WO2015005213A1 - Engine control device - Google Patents

Engine control device Download PDF

Info

Publication number
WO2015005213A1
WO2015005213A1 PCT/JP2014/067784 JP2014067784W WO2015005213A1 WO 2015005213 A1 WO2015005213 A1 WO 2015005213A1 JP 2014067784 W JP2014067784 W JP 2014067784W WO 2015005213 A1 WO2015005213 A1 WO 2015005213A1
Authority
WO
WIPO (PCT)
Prior art keywords
engine
throttle valve
opening
predetermined value
pressure sensor
Prior art date
Application number
PCT/JP2014/067784
Other languages
French (fr)
Japanese (ja)
Inventor
吉田 哲
Original Assignee
株式会社デンソー
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社デンソー filed Critical 株式会社デンソー
Priority to CN201480038002.8A priority Critical patent/CN105392980B/en
Publication of WO2015005213A1 publication Critical patent/WO2015005213A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/04Introducing corrections for particular operating conditions
    • F02D41/06Introducing corrections for particular operating conditions for engine starting or warming up
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D11/00Arrangements for, or adaptations to, non-automatic engine control initiation means, e.g. operator initiated
    • F02D11/06Arrangements for, or adaptations to, non-automatic engine control initiation means, e.g. operator initiated characterised by non-mechanical control linkages, e.g. fluid control linkages or by control linkages with power drive or assistance
    • F02D11/10Arrangements for, or adaptations to, non-automatic engine control initiation means, e.g. operator initiated characterised by non-mechanical control linkages, e.g. fluid control linkages or by control linkages with power drive or assistance of the electric type
    • F02D11/107Safety-related aspects
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/22Safety or indicating devices for abnormal conditions
    • F02D41/222Safety or indicating devices for abnormal conditions relating to the failure of sensors or parameter detection devices
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/22Safety or indicating devices for abnormal conditions
    • F02D2041/227Limping Home, i.e. taking specific engine control measures at abnormal conditions
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D2200/00Input parameters for engine control
    • F02D2200/02Input parameters for engine control the parameters being related to the engine
    • F02D2200/04Engine intake system parameters
    • F02D2200/0404Throttle position
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D2200/00Input parameters for engine control
    • F02D2200/02Input parameters for engine control the parameters being related to the engine
    • F02D2200/04Engine intake system parameters
    • F02D2200/0406Intake manifold pressure
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D2200/00Input parameters for engine control
    • F02D2200/02Input parameters for engine control the parameters being related to the engine
    • F02D2200/10Parameters related to the engine output, e.g. engine torque or engine speed
    • F02D2200/1012Engine speed gradient
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/40Engine management systems

Definitions

  • the present invention relates to an engine control device that controls the operation of an engine mounted on a vehicle.
  • a throttle opening sensor for detecting the throttle opening is provided, and it is determined that the throttle valve is opened when the engine is started based on the detected value of the throttle opening sensor.
  • the throttle valve is opened, the engine is started.
  • the main object of the present invention is to provide an engine control device that can suppress erroneous start of the vehicle without using the detection result of the throttle opening sensor.
  • the present invention relates to an engine control device (40) applied to an engine (10) in which a pressure sensor (16) for detecting intake pressure and a throttle valve (14) are provided in an intake section (11). And a first determination means for determining whether or not an opening of the throttle valve is greater than or equal to a predetermined value based on a change in the intake pressure detected by the pressure sensor at the time of starting the engine; Means for limiting the operation of the engine when it is determined by the means that the opening of the throttle valve is greater than or equal to a predetermined value.
  • the throttle opening state is grasped using the relationship between the throttle valve opening and the intake pressure, and the engine is operated when it is determined that the opening of the throttle valve is greater than or equal to a predetermined value.
  • Limit the opening degree of the throttle valve can be grasped without directly detecting the opening degree of the throttle valve by a sensor. Thereby, it is possible to suppress the erroneous start of the vehicle without using the detection result of the throttle opening sensor.
  • the monitoring means for monitoring the engine rotation speed after the initial explosion has occurred after the start of the engine, and the opening of the throttle valve based on the engine rotation speed after the first explosion has occurred Second determining means for determining whether or not the engine is greater than or equal to a predetermined value; and a second determining means for restricting the engine operation when the second determining means determines that the opening of the throttle valve is equal to or greater than the predetermined value. And a control means.
  • first control means means for limiting engine operation based on the detection result of the pressure sensor
  • second control means initial explosion Means for limiting the operation of the engine based on the engine rotation speed after birth.
  • the block diagram which shows the outline of the engine control system in embodiment of invention.
  • the flowchart which shows the procedure of engine starting control.
  • the figure which shows the stroke of an engine, and intake pressure change.
  • the figure which shows the relationship between a throttle opening and the raise change of an engine speed.
  • the flowchart which shows the procedure of engine starting control in another form.
  • an engine control system is constructed for a single-cylinder gasoline engine mounted on a two-wheeled vehicle such as a scooter as a vehicle.
  • an electronic control unit hereinafter referred to as an ECU
  • Control of injection amount and ignition timing are to be implemented.
  • an air cleaner 12 is provided at the most upstream portion of the intake pipe 11, and a throttle valve 14 is provided downstream thereof.
  • the throttle valve 14 opens and closes in response to a turning operation of a throttle grip (not shown) provided on the vehicle handle.
  • a throttle opening sensor for detecting the throttle opening is omitted for simplification of the configuration.
  • An intake pressure sensor 16 for detecting intake pressure is provided on the downstream side of the throttle valve 14.
  • an electromagnetically driven fuel injection valve 17 is attached near the intake port of the intake pipe 11, and fuel is supplied to the fuel injection valve 17 from a fuel supply system (not shown).
  • An intake valve 21 and an exhaust valve 22 are provided in the intake port and the exhaust port of the engine 10, respectively, and an air-fuel mixture is introduced into the combustion chamber 23 by the opening operation of the intake valve 21, and the exhaust valve 22.
  • the exhaust after combustion is discharged to the exhaust pipe 24 by the opening operation.
  • a spark plug 25 is attached to the cylinder head of the engine 10 for each cylinder, and a high voltage is applied to the spark plug 25 at a desired ignition timing through an ignition device 26 including an ignition coil. By applying this high voltage, a spark discharge is generated between the opposing electrodes of each spark plug 25, and the air-fuel mixture introduced into the combustion chamber 23 is ignited and used for combustion.
  • the exhaust pipe 24 is provided with a catalyst 31 such as a three-way catalyst, and an upstream side of the catalyst 31 is provided with an O2 sensor 32 for detecting the air-fuel ratio of the air-fuel mixture with exhaust as a detection target. Further, the engine 10 receives a water temperature sensor 33 for detecting the temperature of the engine cooling water (engine water temperature), and a rectangular crank angle signal for every predetermined crank angle (for example, at a cycle of 30 ° CA) as the engine 10 rotates. An output rotation sensor 34 is provided.
  • a starter 36 (starting device) is mounted on the vehicle.
  • the starter 36 When the user performs a predetermined start operation, the starter 36 is driven, and initial rotation is applied to the crankshaft of the engine 10.
  • the vehicle has a continuously variable transmission (CVT) as a power transmission device for transmitting the power generated by the engine 10 to the wheels, and between the engine 10 and the continuously variable transmission.
  • the centrifugal clutch provided is mounted.
  • the ECU 40 is mainly composed of a microcomputer including a CPU, a ROM, a RAM, and the like, and detection signals of the various sensors described above are input to the ECU 40.
  • the ECU 40 executes various control programs stored in the ROM, thereby controlling the fuel injection amount of the fuel injection valve 17 and the ignition timing by the spark plug 25 based on the engine operating state. In this case, the fuel injection amount and ignition timing are controlled based on the intake pressure PM (engine load) detected by the intake pressure sensor 16 and the engine rotational speed NE detected by the rotation sensor 34.
  • the throttle opening state is determined based on the intake pressure PM detected by the intake pressure sensor 16.
  • the operation of the engine 10 is restricted by stopping the operation of the engine 10 (that is, not permitting the engine operation).
  • the operation of the engine 10 is stopped. If the intake pressure sensor 16 is abnormal, the throttle opening degree determination based on the detection result of the intake pressure sensor 16 becomes impossible. Therefore, as a preparation for when the intake pressure sensor 16 is abnormal, an increase change in the engine rotational speed NE after the first explosion of the engine 10 is monitored.
  • FIG. 2 is a flowchart showing a procedure of engine start control, and this process is repeatedly performed by the ECU 40 at a predetermined cycle.
  • step S ⁇ b> 11 it is determined whether or not the engine 10 is being started. For example, the start flag is set at the beginning of the engine start, and step S11 is affirmed on the condition that the start flag is set. If step S11 is affirmed, the process proceeds to step S12. Note that the start flag is reset when the engine speed increases and becomes stable after the engine is started.
  • step S12 it is determined whether or not a predetermined negative pressure change of the intake pressure PM has occurred immediately after the starter 36 is started (immediately after the start of cranking). In this case, if the intake pressure sensor 16 is normal and the throttle opening is less than a predetermined value, a predetermined negative pressure change occurs in the intake pressure PM, and an affirmative determination is made in step S12. On the other hand, if the intake pressure sensor 16 is abnormal or the throttle opening is greater than or equal to a predetermined value, a predetermined negative pressure change does not occur in the intake pressure PM, and a negative determination is made in step S12.
  • the intake pipe 11 has a negative pressure in the intake stroke and the compression stroke of the engine 10, and the level of the negative pressure is the throttle. It depends on the opening of the valve 14. At this time, if the throttle valve 14 is in a closed state (throttle opening ⁇ predetermined value), the negative pressure level is relatively large, and if the throttle valve 14 is in an open state (throttle opening ⁇ predetermined value). The negative pressure level is relatively small. If the negative pressure change amount is equal to or greater than the predetermined value as indicated by the solid line in the figure, an affirmative determination is made in step S12. If the negative pressure change amount is less than the predetermined value as indicated by the broken line, a negative determination is made in step S12. .
  • step S12 is performed.
  • step S12 If step S12 is affirmed, the process proceeds to step S13, and normal operation of the engine 10 is permitted. That is, fuel injection by the fuel injection valve 17 and ignition by the spark plug 25 are started.
  • step S12 the process proceeds to step S14 to determine whether or not the intake pressure sensor 16 is normal.
  • the method for determining abnormality of the intake pressure sensor 16 is arbitrary, for example, when the sensor output is constantly held at a value different from the output value when atmospheric pressure is detected, it may be determined that there is an abnormality.
  • step S14 the process proceeds to step S15, and the operation of the engine 10 is stopped. That is, fuel injection by the fuel injection valve 17 and ignition by the spark plug 25 are prohibited.
  • step S14 it can be determined that no negative pressure change has actually occurred in the intake pipe 11 and the throttle valve 14 is in an open state. Therefore, the operation of the engine 10 is stopped in order to suppress erroneous start of the vehicle.
  • step S14 the process proceeds to step S16, and it is determined whether or not the fail-safe operation of the engine 10 due to the abnormality of the intake pressure sensor 16 is being performed. And if fail safe driving
  • the fuel injection amount and the ignition timing are usually calculated using the intake pressure PM and the engine rotational speed NE as basic parameters, whereas the fuel injection amount and the ignition timing are calculated using only the engine rotational speed NE as basic parameters. The time is calculated. Further, for example, a predetermined limit vehicle speed (30 km / h) is determined, and the operation of the engine 10 is controlled so as not to exceed the limit vehicle speed (so-called low-speed fail-safe operation is performed).
  • step S16 After the fail-safe operation is started, an affirmative determination is made in step S16.
  • step S18 the engine speed NE after the first explosion is started after the operation of the engine 10 is started is acquired as the NE increase value.
  • the initial explosion determination value for example, 1000 rpm
  • a predetermined time has elapsed since the initial explosion (for example, 0)
  • the engine speed NE at the time when (5 seconds have elapsed) is acquired as the NE increase value.
  • step S19 it is determined whether or not the NE increase value acquired in step S18 is equal to or greater than a predetermined determination value K.
  • the throttle opening is equal to or greater than a predetermined value and there is a risk of erroneous start of the vehicle due to opening of the throttle.
  • step S15 and S20 when the operation of the engine 10 is forcibly stopped in steps S15 and S20, and then the start operation is performed again by the user, the process of FIG. 2 is performed again. If the throttle valve 14 is closed at that time (that is, if the determination in step S12 is YES or the determination in step S19 is NO), the vehicle is allowed to travel by allowing the engine 10 to operate. It becomes possible.
  • FIG. 4 shows NE changes at different throttle openings after the start of the engine 10
  • L1 shows NE changes at 0% throttle opening
  • L2 shows NE changes at 5% throttle opening
  • L3. Indicates NE change at a throttle opening of 12.5%
  • L4 indicates NE change at a throttle opening of 25%.
  • the engine start (cranking) is started at the timing t1, and then the occurrence of the first explosion is determined at the timing t2.
  • the NE change there is almost no difference in the NE change from the start of the engine 10 until the first explosion occurrence timing or immediately after that, even if the throttle opening is different, but thereafter there is a difference in NE change depending on the throttle opening. Has occurred.
  • the increase in the engine speed NE becomes steeper as the throttle opening increases.
  • the engine speed NE differs depending on the throttle opening, for example, the throttle opening 12.5% (L3), When the throttle opening is 25% (L4), NE is equal to or greater than the determination value K. At this time, if the engine speed NE is greater than or equal to the determination value K at the timing t3, that is, if the throttle opening is at L3 or L4, there is a concern that the vehicle will start erroneously. Stop immediately. In the present embodiment, the engine 10 is forcibly stopped when the throttle opening is larger than about 12.5%.
  • Nx 3000 rpm
  • the engine rotational speed NE reaches Nx early, and accordingly there is a high possibility of erroneous start of the vehicle. Become.
  • the engine operation is stopped when the throttle opening is L3 or L4, so that erroneous start of the vehicle is suppressed.
  • the configuration for suppressing the erroneous start of the vehicle due to the opening of the throttle valve 14 at the time of starting the engine includes means for stopping the operation of the engine 10 based on the detection result of the intake pressure sensor 16, and the engine speed after the first explosion occurs. And a means for stopping the operation of the engine 10 based on a rise change in NE.
  • the intake pressure sensor 16 When the intake pressure sensor 16 is abnormal, the operation of the engine 10 is not disabled thereby, but the engine 10 is configured to perform fail-safe operation. As a result, the vehicle can be evacuated when a sensor abnormality occurs. And since it judges whether a fail safe driving
  • the determination value K for determining the throttle open state based on the NE increase value after the first explosion was set to a value lower than the rotational speed at which the centrifugal clutch is in the connected state (power transmission state). As a result, the engine 10 is stopped before the centrifugal clutch is in the connected state, and erroneous start of the vehicle can be reliably suppressed.
  • the monitoring means for monitoring the NE increase change after the first explosion of the engine 10 is realized by acquiring the engine rotational speed NE at the time when a predetermined time has elapsed from the first explosion as the NE increase value.
  • this may be changed as follows.
  • the engine rotational speed NE after the first explosion may be monitored, and the time required to reach a predetermined rotational speed (for example, 2500 rpm lower than the clutch connection rotational speed) may be acquired.
  • a predetermined rotational speed for example, 2500 rpm lower than the clutch connection rotational speed
  • a means for restricting the operation of the engine 10 when the throttle opening is equal to or greater than a predetermined value a means for immediately stopping the operation of the engine 10 is adopted (see FIG. 2).
  • a means for limiting the engine rotation speed by adjusting the injection amount and the ignition timing and thereby limiting the operation of the engine 10 may be employed. Even in this configuration, it is possible to suppress the erroneous start of the vehicle.
  • a process including the process of FIG. 5 may be performed instead of the process of FIG.
  • the process of the replacement part is shown about the process after step S16 of FIG. 2, and the same step number is attached
  • the process proceeds from step S ⁇ b> 16 to step S ⁇ b> 31, and it is determined whether or not the operation restriction is performed during the fail-safe operation. And if the driving
  • the fuel injection amount and the ignition timing are limited (operation limit of the engine 10) in order to suppress an increase in the engine speed. That is, operation control is performed while fail-safe operation is continued. At this point, the vehicle speed is limited by fail-safe driving, but in addition to that, driving limitation (rotational speed limitation) for suppressing erroneous start is performed.
  • step S32 the process proceeds from step S31 to step S33, and it is determined whether or not to cancel the operation limitation. For example, if a predetermined time has elapsed since the start of the operation restriction, or if a predetermined time has elapsed since the start of the fail safe operation, it is considered that the throttle opening state has been released, and the operation proceeds to step S34 to restrict the operation. To release. Or the structure which measures the time when the NE is restrict
  • the engine speed may be limited by adjusting the fuel injection amount and the ignition timing.
  • the throttle opening sensor is omitted.
  • the present invention may be applied to a system having a throttle opening sensor by changing this system.
  • the process of limiting the operation of the engine 10 based on the detection result of the intake pressure sensor 16 and the initial explosion are performed.
  • a process of limiting the operation of the engine 10 based on the increase in the engine speed NE after birth may be performed. That is, an effective configuration can be realized when the throttle opening sensor is provided but cannot be used.
  • the former means may be used to control the engine at the time of engine start.
  • the present invention can be applied to any vehicle in which there is a concern that the vehicle may start erroneously immediately after starting the engine due to unintended throttle opening.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Electrical Control Of Air Or Fuel Supplied To Internal-Combustion Engine (AREA)
  • Combined Controls Of Internal Combustion Engines (AREA)
  • Control Of Vehicle Engines Or Engines For Specific Uses (AREA)

Abstract

When starting an engine (10), if the opening degree of a throttle valve (14) is determined to be greater than a prescribed degree on the basis of changes in intake pressure detected by an intake pressure sensor (16), an ECU (40) limits the operation of the engine (10). Also, the ECU (40) determines the occurrence of the initial combustion after the starting of the engine (10) is initiated, monitors changes of increase in engine speed after the initial combustion, and limits the operation of the engine (10) when the opening degree of the throttle valve (14) is determined to be greater than the prescribed degree on the basis of the changes of increase in engine speed.

Description

エンジン制御装置Engine control device
 本発明は、車両に搭載されるエンジンの運転を制御するエンジン制御装置に関するものである。 The present invention relates to an engine control device that controls the operation of an engine mounted on a vehicle.
 例えば二輪車においてはハンドルを持ってエンジンの始動操作を行う際に、意図せずにスロットルグリップが開いている場合があり、そのスロットル開放によりエンジンの始動直後に車両の誤発進が生じることが懸念される。そこで、スロットル開度を検出するスロットル開度センサを設けておき、そのスロットル開度センサの検出値に基づいてエンジン始動時にスロットル弁が開放されていることを判定し、スロットル弁の開放時にはエンジン始動の禁止や注意喚起を行うようにした技術が提案されている(例えば特許文献1参照)。 For example, in a two-wheeled vehicle, when the engine is started by holding the handle, the throttle grip may be opened unintentionally, and there is a concern that the vehicle may start erroneously immediately after the engine starts due to the opening of the throttle. The Therefore, a throttle opening sensor for detecting the throttle opening is provided, and it is determined that the throttle valve is opened when the engine is started based on the detected value of the throttle opening sensor. When the throttle valve is opened, the engine is started. There has been proposed a technique for performing prohibition and alerting (see, for example, Patent Document 1).
特開2013-35430号公報JP 2013-35430 A
 ところで、近年ではコスト面の制約などからセンサ類を減らすことが考えられており、例えばスロットル開度センサを省略することが検討されている。この場合、スロットル開度センサを省略することで、スロットル弁の開度状態が把握できなくなる。そのため、やはり車両の誤発進が生じる懸念が残ることとなる。 By the way, in recent years, it has been considered to reduce the number of sensors due to cost restrictions and the like. For example, omitting the throttle opening sensor has been studied. In this case, omitting the throttle opening sensor makes it impossible to grasp the opening state of the throttle valve. For this reason, there still remains a concern that the vehicle will start erroneously.
 本発明は、スロットル開度センサの検出結果を使わずとも車両の誤発進の抑制を図ることができるエンジン制御装置を提供することを主たる目的とするものである。 The main object of the present invention is to provide an engine control device that can suppress erroneous start of the vehicle without using the detection result of the throttle opening sensor.
 以下、上記課題を解決するための手段、及びその作用効果について説明する。 Hereinafter, the means for solving the above-mentioned problems and the effects thereof will be described.
 本発明は、吸気部(11)に吸気圧力検出用の圧力センサ(16)とスロットル弁(14)とが設けられているエンジン(10)に適用されるエンジン制御装置(40)に関する。そして、前記エンジンの始動時において、前記圧力センサにより検出された吸気圧力の変化に基づいて前記スロットル弁の開度が所定以上であるか否かを判定する第1判定手段と、前記第1判定手段により前記スロットル弁の開度が所定以上であると判定される場合に、前記エンジンの運転を制限する第1制御手段と、を備えることを特徴とする。 The present invention relates to an engine control device (40) applied to an engine (10) in which a pressure sensor (16) for detecting intake pressure and a throttle valve (14) are provided in an intake section (11). And a first determination means for determining whether or not an opening of the throttle valve is greater than or equal to a predetermined value based on a change in the intake pressure detected by the pressure sensor at the time of starting the engine; Means for limiting the operation of the engine when it is determined by the means that the opening of the throttle valve is greater than or equal to a predetermined value.
 上記構成では、エンジン始動時において、スロットル弁の開度と吸気圧力との関係を用いてスロットル開度状態を把握し、スロットル弁の開度が所定以上であると判定される場合にエンジンの運転を制限する。この場合、スロットル弁の開度をセンサにより直接検出しなくても、スロットル弁の開度状態の把握が可能となっている。これにより、スロットル開度センサの検出結果を使わずとも車両の誤発進の抑制を図ることが可能となる。 In the above configuration, when the engine is started, the throttle opening state is grasped using the relationship between the throttle valve opening and the intake pressure, and the engine is operated when it is determined that the opening of the throttle valve is greater than or equal to a predetermined value. Limit. In this case, the opening degree of the throttle valve can be grasped without directly detecting the opening degree of the throttle valve by a sensor. Thereby, it is possible to suppress the erroneous start of the vehicle without using the detection result of the throttle opening sensor.
 また、上記構成に加え、前記エンジンの始動開始後において初爆が生じた後のエンジン回転速度を監視する監視手段と、前記初爆の発生後のエンジン回転速度に基づいて前記スロットル弁の開度が所定以上であるか否かを判定する第2判定手段と、前記第2判定手段により前記スロットル弁の開度が所定以上であると判定される場合に、前記エンジンの運転を制限する第2制御手段と、を備えるものであってもよい。 Further, in addition to the above configuration, the monitoring means for monitoring the engine rotation speed after the initial explosion has occurred after the start of the engine, and the opening of the throttle valve based on the engine rotation speed after the first explosion has occurred Second determining means for determining whether or not the engine is greater than or equal to a predetermined value; and a second determining means for restricting the engine operation when the second determining means determines that the opening of the throttle valve is equal to or greater than the predetermined value. And a control means.
 上記構成では、エンジン始動時にスロットル弁の開放に伴う車両の誤発進を抑制するための手段として、圧力センサの検出結果に基づいてエンジンの運転を制限する手段(第1制御手段)と、初爆発生後のエンジン回転速度に基づいてエンジンの運転を制限する手段(第2制御手段)とを備える構成とした。これにより、スロットル開度センサの検出結果を使わずともエンジン始動時の誤発進の抑制が可能となり、しかも圧力センサの異常時においてもやはりエンジン始動時の誤発進の抑制が可能となる。 In the above configuration, as means for suppressing erroneous start of the vehicle due to opening of the throttle valve at the time of starting the engine, means for limiting engine operation based on the detection result of the pressure sensor (first control means), and initial explosion Means (second control means) for limiting the operation of the engine based on the engine rotation speed after birth. Thereby, it is possible to suppress erroneous start at the time of engine start without using the detection result of the throttle opening sensor, and also to suppress erroneous start at the time of engine start even when the pressure sensor is abnormal.
発明の実施の形態におけるエンジン制御システムの概略を示す構成図。The block diagram which shows the outline of the engine control system in embodiment of invention. エンジン始動制御の手順を示すフローチャート。The flowchart which shows the procedure of engine starting control. エンジンの行程と吸気圧力変化とを示す図。The figure which shows the stroke of an engine, and intake pressure change. スロットル開度とエンジン回転速度の上昇変化との関係を示す図。The figure which shows the relationship between a throttle opening and the raise change of an engine speed. 別の形態においてエンジン始動制御の手順を示すフローチャート。The flowchart which shows the procedure of engine starting control in another form.
 以下、本発明を具体化した一実施形態を図面に基づいて説明する。本実施形態は、車両としてスクータ等の二輪車に搭載される単気筒ガソリンエンジンを対象にエンジン制御システムを構築するものとしており、当該制御システムにおいては電子制御ユニット(以下、ECUという)を中枢として燃料噴射量の制御や点火時期の制御等を実施することとしている。先ずは、図1を用いてエンジン制御システムの全体概略構成を説明する。 Hereinafter, an embodiment of the present invention will be described with reference to the drawings. In the present embodiment, an engine control system is constructed for a single-cylinder gasoline engine mounted on a two-wheeled vehicle such as a scooter as a vehicle. In the control system, an electronic control unit (hereinafter referred to as an ECU) is used as a central fuel. Control of injection amount and ignition timing are to be implemented. First, the overall schematic configuration of the engine control system will be described with reference to FIG.
 図1に示すエンジン10において、吸気管11の最上流部にはエアクリーナ12が設けられ、その下流側にはスロットル弁14が設けられている。このスロットル弁14は車両のハンドルに設けられたスロットルグリップ(図示略)の回動操作に応じて開閉する。なお、本システムにおいては構成の簡素化のため、スロットル開度を検出するスロットル開度センサが省略されている。スロットル弁14の下流側には吸気圧力を検出するための吸気圧力センサ16が設けられている。さらに、吸気管11の吸気ポート近傍には電磁駆動式の燃料噴射弁17が取り付けられており、燃料噴射弁17には、図示しない燃料供給系より燃料が供給されるようになっている。 In the engine 10 shown in FIG. 1, an air cleaner 12 is provided at the most upstream portion of the intake pipe 11, and a throttle valve 14 is provided downstream thereof. The throttle valve 14 opens and closes in response to a turning operation of a throttle grip (not shown) provided on the vehicle handle. In this system, a throttle opening sensor for detecting the throttle opening is omitted for simplification of the configuration. An intake pressure sensor 16 for detecting intake pressure is provided on the downstream side of the throttle valve 14. Further, an electromagnetically driven fuel injection valve 17 is attached near the intake port of the intake pipe 11, and fuel is supplied to the fuel injection valve 17 from a fuel supply system (not shown).
 エンジン10の吸気ポート及び排気ポートにはそれぞれ吸気弁21及び排気弁22が設けられており、吸気弁21の開動作により空気と燃料との混合気が燃焼室23内に導入され、排気弁22の開動作により燃焼後の排気が排気管24に排出される。エンジン10のシリンダヘッドには各気筒ごとに点火プラグ25が取り付けられており、点火プラグ25には、点火コイル等よりなる点火装置26を通じて、所望とする点火時期において高電圧が印加される。この高電圧の印加により、各点火プラグ25の対向電極間に火花放電が発生し、燃焼室23内に導入された混合気が着火され燃焼に供される。 An intake valve 21 and an exhaust valve 22 are provided in the intake port and the exhaust port of the engine 10, respectively, and an air-fuel mixture is introduced into the combustion chamber 23 by the opening operation of the intake valve 21, and the exhaust valve 22. The exhaust after combustion is discharged to the exhaust pipe 24 by the opening operation. A spark plug 25 is attached to the cylinder head of the engine 10 for each cylinder, and a high voltage is applied to the spark plug 25 at a desired ignition timing through an ignition device 26 including an ignition coil. By applying this high voltage, a spark discharge is generated between the opposing electrodes of each spark plug 25, and the air-fuel mixture introduced into the combustion chamber 23 is ignited and used for combustion.
 排気管24には、三元触媒等の触媒31が設けられ、この触媒31の上流側には排気を検出対象として混合気の空燃比を検出するO2センサ32が設けられている。また、エンジン10には、エンジン冷却水の温度(エンジン水温)を検出する水温センサ33や、エンジン10の回転に伴い所定クランク角ごとに(例えば30°CA周期で)矩形状のクランク角信号を出力する回転センサ34が設けられている。 The exhaust pipe 24 is provided with a catalyst 31 such as a three-way catalyst, and an upstream side of the catalyst 31 is provided with an O2 sensor 32 for detecting the air-fuel ratio of the air-fuel mixture with exhaust as a detection target. Further, the engine 10 receives a water temperature sensor 33 for detecting the temperature of the engine cooling water (engine water temperature), and a rectangular crank angle signal for every predetermined crank angle (for example, at a cycle of 30 ° CA) as the engine 10 rotates. An output rotation sensor 34 is provided.
 その他、車両にはスタータ36(始動装置)が搭載されている。ユーザが所定の始動操作を行うことでスタータ36が駆動され、エンジン10のクランク軸に初期回転が付与されるようになっている。また、図示は省略するが、本車両には、エンジン10で発生した動力を車輪側に伝達するための動力伝達装置として無段変速機(CVT)と、エンジン10及び無段変速機の間に設けられる遠心クラッチとが搭載されている。 In addition, a starter 36 (starting device) is mounted on the vehicle. When the user performs a predetermined start operation, the starter 36 is driven, and initial rotation is applied to the crankshaft of the engine 10. Although not shown, the vehicle has a continuously variable transmission (CVT) as a power transmission device for transmitting the power generated by the engine 10 to the wheels, and between the engine 10 and the continuously variable transmission. The centrifugal clutch provided is mounted.
 ECU40は、CPU、ROM、RAM等よりなるマイクロコンピュータを主に構成されており、このECU40には上記の各種センサの検出信号などが入力される。ECU40は、ROMに記憶された各種の制御プログラムを実行することで、エンジン運転状態に基づいて燃料噴射弁17の燃料噴射量や点火プラグ25による点火時期などを制御する。この場合、吸気圧力センサ16により検出される吸気圧力PM(エンジン負荷)や回転センサ34により検出されるエンジン回転速度NEに基づいて燃料噴射量や点火時期の制御が実施される。 The ECU 40 is mainly composed of a microcomputer including a CPU, a ROM, a RAM, and the like, and detection signals of the various sensors described above are input to the ECU 40. The ECU 40 executes various control programs stored in the ROM, thereby controlling the fuel injection amount of the fuel injection valve 17 and the ignition timing by the spark plug 25 based on the engine operating state. In this case, the fuel injection amount and ignition timing are controlled based on the intake pressure PM (engine load) detected by the intake pressure sensor 16 and the engine rotational speed NE detected by the rotation sensor 34.
 ところで、エンジン10の始動時において、スロットル弁14が開放されていると、車両が意図せず誤発進してしまうことがあると考えられる。例えばユーザがスロットルグリップを無意識に回動させている場合に、こうした不都合の発生が懸念される。つまり、エンジン10が始動され、エンジン回転速度が遠心クラッチの接続回転速度以上に上昇して車両が駆動され得る状態になると、ユーザが意図しない誤発進、いわゆる飛び出しが発生するおそれが生じる。 By the way, when the engine 10 is started, if the throttle valve 14 is opened, it is considered that the vehicle may unintentionally start. For example, when the user unconsciously rotates the throttle grip, there is a concern about the occurrence of such inconvenience. That is, when the engine 10 is started and the engine rotational speed increases to be higher than the connection rotational speed of the centrifugal clutch so that the vehicle can be driven, there is a possibility that a false start unintended by the user, that is, a so-called pop-out occurs.
 そこで本実施形態では、エンジン10の始動開始直後において、吸気圧力センサ16により検出される吸気圧力PMに基づいてスロットル開度状態を判定する。そして、スロットル弁14が所定の開度状態になっていると判定された場合に、エンジン10の運転を停止させる(すなわちエンジン運転を許可しない)ことでエンジン10の運転を制限するようにしている。例えばスロットル弁14が、車両が駆動されるであろうエンジン回転速度に達する開度状態になっていることが判定された場合にはエンジン10の運転を停止させる。また、吸気圧力センサ16が万が一異常であった場合には、吸気圧力センサ16の検出結果によるスロットル開度判定が不可になる。そのため、吸気圧力センサ16の異常時の備えとして、エンジン10の初爆後におけるエンジン回転速度NEの上昇変化を監視する。そして監視されたエンジン回転速度NEの上昇変化に基づいてスロットル開度状態を検出し、スロットル弁14が、車両駆動可能なエンジン回転速度以上となる開度状態になっていると判定された場合に、エンジン10の運転を停止させることでエンジン10の運転を制限するようにしている。 Therefore, in this embodiment, immediately after the start of the engine 10, the throttle opening state is determined based on the intake pressure PM detected by the intake pressure sensor 16. When it is determined that the throttle valve 14 is in the predetermined opening state, the operation of the engine 10 is restricted by stopping the operation of the engine 10 (that is, not permitting the engine operation). . For example, when it is determined that the throttle valve 14 is in an opening state that reaches the engine speed at which the vehicle will be driven, the operation of the engine 10 is stopped. If the intake pressure sensor 16 is abnormal, the throttle opening degree determination based on the detection result of the intake pressure sensor 16 becomes impossible. Therefore, as a preparation for when the intake pressure sensor 16 is abnormal, an increase change in the engine rotational speed NE after the first explosion of the engine 10 is monitored. When the throttle opening state is detected based on the monitored change in the engine rotational speed NE and it is determined that the throttle valve 14 is in an opening state that is equal to or higher than the engine rotational speed at which the vehicle can be driven. The operation of the engine 10 is restricted by stopping the operation of the engine 10.
 図2は、エンジン始動制御の手順を示すフローチャートであり、本処理はECU40により所定周期で繰り返し実施される。 FIG. 2 is a flowchart showing a procedure of engine start control, and this process is repeatedly performed by the ECU 40 at a predetermined cycle.
 図2において、ステップS11では、エンジン10の始動時であるか否かを判定する。例えばエンジン始動当初には始動フラグがセットされており、その始動フラグがセットされていることを条件にステップS11が肯定される。ステップS11が肯定されるとステップS12に進む。なお、始動フラグはエンジン始動後にエンジン回転速度が上昇し安定状態になった時点でリセットされる。 In FIG. 2, in step S <b> 11, it is determined whether or not the engine 10 is being started. For example, the start flag is set at the beginning of the engine start, and step S11 is affirmed on the condition that the start flag is set. If step S11 is affirmed, the process proceeds to step S12. Note that the start flag is reset when the engine speed increases and becomes stable after the engine is started.
 ステップS12では、スタータ36の始動直後(クランキング開始直後)において吸気圧力PMの所定の負圧変化が生じたか否かを判定する。この場合、吸気圧力センサ16が正常であり、かつスロットル開度が所定未満になっていれば、吸気圧力PMに所定の負圧変化が生じ、ステップS12で肯定判断される。これに対し、吸気圧力センサ16が異常であるか、又はスロットル開度が所定以上になっていれば、吸気圧力PMに所定の負圧変化が生じず、ステップS12で否定判断される。 In step S12, it is determined whether or not a predetermined negative pressure change of the intake pressure PM has occurred immediately after the starter 36 is started (immediately after the start of cranking). In this case, if the intake pressure sensor 16 is normal and the throttle opening is less than a predetermined value, a predetermined negative pressure change occurs in the intake pressure PM, and an affirmative determination is made in step S12. On the other hand, if the intake pressure sensor 16 is abnormal or the throttle opening is greater than or equal to a predetermined value, a predetermined negative pressure change does not occur in the intake pressure PM, and a negative determination is made in step S12.
 補足すると、図3に示すように、スタータ36の駆動によりクランク軸が回転する際には、エンジン10の吸気行程及び圧縮行程で吸気管11内が負圧になり、その負圧のレベルはスロットル弁14の開度に応じたものとなる。このとき、スロットル弁14が閉状態(スロットル開度<所定値)になっていれば負圧レベルは比較的大きくなり、スロットル弁14が開状態(スロットル開度≧所定値)になっていれば負圧レベルは比較的小さくなる。そして、図の実線で示すごとく負圧変化量が所定値以上であれば、ステップS12で肯定判断され、破線で示すごとく負圧変化量が所定値未満であれば、ステップS12で否定判断される。 Supplementally, as shown in FIG. 3, when the crankshaft is rotated by driving the starter 36, the intake pipe 11 has a negative pressure in the intake stroke and the compression stroke of the engine 10, and the level of the negative pressure is the throttle. It depends on the opening of the valve 14. At this time, if the throttle valve 14 is in a closed state (throttle opening <predetermined value), the negative pressure level is relatively large, and if the throttle valve 14 is in an open state (throttle opening ≧ predetermined value). The negative pressure level is relatively small. If the negative pressure change amount is equal to or greater than the predetermined value as indicated by the solid line in the figure, an affirmative determination is made in step S12. If the negative pressure change amount is less than the predetermined value as indicated by the broken line, a negative determination is made in step S12. .
 また、吸気圧力センサ16に異常が生じている場合には、その検出信号が不変の状態(例えば最大値又は最小値に貼り付いた状態)になっていると想定される。かかる場合にも、ステップS12される。 Further, when an abnormality occurs in the intake pressure sensor 16, it is assumed that the detection signal is in an invariable state (for example, a state where the detection signal is stuck to the maximum value or the minimum value). Also in such a case, step S12 is performed.
 ステップS12が肯定された場合には、ステップS13に進み、エンジン10の通常運転を許可する。つまり、燃料噴射弁17による燃料噴射と点火プラグ25による点火とを開始する。 If step S12 is affirmed, the process proceeds to step S13, and normal operation of the engine 10 is permitted. That is, fuel injection by the fuel injection valve 17 and ignition by the spark plug 25 are started.
 また、ステップS12された場合には、ステップS14に進み、吸気圧力センサ16が正常であるか否かを判定する。なお、吸気圧力センサ16の異常判定の方法は任意であるが、例えばセンサ出力が大気圧検出時の出力値とは異なる値で一定保持されている場合に、異常有りと判定するとよい。 If step S12 has been performed, the process proceeds to step S14 to determine whether or not the intake pressure sensor 16 is normal. Although the method for determining abnormality of the intake pressure sensor 16 is arbitrary, for example, when the sensor output is constantly held at a value different from the output value when atmospheric pressure is detected, it may be determined that there is an abnormality.
 ステップS14された場合、ステップS15に進み、エンジン10の運転を停止させる。つまり、燃料噴射弁17による燃料噴射と点火プラグ25による点火とを禁止する。ステップS14される場合は、実際に吸気管11内における負圧変化が生じておらず、スロットル弁14が開放状態にあると判断できる。したがって、車両の誤発進を抑制すべくエンジン10の運転が停止される。 When step S14 is performed, the process proceeds to step S15, and the operation of the engine 10 is stopped. That is, fuel injection by the fuel injection valve 17 and ignition by the spark plug 25 are prohibited. When step S14 is performed, it can be determined that no negative pressure change has actually occurred in the intake pipe 11 and the throttle valve 14 is in an open state. Therefore, the operation of the engine 10 is stopped in order to suppress erroneous start of the vehicle.
 また、ステップS14された場合、ステップS16に進み、吸気圧力センサ16の異常発生に伴うエンジン10のフェイルセーフ運転が実施されているか否かを判定する。そして、フェイルセーフ運転が実施されていなければステップS17に進み、当該フェイルセーフ運転を開始すべく、エンジン10の運転を許可する。なお、フェイルセーフ運転では、通常は吸気圧力PMとエンジン回転速度NEとを基本パラメータとして燃料噴射量や点火時期が算出されるのに対し、エンジン回転速度NEだけを基本パラメータとして燃料噴射量や点火時期が算出される。また、例えば所定の制限車速(30km/h)が定められ、その制限車速を超えないようにエンジン10の運転が制御される(いわゆる低速フェイルセーフ運転が実施される)。 Further, when step S14 is performed, the process proceeds to step S16, and it is determined whether or not the fail-safe operation of the engine 10 due to the abnormality of the intake pressure sensor 16 is being performed. And if fail safe driving | operation is not implemented, it will progress to step S17 and will drive | operate the engine 10 in order to start the said fail safe driving | operation. In the fail-safe operation, the fuel injection amount and the ignition timing are usually calculated using the intake pressure PM and the engine rotational speed NE as basic parameters, whereas the fuel injection amount and the ignition timing are calculated using only the engine rotational speed NE as basic parameters. The time is calculated. Further, for example, a predetermined limit vehicle speed (30 km / h) is determined, and the operation of the engine 10 is controlled so as not to exceed the limit vehicle speed (so-called low-speed fail-safe operation is performed).
 フェイルセーフ運転が開始された後はステップS16で肯定判断される。そして、ステップS18では、エンジン10の運転が開始されて初爆が発生した後のエンジン回転速度NEをNE上昇値として取得する。このとき、エンジン10の始動開始後においてエンジン回転速度NEが初爆判定値(例えば1000rpm)に到達したことに基づいて初爆が生じたことが判定され、その初爆から所定時間経過(例えば0.5秒経過)の時点でのエンジン回転速度NEがNE上昇値として取得される。 After the fail-safe operation is started, an affirmative determination is made in step S16. In step S18, the engine speed NE after the first explosion is started after the operation of the engine 10 is started is acquired as the NE increase value. At this time, it is determined that the initial explosion has occurred based on the fact that the engine speed NE has reached the initial explosion determination value (for example, 1000 rpm) after the start of the engine 10, and a predetermined time has elapsed since the initial explosion (for example, 0) The engine speed NE at the time when (5 seconds have elapsed) is acquired as the NE increase value.
 その後、ステップS19では、ステップS18で取得したNE上昇値が所定の判定値K以上であるか否かを判定する。判定値Kは、車両において遠心クラッチを介してエンジン10の動力が変速機側に伝達されるクラッチ接続の回転速度(例えば3000rpm)を基準に定められている。本実施形態では、判定値Kはクラッチ接続の回転速度よりも小さく、例えばK=2500rpmである。このとき、初爆の発生後におけるNE変化はスロットル開度に依存していることから、NE上昇値により都度のスロットル開度を推測できる。そして、NE上昇値が、スロットル開度の許容値に相当する判定値Kよりも大きければ、スロットル開度が所定以上になっており、スロットル開放による車両の誤発進のおそれがあると判定できる。 Thereafter, in step S19, it is determined whether or not the NE increase value acquired in step S18 is equal to or greater than a predetermined determination value K. The determination value K is determined on the basis of the rotational speed (for example, 3000 rpm) of the clutch connection in which the power of the engine 10 is transmitted to the transmission side through the centrifugal clutch in the vehicle. In the present embodiment, the determination value K is smaller than the rotational speed of the clutch connection, for example, K = 2500 rpm. At this time, since the change in NE after the occurrence of the first explosion depends on the throttle opening, it is possible to estimate the throttle opening for each time based on the NE increase value. If the NE increase value is larger than the determination value K corresponding to the allowable value of the throttle opening, it can be determined that the throttle opening is equal to or greater than a predetermined value and there is a risk of erroneous start of the vehicle due to opening of the throttle.
 ステップS19で肯定判断された場合、ステップS20に進み、エンジン10の運転(フェイルセーフ運転)を停止させる。また、ステップS19で否定判断された場合には、そのまま処理を終了する。なお、ステップS19で否定判断された時点では既にフェイルセーフ運転が開始されており、S19=NOの場合にはエンジン10の運転(フェイルセーフ運転)が継続される。 If an affirmative determination is made in step S19, the process proceeds to step S20, and the operation of the engine 10 (fail-safe operation) is stopped. If a negative determination is made in step S19, the process ends. Note that when a negative determination is made in step S19, the fail-safe operation has already been started, and when S19 = NO, the operation of the engine 10 (fail-safe operation) is continued.
 なお、ステップS15,S20でエンジン10の運転が強制停止され、その後にユーザによって再度の始動操作が行われる場合には、再び図2の処理が実施される。そして、その際にスロットル弁14が閉じられていれば(すなわちステップS12での判断がYES、又はステップS19での判断がNOであれば)、エンジン10の運転が許容されることにより車両走行が可能な状態となる。 In addition, when the operation of the engine 10 is forcibly stopped in steps S15 and S20, and then the start operation is performed again by the user, the process of FIG. 2 is performed again. If the throttle valve 14 is closed at that time (that is, if the determination in step S12 is YES or the determination in step S19 is NO), the vehicle is allowed to travel by allowing the engine 10 to operate. It becomes possible.
 次に、スロットル開度とエンジン回転速度NEの上昇変化との関係を図4を用いて説明する。図4では、エンジン10の始動開始後において各々異なるスロットル開度でのNE変化を示しており、L1はスロットル開度0%でのNE変化、L2はスロットル開度5%でのNE変化、L3はスロットル開度12.5%でのNE変化、L4はスロットル開度25%でのNE変化を示している。 Next, the relationship between the throttle opening and the increase in engine speed NE will be described with reference to FIG. FIG. 4 shows NE changes at different throttle openings after the start of the engine 10, L1 shows NE changes at 0% throttle opening, L2 shows NE changes at 5% throttle opening, and L3. Indicates NE change at a throttle opening of 12.5%, and L4 indicates NE change at a throttle opening of 25%.
 さて、タイミングt1ではエンジン始動(クランキング)が開始され、その後、タイミングt2では初爆発生が判定される。ここで、エンジン10の始動開始から初爆発生タイミング又はその直後までは、スロットル開度が大小相違していてもNE変化に差異はほとんど無いが、その後はスロットル開度に応じてNE変化に差異が生じている。このとき、スロットル開度が大きいほどエンジン回転速度NEの上昇変化が急峻になっている。 Now, the engine start (cranking) is started at the timing t1, and then the occurrence of the first explosion is determined at the timing t2. Here, there is almost no difference in the NE change from the start of the engine 10 until the first explosion occurrence timing or immediately after that, even if the throttle opening is different, but thereafter there is a difference in NE change depending on the throttle opening. Has occurred. At this time, the increase in the engine speed NE becomes steeper as the throttle opening increases.
 初爆判定(t2)から所定時間ΔTが経過したタイミングt3では、エンジン回転速度NE(NE上昇値)がスロットル開度に応じて相違しており、例えばスロットル開度12.5%(L3)、スロットル開度25%(L4)では、NEが判定値K以上となっている。このとき、タイミングt3でエンジン回転速度NEが判定値K以上となる場合、すなわちL3,L4のスロットル開度となっている場合には、車両の誤発進が懸念されるため、エンジン10の運転が直ちに停止される。本実施形態では、スロットル開度が12.5%程度よりも大きい場合に、エンジン10を強制的に停止させるようにしている。 At the timing t3 when the predetermined time ΔT has elapsed from the initial explosion determination (t2), the engine speed NE (NE increase value) differs depending on the throttle opening, for example, the throttle opening 12.5% (L3), When the throttle opening is 25% (L4), NE is equal to or greater than the determination value K. At this time, if the engine speed NE is greater than or equal to the determination value K at the timing t3, that is, if the throttle opening is at L3 or L4, there is a concern that the vehicle will start erroneously. Stop immediately. In the present embodiment, the engine 10 is forcibly stopped when the throttle opening is larger than about 12.5%.
 なお、図中のNxは、車両において遠心クラッチが動力伝達状態になる回転速度を示している(例えばNx=3000rpm)。従来の構成では、スロットル開度がL3,L4の場合は、エンジン10の運転を継続させていると、エンジン回転速度NEが早期にNxに到達し、それに伴い車両の誤発進の可能性が高くなる。この点、上記の本実施形態の構成によればスロットル開度がL3,L4の場合にはエンジン運転が停止されるため、車両の誤発進が抑制される。 Note that Nx in the figure indicates a rotation speed at which the centrifugal clutch is in a power transmission state in the vehicle (for example, Nx = 3000 rpm). In the conventional configuration, when the throttle opening is L3 and L4, if the operation of the engine 10 is continued, the engine rotational speed NE reaches Nx early, and accordingly there is a high possibility of erroneous start of the vehicle. Become. In this regard, according to the configuration of the present embodiment described above, the engine operation is stopped when the throttle opening is L3 or L4, so that erroneous start of the vehicle is suppressed.
 以上詳述した本実施形態によれば、以下の優れた効果が得られる。 According to the embodiment described above in detail, the following excellent effects can be obtained.
 エンジン始動時において、吸気圧力センサ16による吸気圧力の検出値に基づきスロットル弁14の開度が所定以上であると判定される場合に、エンジン10の運転を停止させる(運転を制限する)構成とした。かかる構成では、スロットル弁14の開度をセンサにより直接検出しなくても、スロットル弁14の開度状態の把握が可能となり、スロットル開度センサの検出結果を使わずとも車両の誤発進の抑制を図ることが可能となる。 A configuration that stops the operation of the engine 10 (limits the operation) when the opening of the throttle valve 14 is determined to be greater than or equal to a predetermined value based on the detected value of the intake pressure by the intake pressure sensor 16 at the time of starting the engine; did. In such a configuration, it is possible to grasp the opening state of the throttle valve 14 without directly detecting the opening degree of the throttle valve 14 by a sensor, and to suppress the erroneous start of the vehicle without using the detection result of the throttle opening sensor. Can be achieved.
 エンジン始動時においてスロットル弁14の開放に伴う車両の誤発進を抑制するための構成は、吸気圧力センサ16の検出結果に基づいてエンジン10の運転を停止させる手段と、初爆発生後のエンジン回転速度NEの上昇変化に基づいてエンジン10の運転を停止させる手段とを備える。これにより、スロットル開度センサを具備していなくてもエンジン始動時の誤発進の抑制が可能となり、しかも吸気圧力センサ16の異常時においてもやはりエンジン始動時の誤発進の抑制が可能となる。その結果、エンジン始動の制御を適正に行い、ひいては車両の誤発進の抑制を図ることができる。 The configuration for suppressing the erroneous start of the vehicle due to the opening of the throttle valve 14 at the time of starting the engine includes means for stopping the operation of the engine 10 based on the detection result of the intake pressure sensor 16, and the engine speed after the first explosion occurs. And a means for stopping the operation of the engine 10 based on a rise change in NE. Thereby, even if the throttle opening sensor is not provided, it is possible to suppress erroneous start at the time of engine start, and furthermore, it is possible to suppress erroneous start at the time of engine start even when the intake pressure sensor 16 is abnormal. As a result, it is possible to appropriately control the engine start and to suppress the erroneous start of the vehicle.
 吸気圧力センサ16の異常時にそれによりエンジン10の運転を不可にするのではなく、エンジン10のフェイルセーフ運転を実施する構成とした。これにより、センサ異常の発生時に車両の退避走行が可能となる。そして、初爆後のNE上昇変化に応じてフェイルセーフ運転を停止させるか、継続させるかを判断するので、フェイルセーフ運転を安全にかつ適正に実施できる。 When the intake pressure sensor 16 is abnormal, the operation of the engine 10 is not disabled thereby, but the engine 10 is configured to perform fail-safe operation. As a result, the vehicle can be evacuated when a sensor abnormality occurs. And since it judges whether a fail safe driving | operation is stopped or continued according to the NE rise change after the first explosion, a fail safe driving | operation can be implemented safely and appropriately.
 初爆後のNE上昇値によりスロットル開放の状態を判定するための判定値Kを、遠心クラッチが接続状態(動力伝達状態)になる回転速度よりも低い値とした。これにより、遠心クラッチが接続状態になる前にエンジン10を停止させ、車両の誤発進を確実に抑制できる。 The determination value K for determining the throttle open state based on the NE increase value after the first explosion was set to a value lower than the rotational speed at which the centrifugal clutch is in the connected state (power transmission state). As a result, the engine 10 is stopped before the centrifugal clutch is in the connected state, and erroneous start of the vehicle can be reliably suppressed.
 (他の実施形態)
 上記実施形態を例えば次のように変更してもよい。
(Other embodiments)
You may change the said embodiment as follows, for example.
 ・上記実施形態では、エンジン10の初爆の発生後におけるNE上昇変化を監視する監視手段を、初爆から所定時間経過の時点でのエンジン回転速度NEをNE上昇値として取得することで具体化したが、これを以下のように変更してもよい。例えば、初爆後のエンジン回転速度NEを監視し、所定回転速度(例えばクラッチ接続回転速度よりも低い2500rpm)に到達するまでの所要時間を取得する構成としてもよい。この場合、上記所要時間が所定時間よりも短い場合に、スロットル弁14の開度が所定以上であると判定される。 In the above embodiment, the monitoring means for monitoring the NE increase change after the first explosion of the engine 10 is realized by acquiring the engine rotational speed NE at the time when a predetermined time has elapsed from the first explosion as the NE increase value. However, this may be changed as follows. For example, the engine rotational speed NE after the first explosion may be monitored, and the time required to reach a predetermined rotational speed (for example, 2500 rpm lower than the clutch connection rotational speed) may be acquired. In this case, when the required time is shorter than the predetermined time, it is determined that the opening degree of the throttle valve 14 is equal to or greater than the predetermined time.
 ・上記実施形態では、スロットル開度が所定以上である場合にエンジン10の運転を制限する手段として、エンジン10の運転を直ちに停止させる手段を採用したが(図2参照)、これに代えて燃料噴射量や点火時期の調整によりエンジン回転速度を制限し、それによりエンジン10の運転を制限する手段を採用してもよい。本構成においても車両の誤発進の抑制を図ることが可能となっている。 In the above embodiment, as a means for restricting the operation of the engine 10 when the throttle opening is equal to or greater than a predetermined value, a means for immediately stopping the operation of the engine 10 is adopted (see FIG. 2). A means for limiting the engine rotation speed by adjusting the injection amount and the ignition timing and thereby limiting the operation of the engine 10 may be employed. Even in this configuration, it is possible to suppress the erroneous start of the vehicle.
 具体的には、図2の処理に置き換えて、図5の処理を含む処理が実施されるとよい。図5では、図2のステップS16以降の処理について置換部分の処理を示しており、図2と同じ処理については同じステップ番号を付している。図5では、エンジン10のフェイルセーフ運転が開始された後においてステップS16からステップS31に進み、そのフェイルセーフ運転中において運転制限が実施されているか否かを判定する。そして、運転制限が実施されていなければ、上述のステップS18,S19の処理を実施するとともに、さらにステップS19の判断がYESであれば(NE上昇値>Kであれば)、ステップS32に進んで、エンジン回転速度の上昇を抑制すべく燃料噴射量や点火時期の制限(エンジン10の運転制限)を実施する。つまり、フェイルセーフ運転を継続したまま運転制御を実施する。なおこの時点では、フェイルセーフ運転による車速制限が実施されているが、それに加えて誤発進抑制のための運転制限(回転速度制限)が実施される。 Specifically, a process including the process of FIG. 5 may be performed instead of the process of FIG. In FIG. 5, the process of the replacement part is shown about the process after step S16 of FIG. 2, and the same step number is attached | subjected about the process same as FIG. In FIG. 5, after the fail-safe operation of the engine 10 is started, the process proceeds from step S <b> 16 to step S <b> 31, and it is determined whether or not the operation restriction is performed during the fail-safe operation. And if the driving | running | working restriction | limiting is not implemented, while performing the process of above-mentioned step S18, S19, if the judgment of step S19 is further YES (if NE increase value> K), it will progress to step S32. Then, the fuel injection amount and the ignition timing are limited (operation limit of the engine 10) in order to suppress an increase in the engine speed. That is, operation control is performed while fail-safe operation is continued. At this point, the vehicle speed is limited by fail-safe driving, but in addition to that, driving limitation (rotational speed limitation) for suppressing erroneous start is performed.
 そして、エンジン10の運転制限(S32)が開始された後は、ステップS31からステップS33に進み、その運転制限を解除するか否かを判定する。例えば、運転制限の開始から所定時間が経過していれば、又はフェイルセーフ運転の開始から所定時間が経過していれば、スロットル開放の状態が解除されたとみなし、ステップS34に進んで運転制限を解除する。或いはエンジン回転速度NEの監視結果に基づいて同NEが制限されている時間を計測し、その制限時間が所定時間を超えたら運転制限を解除する構成であってもよい。 Then, after the operation limitation (S32) of the engine 10 is started, the process proceeds from step S31 to step S33, and it is determined whether or not to cancel the operation limitation. For example, if a predetermined time has elapsed since the start of the operation restriction, or if a predetermined time has elapsed since the start of the fail safe operation, it is considered that the throttle opening state has been released, and the operation proceeds to step S34 to restrict the operation. To release. Or the structure which measures the time when the NE is restrict | limited based on the monitoring result of engine rotational speed NE, and cancel | releases an operation restriction | limiting when the limit time exceeds predetermined time may be sufficient.
 なお、始動開始直後において、吸気圧力PMの所定の負圧変化が生じておらず、かつ吸気圧力センサ16が異常である場合(図2のステップS12での判断がNOで、かつステップS14での判断がYESの場合)に、燃料噴射量や点火時期を調整することでエンジン回転速度を制限するようにしてもよい。 It should be noted that immediately after the start of the engine, if the predetermined negative pressure change of the intake pressure PM has not occurred and the intake pressure sensor 16 is abnormal (the determination in step S12 in FIG. 2 is NO and the determination in step S14) If the determination is YES), the engine speed may be limited by adjusting the fuel injection amount and the ignition timing.
 ・上記実施形態では、スロットル開度センサを省略したシステムとしたが、これを変更し、スロットル開度センサを有するシステムに本発明を適用してもよい。かかる場合においては、例えばECU40により、スロットル開度センサが異常であると判定された場合に、上記のとおり、吸気圧力センサ16の検出結果に基づいてエンジン10の運転を制限する処理と、初爆発生後のエンジン回転速度NEの上昇変化に基づいてエンジン10の運転を制限する処理とを実施するとよい。つまり、スロットル開度センサを有していてもそれを使えない場合に有効な構成を実現できる。 In the above embodiment, the throttle opening sensor is omitted. However, the present invention may be applied to a system having a throttle opening sensor by changing this system. In such a case, for example, when the ECU 40 determines that the throttle opening sensor is abnormal, as described above, the process of limiting the operation of the engine 10 based on the detection result of the intake pressure sensor 16 and the initial explosion are performed. A process of limiting the operation of the engine 10 based on the increase in the engine speed NE after birth may be performed. That is, an effective configuration can be realized when the throttle opening sensor is provided but cannot be used.
 ・エンジン始動時において、吸気圧力センサ16の検出結果に基づいてエンジン10の運転を制限する手段と、初爆発生後のエンジン回転速度NEの上昇変化に基づいてエンジン10の運転を制限する手段とのうち、前者の手段のみを用いてエンジン始動時の制御を実施する構成としてもよい。 A means for restricting the operation of the engine 10 based on the detection result of the intake pressure sensor 16 at the time of starting the engine, and a means for restricting the operation of the engine 10 based on a change in the engine rotational speed NE after the first explosion occurs. Of these, only the former means may be used to control the engine at the time of engine start.
 ・二輪車以外にも、意図しないスロットル開放によりエンジンの始動直後に車両の誤発進が生じることが懸念される車両であれば、本発明の適用が可能である。 Other than motorcycles, the present invention can be applied to any vehicle in which there is a concern that the vehicle may start erroneously immediately after starting the engine due to unintended throttle opening.
 10…エンジン、11…吸気管、14…スロットル弁、16…吸気圧力センサ、40…ECU(第1判定手段、第1制御手段)。 DESCRIPTION OF SYMBOLS 10 ... Engine, 11 ... Intake pipe, 14 ... Throttle valve, 16 ... Intake pressure sensor, 40 ... ECU (1st determination means, 1st control means).

Claims (4)

  1.  吸気部(11)に吸気圧力検出用の圧力センサ(16)とスロットル弁(14)とが設けられているエンジン(10)に適用されるエンジン制御装置(40)であって、
     前記エンジンの始動時において、前記圧力センサにより検出された吸気圧力の変化に基づいて前記スロットル弁の開度が所定以上であるか否かを判定する第1判定手段と、
     前記第1判定手段により前記スロットル弁の開度が所定以上であると判定される場合に、前記エンジンの運転を制限する第1制御手段と、
    を備えることを特徴とするエンジン制御装置。
    An engine control device (40) applied to an engine (10) in which a pressure sensor (16) for detecting intake pressure and a throttle valve (14) are provided in an intake section (11),
    First determination means for determining whether or not an opening of the throttle valve is greater than or equal to a predetermined value based on a change in intake pressure detected by the pressure sensor at the time of starting the engine;
    First control means for limiting the operation of the engine when the first determination means determines that the opening of the throttle valve is greater than or equal to a predetermined value;
    An engine control device comprising:
  2.  前記エンジンの始動開始後において初爆が生じた後のエンジン回転速度を監視する監視手段と、
     前記初爆の発生後のエンジン回転速度に基づいて前記スロットル弁の開度が所定以上であるか否かを判定する第2判定手段と、
     前記第2判定手段により前記スロットル弁の開度が所定以上であると判定される場合に、前記エンジンの運転を制限する第2制御手段と、
    を更に備える請求項1に記載のエンジン制御装置。
    Monitoring means for monitoring the engine rotation speed after the first explosion after the start of the engine;
    Second determination means for determining whether the opening degree of the throttle valve is greater than or equal to a predetermined value based on the engine speed after the first explosion occurs;
    Second control means for limiting operation of the engine when the second determination means determines that the opening of the throttle valve is greater than or equal to a predetermined value;
    The engine control device according to claim 1, further comprising:
  3.  前記圧力センサの異常の有無を判定する異常判定手段と、
     前記異常判定手段により前記圧力センサが異常であると判定された場合に、前記エンジンのフェイルセーフ運転を実施すべくエンジンの運転を許可するフェイルセーフ運転実施手段と、
    を更に備え、
     前記監視手段は、前記フェイルセーフ運転が実施されている状況下で、前記初爆の発生後のエンジン回転速度を監視し、
     前記第2制御手段は、前記第2判定手段により前記スロットル弁の開度が所定以上であると判定される場合に、前記フェイルセーフ運転を停止させ、同スロットル弁の開度が所定未満であるとされる場合に、前記フェイルセーフ運転を継続させる請求項2に記載のエンジン制御装置。
    An abnormality determining means for determining presence or absence of abnormality of the pressure sensor;
    Fail safe operation execution means for permitting operation of the engine to perform the fail safe operation of the engine when the abnormality determination means determines that the pressure sensor is abnormal;
    Further comprising
    The monitoring means monitors the engine speed after occurrence of the first explosion under the condition where the fail-safe operation is performed,
    The second control unit stops the fail-safe operation when the second determination unit determines that the opening degree of the throttle valve is greater than or equal to a predetermined value, and the opening degree of the throttle valve is less than the predetermined value. The engine control device according to claim 2, wherein the fail-safe operation is continued when it is assumed.
  4.  前記監視手段は、前記初爆の発生後におけるエンジン回転速度の上昇変化を監視するものである請求項2又は3に記載のエンジン制御装置。 The engine control apparatus according to claim 2 or 3, wherein the monitoring means monitors an increase in engine rotational speed after the first explosion.
PCT/JP2014/067784 2013-07-10 2014-07-03 Engine control device WO2015005213A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201480038002.8A CN105392980B (en) 2013-07-10 2014-07-03 Engine control system

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2013-144270 2013-07-10
JP2013144270A JP6127787B2 (en) 2013-07-10 2013-07-10 Engine control device

Publications (1)

Publication Number Publication Date
WO2015005213A1 true WO2015005213A1 (en) 2015-01-15

Family

ID=52279898

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/067784 WO2015005213A1 (en) 2013-07-10 2014-07-03 Engine control device

Country Status (3)

Country Link
JP (1) JP6127787B2 (en)
CN (1) CN105392980B (en)
WO (1) WO2015005213A1 (en)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000320382A (en) * 1999-05-11 2000-11-21 Unisia Jecs Corp Fail-safe device for engine
JP2002030981A (en) * 2000-07-18 2002-01-31 Denso Corp Atmospheric pressure detecting device
JP2003003937A (en) * 2001-06-21 2003-01-08 Honda Motor Co Ltd Starting system of engine
JP2005009448A (en) * 2003-06-20 2005-01-13 Denso Corp Atmospheric-pressure detection device of multi-cylinder internal combustion engine
JP2006152965A (en) * 2004-11-30 2006-06-15 Yamaha Motor Co Ltd Vehicle, control device for vehicular engine and engine control method
JP2008128119A (en) * 2006-11-21 2008-06-05 Denso Corp Operating condition determination device for internal combustion engine
WO2012091043A1 (en) * 2010-12-27 2012-07-05 日産自動車株式会社 Starting control method and starting control device for internal combustion engine

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0211424A (en) * 1988-06-28 1990-01-16 Aisin Seiki Co Ltd Device for detecting erroneous operation at the time of backing vehicle and safety device for erroneous operation
US5505179A (en) * 1994-10-03 1996-04-09 Ford Motor Company Method and apparatus for inferring manifold absolute pressure in turbo-diesel engines
JP2001159365A (en) * 1999-12-03 2001-06-12 Denso Corp Engine control device
JP2013035430A (en) * 2011-08-09 2013-02-21 Suzuki Motor Corp Motorcycle

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000320382A (en) * 1999-05-11 2000-11-21 Unisia Jecs Corp Fail-safe device for engine
JP2002030981A (en) * 2000-07-18 2002-01-31 Denso Corp Atmospheric pressure detecting device
JP2003003937A (en) * 2001-06-21 2003-01-08 Honda Motor Co Ltd Starting system of engine
JP2005009448A (en) * 2003-06-20 2005-01-13 Denso Corp Atmospheric-pressure detection device of multi-cylinder internal combustion engine
JP2006152965A (en) * 2004-11-30 2006-06-15 Yamaha Motor Co Ltd Vehicle, control device for vehicular engine and engine control method
JP2008128119A (en) * 2006-11-21 2008-06-05 Denso Corp Operating condition determination device for internal combustion engine
WO2012091043A1 (en) * 2010-12-27 2012-07-05 日産自動車株式会社 Starting control method and starting control device for internal combustion engine

Also Published As

Publication number Publication date
CN105392980A (en) 2016-03-09
JP2015017530A (en) 2015-01-29
JP6127787B2 (en) 2017-05-17
CN105392980B (en) 2018-06-29

Similar Documents

Publication Publication Date Title
JP4110910B2 (en) Throttle opening control device for internal combustion engine
WO2006120760A1 (en) Start controller of internal combustion engine
JP2002327639A (en) Warm-up control device of internal combustion engine
JP5810927B2 (en) Vehicle control device
JP5305043B2 (en) Engine combustion state detection device
JP5381733B2 (en) Control device for internal combustion engine
JP6127787B2 (en) Engine control device
JP4367646B2 (en) Engine starter
JP5874694B2 (en) Diagnostic device for internal combustion engine
JP5746880B2 (en) Control device for internal combustion engine
JP2007192081A (en) Controller of internal combustion engine
WO2018016093A1 (en) Vehicle control apparatus, vehicle control system, and method for controlling vehicle control apparatus
JP6146973B2 (en) Control device for internal combustion engine
US8423227B2 (en) Monitoring apparatus and method
JP2001304084A (en) Vehicle control method and vehicle control device
JP5029565B2 (en) Engine control device
JP5222122B2 (en) Engine start control device
JP6841119B2 (en) Engine control
JP6029371B2 (en) Control device for internal combustion engine
JP5790594B2 (en) Rough idle detection device for internal combustion engine
JP7525432B2 (en) Starter abnormality detection device
JP2008223614A (en) Control device for engine
JP4389680B2 (en) Ignition control device for internal combustion engine
JP4816692B2 (en) Control device for internal combustion engine
JP6881239B2 (en) Internal combustion engine control device

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201480038002.8

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14823206

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14823206

Country of ref document: EP

Kind code of ref document: A1