory write timing based on error detection techniques
US7757144B2 (en) System and method for testing integrated circuit modules comprising a plurality of integrated circuit devices
US20090222713A1 (en) Semiconductor device and method for operating the same
JP2010086246A (en) Memory interface and operation method for the memory interface
KR100736675B1 (en) Tester for testing semiconductor device
US8754656B2 (en) High speed test circuit and method
KR20090071893A (en) Data input circuit of semiconductor memory apparatus and control method of the same
TWI453445B (en) Testing apparatus and testing method for device under test
WO2009150695A1 (en) Test device
JP6090447B2 (en) Arithmetic processing device and control method of arithmetic processing device
JP2005267673A (en) Testing device and method
EP2466414B1 (en) Quad-data rate controller and realization method thereof
TWI518703B (en) Memory device and method operable to provide multi-port functionality
JP2010079520A (en) Device for controlling memory module, and method of controlling the same
CN103678249B (en) Expansion equipment and its clock adjustment method based on memory interface
CN115827520A (en) Flash memory controller, flash memory control system and flash memory control method
CN114840136A (en) Techniques to perform command address interface training on dynamic random access memory