WO2015006902A1 - 一种波长对准的方法、装置、及光网络系统 - Google Patents

一种波长对准的方法、装置、及光网络系统 Download PDF

Info

Publication number
WO2015006902A1
WO2015006902A1 PCT/CN2013/079386 CN2013079386W WO2015006902A1 WO 2015006902 A1 WO2015006902 A1 WO 2015006902A1 CN 2013079386 W CN2013079386 W CN 2013079386W WO 2015006902 A1 WO2015006902 A1 WO 2015006902A1
Authority
WO
WIPO (PCT)
Prior art keywords
temperature
optical signal
extinction ratio
filter
laser
Prior art date
Application number
PCT/CN2013/079386
Other languages
English (en)
French (fr)
Inventor
廖振兴
程宁
周敏
黄晶
温运生
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to PCT/CN2013/079386 priority Critical patent/WO2015006902A1/zh
Priority to CN201380001286.9A priority patent/CN103703700B/zh
Priority to EP13889653.5A priority patent/EP3016218A4/en
Publication of WO2015006902A1 publication Critical patent/WO2015006902A1/zh
Priority to US14/996,023 priority patent/US20160134079A1/en

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/10Controlling the intensity, frequency, phase, polarisation or direction of the emitted radiation, e.g. switching, gating, modulating or demodulating
    • H01S3/13Stabilisation of laser output parameters, e.g. frequency or amplitude
    • H01S3/131Stabilisation of laser output parameters, e.g. frequency or amplitude by controlling the active medium, e.g. by controlling the processes or apparatus for excitation
    • H01S3/1317Stabilisation of laser output parameters, e.g. frequency or amplitude by controlling the active medium, e.g. by controlling the processes or apparatus for excitation by controlling the temperature
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/005Optical components external to the laser cavity, specially adapted therefor, e.g. for homogenisation or merging of the beams or for manipulating laser pulses, e.g. pulse shaping
    • H01S5/0078Optical components external to the laser cavity, specially adapted therefor, e.g. for homogenisation or merging of the beams or for manipulating laser pulses, e.g. pulse shaping for frequency filtering
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/005Optical devices external to the laser cavity, specially adapted for lasers, e.g. for homogenisation of the beam or for manipulating laser pulses, e.g. pulse shaping
    • H01S3/0078Frequency filtering
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/06Arrangements for controlling the laser output parameters, e.g. by operating on the active medium
    • H01S5/0607Arrangements for controlling the laser output parameters, e.g. by operating on the active medium by varying physical parameters other than the potential of the electrodes, e.g. by an electric or magnetic field, mechanical deformation, pressure, light, temperature
    • H01S5/0612Arrangements for controlling the laser output parameters, e.g. by operating on the active medium by varying physical parameters other than the potential of the electrodes, e.g. by an electric or magnetic field, mechanical deformation, pressure, light, temperature controlled by temperature
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/06Arrangements for controlling the laser output parameters, e.g. by operating on the active medium
    • H01S5/068Stabilisation of laser output parameters
    • H01S5/0683Stabilisation of laser output parameters by monitoring the optical output parameters
    • H01S5/0687Stabilising the frequency of the laser
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B10/00Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
    • H04B10/07Arrangements for monitoring or testing transmission systems; Arrangements for fault measurement of transmission systems
    • H04B10/075Arrangements for monitoring or testing transmission systems; Arrangements for fault measurement of transmission systems using an in-service signal
    • H04B10/079Arrangements for monitoring or testing transmission systems; Arrangements for fault measurement of transmission systems using an in-service signal using measurements of the data signal
    • H04B10/0793Network aspects, e.g. central monitoring of transmission parameters
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B10/00Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
    • H04B10/07Arrangements for monitoring or testing transmission systems; Arrangements for fault measurement of transmission systems
    • H04B10/075Arrangements for monitoring or testing transmission systems; Arrangements for fault measurement of transmission systems using an in-service signal
    • H04B10/079Arrangements for monitoring or testing transmission systems; Arrangements for fault measurement of transmission systems using an in-service signal using measurements of the data signal
    • H04B10/0795Performance monitoring; Measurement of transmission parameters
    • H04B10/07955Monitoring or measuring power
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B10/00Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
    • H04B10/50Transmitters
    • H04B10/564Power control
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B10/00Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
    • H04B10/50Transmitters
    • H04B10/572Wavelength control
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/02Structural details or components not essential to laser action
    • H01S5/024Arrangements for thermal management
    • H01S5/02438Characterized by cooling of elements other than the laser chip, e.g. an optical element being part of an external cavity or a collimating lens
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/02Structural details or components not essential to laser action
    • H01S5/024Arrangements for thermal management
    • H01S5/02438Characterized by cooling of elements other than the laser chip, e.g. an optical element being part of an external cavity or a collimating lens
    • H01S5/02446Cooling being separate from the laser chip cooling
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/06Arrangements for controlling the laser output parameters, e.g. by operating on the active medium
    • H01S5/0617Arrangements for controlling the laser output parameters, e.g. by operating on the active medium using memorised or pre-programmed laser characteristics
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/06Arrangements for controlling the laser output parameters, e.g. by operating on the active medium
    • H01S5/062Arrangements for controlling the laser output parameters, e.g. by operating on the active medium by varying the potential of the electrodes
    • H01S5/06209Arrangements for controlling the laser output parameters, e.g. by operating on the active medium by varying the potential of the electrodes in single-section lasers
    • H01S5/06213Amplitude modulation

Definitions

  • Wavelength alignment method for device, and optical network system
  • the present invention relates to the field of optical fiber networks, and in particular, to a wavelength alignment method, apparatus, optical transmitter, and optical network system.
  • fiber-optic access networks have become a powerful competitor for broadband access networks, especially with PON (Passive Optical Network) systems. Competing.
  • DML Directly Modulated Laser
  • the optical module on the OLT side (optical line terminal) of the PON system is implemented by DML.
  • DML modulates the output of the semiconductor laser by changing the injection current. This modulation causes a change in the refractive index of the active layer, which in turn makes it difficult for the DML and the filter to achieve wavelength alignment.
  • Embodiments of the present invention provide a wavelength alignment method, apparatus, optical transmitter, and optical network system for overcoming the problem of high wavelength alignment in the prior art.
  • the technical solution adopted by the embodiment of the present invention is:
  • an embodiment of the present invention provides a method for wavelength alignment, including:
  • the laser emits a first optical signal
  • the first optical signal is filtered by a filter and then transmitted out of the second optical signal;
  • the extinction ratio of the second optical signal exceeds an upper limit of the first extinction ratio threshold range and the optical power of the second optical signal exceeds a lower limit of the first optical power threshold range, or an extinction ratio of the second optical signal Exceeding a lower limit of the first extinction ratio threshold range and an optical power of the second optical signal exceeding an upper limit of the first optical power threshold range, adjusting an operating temperature of the laser and/or the filter to a target operating temperature, so that the filter Achieve wavelength alignment with the laser.
  • the operating temperature of the laser is controlled by the first temperature control device, or the operating temperature of the laser and the operating temperature of the filter are jointly controlled by the first temperature control device;
  • the extinction ratio of the second optical signal exceeds an upper limit of the first extinction ratio threshold range and the optical power of the second optical signal exceeds a lower limit of the first optical power threshold range, or the extinction ratio of the second optical signal exceeds the first extinction Comparing the lower limit of the threshold range and the optical power of the second optical signal exceeds the upper limit of the first optical power threshold range
  • adjusting the operating temperature of the laser and/or the filter to the target operating temperature specifically includes: when the extinction ratio of the second optical signal Exceeding an upper limit of the first extinction ratio threshold range and an optical power of the second optical signal exceeding a lower limit of the first optical power threshold range, adjusting an output temperature of the first temperature control device to decrease to a first target temperature, causing the filter Achieve wavelength alignment with the laser;
  • the filter is wavelength aligned with the laser.
  • an operating temperature of the filter is controlled by a first temperature control device, and an operating temperature of the laser is controlled by a second temperature control device;
  • adjusting the operating temperature of the laser and/or the filter to the target operating temperature specifically includes: when the extinction ratio of the second optical signal Exceeding a lower limit of the first extinction ratio threshold range and an optical power of the second optical signal exceeding an upper limit of the first optical power threshold range, adjusting an output temperature of the first temperature control device to decrease to a third target temperature or turning off the first temperature control Means, causing the filter to be wavelength aligned with the laser;
  • the filter is wavelength aligned with the laser.
  • the output temperature of the first temperature control device is adjusted to be lowered to the sixth target temperature, or the first temperature control device is turned off to synchronize the filter with the laser.
  • an embodiment of the present invention provides a wavelength alignment apparatus, including:
  • a monitoring unit for monitoring an extinction ratio of the second optical signal and an optical power of the second optical signal, wherein the second optical signal is an optical signal that is filtered by the first optical signal emitted by the laser and filtered by the filter;
  • a micro control unit an extinction ratio and an optical power of the second optical signal fed back by the monitoring unit; when the extinction ratio of the second optical signal exceeds an upper limit of the first extinction ratio threshold range and the light of the second optical signal The power exceeds a lower limit of the first optical power threshold range, or the extinction ratio of the second optical signal exceeds a lower limit of the first extinction ratio threshold range and the optical power of the second optical signal exceeds an upper limit of the first optical power threshold range Adjusting the operating temperature of the laser and/or filter to a target operating temperature to achieve wavelength alignment of the filter with the laser.
  • the micro control unit is configured to: when an extinction ratio of the second optical signal exceeds an upper limit of a first extinction ratio threshold range and light of the second optical signal The power exceeds a lower limit of the first optical power threshold range, and the output temperature of the first temperature control device is adjusted to be lowered to a first target temperature, so that the filter is wavelength-aligned with the laser, wherein the first temperature control device is used for Controlling an operating temperature of the laser, or the first temperature control device is configured to control an operating temperature of the laser and the filter; when an extinction ratio of the second optical signal exceeds a lower limit of the first extinction ratio threshold range and the second The optical power of the optical signal exceeds an upper limit of the first optical power threshold range, and the output temperature of the first temperature control device is adjusted to rise to a second target temperature to cause the filter to be wavelength aligned with the laser.
  • the micro control unit is configured to preset a preset temperature of an output temperature of the second temperature control device to be an operating temperature of the laser, where the second temperature is
  • the control device is configured to control an operating temperature of the laser, when the extinction ratio of the second optical signal exceeds a lower limit of the first extinction ratio threshold range and the optical power of the second optical signal exceeds an upper limit of the first optical power threshold range, The output temperature of the first temperature control device is lowered to the third target temperature or the first is turned off.
  • a temperature control device wherein the filter is wavelength-aligned with the laser, wherein the first temperature control device is configured to control an operating temperature of the filter; and when an extinction ratio of the second optical signal exceeds a first extinction ratio An upper limit of the threshold range and an optical power of the second optical signal exceeding a lower limit of the first optical power threshold range, adjusting an output temperature of the first temperature control device to a fourth target temperature, so that the filter and the laser achieve a wavelength alignment.
  • the micro control unit is further configured to: when adjusting an initial value of an operating temperature of the laser and/or the filter, The initial ambient temperature within the preset position range of the filter; the real-time ambient temperature within the preset range of the monitoring filter; when the real-time ambient temperature is higher than the initial ambient temperature, the output temperature of the first temperature control device is adjusted to rise to a fifth target temperature, causing the filter to achieve wavelength alignment with the laser; when the real-time ambient temperature is lower than the initial ambient temperature, adjusting the output temperature of the first temperature control device to a sixth target temperature, or turning off the first temperature control Means aligning the filter with a laser for wavelength.
  • an embodiment of the present invention provides an optical transmitter, including: a laser, a filter, and a wavelength aligning apparatus according to an embodiment of the present invention
  • an embodiment of the present invention provides an optical network system, including: an optical line terminal OLT and an optical network unit, where the optical line terminal and/or the optical network unit includes at least the light emission according to the embodiment of the present invention. machine.
  • the embodiment of the present invention provides a wavelength alignment method, device, optical transmitter, and optical network system. The inventors have found that when a first optical signal emitted by a laser is filtered by a filter, the image is projected.
  • the laser and the filter are in a wavelength-aligned state, and when the laser and the filter wavelength are not aligned, the extinction ratio and optical power of the second optical signal are Will exceed their respective threshold ranges.
  • the present invention proposes to achieve wavelength alignment of the filter with the laser by monitoring the extinction ratio and optical power variation of the second optical signal, that is, when the extinction ratio of the second optical signal exceeds the first extinction ratio threshold range
  • the upper limit and the optical power of the second optical signal exceeds a lower limit of the first optical power threshold range, or the extinction ratio of the second optical signal exceeds a lower limit of the first extinction ratio threshold range and the light of the second optical signal
  • the power exceeds the upper limit of the first optical power threshold range, and the operating temperature of the laser and/or filter is adjusted to the target
  • the working temperature is set to achieve wavelength alignment between the filter and the laser, which overcomes the problem of high difficulty in the prior art.
  • FIG. 1 is a schematic flow chart of a method provided by an embodiment of the present invention.
  • FIG. 2 is a second schematic flowchart of a method provided by an embodiment of the present invention.
  • FIG. 3 is a third schematic flowchart of a method provided by an embodiment of the present invention.
  • FIG. 4 is a schematic structural diagram of an apparatus according to an embodiment of the present invention.
  • FIG. 5 is a schematic structural diagram of an optical transmitter according to an embodiment of the present invention.
  • FIG. 6 is a second schematic structural diagram of an optical transmitter according to an embodiment of the present invention.
  • FIG. 7 is a third schematic structural diagram of an optical transmitter according to an embodiment of the present invention.
  • FIG. 8 is a schematic structural diagram of an optical network system according to an embodiment of the present invention.
  • FIG. 1 a flowchart of a method for wavelength alignment according to an embodiment of the present invention is shown.
  • an embodiment of the present invention may include:
  • the laser emits a first optical signal.
  • the first optical signal is filtered by a filter to transmit the second optical signal.
  • the laser in the embodiment of the present invention may be a DML (Direct Modulation Laser), and the filter may be a narrowband optical filter.
  • S130. Monitor an extinction ratio of the second optical signal and an optical power of the second optical signal.
  • S140. When an extinction ratio of the second optical signal exceeds an upper limit of a first extinction ratio threshold range and the second light The optical power of the signal exceeds a lower limit of the first optical power threshold range, or the second light The extinction ratio of the signal exceeds a lower limit of the first extinction ratio threshold range and the optical power of the second optical signal exceeds an upper limit of the first optical power threshold range, and the operating temperature of the laser and/or the filter is adjusted to a target operating temperature, so that The filter is wavelength aligned with the laser.
  • the embodiment of the present invention can monitor the extinction ratio and the optical power of the second optical signal transmitted by the filter after filtering the first optical signal emitted by the laser through the filter, so that the second light can be
  • the extinction ratio of the signal exceeds an upper limit of the first extinction ratio threshold range and the optical power of the second optical signal exceeds a lower limit of the first optical power threshold range, or the extinction ratio of the second optical signal exceeds a first extinction ratio threshold
  • the temperature causes the filter to be wavelength aligned with the laser.
  • the method of wavelength alignment is simple, low cost, and easy to implement, so that DML-based optical transmitters can be applied in practice.
  • the operating temperature of the laser and/or the filter is adjusted to the target. Operating temperature, reaching the state where the laser is aligned with the filter wavelength.
  • the target operating temperature may be different in different implementation manners.
  • the target operating temperature may include a first target temperature, a second target temperature, a third target temperature, a fourth target temperature, a fifth target temperature, or a sixth target temperature.
  • the operating temperature of the laser may be adjusted using only the first temperature control device as shown in FIG. 5, or the operating temperature of the laser may be simultaneously adjusted by using the first temperature control device as shown in FIG. 6.
  • the operating temperature of the filter may include: S210. A laser emits a first optical signal;
  • the first optical signal is filtered by the filter to transmit the second optical signal;
  • S230 monitoring an extinction ratio of the second optical signal and an optical power of the second optical signal;
  • S240 when the The extinction ratio of the two optical signals exceeds the upper limit of the first extinction ratio threshold range and The optical power of the second optical signal exceeds a lower limit of the first optical power threshold range, and the output temperature of the first temperature control device is adjusted to decrease to a first target temperature, so that the filter and the laser achieve wavelength alignment;
  • Adjusting an output temperature of the first temperature control device when an extinction ratio of the second optical signal exceeds a lower limit of the first extinction ratio threshold range and an optical power of the second optical signal exceeds an upper limit of the first optical power threshold range Raising to a second target temperature causes the filter to be wavelength aligned with the laser.
  • the temperature and the second target temperature may be calculated according to a certain algorithm according to the amount of the detected extinction ratio exceeding the first extinction ratio threshold range, and the monitored optical power exceeds the first optical power threshold range, or step by step Presetting the minimum adjustment amount to adjust the extinction ratio and the optical power after the output temperature of the first temperature control device is increased or decreased while monitoring the output temperature change, when the extinction ratio and the optical power are within the first extinction ratio threshold range, Within a range of optical power thresholds, it may be determined that the first target temperature or the second target temperature is reached. Therefore, the specific implementation for adjusting the output temperature of the first temperature control device to the first target temperature or to the second target temperature may be set according to the implementation requirements, and is not limited in the present invention.
  • the filter does not need to be cooled and can be externally mounted. Therefore, in practical applications, flexible.
  • a narrow-band optical filter of silica material with good temperature stability can be used.
  • the typical temperature coefficient is O.Olnm/ °C
  • the operating temperature range is 0 ⁇ 70 °C
  • the wavelength drift is up to 0.7nm, which is in line with the need for fast and accurate wavelength alignment.
  • the operating temperature of the filter may be adjusted by using the first temperature control device as shown in FIG. 7, and the operating temperature of the laser may be adjusted by using the second temperature control device, and the output of the second temperature control device is preset.
  • the temperature is the preset upper limit of the operating temperature of the laser.
  • the method provided by this embodiment may include:
  • the laser emits a first optical signal.
  • S320 the first optical signal is filtered by the filter to transmit the second optical signal;
  • S330 monitoring an extinction ratio of the second optical signal and an optical power of the second optical signal;
  • S340 when The extinction ratio of the second optical signal exceeds a lower limit of the first extinction ratio threshold range and the optical power of the second optical signal exceeds an upper limit of the first optical power threshold range, and the output temperature of the first temperature control device is adjusted to decrease to a third target Temperature or turning off the first temperature control device to achieve wavelength alignment between the filter and the laser;
  • Adjusting an output temperature of the first temperature control device when an extinction ratio of the second optical signal exceeds an upper limit of the first extinction ratio threshold range and an optical power of the second optical signal exceeds a lower limit of the first optical power threshold range Raising to a fourth target temperature causes the filter to be wavelength aligned with the laser.
  • the temperature control platform of the laser and the filter is separated, i.e., the operating temperature of the filter is controlled by the first temperature control device, and the operating temperature of the laser is controlled by the second temperature control device.
  • the initial output temperature of the second temperature control device is preset to the preset upper limit of the operating temperature of the laser (such as 50 ⁇ 70 ° C), so that the wavelength of the laser emitted by the laser drifts less. , meet the standard requirements, therefore, only by adjusting the output temperature of the first temperature control device to control the operating temperature of the filter, the wavelength alignment can be achieved.
  • the filter since the filter has no additional heating source, the cooling requirement is reduced or eliminated, and the power loss is further reduced compared to the previous embodiment.
  • the second temperature control device since the output temperature of the second temperature control device is preset to be a preset upper limit of the operating temperature of the laser, the second temperature control device may employ a heater having only a heating function, and the first temperature control device may The thermoelectric cooler (TEC) is used, or when the implementation of turning off the first temperature control device is adopted, the first temperature control device may employ a heater having only a heating function.
  • TEC thermoelectric cooler
  • the change in ambient temperature also causes a change in the relative position of the wavelength of the first optical signal emitted by the laser and the filter spectrum. Therefore, in order to compensate for the influence of the environmental temperature change, when the ambient temperature rises, the temperature of the first temperature control device can be controlled to make the spectrum of the filter have a faster redshift speed, and when the ambient temperature drops, the first temperature is controlled.
  • the control device cools down or turns off the first temperature control device, so that the filter language has a faster wavelength blue shift speed, thereby ensuring the wavelength alignment of the DML and the narrowband optical filter.
  • it may include:
  • the preset position of the filter is measured.
  • the initial ambient temperature within the range
  • the embodiment of the present invention takes the DML (Direct Modulation Laser) as an example, and proposes an initialization process, for example, the initialization process can monitor the extinction ratio of the second optical signal in real time. And before the optical power is executed, it can include:
  • the appropriate DML modulation current and the second initial output temperature may be set according to a preset second extinction ratio threshold range and a preset ⁇ ⁇ range.
  • the preset range of ⁇ can be determined according to the actual application needs.
  • the 10G PON OLT emission wavelength standard is specified as 1575-1580nm
  • the standard SMF-28 fiber widely used in PON in this wavelength range has a dispersion coefficient of about 18ps/( Nm. km)
  • the typical transmission distance of PON networks is 20km.
  • the second initial output temperature of the first temperature control device may be set according to an empirical value obtained by a plurality of tests, or may be set by the following steps, for example, may include: monitoring an extinction ratio and light of the second optical signal Power; when the extinction ratio of the second optical signal exceeds a second extinction ratio threshold The upper limit of the range and the optical power of the second optical signal exceeds a lower limit of the second optical power threshold range, or the extinction ratio of the signal light exceeds a lower limit of the second extinction ratio threshold range and the optical power of the signal light exceeds An upper limit of the second optical power threshold range, the current operating temperature of the laser and/or the filter is adjusted, wherein the second extinction ratio threshold range is within a first extinction ratio threshold range, and the second optical power threshold range is first Within the optical power threshold range, returning to the step of monitoring the extinction ratio and optical power of the second optical signal; otherwise, ending the adjustment of the initial value of the operating temperature of the laser and/or filter.
  • the first extinction ratio threshold range and the first optical power threshold range may be obtained according to empirical values obtained by multiple experiments, or when the extinction ratio of the second optical signal does not exceed the preset second extinction ratio
  • the threshold value ranges and the optical power of the second optical signal does not exceed the preset second optical power threshold range
  • the first extinction ratio threshold range and the first optical power threshold range are calculated according to the detected extinction ratio and optical power.
  • the specific calculation method can be set according to the implementation requirements.
  • the allowable extinction ratio offset and the optical power offset can be preset, and the detected extinction ratio and optical power are offset according to the extinction ratio offset and the optical power.
  • the shift is amplified and reduced to obtain a first extinction ratio threshold range and a first optical power threshold range.
  • the extinction ratio and optical power of the second optical signal monitored by the embodiment of the present invention may be implemented by reading an extinction ratio and an optical power of the output of the monitoring photodiode, wherein the monitoring photodiode is configured to receive the The second optical signal transmitted by the filter passes through a beam of light reflected by the beam splitter, and outputs an extinction ratio and an optical power of the beam of the beam.
  • the operating temperature of the laser and/or the filter is adjusted to the target operating temperature to enable the filtering.
  • the step of monitoring the extinction ratio and the optical power of the second optical signal can be returned to maintain the wavelength alignment of the laser and the filter by real-time monitoring of the extinction ratio and the optical power.
  • the embodiment of the present invention may further include: if an extinction ratio of the second optical signal exceeds a lower limit of the first extinction ratio threshold range and an optical power of the second optical signal exceeds the first optical The lower limit of the power threshold range increases the bias current and modulation current of the DML.
  • the embodiment of the invention further provides a wavelength alignment device, which can be applied to an optical transmitter including a laser and a filter. As shown in FIG. 4, the apparatus may include:
  • the monitoring unit 410 is configured to monitor an extinction ratio of the second optical signal and an optical power of the second optical signal, where the second optical signal is an optical signal that is filtered by the first optical signal emitted by the laser and filtered by the filter. ;
  • the micro control unit 420 is configured to receive an extinction ratio and an optical power of the second optical signal fed back by the monitoring unit; when an extinction ratio of the second optical signal exceeds an upper limit of the first extinction ratio threshold range and the second optical signal The optical power exceeds a lower limit of the first optical power threshold range, or the extinction ratio of the second optical signal exceeds a lower limit of the first extinction ratio threshold range and the optical power of the second optical signal exceeds a first optical power threshold range
  • the upper limit adjusts the operating temperature of the laser and/or filter to the target operating temperature to achieve wavelength alignment of the filter with the laser.
  • the embodiment of the present invention aligns the wavelengths of the laser and/or the filter by adjusting the operating temperature of the laser, for example,
  • the micro control unit 420 configured to: when an extinction ratio of the second optical signal exceeds an upper limit of a first extinction ratio threshold range and an optical power of the second optical signal exceeds a lower limit of a first optical power threshold range, Adjusting an output temperature of the first temperature control device to a first target temperature, and causing the filter to achieve wavelength alignment with the laser, wherein the first temperature control device is configured to control an operating temperature of the laser, or a temperature control device for controlling an operating temperature of the laser and the filter; when an extinction ratio of the second optical signal exceeds a lower limit of the first extinction ratio threshold range and an optical power of the second optical signal exceeds a first optical power threshold An upper limit of the range, adjusting an output temperature of the first temperature control device to a second target temperature
  • the micro control unit 420 may be configured to preset a preset temperature of an output temperature of the second temperature control device to be an operating temperature of the laser, where the second temperature control device is configured to control an operating temperature of the laser. Adjusting the first temperature control device by the extinction ratio of the second optical signal exceeding a lower limit of the first extinction ratio threshold range and the optical power of the second optical signal exceeding an upper limit of the first optical power threshold range The output temperature is lowered to a third target temperature or the first temperature control device is turned off to cause the filter to be wavelength aligned with the laser, wherein the first temperature control device is used to control the operating temperature of the filter; The extinction ratio of the second optical signal exceeds the upper limit of the first extinction ratio threshold range and the optical power of the second optical signal exceeds the lower limit of the first optical power threshold range, and the output temperature of the first temperature control device is adjusted to rise to the fourth The target temperature causes the filter to be wavelength aligned with the laser.
  • the micro-control unit 420 can also be used to measure the initial value of the operating temperature of the laser and/or the filter.
  • the wavelength alignment device provided by the embodiment of the present invention may further include an initial unit: an initial bias current that can be used to set the DML; and a first initial output temperature of the first temperature control device to set the second optical signal.
  • the optical power reaches a maximum value; the modulation current of the DML and the second initial output temperature of the first temperature control device are set such that the frequency of the second optical signal is within a preset range and the extinction ratio of the second optical signal Within a preset second extinction ratio threshold range.
  • the monitoring unit 410 provided by the embodiment of the present invention can be used to read the extinction ratio and the optical power of the monitoring photodiode output, wherein the monitoring photodiode is configured to receive the second optical signal transmitted by the filter. An optical signal reflected by the beam splitter and outputting an extinction ratio and an optical power of the beam optical signal.
  • the micro control unit 420 can also be used to adjust the operating temperature of the laser and/or filter to a target operating temperature to cause the filter to After the laser achieves wavelength alignment, the trigger monitoring unit 410 continues the extinction ratio and optical power of the second optical signal.
  • the control unit 420 provided by the embodiment of the present invention may also be used for the extinction ratio of the second optical signal, if the DML is not aligned with the filter wavelength, and the extinction ratio becomes smaller and the optical power is also reduced.
  • Exceeding a lower limit of the first extinction ratio threshold range and light of the second optical signal The power exceeds the lower limit of the first optical power threshold range, increasing the bias current and modulation current of the DML.
  • the optical transmitter can include: a laser 501, a filter 503, and a wavelength aligned device 504 as described in an embodiment of the invention.
  • control unit of the wavelength-aligned device can be connected to the driving circuit 502a of the first temperature control device 502, and the first temperature control device 502 can be used only for controlling the operating temperature of the laser 501.
  • the optical transmitter shown in FIG. 5 may further include: a thermal resistance 505: for controlling heat transfer between the first temperature control device 502 and the DML 501.
  • the monitoring unit 504b of the wavelength-aligned device can be used to read the extinction ratio and optical power of the output of the monitor photodiode 507.
  • the monitoring photodiode 507 can be configured to receive an optical signal reflected by the second optical signal transmitted by the filter via the beam splitter 508, and output an extinction ratio and an optical power of the optical signal.
  • FIG. 6 is a schematic structural diagram of another possible implementation manner of an optical transmitter according to an embodiment of the present invention. As shown in FIG. 6, the optical transmitter can include: a laser 601, a filter 603, and a wavelength aligned device 604 as described in the embodiments of the present invention.
  • control unit of the wavelength-aligned device can be connected to the driving circuit 602a of the first temperature control device 602, and the first temperature control device 602 can be used to simultaneously control the operating temperatures of the laser 601 and the filter 603.
  • the optical transmitter shown in FIG. 6 may further include: thermal resistances 605a and 605b: for controlling heat transfer between the first temperature control device 602 and the DML 601 and the narrowband optical filter 603.
  • the monitoring unit 604b of the wavelength aligned device can be used to read the extinction ratio and optical power of the output of the monitor photodiode 607.
  • the monitoring photodiode 607 can be configured to receive a beam of light reflected by the second optical signal transmitted by the filter via the beam splitter 608, and output an extinction ratio and an optical power of the beam signal.
  • FIG. 7 is a schematic structural diagram of still another possible implementation manner of an optical transmitter according to an embodiment of the present invention. As shown in FIG. 7, the optical transmitter may include: a laser 701, filtering 703, and wavelength aligned device 704 as described in an embodiment of the invention.
  • the control unit of the wavelength-aligned device can be connected to the driving circuit 702a of the first temperature control device 702 and the driving circuit 706a of the second temperature control device 706.
  • the first temperature control device 702 can be used to control the operating temperature of the filter;
  • the second temperature control device 706 can be used to control the operating temperature of the laser 701.
  • the optical transmitter shown in FIG. 7 may further include: a thermal resistance 705a: for controlling heat transfer between the first temperature control device and the DML; and a thermal resistance 705b: for controlling the second temperature control device Heat transfer between the narrowband optical filter.
  • the monitoring unit 704b of the wavelength aligned device can be used to read the extinction ratio and optical power of the output of the monitor photodiode 707.
  • the monitor photodiode 707 can be configured to receive a beam of light reflected by the second optical signal transmitted by the filter via the beam splitter 708, and output an extinction ratio and an optical power of the beam signal.
  • the first optical signal emitted by the laser can enter the filter via the optical isolator and the collimating lens.
  • FIG. 8 it is a schematic structural diagram of an optical network system according to an embodiment of the present invention.
  • the optical network system may include: The terminal OLT 801 and the optical network unit 802, wherein the optical line terminal 801 and/or the optical network unit 802 comprise at least the optical transmitter 803 as described in the embodiment of the present invention.
  • embodiments of the present invention also provide a hardware configuration of a device for wavelength alignment.
  • At least one processor e.g., CPU, microcontroller MCU
  • at least one communication interface e.g., memory, and at least one communication bus
  • the processor is operative to execute executable modules stored in the memory, such as a computer program.
  • the memory may include a high speed random access memory (RAM: Random Access Memory), and may also include a non-volatile memory such as at least one disk saver.
  • RAM Random Access Memory
  • program instructions are stored in the memory, and the program instructions are executable by the processor, wherein the program instructions are used to perform the method of the embodiments of the present invention, for example, the method may include: monitoring an extinction ratio of the second optical signal And the optical power of the second optical signal, wherein the second optical signal is an optical signal that is filtered by the first optical signal emitted by the laser and filtered by the filter; The extinction ratio of the second optical signal exceeds an upper limit of the first extinction ratio threshold range and the optical power of the second optical signal exceeds a lower limit of the first optical power threshold range, or the extinction ratio of the second optical signal exceeds the first Extending the lower limit of the threshold range and the optical power of the second optical signal exceeds an upper limit of the first optical power threshold range, adjusting an operating temperature of the laser and/or the filter to a target operating temperature to implement the filter and the laser Wavelength alignment. It can be understood that other implementation manners of the method of the present invention executed by the program instructions are not described herein again.

Landscapes

  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Optics & Photonics (AREA)
  • Engineering & Computer Science (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Plasma & Fusion (AREA)
  • Semiconductor Lasers (AREA)

Abstract

一种波长对准的方法,包括:激光器发射第一光信号;所述第一光信号通过滤波器进行滤波后透射出第二光信号;监测所述第二光信号的消光比以及所述第二光信号的光功率;当所述第二光信号的消光比超出第一消光比阈值范围的上限且所述第二光信号的光功率超出第一光功率阈值范围的下限,或者,所述第二光信号的消光比超出第一消光比阈值范围的下限且所述第二光信号的光功率超出第一光功率阈值范围的上限,调节激光器和/或者滤波器的工作温度到目标工作温度,以使所述滤波器与激光器实现波长对准。相应地,本发明实施例还提供一种波长对准的装置、光发射机及光网络系统。

Description

一种波长对准的方法、 装置、 及光网络系统
技术领域
本发明涉及光纤网领域, 具体涉及一种波长对准的方法、 装置、 光发射 机以及光网络系统。
背景技术
随着用户对带宽需求的不断增长及光纤通信技术的日益成熟, 光纤接入 网逐渐成为宽带接入网的有力竟争者, 其中尤其以 PON ( Passive Optical Network, 无源光网络) 系统更具竟争力。
由于 DML ( Directly Modulated Laser, 直调激光器)在成本、 输出功率 方面具有明显优势, 因此, 人们考虑在 PON 系统的 OLT侧 (Optical Line Terminal, 光线路终端侧)光模块采用 DML实现。
但是, DML通过改变注入电流来调制半导体激光器的输出, 这种调制方 式会引起有源层折射率变化, 进而导致 DML与滤波器难以实现波长对准。 发明内容
本发明实施例提供一种波长对准的方法、 装置、 光发射机以及光网络系 统, 用于克服现有技术波长对准难度高的问题。
为了解决以上技术问题, 本发明实施例采取的技术方案是:
第一方面, 本发明实施例提供了一种波长对准的方法, 包括:
激光器发射第一光信号;
所述第一光信号通过滤波器进行滤波后透射出第二光信号;
监测所述第二光信号的消光比以及所述第二光信号的光功率;
当所述第二光信号的消光比超出第一消光比阈值范围的上限且所述第二 光信号的光功率超出第一光功率阈值范围的下限, 或者, 所述第二光信号的 消光比超出第一消光比阈值范围的下限且所述第二光信号的光功率超出第一 光功率阈值范围的上限, 调节激光器和 /或者滤波器的工作温度到目标工作温 度, 以使所述滤波器与激光器实现波长对准。
在第一方面的第一种可能的实现方式中, 所述激光器的工作温度由第一 温控装置控制, 或者所述激光器的工作温度和滤波器的工作温度共同由第一 温控装置控制; 所述当第二光信号的消光比超出第一消光比阈值范围的上限且第二光信 号的光功率超出第一光功率阈值范围的下限, 或者, 第二光信号的消光比超 出第一消光比阈值范围的下限且第二光信号的光功率超出第一光功率阈值范 围的上限, 调节激光器和 /或者滤波器的工作温度到目标工作温度具体包括: 当所述第二光信号的消光比超过第一消光比阈值范围的上限且所述第二 光信号的光功率超过第一光功率阈值范围的下限, 调节第一温控装置的输出 温度降低至第一目标温度, 使所述滤波器与激光器实现波长对准;
当所述第二光信号的消光比超过第一消光比阈值范围的下限且所述第二 光信号的光功率超过第一光功率阈值范围的上限, 调节第一温控装置的输出 温度升高至第二目标温度, 使所述滤波器与激光器实现波长对准。
在第一方面的第二种可能的实现方式中, 所述滤波器的工作温度由第一 温控装置控制, 所述激光器的工作温度由第二温控装置控制;
预先设置第二温控装置的输出温度为所述激光器的工作温度的预设上 限;
所述当第二光信号的消光比超出第一消光比阈值范围的上限且第二光信 号的光功率超出第一光功率阈值范围的下限, 或者, 第二光信号的消光比超 出第一消光比阈值范围的下限且第二光信号的光功率超出第一光功率阈值范 围的上限, 调节激光器和 /或者滤波器的工作温度到目标工作温度具体包括: 当所述第二光信号的消光比超过第一消光比阈值范围的下限且所述第二 光信号的光功率超过第一光功率阈值范围的上限, 调节第一温控装置的输出 温度降低至第三目标温度或者关闭第一温控装置, 使所述滤波器与激光器实 现波长对准;
当所述第二光信号的消光比超过第一消光比阈值范围的上限且所述第二 光信号的光功率超过第一光功率阈值范围的下限, 调节第一温控装置的输出 温度升高至第四目标温度, 使所述滤波器与激光器实现波长对准。
结合第一方面的第二种可能的实现方式, 在第三种可能的实现方式中, 在调节激光器和 /或者滤波器的工作温度的初值时, 测得距滤波器预设位置范 围内的初始环境温度;
监测距滤波器预设位置范围内的实时环境温度; 当实时环境温度比初始环境温度高时, 调节第一温控装置的输出温度升 高至第五目标温度, 使所述滤波器与激光器实现波长对准;
当实时环境温度比初始环境温度低时, 调节第一温控装置的输出温度降 低至第六目标温度, 或者关闭第一温控装置, 使所述滤波器与激光器实现波 长对准。
第二方面, 本发明实施例提供了一种波长对准的装置, 包括:
监测单元: 用于监测第二光信号的消光比以及第二光信号的光功率, 其 中, 所述第二光信号为激光器发射的第一光信号通过滤波器进行滤波后投射 出的光信号;
微控制单元: 用于接收监测单元反馈的第二光信号的消光比及光功率; 当所述第二光信号的消光比超出第一消光比阈值范围的上限且所述第二光信 号的光功率超出第一光功率阈值范围的下限, 或者, 所述第二光信号的消光 比超出第一消光比阈值范围的下限且所述第二光信号的光功率超出第一光功 率阈值范围的上限, 调节激光器和 /或者滤波器的工作温度到目标工作温度, 以使所述滤波器与激光器实现波长对准。
在第二方面的第一种可能的实现方式中, 所述微控制单元: 用于当所述 第二光信号的消光比超过第一消光比阈值范围的上限且所述第二光信号的光 功率超过第一光功率阈值范围的下限, 调节第一温控装置的输出温度降低至 第一目标温度, 使所述滤波器与激光器实现波长对准, 其中, 所述第一温控 装置用于控制激光器的工作温度, 或者, 所述第一温控装置用于控制激光器 和滤波器的工作温度; 当所述第二光信号的消光比超过第一消光比阈值范围 的下限且所述第二光信号的光功率超过第一光功率阈值范围的上限, 调节第 一温控装置的输出温度升高至第二目标温度, 使所述滤波器与激光器实现波 长对准。
在第二方面的第二种可能的实现方式中, 所述微控制单元: 用于预先设 置第二温控装置的输出温度为所述激光器的工作温度的预设上限, 其中所述 第二温控装置用于控制激光器的工作温度, 当所述第二光信号的消光比超过 第一消光比阈值范围的下限且所述第二光信号的光功率超过第一光功率阈值 范围的上限, 调节第一温控装置的输出温度降低至第三目标温度或者关闭第 一温控装置, 使所述滤波器与激光器实现波长对准, 其中, 所述第一温控装 置用于控制滤波器的工作温度; 当所述第二光信号的消光比超过第一消光比 阈值范围的上限且所述第二光信号的光功率超过第一光功率阈值范围的下 限, 调节第一温控装置的输出温度升高至第四目标温度, 使所述滤波器与激 光器实现波长对准。
结合第二方面的第二种可能的实现方式, 在第三种可能的实现方式中, 所述微控制单元: 还用于在调节激光器和 /或者滤波器的工作温度的初值时, 测得距滤波器预设位置范围内的初始环境温度; 监测距滤波器预设位置范围 内的实时环境温度; 当实时环境温度比初始环境温度高时, 调节第一温控装 置的输出温度升高至第五目标温度, 使所述滤波器与激光器实现波长对准; 当实时环境温度比初始环境温度低时, 调节第一温控装置的输出温度降低至 第六目标温度, 或者关闭第一温控装置, 使所述滤波器与激光器实现波长对 准。
第三方面, 本发明实施例提供了一种光发射机, 包括: 激光器、 滤波器、 及如本发明实施例所述的波长对准装置;
第四方面,本发明实施例提供了一种光网络系统, 包括:光线路终端 OLT 和光网络单元, 其中所述光线路终端和 /或光网络单元至少包括如本发明实施 例所述的光发射机。 通过上述方案, 本发明实施例提供了一种波长对准的方法、 装置、 光发 射机以及光网络系统, 本发明人发现, 当激光器发射的第一光信号通过滤波 器进行滤波后投射出的第二光信号的消光比及光功率保持在一定的阈值范围 内时, 激光器与滤波器处于波长对准的状态, 当激光器与滤波器波长未对准 时, 第二光信号的消光比及光功率将超出各自的阈值范围。 因此, 本发明提 出了通过监测第二光信号的消光比及光功率变化以使滤波器与激光器实现波 长对准, 即, 当所述第二光信号的消光比超出第一消光比阈值范围的上限且 所述第二光信号的光功率超出第一光功率阈值范围的下限, 或者, 所述第二 光信号的消光比超出第一消光比阈值范围的下限且所述第二光信号的光功率 超出第一光功率阈值范围的上限, 调节激光器和 /或者滤波器的工作温度到目 标工作温度, 以使所述滤波器与激光器实现波长对准, 克服了现有技术实现 难度高的问题。 附图说明 施例或现有技术描述中所需要使用的附图作筒单地介绍, 显而易见地, 下面 描述中的附图仅仅是本发明的一些实施例, 对于本领域普通技术人员来讲, 在不付出创造性劳动的前提下, 还可以根据这些附图获得其他的附图。
图 1是本发明实施例提供的方法的流程示意图之一;
图 2是本发明实施例提供的方法的流程示意图之二;
图 3是本发明实施例提供的方法的流程示意图之三;
图 4是本发明实施例提供的装置的结构示意图;
图 5是本发明实施例提供的光发射机的结构示意图之一;
图 6是本发明实施例提供的光发射机的结构示意图之二;
图 7是本发明实施例提供的光发射机的结构示意图之三;
图 8是本发明实施例提供的光网络系统的结构示意图。
具体实施方式
为了使本技术领域的人员更好地理解本发明实施例的方案, 下面结合附 图和实施方式对本发明实施例作进一步的详细说明。 参见图 1 , 示出了本发明实施例提供的波长对准的方法的流程图, 如图 所示, 本发明实施例可以包括:
S110、 激光器发射第一光信号;
S120、 所述第一光信号通过滤波器进行滤波后透射出第二光信号; 例如, 本发明实施例中的激光器可以是 DML (直调激光器), 滤波器可 以是窄带光滤波器。
S130、 监测所述第二光信号的消光比以及所述第二光信号的光功率; S140、 当所述第二光信号的消光比超出第一消光比阈值范围的上限且所 述第二光信号的光功率超出第一光功率阈值范围的下限, 或者, 所述第二光 信号的消光比超出第一消光比阈值范围的下限且所述第二光信号的光功率超 出第一光功率阈值范围的上限, 调节激光器和 /或者滤波器的工作温度到目标 工作温度, 以使所述滤波器与激光器实现波长对准。
应用本发明实施例可以通过筒单地对激光器发射的第一光信号通过滤波 器进行滤波后透射出的第二光信号的消光比及光功率的变化进行监测, 就能 够在所述第二光信号的消光比超出第一消光比阈值范围的上限且所述第二光 信号的光功率超出第一光功率阈值范围的下限, 或者, 所述第二光信号的消 光比超出第一消光比阈值范围的下限且所述第二光信号的光功率超出第一光 功率阈值范围的上限时确定激光器与滤波器处于波长非对准状态, 进而通过 调节激光器和 /或者滤波器的工作温度到目标工作温度使所述滤波器与激光 器实现波长对准。 该波长对准的方法筒单、 成本低、 易于实施, 可以使基于 DML的光发射机在实际中得以应用。 在本发明实施例中, 根据激光器发射的第一光信号的波长与滤波器的透 射光谱的位置随温度变化相对位置也相应发生变化的原理, 通过调节激光器 和 /或者滤波器的工作温度到目标工作温度, 达到激光器与滤波器波长对准的 状态。 需要说明的是, 所述目标工作温度在不同实现方式下可能不同。 如下 述各实施例中, 该目标工作温度可以包括第一目标温度、 第二目标温度、 第 三目标温度、 第四目标温度、 第五目标温度、 或第六目标温度。 下面, 通过 几种可能的调节激光器和 /或者光滤波器的工作温度的实现方式, 对本发明实 施例进行详细说明。
参见图 2, 示出了本发明实施例提供的波长对准的方法的一个可能的实 现方式的流程图。 在该实施例中, 可以如图 5所示仅利用第一温控装置调节 所述激光器的工作温度、 或者, 可以如图 6所示利用第一温控装置同时调节 所述激光器的工作温度和滤波器的工作温度。该实施例提供的方法可以包括: S210、 激光器发射第一光信号;
S220、 所述第一光信号通过滤波器进行滤波后透射出第二光信号; S230、 监测所述第二光信号的消光比以及所述第二光信号的光功率; S240、 当所述第二光信号的消光比超过第一消光比阈值范围的上限且所 述第二光信号的光功率超过第一光功率阈值范围的下限, 调节第一温控装置 的输出温度降低至第一目标温度, 使所述滤波器与激光器实现波长对准;
S241、 当所述第二光信号的消光比超过第一消光比阈值范围的下限且所 述第二光信号的光功率超过第一光功率阈值范围的上限, 调节第一温控装置 的输出温度升高至第二目标温度, 使所述滤波器与激光器实现波长对准。
需要说明的是, 在本发明实施例中, 调节第一温控装置的输出温度降低 至第一目标温度, 或者调节第一温控装置的输出温度升高至第二目标温度, 该第一目标温度、 第二目标温度可以根据所监测到的消光比超出第一消光比 阈值范围的量、 及所监测到的光功率超出第一光功率阈值范围的量, 根据一 定算法计算获得, 或者逐步以预设最小调整量调节第一温控装置的输出温度 升高或者降低地同时监测输出温度变化之后的消光比及光功率, 当消光比及 光功率在所述第一消光比阈值范围内、 第一光功率阈值范围内, 则可以确定 到达第一目标温度或者第二目标温度。 因此, 调节第一温控装置的输出温度 降低至第一目标温度或者升高至第二目标温度的具体实现方式可以根据实施 需要设定, 在本发明中并不进行限制。
可以理解的是, 在第一温控装置仅用于控制激光器的工作温度时, 由于 滤波器无需与激光器共享第一温控装置, 滤波器无需制冷、 可外置, 因此, 在实际应用中更灵活。 另外, 为了使激光发射的第一光信号的波长与滤波器 透射光谱的相对位置可以快速发生变化、 快速准确的实现波长对准, 可以采 用温度稳定性好的二氧化硅材质的窄带光滤波器,其典型温度系数为 O.Olnm/ °C , 工作温度范围 0 ~ 70°C内, 波长漂移最大 0.7nm, 符合快速准确实现波长 对准的需要。
现方式的流程图。 在该实施例中, 可以如图 7所示利用第一温控装置调节滤 波器的工作温度, 还可以利用第二温控装置调节激光器的工作温度, 并预先 设置该第二温控装置的输出温度为激光器的工作温度的预设上限。 该实施例 提供的方法可以包括:
S310、 激光器发射第一光信号; S320、 所述第一光信号通过滤波器进行滤波后透射出第二光信号; S330、 监测所述第二光信号的消光比以及所述第二光信号的光功率;; S340、 当所述第二光信号的消光比超过第一消光比阈值范围的下限且所 述第二光信号的光功率超过第一光功率阈值范围的上限, 调节第一温控装置 的输出温度降低至第三目标温度或者关闭第一温控装置, 使所述滤波器与激 光器实现波长对准;
S341、 当所述第二光信号的消光比超过第一消光比阈值范围的上限且所 述第二光信号的光功率超过第一光功率阈值范围的下限, 调节第一温控装置 的输出温度升高至第四目标温度, 使所述滤波器与激光器实现波长对准。
在该实施例中, 分离了激光器与滤波器的温控平台, 即, 采用第一温控 装置控制滤波器的工作温度, 采用第二温控装置控制激光器的工作温度。 正 是由于采用了分离的温控平台, 第二温控装置的初始输出温度预先设置为激 光器的工作温度的预设上限(如 50 ~ 70°C ), 使激光器发射的激光的波长漂 移较小, 满足标准要求, 因此, 只通过调节第一温控装置的输出温度控制滤 波器的工作温度, 即可实现波长对准。 而又由于滤波器没有额外的加热源, 降低或取消了降温的要求, 相较于之前的实施例进一步降低了功率损耗。
在该实施例中, 由于预先设置第二温控装置的输出温度为激光器的工作 温度的预设上限, 因此, 第二温控装置可以采用只具有加热功能的加热器, 第一温控装置可以采用热电制冷器(TEC ), 或者, 当采取关闭第一温控装置 的实现方式时, 第一温控装置可以采用只具有加热功能的加热器。
考虑到除了第一温控装置以外, 窄带光滤波器没有额外的加热源, 环境 温度的变化也会带来激光器发射的第一光信号的波长与滤波器光谱的相对位 置的变化。 因此, 为了弥补环境温度变化带来的影响, 可以当环境温度上升 时, 控制第一温控装置升温, 使滤波器的光谱有更快波长红移速度, 当环境 温度下降时, 控制第一温控装置降温或者关闭第一温控装置, 使滤波器的光 语有更快波长蓝移速度, 进而保证 DML与窄带光滤波器的波长对准。 具体 地, 可以包括:
在调节激光器和 /或者滤波器的工作温度的初值时, 测得距滤波器预设位 置范围内的初始环境温度;
监测距滤波器预设位置范围内的实时环境温度;
当实时环境温度比初始环境温度高时, 调节第一温控装置的输出温度升 高至第五目标温度, 使所述滤波器与激光器实现波长对准;
当实时环境温度比初始环境温度低时, 调节第一温控装置的输出温度降 低至第六目标温度, 或者关闭第一温控装置, 使所述滤波器与激光器实现波 长对准。 另外, 为了能够快速实现波长对准及减少啁啾, 本发明实施例以 DML (直 调激光器) 为例, 提出如下的初始化过程, 例如, 该初始化过程可以在实时 监测第二光信号的消光比及光功率之前执行, 可以包括:
设置 DML (直调激光器) 的初始偏置电流;
设置第一温控装置的第一初始输出温度, 以使第二光信号的光功率达到 最大值;
设置 DML 的调制电流及第一温控装置的第二初始输出温度, 以使第二 光信号的频率啁啾在预设的啁啾范围内且第二光信号的消光比在预设的第二 消光比阈值范围内。
需要说明的是, 其中可以根据预设的第二消光比阈值范围、 及预设的啁 啾范围设置合适的 DML 的调制电流及第二初始输出温度。 其中预设的啁啾 范围可以根据实际应用需要确定, 例如, 10G PON OLT发射波长标准规定为 1575- 1580nm, 在此波长范围内 PON中广泛使用的标准 SMF-28光纤具有色 散系数约 18ps/(nm . km) , 而 PON网络典型的传输距离为 20km。 在 NRZ调 制系统中保证有限的色散代价条件下通常最大的色散展宽量(啁啾) Δ Τ应 小于等于比特位宽的一半, 即 lOGbps对应为 0.5* 100ps。 因此, 在 10G PON 下行传输中需满足 A T=18ps/(nm · km) * 20km*△ λ < 50ps , 其中△ λ为发射 激光器的 2 δ线宽。
其中, 设置第一温控装置的第二初始输出温度可以根据多次试验得到的 经验值进行设置, 也可通过以下步骤设置, 例如, 可以包括: 监测所述第二 光信号的消光比及光功率; 当所述第二光信号的消光比超出第二消光比阈值 范围的上限且所述第二光信号的光功率超出第二光功率阈值范围的下限, 或 者, 所述信号光的消光比超出第二消光比阈值范围的下限且所述信号光的光 功率超出第二光功率阈值范围的上限, 调节激光器和 /或者滤波器的当前工作 温度, 其中所述第二消光比阈值范围在第一消光比阈值范围内, 所述第二光 功率阈值范围在第一光功率阈值范围内, 返回到监测所述第二光信号的消光 比及光功率的步骤; 否则, 结束对激光器和 /或者滤波器的工作温度的初值的 调节。
需要说明的是, 其中第一消光比阈值范围及第一光功率阈值范围, 可以 根据多次试验得到的经验值获得, 也可以当第二光信号的消光比未超出预设 的第二消光比阈值范围且所述第二光信号的光功率未超出预设的第二光功率 阈值范围时, 根据监测到的消光比及光功率, 计算出第一消光比阈值范围及 第一光功率阈值范围。 具体计算的方法可以根据实施需要设定, 例如, 可以 预先设定允许的消光比偏移量、 光功率偏移量, 将监测到的消光比及光功率 按照消光比偏移量、 光功率偏移量放大、 缩小, 从而得到第一消光比阈值范 围及第一光功率阈值范围。
还需要说明的是, 本发明实施例所述监测第二光信号的消光比及光功率 可以通过读取监控光电二极管输出的消光比及光功率实现, 其中所述监控光 电二极管用于接收所述滤波器透射出的第二光信号经由分光片反射出的一束 光信号、 并输出该束光信号的消光比及光功率。
另外, 在实际应用中, 需要对激光器与滤波器的波长是否对准进行实时 监测以保持对准状态, 因此, 在调节激光器和 /或者滤波器的工作温度到目标 工作温度, 以使所述滤波器与激光器实现波长对准之后, 还可以重新返回到 监测第二光信号的消光比及光功率的步骤, 从而通过对消光比及光功率的实 时监测以使激光器与滤波器保持波长对准状态。
考虑到激光器与滤波器波长未对准比较严重时, 可能出现消光比变小且 光功率也变小的情况, 此时需通过增加激光器如 DML (直调激光器)的偏置 电流及调制电流以调整激光器发射的第一光信号的波长与滤波器透射光谱相 对位置的变化。 因此, 本发明实施例还可以包括: 如果所述第二光信号的消 光比超过第一消光比阈值范围的下限且所述第二光信号的光功率超过第一光 功率阈值范围的下限, 增大 DML的偏置电流及调制电流。 对应上述方法实施例, 本发明实施例还提供一种波长对准的装置, 该装 置可以应用于包括激光器与滤波器的光发射机。 如图 4所示, 该装置可以包 括:
监测单元 410: 用于监测第二光信号的消光比以及第二光信号的光功率, 其中, 所述第二光信号为激光器发射的第一光信号通过滤波器进行滤波后投 射出的光信号;
微控制单元 420: 用于接收监测单元反馈的第二光信号的消光比及光功 率; 当所述第二光信号的消光比超出第一消光比阈值范围的上限且所述第二 光信号的光功率超出第一光功率阈值范围的下限, 或者, 所述第二光信号的 消光比超出第一消光比阈值范围的下限且所述第二光信号的光功率超出第一 光功率阈值范围的上限, 调节激光器和 /或者滤波器的工作温度到目标工作温 度, 以使所述滤波器与激光器实现波长对准。
根据激光器发射的第二光信号的波长与滤波器的透射光谱的相对位置随 温度变化而变化的原理,本发明实施例通过调整激光器和 /或者滤波器的工作 温度使二者波长对准, 例如, 所述微控制单元 420: 可以用于当所述第二光 信号的消光比超过第一消光比阈值范围的上限且所述第二光信号的光功率超 过第一光功率阈值范围的下限, 调节第一温控装置的输出温度降低至第一目 标温度, 使所述滤波器与激光器实现波长对准, 其中, 所述第一温控装置用 于控制激光器的工作温度, 或者, 所述第一温控装置用于控制激光器和滤波 器的工作温度; 当所述第二光信号的消光比超过第一消光比阈值范围的下限 且所述第二光信号的光功率超过第一光功率阈值范围的上限, 调节第一温控 装置的输出温度升高至第二目标温度,使所述滤波器与激光器实现波长对准。
或者,
所述微控制单元 420: 可以用于预先设置第二温控装置的输出温度为所 述激光器的工作温度的预设上限, 其中所述第二温控装置用于控制激光器的 工作温度, 当所述第二光信号的消光比超过第一消光比阈值范围的下限且所 述第二光信号的光功率超过第一光功率阈值范围的上限, 调节第一温控装置 的输出温度降低至第三目标温度或者关闭第一温控装置, 使所述滤波器与激 光器实现波长对准, 其中, 所述第一温控装置用于控制滤波器的工作温度; 当所述第二光信号的消光比超过第一消光比阈值范围的上限且所述第二光信 号的光功率超过第一光功率阈值范围的下限, 调节第一温控装置的输出温度 升高至第四目标温度, 使所述滤波器与激光器实现波长对准。
在该实施例中, 为了弥补环境温度对窄带光滤波器带来的影响, 其中所 述微控制单元 420: 还可以用于在调节激光器和 /或者滤波器的工作温度的初 值时, 测得距滤波器预设位置范围内的初始环境温度; 监测距滤波器预设位 置范围内的实时环境温度; 当实时环境温度比初始环境温度高时, 调节第一 温控装置的输出温度升高至第五目标温度, 使所述滤波器与激光器实现波长 对准; 当实时环境温度比初始环境温度低时, 调节第一温控装置的输出温度 降低至第六目标温度, 或者关闭第一温控装置, 使所述滤波器与激光器实现 波长对准。
另外, 本发明实施例提供的波长对准的装置还可以包括初始单元: 可以 用于设置 DML 的初始偏置电流; 设置第一温控装置的第一初始输出温度, 以使第二光信号的光功率达到最大值; 设置 DML 的调制电流及第一温控装 置的第二初始输出温度, 以使第二光信号的频率啁啾在预设的啁啾范围内且 第二光信号的消光比在预设的第二消光比阈值范围内。
需要说明的是, 本发明实施例提供的监测单元 410: 可以用于读取监控 光电二极管输出的消光比及光功率, 其中, 监控光电二极管用于接收所述滤 波器透射出的第二光信号经由分光片反射出的一束光信号、 并输出该束光信 号的消光比及光功率。
考虑到实时对激光器与滤波器波长对准锁定的需要, 其中所述微控制单 元 420:还可以用于在调节激光器和 /或者滤波器的工作温度到目标工作温度, 以使所述滤波器与激光器实现波长对准之后, 触发监测单元 410继续第二光 信号的消光比及光功率。
针对 DML与滤波器波长未对准比较严重可能出现消光比变小且光功率 也变小的情况, 本发明实施例提供的 控制单元 420: 还可以用于如果所述 第二光信号的消光比超过第一消光比阈值范围的下限且所述第二光信号的光 功率超过第一光功率阈值范围的下限, 增大 DML的偏置电流及调制电流。 下面, 再对本发明实施例提供的一种光发射机进行详细介绍:
例如, 参见图 5 , 为本发明实施例提供的光发射机的一种可能的实现方 式的结构示意图。如图所示, 该光发射机可以包括: 激光器 501、滤波器 503、 及如本发明实施例所述的波长对准的装置 504。
其中, 所述波长对准的装置的 控制单元可以与第一温控装置 502的驱 动电路 502a连接,第一温控装置 502可以仅用于控制激光器 501的工作温度。
其中, 图 5所示的光发射机还可以包括: 热阻 505: 用于控制所述第一 温控装置 502与 DML501之间的热量传递。 其中波长对准的装置的监测单元 504b可以用于读取监控光电二极管 507输出的消光比及光功率。 其中所述监 控光电二极管 507可以用于接收所述滤波器透射出的第二光信号经由分光片 508反射出的一束光信号、 并输出该束光信号的消光比及光功率。 例如, 参见图 6, 为本发明实施例提供的光发射机的另一种可能的实现 方式的结构示意图。 如图 6所示, 该光发射机可以包括: 激光器 601、 滤波 器 603、 及如本发明实施例所述的波长对准的装置 604。
其中, 所述波长对准的装置的 控制单元可以与第一温控装置 602的驱 动电路 602a连接,第一温控装置 602可以用于同时控制激光器 601和滤波器 603的工作温度。
其中, 图 6所示的光发射机还可以包括: 热阻 605a及 605b: 用于控制所 述第一温控装置 602与 DML601、 与窄带光滤波器 603之间的热量传递。 波 长对准的装置的监测单元 604b可以用于读取监控光电二极管 607输出的消光 比及光功率。 所述监控光电二极管 607可以用于接收所述滤波器透射出的第 二光信号经由分光片 608反射出的一束光信号、 并输出该束光信号的消光比 及光功率。 例如, 参见图 7 , 为本发明实施例提供的光发射机的再一种可能的实现 方式的结构示意图。 如图 7所示, 该光发射机可以包括: 激光器 701、 滤波 器 703、 及如本发明实施例所述的波长对准的装置 704。
其中, 所述波长对准的装置的 控制单元可以与第一温控装置 702的驱 动电路 702a及与第二温控装置 706的驱动电路 706a连接。第一温控装置 702: 可以用于控制滤波器的工作温度; 第二温控装置 706: 可以用于控制激光器 701的工作温度。
其中, 图 7所示的光发射机还可以包括: 热阻 705a: 用于控制所述第一 温控装置与 DML之间的热量传递; 热阻 705b: 用于控制所述第二温控装置 与窄带光滤波器之间的热量传递。所述波长对准的装置的监测单元 704b可以 用于读取监控光电二极管 707输出的消光比及光功率。 所述监控光电二极管 707:可以用于接收所述滤波器透射出的第二光信号经由分光片 708反射出的 一束光信号、 并输出该束光信号的消光比及光功率。
并且, 在本发明实施例提供的光发射机中, 激光器发射的第一光信号可 以经由光隔离器及准直透镜进入滤波器。 下面, 再对本发明实施例提供的一种光网络系统进行详细介绍: 参见图 8 , 为本发明实施例提供的光网络系统的结构示意图, 如图所示, 该光网络系统可以包括: 光线路终端 OLT801和光网络单元 802, 其中所述光 线路终端 801和 /或光网络单元 802至少包括如本发明实施例所述的光发射机 803。
进一步地, 本发明实施例还提供了波长对准的装置的硬件构成。 可包括 至少一个处理器(例如 CPU、 微控制器 MCU ), 至少一个通信接口, 存储器, 和至少一个通信总线, 用于实现单元、 设备之间的连接通信。 处理器用于执 行存储器中存储的可执行模块, 例如计算机程序。 存储器可能包含高速随机 存取存储器(RAM: Random Access Memory ), 也可能还包括非不稳定的存 者器( non- volatile memory ), 例如至少一个磁盘存者器。
在一些实施方式中, 存储器中存储了程序指令, 程序指令可以被处理器 执行, 其中, 程序指令用于执行本发明实施例所述的方法, 例如, 可以包括: 监测第二光信号的消光比以及第二光信号的光功率, 其中, 所述第二光信号 为激光器发射的第一光信号通过滤波器进行滤波后投射出的光信号; 当所述 第二光信号的消光比超出第一消光比阈值范围的上限且所述第二光信号的光 功率超出第一光功率阈值范围的下限, 或者, 所述第二光信号的消光比超出 第一消光比阈值范围的下限且所述第二光信号的光功率超出第一光功率阈值 范围的上限, 调节激光器和 /或者滤波器的工作温度到目标工作温度, 以使所 述滤波器与激光器实现波长对准。 可以理解的是, 所述程序指令执行的本发 的方法的其他实现方式, 这里不再赘述。
通过以上的实施方式的描述可知, 本领域的技术人员可以清楚地了解到 上述实施例方法中的全部或部分步骤可借助软件加必需的通用硬件平台的方 式来实现。 基于这样的理解, 本发明的技术方案本质上或者说对现有技术做 出贡献的部分可以以软件产品的形式体现出来, 该计算机软件产品可以存储 在存储介质中, 如 ROM/RAM、 磁碟、 光盘等, 包括若干指令用以使得一台 计算机设备(可以是个人计算机, 服务器, 或者诸如媒体网关等网络通信设 备, 等等)执行本发明各个实施例或者实施例的某些部分所述的方法。
需要说明的是, 本说明书中的各个实施例均采用递进的方式描述, 各个 实施例之间相同相似的部分互相参见即可, 每个实施例重点说明的都是与其 他实施例的不同之处。 尤其, 对于设备及系统实施例而言, 由于其基本相似 于方法实施例, 所以描述得比较筒单, 相关之处参见方法实施例的部分说明 即可。 以上所描述的设备及系统实施例仅仅是示意性的, 其中作为分离部件 说明的单元可以是或者也可以不是物理上分开的, 作为单元显示的部件可以 是或者也可以不是物理单元, 即可以位于一个地方, 或者也可以分布到多个 网络单元上。 可以根据实际的需要选择其中的部分或者全部模块来实现本实 施例方案的目的。 本领域普通技术人员在不付出创造性劳动的情况下, 即可 以理解并实施。
以上所述仅为本发明的较佳实施例而已, 并非用于限定本发明的保护范 围。 凡在本发明的精神和原则之内所作的任何修改、 等同替换、 改进等, 均 包含在本发明的保护范围内。

Claims

权 利 要 求
1、 一种波长对准的方法, 其特征在于, 包括:
激光器发射第一光信号;
所述第一光信号通过滤波器进行滤波后透射出第二光信号;
监测所述第二光信号的消光比以及所述第二光信号的光功率;
当所述第二光信号的消光比超出第一消光比阈值范围的上限且所述第二 光信号的光功率超出第一光功率阈值范围的下限, 或者, 所述第二光信号的 消光比超出第一消光比阈值范围的下限且所述第二光信号的光功率超出第一 光功率阈值范围的上限, 调节激光器和 /或者滤波器的工作温度到目标工作温 度, 以使所述滤波器与激光器实现波长对准。
2、 根据权利要求 1所述的方法, 其特征在于, 所述激光器的工作温度由 第一温控装置控制, 或者所述激光器的工作温度和滤波器的工作温度共同由 第一温控装置控制;
所述当第二光信号的消光比超出第一消光比阈值范围的上限且第二光信 号的光功率超出第一光功率阈值范围的下限, 或者, 第二光信号的消光比超 出第一消光比阈值范围的下限且第二光信号的光功率超出第一光功率阈值范 围的上限, 调节激光器和 /或者滤波器的工作温度到目标工作温度具体包括: 当所述第二光信号的消光比超过第一消光比阈值范围的上限且所述第二 光信号的光功率超过第一光功率阈值范围的下限, 调节第一温控装置的输出 温度降低至第一目标温度, 使所述滤波器与激光器实现波长对准;
当所述第二光信号的消光比超过第一消光比阈值范围的下限且所述第二 光信号的光功率超过第一光功率阈值范围的上限, 调节第一温控装置的输出 温度升高至第二目标温度, 使所述滤波器与激光器实现波长对准。
3、 根据权利要求 1所述的方法, 其特征在于, 所述滤波器的工作温度由 第一温控装置控制, 所述激光器的工作温度由第二温控装置控制;
预先设置第二温控装置的输出温度为所述激光器的工作温度的预设上 限;
所述当第二光信号的消光比超出第一消光比阈值范围的上限且第二光信 号的光功率超出第一光功率阈值范围的下限, 或者, 第二光信号的消光比超 出第一消光比阈值范围的下限且第二光信号的光功率超出第一光功率阈值范 围的上限, 调节激光器和 /或者滤波器的工作温度到目标工作温度具体包括: 当所述第二光信号的消光比超过第一消光比阈值范围的下限且所述第二 光信号的光功率超过第一光功率阈值范围的上限, 调节第一温控装置的输出 温度降低至第三目标温度或者关闭第一温控装置, 使所述滤波器与激光器实 现波长对准;
当所述第二光信号的消光比超过第一消光比阈值范围的上限且所述第二 光信号的光功率超过第一光功率阈值范围的下限, 调节第一温控装置的输出 温度升高至第四目标温度, 使所述滤波器与激光器实现波长对准。
4、 根据权利要求 3所述的方法, 其特征在于, 还包括:
在调节激光器和 /或者滤波器的工作温度的初值时, 测得距滤波器预设位 置范围内的初始环境温度;
监测距滤波器预设位置范围内的实时环境温度;
当实时环境温度比初始环境温度高时, 调节第一温控装置的输出温度升 高至第五目标温度, 使所述滤波器与激光器实现波长对准;
当实时环境温度比初始环境温度低时, 调节第一温控装置的输出温度降 低至第六目标温度, 或者关闭第一温控装置, 使所述滤波器与激光器实现波 长对准。
5、 一种波长对准的装置, 其特征在于, 包括:
监测单元: 用于监测第二光信号的消光比以及第二光信号的光功率, 其 中, 所述第二光信号为激光器发射的第一光信号通过滤波器进行滤波后投射 出的光信号;
微控制单元: 用于接收监测单元反馈的第二光信号的消光比及光功率; 当所述第二光信号的消光比超出第一消光比阈值范围的上限且所述第二光信 号的光功率超出第一光功率阈值范围的下限, 或者, 所述第二光信号的消光 比超出第一消光比阈值范围的下限且所述第二光信号的光功率超出第一光功 率阈值范围的上限, 调节激光器和 /或者滤波器的工作温度到目标工作温度, 以使所述滤波器与激光器实现波长对准。
6、 根据权利要求 5所述的装置, 其特征在于, 所述微控制单元: 用于当 所述第二光信号的消光比超过第一消光比阈值范围的上限且所述第二光信号 的光功率超过第一光功率阈值范围的下限, 调节第一温控装置的输出温度降 低至第一目标温度, 使所述滤波器与激光器实现波长对准, 其中, 所述第一 温控装置用于控制激光器的工作温度, 或者, 所述第一温控装置用于控制激 光器和滤波器的工作温度; 当所述第二光信号的消光比超过第一消光比阈值 范围的下限且所述第二光信号的光功率超过第一光功率阈值范围的上限, 调 节第一温控装置的输出温度升高至第二目标温度, 使所述滤波器与激光器实 现波长对准。
7、 根据权利要求 5所述的装置, 其特征在于, 所述微控制单元: 用于预 先设置第二温控装置的输出温度为所述激光器的工作温度的预设上限, 其中 所述第二温控装置用于控制激光器的工作温度, 当所述第二光信号的消光比 超过第一消光比阈值范围的下限且所述第二光信号的光功率超过第一光功率 阈值范围的上限, 调节第一温控装置的输出温度降低至第三目标温度或者关 闭第一温控装置, 使所述滤波器与激光器实现波长对准, 其中, 所述第一温 控装置用于控制滤波器的工作温度; 当所述第二光信号的消光比超过第一消 光比阈值范围的上限且所述第二光信号的光功率超过第一光功率阈值范围的 下限, 调节第一温控装置的输出温度升高至第四目标温度, 使所述滤波器与 激光器实现波长对准。
8、 根据权利要求 7所述的装置, 其特征在于, 所述微控制单元: 还用于 在调节激光器和 /或者滤波器的工作温度的初值时, 测得距滤波器预设位置范 围内的初始环境温度; 监测距滤波器预设位置范围内的实时环境温度; 当实 时环境温度比初始环境温度高时, 调节第一温控装置的输出温度升高至第五 目标温度, 使所述滤波器与激光器实现波长对准; 当实时环境温度比初始环 境温度低时, 调节第一温控装置的输出温度降低至第六目标温度, 或者关闭 第一温控装置, 使所述滤波器与激光器实现波长对准。
9、 一种光发射机, 其特征在于, 包括: 激光器、 滤波器、 及如权利要求 5-8任意一项所述的波长对准装置。
10、 一种光网络系统, 包括: 光线路终端 OLT和光网络单元, 其中所述 光线路终端和 /或光网络单元至少包括如权利要求 9所述的光发射机。
PCT/CN2013/079386 2013-07-15 2013-07-15 一种波长对准的方法、装置、及光网络系统 WO2015006902A1 (zh)

Priority Applications (4)

Application Number Priority Date Filing Date Title
PCT/CN2013/079386 WO2015006902A1 (zh) 2013-07-15 2013-07-15 一种波长对准的方法、装置、及光网络系统
CN201380001286.9A CN103703700B (zh) 2013-07-15 2013-07-15 一种波长对准的方法、装置、及光网络系统
EP13889653.5A EP3016218A4 (en) 2013-07-15 2013-07-15 WAVE LENGTH METHOD AND DEVICE AND OPTICAL NETWORK SYSTEM
US14/996,023 US20160134079A1 (en) 2013-07-15 2016-01-14 Wavelength alignment method and apparatus, and optical network system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2013/079386 WO2015006902A1 (zh) 2013-07-15 2013-07-15 一种波长对准的方法、装置、及光网络系统

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US14/996,023 Continuation US20160134079A1 (en) 2013-07-15 2016-01-14 Wavelength alignment method and apparatus, and optical network system

Publications (1)

Publication Number Publication Date
WO2015006902A1 true WO2015006902A1 (zh) 2015-01-22

Family

ID=50363926

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2013/079386 WO2015006902A1 (zh) 2013-07-15 2013-07-15 一种波长对准的方法、装置、及光网络系统

Country Status (4)

Country Link
US (1) US20160134079A1 (zh)
EP (1) EP3016218A4 (zh)
CN (1) CN103703700B (zh)
WO (1) WO2015006902A1 (zh)

Families Citing this family (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015184593A1 (zh) * 2014-06-04 2015-12-10 华为技术有限公司 发射机和用于发射光信号的方法
WO2016000183A1 (zh) * 2014-06-30 2016-01-07 华为技术有限公司 激光器的波长对准方法和装置、onu、olt和pon系统
CN105511029B (zh) * 2014-09-25 2019-06-28 青岛海信宽带多媒体技术有限公司 一种光模块及光模块中激光器波长偏移的调整方法、装置
CN105628014B (zh) * 2015-12-28 2019-08-16 上海珍岛信息技术有限公司 一种光源的启动方法及系统
CN105977782B (zh) * 2016-06-28 2019-04-23 武汉华工正源光子技术有限公司 一种光模块消光比的温度补偿方法
CN106371177B (zh) * 2016-10-17 2018-04-03 青岛海信宽带多媒体技术有限公司 一种光收发组件的组装方法
WO2019084920A1 (zh) * 2017-11-03 2019-05-09 华为技术有限公司 光发射次模块和光模块
CN112585828B (zh) * 2018-06-28 2024-01-09 索尔思光电股份有限公司 包含倾斜或分级通带滤波器的光发射器,及其制造和使用方法
US10797467B2 (en) * 2018-10-25 2020-10-06 Adtran, Inc. Tuning a multi-channel optical transmission system
CN110445007B (zh) * 2019-07-10 2020-06-02 深圳市迅特通信技术有限公司 激光器密集波分复用稳定波长控制的方法及装置
US10979141B1 (en) * 2019-10-11 2021-04-13 Nokia Technologies Oy Optical network unit compliance detection
CN111865427B (zh) * 2020-07-20 2022-03-11 成都优博创通信技术有限公司 一种波长对准方法、装置、发射器及光网络系统
CN111865426B (zh) * 2020-07-20 2022-04-12 成都优博创通信技术有限公司 一种光谱对准方法、装置、发射机及光网络系统
CN112671469B (zh) * 2020-12-17 2021-08-17 深圳市迅特通信技术股份有限公司 基于dml的波长控制方法、装置、系统及存储介质
US11835760B1 (en) * 2022-06-17 2023-12-05 Taiwan Semiconductor Manufacturing Company Ltd. Calibration system for wavelength-division multiplexing, wavelength-division multiplexing system, and calibrating method for wavelength-division multiplexing

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101465515A (zh) * 2008-12-26 2009-06-24 中兴通讯股份有限公司 一种基于啁啾管理激光器的调试装置和方法
US20100008662A1 (en) * 2008-07-14 2010-01-14 Bradbeer Peter F Method and system for closed loop control of an optical link
US20120020381A1 (en) * 2010-07-21 2012-01-26 Fujitsu Limited Optical transmission module and controlling method for optical transmission module
CN103078249A (zh) * 2013-01-06 2013-05-01 青岛海信宽带多媒体技术有限公司 生成光模块温度查找表的方法及装置

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4796996A (en) * 1987-08-14 1989-01-10 American Telephone And Telegraph Company, At&T Bell Laboratories Laser temperature modulation and detection method
US6940889B2 (en) * 2001-03-15 2005-09-06 Lucent Technologies Inc. Optical pulse source for long haul optical communication systems
US6862302B2 (en) * 2002-02-12 2005-03-01 Finisar Corporation Maintaining desirable performance of optical emitters over temperature variations
US7035300B2 (en) * 2002-11-05 2006-04-25 Finisar Corporation Calibration of a multi-channel optoelectronic module with integrated temperature control
CA2475850A1 (en) * 2003-01-08 2003-07-29 Ceyx Technologies, Inc. Apparatus and method for measurement of dynamic laser signals
US7321606B2 (en) * 2003-10-09 2008-01-22 National Semiconductor Corporation Laser trim and compensation methodology for passively aligning optical transmitter
US20070116076A1 (en) * 2005-11-21 2007-05-24 Frank Wang Controlling optical power and extincation ratio of a semiconductor laser
US7512166B2 (en) * 2006-12-01 2009-03-31 Raybit Systems Apparatus and method for controlling optical power and extinction ratio
US7962044B2 (en) * 2007-02-02 2011-06-14 Finisar Corporation Temperature stabilizing packaging for optoelectronic components in a transmitter module
JP5109566B2 (ja) * 2007-10-10 2012-12-26 住友電気工業株式会社 光送信機
US8364043B2 (en) * 2008-12-12 2013-01-29 Electronics And Telecommunications Research Institute Method and apparatus for controlling reflective semiconductor optical amplifier (RSOA)
CN102104229A (zh) * 2010-12-29 2011-06-22 上海华魏光纤传感技术有限公司 一种单频激光器的波长控制装置及控制方法
CN102629731B (zh) * 2012-02-14 2015-04-29 浙江嘉莱光子技术有限公司 一种激光器波长和功率同时稳定的控制方法及其控制装置

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20100008662A1 (en) * 2008-07-14 2010-01-14 Bradbeer Peter F Method and system for closed loop control of an optical link
CN101465515A (zh) * 2008-12-26 2009-06-24 中兴通讯股份有限公司 一种基于啁啾管理激光器的调试装置和方法
US20120020381A1 (en) * 2010-07-21 2012-01-26 Fujitsu Limited Optical transmission module and controlling method for optical transmission module
CN103078249A (zh) * 2013-01-06 2013-05-01 青岛海信宽带多媒体技术有限公司 生成光模块温度查找表的方法及装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3016218A4 *

Also Published As

Publication number Publication date
EP3016218A1 (en) 2016-05-04
CN103703700A (zh) 2014-04-02
US20160134079A1 (en) 2016-05-12
EP3016218A4 (en) 2016-07-06
CN103703700B (zh) 2016-09-28

Similar Documents

Publication Publication Date Title
WO2015006902A1 (zh) 一种波长对准的方法、装置、及光网络系统
US9628192B2 (en) Optical transmitter, wavelength alignment method, and passive optical network system
US20150063812A1 (en) Compensator for wavelength drift due to variable laser injection current and temperature in a directly modulated burst mode laser
US8867924B2 (en) Low power consumption small form-factor pluggable transceiver
CN108390724B (zh) 光模块的发射光功率调节方法、装置及光模块
US20090080904A1 (en) Optical transmitting apparatus and setting-value determining method
US20090238574A1 (en) Apparatus and method for monitoring optical gate device, and optical switch system
US10841010B2 (en) Bi-directional temperature controlled optical transceiver
US9191110B2 (en) Reducing coherent noise in single fiber transceivers
KR102193981B1 (ko) 외부 공진기형 레이저의 제어 방법 및 제어 장치
US9083467B2 (en) Optical transmission apparatus and optical transmission method
CN201623709U (zh) 可调谐50GHz和100GHz信道间隔的DWDM光模块
US20090097863A1 (en) Optical transmitter with a chirp managed laser diode automatically adjusting emission wavelength thereof and its adjusting method
US9258063B1 (en) Optical transmitter having multiple optical sources and a method to activate the same
JP5532354B2 (ja) Pon光伝送システム、局側装置及び光通信方法
KR102541952B1 (ko) 레이저 방출 시스템 및 파장 드리프트의 보상 방법
JP6000494B1 (ja) 温度制御回路、送信器および温度制御方法
WO2011050612A1 (zh) 一种锁定光信号的波长的方法、装置和系统
WO2013186834A1 (ja) Olt光送信器およびolt光送信器の温度制御方法
JP4828770B2 (ja) 波長λでリターンツーゼロパルスを生成する光学パルスソース
JP6842869B2 (ja) 局側終端装置
WO2018150584A1 (ja) 光送信器、温度制御装置および温度制御方法
CN101814958A (zh) 可调谐50GHz和100GHz信道间隔的DWDM光模块及方法
Agarwal et al. Monitoring optical modulation amplitude using a low-power CMOS circuit for thermal control of Si ring transmitters
US12001008B2 (en) Fast temperature tuning for optical receivers

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13889653

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2013889653

Country of ref document: EP