JP2005009448A - Atmospheric-pressure detection device of multi-cylinder internal combustion engine - Google Patents

Atmospheric-pressure detection device of multi-cylinder internal combustion engine Download PDF

Info

Publication number
JP2005009448A
JP2005009448A JP2003176779A JP2003176779A JP2005009448A JP 2005009448 A JP2005009448 A JP 2005009448A JP 2003176779 A JP2003176779 A JP 2003176779A JP 2003176779 A JP2003176779 A JP 2003176779A JP 2005009448 A JP2005009448 A JP 2005009448A
Authority
JP
Japan
Prior art keywords
atmospheric pressure
intake
cylinder
pressure
internal combustion
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2003176779A
Other languages
Japanese (ja)
Inventor
Yoshihiko Nonogaki
芳彦 野々垣
Tatsunori Kato
辰則 加藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denso Corp
Original Assignee
Denso Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Denso Corp filed Critical Denso Corp
Priority to JP2003176779A priority Critical patent/JP2005009448A/en
Publication of JP2005009448A publication Critical patent/JP2005009448A/en
Pending legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To correctly detect atmospheric-pressure on the basis of intake pressure detected for each cylinder in consideration of difference in behaviors of respective cylinders in a multi-cylinder internal combustion engine of an individual-intake system. <P>SOLUTION: When execution conditions are established for atmospheric-pressure detection corresponding to operation conditions of the multi-cylinder internal combustion engine 1 comprising two cylinders of individual-intake system, atmospheric-pressure estimates are computed on the basis of intake pressures PM1, PM2 which are detected by intake-pressure sensors 22, 22' and input at every specified timing in a specified period in a combustion cycle of every cylinder. When deviation of the computed atmospheric-pressure estimate falls in a specified range, the mean of the estimates is set as the atmospheric pressure. Thus, while maintaining the calculation accuracy in computing atmospheric-pressure estimate, the renewal frequency can be increased. Reliability of the finally set atmospheric-pressure is improved, and the operation condition of the engine 1 can be well maintained, because a fine and accurate correction can be made e.g. to fuel-injection quantity, ignition timing, etc. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

【0001】
【発明の属する技術分野】
本発明は、独立吸気の多気筒内燃機関の各気筒毎の吸気通路における吸気圧の検出値に基づき周囲環境の大気圧を検出する多気筒内燃機関の大気圧検出装置に関し、例えば、大気圧の変動を知ることによって多気筒内燃機関の気筒毎に供給する燃料噴射量に反映することができる。
【0002】
【従来の技術】
従来、内燃機関の周囲環境における大気圧を検出し、その大気圧に応じて例えば、燃料噴射量の補正を行うことで内燃機関の運転状態を良好に維持するものが知られている。この際、大気圧センサを配設し、その検出結果から大気圧を検出するシステムにおいては、その分のコストアップが避けられずシステム全体の価格上昇を招くという不具合があった。
【0003】
これに対処するものとして、特開2002−30981号公報にて開示されたものが知られている。このものでは、内燃機関の吸気通路に配設された吸気圧センサの検出値により、コストアップを招くことなく、大気圧を検出する技術が示されている。
【特許文献】特開2002−30981号公報(第2頁〜第3頁)
【0004】
【発明が解決しようとする課題】
ところで、前述のものでは、独立吸気の多気筒内燃機関に適用する場合には、特定気筒の吸気圧をその吸気通路(エンジン吸気管)に配設された吸気圧センサにより検出し、その吸気圧に基づいて大気圧を求めるとしている。しかし、気筒毎の吸気圧の挙動の差異については考慮されておらず、吸気圧センサが配設された特定気筒において検出された吸気圧の挙動に何らかの異常が生じていると、例えば、燃料噴射量に対する大気圧に応じた補正が不適切となり内燃機関の運転状態が却って不安定になるという不具合があった。
【0005】
そこで、この発明はかかる不具合を解決するためになされたもので、独立吸気の多気筒内燃機関における気筒毎の吸気圧の挙動の差異を考慮し、各気筒毎に検出された吸気圧に基づきより正確な大気圧を検出可能な多気筒内燃機関の大気圧検出装置の提供を課題としている。
【0006】
【課題を解決するための手段】
請求項1の多気筒内燃機関の大気圧検出装置によれば、独立吸気の多気筒内燃機関において、実行条件判定手段で内燃機関の運転状態に応じた大気圧検出の実行条件が成立すると、大気圧演算手段にて内燃機関の各気筒毎の燃焼サイクルにおける所定期間の所定タイミング毎に複数の吸気圧検出手段による各吸気通路のスロットルバルブの下流側に導入される吸気圧が取込まれ、これら吸気圧に基づき大気圧推定値が算出され、大気圧設定手段で大気圧推定値の平均値が大気圧として設定される。このため、大気圧推定値算出の精度を維持しつつ、その更新頻度を増加することができるため、最終的に設定される大気圧の信頼性が向上され、例えば、燃料噴射量や点火時期等に対するきめ細かな精度の良い補正が実施でき、内燃機関の運転状態が良好に維持される。
【0007】
請求項2の多気筒内燃機関の大気圧検出装置における大気圧演算手段では、吸気圧検出手段による吸気圧の差分が所定値以下であるとき、大気圧推定値の算出がなされることで大気圧推定値算出の精度が高まり、結果的に、大気圧の信頼性がより向上される。
【0008】
請求項3の多気筒内燃機関の大気圧検出装置における大気圧演算手段では、複数の吸気圧検出手段のうち少なくとも1つの吸気圧検出手段が異常となったときにはそれ以外の吸気圧検出手段による吸気圧に基づく大気圧推定値により大気圧が設定されることで、この大気圧を用いてフェイルセーフ処理が実行される。
【0009】
請求項4の多気筒内燃機関の大気圧検出装置における大気圧設定手段では、大気圧演算手段による大気圧推定値が所定範囲内であるとき、大気圧の設定が実施される。これにより、大気圧を設定するための大気圧推定値における信頼性を向上することができる。
【0010】
請求項5の多気筒内燃機関の大気圧検出装置における大気圧設定手段では、大気圧演算手段による大気圧推定値の偏差が所定範囲内であるとき、大気圧推定値の平均値が大気圧として設定される。つまり、大気圧の設定は、大気圧推定値の偏差が所定範囲内であるときに限定され、気筒毎の吸気圧の挙動が異なるような内燃機関が運転状態にあるときには、大気圧が更新されないため、最終的に設定される大気圧の信頼性が向上される。
【0011】
請求項6の多気筒内燃機関の大気圧検出装置によれば、内燃機関が各気筒毎に独立して吸入空気量が供給される独立吸気の2気筒エンジンであるため、両気筒の吸気圧の挙動が互いに考慮され、より正確な大気圧が検出される。
【0012】
【発明の実施の形態】
以下、本発明の実施の形態を実施例に基づいて説明する。
【0013】
図1は本発明の実施の形態の一実施例にかかる多気筒内燃機関の大気圧検出装置が適用された二輪車における独立吸気の2気筒内燃機関及びその周辺機器を示す概略構成図である。
【0014】
図1において、内燃機関1は独立吸気の4サイクル2気筒(#1気筒及び#2気筒)の火花点火式として構成され、その吸入空気は上流側からエアクリーナ2、このエアクリーナ2から独立吸気となるよう2分岐された吸気通路3,3′にそれぞれ配設された#1気筒のスロットルバルブ4、#2気筒のスロットルバルブ4′を通過し、各吸気通路3,3′内で#1気筒のインジェクタ(燃料噴射弁)5、#2気筒のインジェクタ5′から噴射された燃料とそれぞれ混合され、所定空燃比の混合気として#1気筒の吸気ポート6、#2気筒の吸気ポート(図示略)から各シリンダ内に供給される。また、内燃機関1のシリンダヘッドには#1気筒の点火プラグ7、#2気筒の点火プラグ7′がそれぞれ配設され、点火タイミング毎に点火コイル/イグナイタ8から高電圧が点火プラグ7,7′に印加され、各シリンダ内の混合気に点火される。そして、内燃機関1の各シリンダ内で燃焼された排気ガスは#1気筒の排気ポート11、#2気筒の排気ポート(図示略)から排気通路12,12′を通過し、それら合流後の下流側に配設された三元触媒13を通過して大気中に排出される。
【0015】
エアクリーナ2内には吸気温センサ21が配設され、吸気温センサ21によってエアクリーナ2内に流入される吸気温THA〔℃〕が検出される。また、2分岐された吸気通路3,3′のスロットルバルブ4,4′の下流側には#1気筒の吸気圧センサ22、#2気筒の吸気圧センサ22′がそれぞれ配設され、#1気筒の吸気圧センサ22によって#1気筒の吸気圧PM1〔kPa:キロパスカル〕、#2気筒の吸気圧センサ22′によって#2気筒の吸気圧PM2〔kPa〕がそれぞれ検出される。そして、リンク機構にて接続されたスロットルバルブ4,4′にはスロットル開度センサ23が配設され、スロットル開度センサ23によってスロットルバルブ4,4′のスロットル開度TA〔°〕が検出される。また、内燃機関1のシリンダブロックには水温センサ24が配設され、水温センサ24によって内燃機関1内の冷却水温THW〔℃〕が検出される。
【0016】
そして、内燃機関1のクランクシャフト(図示略)にはクランク角センサ25が配設され、クランク角センサ25からのクランク角信号によって内燃機関1の機関回転速度NE〔rpm〕が検出される。更に、クランク角センサ25からのクランク角信号と燃焼サイクルに伴う#1気筒の吸気圧センサ22による吸気圧PM1及び#2気筒の吸気圧センサ22′による吸気圧PM2の変動とに基づき気筒判別及びクランク角基準位置が検出される。この他、車載バッテリ(図示略)には電源電圧センサ29が配設され、電源電圧センサ29によって電源電圧VB 〔V:ボルト〕が検出される。
【0017】
一方、燃料タンク31内から燃料ポンプ32で汲上げられた燃料は、燃料配管33、燃料フィルタ34、燃料配管35、デリバリパイプ36の順に圧送され、デリバリパイプ36から#1気筒のインジェクタ5及び#2気筒のインジェクタ5′にそれぞれ供給される。デリバリパイプ36内の余剰燃料は、プレッシャレギュレータ37、リターン配管38の経路にて燃料タンク31内に戻される。このプレッシャレギュレータ37によってデリバリパイプ36内の燃圧(燃料圧力)と吸気圧との差圧が一定になるようにデリバリパイプ36内の燃圧が調整される。
【0018】
内燃機関1の運転状態を制御するECU(Electronic Control Unit:電子制御ユニット)40は、周知の各種演算処理を実行する中央処理装置としてのCPU41、制御プログラムや制御マップ等を格納したROM42、各種データ等を格納するRAM43、B/U(バックアップ)RAM44等を中心に論理演算回路として構成され、上述の各種センサからの検出信号を入力する入力ポート45及び#1気筒のインジェクタ5、#2気筒のインジェクタ5′、燃料ポンプ32等の各種アクチュエータや点火コイル/イグナイタ8に各制御信号を出力する出力ポート46等に対しバス47を介して接続されている。
【0019】
ここで、本実施例の独立吸気の2気筒内燃機関1のうちの1つの気筒の燃焼サイクルである吸気行程→圧縮行程→燃焼(膨張)行程→排気行程における吸気圧PM〔kPa〕の挙動について、図2のタイムチャートを参照して説明する。
【0020】
図2に示すように、吸気圧PMは吸気行程初期に大気圧から一瞬、正圧側に上昇したのち、負圧側に大きく下降し最小値(ボトム圧)に達したのち圧縮行程初期までに上昇に転じ、ほぼ燃焼行程終了までに大気圧レベルに戻る。このため、内燃機関1の運転状態にもよるが、排気行程における吸気圧PMは大気圧レベルにあると言える。
【0021】
ここで、機関回転速度NEが一定の場合、スロットル開度TAが「小(閉側)」から「大(開側)」となるに従って、吸気圧PMの最小値が高くなると共に、その最小値から大気圧レベルまで上昇する速度が早くなる。このため、スロットル開度TAが「大」となるほど、図2に示すように、吸気圧PMを取込む検出期間を排気行程に加えて燃焼行程、更には圧縮行程途中までに広げることができる。このように、吸気圧PMが大気圧レベルとなるタイミングにおいて逐次、吸気圧PMを取込むことで、大気圧推定が可能となるのである。
【0022】
次に、本発明の実施の形態の一実施例にかかる多気筒内燃機関の大気圧検出装置で使用されているECU40内のCPU41における大気圧推定値演算の処理手順を示す図3のフローチャートに基づき、上述の図2及び図4を参照して説明する。ここで、図4は図3の処理に対応する各種センサ信号や各種制御量等の遷移状態を示すタイムチャートである。なお、この大気圧推定値演算ルーチンはクランク角信号同期にてCPU41にて繰返し実行される。
【0023】
図3において、まず、ステップS101でクランク角センサ25にて検出されたクランク角信号に基づく機関回転速度NEが所定運転領域にあるかが判定される。ステップS101の判定条件が成立、即ち、機関回転速度NEが所定運転領域にあるとき[図4に示す時刻t0 〜時刻t1 (イグニッションスイッチのオン操作からクランキング開始直前まで)、時刻t2 〜時刻t3 (アイドル運転時)、時刻t3 〜時刻t4 (加速運転時)、時刻t4 〜時刻t5 (定常運転時)、時刻t6 以降(定常運転時)]には吸気圧検出条件に適合しているとしてステップS102に移行する。ステップS102では、スロットル開度センサ23にて検出されたスロットル開度TAが所定運転領域にあるかが判定される。なお、この判定では、内燃機関1の負荷としてスロットル開度TAを用いているが、#1気筒の吸気圧センサ22による吸気圧PM1または#2気筒の吸気圧センサ22′による吸気圧PM2を用いることもできる。
【0024】
ステップS102の判定条件が成立、即ち、スロットル開度TAが所定運転領域にあるとき[図4に示す時刻t5 〜時刻t6 以外(スロットル開度TAの急激な「閉」状態からの減速運転時を除く)]には吸気圧検出条件に適合しているとしてステップS103に移行する。ステップS103では、#1気筒の吸気行程から圧縮行程までの期間において、#1気筒の吸気圧センサ22による吸気圧PM1の吸気圧最大値PM1max が検出される。なお、この吸気圧最大値PM1max の検出は、後述のステップS107で大気圧推定値演算のため吸気圧PM1を取込む直前まで実施してもよい。
【0025】
次にステップS104に移行して、ステップS103で検出された吸気圧最大値PM1max が大気圧に所定値αを加算した値(図2に二点鎖線にて示すレベル参照)を越えているかが判定される。この判定処理は、バックファイヤ等に起因する吸気圧挙動が大気圧推定に影響を及ぼさないようにするためである。ステップS104の判定条件が成立せず、即ち、吸気圧最大値PM1max が大気圧に所定値αを加算した値以下でPM1max ≦(大気圧+α)の不等式が成立するときにはステップS105に移行する。ステップS105では、ステップS104でPM1max >(大気圧+α)の不等式が成立するような吸気圧挙動が一度起こるとしばらく起こり易いことから、PM1max >(大気圧+α)の不等式が成立したときから所定期間が経過しているかが判定される。
【0026】
ステップS105の判定条件が成立、即ち、PM1max >(大気圧+α)の不等式が成立したときから所定期間が経過しているときにはステップS106に移行し、#1気筒の排気行程であるかが判定される。ステップS106の判定条件が成立、即ち、#1気筒の排気行程であるときにはステップS107に移行し、#1気筒の吸気圧センサ22により検出される吸気圧PM1が取込まれる。なお、吸気圧PM1の取込み期間は、図2に検出期間として実線及び破線にて範囲を示すように、内燃機関1の負荷としてのスロットル開度TA等に応じて排気行程だけでなく燃焼行程、更には圧縮行程の一部まで拡張変化させてもよい。
【0027】
次にステップS108に移行し、#1気筒の排気行程終了(#1気筒の吸気バルブが開く直前)であるかが判定される。ステップS108の判定条件が成立、即ち、#1気筒の排気行程の終了であるときにはステップS109に移行し、ステップS107で読込まれた吸気圧PM1における最大値から最小値を減算した吸気圧偏差ΔPM1が所定値β未満であるかが判定される。ステップS109の判定条件が成立、即ち、吸気圧偏差ΔPM1が所定値β未満と小さいときにはステップS107で読込まれた吸気圧PM1が安定しているとしてステップS110に移行し、吸気圧PM1が平均化され#1気筒における大気圧推定値PAS1が算出される。
【0028】
次にステップS111に移行して、#2気筒の吸気行程から圧縮行程までの期間において、#2気筒の吸気圧センサ22′により吸気圧最大値PM2max が検出される。なお、この吸気圧最大値PM2max の検出は、後述のステップS115で大気圧推定値演算のため吸気圧PM2を取込む直前まで実施してもよい。次にステップS112に移行して、ステップS111で検出された吸気圧最大値PM2max が大気圧に所定値αを加算した値(図2に二点鎖線にて示すレベル参照)を越えているかが判定される。この判定処理は、バックファイヤ等に起因する吸気圧挙動が大気圧推定に影響を及ぼさないようにするためである。
【0029】
ステップS112の判定条件が成立せず、即ち、吸気圧最大値PM2max が大気圧に所定値αを加算した値以下でPM2max ≦(大気圧+α)の不等式が成立するときにはステップS113に移行する。ステップS113では、ステップS112でPM2max >(大気圧+α)の不等式が成立するような吸気圧挙動が一度起こるとしばらく起こり易いことから、PM2max >(大気圧+α)の不等式が成立したときから所定期間が経過しているかが判定される。ステップS113の判定条件が成立、即ち、PM2max >(大気圧+α)の不等式が成立したときから所定期間が経過しているときにはステップS114に移行し、#2気筒の排気行程であるかが判定される。ステップS114の判定条件が成立、即ち、#2気筒の排気行程であるときにはステップS115に移行し、#2気筒の吸気圧センサ22′により検出される吸気圧PM2が取込まれる。なお、吸気圧PM2の取込み期間は、図2に検出期間として実線及び破線にて範囲を示すように、内燃機関1の負荷としてのスロットル開度TA等に応じて排気行程だけでなく燃焼行程、更には圧縮行程の一部まで拡張変化させてもよい。
【0030】
次にステップS116に移行し、#2気筒の排気行程終了(#2気筒の吸気バルブが開く直前)であるかが判定される。ステップS116の判定条件が成立、即ち、#2気筒の排気行程の終了であるときにはステップS117に移行し、ステップS115で読込まれた吸気圧PM2における最大値から最小値を減算した吸気圧偏差ΔPM2が所定値β未満であるかが判定される。ステップS117の判定条件が成立、即ち、吸気圧偏差ΔPM2が所定値β未満と小さいときにはステップS115で読込まれた吸気圧PM2が安定しているとしてステップS118に移行し、吸気圧PM2が平均化され#2気筒における大気圧推定値PAS2が算出される。
【0031】
次にステップS119に移行して、ステップS110で算出された#1気筒における大気圧推定値PAS1とステップS118で算出された#2気筒における大気圧推定値PAS2との差分の絶対値が所定値γ未満であるかが判定される。ステップS119の判定条件が成立、即ち、|PAS1−PAS2|<γの不等式が成立するときには大気圧推定値に信頼性があるとしてステップS120に移行し、大気圧推定値PASが#1気筒における大気圧推定値PAS1と#2気筒における大気圧推定値PAS2とに基づき次式(1)にて算出され、本ルーチンを終了する。
【0032】
【数1】
PAS←(PAS1+PAS2)/2 ・・・(1)
【0033】
なお、ステップS120で算出された大気圧推定値PASが、これまでに記憶されている大気圧推定値と比較され、異なっているときには更新処理が実行される。この更新処理としては、一度に置換えることなく所定量ずつ増減させたり、所定の平滑化処理を施した値に置換えてもよい。
【0034】
一方、ステップS101の判定条件が成立せず、即ち、機関回転速度NEが所定運転領域にないとき[図4に示す時刻t1 〜時刻t2 (クランキング時;スタータリレー等からのノイズの影響を受け易い期間)]、またはステップS102の判定条件が成立せず、即ち、スロットル開度TAが所定運転領域にないとき[図4に示す時刻t5 〜時刻t6 (スロットル開度TAの急激な「閉」状態から継続する減速運転時)]、またはステップS104の判定条件が成立、即ち、PM1max >(大気圧+α)の不等式が成立するとき、またはステップS105の判定条件が成立せず、即ち、PM1max >(大気圧+α)の不等式が成立したときから所定期間が経過していないとき、またはステップS106の判定条件が成立せず、即ち、#1気筒の排気行程でないとき、またはステップS108の判定条件が成立せず、即ち、#1気筒の排気行程の終了でないとき、またはステップS109の判定条件が成立せず、即ち、吸気圧偏差ΔPM1が所定値β以上と大きいときには、大気圧推定に不適であるとして本ルーチンを終了する。
【0035】
更に、ステップS112の判定条件が成立、即ち、PM2max >(大気圧+α)の不等式が成立するとき、またはステップS113の判定条件が成立せず、即ち、PM2max >(大気圧+α)の不等式が成立したときから所定期間が経過していないとき、またはステップS114の判定条件が成立せず、即ち、#2気筒の排気行程でないとき、またはステップS116の判定条件が成立せず、即ち、#2気筒の排気行程の終了でないとき、またはステップS117の判定条件が成立せず、即ち、吸気圧偏差ΔPM2が所定値β以上と大きいとき、またはステップS119の判定条件が成立せず、即ち、|PAS1−PAS2|≧γの不等式が成立するときには、大気圧推定に不適であるとして本ルーチンを終了する。
【0036】
このように、本実施例の多気筒内燃機関の大気圧検出装置は、気筒毎に独立した吸気系を有する独立吸気の2気筒(#1気筒、#2気筒)エンジンである内燃機関1の各吸気通路3,3′に配設されたスロットルバルブ4,4′の下流側に導入されるそれぞれの気筒の吸入空気の圧力である吸気圧PM1,PM2を検出する2つの吸気圧検出手段としての吸気圧センサ22,22′と、内燃機関1の運転状態に応じて大気圧検出の実行条件を判定するECU40にて達成される実行条件判定手段と、前記実行条件の成立時、内燃機関1の各気筒毎の燃焼サイクルにおける所定期間の所定タイミング毎に取込まれる吸気圧センサ22,22′による吸気圧PM1,PM2に基づき大気圧推定値PAS1,PAS2を算出するECU40にて達成される大気圧演算手段と、前記大気圧演算手段による気筒毎の大気圧推定値PAS1,PAS2の平均値{(PAS1+PAS2)/2}を大気圧PASとして設定するECU40にて達成される大気圧設定手段とを具備するものである。
【0037】
つまり、独立吸気の2気筒(#1気筒、#2気筒)からなる内燃機関1の運転状態に応じた大気圧検出の実行条件が成立すると、各気筒毎の燃焼サイクルにおける所定期間の所定タイミング毎に取込まれる吸気圧センサ22,22′による吸気圧PM1,PM2に基づき算出される大気圧推定値PAS1,PAS2の平均値{(PAS1+PAS2)/2}が大気圧PASとして設定される。これにより、大気圧推定値PAS1,PAS2算出の精度を維持しつつ、その更新頻度を増加することができるため、最終的に設定される大気圧PASの信頼性が向上され、例えば、燃料噴射量や点火時期等に対するきめ細かな精度の良い補正を行うことができ、内燃機関1の運転状態を良好に維持することができる。
【0038】
また、本実施例の多気筒内燃機関の大気圧検出装置のECU40にて達成される大気圧演算手段は、吸気圧センサ22,22′による吸気圧PM1,PM2の差分ΔPM1,ΔPM2が所定値β以下、即ち、ΔPM1<β,ΔPM2<βであるとき、大気圧推定値PAS1,PAS2を算出するものである。これにより、大気圧推定値PAS1,PAS2算出の精度が高まることで、大気圧PASの信頼性をより向上することができる。
【0039】
そして、本実施例の多気筒内燃機関の大気圧検出装置のECU40にて達成される大気圧設定手段は、ECU40にて達成される大気圧演算手段による大気圧推定値PAS1,PAS2が共に所定範囲内、即ち、大気圧推定値PAS1,PAS2にエラーがないとき、大気圧PASの設定を実施するものである。これにより、大気圧PASを設定するための大気圧推定値PAS1,PAS2における信頼性を向上することができる。
【0040】
更に、本実施例の多気筒内燃機関の大気圧検出装置のECU40にて達成される大気圧設定手段は、ECU40にて達成される大気圧演算手段による大気圧推定値PAS1,PAS2の偏差が所定範囲内、即ち、|PAS1−PAS2|<γであるとき、大気圧推定値PAS1,PAS2の平均値{(PAS1+PAS2)/2}を大気圧PASとして設定するものである。これにより、気筒毎の吸気圧の挙動が異なるような内燃機関1が運転状態にあるときには、大気圧PASの更新が許可されないため、大気圧PASの検出タイミングは多少減少するが最終的に設定される大気圧PASの信頼性を更に向上することができる。
【0041】
ところで、上記実施例では、吸気圧検出手段が正常であるときについて述べたが、本発明を実施する場合には、これに限定されるものではなく、1つの吸気圧センサが異常となったときにはそれ以外の吸気圧センサによる吸気圧に基づき大気圧推定値を算出することで、大気圧を設定することができる。この場合には、多少検出精度が劣るが、フェイルセーフ処理を行うことができる。
【図面の簡単な説明】
【図1】図1は本発明の実施の形態の一実施例にかかる多気筒内燃機関の大気圧検出装置が適用された二輪車における独立吸気の2気筒内燃機関及びその周辺機器を示す概略構成図である。
【図2】図2は本発明の実施の形態の一実施例にかかる多気筒内燃機関の大気圧検出装置が適用された独立吸気の2気筒内燃機関のうちの1つの気筒の燃焼サイクルにおける吸気圧の挙動を示すタイムチャートである。
【図3】図3は本発明の実施の形態の一実施例にかかる多気筒内燃機関の大気圧検出装置で使用されているECU内のCPUにおける大気圧推定値演算の処理手順を示すフローチャートである。
【図4】図4は図3の処理に対応する各種センサ信号や各種制御量等の遷移状態を示すタイムチャートである。
【符号の説明】
1 内燃機関
3 (#1気筒の)吸気通路
3′ (#2気筒の)吸気通路
4 (#1気筒の)スロットルバルブ
4′ (#2気筒の)スロットルバルブ
22 (#1気筒の)吸気圧センサ
22′ (#2気筒の)吸気圧センサ
23 スロットル開度センサ
24 水温センサ
25 クランク角センサ
40 ECU(電子制御ユニット)
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to an atmospheric pressure detection device for a multi-cylinder internal combustion engine that detects an atmospheric pressure of an ambient environment based on a detected value of an intake pressure in an intake passage for each cylinder of an independent intake multi-cylinder internal combustion engine. Knowing the fluctuation can be reflected in the fuel injection amount supplied to each cylinder of the multi-cylinder internal combustion engine.
[0002]
[Prior art]
2. Description of the Related Art Conventionally, it is known to maintain an operating state of an internal combustion engine satisfactorily by detecting the atmospheric pressure in the environment surrounding the internal combustion engine and correcting the fuel injection amount according to the atmospheric pressure, for example. At this time, in the system in which the atmospheric pressure sensor is arranged and the atmospheric pressure is detected from the detection result, there is a problem that the cost increase is unavoidable and the price of the entire system is increased.
[0003]
As what copes with this, what was disclosed by Unexamined-Japanese-Patent No. 2002-30981 is known. This technique shows a technique for detecting the atmospheric pressure without incurring an increase in cost based on a detection value of an intake pressure sensor disposed in an intake passage of an internal combustion engine.
[Patent Document] Japanese Patent Application Laid-Open No. 2002-30981 (pages 2 to 3)
[0004]
[Problems to be solved by the invention]
By the way, in the foregoing, when applied to an independent intake multi-cylinder internal combustion engine, the intake pressure of a specific cylinder is detected by an intake pressure sensor disposed in the intake passage (engine intake pipe), and the intake pressure is detected. The atmospheric pressure is calculated based on However, the difference in the behavior of the intake pressure for each cylinder is not taken into consideration, and if any abnormality occurs in the behavior of the intake pressure detected in the specific cylinder in which the intake pressure sensor is provided, for example, fuel injection There was a problem that the correction according to the atmospheric pressure with respect to the amount became inappropriate and the operating state of the internal combustion engine became unstable.
[0005]
Therefore, the present invention has been made to solve such a problem, and based on the intake pressure detected for each cylinder in consideration of the difference in the behavior of the intake pressure for each cylinder in an independent intake multi-cylinder internal combustion engine. An object of the present invention is to provide an atmospheric pressure detection device for a multi-cylinder internal combustion engine capable of detecting an accurate atmospheric pressure.
[0006]
[Means for Solving the Problems]
According to the atmospheric pressure detection device for a multi-cylinder internal combustion engine according to claim 1, when the execution condition for the atmospheric pressure detection according to the operating state of the internal combustion engine is satisfied by the execution condition determining means in the independent intake multi-cylinder internal combustion engine, Intake pressure introduced into the downstream side of the throttle valve of each intake passage by a plurality of intake pressure detection means is taken in at a predetermined timing in a predetermined period in the combustion cycle for each cylinder of the internal combustion engine by the atmospheric pressure calculation means. An estimated atmospheric pressure value is calculated based on the intake pressure, and an average value of the estimated atmospheric pressure value is set as the atmospheric pressure by the atmospheric pressure setting means. For this reason, since the update frequency can be increased while maintaining the accuracy of the atmospheric pressure estimated value calculation, the reliability of the finally set atmospheric pressure is improved. For example, the fuel injection amount, the ignition timing, etc. Therefore, it is possible to carry out a fine correction with high accuracy and to maintain a good operating state of the internal combustion engine.
[0007]
The atmospheric pressure calculating means in the atmospheric pressure detecting device of the multi-cylinder internal combustion engine according to claim 2 calculates the atmospheric pressure estimated value when the difference in intake pressure by the intake pressure detecting means is equal to or smaller than a predetermined value. As a result, the accuracy of the estimated value calculation is improved, and as a result, the reliability of the atmospheric pressure is further improved.
[0008]
In the atmospheric pressure calculation means in the atmospheric pressure detection device for a multi-cylinder internal combustion engine according to claim 3, when at least one intake pressure detection means becomes abnormal among the plurality of intake pressure detection means, the intake pressure detection means by other intake pressure detection means By setting the atmospheric pressure based on the atmospheric pressure estimated value based on the atmospheric pressure, the fail-safe process is executed using the atmospheric pressure.
[0009]
In the atmospheric pressure setting means in the atmospheric pressure detecting device of the multi-cylinder internal combustion engine according to claim 4, the atmospheric pressure is set when the estimated atmospheric pressure value by the atmospheric pressure calculating means is within a predetermined range. Thereby, the reliability in the atmospheric pressure estimated value for setting the atmospheric pressure can be improved.
[0010]
In the atmospheric pressure setting means in the atmospheric pressure detecting device of the multi-cylinder internal combustion engine according to claim 5, when the deviation of the estimated atmospheric pressure value by the atmospheric pressure calculating means is within a predetermined range, the average value of the estimated atmospheric pressure value is set as the atmospheric pressure. Is set. That is, the setting of the atmospheric pressure is limited when the deviation of the estimated atmospheric pressure is within a predetermined range, and the atmospheric pressure is not updated when the internal combustion engine in which the behavior of the intake pressure for each cylinder is different is in an operating state. Therefore, the reliability of the finally set atmospheric pressure is improved.
[0011]
According to the atmospheric pressure detection apparatus for a multi-cylinder internal combustion engine according to claim 6, since the internal combustion engine is an independent intake two-cylinder engine in which an intake air amount is supplied independently for each cylinder, The behavior is taken into account and a more accurate atmospheric pressure is detected.
[0012]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, embodiments of the present invention will be described based on examples.
[0013]
FIG. 1 is a schematic configuration diagram showing an independent intake two-cylinder internal combustion engine and its peripheral devices in a motorcycle to which an atmospheric pressure detection device for a multi-cylinder internal combustion engine according to an embodiment of the present invention is applied.
[0014]
In FIG. 1, the internal combustion engine 1 is configured as a spark ignition type of four-stroke two-cylinder (# 1 cylinder and # 2 cylinder) with independent intake, and the intake air is air cleaner 2 from the upstream side, and independent intake from the air cleaner 2. The # 1 cylinder throttle valve 4 and the # 2 cylinder throttle valve 4 'respectively disposed in the bifurcated intake passages 3 and 3' pass through the intake passages 3 and 3 '. Injector 5 (fuel injection valve) and fuel injected from # 2 cylinder injector 5 'are respectively mixed and mixed with a predetermined air-fuel ratio, # 1 cylinder intake port 6 and # 2 cylinder intake port (not shown) To be supplied into each cylinder. Also, the cylinder head of the internal combustion engine 1 is provided with a # 1 cylinder spark plug 7 and a # 2 cylinder spark plug 7 ', respectively, and a high voltage is applied from the ignition coil / igniter 8 at each ignition timing. ′ To ignite the air-fuel mixture in each cylinder. The exhaust gas burned in each cylinder of the internal combustion engine 1 passes through the exhaust passages 12 and 12 'from the exhaust port 11 of the # 1 cylinder and the exhaust port (not shown) of the # 2 cylinder, and downstream after the merge. It passes through the three-way catalyst 13 disposed on the side and is discharged into the atmosphere.
[0015]
An intake air temperature sensor 21 is disposed in the air cleaner 2, and the intake air temperature THA [° C.] flowing into the air cleaner 2 is detected by the intake air temperature sensor 21. Further, an intake pressure sensor 22 for the # 1 cylinder and an intake pressure sensor 22 'for the # 2 cylinder are disposed on the downstream side of the throttle valves 4 and 4' in the bifurcated intake passages 3 and 3 ', respectively. Cylinder intake pressure sensor 22 detects # 1 cylinder intake pressure PM1 [kPa: kilopascals], and # 2 cylinder intake pressure sensor 22 'detects # 2 cylinder intake pressure PM2 [kPa]. A throttle opening sensor 23 is disposed on the throttle valves 4 and 4 'connected by the link mechanism, and the throttle opening TA [°] of the throttle valves 4 and 4' is detected by the throttle opening sensor 23. The A water temperature sensor 24 is disposed in the cylinder block of the internal combustion engine 1, and the coolant temperature THW [° C.] in the internal combustion engine 1 is detected by the water temperature sensor 24.
[0016]
A crank angle sensor 25 is disposed on a crankshaft (not shown) of the internal combustion engine 1, and an engine rotational speed NE [rpm] of the internal combustion engine 1 is detected by a crank angle signal from the crank angle sensor 25. Further, based on the crank angle signal from the crank angle sensor 25 and the fluctuations in the intake pressure PM1 by the intake pressure sensor 22 of the # 1 cylinder and the intake pressure PM2 by the intake pressure sensor 22 'of the # 2 cylinder accompanying the combustion cycle, cylinder discrimination and A crank angle reference position is detected. In addition, a power supply voltage sensor 29 is provided in the in-vehicle battery (not shown), and the power supply voltage sensor 29 detects the power supply voltage VB [V: volts].
[0017]
On the other hand, the fuel pumped up from the fuel tank 31 by the fuel pump 32 is pumped in the order of the fuel pipe 33, the fuel filter 34, the fuel pipe 35, and the delivery pipe 36. From the delivery pipe 36, the # 1 cylinder injector 5 and # Each is supplied to a two-cylinder injector 5 '. Excess fuel in the delivery pipe 36 is returned into the fuel tank 31 through a path of a pressure regulator 37 and a return pipe 38. The pressure regulator 37 adjusts the fuel pressure in the delivery pipe 36 so that the differential pressure between the fuel pressure (fuel pressure) in the delivery pipe 36 and the intake pressure becomes constant.
[0018]
An ECU (Electronic Control Unit) 40 that controls the operating state of the internal combustion engine 1 includes a CPU 41 as a central processing unit that executes various known arithmetic processes, a ROM 42 that stores a control program, a control map, and various data. The RAM 43, the B / U (backup) RAM 44, etc. are stored as logical operation circuits. The input port 45 for inputting the detection signals from the various sensors described above, the injector 5 for the # 1 cylinder, the # 2 cylinder It is connected via a bus 47 to various actuators such as the injector 5 ′ and the fuel pump 32, and an output port 46 that outputs each control signal to the ignition coil / igniter 8.
[0019]
Here, regarding the behavior of the intake stroke PM which is the combustion cycle of one cylinder of the independent intake two-cylinder internal combustion engine 1 of the present embodiment → the compression stroke → the combustion (expansion) stroke → the intake pressure PM [kPa] in the exhaust stroke. This will be described with reference to the time chart of FIG.
[0020]
As shown in FIG. 2, the intake pressure PM rises from the atmospheric pressure to the positive pressure momentarily at the beginning of the intake stroke, then greatly decreases to the negative pressure side, reaches a minimum value (bottom pressure), and then increases by the initial compression stroke. It turns back to atmospheric pressure level by the end of the combustion stroke. For this reason, although depending on the operating state of the internal combustion engine 1, it can be said that the intake pressure PM in the exhaust stroke is at the atmospheric pressure level.
[0021]
Here, when the engine rotational speed NE is constant, the minimum value of the intake pressure PM increases and the minimum value as the throttle opening degree TA increases from “small (closed side)” to “large (open side)”. The speed of rising from to atmospheric pressure level becomes faster. Therefore, as the throttle opening degree TA becomes “large”, as shown in FIG. 2, the detection period for taking in the intake pressure PM can be extended to the combustion stroke and further to the middle of the compression stroke in addition to the exhaust stroke. Thus, the atmospheric pressure can be estimated by sequentially taking in the intake pressure PM at the timing when the intake pressure PM becomes the atmospheric pressure level.
[0022]
Next, based on the flowchart of FIG. 3 which shows the processing procedure of the atmospheric pressure estimated value calculation in CPU41 in ECU40 used with the atmospheric pressure detection apparatus of the multicylinder internal combustion engine concerning one Example of embodiment of this invention. This will be described with reference to FIGS. 2 and 4 described above. Here, FIG. 4 is a time chart showing transition states of various sensor signals and various control amounts corresponding to the processing of FIG. This atmospheric pressure estimated value calculation routine is repeatedly executed by the CPU 41 in synchronization with the crank angle signal.
[0023]
In FIG. 3, first, it is determined in step S101 whether the engine speed NE based on the crank angle signal detected by the crank angle sensor 25 is within a predetermined operating range. When the determination condition of step S101 is satisfied, that is, when the engine speed NE is in the predetermined operating range [from time t0 to time t1 (from ignition switch ON operation to immediately before cranking start) shown in FIG. 4, time t2 to time t3 (During idle operation), from time t3 to time t4 (during acceleration operation), from time t4 to time t5 (during steady operation), after time t6 (during steady operation)], it is assumed that the intake pressure detection condition is met. The process proceeds to S102. In step S102, it is determined whether the throttle opening degree TA detected by the throttle opening degree sensor 23 is within a predetermined operation range. In this determination, the throttle opening degree TA is used as the load of the internal combustion engine 1, but the intake pressure PM1 from the intake pressure sensor 22 of the # 1 cylinder or the intake pressure PM2 from the intake pressure sensor 22 'of the # 2 cylinder is used. You can also.
[0024]
When the determination condition of step S102 is satisfied, that is, when the throttle opening degree TA is in the predetermined operation range [other than time t5 to time t6 shown in FIG. Excluding)], it is determined that the intake pressure detection condition is satisfied, and the process proceeds to step S103. In step S103, the intake pressure maximum value PM1max of the intake pressure PM1 is detected by the intake pressure sensor 22 of the # 1 cylinder in the period from the intake stroke of the # 1 cylinder to the compression stroke. The detection of the maximum intake pressure value PM1max may be performed until just before the intake pressure PM1 is taken in to calculate an atmospheric pressure estimated value in step S107 described later.
[0025]
Next, the process proceeds to step S104, and it is determined whether the intake pressure maximum value PM1max detected in step S103 exceeds the value obtained by adding the predetermined value α to the atmospheric pressure (see the level indicated by the two-dot chain line in FIG. 2). Is done. This determination process is to prevent the intake pressure behavior caused by backfire or the like from affecting the atmospheric pressure estimation. When the determination condition of step S104 is not satisfied, that is, when the inequality of PM1max ≦ (atmospheric pressure + α) is satisfied when the maximum intake pressure value PM1max is equal to or less than the value obtained by adding the predetermined value α to the atmospheric pressure, the process proceeds to step S105. In step S105, an intake pressure behavior that satisfies the inequality of PM1max> (atmospheric pressure + α) in step S104 is likely to occur once, so that a predetermined period from when the inequality of PM1max> (atmospheric pressure + α) is satisfied. It is determined whether or not elapses.
[0026]
When the determination condition of step S105 is satisfied, that is, when the predetermined period has elapsed since the inequality of PM1max> (atmospheric pressure + α) is satisfied, the routine proceeds to step S106, where it is determined whether it is the exhaust stroke of the # 1 cylinder. The When the determination condition of step S106 is satisfied, that is, when the exhaust stroke of the # 1 cylinder, the routine proceeds to step S107, where the intake pressure PM1 detected by the intake pressure sensor 22 of the # 1 cylinder is taken. Note that the intake pressure PM1 intake period is not only the exhaust stroke, but also the combustion stroke, depending on the throttle opening TA as the load of the internal combustion engine 1, as indicated by the solid and broken lines as the detection period in FIG. Further, the expansion may be changed to a part of the compression stroke.
[0027]
Next, the routine proceeds to step S108, where it is determined whether or not the exhaust stroke of the # 1 cylinder has ended (immediately before the intake valve of the # 1 cylinder is opened). When the determination condition in step S108 is satisfied, that is, when the exhaust stroke of the # 1 cylinder is completed, the routine proceeds to step S109, where the intake pressure deviation ΔPM1 obtained by subtracting the minimum value from the maximum value in the intake pressure PM1 read in step S107 is determined. It is determined whether it is less than the predetermined value β. When the determination condition of step S109 is satisfied, that is, when the intake pressure deviation ΔPM1 is smaller than the predetermined value β, the intake pressure PM1 read in step S107 is considered stable, and the routine proceeds to step S110, where the intake pressure PM1 is averaged. An estimated atmospheric pressure value PAS1 for the # 1 cylinder is calculated.
[0028]
Next, the routine proceeds to step S111, and during the period from the intake stroke of the # 2 cylinder to the compression stroke, the intake pressure maximum value PM2max is detected by the intake pressure sensor 22 'of the # 2 cylinder. The detection of the maximum intake pressure value PM2max may be performed until just before the intake pressure PM2 is taken in for calculating the atmospheric pressure estimated value in step S115 described later. Next, the process proceeds to step S112, where it is determined whether the intake pressure maximum value PM2max detected in step S111 exceeds the value obtained by adding the predetermined value α to the atmospheric pressure (see the level indicated by the two-dot chain line in FIG. 2). Is done. This determination process is to prevent the intake pressure behavior caused by backfire or the like from affecting the atmospheric pressure estimation.
[0029]
When the determination condition of step S112 is not satisfied, that is, when the inequality of PM2max ≦ (atmospheric pressure + α) is satisfied when the maximum intake pressure value PM2max is equal to or less than the value obtained by adding the predetermined value α to the atmospheric pressure, the process proceeds to step S113. In step S113, an intake pressure behavior that satisfies the inequality of PM2max> (atmospheric pressure + α) in step S112 is likely to occur once, so that a predetermined period from when the inequality of PM2max> (atmospheric pressure + α) is satisfied. It is determined whether or not elapses. When the determination condition in step S113 is satisfied, that is, when a predetermined period has elapsed from when the inequality of PM2max> (atmospheric pressure + α) is satisfied, the routine proceeds to step S114, where it is determined whether it is the exhaust stroke of the # 2 cylinder. The When the determination condition of step S114 is satisfied, that is, when the exhaust stroke of the # 2 cylinder, the routine proceeds to step S115, where the intake pressure PM2 detected by the intake pressure sensor 22 'of the # 2 cylinder is taken. Note that the intake pressure PM2 intake period is not only the exhaust stroke, but also the combustion stroke, depending on the throttle opening TA as the load of the internal combustion engine 1, as indicated by the solid and broken lines as the detection period in FIG. Further, the expansion may be changed to a part of the compression stroke.
[0030]
Next, the routine proceeds to step S116, where it is determined whether or not the exhaust stroke of the # 2 cylinder has ended (immediately before the intake valve of the # 2 cylinder is opened). When the determination condition of step S116 is satisfied, that is, when the exhaust stroke of the # 2 cylinder is completed, the routine proceeds to step S117, where the intake pressure deviation ΔPM2 obtained by subtracting the minimum value from the maximum value in the intake pressure PM2 read in step S115 is obtained. It is determined whether it is less than the predetermined value β. When the determination condition of step S117 is satisfied, that is, when the intake pressure deviation ΔPM2 is smaller than the predetermined value β, the intake pressure PM2 read in step S115 is considered to be stable and the routine proceeds to step S118, where the intake pressure PM2 is averaged. An estimated atmospheric pressure value PAS2 for the # 2 cylinder is calculated.
[0031]
Next, the routine proceeds to step S119, where the absolute value of the difference between the estimated atmospheric pressure value PAS1 in the # 1 cylinder calculated in step S110 and the estimated atmospheric pressure value PAS2 in the # 2 cylinder calculated in step S118 is a predetermined value γ. It is determined whether it is less than. When the determination condition of step S119 is satisfied, that is, when the inequality | PAS1-PAS2 | <γ is satisfied, it is determined that the atmospheric pressure estimated value is reliable, and the process proceeds to step S120, where the atmospheric pressure estimated value PAS is large in the # 1 cylinder. Based on the estimated atmospheric pressure value PAS1 and the estimated atmospheric pressure value PAS2 in the # 2 cylinder, the following equation (1) is calculated, and this routine is completed.
[0032]
[Expression 1]
PAS ← (PAS1 + PAS2) / 2 (1)
[0033]
Note that the estimated atmospheric pressure value PAS calculated in step S120 is compared with the estimated atmospheric pressure value stored so far, and an update process is executed when the estimated value is different. As this update process, the value may be increased or decreased by a predetermined amount without being replaced at once, or may be replaced with a value subjected to a predetermined smoothing process.
[0034]
On the other hand, when the determination condition of step S101 is not satisfied, that is, when the engine speed NE is not in the predetermined operation range [time t1 to time t2 shown in FIG. 4 (during cranking; affected by noise from a starter relay, etc. Easy period)], or when the determination condition of step S102 is not satisfied, that is, when the throttle opening degree TA is not in the predetermined operating range [time t5 to time t6 shown in FIG. Or when the determination condition of step S104 is satisfied, that is, when the inequality PM1max> (atmospheric pressure + α) is satisfied, or the determination condition of step S105 is not satisfied, that is, PM1max> When the predetermined period has not elapsed since the inequality of (atmospheric pressure + α) is satisfied, or the determination condition of step S106 is not satisfied, that is, # When it is not the exhaust stroke of one cylinder, or the determination condition of step S108 is not satisfied, that is, when the exhaust stroke of # 1 cylinder is not completed, or the determination condition of step S109 is not satisfied, that is, the intake pressure deviation ΔPM1 is When it is larger than the predetermined value β, this routine is terminated because it is not suitable for atmospheric pressure estimation.
[0035]
Further, when the determination condition of step S112 is satisfied, that is, the inequality of PM2max> (atmospheric pressure + α) is satisfied, or the determination condition of step S113 is not satisfied, that is, the inequality of PM2max> (atmospheric pressure + α) is satisfied. When the predetermined period has not elapsed since the start, or the determination condition of step S114 is not satisfied, that is, when the exhaust stroke of the # 2 cylinder is not satisfied, or the determination condition of step S116 is not satisfied, that is, the # 2 cylinder When the exhaust stroke is not finished or when the determination condition of step S117 is not satisfied, that is, when the intake pressure deviation ΔPM2 is larger than the predetermined value β or when the determination condition of step S119 is not satisfied, that is, | PAS1- When the inequality PAS2 | ≧ γ holds, this routine is terminated as being unsuitable for atmospheric pressure estimation.
[0036]
As described above, the atmospheric pressure detection device for a multi-cylinder internal combustion engine according to the present embodiment is an independent intake two-cylinder (# 1 cylinder, # 2 cylinder) engine having an independent intake system for each cylinder. As two intake pressure detection means for detecting intake pressure PM1, PM2 which is the pressure of the intake air of each cylinder introduced downstream of the throttle valves 4, 4 'disposed in the intake passages 3, 3' The intake pressure sensors 22 and 22 ', the execution condition determination means that is achieved by the ECU 40 that determines the execution condition of the atmospheric pressure detection according to the operating state of the internal combustion engine 1, and the internal combustion engine 1 when the execution condition is satisfied. Achieved by the ECU 40 that calculates the estimated atmospheric pressure values PAS1, PAS2 based on the intake pressures PM1, PM2 by the intake pressure sensors 22, 22 'taken at predetermined timings in a predetermined period in the combustion cycle of each cylinder. Atmospheric pressure calculation means, and an atmospheric pressure setting means achieved by the ECU 40 that sets an average value {(PAS1 + PAS2) / 2} of the estimated atmospheric pressure values PAS1, PAS2 for each cylinder by the atmospheric pressure calculation means as the atmospheric pressure PAS It comprises.
[0037]
That is, when the atmospheric pressure detection execution condition according to the operating state of the internal combustion engine 1 composed of two cylinders (# 1 cylinder, # 2 cylinder) of independent intake is satisfied, every predetermined timing in a predetermined period in the combustion cycle of each cylinder. An average value {(PAS1 + PAS2) / 2} of the atmospheric pressure estimated values PAS1 and PAS2 calculated based on the intake pressures PM1 and PM2 by the intake pressure sensors 22 and 22 'taken in is set as the atmospheric pressure PAS. Thereby, since the update frequency can be increased while maintaining the accuracy of calculating the atmospheric pressure estimated values PAS1, PAS2, the reliability of the finally set atmospheric pressure PAS is improved. For example, the fuel injection amount In addition, it is possible to perform a fine and accurate correction with respect to the ignition timing and the like, and to maintain the operating state of the internal combustion engine 1 satisfactorily.
[0038]
Further, the atmospheric pressure calculating means achieved by the ECU 40 of the atmospheric pressure detecting device of the multi-cylinder internal combustion engine of the present embodiment is such that the difference ΔPM1, ΔPM2 between the intake pressures PM1, PM2 by the intake pressure sensors 22, 22 ′ is a predetermined value β. In the following, that is, when ΔPM1 <β and ΔPM2 <β, the atmospheric pressure estimation values PAS1 and PAS2 are calculated. Thereby, the accuracy of the atmospheric pressure estimated values PAS1, PAS2 is increased, so that the reliability of the atmospheric pressure PAS can be further improved.
[0039]
The atmospheric pressure setting means achieved by the ECU 40 of the atmospheric pressure detecting device of the multi-cylinder internal combustion engine of the present embodiment is such that the estimated atmospheric pressure values PAS1 and PAS2 by the atmospheric pressure calculating means achieved by the ECU 40 are both within a predetermined range. Of these, that is, when there is no error in the estimated atmospheric pressure values PAS1, PAS2, the setting of the atmospheric pressure PAS is performed. Thereby, the reliability in atmospheric pressure estimated value PAS1, PAS2 for setting atmospheric pressure PAS can be improved.
[0040]
Further, the atmospheric pressure setting means achieved by the ECU 40 of the atmospheric pressure detecting device of the multi-cylinder internal combustion engine of the present embodiment has a predetermined deviation of the atmospheric pressure estimated values PAS1, PAS2 by the atmospheric pressure calculating means achieved by the ECU 40. Within the range, that is, when | PAS1−PAS2 | <γ, an average value {(PAS1 + PAS2) / 2} of the atmospheric pressure estimation values PAS1 and PAS2 is set as the atmospheric pressure PAS. As a result, when the internal combustion engine 1 in which the behavior of the intake pressure for each cylinder is different is in an operating state, the update of the atmospheric pressure PAS is not permitted, so the detection timing of the atmospheric pressure PAS is slightly reduced but finally set. The reliability of the atmospheric pressure PAS can be further improved.
[0041]
In the above embodiment, the case where the intake pressure detecting means is normal is described. However, the present invention is not limited to this, and when one intake pressure sensor becomes abnormal. The atmospheric pressure can be set by calculating the estimated atmospheric pressure based on the intake pressure by other intake pressure sensors. In this case, although the detection accuracy is somewhat inferior, fail-safe processing can be performed.
[Brief description of the drawings]
FIG. 1 is a schematic configuration diagram showing an independent intake two-cylinder internal combustion engine and its peripheral devices in a motorcycle to which an atmospheric pressure detection apparatus for a multi-cylinder internal combustion engine according to an embodiment of the present invention is applied; It is.
FIG. 2 is a diagram illustrating an intake in a combustion cycle of one cylinder of an independent intake two-cylinder internal combustion engine to which an atmospheric pressure detection device for a multi-cylinder internal combustion engine according to an embodiment of the present invention is applied; It is a time chart which shows the behavior of atmospheric pressure.
FIG. 3 is a flowchart showing a processing procedure of atmospheric pressure estimated value calculation in a CPU in the ECU used in the atmospheric pressure detection device for a multi-cylinder internal combustion engine according to an example of an embodiment of the present invention; is there.
4 is a time chart showing transition states of various sensor signals and various control amounts corresponding to the processing of FIG. 3; FIG.
[Explanation of symbols]
1 Internal combustion engine 3 (# 1 cylinder) intake passage 3 '(# 2 cylinder) intake passage 4 (# 1 cylinder) throttle valve 4'(# 2 cylinder) throttle valve 22 (# 1 cylinder) intake pressure Sensor 22 '(# 2 cylinder) intake pressure sensor 23 Throttle opening sensor 24 Water temperature sensor 25 Crank angle sensor 40 ECU (electronic control unit)

Claims (6)

気筒毎に独立した吸気系を有する独立吸気の多気筒内燃機関の各吸気通路に配設されたスロットルバルブの下流側に導入されるそれぞれの気筒の吸入空気の圧力である吸気圧を検出する複数の吸気圧検出手段と、
前記内燃機関の運転状態に応じて大気圧検出の実行条件を判定する実行条件判定手段と、
前記実行条件の成立時、前記内燃機関の各気筒毎の燃焼サイクルにおける所定期間の所定タイミング毎に取込まれる前記吸気圧検出手段による吸気圧に基づき大気圧推定値を算出する大気圧演算手段と、
前記大気圧演算手段による前記気筒毎の大気圧推定値の平均値を大気圧として設定する大気圧設定手段と
を具備することを特徴とする多気筒内燃機関の大気圧検出装置。
A plurality of intake air pressures for detecting the intake air pressure of each cylinder introduced downstream of a throttle valve disposed in each intake passage of an independent intake multi-cylinder internal combustion engine having an independent intake system for each cylinder Intake pressure detecting means of
Execution condition determination means for determining an execution condition of atmospheric pressure detection according to the operating state of the internal combustion engine;
An atmospheric pressure calculation means for calculating an estimated atmospheric pressure value based on an intake pressure by the intake pressure detection means taken at a predetermined timing of a predetermined period in a combustion cycle for each cylinder of the internal combustion engine when the execution condition is satisfied; ,
An atmospheric pressure detecting device for a multi-cylinder internal combustion engine, comprising: an atmospheric pressure setting unit that sets an average value of an estimated atmospheric pressure value for each cylinder by the atmospheric pressure calculating unit as an atmospheric pressure.
前記大気圧演算手段は、前記吸気圧検出手段による吸気圧の差分が所定値以下であるとき、前記大気圧推定値を算出することを特徴とする請求項1に記載の多気筒内燃機関の大気圧検出装置。2. The multi-cylinder internal combustion engine according to claim 1, wherein the atmospheric pressure calculation unit calculates the estimated atmospheric pressure when a difference in intake pressure by the intake pressure detection unit is a predetermined value or less. Barometric pressure detection device. 前記大気圧演算手段は、前記複数の吸気圧検出手段のうち少なくとも1つの吸気圧検出手段が異常となったときには、それ以外の吸気圧検出手段による吸気圧に基づき前記大気圧推定値を算出することを特徴とする請求項1または請求項2に記載の多気筒内燃機関の大気圧検出装置。The atmospheric pressure calculating means calculates the estimated atmospheric pressure based on the intake pressure by the other intake pressure detecting means when at least one of the plurality of intake pressure detecting means becomes abnormal. The apparatus for detecting atmospheric pressure of a multi-cylinder internal combustion engine according to claim 1 or 2, characterized in that: 前記大気圧設定手段は、前記大気圧演算手段による大気圧推定値が所定範囲内であるとき、大気圧の設定を実施することを特徴とする請求項1乃至請求項3の何れか1つに記載の多気筒内燃機関の大気圧検出装置。The said atmospheric pressure setting means implements an atmospheric pressure setting, when the atmospheric pressure estimated value by the said atmospheric pressure calculating means is in a predetermined range, The any one of Claim 1 thru | or 3 characterized by the above-mentioned. The atmospheric pressure detection device for a multi-cylinder internal combustion engine as described. 前記大気圧設定手段は、前記大気圧演算手段による大気圧推定値の偏差が所定範囲内であるとき、前記大気圧推定値の平均値を大気圧として設定することを特徴とする請求項1乃至請求項4の何れか1つに記載の多気筒内燃機関の大気圧検出装置。The said atmospheric pressure setting means sets the average value of the said atmospheric pressure estimated value as an atmospheric pressure, when the deviation of the atmospheric pressure estimated value by the said atmospheric pressure calculating means is in a predetermined range. The atmospheric pressure detection apparatus for a multi-cylinder internal combustion engine according to claim 4. 前記内燃機関は、独立吸気の2気筒エンジンであることを特徴とする請求項1乃至請求項5の何れか1つに記載の多気筒内燃機関の大気圧検出装置。The atmospheric pressure detection device for a multi-cylinder internal combustion engine according to any one of claims 1 to 5, wherein the internal combustion engine is an independent intake two-cylinder engine.
JP2003176779A 2003-06-20 2003-06-20 Atmospheric-pressure detection device of multi-cylinder internal combustion engine Pending JP2005009448A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003176779A JP2005009448A (en) 2003-06-20 2003-06-20 Atmospheric-pressure detection device of multi-cylinder internal combustion engine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003176779A JP2005009448A (en) 2003-06-20 2003-06-20 Atmospheric-pressure detection device of multi-cylinder internal combustion engine

Publications (1)

Publication Number Publication Date
JP2005009448A true JP2005009448A (en) 2005-01-13

Family

ID=34099560

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003176779A Pending JP2005009448A (en) 2003-06-20 2003-06-20 Atmospheric-pressure detection device of multi-cylinder internal combustion engine

Country Status (1)

Country Link
JP (1) JP2005009448A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009250177A (en) * 2008-04-09 2009-10-29 Kokusan Denki Co Ltd Engine controller
WO2015005213A1 (en) * 2013-07-10 2015-01-15 株式会社デンソー Engine control device
JP2015094272A (en) * 2013-11-12 2015-05-18 三菱電機株式会社 Device and method for discriminating stroke of internal combustion engine
US20210339760A1 (en) * 2020-04-30 2021-11-04 Honda Motor Co., Ltd. Abnormality detection device

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009250177A (en) * 2008-04-09 2009-10-29 Kokusan Denki Co Ltd Engine controller
WO2015005213A1 (en) * 2013-07-10 2015-01-15 株式会社デンソー Engine control device
JP2015017530A (en) * 2013-07-10 2015-01-29 株式会社デンソー Engine control device
CN105392980A (en) * 2013-07-10 2016-03-09 株式会社电装 Engine control device
JP2015094272A (en) * 2013-11-12 2015-05-18 三菱電機株式会社 Device and method for discriminating stroke of internal combustion engine
US20210339760A1 (en) * 2020-04-30 2021-11-04 Honda Motor Co., Ltd. Abnormality detection device
US11479261B2 (en) * 2020-04-30 2022-10-25 Honda Motor Co., Ltd. Abnormality detection device

Similar Documents

Publication Publication Date Title
JP4174821B2 (en) Vehicle control device
JPH0742595A (en) Abnormality deciding device for internal combustion engine
JP5299456B2 (en) Control device for internal combustion engine
JP2003161200A (en) Electronic control system of internal-combustion engine
JP2005009448A (en) Atmospheric-pressure detection device of multi-cylinder internal combustion engine
JP2007077892A (en) Control device for internal combustion engine
JP4423824B2 (en) Control device for internal combustion engine
JP4281225B2 (en) Fuel system abnormality detection device for internal combustion engine
JP4401635B2 (en) Control device for internal combustion engine
JPH11173185A (en) Fuel injection control device of internal combustion engine
JPH07127499A (en) Fuel control device for internal combustion engine
JP4269593B2 (en) Secondary air supply control device for internal combustion engine
JP3846195B2 (en) Fuel injection control device for internal combustion engine
JP4124070B2 (en) Atmospheric pressure detection device for internal combustion engine
JP7206625B2 (en) Control device for internal combustion engine
WO2024018567A1 (en) Control device for internal combustion engine
JP4464616B2 (en) Secondary air supply control device for internal combustion engine
JP4052025B2 (en) Atmospheric pressure detection device for internal combustion engine
JP4151437B2 (en) Secondary air supply control device for internal combustion engine
JP2005207403A (en) Secondary air supply system for internal combustion engine and fuel injection quantity control device using the same
JP2005256832A (en) Secondary air supply system for internal combustion engine, and fuel injection amount control device using the same
JP2005307926A (en) Atmospheric pressure detection device for internal combustion engine
JP4320555B2 (en) Secondary air supply control device for internal combustion engine
JP3900002B2 (en) Fuel injection control device for internal combustion engine
JP2023095395A (en) Engine control device