WO2015007037A1 - 无尘机制天然砂制作分离系统及方法 - Google Patents

无尘机制天然砂制作分离系统及方法 Download PDF

Info

Publication number
WO2015007037A1
WO2015007037A1 PCT/CN2013/087444 CN2013087444W WO2015007037A1 WO 2015007037 A1 WO2015007037 A1 WO 2015007037A1 CN 2013087444 W CN2013087444 W CN 2013087444W WO 2015007037 A1 WO2015007037 A1 WO 2015007037A1
Authority
WO
WIPO (PCT)
Prior art keywords
sand
chamber
wind
section
dust
Prior art date
Application number
PCT/CN2013/087444
Other languages
English (en)
French (fr)
Inventor
胡建明
蒋刚
Original Assignee
浙江双金机械集团股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 浙江双金机械集团股份有限公司 filed Critical 浙江双金机械集团股份有限公司
Publication of WO2015007037A1 publication Critical patent/WO2015007037A1/zh

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B07SEPARATING SOLIDS FROM SOLIDS; SORTING
    • B07BSEPARATING SOLIDS FROM SOLIDS BY SIEVING, SCREENING, SIFTING OR BY USING GAS CURRENTS; SEPARATING BY OTHER DRY METHODS APPLICABLE TO BULK MATERIAL, e.g. LOOSE ARTICLES FIT TO BE HANDLED LIKE BULK MATERIAL
    • B07B9/00Combinations of apparatus for screening or sifting or for separating solids from solids using gas currents; General arrangement of plant, e.g. flow sheets
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B03SEPARATION OF SOLID MATERIALS USING LIQUIDS OR USING PNEUMATIC TABLES OR JIGS; MAGNETIC OR ELECTROSTATIC SEPARATION OF SOLID MATERIALS FROM SOLID MATERIALS OR FLUIDS; SEPARATION BY HIGH-VOLTAGE ELECTRIC FIELDS
    • B03BSEPARATING SOLID MATERIALS USING LIQUIDS OR USING PNEUMATIC TABLES OR JIGS
    • B03B9/00General arrangement of separating plant, e.g. flow sheets
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B07SEPARATING SOLIDS FROM SOLIDS; SORTING
    • B07BSEPARATING SOLIDS FROM SOLIDS BY SIEVING, SCREENING, SIFTING OR BY USING GAS CURRENTS; SEPARATING BY OTHER DRY METHODS APPLICABLE TO BULK MATERIAL, e.g. LOOSE ARTICLES FIT TO BE HANDLED LIKE BULK MATERIAL
    • B07B1/00Sieving, screening, sifting, or sorting solid materials using networks, gratings, grids, or the like
    • B07B1/46Constructional details of screens in general; Cleaning or heating of screens
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B07SEPARATING SOLIDS FROM SOLIDS; SORTING
    • B07BSEPARATING SOLIDS FROM SOLIDS BY SIEVING, SCREENING, SIFTING OR BY USING GAS CURRENTS; SEPARATING BY OTHER DRY METHODS APPLICABLE TO BULK MATERIAL, e.g. LOOSE ARTICLES FIT TO BE HANDLED LIKE BULK MATERIAL
    • B07B4/00Separating solids from solids by subjecting their mixture to gas currents
    • B07B4/02Separating solids from solids by subjecting their mixture to gas currents while the mixtures fall
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B07SEPARATING SOLIDS FROM SOLIDS; SORTING
    • B07BSEPARATING SOLIDS FROM SOLIDS BY SIEVING, SCREENING, SIFTING OR BY USING GAS CURRENTS; SEPARATING BY OTHER DRY METHODS APPLICABLE TO BULK MATERIAL, e.g. LOOSE ARTICLES FIT TO BE HANDLED LIKE BULK MATERIAL
    • B07B2201/00Details applicable to machines for screening using sieves or gratings
    • B07B2201/02Fastening means for fastening screens to their frames which do not stretch or sag the screening surfaces
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B07SEPARATING SOLIDS FROM SOLIDS; SORTING
    • B07BSEPARATING SOLIDS FROM SOLIDS BY SIEVING, SCREENING, SIFTING OR BY USING GAS CURRENTS; SEPARATING BY OTHER DRY METHODS APPLICABLE TO BULK MATERIAL, e.g. LOOSE ARTICLES FIT TO BE HANDLED LIKE BULK MATERIAL
    • B07B2201/00Details applicable to machines for screening using sieves or gratings
    • B07B2201/04Multiple deck screening devices comprising one or more superimposed screens
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B07SEPARATING SOLIDS FROM SOLIDS; SORTING
    • B07BSEPARATING SOLIDS FROM SOLIDS BY SIEVING, SCREENING, SIFTING OR BY USING GAS CURRENTS; SEPARATING BY OTHER DRY METHODS APPLICABLE TO BULK MATERIAL, e.g. LOOSE ARTICLES FIT TO BE HANDLED LIKE BULK MATERIAL
    • B07B7/00Selective separation of solid materials carried by, or dispersed in, gas currents
    • B07B7/01Selective separation of solid materials carried by, or dispersed in, gas currents using gravity
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P40/00Technologies relating to the processing of minerals

Definitions

  • the invention relates to a dust-free natural sand production separation system and method which can realize the selection of different particle size mechanism sands by using wind, and can realize the dust-free dust-free mechanism of the selected mechanism, and belongs to the field of mechanism sand selection system.
  • the bottom of the dust-removing bin is provided with a discharge port, and the dust-removing bin is internally provided with a buffer platform, the buffer platform is disposed under the feeding nozzle, and the buffer platform is fixedly connected with the dust-removing bin; the outer wall of the dust-removing bin
  • An air blower for lifting the sand to be sorted on the buffer platform and an air blower for extracting the stone powder in the sand to be sorted are installed, the blower is disposed under the buffer platform, and the exhaust fan is disposed in the dust removal chamber Upper part.
  • Design purpose To avoid the deficiencies in the background technology, design a mechanism sand wind selection system and wind selection method that can not only use the wind to achieve the choice of different particle size sand, but also realize the mechanism sand dust-free mechanism sand.
  • the design of the mechanical sand wind selector tank is one of the technical features of the present invention.
  • the purpose of this is to: the mechanical sand wind selector body is composed of five associated compartments, which are a strong wind chamber, a second strong wind chamber, a three-stage aeration chamber, a four-stage tank chamber and five sections.
  • the cabin is composed.
  • a strong wind chamber and a two-stage strong wind chamber have a large amount of mechanical sand due to the large weight of the mechanism sand. Therefore, there is a main air outlet at the end face and a wind vent on both sides of the boiling chamber to supplement the air volume.
  • the intake air volume of the main air vent and the air vent is controlled by the control of the PLC controller.
  • the main air outlet of one of the strong wind chambers and the two air distribution outlets use a main fan to supply the wind separately;
  • the second section of the strong wind chamber and the third section of the intermediate chamber use a fan to supply air;
  • the third section of the cabin is required for the quantity and needs of the feed.
  • the quality of the blown sand has been reduced. Therefore, only the main tuyere is provided in the three-stage stroke chamber, and the source of the air volume is the air volume generated by the auxiliary fan.
  • the main air outlet at the lower end of the feed port is powerfully supplied with wind, and the mechanical sand is blown into the adjacent boiling chamber by the wind, and a wind vent is provided on both sides of the boiling chamber to supplement the air volume, so that the mechanism sand is continuously taken from the boiling room.
  • the wind is blown up and on both sides.
  • the large-grained mechanism sand exceeds the wind by its own mass, so the level of the mechanism sand is dropped into the discharge port below the strong wind chamber to enter the next step.
  • a small level of mechanical sand blown up through the boiling chamber is fed into a transitional distribution port between a strong wind chamber and a two-stage strong wind chamber, during which the dust is sucked away by the dust collector suction port above the five-stage tank chamber.
  • the fine particles whose mass is larger than dust and smaller than other mechanism sand fall into the five-stage material collecting chute, and are continuously sent to the five-segment warehouse.
  • the remaining mechanical sand was dropped into the feed chamber of the second section of the strong wind chamber due to its own quality.
  • the dust part of the mechanism sand blown up in the boiling chamber of the second section of the strong wind chamber continues to be sucked away by the dust collector at the upper part of the five-stage tank compartment, and the five sections of the tank compartment material also fall into the second five-stage material collection chute.
  • This part of the mechanism sand with a mass greater than the five-stage silo is sent to the three-stage bin.
  • the air entering the three-stage silo is blown into the boiling chamber of the three-stage astronomical chamber by the air blown by the lower main air outlet.
  • the light-weight mechanism sand is blown into the four-stage silo. It falls into the lower part of the three-stage stroke compartment and is sent to the next link.
  • the mechanism sand that enters the four-segment warehouse also naturally falls into the bottom of the warehouse and is sent to the next link.
  • the machine-separated sand separated from the stage to the four-stage compartment is sent to the corresponding storage tank through the pipes at the lower end of the respective compartments.
  • the design of the grading control inspection platform is the second technical feature of the present invention. The purpose of this is to provide a grading control inspection platform on the side of the pipe between the bottom of the compartment and the storage tank.
  • the platform is visually weighed by a multi-layer experimental vibrating screen corresponding to the number of layers required for the vibrating screen.
  • the composition of the grading device, the group of inspection platform plays the role of controlling the adjustment of the mechanical sand grading in each compartment.
  • the data of the corresponding wind turbine is adjusted immediately after the data is obtained through the inspection platform.
  • the air inlet pipe valve between the air duct and the air duct controls the proportion of the air in the section to adjust the proportion of the sand in the section.
  • the visual weighing grading device is composed of a group of plexiglass tanks of the same volume, and the corresponding scale is engraved in the tank body.
  • the staff will draw conclusions very intuitively according to the scale of each tank, and then according to the data.
  • the electric and pneumatic pipe valves between the main air outlet and the air distribution port are finely adjusted so that the mechanical sand ratio of the section can be conveniently adjusted.
  • the bottom of the visual weighing grading device may also be respectively equipped with a weight sensor, and the computer of the central control room automatically adjusts the air inlet amount of the main air outlet and the air distribution port according to the weight of each tank.
  • the design of the grading control inspection platform described in the present application is not limited thereto, and the inspection platform related to the sand level detection belongs to the protection scope of the present invention, such as laser detection, photoelectric imaging detection and the like. 3.
  • the design of the wear-resistant plates of different sizes in the interior of the mechanism sand wind-selector cabin is the technical feature of the present invention.
  • the purpose of this is to: because the mechanical sand is very harmful to the inner wall wear during the wind selection process, the wear-resistant plates of different sizes are spliced on the wall, so that the wear plate can be easily replaced according to the wear condition later. 4.
  • the design of the discharge port, the feed cavity and the boiling cavity of one compartment, two compartments and three sections is the fourth technical feature of the present invention.
  • the feed opening can directly screen out the mechanical sand larger than the wind; while the feed chamber and the boiling chamber are designed, the mechanism sand in the feed chamber is turned up from the bottom to the wind, and In the process of tumbling, the screening of the particle size of the mechanism sand was achieved, and the dust was separated, and the purpose of the dust-free mechanism sand was achieved.
  • Maintenance holes are provided at the top of the mechanism sand wind selector body to facilitate maintenance.
  • the invention adopts a modular multi-layer vibrating screen for screening design, and increases the screening layer under the premise of the same width format, and reduces the layer spacing and reduces the same on the premise of the same screening layer.
  • the self-weight of the whole vibrating screen not only shortens the time for replacing the screen, simplifies the screening equipment, saves investment, reduces energy consumption, realizes low-carbon operation, and has reasonable structural design, convenient processing and installation, large single processing capacity and module maintenance.
  • the design of the mechanism natural sand grading adjustment system is not only suitable for wet sand making, but also suitable for dry sand making.
  • the generation of powder not only avoids pollution to the environment, but also avoids waste of raw materials.
  • the fine steel balls that are screened can be used as blasting for classification, and the worn fine steel powder is recycled by the electromagnetic drum as a casting material, more importantly.
  • the user can adjust the particle size and fineness modulus of the mechanism sand according to his own needs; the third is to adopt the wind-winding system, which not only realizes the purpose of sand selection for different particle size mechanisms, but also the various levels selected by the wind.
  • the dust content in the mechanism sand is almost zero, achieving the purpose of dust removal of the mechanism sand.
  • Figure 1-1 is a schematic top plan view of a dust-free natural sand production separation system.
  • FIG. 1-1 is a schematic perspective view of the structure of FIG. 1-1.
  • Figure 1-3 is a schematic diagram of the main structure of the mechanism sand wind selection system.
  • FIGS. 1-4 are schematic views of the three-dimensional structure of FIGS. 1-3.
  • Figure 1-5 is a three-dimensional structure diagram of the cabin sand wind turbine selector.
  • Figure 1-6 is a schematic view of the internal structure of Figure 1-5.
  • FIG. 1-7 is a schematic cross-sectional view of the center of Figs. 1-5.
  • FIGS. 1-8 are schematic views of the left side structure of Figs. 1-5.
  • FIGS. 1-9 are schematic top plan views of Figs. 1-5.
  • Figure 1-10 is a schematic view of the structure of the wear block.
  • Figure 1-11 is a schematic diagram of the trend of the wind-selecting fluid of the cabin sand wind turbine selector.
  • Figure 2-1 is a schematic cross-sectional view of the main view of the modular drawer type multi-layer vibrating screen.
  • FIG. 2-2 is a schematic perspective view of the structure of FIG. 2-1.
  • Figure 2-3 is a schematic view of the assembly structure of the box.
  • Figure 2-4 is a schematic view of the drawing state of Figure 2-3.
  • 2-5 is a schematic structural view of the tail portion 1 of the modular combined screen tray device.
  • 2-6 is a schematic structural view of the tail portion 2 of the modular combined screen tray device.
  • FIG. 2-7 is a schematic enlarged view of a portion A of Fig. 2-6.
  • Figure 2-8 is a structural view of the central portion of the modular combined screen carrier unit.
  • FIG. 2-9 is a schematic enlarged view of the portion A of Fig. 2-8.
  • Figure 2-10 is a schematic view showing the structure of the head portion of the modular combined screen bracket device.
  • Figure 3-1 is a schematic diagram of the three-dimensional layout of the mechanism natural sand grading adjustment system.
  • Figure 3-2 is a schematic diagram of the top plan layout of the mechanism natural sand grading adjustment system.
  • Figure 3-3 is a cross-sectional perspective view of the mechanism sand grading adjustment machine.
  • Figure 3-4 is a schematic cross-sectional front view of the mechanism sand grading adjustment machine.
  • Figure 3-5 is a schematic perspective view of a step-by-step counter hopper.
  • Figure 3-6 is a schematic view of the structure of the cushioning liner.
  • Figure 3-7 is a schematic view of the structure of the inlet end liner.
  • Figure 3-8 is a schematic view of the structure of the guide liner.
  • Embodiment 1 Refer to Figures 1-1 and 1-2.
  • a dust-free natural sand production separation system including a PLC controller, the stone material passes through the stone material conveying mechanism A1 to the feeding port of the sand making machine A, and the sand discharging machine A discharge port directly faces the mechanism end of the mechanism sand conveying mechanism A2, the mechanism The end of the sand conveying mechanism is directly opposite to the feeding end of the modular multi-layer vibrating screen D.
  • the discharging end of the modular multi-layer vibrating screen D is directly opposite to the feeding end of the mechanism natural sand machine adjusting system B, and the mechanism natural sand machine is adjusted.
  • the discharge end of system B is directly connected to the feed end of the mechanism sand wind-air selection system C, and the discharge port of the different particle size mechanism sand in the mechanism sand wind-air selection system C is respectively connected to the storage tank.
  • a mechanism sand wind wind selection system including PLC controller
  • the mixed product lifter 01 discharge port is directly connected to the buffer silo 02
  • the buffer silo 02 discharge port is directly fed to the feeder 03
  • the feeder 03 The outlet is connected with the feed port of the mechanism sand wind wind selector chamber 06
  • the multi-stage discharge port of the mechanism sand wind wind selector chamber is respectively connected to the inlet of the respective graded storage tank 09 through the feed pipe, and the main fan 010 is out.
  • the tuyere is connected with the main tuyere 21 in the mechanism sand wind wind selector chamber 06, and the air outlet of the fan 104 is connected with the air inlet 22 of the mechanism sand wind selector chamber 06, and the mechanism sand wind selector chamber 06
  • the dust removal port 6 is connected to the inlet of the dust remover 05.
  • the mechanism sand wind wind selector chamber is composed of a plurality of strong wind chambers 2, a middle cabin 3 and a plurality of silos chambers 4.
  • the upper end surface of the first strong wind chambers of the multi-stage strong wind chambers 2 has a feed port 5 and a front main section.
  • the tuyere 21, the left and right sides are provided with a tuyere 22, and the lower end is provided with a strong air outlet 25, and the upper part of the strong chamber is vertically provided with a first partition plate 27 and the first section of the strong chamber is divided into a first section of the feed chamber 23 and the first section of the boiling chamber 24, the front end of the intermediate compartment 3 is provided with a main air outlet 31, and the lower end is provided with a stroke outlet 35, and the multi-stage strong air chamber 2 air outlet is connected with the inlet of the middle cabin 3, and the cabin is 3
  • the air outlet is connected to the multi-stage silo chamber 4, and the first chute 11 is located in the second section of the mixing passage chamber 9 between the strong wind chamber 2 and the intermediate chamber 3, and is located at the back of the first stage chute 11.
  • the second compartment plate 14 is vertically located in the middle of the second section of the strong wind chamber chamber of the plurality of strong wind chambers 2 and divides the second section of the strong air chamber chamber into the second section of the feed chamber 23 and the second section of the boiling chamber 24, the second section
  • the chute 12 is located in the receiving passage cavity 10 between the intermediate compartment 3 and the silo chamber 4 and is second
  • the head of the segment chute 12 is inserted below the end of the first chute 11 , the end of the second chute 12 is directed to the bin cavity in the multi-stage bin 4, and the third chute in the back of the second chute 12 is
  • the plate 13 is erected in the middle of the middle chamber of the intermediate chamber and divides the middle chamber into a stroke inlet chamber 33 and a middle portion boiling chamber 34.
  • the dust removal port 6 is opened at the upper end surface of the multi-stage silo chamber 4.
  • the multi-stage strong wind chamber 2 is composed of a plurality of strong wind chambers, and the upper portion between the strong wind chambers and the strong wind chambers of the plurality of strong wind chambers communicates with each other to form a first section of the distribution passage chamber 8.
  • the strong air chamber has a rectangular cavity, and the lower portion of the rectangular cavity is a funnel cavity.
  • a detection window 26 is opened on the funnel cavity slope.
  • the multi-stage silo chamber 4 is composed of a plurality of collecting bin chambers, and the upper portion between the collecting bins and the collecting bins of the plurality of collecting bin chambers communicates with each other and constitutes the receiving passage chamber 10.
  • the collecting chamber chamber cone cavity 41, the lower part of the cone cavity 41 is a funnel cavity, and the lower end of the funnel cavity is a discharge port 42.
  • a detection window 43 is opened in the funnel cavity slope.
  • the astronomical chamber has a rectangular cavity, and the lower part of the rectangular cavity is a funnel cavity.
  • a detection window 36 is opened in the funnel cavity bevel.
  • the first section of the distribution channel chamber 8, the second section of the distribution channel chamber 9, and the receiving channel chamber 10 formed by the multi-stage strong air chamber 2, the intermediate chamber 3 and the multi-stage silo chamber 4 are inclined passages from high to low.
  • the upper end of the overall wind air selector body 1 is provided with one or more detection ports and the detection port is provided with a cover 7.
  • the inner wall of the wind air selector cabin is spliced with wear plates 29 of different sizes.
  • the feeder 03 is suspended below the buffer bin 02 by a spring 301.
  • the grading inspection vibrating screen 08 feed port is connected to the feed pipe through the guide pipe, and the grading inspection vibrating screen 08 discharge port is directly connected to the feed port of the visible heavy stage distributor 07.
  • the grading inspection vibrating screen 08 plurality of discharge ports are respectively directed to the feed port of the visible heavy stage distributor 07.
  • the visible heavyweight distributor 07 is composed of a transparent receiving hopper and a weighing device.
  • the bottom of the transparent receiving hopper is provided with a weighing sensor, and the transparent receiving hopper has a scale line on the wall.
  • the air blowing nozzle is configured by a plurality of air blowing ports arranged up and down.
  • the air vents are arranged in a vertical arrangement of a plurality of air vents, or arranged in a vertical arrangement, and the left and right sides are arranged in a wrong position.
  • the purpose is to make the wind blown by the air blasting nozzles to form a vertical up and down position, or to spray up and down, and to displace the air in the right and left directions to ensure the mechanism.
  • the sand is blown up and turned to achieve the purpose of wind selection.
  • the mechanism sand wind selection method starts the main fan 010 and the pay fan 04, and the mechanism sand is lifted to the upper part of the mixed product lifter 01 through the hopper in the mixed product lifter 01 and through the discharge port of the mixed product lifter 01 Entering the buffer silo 02, the buffer silo 02 transports the mechanism sand in the silo to the feeder 03, and the feeder 03 uniformly feeds the mechanism sand into the first section of the strong wind chamber of the wind-selector compartment 06.
  • the mechanical sand located in the feeding chamber of the first section of the strong wind chamber adjusts the size of the wind of the main fan 010 and the wind of the wind turbine according to the size and weight of the selected particle size, in the main fan 010 and the fan 04
  • the mechanical air in the feeding chamber is blown into the adjacent boiling chamber through the main tuyere 21 and the air distribution port 22, and the large particle mechanical sand exceeding the wind enters the first stage grading storage tank from the first strong air chamber discharge port.
  • the mechanical sand smaller than the wind is blown into the second strong wind chamber from the bottom to the top by the first section of the strong air compartment and the second section of the strong wind chamber.
  • the dust in the mechanism sand is sucked away by the vacuum cleaner 05 through the dust removal port 6 on the fifth section;
  • the mechanism sand entering the second strong wind chamber is blown by the main fan 010 and the fan 04 into the adjacent boiling chamber, and the large particle mechanism sand exceeding the wind is from the second stage.
  • the discharge chamber of the strong wind chamber enters the second stage of the grading storage tank 09, and the mechanical sand smaller than the wind is blown from the bottom to the top by the third section of the middle and fourth and fifth sections of the silo chamber under the action of the boiling chamber wind.
  • the dust remaining in the mechanism sand is sucked away by the vacuum cleaner 05 through the dust removing port 6 on the fifth section;
  • the mechanism sand entering the third strong wind chamber is blown by the main fan 010 into the adjacent boiling chamber, and the large particle mechanism sand exceeding the wind is discharged from the third strong air chamber.
  • the mouth enters the third stage grading storage tank 09, and the mechanical sand smaller than the wind force blows a part from the bottom up into the third section of the silo chamber 4 under the action of the boiling chamber wind, and a part enters the second section chute 12 to introduce the fifth In the section silo chamber 4, the trace amount of dust remaining in the mechanism sand is sucked away by the vacuum cleaner 05 through the dust removing port 6 on the fifth stage.
  • the modular drawer type multi-layer vibrating screen comprises a multi-layer vibrating screen, the sieve plate in the multi-layer vibrating screen is a modular drawer vibrating screen 6-2, and the modular drawer vibrating screen 6-2 and the box 6 -1 is drawn with pull; modular drawer vibrating screen 6-2 consists of modular combined screen bracket device D1, bracket rail D2, screen bracket pressing device D3 and bracket pulling device D4
  • the two bracket rails D2 are fixedly mounted on the vibrating screen side wall panel, and the modular combined screen bracket device D1 is located on the two bracket rails D2, and the screens are respectively mounted on the modular combined screen brackets.
  • the bracket pulling device D4 is located at the end of the vibrating screen side wall panel, the modular combined screen bracket device D1 is connected with the traction wire rope in the bracket pulling device 4, and the bracket pressing device D3 is fixed to the vibrating screen side wall.
  • the inside of the board and the bracket pressing device D3 are in a locked or open fit with the fixed module combined screen bracket device D1.
  • the apertures of the plurality of modular drawer vibrating screens 6-2 are different, and the specific apertures are selected according to actual screening requirements.
  • the bracket rail D2 is directly fixed to the side wall of the vibrating screen and is made of angle steel or other material that meets the requirements of the sliding rail, and the sliding rail acts as a linear sliding of the modular combined screen bracket device thereon. Support after fastening.
  • the side sliding guide device 1-1 comprises a set of ball bearing mechanism, which is composed of a semi-sealed chamber and a guiding bead 5-1 and an auxiliary sliding bead group 5-2, and the guiding bead 5-1 is located in the auxiliary sliding bead.
  • the group 5-2 is intermediate and the guide bead 5-1 bead is in a relative rolling fit with the auxiliary bead in the auxiliary bead group 5-2.
  • the screen bracket pressing device D3 comprises a pressing frame 3-1 fixed to the side wall of the vibrating screen and a top bolt 3-2 and a corresponding opening on the side wall panel.
  • the work of fastening the screen bracket pressing device D3 is operated outside the vibrating screen, which is convenient for operation and convenient for maintenance inspection.
  • the opening on the side wall panel can also be used as an auxiliary observation hole or as an inlet for the sprinkler system.
  • the invention adopts the modular sliding screen bracket device 1 to realize the linear motion of the modular combined screen bracket device in the plane sliding between the symmetric bracket slide rails fixed on the side wall panels, and the motion track is adopted in the motion track
  • the lower two sets of symmetrical guide slides 1-3 in the front section of the rear bracket device and the side slide guides 1-1 on the side of the modular combined screen bracket device reduce the resistance and play an accurate guiding role.
  • the modular combined screen carrier device 1 comprises a carriage guiding side sliding device 1-1 comprising a set of ball bearing mechanisms consisting of a semi-sealed compartment and a guiding bead 5 -1 and auxiliary slide group 5-2.
  • the mechanism is grease-lubricated, which acts to reduce drag and directional slip when the modular combined screen carrier device is slid in the vibrating screen housing under traction.
  • the modular combined screen tray device D1 is composed of a head screen tray 110, a middle screen tray 1-9 and a tail screen tray 1-8, and the head screen bracket 110 and the middle screen bracket Between 1-9, between the middle screen tray 1-9 and the tail screen tray 1-8, the screen bracket soft connecting device 1-4 is connected (wire rope screen bracket), the middle screen
  • the mesh bracket 1-9 is composed of one or a plurality of mesh support brackets, and the plurality of screen support brackets are connected between the head and the tail by a screen bracket soft connecting device 1-4, when the combined screen bracket is used
  • the soft connection function does not function when the device is fastened to the vibrating screen, and the soft connection device functions to couple all of the bracket assemblies when the modular combination screen carrier device is towed.
  • the tail screen bracket 1-8 includes a side sliding guide 1-1, a fixed pulley block 1-2 and a set of guiding slides 1-3, and the side sliding guiding device 1-1 is located at the tail screen bracket 1 - 8 side, the fixed pulley group 1-2 is located on the end beam of the tail screen bracket 1-8, and the side portions of the front screen bracket 1-8 are respectively provided with mutually symmetric guiding sliders 1-3.
  • the side portions of the tail screen trays 1-8 are symmetrically fitted with one or more side slide guides 1-1.
  • the middle screen tray 1-9 is composed of one or a plurality of screen support brackets, and the plurality of screen support brackets are connected between the head and the tail by a screen bracket soft connecting device 1-4.
  • the side portions of the central screen tray 1-9 are symmetrically fitted with one or more side slide guides 1-1.
  • the middle middle screen bracket 1-9 of the modular combined screen tray device 1 includes a side sliding guide 1-1, which is increased or decreased depending on the size of the vibrating screen, but at least not less than piece.
  • the traction hangers 1-5 in the head screen bracket 110 are located in the middle of the end fixing plates 1-7, and the handles 1-6 are located on the side of the end fixing plates 1-7, one or more side sliding guides 1 - 1 is located on the side of the head screen bracket 110.
  • the group mechanism mainly plays the role of dragging the modular combined screen bracket device to the vibrating screen under the premise of external force, and the end face fixing module combined screen bracket device.
  • the screen bracket pressing device D3 comprises a pressing frame 3-1 fixed to the side wall of the vibrating screen and a top bolt 3-2 and a corresponding opening on the side wall panel.
  • the work of fastening the screen tray pressing device 3 is operated outside the vibrating screen, which is convenient for operation and convenient for maintenance inspection.
  • the opening on the side wall panel can also be used as an auxiliary observation hole or as an inlet for the sprinkler system.
  • the carriage pulling device D4 comprises a bearing housing 4-1, a wire rope 4-2, a wire rope reel 4-3, a manual or electric winch 4-4, a ratchet gear locking device 4-5, and an afterburner rod 4-6.
  • the bracket pulling device 4 is concealed and fixed under the discharge guide of the vibrating screen discharge section, and the device functions as a traction module combined screen bracket device.
  • the mechanism is driven manually or electrically.
  • the ratchet gear locking device 4-5 ensures that the modular combined screen carrier device does not slip backwards and causes unnecessary accidents.
  • the length of the wire rope 4-2 is appropriately lengthed according to the convenience of the operator on the ground, so that the workers can exchange the two sets of bracket devices on the ground.
  • the modular drawer type multi-layer vibrating screen manufacturing method firstly fixes the qualified screen of the required specifications to the modular combined screen bracket device D1, and stretches the steel cord 4-2 in the bracket pulling device D4 to Fit the floor and assemble it with the two fixed pulleys 1-2 in the modular rear tail screen bracket assembly with the screen deck, and then connect the screen between the other modular modular screen brackets
  • the bracket soft connecting devices 1-4 are connected and fastened to each other, and then the bracket pulling device D4 is twisted, and the combined bracket group is driven to the entrance end of the bracket rail D2, in the modular combined screen bracket device
  • D1 approaches the carriage rail D2, it is assisted by a fixed pulley previously fixed to the head of the feeding conveyor belt, first fed into the modular combined tail screen bracket device 1-8, and then sequentially into the remaining module combined tail screen.
  • the entire module combined tail screen bracket device 1-8 can be pushed into position by external force, and the head is bolted
  • the 1-7 end fixing plate of the bracket is fixedly connected to the box body, After both sides of the vibrating screen sequentially to tighten the bolts are screwed D3 mesh cradle and pressing device. Since the screen must be firmly fixed in the box under the working condition, the screen bracket and the bracket rail must be in planar contact, so that when the D3 screen bracket pressing device is tightened, This part does not have a sliding gap, which causes the screen to jump on itself during the work. Therefore, in the present invention, only the front section dragging and the 1-1 side point slipping method are added, and the front section of the tail screen bracket is 1-3. Segment semi-circular guide slides to reduce the friction between the entire modular screen carrier and the carrier slide.
  • Mechanism natural sand grading adjustment system feed conveying conveyor C1 discharge end straight to steel sand mixing hopper C2 feeding port, steel sand mixing hopper C2 through steel ball feeding chute C16 and tower steel ball bucket lifting machine C15 discharge port
  • the bottom end of the tower steel ball bucket elevator C15 is located in the coarse steel grain ground tank C14
  • the steel sand mixing hopper C2 discharge port is connected with the mechanism sand grading adjustment machine C3 feed port
  • the mechanism sand grading adjustment machine C3 sucks.
  • the dust cover C5 is connected to the dust remover C4 through the conveying pipe, the discharge mechanism of the mechanism sand grading adjustment machine C3 is opposite to the feeding end of the discharge conveying conveyor belt C17, and the first-stage electromagnetic steel sand is arranged above the discharge end of the discharging conveying conveyor belt C17.
  • the separator C6 and the first-stage electromagnetic steel sand separator C6 discharge port are opposite to the steel ball particle size control chute C11 groove surface through the steel ball discharge chute C9, and the steel ball particle size control chute C11 has a steel ball particle size control section C12 and Steel ball particle size control section C12 straight to the fine steel grain trough C13, steel ball particle size control section C12 discharge end straight to the crude steel grain trough C14 feed port, discharge conveying conveyor C17 discharge end straight to the finished material Conveyor belt C18, two sets of finished material conveying conveyor belt C18 above the discharge end Grit electromagnetic separator and two electromagnetic C7 C7 grit separator discharge opening direct control of the ball diameter chute C 11.
  • the finished material conveying conveyor belt C18 discharge end is directly opposite to the mixed finished sand floor tank C10, and the lower end of the finished bucket type elevator hoist C8 is located in the mixed finished sand floor tank C10.
  • the steel ball particle size control chute C11 is a sorting screen.
  • the mechanism sand grading adjustment machine C3 is composed of a power source C31, a second guide lining C32, a first guide lining C33, a feed port wear ring C34, a feed port end lining plate C35, a feed port shell C36, Large rolling ring C37, stepping counter hopper C38, first buffer lining C39, second buffer lining C40, dust hood C43, discharge port C44, dust removing hole C45 and labyrinth groove C46; There is a large rolling ring C37, a large rolling ring C37 is located on the power source C31, a dust removing cover C43 is sleeved at one end of the drum, a feed port wear ring C34, a feed port end liner C35 and a feed port shell C36 constitute a feed port.
  • a plurality of step-type counter-attack hoppers C38 are arranged in three or more rows and are arranged on the inner wall of the drum by a step-type structure, and each row of the step-type counter-attack hoppers C38 of the same group are arranged in a wrong position, and the second guide lining is arranged.
  • the plate C32, the first guide liner C33, the first buffer liner C39, and the second buffer liner C40 are respectively distributed at two ends of the plurality of stepping hoppers.
  • the second group of hoppers and the first group of hoppers are offset by half of the hopper position, and the third group of hoppers and the second group of hoppers are also misplaced by half of the hopper, that is, one rotation of the barrel wall Half of the material in the first group of hoppers enters the second group, and new material is extracted from the inlet port, thereby rotating continuously toward the discharge port C44.
  • the dust cover C43 and the drum are configured by a labyrinth groove C46, and the inner wall of the dust cover C43 is provided with a cushion pad C41.
  • the end face of the dust cover C43 is provided with an observation hole and an observation cover C42 is disposed on the observation hole.
  • the power of the mechanism sand grading adjustment machine C3 is adjusted by the frequency conversion.
  • the step-type counter-attack hopper C38 is a fixed-wall trapezoidal bucket, the upper end wall of the fixed wall is laterally welded with a counter-cracking rack C381, and a part of the cavity of the bucket wall C384 of the fixed-wall trapezoidal bucket is welded with a first counter-attack panel C382, a fixed wall type
  • the front bucket face of the trapezoidal bucket is the second counterattack panel C383, and the back of the fixed wall trapezoidal bucket is the assembly panel C385.
  • the counter-attack stepping hopper itself is made of high manganese steel.
  • the counter-piercing rack C38 has a trapezoidal cross section.
  • the buffer liner C39 is composed of a curved plate C391 and a plurality of helical racks C392.
  • a plurality of helical racks C392 are equally welded to the curved plate C391 and the welding surface curvature of the helical rack C392 is matched with the arc of the curved plate C391.
  • the curved plate C391 is provided with a bolt fixing hole C393.
  • the feed port end liner C35 is composed of a sector plate C351 and a plurality of racks C352.
  • the plurality of racks C352 are welded to the sector plate C351 at a radial interval, and the sector plate C351 is provided with a bolt fixing hole C353.
  • a plurality of feed port end liners C35 form a feed port and the rack is located within the feed cavity.
  • the guide lining plate C32 is composed of a curved plate C321 and a plurality of racks C322, and a plurality of racks C322 are welded to the curved plate C321 at a pitch.
  • the cylinder body comprises: a feed port wear ring C34, a cloth type end liner C35, a cloth liner, a counter-attack step hopper, a buffer liner and a labyrinth seal portion which is connected with the dust cover.
  • the power source consists of four sets of synchronous variable frequency speed control motors and two sets of large rolling rings.
  • the dust hood portion is composed of a labyrinth seal portion that is connected to the wall of the cylinder, a dust cover housing, an observation hole, and a cushion leather pad.
  • the working principle is as follows: the mechanical sand that needs shaping and adjustment grading and its medium (steel beads: steel with a certain quality such as steel cutting head) are mixed according to a certain ratio, and then the wear ring of the feeding port is continuously fed into the grading adjustment. machine. After the mixture of the sand and the steel ball enters the inner cavity of the adjusting machine, due to the continuous rotation of the grading adjusting machine, the material is continuously tumbling under the action of the protruding fork strip on the cloth-type end lining plate connected with the wear-resistant ring. Cut and move forward.
  • the lining and other internal linings and hoppers are high manganese steel castings.
  • the raised forks on the lining also have tumbling, grinding and feeding.
  • the mixture is continuously transferred into the counter-stepping hopper.
  • the lower hopper filled with the mixture material is continuously lifted to the top.
  • the mixture in the hopper is instantaneously dropped, and the dropped steel balls are directly hit to the lower fabric bucket.
  • the upper plane and the side counterattack surface and the counterattack strip, at this time, the mechanism sand and the steel ball on the counterattack surface are simultaneously struck, and the counterattack stepping hopper design has many different angled counterattack surfaces and counterattack strips. Therefore, the falling steel ball will cause repeated and repeated hits, and the sand is repeatedly broken in this repeated hit. Due to the continuous rotation of the cylinder, the mixture of the mechanism sand and the steel ball existing at the bottom is continuously tumbling, grinding, and continuously lifted by the next stage hopper.
  • the counter-attack stepping hopper is arranged linearly from the feeding port to the discharge port along the single body of the cylinder, three or more sets of stepwise misalignment are arranged along the circumference of the barrel wall.
  • the description is made in three units along the circumference of the barrel wall: the first hopper head of the second row is located in the middle of the first hopper of the first row, and the first hopper head of the third row is at the second The middle of the first hopper of the row, and so on, form the stepping principle.
  • the position of the first set of top material falls between the first hopper of the lower hopper and the second hopper, and as the wall of the drum rotates, half of the material dropped by the hopper is lifted by the second hopper. analogy. Therefore, as the material is continuously lifted and dropped, it is continuously pushed forward step by step.
  • a reverse-mounted buffer liner is designed in the discharge section, and the reverse fork strip of the buffer liner is used.
  • the crushed ground mixture loses its lifting force and forms a buildup zone of the mixture on the cushioning liner.
  • the material in the accumulation zone is continuously discharged into the grading adjustment machine as the wall of the cylinder rotates, and proceeds to the next section.
  • the working state inside the grading adjustment machine is relatively sealed, and the sand in the cylinder wall is continuously lifted and fallen, and is continuously broken, and a large amount of dust is generated inside, so that a dust removing hood is arranged at the rear of the device.
  • the connection between the dust cover and the wall of the tube is a labyrinth connection, so that dust does not appear at the place, and the air suction port is opened at the upper end of the dust cover, and the dust generated in the wall enters the dust collector through the air suction port to reduce the dust content.
  • the side of the dust cover is used to prevent the spring force and impact force of the steel ball.
  • the inner wall is provided with a buffer leather pad, and an observation hole is arranged in the middle portion, so as to observe the wear condition of the hopper and the lining plate in the wall of the tube when the machine is stopped, etc., the lower part is provided.
  • the discharge port allows the material to be transported to the next station.
  • the lower end of the discharge section is the separation section of the primary and secondary steel balls.
  • the working principle of the section is that the head is pressed by the conveyor belt with the electromagnetic roller. Due to the action of the electromagnetic roller, the magnetic mechanism-free sand is thrown to the second-stage steel ball separation section. The steel ball sucked by the magnetic action of the electromagnetic drum directly enters the chute C1, and the same set of electromagnetic rollers are also at the head of the second-stage steel ball separation part, and the processed small steel balls and grinding in the first set of drums have been processed. Produced steel powder. At the same time, it falls into the steel ball particle size control chute C2.
  • the steel ball particle size control control section of the steel ball near the front section is a long bevel hole. This section separates steel balls and steel powder with poor quality and small particle size into fine steel ball grooves.
  • the crude steel ball with qualified quality and qualified particle size is sent into the steel ball bucket lifting bin, and is lifted to the mixing hopper of the feeding port of the grading adjusting machine to perform the circulating crushing mechanism sand work.
  • the finished machine-made sand enters the finished hopper and is pumped into the next-stage sorting equipment.
  • the steel balls in the production line are basically not wasteful, and the selected fine steel balls can be used as a shot blast for classification, and the continuously worn steel balls have excellent steel shots and are surface treatment of the castings.
  • Fine raw materials, fine steel powder recovered by the electromagnetic drum, can also be reused as a casting material.
  • Embodiment 2 On the basis of Embodiment 1, a dust-free mechanism natural sand is prepared for the wind separation separation method, the stone material passes through the feeding port of the stone conveying mechanism A1 to the sand making machine A, and the sand making machine A makes the stone material into a mechanism. After sand, it is discharged from the discharge port of the sand making machine A to the starting end face of the mechanism sand conveying mechanism A2. At the end of the mechanism sand conveying mechanism A2, the mechanism sand is continuously dropped to the modular multi-layer vibrating screen D for screening and screening.
  • the mechanism sand is transported to the mechanism natural sand machine with adjustment system B, the mechanism natural sand machine is equipped with the adjustment system B, the mechanism sand is made into the mechanism natural sand to the mechanism sand wind selection system, the mechanism sand wind selection system starts the main fan 010 and pays The blower 04, the machine sand is lifted to the upper part of the mixed finished bucket lifter 01 by the hopper in the mixed finished bucket lifter 01 and enters the buffer silo 02 through the discharge port of the mixed finished bucket lifter 01, and the buffer silo 02 is fed.
  • the machine sand in the silo is conveyed to the feeder 03, and the feeder 03 uniformly feeds the mechanism sand into the feed port of the first section of the strong wind chamber of the wind wind selector chamber 06:
  • the mechanical sand located in the feeding chamber of the first section of the strong wind chamber adjusts the size of the wind of the main fan 010 and the wind of the wind turbine according to the size and weight of the selected particle size, in the main fan 010 and the fan 04
  • the mechanical air in the feeding chamber is blown into the adjacent boiling chamber through the main tuyere 21 and the air distribution port 22, and the large particle mechanical sand exceeding the wind enters the first stage grading storage tank from the first strong air chamber discharge port.
  • the mechanical sand smaller than the wind is blown into the second strong wind chamber from the bottom to the top by the first section of the strong air compartment and the second section of the strong wind chamber.
  • the dust in the mechanism sand is sucked away by the vacuum cleaner 05 through the dust removal port 6 on the fifth section;
  • the mechanism sand entering the second strong wind chamber is blown by the main fan 010 and the fan 04 into the adjacent boiling chamber, and the large particle mechanism sand exceeding the wind is from the second stage.
  • the discharge chamber of the strong wind chamber enters the second stage of the grading storage tank 09, and the mechanical sand smaller than the wind is blown from the bottom to the top by the third section of the middle and fourth and fifth sections of the silo chamber under the action of the boiling chamber wind.
  • the dust remaining in the mechanism sand is sucked away by the vacuum cleaner 05 through the dust removing port 6 on the fifth section;
  • the mechanism sand entering the third strong wind chamber is blown by the main fan 010 into the adjacent boiling chamber, and the large particle mechanism sand exceeding the wind is discharged from the third strong air chamber.
  • the mouth enters the third stage grading storage tank 09, and the mechanical sand smaller than the wind force blows a part from the bottom up into the third section of the silo chamber 4 under the action of the boiling chamber wind, and a part enters the second section chute 12 to introduce the fifth In the section silo chamber 4, the trace amount of dust remaining in the mechanism sand is sucked away by the vacuum cleaner 05 through the dust removing port 6 on the fifth stage.
  • feed conveyor belt C1 will need to adjust the grading mechanism sand into the steel sand mixing hopper C2, the tower steel ball bucket lifting machine C15 through the feed chute C16 to the steel sand
  • the mixing hopper C2 adds steel balls, and the above two materials are mixed and enter the mechanism sand grading adjustment machine C3.
  • the stepping type counter hopper C38 in the adjusting machine is continuously improved and continuously stepped.
  • the mechanism sand Under the working work, the mechanism sand is continuously crushed and milled, and then the natural sand is continuously sent out from the discharge port C44 of the mechanism sand grading adjustment machine C3, and the dust removing hole C45 of the dust collector hood C43 at the upper part of the discharge port The dust generated inside the mechanism sand grading adjustment machine C3 is continuously sucked away.
  • the lower end of the mechanism sand grading adjustment machine C3 discharge port C44 is the first-stage electromagnetic steel sand separator C6 steel ball separation part, and the work of the steel ball separation part is the head.
  • the bead discharge chute C9 is also the same set of electromagnetic rollers at the head of the second-stage steel ball separation section.
  • the small steel balls that have not been processed in the first set of drums and the steel powder produced by grinding are processed, and simultaneously fall into the steel balls.
  • the particle size control chute C11 after the separation of the two grade steel balls and the machine sand, the finished machine sand enters the next mechanism sand bucket and is lifted to the next stage.
  • the steel ball diameter control section C12 near the front section is a long waist hole, and the steel ball diameter control section C12 separates the steel ball and the steel powder with a small particle diameter and a small particle size into the fine steel grain groove C13.
  • the crude steel ball with qualified quality and qualified particle size is sent into the steel ball bucket of the crude steel granule groove C14, and is lifted to the mixing hopper of the grading adjustment machine feed port C2 to carry out the circulating crushing mechanism sand work; After the secondary steel ball separation part completely separates the steel ball from the machine sand, the finished product natural sand enters the mixed finished sand floor tank C10 and is pumped into the next-stage sorting equipment by the finished hopper in the finished bucket elevator C8.
  • the steel ball and the mechanism sand to be adjusted enter the mechanism sand grading adjustment machine C3, and the rolling mechanism of the mechanism sand grading adjustment machine C3 drives the stepping hopper C38 to continuously improve the material movement, and the steel ball is simultaneously with the mechanism sand to be adjusted.
  • the counter-attack stepping hopper itself is made of high-manganese steel. When the steel ball falls to the counter-attack surface, it can hit the mechanism sand that needs to be adjusted on the counter-attack surface, and can be hit by rebounding.
  • the bucket lifts to the top and repeats the steps of falling, being hit, grinding, and stepping, thereby reducing the fineness modulus of the mechanism sand, and grinding the angle of the mechanism sand during the rolling to make the mechanism sand
  • the grading adjustment machine C3 not only achieves the effect of reducing the fineness modulus, but also achieves the grain shape effect of adjusting the fine mechanism sand, so that the finished machine mechanism sand after adjustment can reach the quality of natural sand.
  • the steel ball can be made of a finished steel cutting head or a scrap steel cutting head of a construction. As long as the cutting head has a certain quality, it can be hit after falling from the high end.
  • the power of the machine sand grading adjustment machine C3 adopts frequency conversion to adjust the rotation speed, and the fineness modulus of the finished product is controlled by different rotation speeds of the cylinder wall.
  • Embodiment 3 On the basis of Embodiment 2, the main tuyere located at the lower end of the feed port of the first section of the strong wind chamber 2 is strongly supplied by the main fan 01, and the mechanism sand is fed by the feed chamber 23 of the first section of the strong wind chamber.
  • the mechanism sand is continuously bottom-up in the first-stage boiling chamber and Wind blowing on both sides, during which the large-grained machine sand exceeds the wind by its own mass, so the level of the mechanism sand enters the first stage of the grading storage tank 09 from the discharge port 25 of the first section of the strong wind chamber, and the quality
  • the mechanical sand smaller than the wind is blown up through the boiling chamber into the first section of the mixing channel chamber 8 composed of the first section of the strong wind chamber and the second section of the strong wind chamber, and the mechanism sand is passed through the chamber 8 of the distribution channel
  • the dust in the dust is sucked away by the vacuum cleaner 05 through the dust removing port above the five-stage silo 4, and the mass is larger than the dust and less than the mechanism for conveying the wind.
  • Diameter mechanism sand passes first Obliquely inclined chute 11 and the chute 12 into the second segment in the fifth paragraph hopper 4;
  • the main air outlet and the air distribution port at the lower end of the feed chamber of the second strong air chamber 2 continuously give the corresponding air volume according to the required sand size and weight of the mechanism, and the mechanical sand in the feed chamber 23 is continuously blown into the phase.
  • the air supply port 04 since the air supply port 04 is provided on both sides of the boiling chamber of the second strong air chamber, the air supply port 04 replenishes the air volume according to the instruction of the PLC controller, so that the mechanism sand in the boiling chamber is continuously taken from the bottom.
  • the upper wind is blown upwards, and in the process of blowing the wind upwards, the mechanical sand having a mass greater than the blowing wind is retained in the lower opening portion 25 of the second strong air chamber and continuously fed into the second stage grading storage tank 09
  • the mechanical sand having a mass less than the wind is partially blown by the wind in the boiling chamber 24 to the third section of the intermediate chamber, and a portion is blown to the second section of the chute 12 into the fifth section of the silo 4, and the residual dust in the mechanism sand continues to pass.
  • the dust removal port 6 on the fifth stage silo is sucked away by the dust remover 05;
  • the main air outlet and the air distribution port at the lower end of the feed chamber of the third section of the aeration cabin 3 continuously give the corresponding air volume according to the required sand size and weight of the mechanism, and the mechanical sand in the feed chamber 33 is continuously blown into the phase.
  • the air supply port 04 since the air supply port 04 is provided on both sides of the boiling chamber of the third section of the middle air chamber, the air supply port 04 replenishes the air volume according to the instruction of the PLC controller, so that the mechanism sand in the boiling chamber is continuously taken from the bottom.
  • the upper wind is blown upwards, and during the process of blowing the wind upwards, the mechanical sand having a mass greater than that of the blowing wind is retained in the discharge port 35 of the third section of the intermediate cabin and is continuously sent to the third stage grading storage tank 09
  • the mechanical sand having a mass less than the wind is blown by the wind to the fourth stage silo chamber 4 and then enters the fourth silo 4.
  • the setting of the wind power size of the main fan 010 and the pay fan 04 depends on the size of the mechanical sand particle size in the visible heavy duty distributor 07 and the weight of the visual heavy duty distributor 07 when the grain in the visible heavy duty distributor 07 When the diameter is smaller than the required particle size and the weight of the machine sand in the visible heavy stage distributor 07 does not reach the set value, the wind power is reduced.
  • the main air outlet 21 main fan 010 and the air supply port 22 pay fan 04 air volume is controlled by the inverter to control its speed and air volume, or use the speed control motor to drive the main fan 010 and the pay fan 04, or manually fine-tuning to control the main tuyere 21 and the amount of air entering the air outlet 22.
  • the manual pipeline, the electric valve, the electromagnetic valve and the step pulse valve are provided in the fluid pipeline of the present application, wherein the operation of the electric valve, the electromagnetic valve, the stepping pulse valve and the switching amount are controlled by the PLC control.
  • the PLC controller controls the amount of air entering each valve according to the size of the sand selected.

Landscapes

  • Combined Means For Separation Of Solids (AREA)

Abstract

一种无尘机制天然砂制作分离系统和风选分离方法,所述系统包括PLC控制器,石料通过石料输送机构(A1)至制砂机(A)的进料口,制砂机(A)排料口直对机制砂输送机构(A2)始端面,机制砂输送机构末端直对模块化多层振动筛(D)的进料端,模块化多层振动筛(D)的出料端直对机制天然砂级配调整系统(B)的进料端,机制天然砂级配调整系统(B)的出料端直对机制砂风力风选系统(C)进料端,机制砂风力风选系统(C)中不同粒径机制砂的出料口分别接储料罐。本发明既可以实现机制砂的风选,又能够实现无尘制砂。

Description

无尘机制天然砂制作分离系统及方法 技术领域
本发明涉及一种采用风力既能够实现不同粒径机制砂的选择,又能够实现所选机制砂无尘的无尘机制天然砂制作分离系统及方法,属机制砂风选系统制造领域。
背景技术
CN101795774A、名称“制砂装置、制砂方法和制砂”,至少包括将破碎原料破碎的破碎机;第1分选装置,其通过送风的风力分选与筛网的筛分分选,将来自破碎机的破碎物分选为粗颗粒和细颗粒与微粉;负压回收机构,该负压回收机构吸引第1分选装置内的微粉,将其回收,其特征在于:在第1分选装置和负压回收机构的中途设置第2分选装置,该第2分选装置采用该负压回收机构的负压,将微粉分选为粗微粉和细微粉。
CN202105795U、名称“机制砂风选除尘设备”,包括除尘仓,所述除尘仓顶部设置有进料嘴,所述进料嘴上部与除尘仓固定连接,所述进料嘴下端设于除尘仓内部,所述除尘仓底部设置有出料口,所述除尘仓内部设置有缓冲平台,所述缓冲平台设于进料嘴下方,所述缓冲平台与除尘仓固定连接;所述除尘仓外侧壁上安装有将落在缓冲平台上的待分选机制砂扬起的鼓风机和将待分选机制砂中的石粉抽出的抽风机,所述鼓风机设于缓冲平台下方,所述抽风机设于除尘仓上部。
上述背景技术中的不足之处:既无法实现机制砂的风选,也无法再现无尘机制砂。
技术问题
设计目的:避免背景技术中的不足之处,设计一种既能够采用风力既可以实现不同粒径机制砂的选择,又能够实现机制砂无尘的机制砂风力风选系统及风选方法。
技术解决方案
设计方案:为了实现上述设计目的。1、机制砂风力风选器舱体的设计,是本发明的技术特征之一。这样做的目的在于:机制砂风力风选器舱体由五个相关联的舱室组成的一个整体,分别为一段强风舱室、二段强风舱室、三段中风舱室、四段料舱室和五段料舱室组成。(1)一段强风舱室与二段强风舱室由于机制砂的质量偏重,通过量偏大,因此处在其端面设有主风口之外还在其沸腾室的两侧设有付风口以补充风量,主风口和付风口的进风量受控于PLC控制器的控制。其中一段强风舱室的主风口与两个付风口使用一台主风机单独给风;二段强风舱室与三段中风舱室共同使用一台付风机给风;三段中风舱室由于其送料的数量与需要其吹送的机制砂的质量都已经减少,因此在三段中风舱室只设有主风口,其风量的来源为辅助风机所产生的风量。进料口下端的主风口强力给风,把机制砂用风力吹入相邻的沸腾室,并在沸腾室的两侧设有付风口以补充风量,使得机制砂在沸腾室内不断的被自下而上以及两侧的风力吹送。期间大颗粒的机制砂由于自身的质量超过风力的吹送,因此该级别的机制砂被落入一段强风舱室下面的出料口进入下一环节。经过沸腾室往上吹送的小一个级别的机制砂被送入一段强风舱室与二段强风仓室之间的过渡分料口,期间粉尘被处于五段料舱室上方的除尘器吸风口被吸走,质量大于粉尘而小于其他机制沙的细小颗粒落入到五段料收集斜溜槽上,被不断的送入五段仓。其余的机制砂由于自身质量的因素而被落入二段强风舱室的进料室内。(2) 二段强风舱室的进料室下端主风口不断的给出相对应的风量,把该段的机制砂不断的吹入二段强风舱室的沸腾室,并在二段强风舱室的沸腾室两侧设有付风口,以协助主风口给风,使得二段强风舱室中的机制砂不断的被自下而上的风量往上吹送,期间质量偏大的机制砂,由于自身重量的原因而被滞留在二段强风舱室的下料口部,并被不断的送入下一环节。二段强风舱室沸腾室中被往上吹送的机制砂中的粉尘部分继续被五段料舱室上口的除尘器吸走,其中五段料舱室料也落入第二个五段料收集斜溜槽上,并随着上一级五段仓料收集斜溜槽中的五段料一起落入五段仓。质量大于五段仓料的这部分机制砂被送入三段仓内。(3) 进入三段仓中的机制砂被下部的主风口所吹入的风量继续进入三段中风舱室的沸腾室,质量偏轻的机制砂被吹入四段仓内,质量偏重的这部分机制砂自然的就落入三段中风舱室的下部并被送入下一个环节。(4) 进入四段仓的机制砂也自然的落入仓底部,被送入下一个环节。从一段舱室到四段舱室的级别分离的机制砂分别经过各自舱室下端的管道被送入相对应的储存罐中。2、级配控制检验平台的设计,是本发明的技术特征之二。这样做的目的在于:在舱室底部与储存罐之间的管道一侧设有级配控制检验平台,该平台由一个多层实验用振动筛与振动筛所需层数相对应的可视称重级配器组成,该组检验平台起到控制每段舱室中机制砂级配调整作用,当某一舱室中的机制砂级配出现偏差时经过这个检验平台得出数据后立即调整相对应风机中主风管与付风管之间的进风管道阀门,经过对进风量的调整来控制该段机制砂的级配比例。可视称重级配器为一组相同容积的有机玻璃罐组成,并在罐体刻有相对应的刻度,工作人员根据每个罐体刻度的不同将非常直观的得出结论,再根据数据来对主风口与付风口之间的电动,气动管道阀门进行微调从而可以便捷的调整该段的机制砂级配比。亦可该可视称重级配器的底部都分别装有重量感应器,中央控制室的电脑中根据每个罐体的重量不同而自动的调节主风口与付风口的进风量。本申请所述的级配控制检验平台的设计并不局限于此,反涉及砂粒级别检测的检验平台均属于本发明的保护范围,如:激光检测、光电成像检测等等。3、机制砂风力风选器舱体的内部都拼接有不同尺寸的耐磨板的设计,是本发明的技术特征这三。这样做的目的在于:由于机制砂在风选的过程中对其内壁的磨损非常历害,在其壁上拼接不同尺寸的耐磨板,便于后期根据磨损情况方便更换耐磨板。4、一段舱室、二段舱室、三段舱室下料口、进料腔、沸腾腔的设计是本明的技术特征之四。这样做的目的在于:下料口可以直接将大于风力的机制砂直接筛选出来;而进料腔、沸腾腔设计,使进料腔内的机制砂在风力的作用了由下往上翻腾,并且在翻腾的过程中既达到了机制砂粒径的筛选,又分离了粉尘,实现了无尘机制砂的目的。在机制砂风力风选器舱体顶部都设有维修孔,以方便维修。
有益效果
本发明与背景技术相比,一是采用模块化多层振动筛进行筛分的设计,在相同宽度幅面的前提下增加了筛分层面,在同等筛分层面的前提下减少了层间距,降低了整个振动筛的自重,不仅缩短了更换筛网的时间,简化筛分设备,节约投资,减少能耗,实现低碳化运作,而且结构设计合理,加工制造和安装方便,单机处理量大和模块维修成本低,使用寿命长;二是机制天然砂级配调整系统的设计,不仅适用于湿式制砂,而且适用于干法制砂,制砂过程中不会产生过磨现象,避免了成品中废弃的粉量的产生,既避免了对环境的污染,又避免了原材料浪费,其筛选下来的细钢珠可以作为抛丸来分级利用,而磨损的细小钢粉被电磁滚筒回收作为铸造原料,更重要的是该机制砂经过风选分离后可以达到江河沙这样的圆整度,并且该机制砂的粒径范围是可调整的,用户可以根据自身的需求而调整机制砂的粒径,细度模数;三是采用风力风选系统,不仅实现了对不同粒径机制砂风选的目的,而且所风选出来的各个级别的机制砂中的粉尘含量近乎为零,实现了机制砂风选无尘的目的。
附图说明
图1-1是无尘机制天然砂制作分离系统俯视结构示意图。
图1-2是图1-1的立体结构示意图。
图1-3是机制砂风力风选系统的主视结构示意图。
图1-4是图1-3的立体结构示意图。
图1-5是机制砂风力风选器舱体的立体结构示意图。
图1-6是图1-5内部结构示意图。
图1-7是图1-5中部剖开结构示意图。
图1-8是图1-5的左视结构示意图。
图1-9是图1-5的俯视结构示意图。
图1-10是耐磨块拼接的结构示意图。
图1-11是机制砂风力风选器舱体风选流体的走向示意图。
图2-1是模块化抽屉式多层振动筛的主视局剖结构示意图。
图2-2是图2-1的立体结构示意图。
图2-3是箱体装配结构示意图。
图2-4是图2-3抽拉状态示意图。
图2-5是模块组合式筛网托架装置尾部部分一的结构示意图。
图2-6是模块组合式筛网托架装置尾部部分二的结构示意图。
图2-7是图2-6中A部的放大结构示意图。
图2-8是模块组合式筛网托架装置中部部分结构示图。
图2-9是图2-8中A部的放大结构示意图。
图2-10是模块组合式筛网托架装置头部部分结构示意图。
图3-1是机制天然砂级配调整系统立体布局的示意图。
图3-2是机制天然砂级配调整系统俯视平面布局的示意图。
图3-3是机制砂级配调整机的剖视立体结构示意图。
图3-4是机制砂级配调整机的剖视主视结构示意图。
图3-5是步进式反击料斗的立体结构示意图。
图3-6是缓冲衬板的结构示意图。
图3-7是进料口端衬板的结构示意图。
图3-8是导料衬板的结构示意图。
本发明的实施方式
实施例1:参照附图1-1和1-2。一种无尘机制天然砂制作分离系统,包括PLC控制器,石料通过石料输送机构A1至制砂机A的进料口,制砂机A排料口直对机制砂输送机构A2始端面,机制砂输送机构末端直对模块化多层振动筛D的进料端,模块化多层振动筛D的出料端直对机制天然砂机配调整系统B的进料端,机制天然砂机配调整系统B的出料端直对机制砂风力风选系统C进料端,机制砂风力风选系统C中不同粒径机制砂的出料口分别接储料罐。
参照附图1-3至1-10。一种机制砂风力风选系统,包括PLC控制器,混合成品提斗机01出料口直对缓冲料仓02进口,缓冲料仓02出料口直对给料机03进口,给料机03出口与机制砂风力风选器舱体06进料口连通,机制砂风力风选器舱体06多级出料口分别通过输料管与各自的分级储料罐09进口连通,主风机010出风口与机制砂风力风选器舱体06中的主风口21连通,付风机04的出风口与机制砂风力风选器舱体06中付风口22连通,机制砂风力风选器舱体06中的除尘口6与除尘器05进口连通。机制砂风力风选器舱体由多段强风舱室2、中风舱室3和多段料仓室4构成,多段强风舱室2中第一段强风舱室的上端面开有进料口5、前面开有段主风口21、左右两侧开有付风口22、下端开强风出料口25,强风舱室腔中上部竖直设有第一隔腔板27且将第一段强风舱室划分为第一段进料腔23和第一段沸腾腔腔24,中风舱室3的前端开有中风主风口31、下端开有中风出料口35,多段强风舱室2风选出口与中风舱室3风选进口连通,中风舱室3风选出口与多段料仓室4风选进口连通,第一段斜溜槽11位于强风舱室2和中风舱室3之间的第二段分料通道腔9内,位于第一段斜溜槽11背面的第二隔腔板14竖直位于多段强风舱室2中第二段强风舱室腔中部且将第二段强风舱室腔划分为第二段进料腔23和第二段沸腾腔腔24,第二段斜溜槽12位于中风舱室3和料仓室4之间的收料通道腔10内且第二段斜溜槽12的头部插入第一段斜溜槽11末端下方,第二段斜溜槽12的末端直对多段料仓室4中的料仓腔,第二段斜溜槽12背面的第三隔腔板13竖立位于中风舱室3腔中部且将中风舱室划分为中风进料腔33和中风段沸腾腔腔34,除尘口6开在多段料仓室4上端面。多段强风舱室2由多个强风舱室构成,多个强风舱室中的强风舱室与强风舱室之间的上部连通且构成第一段分料通道腔8。强风舱室呈矩形腔体,矩形腔体下部为漏斗腔体。漏斗腔体斜面开有检测窗26。多段料仓室4由多个集料仓室构成,多个集料仓室中集料仓与集料仓之间的上部连通且构成收料通道腔10。集料仓室锥体腔体41,锥体腔体41下部为漏斗腔体,漏斗腔体下端为出料口42。漏斗腔体斜面开有检测窗43。中风舱室呈矩形腔体,矩形腔体下部为漏斗腔体。漏斗腔体斜面开有检测窗36。多段强风舱室2、中风舱室3和多段料仓室4所构成的第一段分料通道腔8、第二段分料通道腔9、收料通道腔10为由高往低呈斜面通道。整体风力风选器舱体1上端面设有一个或多个检测口且检测口设有盖7。风力风选器舱体内壁拼接有不同尺寸的耐磨板29。给料机03通过弹簧301悬挂在缓冲料仓02的下方。级配检验振动筛08进料口通过导料管与输料管连通,级配检验振动筛08出料口直对可视重级分配器07的进料口。级配检验振动筛08多个出料口分别直对可视重级分配器07的进料口。可视重级分配器07由透明接料斗及秤重器构成,透明接料斗的底部置有称重传感器,透明接料斗的壁上有刻度线。
段主风口21中喷风嘴由多个喷风口上下错位排列构成。中风主风口31中喷风嘴由多个喷风口上下错位排列构成或上下、左右错位排列构成,目的使喷风嘴喷入的风形成上下错位喷风,或上下、左右错位喷风,确保机制砂被吹起翻腾,达到风选的目的。
参照附图1-11。机制砂风力风选方法,启动主风机010和付风机04,机制砂通过混合成品提斗机01中的料斗提升到混合成品提斗机01的上部且通过混合成品提斗机01的出料口进入缓冲料仓02内,缓冲料仓02将料仓中的机制砂输送至料机03,给料机03均匀的把机制砂料送入风力风选器舱体06的第一段强风舱室的进料口:
位于第一段强风舱室进料腔内的机制砂根据所选粒径的大小及重量调节主风机010进风风力的大小及付风机04进风风力的大小,在主风机010及付风机04的作用下通过主风口21和付风口22将进料腔内的机制砂吹到相邻沸腾腔内,超过风力的大颗粒机制砂由第一段强风舱室出料口进入第一段分级储料罐09内,小于风力的机制砂在沸腾腔风力的作用下由下往上吹入由第一段强风舱室和第二段强风仓室构成的第一段分料通道腔8后进入第二强风舱室内,其机制砂中的粉尘通过第五段上的除尘口6被吸尘器05吸走;
同理,进入第二强风舱室内的机制砂在主风机010及付风机04的作用下将进料腔内的机制砂吹到相邻沸腾腔内,超过风力的大颗粒机制砂由第二段强风舱室出料口进入第二段分级储料罐09内,小于风力的机制砂在沸腾腔风力的作用下由下往上吹入由第三段中风舱室和第四、五段料仓室,其机制砂中残存的粉尘通过第五段上的除尘口6被吸尘器05吸走;
同理,进入第三强风舱室内的机制砂在主风机010的作用下将进料腔内的机制砂吹到相邻沸腾腔内,超过风力的大颗粒机制砂由第三段强风舱室出料口进入第三段分级储料罐09内,小于风力的机制砂在沸腾腔风力的作用下由下往上吹一部分进入第三段料仓室4、一部分进入第二段斜溜槽12导入第五段料仓室4,其机制砂中残存的微量粉尘通过第五段上的除尘口6被吸尘器05吸走。
参照附图2-1至2-10。模块化抽屉式多层振动筛,包括多层振动筛,所述多层振动筛中的筛板为模块化抽屉式振动筛6-2,且模块化抽屉式振动筛6-2与箱体6-1之间呈抽拉配合;模块化抽屉式振动筛6-2由模块组合式筛网托架装置D1、托架滑轨D2、筛网托架压紧装置D3和托架牵引装置D4组成,两根托架滑轨D2固定安装在振动筛侧墙板上,模块组合式筛网托架装置D1位于两根托架滑轨D2面上,筛网分别安装在模块组合式筛网托架装置D1上,托架牵引装置D4位于振动筛侧墙板端部,模块组合式筛网托架装置D1与托架牵引装置4中的牵引钢丝绳连接,托架压紧装置D3固定振动筛侧墙板内侧且托架压紧装置D3与固定模块组合式筛网托架装置D1呈锁定或开启配合。所述多个模块化抽屉式振动筛6-2筛面网孔的孔径各不相同,具体孔径根据实际筛选需要选定。
托架滑轨D2直接固定在振动筛的侧墙板上,由角钢或者其他达到滑轨作用要求的材料制成,该滑轨起到模块组合式筛网托架装置在其上面的直线滑动以及紧固后的支撑作用。
所述侧滑导向装置1-1包括了一组滑珠机构,该机构由半密封舱室与导向滑珠5-1以及辅助滑珠组5-2组成,导向滑珠5-1位于辅助滑珠组5-2中间且导向滑珠5-1珠面与辅助滑珠组5-2中辅助滑珠呈相对滚动配合。
参照附图2-8。筛网托架压紧装置D3包括固定在振动筛侧墙板上的压紧架3-1和顶紧螺栓3-2以及侧墙板上相对应开孔组成。紧固筛网托架压紧装置D3的工作在振动筛外侧操作,这样既方便操作又便于维修检查。侧墙板上的开孔还可以作为辅助观察孔来使用,也可以作为喷淋系统的接入口来使用。
参照附图2-4至2-9。本发明采用模块组合式筛网托架装置1在固定于侧墙板上的对称托架滑轨之间的平面滑动来实现模块组合式筛网托架装置的直线运动,该运动轨迹中采用了尾部托架装置前段下部两组对称导向滑条1-3与模块组合式筛网托架装置侧面的侧滑导向装置1-1来减少阻力并起到准确导向的作用。
参照附图2-8和2-9。模块组合式筛网托架装置1包含了托架导向侧滑装置1-1,该托架导向侧滑装置1-1包括了一组滑珠机构,该机构由半密封舱室与导向滑珠5-1以及辅助滑珠组5-2组成。该机构采用油脂润滑,该机构在模块组合式筛网托架装置受到牵引力作用下在振动筛箱体中滑动时起到减少阻力以及定向滑动的作用。
模块组合式筛网托架装置D1由头部筛网托架110、中部筛网托架1-9和尾部筛网托架1-8构成,头部筛网托架110与中部筛网托架1-9之间、中部筛网托架1-9与尾部筛网托架1-8之间均采用筛网托架软连接装置1-4连接(钢丝绳筛网托架),所述中部筛网托架1-9由一个或者是多个筛网支托架组成,且多个筛网支托架首尾间采用筛网托架软连接装置1-4连接,当把组合式筛网托架装置紧固在振动筛上的时候该软连接功能不起作用,当该模块组合式筛网托架装置被牵引时该软连接装置起到联接所有托架组件的作用。
所述尾部筛网托架1-8中包括侧滑导向装置1-1、定滑轮组1-2和一组导向滑条1-3,侧滑导向装置1-1位于尾部筛网托架1-8侧部,定滑轮组1-2位于尾部筛网托架1-8端部横梁上,尾部筛网托架1-8前段侧部分别装有相互对称导向滑条1-3。所述尾部筛网托架1-8侧部相互对称装有一个或多个侧滑导向装置1-1。
所述中部筛网托架1-9由一个或者是多个筛网支托架组成,且多个筛网支托架首尾间采用筛网托架软连接装置1-4连接。所述中部筛网托架1-9侧部相互对称装有一个或多个侧滑导向装置1-1。模块组合式筛网托架装置1的中中部筛网托架1-9中包括了侧滑导向装置1-1,该中部部分根据振动筛的规格尺寸不同而有增减,但最少不得少于一块。
参照附图2-10。所述头部筛网托架110中的牵引吊儿1-5位于端面固定板1-7中部,手柄1-6位于端面固定板1-7侧部,一个或多个侧滑导向装置1-1位于头部筛网托架110侧部。该组机构主要起到借助外力的前提下把模块组合式筛网托架装置拖拽到振动筛以外,以及端面固定模块组合式筛网托架装置的作用。
参照附图2-8。筛网托架压紧装置D3包括固定在振动筛侧墙板上的压紧架3-1和顶紧螺栓3-2以及侧墙板上相对应开孔组成。紧固筛网托架压紧装置3的工作在振动筛外侧操作,这样既方便操作又便于维修检查。侧墙板上的开孔还可以作为辅助观察孔来使用,也可以作为喷淋系统的接入口来使用。
参照附图2-5至2-7。托架牵引装置D4包含着轴承座4-1,钢丝绳4-2,钢丝绳卷筒4-3,手动或电动绞盘4-4,棘齿轮锁紧装置4-5,加力杆组成4-6。托架牵引装置4隐藏固定在振动筛出料段出料导板下面,该装置起到牵引模块组合式筛网托架装置就位的功能。该机构用手动或者电力驱动,在牵引过程当中棘齿轮锁紧装置4-5确保模块组合式筛网托架装置不会往后面倒滑而造成不必要的事故。其中钢丝绳4-2的长度根据操作工在平地上操作方便为恰当长度,以便于工人在平地上就可以进行两组托架装置的互换。
模块化抽屉式多层振动筛制作方法,首先将所需规格的合格筛网分别固定在模块组合式筛网托架装置D1上,并把托架牵引装置D4中的钢丝绳4-2拉伸到合适的地面,并与装好筛板的模块组合式尾部筛网托架装置中的两个定滑轮1-2装配完毕,然后连接与其他部分模块式组合式筛网托架之间的筛网托架软连接装置1-4相互连接并紧固,接着绞动托架牵引装置D4,拖拽组合式托架组往托架滑轨D2进口端处行走,在模块组合式筛网托架装置D1接近托架滑轨D2之时用先前固定在进料输送带头部的固定滑轮协助,首先送入模块组合式尾部筛网托架装置1-8,然后依次拽入剩余模块组合式尾部筛网托架装置1-8,行进至最后在头部托架部分进入托架滑轨D2之后,可借助外力推动整个模块组合式尾部筛网托架装置1-8就位,并通过螺栓将头部托架的1-7端面固定板与箱体连接固定,然后依次在振动筛两侧分别拧紧D3筛网托架压紧装置中的螺栓即可。由于振动筛在工作状态下筛网必须牢牢的固定在箱体当中,因此筛网托架与托架滑轨之间必须要平面接触,以便于D3筛网托架压紧装置拧紧的时候,这部分不至于还有滑动间隙,造成筛网在工作中自行跳动,因此在本发明中只是采用前段拖拽与1-1侧面点滑的方式加上尾部筛网托架前段的1-3两段半圆型导向滑条来减轻整个模块组合式筛网托架与托架滑轨之间的摩擦力。
当需要把筛板托架拽出振动筛时,只需在适当的位置固定定滑轮,配合拖拽钢丝绳与筛板托架头部的1-5牵引吊儿处缓慢拖拽,并配合托架尾部的D4托架牵引装置同步释放钢丝绳即可把整个筛板托架完整的拽出振动筛箱体。
参照附图3-1至3-8。机制天然砂级配调整系统,进料传送输送带C1出料端直对钢砂混合料斗C2进料口,钢砂混合料斗C2通过钢珠进料溜槽C16与塔式钢珠斗提机C15出料口相对,塔式钢珠斗提机C15底端位于粗钢颗料地槽C14内,钢砂混合料斗C2出料口与机制砂级配调整机C3进料口连通,机制砂级配调整机C3吸尘罩C5通过输送管与除尘器C4连通,机制砂级配调整机C3出料口与出料传送输送带C17进料端相对,出料传送输送带C17出料端上方设有一级电磁钢砂分离器C6且一级电磁钢砂分离器C6出料口通过钢珠出料溜槽C9与钢珠粒径控制溜槽C11槽面相对,钢珠粒径控制溜槽C11的槽面设有钢珠粒径控制段C12且钢珠粒径控制段C12下面直对细钢颗粒地槽C13,钢珠粒径控制段C12出料端直对粗钢颗粒地槽C14进料口,出料传送输送带C17出料端直对成品料传送输送带C18,成品料传送输送带C18出料端上方设有二级电磁钢砂分离器C7且二级电磁钢砂分离器C7出料口直对钢珠粒径控制溜槽C 11,成品料传送输送带C18出料端直对混合成品砂地槽C10,成品斗式提升机C8下端位于混合成品砂地槽C10内。钢珠粒径控制溜槽C11为分选筛。
机制砂级配调整机C3由动力源C31、第二导料衬板C32、第一导料衬板C33、进料口耐磨圈C34、进料口端衬板C35、进料口壳C36、大滚圈C37、步进式反击料斗C38、第一缓冲衬板C39、第二缓冲衬板C40、除尘罩C43、出料口C44、除尘孔C45和迷宫槽C46构成;滚筒两端部分别套有大滚圈C37,大滚圈C37位于动力源C31上,除尘罩C43套在滚筒一端,进料口耐磨圈C34、进料口端衬板C35和进料口壳C36构成进料口,多只步进式反击料斗C38以三排或者多排为一组且采用步进式结构分布在滚筒内壁上,同组的每排步进式反击料斗C38都错位排布,第二导料衬板C32、第一导料衬板C33和第一缓冲衬板C39、第二缓冲衬板C40分别分布在多组步进料斗两端。多排为一组步进式排布时,第二组料斗与第一组料斗错位半个料斗位置,同样第三组料斗与第二组料斗也是错位半个料斗,即在筒壁转动一圈,第一组料斗中的物料有一半进入第二组,并且又从入料口中提取了新的物料,以此转动不断的朝着出料口C44运动。除尘罩C43与滚筒之间采用迷宫槽C46结构配合,除尘罩C43内壁置有缓冲皮垫C41。除尘罩C43端面开有观察孔且观察孔上置有观察盖C42。机制砂级配调整机C3的动力采用变频调整转速。步进式反击料斗C38为固定壁式梯形斗,固定壁上端壁横向焊有反击齿条C381,固定壁式梯形斗的提斗腔C384的部分腔口上焊有第一反击面板C382,固定壁式梯形斗前斗面为第二反击面板C383,固定壁式梯形斗背面为装配面板C385。反击式步进料斗本身材质为高锰钢。反击齿条C38截面呈梯形。缓冲衬板C39由弧形板C391和多根斜齿条C392构成,多根斜齿条C392等间距焊接在弧形板C391条且斜齿条C392的焊接面弧度与弧形板C391弧度相吻合,弧形板C391上开有螺栓固定孔C393。进料口端衬板C35由扇形板C351和多根齿条C352构成,多根齿条C352放射间距焊接在扇形板C351条,扇形板C351上开有螺栓固定孔C353。多块进料口端衬板C35构成进料口且齿条位于进料口腔内。导料衬板C32由弧形板C321和多根齿条C322构成,多根齿条C322间距焊接在弧形板C321上。
筒体内包括了:进料口耐磨圈C34,布料式端衬板C35,布料衬板,反击式步进料斗,缓冲衬板及与除尘罩相衔接的迷宫密封部分组成。
动力源为四组同步变频调速电机与两组大滚圈组成。
除尘罩部分由与筒壁衔接的迷宫密封部分,除尘罩壳体,观察孔,与缓冲皮垫组成。
工作原理阐述:把需要整形与调整级配的机制砂与其媒介物(钢珠:钢筋切头等具有一定质量的钢材)按照一定比例混合后经过进料口耐磨圈被源源不断的送入级配调整机。该机制砂与钢珠混合物进入调整机内腔后由于级配调整机的不断旋转,于耐磨圈相连接的布料式端衬板上凸起的拨叉条的作用下物料被不断的翻滚,磨削,前进。
与布料式端衬板相连接的是布料衬板,该衬板与其他内部衬板和料斗都为高锰钢铸件,该衬板上的凸起拨叉条同样具有翻滚,磨削,送料的功能。
随着筒体的不断旋转,混合物料被不断的拨入反击式步进料斗内。随着筒体的旋转,下层装满混合物料的料斗被持续不断的提升到顶部,当料斗被提升到顶部时料斗内的混合物料被瞬时抛下,被抛落的钢珠直接击打到下面料斗的上平面与侧面的反击面和反击条上,此时这些反击面上的机制砂与钢珠就同时被击打,又由于设计的反击式步进料斗设计有许多不同折角的反击面与反击条,因此下落的钢珠会造成二次及多次的反复击打,在这反复的击打中机制砂被重复破碎。又由于筒体的不断旋转,存在与底部的机制砂与钢珠混合物被不断的翻滚,磨削,又不断的被下一级料斗提升。
由于该反击式步进料斗以沿着筒体单组从进料口到出料口直线排布,沿着筒壁周长以三组或者三组以上的步进式错位排列。以沿着筒壁周长三组为一个单位来进行描述:第二排的第一个料斗头部位于第一排的第一个料斗的中部,第三排的第一个料斗头部处在第二排的第一个料斗的中部,以此类推形成步进原理。
因此第一组顶部物料下落的位置是在下部料斗的第一个料斗与第二个料斗之间,并且随着筒壁的旋转,该料斗落下来的一半物料被第二个料斗提升,以此类推。因此,在物料不断的被提升抛下,也就不断的被步进式向前推进。
在物料向出料口推进的过程当中,被不断的提升,破碎,翻滚,磨削。
当物料被送到出料口段时为了瞬间减少物料中钢珠的弹跳力与冲击力,因此在出料段设计了反向安装的缓冲衬板,在缓冲衬板的反向拨叉条的作用下经过破碎磨削的混合物失去了提升力后在缓冲衬板上形成混合物的堆积区。该堆积区的物料随着筒壁的旋转,不断的被排出级配调整机,进入下一个工段。
级配调整机内部的工作状态是相对密封的,筒壁内随着机制砂不断的被提升下落,不断的被破碎,内部将产生大量的粉尘,因此在该设备的后部配备有除尘罩,该除尘罩与筒壁的连接为迷宫式连接,使得该处不会出现扬尘,除尘罩上端开有吸风口,筒壁内产生的粉尘经过吸风口进入除尘器,以降低粉尘的含量。除尘罩侧面为防止钢珠的弹跳力与冲击力,因此内壁设有缓冲皮垫,并在中部设有观察孔,以便于停机时观察筒壁内料斗与衬板的磨损情况等等,下部设有出料口以便于物料被运输到下一个工段。
出料段下端是一级与二级钢珠分离部,该部的工作原理为头部按有电磁滚筒的输送带,由于电磁滚筒的作用,不含磁性的机制砂抛向第二级钢珠分离部,被电磁滚筒磁性作用吸住的钢珠直接进入到溜槽C1,在第二级钢珠分离部的头部也是相同的一组电磁滚筒,已处理第一组滚筒中没有处理完毕的小钢珠与磨削产生的钢粉。并同时落入钢珠粒径控制溜槽C2。在这两级钢珠与机制砂分离过后,成品机制砂进入下一个机制砂斗提提至下一工段。钢珠粒径控制溜槽中靠近前段为开长腰孔的钢珠粒径控制段。该段把质量磨损,粒径偏小的钢珠与钢粉分离到细钢珠地槽。把质量合格,粒径合格的粗钢珠送入钢珠斗提仓内,经过斗提提升到级配调整机进料口的混合料斗内进行循环破碎机制砂工作。第二级钢珠分离部把钢珠与机制砂完全分离后,成品机制砂进入成品料斗提打入下一级分选设备。
以此不断的循环生产,在该生产线中的钢珠基本上不产生浪费,筛选下来的细钢珠可以作为抛丸来分级利用,经过不断的磨损的钢珠具有优良的钢丸作用,是铸件表面处理的优良原料,被电磁滚筒回收的细小钢粉,也可以作为铸造原料进行重新利用。
实施例2:在实施例1的基础上,一种无尘机制天然砂制作风选分离方法,石料通过石料输送机构A1至制砂机A的进料口,制砂机A将石料制成机制砂后从制砂机A的排料口排到机制砂输送机构A2始端面,机制砂输送机构A2末端将机制砂源源不断地落到模块化多层振动筛D进行筛分,筛分出的机制砂输送至机制天然砂机配调整系统B,机制天然砂机配调整系统B将机制砂制成机制天然砂至机制砂风力风选系统,机制砂风力风选系统中启动主风机010和付风机04,机制砂通过混合成品提斗机01中的料斗提升到混合成品提斗机01的上部且通过混合成品提斗机01的出料口进入缓冲料仓02内,缓冲料仓02将料仓中的机制砂输送至料机03,给料机03均匀的把机制砂料送入风力风选器舱体06的第一段强风舱室的进料口:
位于第一段强风舱室进料腔内的机制砂根据所选粒径的大小及重量调节主风机010进风风力的大小及付风机04进风风力的大小,在主风机010及付风机04的作用下通过主风口21和付风口22将进料腔内的机制砂吹到相邻沸腾腔内,超过风力的大颗粒机制砂由第一段强风舱室出料口进入第一段分级储料罐09内,小于风力的机制砂在沸腾腔风力的作用下由下往上吹入由第一段强风舱室和第二段强风仓室构成的第一段分料通道腔8后进入第二强风舱室内,其机制砂中的粉尘通过第五段上的除尘口6被吸尘器05吸走;
同理,进入第二强风舱室内的机制砂在主风机010及付风机04的作用下将进料腔内的机制砂吹到相邻沸腾腔内,超过风力的大颗粒机制砂由第二段强风舱室出料口进入第二段分级储料罐09内,小于风力的机制砂在沸腾腔风力的作用下由下往上吹入由第三段中风舱室和第四、五段料仓室,其机制砂中残存的粉尘通过第五段上的除尘口6被吸尘器05吸走;
同理,进入第三强风舱室内的机制砂在主风机010的作用下将进料腔内的机制砂吹到相邻沸腾腔内,超过风力的大颗粒机制砂由第三段强风舱室出料口进入第三段分级储料罐09内,小于风力的机制砂在沸腾腔风力的作用下由下往上吹一部分进入第三段料仓室4、一部分进入第二段斜溜槽12导入第五段料仓室4,其机制砂中残存的微量粉尘通过第五段上的除尘口6被吸尘器05吸走。
机制天然砂级配调整系统天然砂的制作方法,进料输送带C1把需要调整级配的机制砂送入钢砂混合料斗C2同时,塔式钢珠斗提机C15通过进料溜槽C16向钢砂混合料斗C2添加钢珠,以上两种材料混合后进入机制砂级配调整机C3,经过机制砂级配调整机C3的不断旋转,在调整机中的步进式反击料斗C38的不断提升与不断步进的工作下,机制砂不断的被破碎、碾磨,然后从机制砂级配调整机C3出料口C44不断送出机制天然砂,在出料口上部的除尘器吸风罩C43的除尘孔C45不断的把机制砂级配调整机C3内部产生的粉尘吸走,机制砂级配调整机C3出料口C44下端是一级电磁钢砂分离器C6钢珠分离部,该钢珠分离部的工作为头部按有电磁滚筒的输送带,由于电磁滚筒的作用,不含磁性的机制天然砂抛向第二级电磁钢砂分离器C7分离部,被电磁滚筒磁性作用吸住的钢珠直接进入到钢珠出料溜槽C9,在第二级钢珠分离部的头部也是相同的一组电磁滚筒,已处理第一组滚筒中没有处理完毕的小钢珠与磨削产生的钢粉,并同时落入钢珠粒径控制溜槽C11,在这两级钢珠与机制砂分离过后,成品机制砂进入下一个机制砂斗提提至下一工段。
钢珠粒径控制溜槽C11中靠近前段为开长腰孔的钢珠粒径控制段C12,钢珠粒径控制段C12把质量磨损,粒径偏小的钢珠与钢粉分离到细钢颗粒地槽C13,把质量合格,粒径合格的粗钢珠送入粗钢颗粒地槽C14的钢珠斗提仓内,经过斗提提升到级配调整机进料口的混合料斗内C2进行循环破碎机制砂工作;第二级钢珠分离部把钢珠与机制砂完全分离后,成品机制天然砂进入混合成品砂地槽C10且由成品斗式提升机C8中的成品料斗提打入下一级分选设备。
该钢珠与需要调整的机制砂共同进入机制砂级配调整机C3,机制砂级配调整机C3的滚动带动步进式料斗C38不断的做提升倒料运动,钢珠与需要调整的机制砂同时被提升到顶端,并同时下落,处于下部的反击式步进料斗本身材质为高锰钢,钢珠下落到反击表面时即可以击打反击面上的需要调整的机制砂,又可以经过反弹而击打相邻反击面上的机制砂,并且由于机制砂级配调整机C3的筒壁在不停的旋转,下部堆积的机制砂与钢珠的混合物不断的被击打,滚动磨削,又被下一级斗提提升到顶端而重复做下落,被击打,磨削,步进的工序,以此来降低机制砂的细度模数,并在滚动当中把机制砂的菱角磨去,使机制砂级配调整机C3既达到降低细度模数的作用,也达到了调整细小机制砂的粒型作用,使得调整之后的成品机制砂能达到天然砂的品质。钢珠可以是成品的钢筋切头也可以是建筑废弃的螺纹钢切头来制作,只要该切头具备一定质量,从高端落下后能够起到打击作用即可。机制砂级配调整机C3的动力采用变频调整转速,通过筒壁的不同转速来控制产成品的细度模数。
实施例3:在实施例2的基础上,位于第一段强风舱室2进料口下端的主风口在主风机01的作用下强力给风,机制砂由第一段强风舱室的进料腔23吹入相邻的第一段沸腾腔24,由于在第一段沸腾腔24的两侧设有付风口04以补充风量,使得机制砂在第一段沸腾腔内不断的被自下而上以及两侧的风力吹送,期间大颗粒的机制砂由于自身的质量超过风力的吹送,因此该级别的机制砂由第一段强风舱室的出料口25进入第一段分级储料罐09,而质量小于风力的机制砂经过沸腾腔往上吹送入由第一段强风舱室和第二段强风仓室构成的第一段分料通道腔8,并且通过分料通道腔8的过程中,机制砂中的粉尘通过五段料仓4上方的除尘口由吸尘器05吸走,质量大于粉尘而小于输送风力的机制砂粒落入到第二段强制风舱室,质量大于粉尘而小于吸尘器05吸力的小粒径机制砂通过第一段斜溜槽11和第二段斜溜槽12进入第五段料仓4;
位于第二段强风舱室2的进料室下端主风口和付风口根据本段所需机制砂粒大小及重量不断的给出相对应的风量,把进料腔23中的机制砂不断的吹入相邻的沸腾腔24内,由于在第二段强风舱室的沸腾腔两侧设有付风口04,该付风口04根据PLC控制器指令补充风量,使沸腾腔中的机制砂不断的被自下而上的风力往上吹送,在风力往上吹送的过程中,质量大于吹送风力的机制砂滞留在第二段强风舱室的下料口部25且被不断的送入第二段分级储料罐09,质量小于风力的机制砂一部分由沸腾腔24中被风力吹送到第三段中风舱室、一部分被吹送到第二段斜溜槽12进入第五段料仓4,而机制砂中的残存粉尘继续通过第五段料仓上的除尘口6由除尘器05吸走;
位于第三段中风舱室3的进料室下端主风口和付风口根据本段所需机制砂粒大小及重量不断的给出相对应的风量,把进料腔33中的机制砂不断的吹入相邻的沸腾腔34内,由于在第三段中风舱室的沸腾腔两侧设有付风口04,该付风口04根据PLC控制器指令补充风量,使沸腾腔中的机制砂不断的被自下而上的风力往上吹送,在风力往上吹送的过程中,质量大于吹送风力的机制砂滞留在第三段中风舱室的下料口部35且被不断的送入第三段分级储料罐09,质量小于风力的机制砂被风力吹送到第四段料仓室4后进入第四段料仓4。
主风机010和付风机04风力大小的设定取决于可视重级分配器07中机制砂粒径的大小及可视重级分配器07的重量,当可视重级分配器07中的粒径小于所需粒径且可视重级分配器07中的机制砂重量未达到设定值时,减小风力。
主风口21主风机010和付风口22付风机04进风量的大小由变频器控制其转速与风量,或采用调速电机带动主风机010和付风机04,或采用手动微调的方式来控制主风口21和付风口22的进风量。
需要说明的是:本申请流体管道中设有手动阀、电动阀、电磁阀、步进脉冲阀,其中电动阀、电磁阀、步进脉冲阀工作与否及开关量的大小受控于PLC控制器,PLC控制器根据所选级别砂的大小,控制各阀门进风量的大小。
需要理解到的是:上述实施例虽然对本发明的设计思路作了比较详细的文字描述,但是这些文字描述,只是对本发明设计思路的简单文字描述,而不是对本发明设计思路的限制,任何不超出本发明设计思路的组合、增加或修改,均落入本发明的保护范围内。

Claims (24)

1、一种无尘机制天然砂制作分离系统,包括PLC控制器,其特征是:石料通过石料输送机构(A1)至制砂机(A)的进料口,制砂机(A)排料口直对机制砂输送机构(A2)始端面,机制砂输送机构末端直对模块化多层振动筛(D)的进料端,模块化多层振动筛(D)的出料端直对机制天然砂机配调整系统(B)的进料端,机制天然砂机配调整系统(B)的出料端直对机制砂风力风选系统(C)进料端,机制砂风力风选系统(C)中不同粒径机制砂的出料口分别接储料罐。
2、根据权利要求1所述的无尘机制天然砂制作分离系统,其特征是:机制砂风力风选系统中混合成品提斗机(01)出料口直对缓冲料仓(02)进口,缓冲料仓(02)出料口直对给料机(03)进口,给料机(03)出口与机制砂风力风选器舱体(06)进料口连通,机制砂风力风选器舱体(06)多级出料口分别通过输料管与各自的分级储料罐(09)进口连通,主风机(010)出风口与机制砂风力风选器舱体(06)中的主风口(21)连通,付风机(04)的出风口与机制砂风力风选器舱体(06)中付风口(22)连通,机制砂风力风选器舱体(06)中的除尘口(6)与除尘器(05)进口连通。
3、根据权利要求2所述的无尘机制天然砂制作分离系统,其特征是:机制砂风力风选器舱体由多段强风舱室(2)、中风舱室(3)和多段料仓室(4)构成,多段强风舱室(2)中第一段强风舱室的上端面开有进料口(5)、前面开有段主风口(21)、左右两侧开有付风口(22)、下端开强风出料口(25),强风舱室腔中上部竖直设有第一隔腔板(27)且将第一段强风舱室划分为第一段进料腔(23)和第一段沸腾腔腔(24),中风舱室(3)的前端开有中风主风口(31)、下端开有中风出料口(35),多段强风舱室(2)风选出口与中风舱室(3)风选进口连通,中风舱室(3)风选出口与多段料仓室(4)风选进口连通,第一段斜溜槽(11)位于强风舱室(2)和中风舱室(3)之间的第二段分料通道腔(9)内,位于第一段斜溜槽(11)背面的第二隔腔板(14)竖直位于多段强风舱室(2)中第二段强风舱室腔中部且将第二段强风舱室腔划分为第二段进料腔(23)和第二段沸腾腔腔(24),第二段斜溜槽(12)位于中风舱室(3)和料仓室(4)之间的收料通道腔(10)内且第二段斜溜槽(12)的头部插入第一段斜溜槽(11)末端下方,第二段斜溜槽(12)的末端直对多段料仓室(4)中的料仓腔,第二段斜溜槽(12)背面的第三隔腔板(13)竖立位于中风舱室(3)腔中部且将中风舱室划分为中风进料腔(33)和中风段沸腾腔腔(34),除尘口(6)开在多段料仓室(4)上端面。
4、根据权利要求3所述的无尘机制天然砂制作分离系统,其特征是:多段强风舱室(2)由多个强风舱室构成,多个强风舱室中的强风舱室与强风舱室之间的上部连通且构成第一段分料通道腔(8)。
5、根据权利要求3所述的无尘机制天然砂制作分离系统,其特征是:强风舱室呈矩形腔体,矩形腔体下部为漏斗腔体。
6、根据权利要求5所述的无尘机制天然砂制作分离系统,其特征是:漏斗腔体斜面开有检测窗(26)。
7、根据权利要求3所述的无尘机制天然砂制作分离系统,其特征是:多段料仓室(4)由多个集料仓室构成,多个集料仓室中集料仓与集料仓之间的上部连通且构成收料通道腔(10)。
8、根据权利要求3所述的无尘机制天然砂制作分离系统,其特征是:集料仓室锥体腔体(41),锥体腔 体(41)下部为漏斗腔体,漏斗腔体下端为出料口(42)。
9、根据权利要求8所述的无尘机制天然砂制作分离系统,其特征是:漏斗腔体斜面开有检测窗(43)。
10、根据权利要求3所述的无尘机制天然砂制作分离系统,其特征是:中风舱室呈矩形腔体,矩形腔体下部为漏斗腔体。
11、根据权利要求3所述的无尘机制天然砂制作分离系统,其特征是:漏斗腔体斜面开有检测窗(36)。
12、根据权利要求3所述的无尘机制天然砂制作分离系统,其特征是:多段强风舱室2、中风舱室(3)和多段料仓室(4)所构成的第一段分料通道腔(8)、第二段分料通道腔(9)、收料通道腔(10)为由高往低呈斜面通道。
13、根据权利要求3所述的无尘机制天然砂制作分离系统,其特征是:整体风力风选器舱体(1)上端面设有一个或多个检测口且检测口设有盖(7)。
14、根据权利要求3所述的无尘机制天然砂制作分离系统,其特征是:风力风选器舱体内壁拼接有不同尺寸的耐磨板(29)。
15、根据权利要求3所述的无尘机制天然砂制作分离系统,其特征是:给料机(03)通过弹簧(301)悬挂在缓冲料仓(02)的下方。
16、根据权利要求3所述的无尘机制天然砂制作分离系统,其特征是:级配检验振动筛(08)进料口通过导料管与输料管连通,级配检验振动筛(08)出料口直对可视重级分配器(07)的进料口。
17、根据权利要求3所述的无尘机制天然砂制作分离系统,其特征是:段主风口(21)中喷风嘴由多个喷风口上下错位排列构成,或上下、左右错位排列构成。
18、根据权利要求3所述的无尘机制天然砂制作分离系统,其特征是:中风主风口(31)中喷风嘴由多个喷风口上下错位排列构成,或上下、左右错位排列构成。
19、根据权利要求16所述的无尘机制天然砂制作分离系统,其特征是:级配检验振动筛(08)多个出料口分别直对可视重级分配器(07)的进料口。
20、根据权利要求16所述的无尘机制天然砂制作分离系统,其特征是:可视重级分配器(07)由透明接料斗及秤重器构成,透明接料斗的底部置有称重传感器,透明接料斗的壁上有刻度线。
21、一种无尘机制天然砂制作风选分离方法,其特征是:石料通过石料输送机构(A1)至制砂机(A)的进料口,制砂机(A)将石料制成机制砂后从制砂机(A)的排料口排到机制砂输送机构(A2)始端面,机制砂输送机构(A2)末端将机制砂源源不断地落到模块化多层振动筛(D)进行筛分,筛分出的机制砂输送至机制天然砂机配调整系统(B),机制天然砂机配调整系统(B)将机制砂制成机制天然砂至机制砂风力风选系统,机制砂风力风选系统中启动主风机(010)和付风机(04),机制砂通过混合成品提斗机(01)中的料斗提升到混合成品提斗机(01)的上部且通过混合成品提斗机(01)的出料口进入缓冲料仓(02)内,缓冲料仓(02)将料仓中的机制砂输送至料机(03),给料机(03)均匀的把机制砂料送入风力风选器舱体(06)的第一段强风舱室的进料口:
位于第一段强风舱室进料腔内的机制砂根据所选粒径的大小及重量调节主风机(010)进风风力的大小及付风机(04)进风风力的大小,在主风机(010)及付风机(04)的作用下通过主风口(21)和付风口(22)将进料腔内的机制砂吹到相邻沸腾腔内,超过风力的大颗粒机制砂由第一段强风舱室出料口进入第一段分级储料罐(09)内,小于风力的机制砂在沸腾腔风力的作用下由下往上吹入由第一段强风舱室和第二段强风仓室构成的第一段分料通道腔(8)后进入第二强风舱室内,其机制砂中的粉尘通过第五段上的除尘口(6)被吸尘器(05)吸走;
同理,进入第二强风舱室内的机制砂在主风机(010)及付风机(04)的作用下将进料腔内的机制砂吹到相邻沸腾腔内,超过风力的大颗粒机制砂由第二段强风舱室出料口进入第二段分级储料罐(09)内,小于风力的机制砂在沸腾腔风力的作用下由下往上吹入由第三段中风舱室和第四、五段料仓室,其机制砂中残存的粉尘通过第五段上的除尘口(6)被吸尘器(05)吸走;
同理,进入第三强风舱室内的机制砂在主风机(010)的作用下将进料腔内的机制砂吹到相邻沸腾腔内,超过风力的大颗粒机制砂由第三段强风舱室出料口进入第三段分级储料罐(09)内,小于风力的机制砂在沸腾腔风力的作用下由下往上吹一部分进入第三段料仓室(4)、一部分进入第二段斜溜槽(12)导入第五段料仓室(4),其机制砂中残存的微量粉尘通过第五段上的除尘口(6)被吸尘器(05)吸走。
22、根据权利要求21所述的机制砂风力风选方法,其特征是:位于第一段强风舱室(2)进料口下端的主风口在主风机(01)的作用下强力给风,机制砂由第一段强风舱室的进料腔(23)吹入相邻的第一段沸腾腔(24),由于在第一段沸腾腔(24)的两侧设有付风口(04)以补充风量,使得机制砂在第一段沸腾腔内不断的被自下而上以及两侧的风力吹送,期间大颗粒的机制砂由于自身的质量超过风力的吹送,因此该级别的机制砂由第一段强风舱室的出料口(25)进入第一段分级储料罐(09),而质量小于风力的机制砂经过沸腾腔往上吹送入由第一段强风舱室和第二段强风仓室构成的第一段分料通道腔(8),并且通过分料通道腔(8)的过程中,机制砂中的粉尘通过五段料仓(4)上方的除尘口由吸尘器(05)吸走,质量大于粉尘而小于输送风力的机制砂粒落入到第二段强制风舱室,质量大于粉尘而小于吸尘器(05)吸力的小粒径机制砂通过第一段斜溜槽(11)和第二段斜溜槽(12)进入第五段料仓(4);
位于第二段强风舱室(2)的进料室下端主风口和付风口根据本段所需机制砂粒大小及重量不断的给出相对应的风量,把进料腔(23)中的机制砂不断的吹入相邻的沸腾腔(24)内,由于在第二段强风舱室的沸腾腔两侧设有付风口(04),该付风口(04)根据PLC控制器指令补充风量,使沸腾腔中的机制砂不断的被自下而上的风力往上吹送,在风力往上吹送的过程中,质量大于吹送风力的机制砂滞留在第二段强风舱室的下料口部(25)且被不断的送入第二段分级储料罐(09),质量小于风力的机制砂一部分由沸腾腔(24)中被风力吹送到第三段中风舱室、一部分被吹送到第二段斜溜槽(12)进入第五段料仓(4),而机制砂中的残存粉尘继续通过第五段料仓上的除尘口(6)由除尘器(05)吸走;
位于第三段中风舱室(3)的进料室下端主风口和付风口根据本段所需机制砂粒大小及重量不断的给出相对应的风量,把进料腔(33)中的机制砂不断的吹入相邻的沸腾腔(34)内,由于在第三段中风舱室的沸腾腔两侧设有付风口(04),该付风口(04)根据PLC控制器指令补充风量,使沸腾腔中的机制砂不断的被自下而上的风力往上吹送,在风力往上吹送的过程中,质量大于吹送风力的机制砂滞留在第三段中风舱室的下料口部(35)且被不断的送入第三段分级储料罐(09),质量小于风力的机制砂被风力吹送到第四段料仓室(4)后进入第四段料仓(4)。
23、根据权利要求21所述的机制砂风力风选方法,其特征是:主风机(010)和付风机(04)风力大小的设定取决于可视重级分配器(07)中机制砂粒径的大小及可视重级分配器(07)的重量,当可视重级分配器(07)中的粒径小于所需粒径且可视重级分配器(07)中的机制砂重量未达到设定值时,减小风力。
24、根据权利要求21所述的机制砂风力风选方法,其特征是:主风口(21)主风机(010)和付风口(22)付风机(04)进风量的大小由变频器控制其转速与风量,或采用调速电机带动主风机(010)和付风机(04),或采用手动微调的方式来控制主风口(21)和付风口(22)的进风量。
PCT/CN2013/087444 2013-07-13 2013-11-19 无尘机制天然砂制作分离系统及方法 WO2015007037A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201310293146.5A CN103357481B (zh) 2013-07-13 2013-07-13 无尘机制天然砂制作分离系统及方法
CN201310293146.5 2013-07-13

Publications (1)

Publication Number Publication Date
WO2015007037A1 true WO2015007037A1 (zh) 2015-01-22

Family

ID=49360235

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2013/087444 WO2015007037A1 (zh) 2013-07-13 2013-11-19 无尘机制天然砂制作分离系统及方法

Country Status (2)

Country Link
CN (1) CN103357481B (zh)
WO (1) WO2015007037A1 (zh)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106890793A (zh) * 2017-04-17 2017-06-27 安徽农业大学 一种用于制茶的鲜叶风选机
CN107716850A (zh) * 2017-11-29 2018-02-23 六安市鸿圣铸造有限责任公司 一种具有便于下料吸尘功能的混砂机
CN107899948A (zh) * 2017-10-23 2018-04-13 江苏脒诺甫纳米材料有限公司 陶瓷色料矿质粉料粒度分选机
CN108704852A (zh) * 2018-07-12 2018-10-26 河南省振源科技有限公司 石料生产三段筛分分级系统及其筛分分级方法
CN108855551A (zh) * 2018-07-12 2018-11-23 河南省振源科技有限公司 砂石骨料破碎筛分生产系统
CN109290202A (zh) * 2018-11-08 2019-02-01 江苏科选环境科技有限公司 一种用于废钢破碎料的风选装置
CN110140521A (zh) * 2019-05-05 2019-08-20 沙雅钵施然智能农机有限公司 一种采棉机风力除杂系统及采棉机
CN110815023A (zh) * 2019-12-11 2020-02-21 江苏宏宝工具有限公司 一种小锤头握柄的抛光装置
CN112676155A (zh) * 2020-11-10 2021-04-20 颍上县红绿园家庭农场有限公司 一种大豆油压榨生产用大豆筛选除杂装置
CN114798446A (zh) * 2021-09-13 2022-07-29 三亚城投众辉新型建材有限公司 一种绿色环保除粉设备

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103357481B (zh) * 2013-07-13 2015-06-17 浙江双金机械集团股份有限公司 无尘机制天然砂制作分离系统及方法
CN104324884B (zh) * 2014-11-10 2016-09-07 安徽东阳矿业科技有限公司 一种石英砂全自动生产线
CN115041291A (zh) * 2022-06-14 2022-09-13 三一重型装备有限公司 控制方法、系统、机制砂生产装置、可读存储介质、芯片

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010155745A (ja) * 2008-12-26 2010-07-15 Ube Techno Enji Kk コンクリート用砕砂製造方法および砕砂製造システム
CN102485354A (zh) * 2010-12-03 2012-06-06 中国石油天然气集团公司 复合分体式选砂机
CN102528933A (zh) * 2011-02-14 2012-07-04 上海金路创展工程机械有限公司 精品骨料加工生产系统
CN103102090A (zh) * 2013-01-17 2013-05-15 上海国砼环保设备有限公司 建筑废渣联合粉磨资源化处理系统的装置及其使用方法
CN103357481A (zh) * 2013-07-13 2013-10-23 浙江双金机械集团股份有限公司 无尘机制天然砂制作分离系统及方法

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102091691B (zh) * 2010-11-29 2012-12-05 浙江双金机械集团股份有限公司 干法碾砂除尘成套设备专用振动筛机构
CN202316081U (zh) * 2011-10-31 2012-07-11 无锡江加建设机械有限公司 仿天然砂制备生产线
CN203540663U (zh) * 2013-07-13 2014-04-16 浙江双金机械集团股份有限公司 无尘机制天然砂制作系统
CN203540664U (zh) * 2013-07-13 2014-04-16 浙江双金机械集团股份有限公司 无尘机制天然砂制作分离系统

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010155745A (ja) * 2008-12-26 2010-07-15 Ube Techno Enji Kk コンクリート用砕砂製造方法および砕砂製造システム
CN102485354A (zh) * 2010-12-03 2012-06-06 中国石油天然气集团公司 复合分体式选砂机
CN102528933A (zh) * 2011-02-14 2012-07-04 上海金路创展工程机械有限公司 精品骨料加工生产系统
CN103102090A (zh) * 2013-01-17 2013-05-15 上海国砼环保设备有限公司 建筑废渣联合粉磨资源化处理系统的装置及其使用方法
CN103357481A (zh) * 2013-07-13 2013-10-23 浙江双金机械集团股份有限公司 无尘机制天然砂制作分离系统及方法

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106890793A (zh) * 2017-04-17 2017-06-27 安徽农业大学 一种用于制茶的鲜叶风选机
CN107899948A (zh) * 2017-10-23 2018-04-13 江苏脒诺甫纳米材料有限公司 陶瓷色料矿质粉料粒度分选机
CN107716850A (zh) * 2017-11-29 2018-02-23 六安市鸿圣铸造有限责任公司 一种具有便于下料吸尘功能的混砂机
CN107716850B (zh) * 2017-11-29 2023-10-31 六安市鸿圣铸造有限责任公司 一种具有便于下料吸尘功能的混砂机
CN108855551A (zh) * 2018-07-12 2018-11-23 河南省振源科技有限公司 砂石骨料破碎筛分生产系统
CN108855551B (zh) * 2018-07-12 2023-08-29 河南省振源科技有限公司 砂石骨料破碎筛分生产系统
CN108704852A (zh) * 2018-07-12 2018-10-26 河南省振源科技有限公司 石料生产三段筛分分级系统及其筛分分级方法
CN109290202A (zh) * 2018-11-08 2019-02-01 江苏科选环境科技有限公司 一种用于废钢破碎料的风选装置
CN109290202B (zh) * 2018-11-08 2024-02-13 江苏科选环境科技有限公司 一种用于废钢破碎料的风选装置
CN110140521A (zh) * 2019-05-05 2019-08-20 沙雅钵施然智能农机有限公司 一种采棉机风力除杂系统及采棉机
CN110140521B (zh) * 2019-05-05 2024-04-05 沙雅钵施然智能农机有限公司 一种采棉机风力除杂系统及采棉机
CN110815023A (zh) * 2019-12-11 2020-02-21 江苏宏宝工具有限公司 一种小锤头握柄的抛光装置
CN110815023B (zh) * 2019-12-11 2024-05-24 江苏宏宝工具有限公司 一种小锤头握柄的抛光装置
CN112676155A (zh) * 2020-11-10 2021-04-20 颍上县红绿园家庭农场有限公司 一种大豆油压榨生产用大豆筛选除杂装置
CN114798446A (zh) * 2021-09-13 2022-07-29 三亚城投众辉新型建材有限公司 一种绿色环保除粉设备
CN114798446B (zh) * 2021-09-13 2023-07-21 三亚城投众辉新型建材有限公司 一种绿色环保除粉设备

Also Published As

Publication number Publication date
CN103357481B (zh) 2015-06-17
CN103357481A (zh) 2013-10-23

Similar Documents

Publication Publication Date Title
WO2015007037A1 (zh) 无尘机制天然砂制作分离系统及方法
WO2014205990A1 (zh) 机制天然砂级配调整系统及天然砂的制作方法
CN105413837B (zh) 珍珠岩制砂生产线
CN203540664U (zh) 无尘机制天然砂制作分离系统
CN203540663U (zh) 无尘机制天然砂制作系统
CN106746473A (zh) 用于城市污水处理厂污泥干燥的带式干燥系统和干燥方法
CN203791206U (zh) 数控风筛式种子精选机
CN206882402U (zh) 一种综合分选装置
CN206417285U (zh) 全自动拆包机
CN115672734A (zh) 一种用于陈腐垃圾的三级筛分系统
CN211026639U (zh) 干法制砂设备
CN113457983A (zh) 具有扬尘控制及分选比重接近物功能的高效综合风选设备
CN113457979A (zh) 具有分选比重接近物功能的高效综合风选设备
CN214184081U (zh) 一种气浮式垃圾风选机
CN211099402U (zh) 干法制砂设备用粗碎机及其干法制砂设备
CN220425592U (zh) 一种风选粉碎装置
CN216026267U (zh) 具有分选比重接近物功能的高效综合风选设备
CN216026269U (zh) 具有扬尘控制及分选比重接近物功能的高效综合风选设备
CN216026268U (zh) 具有扬尘控制功能的高效综合风选设备
CN216026266U (zh) 具有智能清扫及分选比重接近物功能的高效综合风选设备
CN220387127U (zh) 一种香菇挑选分级装置
CN216026270U (zh) 具有智能清扫功能的高效综合风选设备
CN215354725U (zh) 高效综合风选设备
CN210585314U (zh) 干法制砂设备
CN217616518U (zh) 一种高耐磨齿轮箱体铸件的抛丸装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13889745

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13889745

Country of ref document: EP

Kind code of ref document: A1