WO2015005569A1 - 입자빔의 방출 이미지 획득 장치 및 방법 - Google Patents

입자빔의 방출 이미지 획득 장치 및 방법 Download PDF

Info

Publication number
WO2015005569A1
WO2015005569A1 PCT/KR2014/003552 KR2014003552W WO2015005569A1 WO 2015005569 A1 WO2015005569 A1 WO 2015005569A1 KR 2014003552 W KR2014003552 W KR 2014003552W WO 2015005569 A1 WO2015005569 A1 WO 2015005569A1
Authority
WO
WIPO (PCT)
Prior art keywords
particle beam
image
microchannel plate
emitted
fluorescent screen
Prior art date
Application number
PCT/KR2014/003552
Other languages
English (en)
French (fr)
Inventor
한철수
조복래
박인용
안상정
Original Assignee
한국표준과학연구원
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 한국표준과학연구원 filed Critical 한국표준과학연구원
Publication of WO2015005569A1 publication Critical patent/WO2015005569A1/ko

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/26Electron or ion microscopes; Electron or ion diffraction tubes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/02Details
    • H01J37/244Detectors; Associated components or circuits therefor
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/02Details
    • H01J37/04Arrangements of electrodes and associated parts for generating or controlling the discharge, e.g. electron-optical arrangement, ion-optical arrangement
    • H01J37/08Ion sources; Ion guns
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/02Details
    • H01J37/04Arrangements of electrodes and associated parts for generating or controlling the discharge, e.g. electron-optical arrangement, ion-optical arrangement
    • H01J37/147Arrangements for directing or deflecting the discharge along a desired path
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/02Details
    • H01J37/22Optical or photographic arrangements associated with the tube
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J2237/00Discharge tubes exposing object to beam, e.g. for analysis treatment, etching, imaging
    • H01J2237/06Sources
    • H01J2237/063Electron sources
    • H01J2237/06325Cold-cathode sources
    • H01J2237/06341Field emission
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J2237/00Discharge tubes exposing object to beam, e.g. for analysis treatment, etching, imaging
    • H01J2237/06Sources
    • H01J2237/065Source emittance characteristics
    • H01J2237/0656Density
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J2237/00Discharge tubes exposing object to beam, e.g. for analysis treatment, etching, imaging
    • H01J2237/06Sources
    • H01J2237/08Ion sources
    • H01J2237/0802Field ionization sources
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J2237/00Discharge tubes exposing object to beam, e.g. for analysis treatment, etching, imaging
    • H01J2237/22Treatment of data
    • H01J2237/221Image processing
    • H01J2237/223Fourier techniques
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J2237/00Discharge tubes exposing object to beam, e.g. for analysis treatment, etching, imaging
    • H01J2237/245Detection characterised by the variable being measured
    • H01J2237/24507Intensity, dose or other characteristics of particle beams or electromagnetic radiation
    • H01J2237/24514Beam diagnostics including control of the parameter or property diagnosed
    • H01J2237/24542Beam profile

Definitions

  • the present invention relates to an apparatus and method for obtaining an emission image of a particle beam emitted from a particle beam source such as an electron beam or an ion beam, and more particularly, to clearly observe a pattern shape of a particle beam emitted even with a shorter exposure time.
  • the present invention relates to an apparatus and a method for obtaining an emission image of a particle beam.
  • Particle beams such as electron beams or ion beams, may be used as a method of observing the surface shape or structure of a material on a nanoscale or atomic scale or of processing the material.
  • the present invention can be applied to next-generation semiconductor materials and the like by obtaining not only information on the material but also removing part of the surface of the material or providing an additional structure.
  • an ion microscope may be manufactured using an ion beam among the particle beams.
  • the ion microscope is a device that enlarges an object by using ions instead of light or electrons, and has improved resolution and less charging problems on the sample surface than an electron microscope, and a depth of field (DOF). Because of its ability to obtain three-dimensional, clear images, it has been spotlighted as a next-generation microscope and has been applied to high-tech future industries.
  • Such an ion microscope mainly uses a type that emits ions on a surface of a solid sample, that is, a release type ion source, and is classified into a thermal ion type, a secondary ion type, or an electric field ion type according to the means for ion release.
  • the operating principle of the ion source it is possible to image the surface information and shape of the tungsten tip from helium ions, neon ions, or hydrogen ions released in reaction with helium, neon, or hydrogen gas on the tungsten tip.
  • FIG. 1 illustrates the degree of diffusion of ions (He ions) emitted from the tip of the ion source and the amount of ions emitted according to the sharpness of the tip.
  • He ions ions
  • FIG. 1 illustrates the degree of diffusion of ions (He ions) emitted from the tip of the ion source and the amount of ions emitted according to the sharpness of the tip.
  • He ions ions
  • FIG. 1 illustrates the degree of diffusion of ions (He ions) emitted from the tip of the ion source and the amount of ions emitted according to the sharpness of the tip.
  • the image acquisition device by particle beam emission from such an ion source may include the components shown in FIG. 2.
  • FIG. 2 is a view showing the components of the particle beam emission image acquisition device used in the prior art.
  • a fluorescent screen 5 for receiving and converting an optical signal an image collecting device 6 for receiving an optical signal from the fluorescent screen, and an image analyzing device for analyzing two-dimensional image data by analyzing an image obtained from the image collecting device. (7) and an image display device 8 showing the results of the image analysis device.
  • the particle beam source 1, the microchannel plate 4 and the fluorescent screen 5 may be located in the same vacuum chamber 2.
  • the particle beam emitted from the particle beam source is incident on the hole of the microchannel plate, and the secondary electrons amplified in each hole of the microchannel plate are The fluorescent screen is irradiated to emit light.
  • the emitted light is collected by an image collecting device 6 such as a charge-coupled device (CCD) and the like, and the optical image is analyzed by the image analyzing device 7 and the image display device 8 to obtain a two-dimensional image.
  • the user may inspect or evaluate a material or a system to be analyzed through the two-dimensional image, and may process a target material using the particle beam.
  • Japanese Patent Application Laid-Open No. 2010-218894 (2010.09.30) describes a technique related to an ion microscope including an electric field ionizing gas ion source, and also in Japan Patent Publication No. 7-272652 (October 20, 1995) describes a technique related to an ion beam processing apparatus using an electric field ionizing gas ion source.
  • the metal tip in the particle beam source is sharpened, so that the divergence angle of the emitted particle beam is increased so that the magnification is large or the ion amount at that time is large.
  • the smaller the emission amount of the emitted particle beam the smaller the amount of secondary electrons amplified through the microchannel plate is generated and the intensity of light emitted from the fluorescent screen is also weak.
  • the acquisition time of the image data such as increasing the exposure time in the image acquisition device by the CCD or the like should be increased.
  • the particle beam source, the microchannel plate and the The time to apply the voltage to the fluorescent screen should be increased, which may cause shortening of the lifetime of the particle beam source, the microchannel plate and the fluorescent screen, possibly with a short exposure for image acquisition in the image acquisition device.
  • the present invention provides a device for acquiring an emission image of a particle beam such as an ion beam or an electron beam, and removes noise included in a collected image through a shorter exposure time and generates an image signal.
  • the purpose of the present invention is to provide a device capable of acquiring a high quality image.
  • the present invention provides a method for obtaining an emission image of a particle beam, such as an ion beam or an electron beam, by removing the noise included in the collected image through a shorter exposure time to enhance the image signal in a shorter time It is another object of the invention to provide a method which can be obtained.
  • a particle beam such as an ion beam or an electron beam
  • the present invention provides a microchannel plate for receiving a particle beam emitted from a particle beam source including a metal tip to emit secondary electrons; A fluorescent screen receiving secondary electrons generated from the microchannel plate and converting the secondary electrons into an optical signal; An image collecting device collecting light data emitted from the fluorescent screen; And a low pass filter implemented in a spatial domain in order to process and image data obtained from the image collecting device, and to remove noise resulting from the microchannel plate. It provides an apparatus for obtaining an emission image of a particle beam, including.
  • the present invention also provides a particle beam source including a metal tip; A microchannel plate that receives the focused particle beam from the particle beam source and emits secondary electrons therefrom; A fluorescent screen receiving secondary electrons generated from the microchannel plate and converting the secondary electrons into an optical signal; An image collecting device collecting light data emitted from the fluorescent screen; And a low pass filter implemented in a spatial domain in order to process and image data obtained from the image collecting device, and to remove noise resulting from the microchannel plate. It provides an apparatus for obtaining an emission image of a particle beam, including.
  • a focusing lens may be provided between the particle beam source and the microchannel plate to focus the particle beam emitted from the particle beam source.
  • a particle beam emitted from the focusing lens passes, and a beam column serving to search the surface of the sample may be further provided by changing the path of the particle beam.
  • an objective lens may be further provided between the beam column and the microchannel plate to focus and collect the particle beam emitted from the beam column on the microchannel plate.
  • the particle beam may be an ion beam or an electron beam.
  • the particle beam may be an ion beam and the particle beam source may be a tungsten tip.
  • the image processing apparatus may remove noise information included in optical data obtained from the image collecting apparatus by a low pass filter having a predetermined mask value.
  • the image information from which the noise is removed may additionally include an inversion function of the image data and / or a histogram equalization function.
  • the low pass filter in the image processing apparatus may be implemented by hardware or software.
  • the particle beam source, microchannel plate and fluorescent screen may be located in the same vacuum chamber.
  • the present invention provides a method for obtaining the emission image of the particle beam using the emission image acquisition device of the particle beam in the present invention, comprising the steps of: emitting a particle beam from a particle beam source comprising a metal tip; Causing secondary electrons in a microchannel plate to be emitted to the fluorescent screen by the emitted particle beam; Converting the emitted secondary electrons into an optical signal in a fluorescent screen; Collecting the optical signal converted by the fluorescent screen in an image collecting device; And removing noise by setting a mask using a low pass filter implemented in the spatial domain on the data collected from the image collecting device to remove noise caused by the microchannel plate. It can provide a method for obtaining an emission image of the particle beam.
  • the low pass filter may be implemented by hardware or software.
  • the device for obtaining the emission image of the particle beam removes the noise included in the collected image and shortens the image signal through a shorter exposure time, resulting in shortening the exposure time of the image acquisition apparatus. Compared with the prior art, it is possible to prevent the shortening of the lifespan of particle beam sources such as electron beams or ion beams, microchannel plates and fluorescent screens.
  • the device for obtaining the emission image of the particle beam as in the present invention can be used to evaluate the characteristics of the ion source in the ion microscope or electron microscope, and the overall system problems in the ion microscope or electron microscope, these are mostly As a device operated under high vacuum conditions, stable high vacuum condition is essential for normal use, and in some cases, a system construction time for maintaining a stable high vacuum condition is required for up to one month or more. In many cases, this would require the input of physical resources.
  • the apparatus for obtaining an emission image of the particle beam according to the present invention when used in fields such as the ion microscope or the electron microscope, the lifetime of the particle beam source, the microchannel plate and the fluorescent screen can be maintained for a long time. By shortening unnecessary disassembly and repair times of the device using the system, it is possible to prevent unnecessary input of human or physical resources, which can have additional time and economic cost savings.
  • FIG. 1 shows the extent to which ions (He ions) emitted from a tip in a commonly used ion microscope are diffused and the amount of ions emitted according to the sharpness of the tip.
  • FIG. 2 is a diagram showing the components of the emission image acquisition device of the particle beam used in the prior art.
  • FIG. 3 is a diagram illustrating an apparatus for obtaining an emission image of a particle beam according to an exemplary embodiment of the present invention.
  • FIG. 4 is a diagram illustrating an apparatus for obtaining an emission image of a particle beam according to another exemplary embodiment of the present invention.
  • FIG. 5 is a diagram illustrating an image of noise according to time when voltage is not applied to a microchannel plate and a fluorescent screen in the apparatus for obtaining a particle beam image according to an exemplary embodiment of the present invention.
  • FIG. 6 is a diagram illustrating a comparison of the two-dimensional image of the particle beam obtained according to the prior art and the two-dimensional image of the particle beam obtained according to an embodiment of the present invention.
  • FIG. 7 is a diagram illustrating a two-dimensional image of a particle beam obtained according to an embodiment of the present invention and a two-dimensional image of a particle beam obtained according to the prior art according to time.
  • FIG. 3 is a diagram illustrating an apparatus for obtaining an emission image of a particle beam according to an exemplary embodiment of the present invention.
  • the microchannel plate 4 receives the particle beam emitted from the particle beam source including the metal tip and emits the secondary electrons, and receives the secondary electrons generated from the microchannel plate 4 as an optical signal.
  • a fluorescent screen 5 for converting, an image collecting device 6 for collecting optical data emitted from the fluorescent screen 5, and data obtained from the image collecting device are processed and imaged, and noise generated from the microchannel plate is processed. It includes an image processing device 7 'including a low pass filter implemented in a spatial domain to remove the L.
  • the particle beam source, the microchannel plate 4, the fluorescent screen 5 and the image collecting device 6 may use the components used in the prior art as described in FIG.
  • the particle beam used in the present invention may be used without any limitation as long as the particle beam is emitted from the particle beam source and received by the microchannel plate to emit secondary electrons.
  • the particle beam may be an electron beam or an ion beam.
  • helium ion beams When the ion beam is used as the particle beam, helium ion beams, neon ion beams, hydrogen ion beams, etc. may be used as the kind, but are not limited thereto.
  • a helium ion beam can be used as the ion beam used as the use of an ion microscope.
  • the particle beam source used in the present invention is a form capable of generating an ion beam such as the electron beam or an ion beam, the metal tip 11 capable of emitting the particle beam and the particle beam emitted from the metal tip 11 It may include an extraction lens 12 for extracting and leading to the microchannel plate.
  • the metal tip 11 capable of emitting the particles is preferably short, sharp and symmetrical in length.
  • Tungsten tips may be used as the metal tips, since these conditions are satisfied, and the material of the source tip of the particle beam is preferably a metal tip having a feature of easy processing and long life.
  • the tungsten tip can be easily processed into a single atomic pointed tip shape by electrochemical etching.
  • the microchannel plate 4 receives the particle beam emitted from the particle beam source and emits secondary electrons.
  • a micro-sized through hole through which electrons can pass through a glass substrate is fabricated.
  • the inner wall may include a structure coated with a material that induces secondary electrons well.
  • the microchannel is composed of materials capable of emitting a large number of secondary electrons, and electrodes are formed at both ends and the upper surface of the substrate, and electrons are incident into the microchannel to emit secondary electrons on the channel wall.
  • the microchannel By emitting many secondary electrons while colliding with the material, it can act as an electron amplifying device in which more electrons are output than eventually incident electrons.
  • the microchannel plate has a gain of about 10 4 at a supply voltage of about 1000 V.
  • the fluorescent screen 5 receives the secondary electrons amplified from the microchannel plate and converts them into an optical signal such as visible light by colliding them with a fluorescent material.
  • a conventional solid-state image sensor such as CCD and CMOS, which functions to collect emitted and output optical data and detects the output visible light and converts the output visible light into an electrical image signal, may be used.
  • the particle beam source 1, the microchannel plate 4 and the fluorescent screen 5 are configured to be located in the same vacuum chamber 2.
  • the internal vacuum degree of the vacuum chamber 2 is not limited to the range if the degree of vacuum does not interfere with the tunneling phenomenon of the tip and the tip does not break due to the overcurrent does not flow, but preferably 10 -10 mbar or less good.
  • the image signal collected from the image collecting device 6 may be displayed by the image display device 8 by two-dimensionally imaging the image of the particle beam by the image processing device 7 '. have.
  • the image processing apparatus 7 ′ is a low-pass filter of a spatial domain, which is a type of spatial filter implemented in a spatial domain represented by n pixels horizontally and m pixels vertically. It includes.
  • the spatial filter is a filter used for emphasizing or attenuating a component of a specific pixel included in an image.
  • the spatial filter may be used for sharpening an unclear image, improving an image signal-to-noise ratio (S / N), and the like. It may be classified into a filter, a high pass filter, and the like.
  • the low pass filter of the spatial domain is a kind of spatial filter implemented in the spatial domain, and the rate of change of the intensity is compared by comparing the intensity of light incident on a specific pixel of the image capturing apparatus with the intensity of the surrounding pixels.
  • the filter may be used without limitation, and may include both a linear filter and a nonlinear filter.
  • the linear filter may be a mean filter, a Gaussian filter, or the like, and the nonlinear filter may be a median filter.
  • the present invention serves to increase the signal-to-noise ratio (S / N ratio) by removing the noise of the optical data collected from the image acquisition apparatus 6 through the low pass filter.
  • the noise of the optical data collected from the image collecting device 6 may occur from various causes such as an image collecting device itself, such as a CCD, a fluorescent screen, a microchannel plate, but the present inventors measure the particle beam
  • the apparatus for obtaining the emission image of the particle beam in the present invention can more efficiently acquire the emission image of the particle beam. It was found that through this, the emission image acquisition device of the particle beam can be implemented to measure the emission image of the particle beam in a shorter time.
  • the image processing apparatus of the present invention may remove noise information included in optical data obtained from the image collecting apparatus by setting a mask such that the low pass filter has a change rate lower than the noise signal change rate. Can be.
  • the low pass filter increases a signal-to-noise ratio (S / N ratio) of the image processing apparatus by inputting a specific mask value that can be arbitrarily set by the user and removing the noise.
  • noise can be removed by setting a convolution mask as a mask used in the present invention and designing a low pass filter based on the convolution mask.
  • the low pass filter included in the image processing apparatus 7 ′ may be implemented by hardware or software.
  • the low pass filter can remove noise by software such as a computer program.
  • the low pass filter can work more effectively by repetitive execution of the software or by setting appropriate input variable values.
  • the low pass filter of the present invention can remove noise more effectively by combining the hardware and software.
  • the image information from which noise is removed by passing through the low pass filter included in the image processing apparatus 7 ′ is additionally added by an inversion function of the image data and / or a histogram equalization function. Can be processed.
  • the image of the particle beam can be sharpened or the contrast can be emphasized or sharpened by adjusting the contrast and / or histogram smoothing function of the image data.
  • the invention may also include various components for obtaining an emission image of the particle beam between the particle beam source source and the microchannel plate.
  • FIG. 4 is a diagram illustrating an emission image obtaining apparatus of a particle beam having various components between the particle beam source and the microchannel plate according to an embodiment of the present invention.
  • the present invention may be provided with a focusing lens between the particle beam source and the microchannel plate.
  • the focusing lens is a device for focusing particle beams emitted from the particle beam source, wherein the particle beam used in the emission image acquisition device of the particle beam in the present invention is an ion beam or an electron beam when the particle beam is an electric or magnetic field. Can focus.
  • the emission image obtaining apparatus of the particle beam can convert the information of the particle beam passing through the focusing lens into the emission image of the particle beam within a shorter time period and measure the measurement. That is, the device including the focusing lens, and the device implemented by the present invention can measure or evaluate various elements in the beam measurement resulting from the focusing lens by obtaining information of the particle beam passing through the focusing lens in a short time. have.
  • the beam of particles passing through the focusing lens and the microchannel plate passes through the focusing lens and changes the path of the particle beam to search for a sample surface. This may be further provided.
  • the apparatus for obtaining an emission image of the particle beam of the present invention measures the information of the particle beam passing through the beam column in a shorter time, thereby reducing various factors in the beam measurement resulting from the beam column. It can be measured or evaluated.
  • an objective lens may be further provided between the beam column and the microchannel plate to focus particle beams emitted from the beam column and collect the microbeams on the microchannel plate.
  • the apparatus for obtaining an emission image of the particle beam of the present invention measures the information of the particle beam passing through the objective lens in a shorter time, thereby measuring various elements in beam measurement resulting from the objective lens or Or evaluation is possible.
  • the present invention also provides a method for obtaining an emission image of a particle beam using the emission image acquisition device of the particle beam, comprising the steps of: emitting a particle beam from a particle beam source comprising a metal tip; Causing secondary electrons in a microchannel plate to be emitted to the fluorescent screen by the emitted particle beam; Converting the emitted secondary electrons into an optical signal in a fluorescent screen; Collecting the optical signal converted by the fluorescent screen in an image collecting device; And removing noise by setting a mask using a low pass filter implemented in the spatial domain on the data collected from the image collecting device to remove noise caused by the microchannel plate. It provides a method for obtaining an emission image of a particle beam.
  • the step of emitting the particle beam from the particle beam source is as described above, in which the electron beam normally delivers a high purity gas at a vacuum degree of 10 -10 mbar or less, or an ion beam at very high vacuum of 10 -10 mbar or less.
  • the electron beam normally delivers a high purity gas at a vacuum degree of 10 -10 mbar or less, or an ion beam at very high vacuum of 10 -10 mbar or less.
  • the ion beam may be emitted from the tungsten tip by supplying ions to be emitted in the form of a gas while applying a draw voltage to the tungsten tip processed into a single tip-like sharp tip shape by electrochemical etching to emit an ion beam. .
  • the second step is to induce the secondary electrons in the microchannel plate by the emitted particle beam is emitted to the fluorescent screen. This is the step of amplifying the particle beam, when particles caused by the particle beam are incident into the microchannel, they collide with the secondary electron emitting material on the channel wall and emit a lot of secondary electrons. The electrons will be output.
  • the microchannel plate may use a gain of 10 4 within a supply voltage of 1000 V.
  • the present invention may further include a wide range of components, such as a focusing lens, a beam column, an objective lens, and the like, as described above, between the particle beam source and the microchannel plate to expand the application range of the method for obtaining the particle beam. have.
  • the third step is to convert the emitted secondary electrons into an optical signal in a fluorescent screen, and receives the secondary electrons amplified from the microchannel plate and converts the secondary electrons into optical signals such as visible light by colliding them with fluorescent materials.
  • a step it can be carried out by a fluorescent screen device according to the prior art.
  • the fourth step of collecting the optical signal converted from the fluorescent screen in the image acquisition device is the optical data emitted from the fluorescent screen through the image acquisition device consisting of a conventional solid-state image sensor such as CCD, CMOS, etc. Collecting and converting the signal into an electrical video signal.
  • a conventional solid-state image sensor such as CCD, CMOS, etc. Collecting and converting the signal into an electrical video signal.
  • the first to fourth steps are methods commonly used in the method of generating the particle beam and its image acquisition method in the prior art, and are also directly applied to the apparatus and method of using the improved particle beam emission image of the present invention. Corresponds to the applicable configuration.
  • the final step in the method for obtaining the emission image of the particle beam in the present invention is to set the mask to remove the noise from the data collected from the image acquisition apparatus using a low-pass filter in the spatial domain ) Step.
  • the high frequency noise generated during the amplification by the microchannel plate is applied to the noise present in the image in the method of obtaining the particle beam. It has a lot of influence.
  • FIG. 5 shows a particle beam image obtaining apparatus of the present invention, in which no voltage is applied to the microchannel plate and the fluorescent screen (B1), and if only a fluorescent screen is applied (B2), the voltage only to the microchannel plate Is a diagram showing the image of noise over time by dividing by (B3).
  • each condition is +3 kV to the fluorescent screen or -1.5 kV to the microchannel plate while maintaining the pressure at 10 -10 mbar without applying voltage to the source.
  • the occurrence of noise was evaluated by applying the voltage of.
  • the noise generated during the amplification process by the microchannel plate in the emission image obtaining device of the particle beam in the present invention can greatly affect the noise of the final particle beam image.
  • the present invention can solve the problem by using a low-pass filter in the spatial domain to remove the noise.
  • Noise due to the microchannel plate may include impulsive noise (high frequency noise in the form of pepper or salt).
  • impulsive noise high frequency noise in the form of pepper or salt.
  • the shape of the impulse noise as described above can be removed using a low pass filter.
  • the low pass filter used in the present invention may be implemented by hardware or software, and by combining them, noise may be more effectively removed.
  • the image information from which noise is removed by passing through the low pass filter included in the image processing apparatus 7 ′ is additionally added by an inversion function of the image data and / or a histogram equalization function. Can be processed.
  • FIG. 6 shows a two-dimensional image (FIG. 6D to 6F) of a particle beam obtained in accordance with an embodiment of the present invention, and a two-dimensional image of the particle beam without a low pass filter obtained according to the prior art (FIG. 6A). To 6c).
  • the image information collected under the electron beam emission condition is software-configured low pass filter to remove noise in the spatial domain through image processing technique.
  • the low pass filter may filter a high frequency video signal including noise in the input video signal by applying a predetermined mask to the input video signal.
  • the input image to the low pass filter is f (x, y) (x and y are coordinate values of a specific arithmetic signal expressed as a 2D image)
  • the output image g (x, y) is expressed by the following equation. Can be obtained.
  • the low pass filter mask in the spatial domain has an array of 3 * 3 or 5 * 5.
  • the output image g (x, y) may be obtained by the following equation.
  • g (x, y) M (0,0) * f (x-1, y-1) + M (0,1) * f (x-1, y) + M (0,2) * f ( x-1, y + 1)
  • M (0,0) to M (2,2) mean mask values applied to the low pass filter.
  • a mean filter or a median filter may be used as the low pass filter, and a combination thereof may be applied.
  • the filter size is at least 5 times (mask size 5 x 5) or less of one pixel when the mask is applied.
  • the average filter is formed by using a mask having each element of 1 in a spatial filter. It can be done by setting.
  • the median filter operates by sorting the values of neighboring pixels in ascending order and selecting the middle value as an output value. For example, image data values in the spatial domain If the intermediate filter is applied to a pixel having the value 49, which is the image data value before the median filter is applied, the values of neighboring pixels in the filter size range around the pixel are in ascending or descending order. 38, which is the median among the values of the sorted pixels (10, 19, 22, 36, 49, 75, 98, 99) or (99, 98, 75, 49, 38, 36, 22, 19, 10) By selecting, the first value 49 is changed to 38 to be stored in the corresponding pixel, and data values of other regions can be applied in this manner.
  • the filter size is at least five times the size of one pixel (the size of the mask 5 x 5) or less, and in this case, a more effective result in noise reduction can be obtained.
  • the conditions used in FIG. 6 to test how short the time for obtaining an image of the identifiable particle beam can be shortened.
  • the two-dimensional image of the particle beam was measured at a specific time interval in the prior art and the present invention.
  • FIG. 7 illustrates a two-dimensional image of the particle beam according to the above experiment, and compares the two-dimensional image of the particle beam obtained according to the present invention and the prior art according to the exposure time.
  • the present invention relates to an apparatus and method for obtaining an emission image of a particle beam emitted from a particle beam source such as an electron beam or an ion beam, which has industrial applicability.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Analysing Materials By The Use Of Radiation (AREA)

Abstract

본 발명은 금속팁을 포함하는 입자빔 소스; 상기 입자빔 소스로부터 집속된 입자빔을 수신하고, 이로부터 2차전자를 방출하는 마이크로채널 플레이트; 상기 마이크로채널 플레이트로부터 생성된 2차전자를 수신하고 이를 광신호로 변환하는 형광스크린; 상기 형광스크린으로부터 방출되는 광 데이터를 수집하는 영상수집장치; 및 상기 영상수집장치로부터 얻어지는 데이터를 처리하여 영상화하며, 상기 마이크로채널 플레이트로부터 기인하는 잡음을 제거하기 위해 공간 영역(spatial domain)에서 구현되는 저주파 통과필터(low pass filter)를 포함하여 이루어지는 영상처리장치;를 포함하는, 입자빔의 방출 이미지 획득 장치 및 이를 이용하여 입자빔의 방출 이미지를 획득하는 방법에 관한 것이다.

Description

입자빔의 방출 이미지 획득 장치 및 방법
본 발명은 전자빔 또는 이온빔 등의 입자빔 소스로부터 방출되는 입자빔의 방출 이미지 획득 장치 및 방법에 관한 것으로, 보다 상세하게는 보다 짧은 노출시간에도 방출되는 입자빔의 패턴형태를 선명하게 관찰할 수 있는, 입자빔의 방출 이미지 획득 장치 및 방법에 관한 것이다.
나노스케일 또는 원자스케일로 재료의 표면형태 또는 구조를 관찰하거나 또는 상기 재료를 가공할 수 있는 방법으로서, 전자빔 또는 이온빔과 같은 입자빔을 이용할 수 있다.
상기 전자빔 또는 이온빔과 같은 입자빔을 이용하게 되면 광학현미경에 의한 분해능(resolution)의 한계를 넘어 수 백만배 확대가 가능하여 관찰하고자 하는 재료를 나노 또는 원자 수준에서 정보를 획득할 수 있는 고분해능 고배율 현미경을 제작할 수 있고, 또한, 상기 재료에 관한 정보의 획득 뿐만 아니라, 상기 재료의 표면 일부를 제거하거나 추가적인 구조를 제공함으로써, 차세대 반도체 재료 등에 응용할 수 있다.
예컨대, 상기 입자빔 중에서 이온빔을 이용하여 이온 현미경을 제작할 수 있다. 상기 이온 현미경은 빛이나 전자 대신 이온을 사용하여 물체를 확대해 보는 장치로서, 전자현미경보다 향상된 분해능과 시료표면에서의 하전(charging)문제가 적다는 점, 그리고 피사계 심도(DOF, depth of field)가 깊어 입체적인 깨끗한 영상을 얻을 수 있다는 장점에 의해 차세대 현미경으로 각광받고 있고 첨단 미래산업 등에 응용가능성이 높아 많은 연구가 진행되고 있다.
이러한 이온 현미경은 고체시료 표면에서 이온을 방출시켜 보는 형, 즉 방출형 이온원이 주로 사용되고 있고, 상기 이온방출의 수단에 따라서 열이온형, 2차이온형, 또는 전기장 이온형으로 분류된다.
상기 이온원의 동작 원리를 살펴보면, 텅스텐 팁상 헬륨, 네온, 또는 수소 가스와 반응하여 방출되는 헬륨이온, 네온이온, 또는 수소 이온으로부터 상기 텅스텐팁의 표면 정보와 형상을 이미지화할 수 있다.
이를 도 1 및 도 2를 통해 상세히 살펴보면, 도 1에서는 상기 이온원의 팁으로부터 방출하는 이온(He 이온)이 팁의 뾰족한 정도에 따라 확산되는 정도와 방출되는 이온량을 도시하고 있다. 상기 도 1에서 나타나는 바와 같이 상기 팁을 단일 원자 수준으로 극도로 첨예하게 가공하는 경우, 이온빔이 각각의 원자 표면으로부터 방출될 수 있고, 이에 의해 원자 수준의 해상도를 갖는 표면 정보를 얻을 수 있다.
이러한 이온원으로부터의 입자빔 방출에 의한 이미지 획득 장치는 도 2에 도시된 구성요소들을 포함할 수 있다.
도 2는 종래기술에서 사용되는 입자빔 방출 이미지 획득장치의 구성요소를 도시한 그림이다.
이는 전자빔 또는 이온빔을 방출시키는 입자빔 소스(1), 상기 방출된 입자빔을 수신하고 증폭하기 위해 2차전자를 발생시켜주는 마이크로채널 플레이트(4), 상기 마이크로채널 플레이트로부터 증폭된 2차 전자를 수신하여 광신호로 변환하는 형광스크린(5), 상기 형광스크린으로부터의 광신호를 수신하는 영상수집장치(6), 상기 영상수집장치로부터 얻어지는 이미지를 분석하여 2차원 이미지 데이터를 구현하는 영상분석장치(7) 및 상기 영상분석장치의 결과를 보여주는 영상표시장치(8)를 포함하여 이루어진다.
이 경우에 상기 입자빔 소스(1), 마이크로채널 플레이트(4) 및 형광스크린(5)은 동일한 진공챔버(2)내에서 위치할 수 있다.
상기 구성으로 이루어진 입자빔 방출 이미지 획득장치의 동작을 설명하면, 우선 입자빔 소스로부터 방출된 상기 입자빔이 마이크로채널 플레이트의 구멍에 입사되고, 상기 마이크로채널 플레이트의 각각 구멍에서 증폭된 2차 전자가 형광스크린에 조사되어 형광스크린에서 발광된다. 이때 발광된 빛을 CCD(Charge-Coupled Device, 전하결합소자) 등과 같은 영상 수집장치(6)로 수집하고 영상분석장치(7) 및 영상표시장치(8)를 통해 광학 이미지를 분석하여 2차원 이미지로 표시하며, 사용자가 상기 2차원이미지를 통하여 분석하고자 하는 재료, 또는 시스템을 검사하거나 평가할 수 있고, 또한 상기 입자빔을 이용하여 피처리 재료를 가공할 수 있다.
상기와 같은 종래기술에 의한 입자빔을 이용한 장치로서, 일본공개특허공보 특개 2010-218894호(2010.09.30)에서는 전계 전리형 가스 이온원을 포함하는 이온 현미경에 관한 기술이 기재되어 있고, 또한 일본공개특허공보 특개평7-272652호(1995.10.20)에서는 전계 전리형 가스 이온원을 이용한 이온 빔 가공장치에 관한 기술이 기재되어 있다.
이때 상기와 같은 입자빔 방출 이미지 획득장치의 분해능을 높이기 위해서는 입자빔 소스내 금속팁이 뾰족하게 되어 방출되는 입자빔의 발산각이 커져 배율이 커지거나 그때의 이온량이 큰 것이 바람직하다. 그러나, 상기 방출되는 입자빔의 방출량이 적을수록 최종적으로 마이크로채널 플레이트를 통하여 증폭되는 2차전자도 상대적으로 적은 양이 생성되며 또한 형광스크린에서의 발광하는 빛의 세기도 미약하게 되어, 이후 단계에서의 CCD 등에 의한 영상수집장치에서 노출시간을 증가하는 등의 이미지 데이터의 수집시간을 늘려야 한다.
이 경우에 상기 입자빔 방출 이미지 획득장치에서의 입자빔의 양질의 이미지를 획득하기 위해서 영상수집장치에서의 노출시간을 증가시키게 되면, 상기 입자빔 방출 이미지 획득장치의 입자빔 소스, 마이크로채널 플레이트와 형광 스크린에 전압을 인가시키는 시간을 늘려야 하며, 이는 상기 입자빔 소스, 마이크로채널 플레이트와 형광 스크린의 수명을 단축시키는 원인이 될 수 있어, 가능한 상기 영상수집장치에서의 이미지 획득을 위한 짧은 노출을 가지면서도 양질의 이미지를 얻는 장치 및 방법이 필요하다.
따라서 상기 문제점을 해결하기 위하여 본 발명은 상기와 같은 이온 빔 또는 전자 빔과 같은 입자빔의 방출 이미지를 획득하기 위한 장치에 있어서, 보다 짧은 노출시간을 통해 수집 영상에 포함된 잡음을 제거하고 영상신호를 강화함으로써 양질의 이미지를 획득할 수 있는 장치를 제공하는 것을 목적으로 한다.
또한 본 발명은 이온 빔 또는 전자 빔과 같은 입자빔의 방출 이미지를 얻는 방법에 있어서, 보다 짧은 노출시간을 통해 수집 영상에 포함된 잡음을 제거하고 영상 신호를 강화함으로써 양질의 이미지를 보다 짧은 시간에 획득할 수 있는 방법을 제공하는 것을 발명의 또 다른 목적으로 한다.
본 발명은 금속팁을 포함하는 입자빔 소스로부터 방출되는 입자빔을 수신하여 2차전자를 방출하는 마이크로채널 플레이트; 상기 마이크로채널 플레이트로부터 생성된 2차전자를 수신하여 이를 광신호로 변환하는 형광스크린; 상기 형광스크린으로부터 방출되는 광 데이터를 수집하는 영상수집장치; 및 상기 영상수집장치로부터 얻어지는 데이터를 처리하여 영상화하며, 상기 마이크로채널 플레이트로부터 기인하는 잡음을 제거하기 위해 공간 영역(spatial domain)에서 구현되는 저주파 통과필터(low pass filter)를 포함하여 이루어지는 영상처리장치;를 포함하는, 입자빔의 방출 이미지 획득 장치를 제공한다.
또한 본 발명은 금속팁을 포함하는 입자빔 소스; 상기 입자빔 소스로부터 집속된 입자빔을 수신하고, 이로부터 2차전자를 방출하는 마이크로채널 플레이트; 상기 마이크로채널 플레이트로부터 생성된 2차전자를 수신하고 이를 광신호로 변환하는 형광스크린; 상기 형광스크린으로부터 방출되는 광 데이터를 수집하는 영상수집장치; 및 상기 영상수집장치로부터 얻어지는 데이터를 처리하여 영상화하며, 상기 마이크로채널 플레이트로부터 기인하는 잡음을 제거하기 위해 공간 영역(spatial domain)에서 구현되는 저주파 통과필터(low pass filter)를 포함하여 이루어지는 영상처리장치;를 포함하는, 입자빔의 방출 이미지 획득 장치를 제공한다.
일 실시예로서, 상기 입자빔 소스와 마이크로채널 플레이트사이에는 상기 입자빔 소스로부터 방출되는 입자빔이 집속되도록 하는 집속렌즈가 구비될 수 있다.
일 실시예로서, 상기 집속렌즈와 마이크로채널 플레이트사이에는 상기 집속렌즈로부터 방출되는 입자빔이 통과하며, 입자빔의 경로를 바꿔줌으로써 시료 표면의 탐색 기능을 하는 빔 컬럼이 추가로 구비될 수 있다.
일 실시예로서, 상기 빔 컬럼과 마이크로채널 플레이트사이에는 상기 빔 컬럼으로부터 방출되는 입자빔을 집속하여 마이크로채널플레이트에 모아주는 대물렌즈가 추가로 구비될 수 있다.
일 실시예로서, 상기 입자빔은 이온빔 또는 전자빔일 수 있다.
일 실시예로서, 상기 입자빔은 이온빔이고, 입자빔 소스는 텅스텐 팁일 수 있다.
일 실시예로서, 상기 영상처리장치는 소정의 마스크(mask) 값이 설정된 저주파 통과필터(low pass filter)에 의해 상기 영상수집장치로부터 얻어지는 광 데이타에 포함된 잡음정보가 제거될 수 있다. 이 경우에, 상기 잡음이 제거된 영상정보에 영상데이타의 반전기능 및/또는 히스토그램 평활화(histogram equalization) 기능이 추가적으로 포함될 수 있다.
일 실시예로서, 상기 영상처리장치내 저주파 통과필터는 하드웨어 또는 소프트웨어에 의해 구현될 수 있다.
일 실시예로서, 상기 입자빔 소스, 마이크로채널 플레이트 및 형광스크린은 동일한 진공챔버내에서 위치할 수 있다.
또한 본 발명은 상기 기재된 본 발명에서의 입자빔의 방출 이미지 획득 장치를 이용하여 입자빔의 방출 이미지를 획득하는 방법으로서, 금속팁을 포함하는 입자빔 소스로부터 입자빔을 방출시키는 단계; 상기 방출된 입자빔에 의해 마이크로채널 플레이트에서 2차전자가 유발되어 형광스크린으로 방출되는 단계; 상기 방출된 2차전자가 형광스크린에서 광신호로 변환되는 단계; 상기 형광스크린에서 변환된 광신호를 영상수집장치에서 수집하는 단계; 및 상기 마이크로채널 플레이트로부터 기인하는 잡음을 제거하기 위해, 상기 영상수집장치로부터 수집된 데이터를 공간영역에서 구현되는 저주파 통과필터를 이용하여, 마스크를 설정하여 잡음(Noise)을 제거하는 단계;를 포함하는, 입자빔의 방출 이미지를 획득하는 방법을 제공할 수 있다.
일 실시예로서, 상기 저주파 통과필터는 하드웨어 또는 소프트웨어에 의해 구현될 수 있다.
본 발명에 의한 입자빔의 방출 이미지 획득 장치는 보다 짧은 노출시간을 통해 수집영상에 포함된 잡음을 제거하고 영상신호를 강화함으로써, 결과적으로 영상수집장치의 노출시간을 단축시키는 결과를 가져오게 되어, 종래의 기술과 비교하여 전자빔 또는 이온빔과 같은 입자빔 소스, 마이크로채널 플레이트 및 형광 스크린의 수명단축을 방지할 수 있다.
한편, 본 발명에서와 같은 입자빔의 방출 이미지 획득장치는 이온 현미경 또는 전자현미경 등에서의 이온원의 특성 및 상기 이온 현미경 또는 전자현미경에서의 시스템적인 제반문제 등을 평가하는데 이용될 수 있으며, 이들은 대부분 고진공 조건에서 작동되는 장치로서, 정상적인 사용을 위해서는 안정적인 고진공 상태가 필수적이며, 상기와 같은 안정적인 고진공 상태를 유지하기 위한 시스템의 구축시간이 최대 한 달 이상 요구되는 경우도 있어, 이를 구축하기 위해 상당한 인적, 또는 물리적 자원의 투입을 필요로 하게 되는 경우가 많다.
따라서 본 발명에서의 입자빔의 방출 이미지 획득 장치를 상기 이온 현미경 또는 전자 현미경 등의 분야에 이용하는 경우에, 입자빔 소스, 마이크로채널 플레이트와 형광스크린의 수명을 오래도록 유지할 수 있게 되고, 이는 상기 입자빔 시스템을 이용하는 장치의 불필요한 분해 및 수리 시간들을 단축시킴으로써, 불필요한 인적, 또는 물리적 자원의 투입을 방지할 수 있고, 이는 부가적인 시간적 및 경제적 비용 절감의 효과를 가질 수 있다.
도 1은 일반적으로 사용되는 이온 현미경내의 팁으로부터 방출하는 이온(He 이온)이 팁의 뾰족한 정도에 따라 확산되는 정도와 방출되는 이온량을 도시하고 있다.
도 2는 종래기술에서 사용되는 입자빔의 방출 이미지 획득장치의 구성요소를 도시한 그림이다.
도 3은 본 발명의 일 실시예에 따른 입자빔의 방출 이미지 획득장치를 도시한 그림이다.
도 4는 본 발명의 또 다른 일 실시예에 따른 입자빔의 방출 이미지 획득장치를 도시한 그림이다.
도 5는 본 발명의 일 실시예에 따른 입자빔 이미지 획득장치에 있어, 마이크로채널 플레이트와 형광스크린상에 전압을 인가하거나 인가하지 않은 경우에 시간에 따른 노이즈의 이미지를 도시한 그림이다.
도 6은 본 발명의 일 실시예에 따라 얻어지는 입자빔의 2차원 이미지와 종래기술에 따라 얻어지는 입자빔의 2차원 이미지를 비교하여 도시한 그림이다.
도 7은 본 발명의 일실시예에 따라 얻어지는 입자빔의 2차원 이미지와 종래기술에 따라 얻어지는 입자빔의 2차원 이미지를 시간에 따라 비교하여 도시한 그림이다.
이하, 첨부한 도면을 참조하여 본 발명의 장치 및 방법을 상세히 설명한다. 본 발명은 다양한 변경을 가할 수 있고 여러 가지 형태를 가질 수 있는 바, 특정 실시예들을 예시하고 본문에 상세하게 설명하고자 한다. 그러나 이는 본 발명을 특정한 개시 형태에 대해 한정하려는 것이 아니며, 본 발명의 사상 및 기술 범위에 포함되는 모든 변경, 균등물 내지 대체물을 포함하는 것으로 이해되어야 한다. 첨부된 도면에 있어서, 구조물들의 치수는 본 발명의 명확성을 기하기 위하여 실제보다 확대하여 도시한 것이다. 본 발명의 설명 과정에서 이용되는 숫자(예를 들어, 제1, 제2 등)는 하나의 구성요소를 다른 구성요소와 구분하기 위한 식별기호에 불과하다.
도 3은 본 발명의 일 실시예에 따른 입자 빔의 방출 이미지 획득 장치를 도시한 그림이다.
이는 금속팁을 포함하는 입자빔 소스로부터 방출되는 입자빔을 수신하여 2차전자를 방출하는 마이크로채널 플레이트(4), 상기 마이크로채널 플레이트(4)로부터 생성된 2차전자를 수신하여 이를 광신호로 변환하는 형광스크린(5), 상기 형광스크린(5)으로부터 방출되는 광 데이터를 수집하는 영상수집장치(6) 및 상기 영상수집장치로부터 얻어지는 데이터를 처리하여 영상화하며, 상기 마이크로채널 플레이트로부터 기인하는 잡음을 제거하기 위해 공간 영역(spatial domain)에서 구현되는 저주파 통과필터(low pass filter)를 포함하여 이루어지는 영상처리장치(7')를 포함하여 이루어진다.
여기서, 상기 입자빔 소스, 마이크로채널 플레이트(4), 형광스크린(5) 및 영상수집장치(6)는 도 2에서 기재된 바와 같은, 종래기술에서 사용되는 구성요소를 그대로 사용할 수 있다.
이를 보다 상세히 설명하면, 본 발명에서 사용되는 입자빔은 입자빔 소스로부터 방출되어 마이크로채널 플레이트에 수신되어 2차전자를 방출할 수 있는 형태이면 그 종류에 제한되지 않고 사용할 수 있다. 일 실시예로서 상기 입자빔은 전자빔 또는 이온빔일 수 있다.
상기 입자빔으로서 이온빔이 사용되는 경우에 그 종류로서는 헬륨 이온빔, 네온 이온빔, 수소 이온빔 등이 사용가능하나, 이에 제한되지 않는다. 바람직하게는 이온 현미경의 용도로서 사용되는 이온빔으로서 헬륨 이온빔이 사용가능하다.
또한 본 발명에서 사용되는 입자빔 소스는 상기 전자빔 또는 이온빔과 같은 이온빔을 생성할 수 있는 형태로서, 상기 입자빔을 방출할 수 있는 금속팁(11)과 상기 금속팁(11)로부터 방출하는 입자빔을 추출하여 마이크로채널플레이트로 유도하는 익스트랙션(Extraction) 렌즈(12)를 포함할 수 있다.
또한 상기 입자를 방출할 수 있는 금속팁(11)은 길이가 짧고 뾰족하며 대칭적인 것이 바람직하다.
일 예로서, 상기 입자빔이 이온 현미경에 사용되는 경우에 분해능을 높이기 위해서는 원자수준의 날카로운 팁 제작이 중요해지는 바, 상기와 같이 길이가 짧고 뽀족하며 대칭적인 형상을 가지는 것이 바람직하다.
이와 같은 조건을 만족하며, 상기 입자 빔의 소스 팁의 재료는 가공이 쉽고 수명이 긴 특징을 가진 금속 팁이 바람직하기 때문에 상기 금속 팁으로서 텅스텐 팁이 사용될 수 있다.
상기 텅스텐 팁의 가공은 전기화학적 식각에 의해 단일 원자수준의 뾰족한 팁 형상을 쉽게 가공할 수 있다.
상기 마이크로채널 플레이트(4)는 입자빔 소스로부터 방출되는 입자빔을 수신하여 2차전자를 방출하는 기능을 하며, 일반적으로 유리 기판에 전자들이 통과할 수 있는 마이크로 크기의 관통홀이 제작되고, 그 내벽에 2차전자를 잘 유도하는 물질이 코팅된 구조를 포함할 수 있다.
또한, 상기 마이크로채널은 2차 전자를 많이 방출할 수 있는 물질들로 구성되며, 그 양쪽 종단부와 기판 상면에는 전극들이 형성되어 있어, 전자들이 마이크로채널 내부로 입사되어 채널 벽면의 2차 전자 방출 물질에 충돌하면서 많은 2차 전자들을 방출함으로써 결국 입사하는 전자들 보다 많은 전자들이 출력되는 전자 증폭 소자로서의 동작을 할 수 있다.
상기 마이크로채널 플레이트는 공급전압 1000 V 내외에서 마이크로채널 플레이트의 이득(gain)은 10 4 정도이다.
또한 상기 형광스크린(5)은 상기 마이크로채널 플레이트로부터 증폭된 2차전자를 수신하여 이를 형광물질에 충돌시킴으로써 가시광 등의 광신호로 변환하는 기능을 하며, 상기 영상수집장치(6)는 형광스크린으로부터 방출되어 출력된 광 데이터를 수집하는 기능을 하고, 상기 출력된 가시광을 검지하여 전기적인 영상신호로 변환하는 CCD, CMOS 등의 통상적인 고체 이미지센서를 포함할 수 있고, 이외에도 촬상관을 사용할 수도 있다.
본 발명에서 상기 입자빔 소스(1), 마이크로채널 플레이트(4) 및 형광스크린(5)은 동일한 진공챔버(2)내에서 위치하도록 구성된다. 상기 진공챔버(2)의 내부 진공도는 팁의 터널링 현상을 방해하지 않고 과전류가 흐르지 않아 팁이 망가지지 않을 정도의 진공도를 가지면 그 범위에 제한을 두지 않으나, 바람직하게는 10 -10 mbar 이하로 하는 것이 좋다.
또한, 본 발명에서 상기 영상수집장치(6)로부터 수집된 영상신호는 영상처리장치(7')에 의해 상기 입자빔의 이미지가 2차원적으로 영상화되어 영상표시장치(8)에 의해 표시될 수 있다.
이때, 본 발명에서 상기 영상처리장치(7')는 가로 n개의 픽셀(pixel)과 세로 m개의 픽셀로 표현된 공간 영역(spatial domain)에서 구현된 공간 필터의 한 종류인 공간영역의 저주파 통과필터를 포함한다. 여기서 상기 공간필터는 화상에 포함되는 특정 픽셀의 성분을 강조하거나 감쇠하기 위해 사용되는 필터로서 선명하지 못한 상의 선명화, 화상의 신호 대 잡음비(S/N)의 향상 등에 사용될 수 있으며, 이는 저주파 통과필터, 고주파 통과필터 등으로 구분될 수 있다.
즉, 본 발명에서 상기 공간 영역의 저주파 통과필터는 상기 공간 영역에서 구현된 공간 필터의 한 종류로서, 영상수집장치의 특정 픽셀에 입사된 빛의 강도와 주변 픽셀의 강도를 비교하여 강도의 변화율이 높은 신호는 차단하고, 낮은 변화율의 신호는 통과시키는 필터이면 그 종류에 제한되지 않고 사용될 수 있으며, 선형 필터 및 비선형 필터를 모두 포함할 수 있다.
예시적으로, 상기 선형 필터는 평균 필터(mean filter), 가우시안 필터(Gaussian filter) 등이 적용가능하며, 비선형 필터로서는 중간값 필터(median filter) 등이 적용가능하다.
본 발명은 상기 저주파 통과필터를 통해 상기 영상수집장치(6)으로부터 수집되는 광 데이타의 잡음(Noise)을 제거함으로써 신호대 잡음비(S/N ratio)를 높여주는 역할을 하게 된다.
한편, 상기 영상수집장치(6)으로부터 수집되는 광 데이타의 잡음(Noise)은 CCD 등의 영상수집장치 자체, 형광스크린, 마이크로채널 플레이트 등 다양한 원인으로부터 발생할 수 있으나, 본 발명자들은 상기 입자빔의 측정에 있어, 가장 주요한 잡음의 발생원으로서 상기 마이크로채널 플레이트로부터 기인하는 고주파 영역의 잡음을 제거하는 경우에 본 발명에서의 입자빔의 방출 이미지 획득장치가 보다 효율적으로 입자빔의 방출 이미지를 획득할 수 있음을 알게 되었고, 이를 통해 상기 입자빔의 방출 이미지 획득장치가 보다 짧은 시간내에 입자빔의 방출 이미지를 측정 가능하도록 구현할 수 있다.
예시적으로, 본 발명의 상기 영상처리장치는 상기 저주파 통과필터가 잡음신호 변화율 보다 낮은 변화율을 갖도록 하는 마스크(Mask)를 설정함에 의해 상기 영상수집장치로부터 얻어지는 광 데이타에 포함된 잡음정보가 제거될 수 있다.
즉, 상기 저주파 통과필터는 사용자가 임의로 설정할 수 있는 특정의 마스크값을 입력하고, 이를 통해 잡음을 제거함으로써, 영상처리장치의 신호대 잡음비(S/N ratio)를 높여주는 역할을 하게 된다. 예컨대, 본 발명에서 사용되는 마스크로서 컨볼루션 마스크(convolution mask)를 설정하고 이를 기준으로 저주파 통과필터를 설계함으로서 잡음을 제거할 수 있다.
본 발명에서 상기 영상처리장치(7')내 포함되는 저주파 통과필터는 하드웨어 또는 소프트웨어에 의해 구현될 수 있다.
예컨대, 상기 저주파 통과필터로서 컴퓨터 프로그램과 같은 소프트웨어에 의해 잡음을 제거할 수 있다. 이 경우에 상기 저주파 통과필터는 상기 소프트웨어의 반복적 실행에 의해, 또는 적절한 입력 변수값의 설정에 의해 보다 효과적으로 작용할 수 있다.
또한 본 발명의 저주파 통과필터는 상기 하드웨어 및 소프트웨어의 결합에 의해 보다 효과적으로 잡음을 제거할 수 있다.
또한 본 발명에서, 상기 영상처리장치(7')내 포함되는 저주파 통과필터를 통과하여 잡음(Noise)이 제거된 영상정보는 영상데이타의 반전기능 및/또는 히스토그램 평활화(histogram equalization) 기능에 의해 추가적으로 가공될 수 있다.
이 경우에 상기 영상데이타의 반전기능 및/또는 히스토그램 평활화기능에 의해 입자빔의 이미지가 보다 선명하게, 또는 명암을 조절함으로써 부분적으로 필요한 부분을 강조하거나 선명하게 할 수 있다.
본 발명은 또한 상기 입자빔 소스원과 마이크로채널 플레이트사이에 상기 입자빔의 방출 이미지 획득을 위한 다양한 구성요소를 구비할 수 있다.
이는 도 4를 통해 보다 상세히 살펴볼 수 있다. 상기 도 4에서는 본 발명의 일 실시예에 따라, 입자빔 소스과 마이크로채널 플레이트사이에 다양한 구성요소를 구비한 입자 빔의 방출 이미지 획득 장치를 도시한 그림이다.
일 실시예로서, 본 발명은 상기 입자빔 소스와 마이크로채널 플레이트사이에 집속렌즈가 구비될 수 있다. 상기 집속렌즈는 상기 입자빔 소스로부터 방출되는 입자빔을 집속하기 위한 장치로서, 본 발명에서의 입자 빔의 방출 이미지 획득 장치에 사용되는 입자빔이 이온빔 또는 전자빔인 경우에 전기장이나 자기장에 의하여 입자빔을 집속시킬 수 있다.
이 경우에 본 발명에서의 입자 빔의 방출 이미지 획득 장치는 상기 집속렌즈를 통과하는 입자빔의 정보를 보다 짧은 시간내에 입자빔의 방출 이미지로 변환하여 측정할 수 있다. 즉, 상기 집속렌즈를 포함하며, 본 발명에 의해 구현되는 장치는 짧은 시간 내에 집속렌즈를 통과하는 입자빔의 정보를 획득함으로써, 상기 집속렌즈로부터 기인하는 빔 측정상의 다양한 요소들을 측정하거나 또는 평가할 수 있다.
또한 본 발명에서 상기 집속렌즈가 구비되는 경우에, 상기 집속렌즈와 마이크로채널 플레이트사이에는 상기 집속렌즈로부터 방출되는 입자빔이 통과하며, 입자빔의 경로를 바꿔주어 시료 표면의 탐색 기능을 하는 빔 컬럼이 추가로 구비될 수 있다.
이 경우에, 앞서 기재한 바와 마찬가지로 본 발명의 입자 빔의 방출 이미지 획득 장치는 상기 빔 컬럼을 통과하는 입자빔의 정보를 보다 짧은 시간내에 측정함으로써, 상기 빔 컬럼으로부터 기인하는 빔 측정상의 다양한 요소들을 측정하거나 또는 평가가 가능하다.
또한 본 발명에서 상기 빔컬럼이 구비되는 경우에, 상기 빔 컬럼과 마이크로채널 플레이트사이에는 상기 빔 컬럼으로부터 방출되는 입자빔을 집속하여 마이크로채널플레이트에 모아주는 대물렌즈가 추가로 구비될 수 있다.
이 경우에도 앞서 기재한 바와 마찬가지로 본 발명의 입자 빔의 방출 이미지 획득 장치는 보다 짧은 시간내에 대물렌즈를 통과하는 입자빔의 정보를 측정함으로써, 상기 대물렌즈로부터 기인하는 빔 측정상의 다양한 요소들을 측정하거나 또는 평가가 가능하다.
또한 본 발명은 상기 입자 빔의 방출 이미지 획득 장치를 이용하여 입자빔의 방출 이미지를 획득하는 방법으로서, 금속팁을 포함하는 입자 빔 소스로부터 입자빔을 방출시키는 단계; 상기 방출된 입자빔에 의해 마이크로채널 플레이트에서 2차전자가 유발되어 형광스크린으로 방출되는 단계; 상기 방출된 2차전자가 형광스크린에서 광신호로 변환되는 단계; 상기 형광스크린에서 변환된 광신호를 영상수집장치에서 수집하는 단계; 및 상기 마이크로채널 플레이트로부터 기인하는 잡음을 제거하기 위해, 상기 영상수집장치로부터 수집된 데이터를 공간영역에서 구현되는 저주파 통과필터를 이용하여, 마스크를 설정하여 잡음(Noise)을 제거하는 단계;를 포함하는, 입자빔의 방출 이미지를 획득하는 방법을 제공한다.
이는 앞서 기재된 본 발명의 입자 빔의 방출 이미지 획득 장치를 이용하여 입자빔을 방출 이미지를 획득하는 방법을 기재한 것으로서, 구체적인 방법은 아래와 같다.
첫 번째 단계로서, 입자빔 소스로부터 입자빔을 방출시키는 단계는 앞서 기재한 바와 같이, 전자빔은 10 -10 mbar 이하의 진공도에서, 또는 이온빔은 10 -10 mbar 이하의 초고진공에서 고순도의 가스를 보통 10 -6 ~ 10 -5 mbar 로 주입한 진공도내에서 방출시킴에 의해 이루어질 수 있다. 예컨대 이온빔을 방출하기 위해서 전기화학적 식각에 의해 단일 원자수준의 뽀족한 팁 형상으로 가공된 텅스텐 팁에 인출전압을 가하면서 방출하고자 하는 이온을 가스형태로 공급하면 이온빔이 상기 텅스텐 팁으로부터 방출될 수 있다.
두 번째 단계는 상기 방출된 입자빔에 의해 마이크로채널 플레이트에서 2차전자가 유발되어 형광스크린으로 방출되는 단계이다. 이는 상기 입자빔을 증폭하는 단계로서 입자빔에 의한 입자들이 마이크로채널 내부로 입사되면 채널 벽면의 2차 전자 방출 물질에 충돌하면서 많은 2차 전자들을 방출함으로써 결국 입사하는 입자빔에 의한 입자들 보다 많은 전자들이 출력되게 된다.
상기 마이크로채널 플레이트는 공급전압 1000 V 내에서 마이크로채널 플레이트의 이득(gain)은 10 4 의 것을 사용할 수 있다.
본 발명은 또한 상기 입자빔 소스와 마이크로채널 플레이트 사이에는 앞서 기재된 바와 같이, 집속렌즈, 빔 컬럼, 대물렌즈 등의 다양한 구성요소를 추가적으로 구비하여 입자빔의 이미지 획득 방법에서의 응용범위를 확장시킬 수 있다.
또한 세 번째 단계는 상기 방출된 2차전자가 형광스크린에서 광신호로 변환되는 단계로서, 상기 마이크로채널 플레이트로부터 증폭된 2차전자를 수신하여 이를 형광물질에 충돌시킴으로써 가시광 등의 광신호로 변환하는 단계로서 종래기술에 의한 형광스크린 장치에 의해 수행될 수 있다.
또한 네 번째 단계인 상기 형광스크린에서 변환된 광신호를 영상수집장치에서 수집하는 단계는 CCD, CMOS 등의 통상적인 고체 이미지센서로 구성되는 영상수집장치를 통해 상기 형광스크린으로부터 방출되어 출력된 광 데이터를 수집하여 전기적인 영상신호로 변환하는 단계이다.
상기 첫 번째 단계 내지 네 번째 단계는 종래 기술에서의 입자빔의 발생방법 및 이의 이미지 획득방법에서 통상적으로 사용되는 방법으로서, 본 발명의 개선된 입자 빔의 방출 이미지 획득 장치 및 이의 이용 방법에서도 직접적으로 적용될 수 있는 구성에 해당된다.
한편, 본 발명에서의 입자빔의 방출 이미지를 획득하는 방법에서의 마지막 단계는 상기 영상수집장치로부터 수집된 데이터를 공간 영역의 저주파 통과필터를 이용하여 잡음을 제거하기 위한 마스크를 설정하여 잡음(Noise)을 제거하는 단계이다.
본 발명에서의 상기 입자빔의 방출 이미지를 획득하는 방법에 있어서, 상기 마이크로채널 플레이트에 의한 증폭과정에서 발생되는 고주파 잡음이 최종적인 입자빔의 이미지 획득방법에서의 이미지에 존재하는 잡음(Noise)에 매우 많은 영향을 미치게 된다.
이는 도 5를 통해 보다 상세히 이해될 수 있다. 도 5는 본 발명의 입자빔 이미지 획득장치에 있어, 마이크로채널 플레이트와 형광스크린상에 각각 전압을 인가하지 않은 경우(B1), 형광스크린에만 전압을 인가한 경우(B2), 마이크로채널 플레이트에만 전압을 인가한 경우(B3)로 나누어 이들을 시간에 따른 노이즈의 이미지를 도시한 그림이다.
상기 전압을 인가한 경우의 각각의 조건은 소스에 전압을 인가하지 않고 압력을 10-10 mbar로 유지한 상태에서, 형광스크린에는 +3 kV의 전압을 인가하거나, 또는 마이크로채널 플레이트에 -1.5kV의 전압을 인가하여 잡음의 발생을 평가하였다.
이를 구체적으로 살펴보면, 상기 마이크로채널 플레이트와 형광스크린상에 각각 전압을 인가하지 않은 경우(B1)와 형광스크린에만 전압을 인가한 경우(B2)에는 시간이 증가하더라도 각각의 잡음(Noise)이 큰 차이가 없지만, 마이크로채널 플레이트에만 전압을 인가한 경우(B3)에는 30초가 지나면 고주파 잡음 레벨(Noise level)이 증가하는 것을 볼 수 있고, 60초가 지나면 앞의 두 경우와 비교하여 확연하게 잡음이 증가하는 것을 볼 수 있다.
즉, 상기와 같은 실험 결과를 통해 본 발명에서 입자빔의 방출 이미지 획득 장치내 마이크로채널 플레이트에 의한 증폭과정에서 발생되는 잡음이 최종적인 입자빔의 이미지의 잡음(Noise)에 매우 많은 영향을 줄 수 있다는 것을 알게 됨으로써, 본 발명은 상기 문제점을 잡음을 제거하기 위해 공간영역의 저주파 통과필터를 이용하여 이를 해결할 수 있도록 하였다.
상기 마이크로채널 플레이트에 기인한 노이즈는 임펄스 노이즈(impulsive noise)(후춧가루 (pepper) 또는 소금가루 (salt) 형태의 고주파 노이즈)를 포함할 수 있으며. 본 발명에서는 상기와 같은 임펄스 노이즈의 형태를 저주파 통과 필터를 이용하여 제거할 수 있다.
본 발명에서 사용되는 상기 저주파 통과필터는 하드웨어 또는 소프트웨어에 의해 구현될 수 있고, 또한 이들의 결합에 의해 보다 효과적으로 잡음을 제거할 수 있다.
또한 본 발명에서, 상기 영상처리장치(7')내 포함되는 저주파 통과필터를 통과하여 잡음(Noise)이 제거된 영상정보는 영상데이타의 반전기능 및/또는 히스토그램 평활화(histogram equalization) 기능에 의해 추가적으로 가공될 수 있다.
도 6에서는 본 발명의 일실시예에 따라 얻어지는 입자빔의 2차원 이미지(도 6d 내지 도 6f)와 종래기술에 따라 얻어지는, 저주파 통과필터를 사용하지 않은 경우의 입자빔의 2차원 이미지(도 6a 내지 도 6c)를 비교하여 도시하였다.
도 6에서의 실험 조건으로서, 전계 방출 현미경법(Field Emission Microscopy: FEM)을 이용하여 텅스텐 팁에서 방출되는 전자를 관찰하였고, 진공도 5x10-10 mbar, 팁 인가 전압 -1.1 kV, 추출 전압 0.4 kV 하에서 전자를 방출하였으며, 마이크로채널 플래이트 인가 전압 1.1 kV, 형광 스크린 인가 전압 2.0 kV, 및 영상수집장치 노출 시간 25초로 설정하여 전자빔의 방출 이미지를 획득하였다.
상기 전자빔 방출 조건에서 수집한 영상 정보는 저주파 통과 필터를 소프트웨어적으로 구성하여 공간 영역(spatial domain)에서 이미지 처리 기법을 통하여 잡음을 제거하였다.
보다 구체적으로, 본 발명에서의 상기 저주파 통과 필터는 입력된 영상신호에 소정의 마스크를 적용하여 상기 입력된 영상신호내 잡음을 포함하는 고주파 영상신호를 걸러낼 수 있다. 이는 상기 저주파 통과필터로의 입력영상을 f(x,y)로 하는 경우(x 및 y는 2D 이미지로 표현되는 특정 연산신호의 좌표값), 출력영상 g(x, y)는 아래 식에 의해 얻어질 수 있다.
g(x,y) = M * f(x, y), (M은 마스크 값)
일반적으로 공간영역의 저주파 통과필터 마스크는 3*3 또는 5*5의 배열을 갖는다. 예를 들어, 상기 저주파 통과필터의 마스크 중 3*3 마스크를 이용하여 출력영상 g(x, y)는 아래 식에 의해 얻어질 수 있다.
g(x,y) = M(0,0)*f(x-1, y-1) + M(0,1)*f(x-1, y) + M(0,2)*f(x-1, y+1)
+ M(1,0)*f(x, y-1) + M(1,1)*f(x,y) + M(1,2)*f(x,y+1) +
M(2,0)*f(x+1,y-1) + M(2,1)*f(x+1,y) + M(2,2)*f(x+1,y+1)
여기서, M(0,0) 내지 M(2,2)는 저주파 통과필터에 적용되는 마스크 값을 의미한다.
본 발명에서 상기 저주파 통과필터로서 평균필터(mean filter) 또는 중간값 필터(median filter)를 적용할 수 있고, 또한 이들이 조합된 경우를 적용할 수 있다.
또한 본 발명에서, 상기 마스크의 적용시 필터 사이즈가 1 화소의 적어도 5배(마스크의 크기 5 x 5) 이하로 되는 것이 바람직하다.
상기 평균 필터는 공간필터에서 각 요소가 1인 마스크를 사용하여 이루어지며, 예시적으로 상기 마스크 값을
Figure PCTKR2014003552-appb-I000001
로 설정하여 이루어질 수 있다.
한편, 상기 중간값 필터는 이웃 화소의 값을 오름차순으로 정렬한 뒤 가운데에 있는 값을 출력값으로 선택하는 방법으로 동작한다. 예컨대 공간영역에서의 이미지 데이터 값이 '
Figure PCTKR2014003552-appb-I000002
'로 표시되는 경우에, 중간값 필터가 적용되기 전의 이미지 데이터 값인 상기 49 값을 갖는 픽셀에 중간값 필터를 적용하면, 해당 픽셀을 중심으로 필터 사이즈 범위에 있는 이웃 픽셀들의 값을 오름차순 또는 내림차순으로 정렬하고, 정렬된 픽셀의 값 (10, 19, 22, 36, 49, 75, 98, 99) 또는 (99, 98, 75, 49, 38, 36, 22, 19, 10) 중에서 중간값인 38을 선택하여, 처음 값인 49를 38로 바꾸어 해당 픽셀에 저장되도록 하며, 다른 영역의 데이터 값들도 이와 같이 적용할 수 있다.
상기 중간값 필터를 적용함에 있어서도, 필터 사이즈가 1 화소의 적어도 5배(마스크의 크기 5 x 5) 이하로 되는 것이 바람직하며, 이 경우에 잡음 제거에서 보다 효과적인 결과를 얻을 수 있다.
상기 도 6에서는 상기 저주파 통과필터의 마스크를 설정한 결과로서, 상기 마스크 값을
Figure PCTKR2014003552-appb-I000003
로 설정하였을 때의 결과를 도시한 것이다.
상기 도 6b 및 도 6c에서 볼 수 있듯이, 저주파 통과 필터를 사용하지 않은 경우에 잡음(Noise)이 많이 수집된 것을 볼 수 있으며, 이를 통한 2차원 이미지인 도 6a의 경우에도 노이즈가 많이 발생된 것을 볼 수 있다.
한편, 본 발명에서의 공간 영역의 저주파 통과필터를 사용한 경우와 비교하면, 도 6e 및 도 6f에서 볼 수 있듯이, 도 6b 및 도 6c와 대비하여 잡음(Noise)이 감소되었으며, 이를 통한 2차원 이미지인 도 6d에서도 노이즈가 많이 감소된 것을 볼 수 있다.
한편, 본 발명에서의 공간 영역의 저주파 통과 필터를 포함하는 영상처리장치를 이용하는 경우에 있어서, 식별가능한 입자빔의 이미지를 획득하기 위한 시간이 어느 정도 단축가능한지를 실험하기 위해 도 6에서 사용된 조건을 이용하여 종래기술과 본 발명에서의 특정한 시간간격으로 입자빔의 2차원 이미지를 측정하였다.
도 7은 상기 실험에 따른 입자빔의 2차원 이미지를 도시한 것으로서, 노출시간에 따라 본 발명과 종래기술에 따라 얻어지는 입자빔의 2차원 이미지를 비교하여 도시하였다.
상기 도 7에서 볼 수 있는 바와 같이, 본 발명에서의 공간 영역의 저주파 통과 필터를 사용한 영상처리장치의 경우에는 2초만에 모든 2차원 이미지가 식별이 가능한 것으로 나타났으나, 종래기술에 따른, 저주파 통과필터를 구비하지 않은 영상처리장치를 사용한 경우에는 30초가 지나야 어느 정도 식별이 가능하며, 확실한 식별을 위해서는 60초가 지나도록 영상수집장치가 형광스크린으로부터의 광데이타를 수집하여야 하는 것으로 나타남으로써, 본 발명에 의한 입자빔 측정장치는 종래기술보다 30배 이상의 시간을 단축시킬 수 있음을 확인할 수 있다.
이상 본 발명의 구성을 세부적으로 설명하였지만, 해당 기술 분야의 숙련된 당업자는 하기의 특허청구의 범위에 기재된 본 발명의 사상 및 영역으로부터 벗어나지 않는 범위 내에서 본 발명을 다양하게 수정 및 변경시킬 수 있음을 이해할 수 있을 것이다.
본 발명은 전자빔 또는 이온빔 등의 입자빔 소스로부터 방출되는 입자빔의 방출 이미지 획득 장치 및 방법에 관한 것으로, 이는 산업상 이용 가능성이 있다.

Claims (12)

  1. 금속팁을 포함하는 입자빔 소스;
    상기 입자빔 소스로부터 집속된 입자빔을 수신하고, 이로부터 2차전자를 방출하는 마이크로채널 플레이트;
    상기 마이크로채널 플레이트로부터 생성된 2차전자를 수신하고 이를 광신호로 변환하는 형광스크린;
    상기 형광스크린으로부터 방출되는 광 데이터를 수집하는 영상수집장치; 및
    상기 영상수집장치로부터 얻어지는 데이터를 처리하여 영상화하며, 상기 마이크로채널 플레이트로부터 기인하는 잡음을 제거하기 위해 공간 영역(spatial domain)에서 구현되는 저주파 통과필터(low pass filter)를 포함하여 이루어지는 영상처리장치;를 포함하는, 입자빔의 방출 이미지 획득 장치.
  2. 제1항에 있어서,
    상기 입자빔 소스와 마이크로채널 플레이트사이에는 상기 입자빔 소스로부터 방출되는 입자빔이 집속되도록 하는 집속렌즈가 구비되는 것을 특징으로 하는, 입자빔의 방출 이미지 획득 장치.
  3. 제2항에 있어서,
    상기 집속렌즈와 마이크로채널 플레이트사이에는 상기 집속렌즈로부터 방출되는 입자빔이 통과하며, 입자빔의 경로를 바꿔줌으로써 시료 표면의 탐색기능을 하는 빔 컬럼이 추가로 구비되는 것을 특징으로 하는, 입자빔의 방출 이미지 획득 장치.
  4. 제3항에 있어서,
    상기 빔 컬럼과 마이크로채널 플레이트사이에는 상기 빔 컬럼으로부터 방출되는 입자빔을 집속하여 마이크로채널 플레이트에 모아주는 대물렌즈가 추가로 구비되는 것을 특징으로 하는, 입자빔의 방출 이미지 획득 장치.
  5. 제1항에 있어서,
    상기 입자빔은 이온빔 또는 전자빔인 것을 특징으로 하는 입자빔의 방출 이미지 획득 장치.
  6. 제5항에 있어서,
    상기 입자빔은 이온빔이고, 입자빔 소스는 텅스텐 팁인 것을 특징으로 하는 입자빔의 방출 이미지 획득 장치.
  7. 제1항에 있어서,
    상기 영상처리장치는 소정의 마스크(mask) 값이 설정된 저주파 통과필터(low pass filter)에 의해 상기 영상수집장치로부터 얻어지는 광 데이타에 포함된 잡음정보가 제거되는 것을 특징으로 하는 입자빔의 방출 이미지 획득 장치.
  8. 제7항에 있어서,
    상기 잡음이 제거된 영상정보에 영상데이타의 반전기능 및/또는 히스토그램 평활화(histogram equalization) 기능을 추가적으로 포함하는 것을 특징으로 하는 입자빔의 방출 이미지 획득 장치.
  9. 제1항에 있어서,
    상기 영상처리장치내 저주파 통과필터(low pass filter)는 하드웨어 또는 소프트웨어에 의해 구현되는 것을 특징으로 하는 입자빔의 방출 이미지 획득 장치.
  10. 제1항에 있어서,
    상기 입자빔 소스, 마이크로채널 플레이트 및 형광스크린은 동일한 진공챔버내에서 위치하는 것을 특징으로 하는, 입자빔의 방출 이미지 획득 장치.
  11. 제1항에 기재된 입자빔의 방출 이미지 획득 장치를 이용하여 입자빔의 방출 이미지를 획득하는 방법으로서,
    금속팁을 포함하는 입자빔 소스로부터 입자빔을 방출시키는 단계;
    상기 방출된 입자빔에 의해 마이크로채널 플레이트에서 2차전자가 유발되어 형광스크린으로 방출되는 단계;
    상기 방출된 2차전자가 형광스크린에서 광신호로 변환되는 단계;
    상기 형광스크린에서 변환된 광신호를 영상수집장치에서 수집하는 단계; 및
    상기 마이크로채널 플레이트로부터 기인하는 잡음을 제거하기 위해, 상기 영상수집장치로부터 수집된 데이터를 공간영역에서 구현되는 저주파 통과필터를 이용하여, 마스크를 설정하여 잡음(Noise)을 제거하는 단계;를 포함하는, 입자빔의 방출 이미지를 획득하는 방법.
  12. 제11항에 있어서,
    상기 저주파 통과필터(low pass filter)는 하드웨어 또는 소프트웨어에 의해 구현되는 것을 특징으로 하는 입자빔의 방출 이미지를 획득하는 방법.
PCT/KR2014/003552 2013-07-09 2014-04-23 입자빔의 방출 이미지 획득 장치 및 방법 WO2015005569A1 (ko)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2013-0080447 2013-07-09
KR1020130080447A KR101413287B1 (ko) 2013-07-09 2013-07-09 입자빔의 방출 이미지 획득 장치 및 방법

Publications (1)

Publication Number Publication Date
WO2015005569A1 true WO2015005569A1 (ko) 2015-01-15

Family

ID=51740715

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2014/003552 WO2015005569A1 (ko) 2013-07-09 2014-04-23 입자빔의 방출 이미지 획득 장치 및 방법

Country Status (2)

Country Link
KR (1) KR101413287B1 (ko)
WO (1) WO2015005569A1 (ko)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101648269B1 (ko) * 2014-11-10 2016-08-16 한국표준과학연구원 하전입자빔 시스템 평가 플랫폼 장치 및 하전입자빔 시스템 평가방법

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06295330A (ja) * 1993-04-08 1994-10-21 Toshiba Corp 画像処理方法
JPH07272653A (ja) * 1994-03-29 1995-10-20 Jeol Ltd 電界電離型ガスフェーズイオン源の調整方法およびイオンビーム装置
JPH07272652A (ja) * 1994-03-29 1995-10-20 Jeol Ltd 電界電離型ガスフェーズイオン源の調整方法
JP2005108545A (ja) * 2003-09-29 2005-04-21 Osaka Electro-Communication Univ 電子・2次イオン顕微鏡装置
JP2010218894A (ja) * 2009-03-17 2010-09-30 Jeol Ltd 電界電離型ガスイオン源のエミッタティップ先鋭化方法及び装置

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06295330A (ja) * 1993-04-08 1994-10-21 Toshiba Corp 画像処理方法
JPH07272653A (ja) * 1994-03-29 1995-10-20 Jeol Ltd 電界電離型ガスフェーズイオン源の調整方法およびイオンビーム装置
JPH07272652A (ja) * 1994-03-29 1995-10-20 Jeol Ltd 電界電離型ガスフェーズイオン源の調整方法
JP2005108545A (ja) * 2003-09-29 2005-04-21 Osaka Electro-Communication Univ 電子・2次イオン顕微鏡装置
JP2010218894A (ja) * 2009-03-17 2010-09-30 Jeol Ltd 電界電離型ガスイオン源のエミッタティップ先鋭化方法及び装置

Also Published As

Publication number Publication date
KR101413287B1 (ko) 2014-07-01

Similar Documents

Publication Publication Date Title
JP6255047B2 (ja) 異物付着防止機能を備えた電子線検査装置及び方法
JP3724949B2 (ja) 基板検査装置およびこれを備えた基板検査システム並びに基板検査方法
Jungmann et al. Fast, high resolution mass spectrometry imaging using a medipix pixelated detector
JP3403036B2 (ja) 電子ビーム検査方法及びその装置
US7276694B1 (en) Defect detection using energy spectrometer
CN109411320B (zh) 透射带电粒子显微镜中的衍射图案检测
WO2012039206A1 (ja) 荷電粒子ビーム顕微鏡
TW201130010A (en) Electron beam apparatus, inspection apparatus using electron beam and method for determining exposure conditions
Timischl et al. A statistical model of signal–noise in scanning electron microscopy
US6627886B1 (en) Secondary electron spectroscopy method and system
JP2015106565A (ja) 電子検出が改善された荷電粒子顕微鏡
WO2015005569A1 (ko) 입자빔의 방출 이미지 획득 장치 및 방법
Trimeche et al. Ion and electron ghost imaging
Brücken et al. GEM Foil quality assurance for the ALICE TPC upgrade
US6979824B1 (en) Filtered e-beam inspection and review
CN109075002B (zh) 带电粒子显微镜以及试样拍摄方法
JP3851740B2 (ja) 基板検査装置
JP4113229B2 (ja) 基板検査方法および基板検査システム
JPH04122882A (ja) 荷電粒子測定装置および光強度波形測定装置
JP4110042B2 (ja) 基板検査装置、基板検査方法および半導体装置の製造方法
Beiser et al. Observation of Beam Induced Fluorescence (BIF) at the Electron Cooler Test Bench at Helmholtz-Institut Mainz (HIM)
JP2024014836A (ja) 荷電粒子顕微鏡を使用して試料を検査する方法
Kamalapriya et al. Automatic detection of visual defects in image intensifiers
Bradley et al. Progress on the development of a single line of sight x-ray framing camera
TW202303659A (zh) 荷電粒子束裝置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14823045

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14823045

Country of ref document: EP

Kind code of ref document: A1