WO2015004869A1 - 電力管理システム、制御装置 - Google Patents

電力管理システム、制御装置 Download PDF

Info

Publication number
WO2015004869A1
WO2015004869A1 PCT/JP2014/003415 JP2014003415W WO2015004869A1 WO 2015004869 A1 WO2015004869 A1 WO 2015004869A1 JP 2014003415 W JP2014003415 W JP 2014003415W WO 2015004869 A1 WO2015004869 A1 WO 2015004869A1
Authority
WO
WIPO (PCT)
Prior art keywords
power
electric vehicle
unit
electric
distribution network
Prior art date
Application number
PCT/JP2014/003415
Other languages
English (en)
French (fr)
Inventor
充 田邊
Original Assignee
パナソニックIpマネジメント株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by パナソニックIpマネジメント株式会社 filed Critical パナソニックIpマネジメント株式会社
Publication of WO2015004869A1 publication Critical patent/WO2015004869A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L55/00Arrangements for supplying energy stored within a vehicle to a power network, i.e. vehicle-to-grid [V2G] arrangements
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L53/00Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles
    • B60L53/60Monitoring or controlling charging stations
    • B60L53/65Monitoring or controlling charging stations involving identification of vehicles or their battery types
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L53/00Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles
    • B60L53/60Monitoring or controlling charging stations
    • B60L53/66Data transfer between charging stations and vehicles
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J3/00Circuit arrangements for ac mains or ac distribution networks
    • H02J3/28Arrangements for balancing of the load in a network by storage of energy
    • H02J3/32Arrangements for balancing of the load in a network by storage of energy using batteries with converting means
    • H02J3/322Arrangements for balancing of the load in a network by storage of energy using batteries with converting means the battery being on-board an electric or hybrid vehicle, e.g. vehicle to grid arrangements [V2G], power aggregation, use of the battery for network load balancing, coordinated or cooperative battery charging
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J3/00Circuit arrangements for ac mains or ac distribution networks
    • H02J3/38Arrangements for parallely feeding a single network by two or more generators, converters or transformers
    • H02J3/381Dispersed generators
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2260/00Operating Modes
    • B60L2260/40Control modes
    • B60L2260/50Control modes by future state prediction
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J2300/00Systems for supplying or distributing electric power characterised by decentralized, dispersed, or local generation
    • H02J2300/20The dispersed energy generation being of renewable origin
    • H02J2300/22The renewable source being solar energy
    • H02J2300/24The renewable source being solar energy of photovoltaic origin
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J2310/00The network for supplying or distributing electric power characterised by its spatial reach or by the load
    • H02J2310/40The network being an on-board power network, i.e. within a vehicle
    • H02J2310/48The network being an on-board power network, i.e. within a vehicle for electric vehicles [EV] or hybrid vehicles [HEV]
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J3/00Circuit arrangements for ac mains or ac distribution networks
    • H02J3/38Arrangements for parallely feeding a single network by two or more generators, converters or transformers
    • H02J3/46Controlling of the sharing of output between the generators, converters, or transformers
    • H02J3/48Controlling the sharing of the in-phase component
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/34Parallel operation in networks using both storage and other dc sources, e.g. providing buffering
    • H02J7/35Parallel operation in networks using both storage and other dc sources, e.g. providing buffering with light sensitive cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B10/00Integration of renewable energy sources in buildings
    • Y02B10/10Photovoltaic [PV]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/56Power conversion systems, e.g. maximum power point trackers
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/70Energy storage systems for electromobility, e.g. batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/7072Electromobility specific charging systems or methods for batteries, ultracapacitors, supercapacitors or double-layer capacitors
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T90/00Enabling technologies or technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02T90/10Technologies relating to charging of electric vehicles
    • Y02T90/12Electric charging stations
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T90/00Enabling technologies or technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02T90/10Technologies relating to charging of electric vehicles
    • Y02T90/16Information or communication technologies improving the operation of electric vehicles
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T90/00Enabling technologies or technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02T90/10Technologies relating to charging of electric vehicles
    • Y02T90/16Information or communication technologies improving the operation of electric vehicles
    • Y02T90/167Systems integrating technologies related to power network operation and communication or information technologies for supporting the interoperability of electric or hybrid vehicles, i.e. smartgrids as interface for battery charging of electric vehicles [EV] or hybrid vehicles [HEV]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y04INFORMATION OR COMMUNICATION TECHNOLOGIES HAVING AN IMPACT ON OTHER TECHNOLOGY AREAS
    • Y04SSYSTEMS INTEGRATING TECHNOLOGIES RELATED TO POWER NETWORK OPERATION, COMMUNICATION OR INFORMATION TECHNOLOGIES FOR IMPROVING THE ELECTRICAL POWER GENERATION, TRANSMISSION, DISTRIBUTION, MANAGEMENT OR USAGE, i.e. SMART GRIDS
    • Y04S10/00Systems supporting electrical power generation, transmission or distribution
    • Y04S10/12Monitoring or controlling equipment for energy generation units, e.g. distributed energy generation [DER] or load-side generation
    • Y04S10/126Monitoring or controlling equipment for energy generation units, e.g. distributed energy generation [DER] or load-side generation the energy generation units being or involving electric vehicles [EV] or hybrid vehicles [HEV], i.e. power aggregation of EV or HEV, vehicle to grid arrangements [V2G]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y04INFORMATION OR COMMUNICATION TECHNOLOGIES HAVING AN IMPACT ON OTHER TECHNOLOGY AREAS
    • Y04SSYSTEMS INTEGRATING TECHNOLOGIES RELATED TO POWER NETWORK OPERATION, COMMUNICATION OR INFORMATION TECHNOLOGIES FOR IMPROVING THE ELECTRICAL POWER GENERATION, TRANSMISSION, DISTRIBUTION, MANAGEMENT OR USAGE, i.e. SMART GRIDS
    • Y04S30/00Systems supporting specific end-user applications in the sector of transportation
    • Y04S30/10Systems supporting the interoperability of electric or hybrid vehicles
    • Y04S30/14Details associated with the interoperability, e.g. vehicle recognition, authentication, identification or billing

Definitions

  • the present invention relates to a power management system that uses power of a battery mounted on an electric vehicle by a consumer, and a control device that controls the operation of the power management system.
  • Document 1 describes a technique for preventing excess contract power by using a power storage device and controlling charging / discharging of the power storage device following a load.
  • the technique described in Document 1 has a problem that the cost for introducing the equipment is high because a dedicated power storage device is employed.
  • an object of the present invention is to provide a power management system that contributes to a reduction in equipment cost, and further to provide a control device used in this power management system.
  • a power management system is connected to a power distribution network that supplies power to one or a plurality of spaces allocated to each of a plurality of consumers occupying a building, and is used for traveling mounted on an electric vehicle.
  • a power converter capable of supplying battery power to the distribution network, a power measuring device for monitoring power consumed in the building, and the electric vehicle connected to the power converter
  • An authentication unit that determines whether or not the identification information of the electric vehicle matches one or a plurality of identification information of one or a plurality of electric vehicles registered in advance; and the power measurement device
  • an instruction unit for instructing the power converter to supply power to the power distribution network from the battery mounted on the electric vehicle determined to match according to the power to be monitored.
  • a control device is used in the power management system described above, and includes the authentication unit and the instruction unit.
  • power can be supplied from the battery mounted on the electric vehicle used by the customer occupying the building to the distribution network of the building, so compared with the case where a dedicated power storage device is introduced. Then, it becomes possible to aim at reduction of equipment cost. Further, according to the present invention, since electric power is supplied from a previously registered electric vehicle by performing authentication of the electric vehicle, it is possible to prevent erroneous use of electric power of the non-target electric vehicle. Furthermore, according to the present invention, it is possible to manage the electric vehicle that has supplied power and the amount of supplied power by performing authentication.
  • FIG. 1 is a block diagram illustrating a first embodiment.
  • 1 is a schematic configuration diagram of Embodiment 1.
  • FIG. FIG. 6 is a block diagram illustrating a second embodiment.
  • FIG. 6 is a block diagram illustrating a third embodiment. It is a circuit diagram which shows the switching apparatus used for Embodiment 3.
  • FIG. 10 is a block diagram illustrating a fourth embodiment.
  • the power management system described below includes a power converter 161, a power measurement device (watt-hour meter 112), an authentication unit 157, and an instruction unit 153.
  • the power converter 161 is connected to a power distribution network 31 that supplies power to one or a plurality of spaces (dwelling units 12) assigned to each of a plurality of consumers that move into the building (the apartment house 10). The operation of supplying the power of the traveling battery 21 mounted on the power distribution network 31 to the power distribution network 31 is possible.
  • the power measuring device monitors the power consumed in the building.
  • the authenticating unit 157 has the identification information of the electric vehicle 20 out of one or more identification information of one or more electric vehicles registered in advance. It is determined whether or not it matches any one.
  • the instruction unit 153 instructs the power converter 161 to supply power to the power distribution network 31 from the battery 21 mounted on the electric vehicle 20 determined to match according to the power monitored by the power measurement device.
  • the power management system is a power receiving / transforming facility that collectively receives power supplied to all spaces (a plurality of dwelling units 12) allocated to a plurality of consumers in a building from a power system 30 that is a high-voltage distribution line and steps down the power. 110 is desirable.
  • the power distribution network 31 distributes the power stepped down by the power receiving / transforming equipment 110 to all the spaces (the plurality of dwelling units 12).
  • the power management system preferably includes a prediction unit 155 that predicts whether or not the power monitored by the power measurement device exceeds a preset limit value.
  • the instruction unit 153 supplies power from the battery 21 to the distribution network 31 when the prediction unit 155 predicts that the power monitored by the power measurement device may exceed the limit value. Instruct the power converter 161.
  • the power management system includes a registration unit 156 in which travel schedule information including a time zone and a travel distance in which the electric vehicle 20 is used is registered.
  • the instruction unit 153 calculates the lower limit value of the remaining capacity of the battery 21 based on the travel schedule information, and limits the amount of power discharged from the battery 21 based on the lower limit value.
  • the instruction unit 153 receives information on the travelable distance predicted on the electric vehicle 20 side from the electric vehicle 20, and the lower limit value of the travelable distance is included in the travel schedule information. You may restrict
  • the power management system includes a settlement unit 158 (corresponding to an accumulation unit) that accumulates the amount of power collected in a predetermined period for each of one or more pieces of identification information of one or more electric vehicles 20. Is preferred.
  • the control device 15 described below is used in the power management system described above, and includes an authentication unit 157 and an instruction unit 153.
  • high-voltage collective power reception means receiving power from a high-voltage distribution line in a building and supplying power to each consumer after stepping down the voltage in the building.
  • Building managers for example, management associations, management companies, etc. pay compensation to electric utilities (for example, power companies) for the amount of power received collectively from high-voltage distribution lines, and from each customer , Receive compensation according to the amount of power allocated.
  • electric utilities for example, power companies
  • Receive compensation according to the amount of power allocated.
  • the unit price of the power received from the high-voltage distribution line is lower than the unit price of the power received from the low-voltage distribution line. Therefore, there is an advantage that the payment of the electricity charge can be reduced for the consumer.
  • the electricity charges paid by the building manager to the electric utility are divided into a basic charge in which the unit price is set according to the maximum value of the power used, and the unit price is stepwise according to the amount of power used.
  • An example is a case in which the total amount of power charges is set to increase.
  • the calculation method of electricity charges is determined by the contract. For example, there are cases where the basic charge is set independently for each month and where the basic charge determined by the maximum monthly power in the past year is applied. is there. In the latter case, if the maximum value of monthly power exceeds the maximum value of monthly power in the past year, the basic charge will increase in the next year.
  • the maximum monthly power may be used for each predetermined period (for example, 30 minutes).
  • the manager of the building may pay an excess fee to the electric power company.
  • the building manager may pay a penalty to the electric power company if the amount of electric power to be received exceeds the amount of trade that has been agreed.
  • the received power is adjusted so that the maximum power value during the month does not exceed the set limit value.
  • the technology described below can be applied even when an excess fee is generated in consideration paid to the electric power company. That is, when there is a possibility that an excess charge may occur, the occurrence of the excess charge is suppressed by adopting the following technology.
  • the electric vehicle 20 is a storage battery, such as an electric vehicle, a plug-in hybrid vehicle, and an electric motorcycle.
  • the technical idea of the embodiment described below is applicable even if the electric vehicle 20 is a fuel cell vehicle.
  • the traveling battery 21 is a fuel cell.
  • a device having a function of controlling only discharge may be used instead of a device for controlling charging and discharging, such as a charger / discharger 16 described later.
  • the charger / discharger 16 can receive a signal indicating the type from the electric vehicle 20, or when the charger / discharger 16 can notify the type of the electric vehicle, the charger / discharger 16 It is configured to control charging or discharging according to the type.
  • the symbol “21” is used for the storage battery 21.
  • FIG. 1 shows the overall configuration of a power management system described in the present embodiment.
  • the electrical room 11 of the apartment house 10 has facilities for receiving power from the 6600 V high-voltage distribution line 30, reducing the voltage to 200 V, and then distributing power to the plurality of dwelling units 12 (a plurality of spaces) of the apartment house 10 through the distribution network 31.
  • the high-voltage distribution line 30 is referred to as a “power system”.
  • a power receiving / transforming facility 110 such as a cubicle that receives power from the power system 30 and steps down is installed.
  • the electric room 11 includes a watt-hour meter 111 that measures the amount of power received from the power system 30 and a watt-hour meter 112 as a power measuring device that measures the amount of power consumed in the entire apartment house 10 after stepping down. And are installed.
  • the electricity meter 111 is managed by an electric power company, and the power receiving / transforming equipment 110 and the electricity meter 112 are managed by an administrator of the apartment house 10.
  • a watt hour meter 101 is arranged for each customer (that is, the dwelling unit 12) that receives power from the power distribution network 31.
  • Each power meter 101 measures the amount of power consumed by the corresponding dwelling unit 12.
  • a watt hour meter 102 is arranged to measure the amount of power received from the distribution network 31 by the common unit 13 of the apartment house 10.
  • one or more chargers / dischargers 16 are provided. Is installed.
  • Each charger / discharger 16 is connected to the distribution network 31, and has a function of receiving power from the distribution network 31 and charging the storage battery 21, and a function of supplying power stored in the storage battery 21 to the distribution network 31.
  • the device 161 is built-in.
  • Each charger / discharger 16 includes a watt-hour meter 162 that measures the amount of power received from the distribution network 31 and the amount of power supplied to the distribution network 31.
  • the charger / discharger 16 includes a connection confirmation unit 163 that confirms whether or not the electric vehicle 20 is connected, an information acquisition unit 164 that acquires identification information of the connected electric vehicle 20, and other devices.
  • a communication interface unit 165 that performs communication.
  • the communication interface unit is abbreviated as “communication I / F unit”.
  • the power converter 161 includes a first conversion circuit (not shown) that converts voltage between DC power and DC power, and a second conversion circuit (not shown) that converts DC power and AC power. As a whole, power is converted bidirectionally. That is, the power converter 161 converts the DC power of the storage battery 21 into AC power and supplies it to the distribution network 31, and converts the AC power of the distribution network 31 into DC power to charge the storage battery 21.
  • the communication I / F unit 165 communicates with the control device 15 managed by the manager of the apartment house 10 through the communication line 32.
  • the control device 15 not only communicates with the charger / discharger 16 but also the amount of power measured by the watt hour meter 112 every predetermined time (for example, selected from 1 minute, 5 minutes, 10 minutes, 30 minutes, etc.). It also has a function to acquire. That is, the control device 15 includes a first acquisition unit 151 that acquires information from the connection confirmation unit 163 and the information acquisition unit 164 in the charger / discharger 16, and a second acquisition unit 152 that acquires information from the watt-hour meter 112. Is provided. In addition, the control device 15 includes an instruction unit 153 that instructs an operation state of the power converter 161 based on information acquired by the first acquisition unit 151 and the second acquisition unit 152.
  • the control device 15 compares the power value acquired by the second acquisition unit 152 from the watt hour meter 112 with the limit value set in the setting unit 154, and predicts whether or not the limit value is exceeded from the transition of the power value.
  • the prediction unit 155 is provided.
  • the second acquisition unit 152 averages the amount of power for each relatively short time of a predetermined time (for example, selected from 1 minute, 5 minutes, 10 minutes, 30 minutes, etc.) from the watt hour meter 112 in units of 1 second.
  • the average value is regarded as instantaneous power.
  • the predicting unit 155 uses the power value transition and the limit value acquired by the second acquiring unit 152 every moment, and the value of the power (instantaneous power) consumed in the entire housing complex 10 exceeds the limit value. Predict the possibility. For example, the prediction unit 155 obtains an integrated value of power in a predetermined unit period (for example, 30 minutes, 1 hour, etc.), and the power value can exceed the limit value based on the change rate of the slope of the integrated value and the power value. Predict sex.
  • this embodiment will supply electric power from the storage battery 21 to the dwelling unit 12, if the electric power currently consumed in the whole housing complex 10 may exceed the limit value set to the control apparatus 15, and the electric power grid
  • system 30 The structure which reduces the electric power received from is adopted.
  • the state where the electric vehicle 20 is connected to the charger / discharger 16 may not necessarily be a physical connection state using a cable or the like. That is, even when electric power is transmitted between the electric vehicle 20 and the charger / discharger 16 in a non-contact manner, connection is possible as long as the storage battery 21 can be charged and discharged between the electric vehicle 20 and the charger / discharger 16. It is considered that it was done.
  • the electric vehicle 20 can receive power from the power distribution network 31 and supply power from the electric vehicle 20 to the power distribution network 31 only to the permitted electric vehicle 20.
  • the charger / discharger 16 includes the connection confirmation unit 163 and the information acquisition unit 164 as described above.
  • the connection confirmation unit 163 transmits a connection notification to the control device 15 through the communication I / F unit 165.
  • the connection notification is transmitted to the control device 15 only when the electric vehicle 20 is connected to the charger / discharger 16 and when the electric vehicle 20 is detached from the charger / discharger 16.
  • the connection confirmation unit 163 detects that the electric vehicle 20 is connected to the charger 16 in order to reliably recognize that the electric vehicle 20 is connected to the charger / discharger 16, and then the electric vehicle 20 is disconnected. Until this is detected, the connection state may be periodically checked.
  • the instruction unit 153 in the control device 15 has a function of instructing the information acquisition unit 164 to acquire the identification information of the electric vehicle 20 when notified from the charger / discharger 16 that the electric vehicle 20 is connected. Have.
  • the identification information of the electric vehicle 20 is acquired by the information acquisition unit 164 when the electric vehicle 20 and the charger / discharger 16 communicate with each other while the electric vehicle 20 is connected to the charger / discharger 16. That is, the electric vehicle 20 includes identification information that is unique for each vehicle.
  • the electric vehicle 20 is connected to the charger / discharger 16
  • a communication path is formed between the charger / discharger 16 and the electric vehicle 20.
  • the information acquisition unit 164 acquires identification information from the electric vehicle 20 through this communication path.
  • a cable provided with a power transmission line and a signal line serving as a communication path may be used.
  • a wireless communication path is used for transmitting the identification information.
  • the control device 15 includes a registration unit 156 in which a plurality of pieces of identification information of the plurality of electric vehicles 20 that permit charging and discharging of each electric vehicle 20 are registered, and the identification information acquired from the electric vehicle 20 by the information acquisition unit 164. And an authentication unit 157 that determines whether or not it matches any one or more of the identification information registered in the registration unit 156.
  • the registration unit 156 normally registers the electric vehicle 20 that permits both charging and discharging. However, even if the electric vehicle 20 that permits charging and the electric vehicle 20 that permits discharging are registered, respectively. Good.
  • the registration unit 156 In order to register the identification information of the electric vehicle 20 in the registration unit 156, it is necessary to perform a registration operation.
  • the registration work is performed, for example, by performing a predetermined operation on an operation unit (not shown) provided in the charger / discharger 16 with the electric vehicle 20 connected to the charger / discharger 16.
  • the mobile terminal may be used as an operation device during registration work.
  • the registration work the identification information read from the electric vehicle 20 is automatically registered in the registration unit 156 of the control device 15.
  • the registration unit 156 registers not only the identification information of the electric vehicle 20, but also the owner's dwelling unit number. It is desirable.
  • the vehicle number assigned to the corresponding electric vehicle 20 is In addition, it may be registered in the registration unit 156 together with the identification information of the electric vehicle 20.
  • the authentication unit 157 sets an authentication flag for the identification information. .
  • the electric vehicle 20 having the identification information in which the authentication flag is set can charge or discharge the storage battery 21 through the charger / discharger 16.
  • the authentication flag is valid until the connection confirmation unit 163 confirms the detachment of the electric vehicle 20, and the authentication flag is also released when the electric vehicle 20 detaches from the charger / discharger 16. If the identification information acquired from the information acquisition unit 164 does not match any one or a plurality of identification information registered in the registration unit 156, the authentication unit 157 charges the electric vehicle 20 and The charger / discharger 16 is instructed not to allow discharge.
  • an authentication flag is set in the authentication unit 157 for the electric vehicle 20 that is permitted to supply power from the storage battery 21 to the power distribution network 31.
  • the instruction unit 153 checks whether the authentication flag is set.
  • the instructing unit 153 instructs the charger / discharger 16 to which the electric vehicle 20 with the authentication flag is set to supply the power of the storage battery 21 to the distribution network 31. To do.
  • the instruction unit 153 starts the supply of power from the storage battery 21 to the power distribution network 31, and then decreases the power value consumed in the entire apartment house 10 by a specified ratio with respect to the power value immediately before the start of the storage battery 21.
  • the charger / discharger 16 is instructed to stop the discharge.
  • the condition for stopping the discharge of the storage battery 21 exceeds the specified threshold for the value of power consumed by the entire apartment house 10 with respect to the value of power immediately before starting the supply of power from the storage battery 21 to the distribution network 31. A decrease may occur.
  • the control device 15 includes a settlement unit 158 (corresponding to an integration unit), and the power discharged from the storage battery 21 during the period from when the discharge from the storage battery 21 is instructed to the charger / discharger 16 until the stop of the discharge is instructed.
  • the amount is collected for each electric vehicle 20.
  • the settlement unit 158 integrates the amount of power collected in a predetermined period (for example, one month) for each identification information of the electric vehicle 20.
  • the settlement unit 158 collects the discharged electric energy by acquiring the electric energy measured by each watt-hour meter 162.
  • the manager of the apartment 10 responds to the owner of the electric vehicle 20 according to the electric energy discharged from the electric vehicle 20. Benefits can be given (can be settled). Giving a privilege is a motivation for allowing discharge from the electric vehicle 20. Examples of privilege types include payment of consideration (incentive) according to the amount of discharge, issuance of shopping points, issuance of points that can be used for management services in the housing complex 10. Moreover, it is good also as a privilege to deduct the discharged electric energy from the electric energy with a higher unit price among the electric energy consumed in the dwelling unit 12.
  • the amount of power consumed in the entire apartment house 10 is adjusted so that the value of the power received from the power system 30 does not exceed the limit value. It becomes possible. As a result, the generation of excess charges due to the power received exceeding the limit value is suppressed, and as a result, an increase in electricity charges is suppressed.
  • the identification information of the electric vehicle 20 is authenticated by the control device 15, but by passing the identification information registered in the registration unit 156 of the control device 15 to the charger / discharger 16, the charger / discharger 16.
  • the identification information of the electric vehicle 20 may be authenticated.
  • the remaining capacity of the storage battery 21 corresponds to the amount of power for running. It is desirable to set a lower limit.
  • the registration unit 156 of the control device 15 registers daily travel schedule information for each identification information of the electric vehicle 20.
  • the travel schedule information includes a time zone in which the electric vehicle 20 is used and a guide for the travel distance.
  • the instruction unit 153 calculates the remaining capacity of the storage battery 21 according to the travel schedule information, and when discharging from the storage battery 21, limits the discharge amount using the remaining capacity as a lower limit value.
  • the control device 15 described above includes a computer having a processor that operates according to a program as a main hardware element.
  • This type of computer includes a microcomputer that includes a memory integrally with a processor, and a configuration that includes a processor and a memory separately.
  • a program for causing a computer to function as the above-described control device 15 is provided by a ROM (Read Only Memory) mounted on the computer, provided through an electric communication line such as the Internet, or readable by the computer. Provided by a simple recording medium.
  • the control device 15 may be installed in an administrator room of the apartment house 10 or the like.
  • the travel schedule information is managed by the control device 15, but the travel schedule information may be managed by the electric vehicle 20.
  • the electric vehicle 20 communicates with the control device 15 through the charger / discharger 16, and the control device 15 may calculate the remaining capacity of the storage battery 21 based on the travel schedule information acquired from the electric vehicle 20.
  • the lower limit value of the remaining capacity of the storage battery 21 is set to be larger than the remaining capacity determined in accordance with the travel distance so as to have a margin for travel.
  • the lower limit value of the remaining capacity of the storage battery 21 may be set to be smaller than the remaining capacity determined according to the travel distance in anticipation of being charged after the discharge is stopped.
  • the power of the storage battery 21 mounted on the electric vehicle 20 is used when the power consumed in the entire apartment house 10 is predicted to exceed the limit value. No reverse power flow to the power system 30 occurs. However, when the power consumed in the housing complex 10 is less than expected, there is a possibility that a reverse power flow of the storage battery 21 occurs in the power system 30. There is no particular problem when the reverse power flow of the storage battery 21 is allowed, but the following measures are required when the reverse power flow of the storage battery 21 is prohibited.
  • the receiving / transforming equipment 110 assumes the structure which transmits electric power bidirectionally.
  • the distribution network 31 of the housing complex 10 includes a first line 311 that supplies power received from the power system 30, and a second line 312 that supplies power to the dwelling units 12 and the common unit 13. And the third line 313 to which the charger / discharger 16 is connected.
  • a switching device 33 is connected to a portion where the first line 311, the second line 312, and the third line 313 are branched.
  • the third line 313 is provided for each charger / discharger 16 or is shared by the plurality of chargers / dischargers 16.
  • a case where a plurality of chargers / dischargers 16 share the third line 313 is taken as an example. For simplification, only one charger / discharger 16 is shown in FIG.
  • the switching device 33 includes a current sensor 331 that monitors the current of the first line 311, a switch element 332 inserted into the second line 312, and a switch element 333 inserted into the third line 313.
  • a current sensor 331 that monitors the current of the first line 311, a switch element 332 inserted into the second line 312, and a switch element 333 inserted into the third line 313.
  • an electromagnetic contactor (relay for large current) or the like is used.
  • the opening and closing of the switch elements 332 and 333 is controlled by using a time change between the instantaneous voltage between lines in the power distribution network 31 and the instantaneous power output from the current sensor 331 as a parameter.
  • a configuration is described in which one of the chargers / dischargers 16 monitors the output of the current sensor 331 and controls opening and closing of the switch elements 331 and 332. In this configuration, the instantaneous voltage between lines in the distribution network 31 is substituted by the output voltage of the charger / discharger 16.
  • the control device 15 monitors the output of the current sensor 331 and controls the opening and closing of the switch elements 331 and 332.
  • the control device 15 may acquire the instantaneous voltage between the lines of the distribution network 31 from any of the first line 311, the second line 312, and the third line 313, but is the same as the current sensor 331. It is desirable to obtain from the first line 311 in position.
  • Whether a reverse power flow from the storage battery 21 to the power system 30 is determined is as follows. First, the voltage and current of the first line 311, the second line 312, and the third line 313 will be considered.
  • the voltage of the power distribution network 31 is the same in any of the first line 311, the second line 312, and the third line 313.
  • the charger / discharger 16 is configured to be a current source for the distribution network 31, and the current output from the charger / discharger 16 has a waveform in phase with the voltage between the lines of the distribution network 31.
  • the current flowing through the second line 312 (current passing through the switch element 332) changes according to the magnitude of the electrical load connected to the second line 312. .
  • the current passing through the first line 311 that is, the current detected by the current sensor 331) varies depending on the size of the load connected to the second line 312.
  • the direction in which the current I1 flows from the power system 30 to the electric load is defined as a positive direction.
  • the state where the reverse power flow is occurring is determined by an integral value P obtained by integrating the instantaneous value of the active power for one period in the frequency of the power system 30.
  • the instantaneous value of active power is calculated using the instantaneous value of current measured by the current sensor 331 and the instantaneous value of voltage output from the power converter 161.
  • P ⁇ 0 When a reverse power flow is not generated, P ⁇ 0, and when a reverse power flow is generated, P> 0.
  • This is a state in which the current I1 is inverted with respect to the phase of the voltage of the power system 30 (a state in which it is negative (I ⁇ 0)).
  • the state where the reverse power flow is occurring is a state where the power output from the charger / discharger 16 exceeds the power consumed by the electric load, and at this time, I3> I2.
  • the charger / discharger 16 that monitors the output of the current sensor 331 opens and closes the switch elements 332 and 333 based on the calculation unit (not shown) that calculates the active power in the first line 311 and the result calculated by the calculation unit.
  • a control unit (not shown) for controlling.
  • the calculation unit calculates the value of the active power in the first line 311 by using the instantaneous current of the first line 311 obtained from the output of the current sensor 331 and the instantaneous voltage between the lines of the power distribution network 31. If the current of the first line 311 is inverted with respect to the phase of the voltage of the power system 30, the value of the active power of the first line 311 is negative and the current of the first line 311 is the voltage of the power system 30. If the phase is the same as the first phase 311, the value of the active power of the first line 311 is positive.
  • the control unit limits the current output from the charger / discharger 16 to the power distribution network 31, and further
  • the switch element 333 is controlled to disconnect the discharger 16 from the distribution network 31.
  • the switch element 332 is provided to collectively select a state in which power is supplied to the electrical load and a state in which the power is cut off in the entire apartment house 10 regardless of whether or not reverse power flow occurs. It has been.
  • the control device 15 determines whether or not reverse power flow has occurred based on the sign of the active power at the site where the current sensor 331 is provided.
  • the current sensor 331 detects the current used for calculating the active power, The voltage is detected by the charger / discharger 16. Therefore, there is a possibility that the voltage used for calculating the active power and the voltage at the portion where the current sensor 331 is arranged are out of phase. Therefore, it is necessary to arrange the current sensor 331 and the charger / discharger 16 in a positional relationship in which a voltage phase shift does not cause a problem in the determination of reverse power flow.
  • the control device 15 determines the presence or absence of reverse power flow, this type of problem does not occur as long as the control device 15 is provided close to the switching device 33.
  • information for car sharing is registered in a registration unit 156 provided in the control device 15, and the control device 15 is disposed in the electric room 11 or the manager room.
  • This type of travel schedule information is preferably presented on a presentation device arranged in a manager's room or shared unit 13.
  • the travel schedule information includes information on a time zone in which the electric vehicle 20 is used and a guide for the travel distance.
  • the mileage standard may be obtained by using a service provided by a server connected to a telecommunication line such as the Internet.
  • this type of server provides a service that calculates the distance when returning from the departure point to the departure point by specifying the position of the departure point and the destination on the map presented by the user. To do. Therefore, based on the calculated distance, the remaining capacity of the storage battery 21 necessary for running the electric vehicle 20 is calculated, and the amount of power discharged from the storage battery 21 is managed.
  • the above-mentioned schedule is also used for key management when car sharing of the electric vehicle 20 is performed. That is, it is possible to manage the insertion and removal of the key in association with the schedule so that the electric vehicle 20 is not used without permission during the time period not registered in the schedule. For example, if the key of the electric vehicle 20 is stored in the key box installed in the manager's room so that the key can be taken out only before the time zone registered in the schedule, it is registered in the schedule. It is possible to prevent the electric vehicle 20 from being used without permission during a time period when it is not.
  • the electric vehicle 20 mounted with the storage battery 21 is described assuming an electric vehicle in particular. Therefore, when power is supplied from the storage battery 21 to the power distribution network 31, the travel schedule information of the electric vehicle 2 is described. Accordingly, the remaining capacity to be left in the storage battery 21 is determined. However, when the electric vehicle 2 is a plug-in hybrid vehicle equipped with an internal combustion engine in addition to the storage battery 21 or a fuel cell vehicle equipped with a fuel cell, the remaining capacity of the storage battery 21 is supplied to the distribution network 31. Can not be determined by.
  • the control device 15 receives information on the travelable distance predicted on the electric vehicle 20 side from the electric vehicle 20 and determines the travelable distance.
  • the lower limit value may be determined based on the travel distance included in the travel schedule information. That is, the instruction unit 153 provided in the control device 15 limits the amount of power supplied from the electric vehicle 20 so that the travelable distance received from the electric vehicle 20 does not fall below the lower limit value.
  • the configuration for limiting the amount of electric power to be discharged using the travelable distance is not limited to a plug-in hybrid vehicle and a fuel cell vehicle, and the same technology can be adopted even for an electric vehicle equipped with a storage battery 21.
  • the power source used to reduce the amount of power received from the power grid 30 in the apartment house 10 is only the storage battery 21 of the electric vehicle 20. Therefore, when the electric vehicle 20 is not connected to the charger / discharger 16, even if it is predicted that the amount of power received from the power system 30 exceeds the limit value, measures are taken to reduce the amount of power received. I can't.
  • the present embodiment employs a configuration in which a storage battery 40 installed in the apartment house 10 and a charger / discharger 18 that charges and discharges the storage battery 40 are added.
  • the charger / discharger 18 is connected to the power distribution network 31 of the apartment house 10.
  • the storage battery 40 is always connected to the charger / discharger 18, and the storage battery 40 never leaves the charger / discharger 18 except when the storage battery 40 is replaced.
  • the basic configuration of the charger / discharger 18 is the same as that of the charger / charger 16 for the storage battery 21 mounted on the electric vehicle 20. However, since the electric vehicle 20 is not connected, configurations corresponding to the connection confirmation unit 163 and the information acquisition unit 164 are omitted. That is, the charger / discharger 18 includes a power converter 181, a watt-hour meter 182, and a communication I / F unit 185.
  • the power converter 181, the watt-hour meter 182, and the communication I / F unit 185 have the same functions as the power converter 161, the watt-hour meter 162, and the communication I / F unit 165.
  • the present embodiment includes a configuration in which a solar cell 41 and a power conversion device 42 are added to the configuration of the second embodiment.
  • the solar cell 41 is installed in an appropriate place such as a roof or a wall surface of the apartment house 10.
  • the power conversion device 42 has a function of converting DC power generated by the solar battery 41 into AC power and supplying AC power to the distribution network 31 of the apartment house 10.
  • the charger / discharger 16, the charger / discharger 18, and the power conversion device 42 are connected to the distribution network 31 via the switching device 34.
  • the switching device 34 has a configuration in which a switching element 334 connected to the power conversion device 42 via the fourth line 314 is added to the switching device 33 described in the first embodiment.
  • the switch element 334 is realized by, for example, an electromagnetic contactor.
  • the switch element 334 is inserted between the first line 311 and the fourth line 314. In other words, the first line 311 and the fourth line 314 are connected only via the switch element 334.
  • the current sensor 331 is inserted between the switch elements 332 and 333 and the switch element 334.
  • the power of the storage battery 21 of the electric vehicle 20 and the storage battery 40 installed in the apartment house 10 is prohibited from flowing back to the power system 30, and the power generated by the solar battery 41 is flowing back to the power system 30. Is acceptable. Further, the electric power generated by the solar cell 41 is used in preference to the electric power from the charger / discharger 16 in the apartment house 10.
  • the power supplied to the electric loads of the dwelling unit 12 and the common unit 13 is supplied only from the power conversion device 42 when the power conversion device 42 is satisfied.
  • the power converter 42 when the power consumed by the electrical load cannot be satisfied, the shortage is supplied from the power system 30. Furthermore, when it is predicted that the power received from the power system 30 exceeds the limit value, the power is also supplied from the charger / discharger 16.
  • the power of the solar battery 41 is used preferentially.
  • the amount of power received from the power system 30 is reduced. Further, when the power generated by the solar cell 41 exceeds the power consumed by the electric load and surplus power is generated, it is possible to perform a reverse power flow to the power system 30.
  • the electric power of the storage battery 21 and the storage battery 40 is the electric power and electric power generated by the solar battery 41 within a range where no reverse power flow to the electric power system 30 occurs.
  • the electric power received from the grid 30 is supplied to the electric load. Further, if the amount of power generated by the solar cell 41 increases, surplus power can be reversely flowed to the power system 30 to obtain power sales revenue.
  • the electric energy meter 113 is arrange
  • the present embodiment includes a solar cell 41 and a power conversion device 42 as in the third embodiment.
  • the surplus power that is part of the power output from the power conversion device 42 is caused to flow backward to the power system 30, but in this embodiment, the total power output from the power conversion device 42 is Is configured to flow backward through the electric power system 30.
  • the power conversion device 42 is connected to the power receiving / transforming equipment 114 housed in the electrical chamber 11 via the connection line 35, and is connected to the power system 30 through the power receiving / transforming equipment 114 and the wattmeter 115.
  • the power receiving / transforming equipment 114 has the same configuration as that of the power receiving / transforming equipment 110, and converts the voltage bidirectionally between the power system 30 and the power distribution network 31.
  • the watt-hour meter 115 is provided to measure the amount of power that has flowed backward from the power converter 42 to the power system 30.
  • the switching device 33 since the power conversion device 42 is not connected to the switching device 33, the switching device 33 has the same configuration as the switching device 33 described in the second embodiment. That is, the switching device 33 includes a current sensor 331 and switch elements 332 and 333. Since other configurations and operations are the same as those of the second embodiment, the description thereof is omitted.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Transportation (AREA)
  • Mechanical Engineering (AREA)
  • Supply And Distribution Of Alternating Current (AREA)
  • Charge And Discharge Circuits For Batteries Or The Like (AREA)
  • Electric Propulsion And Braking For Vehicles (AREA)

Abstract

 電力変換器は、集合住宅の複数の空間に電力を供給する配電網に接続され、電動車両に搭載された走行用の蓄電池の電力を配電網に供給する。電力量計は、集合住宅の全体で消費される電力を監視する。認証部は、電力変換器に電動車両が接続されている場合に、電動車両の識別情報が、あらかじめ登録されている一または複数の電動車両の一または複数の識別情報のうちのいずれかに一致するか否かを判断する。指示部は、電力量計が監視する電力に応じて、一致すると判断された電動車両に搭載された蓄電池から配電網に電力を供給するように電力変換器に指示する。

Description

電力管理システム、制御装置
 本発明は、電動車両に搭載された電池の電力を需要家で利用する電力管理システム、および電力管理システムの動作を制御する制御装置に関する。
 従来、集合住宅において、高圧電力を降圧して低圧電力とし、低圧電力を各需要家に供給する技術が提案されている(たとえば、日本国特許出願公開番号2006-288015参照(以下、「文献1」と称する))。文献1には、電力貯蔵装置を用い、負荷に追従して電力貯蔵装置の充放電の制御を行うことにより、契約電力の超過を防ぐ技術が記載されている。
 文献1に記載された技術は、専用の電力貯蔵装置を採用しているから、設備を導入するための費用が高いという問題がある。
 そこで、本発明の目的は、設備コストの低減に寄与する電力管理システムを提供し、さらに、この電力管理システムに用いる制御装置を提供することにある。
 本発明に係る電力管理システムは、建物に入居する複数の需要家の各々に対して割り当てられた一または複数の空間に電力を供給する配電網に接続され、電動車両に搭載された走行用の電池の電力を前記配電網に供給する動作が可能である電力変換器と、前記建物で消費される電力を監視する電力計測装置と、前記電力変換器に前記電動車両が接続されている場合に、前記電動車両の識別情報が、あらかじめ登録されている一または複数の電動車両の一または複数の識別情報のうちのいずれかに一致するか否かを判断する認証部と、前記電力計測装置が監視する電力に応じて、一致すると判断された前記電動車両に搭載された前記電池から前記配電網に電力を供給するように前記電力変換器に指示する指示部とを備えることを特徴とする。
 本発明に係る制御装置は、上述した電力管理システムに用いられ、前記認証部と前記指示部とを備えることを特徴とする。
 本発明の構成によれば、建物に入居する需要家が利用する電動車両に搭載された電池から建物の配電網に電力を供給可能にしているから、専用の電力貯蔵装置を導入する場合と比較すると、設備コストの低減を図ることが可能になる。また、本発明は、電動車両の認証を行うことによって、あらかじめ登録された電動車両から電力を供給させるから、対象外の電動車両の電力を誤って利用することを防止できる。さらに、本発明は、認証を行うことにより、電力の供給を行った電動車両と供給した電力量とを管理することが可能になる。
 本発明の好ましい実施形態をさらに詳細に記述する。本発明の他の特徴および利点は、以下の詳細な記述および添付図面に関連して一層良く理解されるものである。
実施形態1を示すブロック図である。 実施形態1の概略構成図である。 実施形態2を示すブロック図である。 実施形態3を示すブロック図である。 実施形態3に用いる切替装置を示す回路図である。 実施形態4を示すブロック図である。
 図1に示すように、以下に説明する電力管理システムは、電力変換器161と電力計測装置(電力量計112)と認証部157と指示部153とを備える。電力変換器161は、建物(集合住宅10)に入居する複数の需要家の各々に対して割り当てられた一または複数の空間(住戸12)に電力を供給する配電網31に接続され、電動車両20に搭載された走行用の電池21の電力を配電網31に供給する動作が可能である。電力計測装置は、建物で消費される電力を監視する。認証部157は、電力変換器161に電動車両20が接続されている場合に、電動車両20の識別情報が、あらかじめ登録されている一または複数の電動車両の一または複数の識別情報のうちのいずれかに一致するか否かを判断する。指示部153は、電力計測装置が監視する電力に応じて、一致すると判断された電動車両20に搭載された電池21から配電網31に電力を供給するように電力変換器161に指示する。
 電力管理システムは、建物において複数の需要家に対して割り当てられた全ての空間(複数の住戸12)に供給する電力を高圧配電線路である電力系統30から一括して受電し降圧する受変電設備110を備えることが望ましい。この場合、配電網31は、受変電設備110により降圧された電力を上記全ての空間(複数の住戸12)に配電する。
 また、電力管理システムは、電力計測装置が監視する電力が、あらかじめ設定された制限値を超えるか否かを予測する予測部155を備えることが好ましい。この場合、指示部153は、予測部155により電力計測装置で監視している電力が制限値を超える可能性があると予測された場合に、電池21から配電網31に電力を供給するように電力変換器161に指示する。
 さらに、電力管理システムは、電動車両20を利用する時間帯および走行距離を含む走行予定情報が登録される登録部156を備えることが望ましい。この場合、指示部153は、走行予定情報に基づいて電池21の残容量の下限値を算出し、下限値に基づいて電池21から放電させる電力量を制限する。
 また、電力管理システムが登録部156を備える場合、指示部153は、電動車両20側で予測された走行可能距離の情報を電動車両20から受け取り、走行可能距離の下限値が前記走行予定情報に含まれる走行距離になるように、電池21から放電させる電力量を制限してもよい。
 加えて、電力管理システムは、一または複数の電動車両20の一または複数の識別情報の各々に対して、所定期間において収集した電力量を積算する精算部158(積算部に相当)を備えることが好ましい。
 以下に説明する制御装置15は、上述した電力管理システムに用いられ、認証部157と指示部153とを備える。
 以下、本実施形態について詳述する。以下では、集合住宅において高圧一括受電を行う場合を例示するが、複数の需要家が入居する建物であれば、テナントビルなどでも、以下に説明する技術を適用可能である。つまり、以下では複数の需要家の各々に対して割り当てられた一または複数の空間を住戸12として説明するが、テナントビルであれば店舗や事務所等に相当する。ここに、高圧一括受電は、建物において、高圧配電線路からの受電を行い、建物内において降圧した後に各需要家に電力を供給することを意味する。
 建物の管理者(たとえば、管理組合、管理会社など)は、電気事業者(たとえば、電力会社)に対して、高圧配電線路から一括して受電した電力量に対する対価を支払い、各需要家からは、配分した電力量に応じた対価を受け取る。一般的に言って、高圧配電線路から受電する電力の単価は、低圧配電線路から受電する電力の単価よりも低額であるから、需要家にとっては電気料金の支払いを低減できるという利点がある。
 以下の実施形態では、建物の管理者が電気事業者に支払う電気料金が、使用した電力の最大値に応じた単価が設定された基本料金と、使用した電力量に応じて単価が段階的に上昇するように設定されている電力量料金との合計になる場合を例にしている。電気料金の計算方法は、契約によって定められ、たとえば、基本料金が1ヶ月ずつ独立して設定される場合と、過去1年間において月間の電力の最大値で定まる基本料金が適用される場合とがある。後者の場合、月間における電力の最大値が過去1年間における月間の電力の最大値を超えると、次の1年間において基本料金が上昇することになる。
 電気事業者との契約によっては、月間の電力の最大値だけではなく、所定期間(たとえば、30分間)ごとの電力量について月間の最大値が用いられる場合もある。また、受電している電力が電気事業者との間で契約により設定された制限値を超えると、建物の管理者が電気事業者に対して超過料金を支払う場合がある。さらに、電力が市場で取引される場合であれば、受電する電力量が約定を成立させた取引量を超えると、建物の管理者が電気事業者に対して違約金を支払う場合もある。
 以下では、月間における電力の最大値が、設定された制限値を超えないように受電する電力を調節する場合を例として説明する。ただし、上述した各種例のように、電力あるいは電力量が所定値を超えると、電気事業者に支払う対価に超過料金が生じる場合にも、以下に説明する技術を適用することが可能である。すなわち、超過料金が生じる可能性がある場合に、以下の技術を採用することによって、超過料金の発生が抑制される。
 以下に説明する実施形態では、電動車両20が、電気自動車、プラグインハイブリッド車、電動二輪車のように、走行用の電池21が蓄電池である場合を想定して説明する。ただし、以下に説明する実施形態の技術的思想は、電動車両20が燃料電池車であっても適用可能である。燃料電池車は、走行用の電池21が燃料電池になる。
 燃料電池車のみに以下の技術を適用する場合は、後述する充放電器16のように充電および放電を制御する装置に代えて、放電の制御のみを行う機能を備えた装置を用いればよい。また、充放電器16において、電動車両20から種別を示す信号を受け取ることができる場合、あるいは充放電器16に電動車両の種別を通知できる場合には、充放電器16は、電動車両20の種別に応じて充電または放電の制御を行うように構成される。以下では、符号「21」を蓄電池21に用いる。
 (実施形態1)
 図1は、本実施形態において説明する電力管理システムの全体構成を示している。集合住宅10の電気室11には、6600Vの高圧配電線路30から受電し、200Vに降圧した後に、配電網31を通して集合住宅10の複数の住戸12(複数の空間)に配電するための設備が設けられる。以下では、高圧配電線路30を「電力系統」と呼ぶ。
 すなわち、電気室11には、電力系統30から受電し降圧するキュービクルのような受変電設備110が設置される。また、電気室11には、電力系統30から受電した電力量を計量する電力量計111と、降圧後に集合住宅10の全体で消費された電力量を計量する電力計測装置としての電力量計112とが設置される。電力量計111は電気事業者に管理され、受変電設備110および電力量計112は集合住宅10の管理者に管理される。
 集合住宅10には、配電網31から受電する需要家(つまり、住戸12)ごとに電力量計101が配置される。各電力量計101は対応する住戸12で消費した電力量を計量する。また、集合住宅10の共用部13が配電網31から受電した電力量を計量するために電力量計102が配置される。
 ところで、本実施形態では、集合住宅10に付随して設けられた駐車場14に、電動車両20に搭載された蓄電池21の充電および放電を制御するために、1ないし複数台の充放電器16が設置されている。
 それぞれの充放電器16は、配電網31に接続されており、配電網31から受電し蓄電池21に充電する機能と、蓄電池21に蓄えた電力を配電網31に供給する機能とを備える電力変換器161を内蔵している。また、それぞれの充放電器16は、配電網31から受電した電力量と、配電網31に供給した電力量とをそれぞれ計量する電力量計162を備える。さらに、充放電器16は、電動車両20が接続されているか否かを確認する接続確認部163と、接続されている電動車両20の識別情報を取得する情報取得部164と、他装置との通信を行う通信インターフェイス部165とを備える。以下、通信インターフェイス部を、「通信I/F部」と略称する。
 電力変換器161は、直流電力と直流電力との間で電圧変換を行う第1変換回路(図示せず)と、直流電力と交流電力との変換を行う第2変換回路(図示せず)とを備え、全体として双方向に電力を変換する。つまり、電力変換器161は、蓄電池21の直流電力を交流電力に変換して配電網31に供給し、配電網31の交流電力を直流電力に変換して蓄電池21の充電を行う。
 通信I/F部165は、集合住宅10の管理者が管理する制御装置15と通信線32を通して通信する。制御装置15は、充放電器16と通信するだけではなく、電力量計112が計量した電力量を所定時間(たとえば、1分、5分、10分、30分などから選択される)ごとに取得する機能も有している。すなわち、制御装置15は、充放電器16における接続確認部163および情報取得部164から情報を取得する第1の取得部151と、電力量計112から情報を取得する第2の取得部152とを備える。また、制御装置15は、第1の取得部151および第2の取得部152が取得した情報に基づいて電力変換器161の動作状態を指示する指示部153を備える。
 制御装置15は、第2の取得部152が電力量計112から取得した電力値を、設定部154に設定された制限値と比較し、電力値の推移から制限値を超えるか否かを予測する予測部155を備える。第2の取得部152は、電力量計112から所定時間(たとえば、1分、5分、10分、30分などから選択される)という比較的短い時間ごとの電力量を1秒単位で平均した平均値を瞬時電力とみなす。
 予測部155は、第2の取得部152が時々刻々と取得した電力値の推移と制限値とを用いて、集合住宅10の全体で消費される電力(瞬時電力)の値が制限値を超える可能性を予測する。予測部155は、たとえば、所定の単位期間(たとえば、30分、1時間など)において電力の積算値を求め、積算値の傾きの変化率と電力値とから、電力値が制限値を超える可能性を予測する。
 ところで、本実施形態は、集合住宅10の全体で消費している電力が制御装置15に設定された制限値を超える可能性があると、蓄電池21から住戸12に電力を供給し、電力系統30から受電する電力を低減させる構成が採用されている。
 電動車両20に搭載された蓄電池21の電力を配電網31に供給するには、まず、電動車両20が充放電器16に接続されていることを確認しなければならない。電動車両20が充放電器16に接続されている状態は、必ずしもケーブルなどによる物理的な接続状態ではなくてもよい。すなわち、電動車両20と充放電器16との間で非接触で電力を伝送する場合でも、電動車両20と充放電器16との間で蓄電池21の充電および放電が可能な状態であれば接続された状態とみなす。ただし、電動車両20が配電網31から電力を受電すること、および電動車両20から配電網31に電力を供給することは、許可されている電動車両20にしか行えない。
 すなわち、充放電器16は、上述したように、接続確認部163および情報取得部164を備えている。接続確認部163は、蓄電池21の充電あるいは放電が可能になるように電動車両20が充放電器16に接続されていると、通信I/F部165を通して制御装置15に接続通知を送信する。接続通知は、電動車両20が充放電器16に接続された時点と電動車両20が充放電器16から離脱した時点でのみ制御装置15に伝送される。ただし、接続確認部163は、電動車両20が充放電器16に接続されていることを確実に認識するために、電動車両20が接続されたことが検出された後、電動車両20が離脱したことが検出されるまで、接続状態を定期的に確認するようにしてもよい。
 電動車両20が充放電器16に接続されていることは、通信I/F部165を通して制御装置15に通知される。制御装置15における指示部153は、充放電器16から電動車両20が接続されたことを通知されると、情報取得部164に対して電動車両20の識別情報を取得するように指示する機能を有する。
 電動車両20の識別情報は、充放電器16に電動車両20が接続された状態で、電動車両20と充放電器16とが通信することにより情報取得部164が取得する。すなわち、電動車両20は車両ごとにユニークである識別情報を備えており、充放電器16に電動車両20が接続されると、充放電器16と電動車両20との間に通信路が形成され、この通信路を通して、情報取得部164が電動車両20から識別情報を取得する。充放電器16と電動車両20との間で電力を伝送する経路が有線である場合、電力を伝送する電線と通信路になる信号線とを併設したケーブルを用いればよい。充放電器16と電動車両20との間で電力を非接触で伝送する場合、識別情報の伝送には無線通信路が用いられる。
 制御装置15は、各電動車両20の充電と放電とを許可する複数の電動車両20の複数の識別情報が登録される登録部156と、情報取得部164が電動車両20から取得した識別情報が、登録部156に登録された一または複数の識別情報のうちのいずれかに一致するか否かを判断する認証部157とを備える。登録部156は、通常は、充電と放電との両方を許可する電動車両20が登録されるが、充電を許可する電動車両20と、放電を許可する電動車両20とがそれぞれ登録されていてもよい。
 ところで、電動車両20の識別情報を登録部156に登録するには登録作業を行う必要がある。登録作業は、たとえば、電動車両20を充放電器16に接続した状態で、充放電器16に設けられた操作部(図示せず)に対して所定の操作を行うことにより行われる。また、登録作業に際して、移動体端末を操作装置として用いるようにしてもよい。登録作業を行うことによって、電動車両20から読み出された識別情報が制御装置15の登録部156に自動的に登録される。
 なお、電動車両20を集合住宅10の居住者が所有している場合には、登録部156は、電動車両20の識別情報が登録されるだけではなく、所有者の住戸番号が併せて登録されることが望ましい。また、集合住宅10の居住者によるカーシェアリングが行われ、集合住宅10の複数の居住者が1台の電動車両20を共用している場合には、該当する電動車両20に付与した車両番号が、電動車両20の識別情報と併せて登録部156に登録されるようにしてもよい。
 認証部157は、情報取得部164から取得した識別情報が、登録部156に登録されている一または複数の識別情報のうちのいずれかに一致すると、当該識別情報に対して認証フラグを設定する。認証フラグが設定された識別情報を持つ電動車両20は、充放電器16を通して蓄電池21の充電と放電との少なくとも一方が可能になる。認証フラグは、接続確認部163が電動車両20の離脱を確認するまでは有効であり、電動車両20が充放電器16から離脱すると認証フラグも解除される。また、認証部157は、情報取得部164から取得した識別情報が、登録部156に登録されている一または複数の識別情報のいずれにも一致しない場合は、この電動車両20に対して充電および放電を許可しないように充放電器16に指示する。
 以下では、蓄電池21から配電網31に電力を供給することが許可された電動車両20について、認証部157に認証フラグが設定されている状態を想定する。この状態において、電力系統30から受電する電力が制限値を超える可能性があると予測部155が予測した場合、指示部153は認証フラグが設定されているか否かを確認する。指示部153は、認証フラグが設定されている場合、認証フラグが設定された電動車両20が接続されている充放電器16に対して、蓄電池21の電力を配電網31に供給させるように指示する。
 指示部153は、蓄電池21から配電網31に電力の供給を開始した後、集合住宅10の全体で消費する電力の値が開始直前の電力の値に対して規定した割合だけ低下すると、蓄電池21の放電を停止させるように充放電器16に指示する。蓄電池21の放電を停止させる条件は、配電網31に蓄電池21から電力の供給を開始する直前の電力の値に対して、集合住宅10の全体で消費する電力の値に、規定した閾値を超える低下が生じることとしてもよい。
 制御装置15は、精算部158(積算部に相当)を備えており、充放電器16に蓄電池21からの放電を指示してから放電の停止を指示するまでの期間において蓄電池21が放電した電力量を、電動車両20ごとに収集する。精算部158は、電動車両20の識別情報ごとに、所定期間(たとえば、1ヶ月)において収集した電力量を積算する。精算部158は、各電力量計162が計量した電力量を取得することで放電した電力量を収集する。
 上述したように、電動車両20の識別情報ごとに電力量が積算されるから、集合住宅10の管理者は、電動車両20の所有者に対して、電動車両20から放電した電力量に応じた特典を与えることが可能(精算可能)になる。特典を与えることは電動車両20からの放電を許容させる動機付けになる。特典の種類には、たとえば、放電量に応じた対価(インセンティブ)の支払い、買い物のポイントの発行、集合住宅10での管理サービスに利用できるポイントの発行などがある。また、住戸12で消費された電力量のうち単価が高いほうの電力量から放電した電力量を差し引くことを特典としてもよい。
 上述したように、電動車両20の蓄電池21の電力を利用することによって、電力系統30から受電する電力の値が制限値を超えないように、集合住宅10の全体で消費する電力量を調節することが可能になる。その結果、受電する電力が制限値を超えることによる超過料金の発生を抑制することになり、結果的に、電気料金の増加が抑制される。
 上述した構成例は、電動車両20の識別情報を制御装置15において認証しているが、制御装置15の登録部156に登録された識別情報を充放電器16に渡すことにより、充放電器16で電動車両20の識別情報を認証するようにしてもよい。
 また、蓄電池21は電動車両20の走行用に用いられるから、蓄電池21から配電網31に電力を供給する際に、蓄電池21の残容量(残す電力量)に、走行用の電力量に応じた下限を設けておくことが望ましい。この場合、制御装置15の登録部156は、電動車両20の識別情報ごとに、日々の走行予定情報が併せて登録されていることが望ましい。走行予定情報には、電動車両20が使用される時間帯と走行距離の目安とが含まれる。指示部153は、走行予定情報に応じて蓄電池21の残容量を算出し、蓄電池21から放電させる場合には、この残容量を下限値として放電量を制限する。
 上述した制御装置15は、プログラムに従って動作するプロセッサを備えたコンピュータを主なハードウェア要素として備える。この種のコンピュータは、メモリをプロセッサと一体に備えるマイコン、プロセッサとメモリとを個別に備える構成などがある。コンピュータを、上述した制御装置15として機能させるためのプログラムは、コンピュータに搭載されるROM(Read Only Memory)により提供されるか、インターネットのような電気通信回線を通して提供されるか、コンピュータで読取可能な記録媒体により提供される。制御装置15は、電気室11に配置されることを想定しているが、集合住宅10の管理人室などに設置してもよい。
 上述した構成例では、走行予定情報が制御装置15で管理されているが、走行予定情報は、電動車両20で管理するようにしてもよい。この場合、電動車両20は、充放電器16を通して制御装置15と通信し、制御装置15は、電動車両20から取得した走行予定情報に基づいて蓄電池21の残容量を計算すればよい。なお、蓄電池21の残容量の下限値は、走行距離に応じて定まる残容量よりも多く設定して走行に余裕を持たせることが望ましい。また逆に、蓄電池21の残容量の下限値は、放電を停止した後に充電されることを見込んで、走行距離に応じて定まる残容量よりも少なく設定してもよい。
 ところで、上述した構成例において、電動車両20に搭載された蓄電池21の電力は、集合住宅10の全体で消費される電力が制限値を超えると予測される場合に使用されているから、原則として電力系統30への逆潮流は生じない。ただし、集合住宅10で消費される電力が予測よりも少ない場合には、電力系統30に対して蓄電池21の電力の逆潮流が生じる可能性がある。蓄電池21の電力の逆潮流が許容されている場合には、とくに問題は生じないが、蓄電池21の電力の逆潮流が禁止されている場合には、以下の対策が必要になる。なお、受変電設備110は、電力を双方向に伝達する構成を想定している。
 以下では、集合住宅10の配電網31を、図2に示すように、電力系統30から受電した電力を供給する第1線路311と、住戸12および共用部13に電力を供給する第2線路312と、充放電器16が接続される第3線路313とに分けて説明する。第1線路311と第2線路312と第3線路313とが分岐する部位には、切替装置33が接続される。充放電器16が複数台設けられる場合、第3線路313は、充放電器16ごとに設けられるか、あるいは複数台の充放電器16で共用される。ここでは、複数台の充放電器16が第3線路313を共用する場合を例とする。なお、簡素化のために図2では充放電器16は1台のみ図示される。
 切替装置33は、第1線路311の電流を監視する電流センサ331と、第2線路312に挿入されたスイッチ要素332と、第3線路313に挿入されたスイッチ要素333とを備える。スイッチ要素332,333は、電磁接触器(大電流用のリレー)などが用いられる。スイッチ要素332,333の開閉は、配電網31における線間の瞬時電圧と、電流センサ331から出力される瞬時電力との時間変化をパラメータとして制御される。図示例では、電流センサ331の出力を、いずれかの充放電器16が監視し、スイッチ要素331,332の開閉を制御する構成を記載している。この構成では、配電網31における線間の瞬時電圧は、充放電器16の出力電圧で代用される。
 ただし、複数台の充放電器16を同構成とするために、制御装置15が、電流センサ331の出力の監視、およびスイッチ要素331,332の開閉の制御を行うことが望ましい。この構成では、制御装置15は、配電網31の線間の瞬時電圧を、第1線路311と第2線路312と第3線路313とのいずれから取得してもよいが、電流センサ331と同じ位置で第1線路311から取得することが望ましい。
 蓄電池21から電力系統30に対して逆潮流が生じているか否かは、以下のようにして判断される。まず、第1線路311、第2線路312、第3線路313の電圧および電流について考察する。
 受変電設備110(図1参照)は電圧源とみなすことができるから、配電網31の電圧は、第1線路311、第2線路312、第3線路313のいずれでも同じである。充放電器16は、配電網31に対して電流源となる構成であり、充放電器16から出力される電流は、配電網31の線間の電圧と同位相の波形になる。また、第2線路312には電源が存在しないから、第2線路312に流れる電流(スイッチ要素332を通過する電流)は、第2線路312に接続された電気負荷の大きさに応じて変化する。第1線路311を通過する電流(つまり、電流センサ331で検出される電流)は、第2線路312に接続された負荷の大きさにより変化する。
 いま、電流I1が電力系統30から電気負荷に流れ込む向きを正の向きとする。充放電器16が配電網31に電力を供給している状態では、第2線路312に流れ込む電流I2は、電流センサ331が監視する第1線路311の電流I1と、充放電器16から第3線路313に出力される電流I3との和である。すなわち、I1=I2-I3が成立する。
 逆潮流が生じている状態は、有効電力の瞬時値を電力系統30の周波数における1周期分について積分した積分値Pによって判断される。有効電力の瞬時値は、電流センサ331で計測される電流の瞬時値と、電力変換器161から出力される電圧の瞬時値とを用いて計算される。逆潮流が生じていない場合はP<0になり、逆潮流が生じている場合はP>0になる。これは、電流I1が電力系統30の電圧の位相に対して反転している状態(負になっている状態(I<0))である。言い換えると、逆潮流が生じている状態は、充放電器16から出力される電力が、電気負荷で消費される電力を上回る状態であって、このとき、I3>I2である。
 電流センサ331の出力を監視する充放電器16は、第1線路311における有効電力を計算する計算部(図示せず)と、計算部が計算した結果に基づいてスイッチ要素332,333の開閉を制御する制御部(図示せず)とを備える。
 計算部は、電流センサ331の出力から得られる第1線路311の瞬時電流と、配電網31の線間の瞬時電圧とを用いることにより、第1線路311における有効電力の値を計算する。第1線路311の電流が電力系統30の電圧の位相に対して反転していれば、第1線路311の有効電力の値は負であって、第1線路311の電流が電力系統30の電圧の位相と同位相であれば、第1線路311の有効電力の値は正になる。
 制御部は、計算部が計算した有効電力が正であり、かつ計算された有効電力が設定された閾値を超えると、充放電器16から配電網31に出力する電流を制限し、さらに、充放電器16を配電網31から切り離すようにスイッチ要素333を制御する。なお、スイッチ要素332は、逆潮流が生じているか否かとは関係なく、集合住宅10の全体で電気負荷への電力を供給する状態と電力を遮断する状態とを一括して選択するために設けられている。
 上述した構成例では、電流センサ331が設けられた部位における有効電力の符号によって、逆潮流が生じているか否かを判断しており、有効電力の計算に用いる電流は電流センサ331が検出し、電圧は充放電器16において検出している。したがって、有効電力を計算するために用いる電圧と、電流センサ331が配置されている部位の電圧とは、位相がずれる可能性がある。そのため、電流センサ331と充放電器16とは、電圧の位相のずれが逆潮流の判断において問題にならない位置関係に配置することが必要である。なお、逆潮流の有無を制御装置15が判断する場合は、制御装置15が切替装置33に近接して設けられていれば、この種の問題は生じない。
 電動車両20について、カーシェアリングのための情報は、制御装置15に設けられた登録部156に登録され、制御装置15は、電気室11あるいは管理人室に配置される。カーシェアリングを行う場合、電動車両20の走行予定情報を参加者が共有することが望ましい。この種の走行予定情報は、管理人室あるいは共用部13に配置された提示装置に提示されることが望ましい。
 この走行予定情報には、電動車両20が利用される時間帯と走行距離の目安との情報が含まれる。走行距離の目安は、インターネットのような電気通信回線に接続されたサーバが提供しているサービスを利用して入手すればよい。この種のサーバは、たとえば、利用者が提示された地図上で出発地と目的地との位置を指定すると、出発地から目的地を通り出発地に戻る際の距離を算出するというサービスを提供する。したがって、算出された距離に基づいて、電動車両20を走行させるために必要な蓄電池21の残容量を算出し、蓄電池21から放電する電力量が管理される。
 上述した予定表は、電動車両20のカーシェアリングを行う際の鍵の管理にも用いられる。つまり、予定表に登録されていない時間帯に電動車両20が勝手に使用されることがないように、鍵の出し入れを予定表と関連付けて管理することが可能になる。たとえば、管理人室に設置したキーボックスに、電動車両20の鍵を収納しておき、予定表に登録された時間帯の直前にのみキーボックスから鍵を取り出せるようにすれば、予定表に登録されていない時間帯に電動車両20が勝手に使用されるのを防止できる。
 本実施形態は、蓄電池21を搭載した電動車両20のうち、とくに電気自動車を想定して記載しているから、蓄電池21から配電網31に電力を供給する際に、電動車両2の走行予定情報に応じて、蓄電池21に残しておくべき残容量を定めている。ただし、電動車両2が、蓄電池21のほかに内燃機関を搭載したプラグインハイブリッド車、燃料電池を搭載した燃料電池車などの場合には、配電網31に供給可能な電力を蓄電池21の残容量によって定めることはできない。
 これらの電動車両20について、配電網31に供給可能な電力を定める場合には、制御装置15は、電動車両20側で予測された走行可能距離の情報を電動車両20から受け取り、走行可能距離の下限値を走行予定情報に含まれる走行距離に基づいて定めてもよい。つまり、制御装置15に設けられた指示部153は、電動車両20から受け取る走行可能距離が下限値を下回らないように電動車両20から供給する電力量を制限する。走行可能距離を用いて放電する電力量を制限する構成は、プラグインハイブリッド車、燃料電池車に限らず、蓄電池21を搭載した電気自動車であっても同様の技術を採用可能である。
 (実施形態2)
 実施形態1では、集合住宅10において電力系統30から受電する電力量を低減させるために用いる電源は、電動車両20の蓄電池21のみである。したがって、電動車両20が充放電器16に接続されていない場合には、電力系統30から受電する電力量が制限値を超えることが予測されたとしても、受電する電力量を低減させる対策を講じることができない。
 本実施形態は、図3に示すように、集合住宅10に設置される蓄電池40および蓄電池40の充電と放電とを行う充放電器18とを付加した構成を採用している。充放電器18は、集合住宅10の配電網31に接続される。
 蓄電池40は充放電器18につねに接続されており、蓄電池40の交換時などを除いて蓄電池40が充放電器18から離脱することはない。充放電器18は、基本的な構成については、電動車両20に搭載された蓄電池21の充電および充放電器16と同様である。ただし、電動車両20が接続されないから、接続確認部163および情報取得部164に相当する構成は省略される。すなわち、充放電器18は、電力変換器181、電力量計182、通信I/F部185を備える。電力変換器181、電力量計182、通信I/F部185は、電力変換器161、電力量計162、通信I/F部165と同様の機能を有する。
 本実施形態の他の構成は実施形態1と同様である。本実施形態の構成では、充放電器16に接続された電動車両20が1台も存在しない場合であっても、電力系統30から受電する電力量が制限値を超えることが予測されたときに、蓄電池40の電力を用いることが可能である。そのため、電力系統30から受電する電力量が制限値を超える可能性を実施形態1の構成よりもさらに低減することが可能である。
 (実施形態3)
 本実施形態は、図4に示すように、実施形態2の構成に、太陽電池41および電力変換装置42を付加した構成を備える。太陽電池41は集合住宅10の屋根、壁面などの適宜の場所に設置される。電力変換装置42は太陽電池41が発電した直流電力を交流電力に変換し、集合住宅10の配電網31に交流電力を供給する機能を有する。本実施形態において、充放電器16、充放電器18、電力変換装置42は、切替装置34を介して配電網31に接続される。
 切替装置34は、図5に示すように、実施形態1で説明した切替装置33に対して、第4線路314を介して電力変換装置42と接続されるスイッチ要素334を付加した構成を備える。スイッチ要素334は、たとえば電磁接触器により実現される。スイッチ要素334は、第1線路311と第4線路314との間に挿入される。言い換えると、第1線路311と第4線路314とは、スイッチ要素334のみを介して接続される。電流センサ331は、スイッチ要素332,333とスイッチ要素334との間に挿入される。
 本実施形態では、電動車両20の蓄電池21および集合住宅10に設置された蓄電池40の電力は電力系統30への逆潮流が禁止され、太陽電池41が発電した電力は電力系統30への逆潮流が許容される。また、太陽電池41が発電した電力は、集合住宅10において充放電器16からの電力に優先して利用される。
 すなわち、本実施形態の構成では、住戸12および共用部13の電気負荷に供給される電力は、電力変換装置42で充足される場合には、電力変換装置42からのみ供給される。電力変換装置42では、電気負荷が消費する電力を充足できない場合、不足分は電力系統30から供給される。さらに、電力系統30から受電する電力が制限値を超えることが予測される場合には、充放電器16からも電力が供給される。
 このように、太陽電池41の電力と、電力系統30から受電する電力と、蓄電池21および蓄電池40から供給される電力とに優先順位を設定し、太陽電池41の電力を優先的に用いるから、電力系統30から受電する電力量が低減される。また、太陽電池41で発電した電力が電気負荷で消費する電力を超え、余剰電力が発生する場合は、電力系統30への逆潮流を行うことが可能である。
 本実施形態の他の構成および動作は実施形態2と同様であって、蓄電池21および蓄電池40の電力は、電力系統30への逆潮流が生じない範囲で、太陽電池41の発電した電力および電力系統30から受電した電力と併せて電気負荷に供給される。また、太陽電池41での発電量が増加すれば、余剰電力を電力系統30に逆潮流させ、売電収入を得ることが可能になる。なお、逆潮流を行った電力量を計量するために、電気室11などに電力量計113が配置される。
 (実施形態4)
 本実施形態は、図6に示すように、実施形態3と同様に太陽電池41および電力変換装置42を備える。ただし、実施形態3は、電力変換装置42から出力される電力の一部である余剰電力を電力系統30に逆潮流させているが、本実施形態は、電力変換装置42から出力される全電力を電力系統30に逆潮流させるように構成されている。
 すなわち、図示例において、電力変換装置42は、電気室11に収納された受変電設備114に接続線35を介して接続され、受変電設備114および電力量計115を通して電力系統30に接続されている。受変電設備114は、受変電設備110と同様の構成であって、電力系統30と配電網31との間で双方向に電圧を変換する。電力量計115は、電力変換装置42から電力系統30に逆潮流を行った電力量を計量するために設けられている。
 本実施形態の構成では、切替装置33に電力変換装置42が接続されないから、切替装置33は実施形態2で説明した切替装置33と同構成になる。つまり、切替装置33は、電流センサ331およびスイッチ要素332,333を備える。他の構成および動作は実施形態2と同様であるから説明を省略する。
 本発明を幾つかの好ましい実施形態によって記述したが、この発明の本来の精神および範囲、即ち請求の範囲を逸脱することなく、当業者によって様々な修正および変形が可能である。

Claims (7)

  1.  建物に入居する複数の需要家の各々に対して割り当てられた一または複数の空間に電力を供給する配電網に接続され、電動車両に搭載された走行用の電池の電力を前記配電網に供給する動作が可能である電力変換器と、
     前記建物で消費される電力を監視する電力計測装置と、
     前記電力変換器に前記電動車両が接続されている場合に、前記電動車両の識別情報が、あらかじめ登録されている一または複数の電動車両の一または複数の識別情報のうちのいずれかに一致するか否かを判断する認証部と、
     前記電力計測装置が監視する電力に応じて、一致すると判断された前記電動車両に搭載された前記電池から前記配電網に電力を供給するように前記電力変換器に指示する指示部とを備える
     電力管理システム。
  2.  前記建物において前記複数の需要家に対して割り当てられた全ての空間に供給する電力を高圧配電線路である電力系統から一括して受電し降圧する受変電設備をさらに備え、
     前記配電網は、前記受変電設備により降圧された電力を前記全ての空間に配電する
     請求項1記載の電力管理システム。
  3.  前記電力計測装置が監視する電力が、あらかじめ設定された制限値を超えるか否かを予測する予測部をさらに備え、
     前記指示部は、前記予測部により前記電力計測装置で監視している電力が前記制限値を超える可能性があると予測された場合に、前記電池から前記配電網に電力を供給するように前記電力変換器に指示する
     請求項1又は2記載の電力管理システム。
  4.  前記電動車両を利用する時間帯および走行距離を含む走行予定情報が登録される登録部をさらに備え、
     前記指示部は、前記走行予定情報に基づいて前記電池の残容量の下限値を算出し、前記下限値に基づいて前記電池から放電させる電力量を制限する
     請求項1~3のいずれか1項に記載の電力管理システム。
  5.  前記電動車両を利用する時間帯および走行距離を含む走行予定情報が登録される登録部をさらに備え、
     前記指示部は、前記電動車両側で予測された走行可能距離の情報を前記電動車両から受け取り、前記走行可能距離の下限値が前記走行予定情報に含まれる走行距離になるように、前記電池から放電させる電力量を制限する
     請求項1~3のいずれか1項に記載の電力管理システム。
  6.  前記一または複数の電動車両の前記一または複数の識別情報の各々に対して、所定期間において収集した電力量を積算する積算部をさらに備える
     請求項1~5のいずれか1項に記載の電力管理システム。
  7.  請求項1~6のいずれか1項に記載の電力管理システムに用いられ、
     前記認証部と前記指示部とを備える
     制御装置。
PCT/JP2014/003415 2013-07-10 2014-06-26 電力管理システム、制御装置 WO2015004869A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2013144830A JP6432816B2 (ja) 2013-07-10 2013-07-10 電力管理システム、制御装置
JP2013-144830 2013-07-10

Publications (1)

Publication Number Publication Date
WO2015004869A1 true WO2015004869A1 (ja) 2015-01-15

Family

ID=52279579

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/003415 WO2015004869A1 (ja) 2013-07-10 2014-06-26 電力管理システム、制御装置

Country Status (2)

Country Link
JP (1) JP6432816B2 (ja)
WO (1) WO2015004869A1 (ja)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107150603A (zh) * 2017-04-28 2017-09-12 深圳充电网科技有限公司 一种提高充电桩与电动车的匹配度的方法和装置
CN109955734A (zh) * 2017-12-26 2019-07-02 丰田自动车株式会社 电力管理系统、电力管理方法及计算机可读取的记录介质
CN111439163A (zh) * 2019-01-17 2020-07-24 本田技研工业株式会社 控制装置以及计算机可读存储介质
FR3142054A1 (fr) * 2022-11-10 2024-05-17 Totalenergies Onetech Equipement de production photovoltaïque

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6354666B2 (ja) * 2015-06-05 2018-07-11 株式会社デンソー エネルギー管理システム
JP6824600B2 (ja) * 2015-06-26 2021-02-03 京セラ株式会社 電力供給システム
US20220009361A1 (en) * 2018-11-28 2022-01-13 Kyocera Corporation Power management apparatus, power management method and power management system
JP6810762B2 (ja) * 2019-03-01 2021-01-06 アマノ株式会社 駐車管理システム
WO2024034288A1 (ja) * 2022-08-10 2024-02-15 パナソニックIpマネジメント株式会社 充放電制御装置、放電下限値設定装置、充放電制御方法及びプログラム

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007252117A (ja) * 2006-03-16 2007-09-27 Chugoku Electric Power Co Inc:The 電力供給システムおよび電力供給方法
JP2012039724A (ja) * 2010-08-05 2012-02-23 Toyota Motor Corp 集合住宅用電力供給システム
JP2012175722A (ja) * 2011-02-17 2012-09-10 Panasonic Corp 充放電制御装置
JP2013099140A (ja) * 2011-11-01 2013-05-20 Shimizu Corp 電力管理システム、電力管理方法、プログラム

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008065635A (ja) * 2006-09-07 2008-03-21 Chugoku Electric Power Co Inc:The 充電スタンド管理システム
JP2012098798A (ja) * 2010-10-29 2012-05-24 Toko Electric Corp 充電システム
JP5646352B2 (ja) * 2011-01-19 2014-12-24 シャープ株式会社 放電制御装置、放電制御方法、放電制御システム、制御プログラムおよび記録媒体

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007252117A (ja) * 2006-03-16 2007-09-27 Chugoku Electric Power Co Inc:The 電力供給システムおよび電力供給方法
JP2012039724A (ja) * 2010-08-05 2012-02-23 Toyota Motor Corp 集合住宅用電力供給システム
JP2012175722A (ja) * 2011-02-17 2012-09-10 Panasonic Corp 充放電制御装置
JP2013099140A (ja) * 2011-11-01 2013-05-20 Shimizu Corp 電力管理システム、電力管理方法、プログラム

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107150603A (zh) * 2017-04-28 2017-09-12 深圳充电网科技有限公司 一种提高充电桩与电动车的匹配度的方法和装置
CN107150603B (zh) * 2017-04-28 2020-05-05 简单充(杭州)科技有限公司 一种快速获取与电动车匹配度高的充电桩的方法和装置
CN109955734A (zh) * 2017-12-26 2019-07-02 丰田自动车株式会社 电力管理系统、电力管理方法及计算机可读取的记录介质
CN111439163A (zh) * 2019-01-17 2020-07-24 本田技研工业株式会社 控制装置以及计算机可读存储介质
CN111439163B (zh) * 2019-01-17 2024-03-22 本田技研工业株式会社 控制装置以及计算机可读存储介质
FR3142054A1 (fr) * 2022-11-10 2024-05-17 Totalenergies Onetech Equipement de production photovoltaïque

Also Published As

Publication number Publication date
JP2015019501A (ja) 2015-01-29
JP6432816B2 (ja) 2018-12-05

Similar Documents

Publication Publication Date Title
JP6432816B2 (ja) 電力管理システム、制御装置
US9043038B2 (en) Aggregation server for grid-integrated vehicles
JP2019071780A (ja) 使用者認証コンセント又はコネクタ、電力仲介用コネクタ及び電力需要装置
WO2013073625A1 (ja) 課金システム及びev充電システム
JP2011182555A (ja) 電力供給システム
US20160193931A1 (en) Power supply system and discharge device
JP2010166794A (ja) 充電スタンドシステム、充電方法、および充電サービス提供方法
JP2012075297A (ja) 電力量演算装置,電力量演算サーバ,電力量演算システムおよび電力量演算方法
EP3771060B1 (en) Power information management system, management method, program, power information management server, communication terminal, and power system
JP7142291B2 (ja) 充電方法、及び、充電システム
JP2021040403A (ja) 電力供給システム及び、電気料金の管理方法
WO2015001701A1 (ja) 電力管理システム及び制御装置
Dicorato et al. Performance analysis of EV stations optimal operation in DC microgrid configurations
US20220379763A1 (en) Solar-Energized Electric Vehicle Charging
Kettles et al. Electric Vehicle Charging Technologies Analysis and Standards
Kettles et al. Electric vehicle charging technologies analysis and standards: final research project report.
KR20230116211A (ko) 전기 차량용 충전 통신 제어 장치 및 전기 차량용 충전 제어 시스템

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14823823

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14823823

Country of ref document: EP

Kind code of ref document: A1