WO2015003449A1 - Endoscope double mode à fluorescence optoacoustique - Google Patents

Endoscope double mode à fluorescence optoacoustique Download PDF

Info

Publication number
WO2015003449A1
WO2015003449A1 PCT/CN2013/087652 CN2013087652W WO2015003449A1 WO 2015003449 A1 WO2015003449 A1 WO 2015003449A1 CN 2013087652 W CN2013087652 W CN 2013087652W WO 2015003449 A1 WO2015003449 A1 WO 2015003449A1
Authority
WO
WIPO (PCT)
Prior art keywords
photoacoustic
endoscope
light source
optical fiber
laser light
Prior art date
Application number
PCT/CN2013/087652
Other languages
English (en)
Chinese (zh)
Inventor
宋亮
白晓淞
龚小竞
Original Assignee
深圳先进技术研究院
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳先进技术研究院 filed Critical 深圳先进技术研究院
Publication of WO2015003449A1 publication Critical patent/WO2015003449A1/fr

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/0033Features or image-related aspects of imaging apparatus classified in A61B5/00, e.g. for MRI, optical tomography or impedance tomography apparatus; arrangements of imaging apparatus in a room
    • A61B5/0035Features or image-related aspects of imaging apparatus classified in A61B5/00, e.g. for MRI, optical tomography or impedance tomography apparatus; arrangements of imaging apparatus in a room adapted for acquisition of images from more than one imaging mode, e.g. combining MRI and optical tomography
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B1/00Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor
    • A61B1/06Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor with illuminating arrangements
    • A61B1/07Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor with illuminating arrangements using light-conductive means, e.g. optical fibres
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B1/00Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor
    • A61B1/00163Optical arrangements
    • A61B1/00172Optical arrangements with means for scanning
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B1/00Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor
    • A61B1/00163Optical arrangements
    • A61B1/00188Optical arrangements with focusing or zooming features
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B1/00Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor
    • A61B1/04Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor combined with photographic or television appliances
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B1/00Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor
    • A61B1/04Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor combined with photographic or television appliances
    • A61B1/043Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor combined with photographic or television appliances for fluorescence imaging
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/0059Measuring for diagnostic purposes; Identification of persons using light, e.g. diagnosis by transillumination, diascopy, fluorescence
    • A61B5/0071Measuring for diagnostic purposes; Identification of persons using light, e.g. diagnosis by transillumination, diascopy, fluorescence by measuring fluorescence emission
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/0093Detecting, measuring or recording by applying one single type of energy and measuring its conversion into another type of energy
    • A61B5/0095Detecting, measuring or recording by applying one single type of energy and measuring its conversion into another type of energy by applying light and detecting acoustic waves, i.e. photoacoustic measurements
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B8/00Diagnosis using ultrasonic, sonic or infrasonic waves
    • A61B8/12Diagnosis using ultrasonic, sonic or infrasonic waves in body cavities or body tracts, e.g. by using catheters

Definitions

  • the invention belongs to the technical field of endoscopes, and in particular relates to a photoacoustic-fluorescent dual-mode endoscope.
  • endoscope As a non-invasive or minimally invasive imaging method, endoscope can penetrate into the internal body cavity of the organism and directly observe the internal organs and tissue characteristics. It is widely used in many fields such as biomedicine and clinical diagnosis and treatment, especially cardiovascular and cerebrovascular digestion. Road and interventional diagnosis.
  • Ultrasound endoscopy uses reflection ultrasound imaging to reflect tissue structural information, but it has low imaging resolution, low soft tissue contrast, and cannot reflect physiological function changes and molecular information, so it cannot effectively reflect biological tissue. Early lesions.
  • the optical endoscope can only image the surface of the internal biological tissue through the CCD, and the tissue below the epidermis can not be observed, which limits the disease diagnosis ability to a certain extent.
  • NIR endoscopes use molecular targeting probes to specifically image biomolecules, which have high sensitivity for early diagnosis of diseases, but it cannot reflect the morphology and structural characteristics of biological tissues, and does not have depth resolution. Therefore, it is not possible to provide more informative 3D imaging.
  • Photoacoustic endoscopic imaging using optical absorption contrast, especially optical resolution photoacoustic endoscope has high contrast and resolution, and can simultaneously image the morphological structure, chemical composition and physiological function information of biological tissues. It has extremely significant significance and clinical value for early diagnosis of cardiovascular diseases and malignant tumors.
  • Multimodal imaging methods A variety of imaging modalities have been combined to compensate for the deficiencies of a single imaging modality, which has become a development trend.
  • the existing multi-modal endoscopic techniques have low resolution of photoacoustic imaging and fluorescence imaging, and it is difficult to effectively distinguish early lesions, or although the imaging resolution can be improved, but the probe photoacoustic imaging module uses transmission.
  • the method of receiving a photoacoustic signal does not enable true endoscopic imaging to be applied to the detection of a living body cavity.
  • the invention discloses a photoacoustic-fluorescence multi-mode endoscope, which can obtain a three-dimensional image of tissue structure, chemical composition and physiological function characteristic information with higher optical resolution for early diagnosis of diseases, and can simultaneously obtain biological tissues. High sensitivity biospecific molecular information.
  • the invention provides a photoacoustic-fluorescence dual-mode endoscope, which aims to solve the technical problem that the existing endoscope has low image resolution and limited use occasions.
  • a photoacoustic-fluorescence dual-mode endoscope comprising: a control system, a laser light source, an optical path system, an endoscope catheter, a scanning system, a data acquisition system, an image reconstruction system, and a display system
  • the control system controls the laser light source, the scanning system, the data acquisition system, the image reconstruction system, and the display system, the laser light source, the optical path system, the scanning system, and the inner
  • the speculum catheters are sequentially connected, the data acquisition system is respectively connected to the optical path system and the endoscope catheter, and the data acquisition system is sequentially connected to the image reconstruction system and the display system, the endoscope
  • An endoscope probe is disposed at the end of the mirror catheter, and the endoscope probe is provided with an optical component and a photoacoustic receiver, wherein the laser light emitted by the laser light source enters the endoscope through the optical path system and the scanning system a mirror catheter, after being focused by the optical component, is incident on
  • the technical solution of the present invention has the following advantages or beneficial effects:
  • the photoacoustic-fluorescent dual-mode endoscope provided by the present invention simultaneously introduces photoacoustic and fluorescent excitation light into an endoscope catheter, and is focused and focused by a focusing mirror.
  • the integration of the two imaging modes is realized, and the imaging resolution is greatly improved.
  • FIG. 1 is a structural view of a photoacoustic-fluorescent dual-mode endoscope according to an embodiment of the present invention
  • FIG. 2 is a structural view of an optical path system in the photoacoustic-fluorescent dual-mode endoscope shown in FIG. 1;
  • FIG. 3 is a structural view of an endoscope catheter in the photoacoustic-fluorescence dual-mode endoscope shown in FIG. 1;
  • FIG. 4 is another structural view of the endoscope catheter in the photoacoustic-fluorescence dual-mode endoscope shown in FIG. 1;
  • FIG. 5 is another structure of the optical path system in the photoacoustic-fluorescence dual-mode endoscope shown in FIG.
  • Figure 6 is a structural view of a scanning system in the photoacoustic-fluorescence dual-mode endoscope shown in Figure 1;
  • Fig. 7 is a third structural view of the endoscope catheter in the photoacoustic-fluorescence dual-mode endoscope shown in Fig. 1. detailed description
  • Fig. 1 is a structural view showing a photoacoustic-fluorescent dual-mode endoscope 10 according to an embodiment of the present invention.
  • the photoacoustic-fluorescence dual-mode endoscope 10 includes: a control system 11, a laser light source 12, an optical path system 13, an endoscope catheter 14, a scanning system 15, a data acquisition system 16, an image reconstruction system 17, and a display system 18, the control system 11 controlling the laser light source 12, the scanning system 15, the data acquisition system 16, the image reconstruction system 17, and the display system 18, the control system 11 and the The laser light source 12, the scanning system 15, the data acquisition system 16, the image reconstruction system 17, and the display system 18 are connected, respectively.
  • the laser light source 12, the optical path system 13, the scanning system 15, and the endoscope catheter 14 are sequentially connected, the data acquisition system 16 and the optical path system 13 and the The endoscope catheters 14 are connected, and the data acquisition system 16 is sequentially coupled to the image reconstruction system 17 and display system 18.
  • the laser light source 12 emits a laser having a wavelength range of 400-2500 nm
  • the laser light source 12 includes a photoacoustic light source and a fluorescent light source
  • the photoacoustic light source is a pulsed laser source or an amplitude modulated continuous laser source.
  • the fluorescent light source is a photoacoustic light source or a light source capable of exciting fluorescence.
  • the laser light emitted by the laser light source 12 enters the endoscope catheter 14 through the optical path system 13 and the scanning system 15, and an endoscope probe is provided at the end of the endoscope catheter 14 ( 1 is not shown), the endoscope probe is provided with an optical component and a photoacoustic receiver, the optical component focuses the laser and irradiates the biological tissue and excites the photoacoustic signal and the fluorescent signal, and the photoacoustic receiver collects The photoacoustic signal is converted to a photoacoustic electrical signal, and the optical component collects the fluorescent signal and transmits it to the optical path system 13 via a scanning system 15, which converts the fluorescent signal into The fluorescent electrical signal, the data acquisition system 16 receives and stores the photoacoustic electrical signal and the fluorescent electrical signal, and the image reconstruction system 17 receives the optical acoustic electrical signal transmitted by the data acquisition system 16 and The fluorescent electrical signals are converted into photoacoustic image signals and fluorescence, respectively The image signal, the display system 18
  • FIG. 2 is a structural diagram of the optical path system 13 in the photoacoustic-fluorescent dual-mode endoscope 10 shown in FIG.
  • the optical path system 13 includes a first dichroic mirror 1301, a second dichroic mirror 1302, a fiber coupler 1303, a fiber splitter 1304, a photodiode 1305, and an opto-slip ring. 1306, the photodiode 1305 and the photo-slip ring 1306 are disposed in parallel and are connected to the fiber splitter 1304.
  • the first dichroic mirror 1301 coaxially directs the photoacoustic light source and the laser light emitted by the fluorescent light source in the laser light source 12 toward the second dichroic mirror 1302, the second The dichroic mirror 1302 transmits the laser light emitted by the laser light source 12 and reflects the excited fluorescent signal, and the fiber coupler 1303 couples the laser light emitted by the laser light source 12 and the reflected excitation fluorescent signal together and splits through the optical fiber.
  • the device 1304 is split into two beams, one of which enters the photodiode 1305 to generate a reference signal, and the other of which b is sequentially emitted to the biological tissue via the photo-slip ring 1306 and the endoscope catheter 14 for imaging.
  • the opto-slip ring 1306 includes a stator and a rotor, the stator is coupled to the fiber splitter 1304, and the rotor is coupled to the endoscope catheter 14.
  • the photoelectric slip ring 1306 is composed of an optical fiber slip ring and an electric slip ring coaxially.
  • the optical path system 13 further includes a filter 1308 and a photodetector 1309.
  • the photodetector 1309 detects the fluorescence transmitted by the second dichroic mirror 1302 through the filter 1308. signal.
  • the photodiode 1305 is coupled to the fiber splitter 1304 for detecting changes in laser energy.
  • FIG. 3 is a detailed structural view of the endoscope catheter 14 in the photoacoustic-fluorescent dual-mode endoscope 10 of FIG.
  • the endoscope catheter 14 includes an optical fiber 141, a cable 142, and a protective cover 143, and the optical fiber 141 and the cable 142 are wrapped in the protective cover 143.
  • the optical fiber 141 is a single mode fiber or a double-clad fiber, and the double-clad fiber is composed of a single-mode core and a multi-mode cladding.
  • the end of the endoscope catheter 14 is provided with an endoscope probe 144, which is composed of an optical focusing component 1440, a probe protection catheter 1441, a packaging material 1443, and an ultrasound detector 1444.
  • the probe protection catheter 1441 includes an optical window and an acoustic window, and the optical focusing component 1440 and the ultrasonic detector 1444 are mounted in the probe protection catheter 1441, and the probe protection catheter 1441 is connected to the protective sleeve 143. .
  • the encapsulating material 1443 is also used to fix the optical fiber 141 and the cable 142 in the probe protection catheter 143.
  • the optical focusing component 1440 is a ball lens connected to the end of the optical fiber 141 for turning the laser light 90 degrees and exiting through the optical window, and the ultrasonic detector 1444 is connected to the cable. 142 ultrasonic transducer.
  • the endoscopic probe 144 further includes an angle adjusting member 1445 disposed in the probe protection catheter 143 for adjusting an angle at which the ultrasonic probe 1444 receives an ultrasonic signal.
  • FIG. 4 is another structural view of the endoscope catheter 14 in the photoacoustic-fluorescent dual-mode endoscope 10 of FIG.
  • the structure of the endoscope catheter 14 is substantially the same as that shown in FIG. 3, except that the structure of the endoscope probe 144 is only the same, and the same portions will not be described herein.
  • the endoscopic probe 144 includes a focusing assembly 1440, a probe protection tube 14 41, an ultrasonic probe 1444, an angle adjustment member 1445, a diameter matching conduit 1446, a thin-walled conduit 1447, and a mirror 1448.
  • the focusing component 1440 is a self-focusing lens, one end is connected to the end of the optical fiber 141, and is sleeved at the end of the optical fiber 141 by the diameter matching conduit 1446, and the mirror is placed at the other end. 1448, used to convert the laser light emitted by the focusing component 1440 into 90 degrees.
  • the diameter matching sleeve 1446, the autofocus lens 1440 and the mirror 1448 are placed in the thin-walled conduit 1447, and the thin-walled conduit 1447 is provided at the laser exiting position of the mirror 1448.
  • Optical window used to convert the laser light emitted by the focusing component 1440 into 90 degrees.
  • FIG. 5 is another structural diagram of the optical path system 13 in the photoacoustic-fluorescent dual-mode endoscope 10 of FIG.
  • the optical path system 13 includes a first dichroic mirror 1301 disposed in sequence.
  • the mirror 1310 is optically coupled.
  • the first dichroic mirror 1301 couples the photoacoustic light source in the laser light source 12 and the laser light emitted from the fluorescent light source together and coaxially, and the beam splitter 1310 reflects the laser light to the portion.
  • the photodiode 1311 generates a reference signal
  • the scanning system 15 controls the transmission direction of the laser light transmitted by the beam splitter 1310 and irradiates the laser light to the microscope objective 1317, which focuses and irradiates the laser to the microscope
  • the end surface of the endoscope catheter 14 is irradiated with a laser beam emitted from the endoscope catheter 14 to excite a photoacoustic signal and a fluorescence signal.
  • the photodetector 1309 detects the fluorescent signal transmitted by the second dichroic mirror 1302 through the filter 1308.
  • FIG. 6 is a structural diagram of the scanning system 15 in the photoacoustic-fluorescent dual-mode endoscope 10 shown in FIG.
  • the scanning system 15 is composed of two mirrors (a mirror 1501 and a mirror 1502), and the two mirrors (the mirror 1501 and the mirror 1502) are in the same manner as the mirror 1501.
  • the mirrors 1502 are oscillated at a small angle in a plane perpendicular to each other such that the spot focused by the microscope objective 1317 sweeps the end face of the fiber bundle of the endoscope catheter 14.
  • Fig. 7 is a third structural view of the endoscope catheter 14 in the photoacoustic-fluorescent dual-mode endoscope 10 of Fig. 1.
  • the endoscope catheter includes a fiber bundle 141, a cable 142, a protective cover 143, a focusing assembly 146, and an ultrasonic probe 147.
  • the ultrasonic probe 147 is a hollow ultrasonic transducer, and the focusing assembly 146 is disposed in a hollow portion of the ultrasonic transducer.
  • the focusing component 146 is a self-focusing lens
  • the fiber bundle 141 is coaxially connected to the focusing component 146
  • the fiber bundle 141 and the focusing component 146 are encapsulated in the protective sleeve 143.
  • the spot emitted by the fiber bundle 141 is focused by the focusing component 146 and then irradiated to the biological tissue to excite the photoacoustic signal and the fluorescent signal
  • the ultrasonic detector 147 detects the photoacoustic signal and converts it into a photoacoustic electrical signal.
  • the fiber bundle 141 collects a fluorescent signal and transmits it to the photodetector 1309 for conversion into a fluorescent electrical signal.
  • the fiber bundle 141 is composed of a plurality of single-mode fibers, and spots irradiated to different positions of the end faces of the fiber bundles 141 are transmitted to the endoscope catheter 14 through different single-mode fibers.
  • the spots emitted by the different single-mode fibers in the fiber bundle 141 are irradiated to different positions of the biological tissue, and the three-dimensional structure and functional information images of the tissue are obtained by photoacoustic scanning, and the two-dimensional molecular fluorescence of the biological tissue is obtained by fluorescence imaging. image.
  • the photoacoustic-fluorescent dual-mode endoscope 10 provided in the embodiment of the present invention introduces photoacoustic and fluorescent excitation light into the endoscope catheter 14 at the same time, and focuses the lens through the endoscope probe 144 to illuminate the living body.
  • the tissue, simultaneously exciting the photoacoustic signal and the fluorescent signal, realizes the integration of the two imaging modes, and the imaging resolution is greatly improved.

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Surgery (AREA)
  • Physics & Mathematics (AREA)
  • Molecular Biology (AREA)
  • General Health & Medical Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Biomedical Technology (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Medical Informatics (AREA)
  • Biophysics (AREA)
  • Veterinary Medicine (AREA)
  • Animal Behavior & Ethology (AREA)
  • Pathology (AREA)
  • Public Health (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Radiology & Medical Imaging (AREA)
  • Optics & Photonics (AREA)
  • Acoustics & Sound (AREA)
  • Investigating, Analyzing Materials By Fluorescence Or Luminescence (AREA)
  • Endoscopes (AREA)
  • Ultra Sonic Daignosis Equipment (AREA)

Abstract

L'invention concerne un endoscope (10) double mode à fluorescence optoacoustique comprenant un système de commande (11), une source de lumière laser (12), un système optique (13), un tube d'endoscope (14), un système de balayage (15), un système d'acquisition de données (16), un système de reconstruction d'image (17) et un système d'affichage (18). Le système de commande (11) commande la source de lumière laser (12), le système de balayage (15), le système d'acquisition de données (16), le système de reconstruction d'image (17) et le système d'affichage (18). Le système laser (12), le système optique (13), le système de balayage (15) et le tube d'endoscope (14) sont raccordés séquentiellement et le système d'acquisition de données (16), le système optique (13) et le tube d'endoscope (14) sont raccordés. Le système d'acquisition de données (16), le système de reconstruction d'image (17) et le système d'affichage (18) sont raccordés séquentiellement. Cet endoscope double mode (10) réalise l'intégration de deux modes d'imagerie en amenant simultanément le signal optoacoustique excité et la lumière fluorescente dans le tube d'endoscope (14) et en l'irradiant dans un tissu biologique, après qu'un photoscope focalisé a effectué la mise au point, tout en excitant le signal optoacoustique et le signal d'excitation de fluorescence et la résolution d'image est fortement améliorée.
PCT/CN2013/087652 2013-07-12 2013-11-22 Endoscope double mode à fluorescence optoacoustique WO2015003449A1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201310293472.6 2013-07-12
CN201310293472.6A CN104274149B (zh) 2013-07-12 2013-07-12 光声-荧光双模成像内窥镜

Publications (1)

Publication Number Publication Date
WO2015003449A1 true WO2015003449A1 (fr) 2015-01-15

Family

ID=52249858

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2013/087652 WO2015003449A1 (fr) 2013-07-12 2013-11-22 Endoscope double mode à fluorescence optoacoustique

Country Status (2)

Country Link
CN (1) CN104274149B (fr)
WO (1) WO2015003449A1 (fr)

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105380586A (zh) * 2015-12-29 2016-03-09 华南师范大学 一种组合式立体角扫描的光、声内窥成像装置及其方法
CN108784629A (zh) * 2017-04-28 2018-11-13 凝辉(天津)科技有限责任公司 一种远端插入式微机电系统内窥成像设备
CN109938683A (zh) * 2019-01-31 2019-06-28 北京超维景生物科技有限公司 可变焦腔体内窥镜探测装置及激光扫描腔体内窥镜
CN109965830A (zh) * 2019-04-23 2019-07-05 北京数字精准医疗科技有限公司 一种内窥镜摄像装置
CN109965832A (zh) * 2019-04-26 2019-07-05 中山大学 一种多功能光学内窥镜系统
CN111134591A (zh) * 2019-12-27 2020-05-12 华南师范大学 一种光声显微成像笔及成像方法
CN112545453A (zh) * 2019-09-26 2021-03-26 上海科技大学 一种手持式光声成像设备探头
CN113349708A (zh) * 2021-06-08 2021-09-07 之江实验室 一种基于大色散镜头的双模态高分辨大深度显微内窥成像系统
CN113640392A (zh) * 2021-07-29 2021-11-12 华南师范大学 基于透明柔性复合电极的高灵敏全透明光声探测器及内窥装置
CN115235996A (zh) * 2022-07-01 2022-10-25 广东省人民医院 基于摆动音圈电机的弧面光声显微成像装置及成像方法
CN117030621A (zh) * 2023-09-11 2023-11-10 深圳大学 无标记激光组织学成像系统及成像方法
CN117129450A (zh) * 2023-08-10 2023-11-28 飞秒激光研究中心(广州)有限公司 光信号探测系统及其配置方法、飞秒激光影像系统

Families Citing this family (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104921805B (zh) * 2015-05-20 2017-05-31 中卫祥光(北京)科技有限公司 可视化点阵激光治疗仪
CN105361840B (zh) * 2015-11-30 2018-08-24 青岛大学附属医院 光声内窥镜系统
CN106691396A (zh) * 2017-02-28 2017-05-24 华南师范大学 一种血管内荧光‑光声‑超声多模成像装置及方法
CN106949439A (zh) * 2017-03-22 2017-07-14 中国科学院苏州生物医学工程技术研究所 一种基于荧光激发的光源装置
CN106872367B (zh) * 2017-04-19 2019-09-13 中国科学院深圳先进技术研究院 一种成像系统及方法
CN107411707A (zh) * 2017-05-08 2017-12-01 武汉大学 一种肿瘤微血管成像仪及肿瘤微血管成像方法
CN107440669A (zh) * 2017-08-25 2017-12-08 北京数字精准医疗科技有限公司 一种双通道内窥式成像系统
CN107898435A (zh) * 2017-11-09 2018-04-13 中国科学院深圳先进技术研究院 一种光路系统及头戴式显微系统
CN108362646A (zh) * 2018-02-07 2018-08-03 上海交通大学 一种微型光声显微成像头、制作方法及其组成的系统
CN108185974A (zh) * 2018-02-08 2018-06-22 北京数字精准医疗科技有限公司 一种内窥式荧光超声融合造影导航系统
CN108209878A (zh) * 2018-03-06 2018-06-29 南京生命源医药实业有限公司 可视化系统及方法
CN108852262A (zh) * 2018-05-11 2018-11-23 上海交通大学 一种免扫描器的宽视场光声内窥镜及成像系统
JP2021526879A (ja) * 2018-06-06 2021-10-11 ザ ジェネラル ホスピタル コーポレイション 小型化された血管内蛍光−超音波イメージングカテーテル
CN112672690A (zh) * 2018-09-19 2021-04-16 深圳迈瑞生物医疗电子股份有限公司 一种光声双模成像探头
CN109691984A (zh) * 2018-12-07 2019-04-30 深圳先进技术研究院 一种胰胆管的多模态成像系统
WO2020113566A1 (fr) * 2018-12-07 2020-06-11 深圳先进技术研究院 Système d'imagerie multimodale pour tractus biliaire pancréatique et son dispositif cathéter endoscopique
CN109381167A (zh) * 2018-12-18 2019-02-26 厦门大学 基于液体透镜自聚焦的双模态内窥镜装置
CN110384471A (zh) * 2019-08-02 2019-10-29 上海长征医院 基于阵列光纤束照明成像的生物组织检测系统
CN110477842B (zh) * 2019-08-26 2020-07-24 清华大学 体内检测系统和方法
CN110584616A (zh) * 2019-10-18 2019-12-20 南方科技大学 一种双模成像显微镜系统
CN111387947A (zh) * 2020-04-07 2020-07-10 中国科学院苏州生物医学工程技术研究所 多模态显微内窥成像装置及方法
CN115568820A (zh) * 2022-09-05 2023-01-06 暨南大学 一种基于远端扫描的全光纤光声内窥成像装置及系统
CN115153399B (zh) * 2022-09-05 2022-12-09 浙江华诺康科技有限公司 内窥镜系统
CN115989989A (zh) * 2023-02-15 2023-04-21 暨南大学 一种基于光纤传感器的全方位旋转扫描内窥成像装置

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20090244521A1 (en) * 2008-03-31 2009-10-01 General Electric Company System and method for multi-mode optical imaging
CN101785662A (zh) * 2010-03-09 2010-07-28 华南师范大学 一种集成光声与荧光双模态的成像系统及成像方法
CN101912250A (zh) * 2010-05-24 2010-12-15 华南师范大学 一种血管内光声超声双模成像内窥镜装置及其成像方法
CN102499645A (zh) * 2011-11-08 2012-06-20 西安电子科技大学 光声与荧光双模一体断层成像系统及成像方法
CN102928346A (zh) * 2012-10-18 2013-02-13 中国科学院深圳先进技术研究院 双模成像系统

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002330919A (ja) * 2001-05-10 2002-11-19 Asahi Optical Co Ltd 蛍光観察用内視鏡システム
JP2004215738A (ja) * 2003-01-10 2004-08-05 Pentax Corp 画像処理装置
JP4954699B2 (ja) * 2006-12-28 2012-06-20 オリンパス株式会社 蛍光内視鏡システム
JP2011062348A (ja) * 2009-09-17 2011-03-31 Fujifilm Corp 内視鏡システム

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20090244521A1 (en) * 2008-03-31 2009-10-01 General Electric Company System and method for multi-mode optical imaging
CN101785662A (zh) * 2010-03-09 2010-07-28 华南师范大学 一种集成光声与荧光双模态的成像系统及成像方法
CN101912250A (zh) * 2010-05-24 2010-12-15 华南师范大学 一种血管内光声超声双模成像内窥镜装置及其成像方法
CN102499645A (zh) * 2011-11-08 2012-06-20 西安电子科技大学 光声与荧光双模一体断层成像系统及成像方法
CN102928346A (zh) * 2012-10-18 2013-02-13 中国科学院深圳先进技术研究院 双模成像系统

Cited By (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105380586A (zh) * 2015-12-29 2016-03-09 华南师范大学 一种组合式立体角扫描的光、声内窥成像装置及其方法
CN108784629A (zh) * 2017-04-28 2018-11-13 凝辉(天津)科技有限责任公司 一种远端插入式微机电系统内窥成像设备
CN109938683A (zh) * 2019-01-31 2019-06-28 北京超维景生物科技有限公司 可变焦腔体内窥镜探测装置及激光扫描腔体内窥镜
CN109965830A (zh) * 2019-04-23 2019-07-05 北京数字精准医疗科技有限公司 一种内窥镜摄像装置
CN109965830B (zh) * 2019-04-23 2024-05-07 北京数字精准医疗科技有限公司 一种内窥镜摄像装置
CN109965832A (zh) * 2019-04-26 2019-07-05 中山大学 一种多功能光学内窥镜系统
CN112545453A (zh) * 2019-09-26 2021-03-26 上海科技大学 一种手持式光声成像设备探头
CN112545453B (zh) * 2019-09-26 2022-11-11 上海科技大学 一种手持式光声成像设备探头
CN111134591A (zh) * 2019-12-27 2020-05-12 华南师范大学 一种光声显微成像笔及成像方法
CN113349708B (zh) * 2021-06-08 2023-05-26 之江实验室 一种基于大色散镜头的双模态高分辨大深度显微内窥成像系统
CN113349708A (zh) * 2021-06-08 2021-09-07 之江实验室 一种基于大色散镜头的双模态高分辨大深度显微内窥成像系统
CN113640392A (zh) * 2021-07-29 2021-11-12 华南师范大学 基于透明柔性复合电极的高灵敏全透明光声探测器及内窥装置
CN113640392B (zh) * 2021-07-29 2023-09-05 华南师范大学 基于透明柔性复合电极的高灵敏全透明光声探测器及内窥装置
CN115235996A (zh) * 2022-07-01 2022-10-25 广东省人民医院 基于摆动音圈电机的弧面光声显微成像装置及成像方法
CN115235996B (zh) * 2022-07-01 2024-05-14 广东省人民医院 基于摆动音圈电机的弧面光声显微成像装置及成像方法
CN117129450A (zh) * 2023-08-10 2023-11-28 飞秒激光研究中心(广州)有限公司 光信号探测系统及其配置方法、飞秒激光影像系统
CN117030621A (zh) * 2023-09-11 2023-11-10 深圳大学 无标记激光组织学成像系统及成像方法

Also Published As

Publication number Publication date
CN104274149B (zh) 2016-06-29
CN104274149A (zh) 2015-01-14

Similar Documents

Publication Publication Date Title
WO2015003449A1 (fr) Endoscope double mode à fluorescence optoacoustique
Zhou et al. Photoacoustic imaging with fiber optic technology: A review
CN103462644B (zh) 光声内窥镜
CN103462645B (zh) 前视光声内窥镜
US8262576B2 (en) Imaging probe
US8764666B2 (en) Ultrasound guided optical coherence tomography, photoacoustic probe for biomedical imaging
US10076248B2 (en) Hybrid catheter system
US20050143664A1 (en) Scanning probe using MEMS micromotor for endosocopic imaging
US10537235B2 (en) Multimodal endoscope apparatus
CN106983494B (zh) 多模态成像系统及其成像方法
WO2015010409A1 (fr) Système d'imagerie intravasculaire à double mode photoacoustique et ultrasonore et procédé d'imagerie correspondant
CN108670177B (zh) 一种乳管内窥镜成像探头
WO2008012701A1 (fr) Caméra en capsule avec éclairage variable du tissu environnant
CN212307814U (zh) 多模态显微内窥成像装置
CN108324249B (zh) 基于锥形光纤同时实现光学耦合及光声激发的血管内光声成像探头
WO2012147326A1 (fr) Dispositif de mesure photoacoustique et unité de sonde utilisée dans ledit dispositif
Chen et al. A fiber-optic system for dual-modality photoacoustic microscopy and confocal fluorescence microscopy using miniature components
CN110367941B (zh) 一种探测光融合非接触光声-光学相干层析双模成像系统
CN113397481B (zh) 基于光纤扫描的光声-oct双模态内窥成像系统及方法
CN110353609A (zh) 一种具备三维成像能力的光场3d共聚焦内窥镜
CN105167747A (zh) 一种手持式光声成像探头
Li et al. Miniature probe for forward-view wide-field optical-resolution photoacoustic endoscopy
WO2020072470A1 (fr) Élément optique distal surmoulée pour sondes optiques intraluminales
CN204813815U (zh) 一种手持式光声成像探头
CN109349983B (zh) 一种胰胆管的多模态成像系统及其内窥导管装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13889178

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205N DATED 22.03.2016)

122 Ep: pct application non-entry in european phase

Ref document number: 13889178

Country of ref document: EP

Kind code of ref document: A1