WO2015003445A1 - 镀膜方法、镀膜装置及显示器 - Google Patents

镀膜方法、镀膜装置及显示器 Download PDF

Info

Publication number
WO2015003445A1
WO2015003445A1 PCT/CN2013/087162 CN2013087162W WO2015003445A1 WO 2015003445 A1 WO2015003445 A1 WO 2015003445A1 CN 2013087162 W CN2013087162 W CN 2013087162W WO 2015003445 A1 WO2015003445 A1 WO 2015003445A1
Authority
WO
WIPO (PCT)
Prior art keywords
plated
substrate
solution
film
solution tank
Prior art date
Application number
PCT/CN2013/087162
Other languages
English (en)
French (fr)
Inventor
韩帅
Original Assignee
北京京东方光电科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 北京京东方光电科技有限公司 filed Critical 北京京东方光电科技有限公司
Publication of WO2015003445A1 publication Critical patent/WO2015003445A1/zh

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C17/00Surface treatment of glass, not in the form of fibres or filaments, by coating
    • C03C17/001General methods for coating; Devices therefor
    • C03C17/002General methods for coating; Devices therefor for flat glass, e.g. float glass
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C2217/00Coatings on glass
    • C03C2217/20Materials for coating a single layer on glass
    • C03C2217/21Oxides
    • C03C2217/23Mixtures
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C2217/00Coatings on glass
    • C03C2217/20Materials for coating a single layer on glass
    • C03C2217/21Oxides
    • C03C2217/23Mixtures
    • C03C2217/231In2O3/SnO2
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C2218/00Methods for coating glass
    • C03C2218/10Deposition methods
    • C03C2218/11Deposition methods from solutions or suspensions
    • C03C2218/115Deposition methods from solutions or suspensions electro-enhanced deposition

Definitions

  • Embodiments of the invention relate to a method, an I3 ⁇ 4 device, and a display comprising the film prepared by the method. Background technique
  • LB technology is a method for preparing regular oxidized (ZnO) films on glass substrates.
  • LB technology was proposed by American scientist Langmuir and his student Blodgett in the 1920s and 1930s, so it is called LB (Langmuir-Blodgett) technology.
  • the X Ray diffraction (XRD) test showed that the prepared material was a ZnO semiconductor material.
  • Scanning Electron Microscope (SEM) showed that the film was regular and orderly. This effectively demonstrates the feasibility of the LB technique for preparing ordered thin films. If the ordered ordered ordered film is introduced into the liquid crystal display field, the optical effect of the liquid crystal display can be effectively improved. However, this method has certain defects.
  • the disadvantages are as follows: 1.
  • the process of forming a monomolecular film on the surface of the solution is self-issued, and the efficiency is low, which is not suitable for large-scale industrial production; 2.
  • glass The substrate may have local damage to the monomolecular film, and the formed film may not be 100% uniform, and local unevenness may affect the optical effect of the liquid crystal display.
  • a layer-by-layer self-assembly is used to prepare a polyelectrolyte self-assembled multilayer film by alternating deposition of opposite charges on the substrate.
  • the film prepared by this technology has good mechanical and chemical stability and can even be made into an ultra-thin film.
  • LBL technology does not propose a method for controlling atomic, molecular alignment and film structure in the preparation of thin film, that is, the prepared film does not have regular order in microstructure.
  • Electrolytic cell plating technology is a technique for forming a film by redox reaction at the anode and the cathode when an electric current passes through an electrolyte solution.
  • This technique is widely used in the field of Mo.
  • the shortcomings of this method are as follows: 1.
  • the electrolyte is randomly arranged during deposition, the film structure is irregular and there are many defects in the film; 2.
  • the substrate to be plated needs to be placed in a solution, and the substrate to be plated is corrosive.
  • the conventional technology uses Mo technology in the process of preparing a thin film transistor array substrate.
  • the industry's application to thin-film transistor array substrates! 3 ⁇ 4 technology includes magnetron sputtering, plasma sol gel and other technologies.
  • FIG. 1 is a schematic view showing the principle of preparing a film by magnetron sputtering in the conventional art.
  • a magnetic field B is introduced on the surface of the target 12, and the direction of the magnetic field is the direction in which the N pole of the magnetic strip under the target 12 is directed to the S pole.
  • the magnetic field B is used to restrain the charged particles to increase the plasma density to increase the sputtering rate.
  • the electron e collides with the argon (Ar) atom during the flying toward the substrate 10 under the action of the electric field E, ionizing the Ar atom to generate argon positive ions (Ar + ) and new electrons, and the new electrons fly toward the substrate 10 Ar + accelerates to the target 12 under the action of an electric field, and bombards the surface of the target 12 with high energy to cause sputtering of the target.
  • Ar + accelerates to the target 12 under the action of an electric field, and bombards the surface of the target 12 with high energy to cause sputtering of the target.
  • a neutral target atom is deposited on the substrate 10 to form a thin film. Since there are many vacancies 11 on the surface of the target 12, voids are generated in the film deposited on the substrate 10. These defects destroy the structure of the film and reduce the optical effect of the film.
  • magnetron sputtering or PECVD does not have the function of micro-operation of fine structure.
  • the orderly arrangement of the ion-viewing structure and the tight film thickness cannot be artificially controlled, which hinders the development of precision optical instruments and high-efficiency optoelectronics.
  • the performance of the device is improved.
  • the conventional industrial coating technique cannot produce a film with a regular particle arrangement, and cannot accurately control the number of layers of the film (i.e., the thickness of the film).
  • the traditional industrial coating process consumes a lot of energy, consumes raw materials, and requires high equipment.
  • the intense noise, strong light radiation, harmful gases, metal vapor dust, etc. generated during the coating process are harmful to the human body.
  • the film structure prepared by the conventional technology is disorderly disordered, has vacancy defects, has a long optical path, and has a large loss of light, and cannot further improve the transmittance of the film. Summary of the invention
  • An embodiment of the present invention provides a method of: 3 ⁇ 4, the method includes:
  • a lower substrate is disposed at a bottom of the solution tank, and an upper substrate is disposed above the solution tank, the substrate to be plated is adsorbed on the upper substrate, and the substrate to be plated faces the solution tank;
  • the single layer molecular film is formed into a film layer on the surface of the substrate to be plated.
  • the embodiment of the present invention further provides a coating device, the device comprising: a solution tank for applying an external field force to the solution of the object to be plated in the solution tank to form an ion to be plated in the solution of the object to be plated.
  • a solution tank for applying an external field force to the solution of the object to be plated in the solution tank to form an ion to be plated in the solution of the object to be plated.
  • the upper substrate and the lower substrate of the layer molecular film wherein the upper substrate is located above the solution tank, the lower substrate is located at the bottom of the solution tank, and the upper substrate is further used for adsorbing the substrate to be plated.
  • Embodiments of the present invention also provide a display, wherein the film layer in the display comprises a film prepared by the coating method.
  • FIG. 1 is a schematic view showing the principle of preparing a film by magnetron sputtering in the conventional art
  • FIG. 2 is a flow chart of a method according to an embodiment of the present invention.
  • FIG. 3 is a front elevational view showing a solution of a material to be plated added to a solution tank in a coating method according to an embodiment of the present invention
  • FIG. 4 is a front view showing a single-layer molecular film formed by ions to be plated in a solution after energization of an upper substrate and a lower substrate in a plating method according to an embodiment of the present invention
  • FIG. 5 is a front elevational view showing a single layer molecular film adsorbed to a substrate to be plated in a coating method according to an embodiment of the present invention
  • FIG. 6 is a front elevational view showing a heat-curing treatment of a single-layered molecular film adsorbed on a substrate to be plated in a plating method according to an embodiment of the present invention
  • Figure 7 is a front elevational view of the Itt plate being moved downward during the plating of the multilayer film on the Itt plate in the coating method according to the embodiment of the present invention
  • Figure 8 is a front elevational view of the Itt plate being moved upward during the plating of the multilayer film on the Itt plate in the coating method according to the embodiment of the present invention
  • FIG. 9 is a front elevational view of a multi-layer film being plated on an Itt plate in a coating method according to an embodiment of the present invention
  • Figure 10 is a perspective view of a mode on the Itt board in a Mo method according to an embodiment of the present invention.
  • Embodiments of the present invention provide a display device, a coating device, and a display comprising the film prepared by the coating method, which are capable of preparing an ultra-thin film with regularly arranged particles and controlled thickness, so that the microscopic particle structure is more ordered. Thereby, the optical effect of the liquid crystal display is improved, and the display effect is improved.
  • the embodiment of the invention provides a method of 3 ⁇ 4.
  • the method includes the following steps: S101.
  • a lower substrate is disposed at a bottom of the solution tank, an upper substrate is disposed above the solution tank, and the to-beet plate is adsorbed on the upper substrate, and the substrate to be plated faces the solution tank;
  • forming the single-layer molecular film on the surface of the substrate to be plated includes:
  • the upper substrate is lifted, and the substrate to be plated to which the single layer molecular film is adsorbed is thermally cured to form a film layer on the surface of the substrate to be plated.
  • the substrate to be plated with a single layer of molecular film is thermally cured, comprising: pre-curing the Itt plate to which a single layer of molecular film is adsorbed, wherein the curing temperature is 130 ⁇ 5 ° C, and the curing time is 80 s;
  • the Itt plate to be adsorbed with a single layer of molecular film is cured again, wherein the curing temperature is 230 ⁇ 5 °C, curing time is 1500s.
  • the method further includes: forming a plurality of layers on the surface of the substrate to be plated by repeatedly injecting the solution containing the object to be plated containing ions to be implanted in the solution tank and simultaneously applying an external field force on the lower substrate and the upper substrate Film layer.
  • the ions to be plated include a single ion or a complex ion.
  • the external field force is an electric field force or a magnetic field force.
  • the electric field force is a uniform electric field force
  • the magnetic field force is a uniform magnetic field force
  • the method further comprises: discharging the remaining ions in the solution tank that are not used to form the single-layer molecular film through the discharge port at the bottom of the solution tank.
  • the solution of the object to be plated further includes a solution anion.
  • a lower substrate 5 is disposed at the bottom of the solution tank 3
  • an upper substrate 1 is disposed above the solution tank 3
  • the substrate 2 to be plated is adsorbed on the upper substrate 1, and the substrate 2 to be plated faces the solution tank 3.
  • a solution 4 to be plated is added to the solution tank 3, wherein the solution 4 to be plated includes ions 7 to be plated and solution anions 6 for forming a monolayer molecular film.
  • the ion to be plated 7 and the solution anion 6 are randomly arranged in the solution 4 when no external field force is applied.
  • the bottom of the solution tank 3 is also provided with an injection port 9 for injecting a solution of the object to be plated and a discharge port 8 for discharging the remaining ions which are not used to form the single layer molecular film.
  • the single-layer molecular film in the embodiment of the present invention includes all forms of force (eg, magnetic force, intermolecular force, etc.) and non-force on the surface of the object by, for example, liquid, powder, solid, and the like.
  • the substance forms a single-layer molecular film or a regularly ordered molecular film layer.
  • the Itt plate 2 is a glass substrate.
  • the external field force applied simultaneously on the lower substrate 5 and the upper substrate 1 is a uniform electric field force, as shown in FIG. 4, the lower substrate 5 at the bottom of the solution tank 3 has a positive electrode, and the upper substrate 1 disposed above the solution tank 3 has a negative electrode, and a certain amount of a salt solution 4 (such as Mg, to be plated) is added to the solution tank 3.
  • a salt solution 4 such as Mg, to be plated
  • An acetate solution such as Al, In, or Zn, a chloride solution, a nitrate solution, or the like
  • the concentration of the added solution can be adjusted according to actual needs.
  • a metal complex soluble in an organic solvent may also be added to the solution tank 3 to provide a metal complex required for film formation.
  • the positive and negative electrodes are energized to form a uniform electric field between the lower substrate 5 and the upper substrate 1.
  • a uniform electric field means that the electric field strength does not change with distance.
  • the bottom of the solution tank 3 is positively charged, and the anion 6 in the salt solution is adsorbed to the bottom of the tank, and the cation 7 is repelled to the surface of the solution.
  • ⁇ face of cation 7 due to uniformity
  • the action of the electric field forms a uniform and regularly arranged single-layer molecular film on the surface of the solution.
  • the negatively-charged upper substrate 1 carrying the glass substrate 2 is moved at a constant speed downward.
  • the moving speed of the upper substrate 1 is determined according to factors such as solution concentration and temperature, and the glass substrate 2 is placed close to the liquid surface and separated from the surface by a certain distance, which is very small and depends on the strength of the uniform electric field.
  • the glass substrate 2 adsorbs the regularly ordered single-layer molecular film on the surface of the glass substrate 2 and forms a film due to the principle of positive and negative phase absorption.
  • This film is only atomic in thickness and can therefore be called an ultra-thin film.
  • the prepared ultra-thin film can improve the optical effect of the liquid crystal display.
  • the force for absorbing the ion-forming film to be plated in the embodiment of the present invention includes all the forces capable of adsorbing ions to be plated to the plate to be itt.
  • a glass substrate 2 plated with a single layer of a molecular film is placed in a heating box 60 for heat curing treatment.
  • the heat curing process is as follows: First, the glass substrate 2 adsorbed with the single-layer molecular film is pre-cured, wherein the curing temperature is 130 ⁇ 5 ° C, and the curing time is 80 s; then the glass substrate 2 adsorbing the single-layer molecular film is again The curing treatment was carried out, wherein the curing temperature was 230 ⁇ 5 ° C and the curing time was 1500 s.
  • the temperature and time during the heat curing treatment in the actual production process can be determined according to the actual situation, and is not limited to the heat curing temperature and time provided by the embodiment of the present invention. Of course, the heat curing treatment can be performed according to actual needs. After the heat curing treatment, a desired oxide film is formed on the surface of the glass substrate 2.
  • the remaining ions not used to form the single-layer molecular film of FIG. 6 are discharged through the discharge port 8 at the bottom of the solution tank, and the salt solution 4 of the object to be plated is passed through the injection port 9 at the bottom of the solution tank 3. It is injected into the solution tank 3, and the upper substrate 1 carrying the glass substrate 2 coated with a thin film is again moved downward, and a single layer of molecular film is formed on the surface of the film formed on the surface of the glass substrate 2, after which The upper substrate 1 is pulled up again, and the glass substrate 2 is thermally cured. After the treatment, two layers of the desired oxide film are formed on the surface of the glass substrate 2.
  • the above steps can be repeated to perform multiple coatings according to production requirements.
  • the salt solution 4 to be plated can be continuously injected into the solution tank 3 through the injection port 9 at the bottom of the solution tank 3, and the remaining ions not used to form the single layer molecular film are passed through the solution tank.
  • the discharge port 8 at the bottom is discharged, so that the balance of the internal charge of the solution tank 3 can be ensured, and the ions to be plated 7 can be continuously supplied and the number and thickness of the film to be coated can be controlled.
  • a film of a desired thickness can be obtained, and due to the action of a uniform electric field, the atoms of the layers are regularly arranged in a fine manner.
  • the film can be made without defects, and the structure of the film can effectively improve the optical effect of the liquid crystal display.
  • a composite film can be prepared by injecting different ion solutions to be plated in the solution tank 3, such as adding a salt solution of Zn + , Ga + , In + , etc., to prepare transparent conductive materials such as IGZO and ITO. film.
  • the negatively charged upper substrate 1 is moved up and down, and the regularly ordered cation monolayer film floating on the liquid surface is adsorbed on the surface of the glass substrate 2.
  • a schematic perspective view of a film prepared by adjusting the number of times the upper substrate 1 is moved up and down is shown in FIG.
  • the embodiment of the invention also provides a coating device.
  • the device includes: a solution tank, an upper substrate and a lower substrate for applying an external field force to the solution of the object to be plated in the solution tank to form a single layer molecular film in the solution of the object to be plated;
  • the upper substrate is located above the solution tank, the lower substrate is located at the bottom of the solution tank, and the upper substrate is also used to adsorb the substrate to be plated.
  • the apparatus further includes a heating tank for thermally curing the substrate to be plated to which the single layer molecular film is adsorbed.
  • the bottom of the solution tank in the apparatus is provided with an injection port and a discharge port, wherein the solution of the object to be plated is injected into the solution tank through the injection port, and the remaining ions in the solution tank which are not used to form the single layer molecular film are discharged through the discharge port.
  • Embodiments of the present invention also provide a display, the film layer in the display comprising a film prepared by the Mo process.
  • a lower substrate is disposed at a bottom of the solution tank, an upper substrate is disposed above the solution tank, and the substrate to be plated is adsorbed on the upper substrate, and the substrate to be plated faces the solution.
  • a solution in which a solution to be plated is added to a solution tank, including ions to be plated for forming a single-layer molecular film; external field force is simultaneously applied to the lower substrate and the upper substrate, so that ions to be plated in the solution form a single a layer of the molecular film; and subjecting the single layer of the molecular film to the surface of the substrate to be plated to form a thin film layer.
  • the film preparation process has a low temperature, is suitable for producing a novel flexible display, and has low energy consumption when preparing the film, and the raw material can be recycled, the material utilization rate is large, and the cost is saved.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Application Of Or Painting With Fluid Materials (AREA)
  • Chemically Coating (AREA)

Abstract

本发明的实施例公开了一种镀膜方法、镀膜装置及包含所述镀膜方法所制备的薄膜的显示器。所述镀膜的方法包括:在溶液槽的底部设置下基板,并在溶液槽的上方设置上基板,将待镀基板吸附于上基板上,且待镀基板面向溶液槽;在溶液槽中加入待镀物的溶液,其中包括用于形成单层分子膜的待镀离子;在下基板和上基板上同时施加外场作用力,使得所述溶液中的待镀离子形成单层分子膜;使所述单层分子膜在待镀基板的表面形成薄膜层。

Description

镀膜方法、 I¾ 装置及显示器 技术领域
本发明的实施例涉及一种! ¾ 方法、 I¾ 装置及包含所述! ¾莫方法所制 备的薄膜的显示器。 背景技术
LB技术是在玻璃基板上制备排列规则的氧化辞( ZnO )薄膜的方法, LB 技术是 20世纪二三十年代由美国科学家 Langmuir及其学生 Blodgett提出的, 因此称为 LB ( Langmuir-Blodgett )技术。通过 X射线衍射 ( X Ray Diffraction, XRD ) 测试表明所制备物质为 ZnO 半导体材料; 通过扫描电子显微镜 ( Scanning Electron Microscope, SEM )测试表明此薄膜结构规则有序, 方向 性好。 这有效的说明了 LB技术制备排列规则的有序薄膜的可行性, 如果将 此排列规则的有序薄膜引入到液晶显示器领域, 会有效的提高液晶显示器的 光学效果。 但是此法存在一定的缺陷, 其不足之处为: 1、 目标离子在溶液表 面形成单分子膜的过程属自发行为, 效率较低, 不适合大规模工业生产; 2、 在镀膜过程中, 玻璃基板对单分子膜会有局部的破坏, 形成的薄膜不能百分 之百均匀, 局部的不均匀会影响液晶显示器的光学效果。
层层自组装技术( layer-by-layer self-assembly, LBL )通过基板带相反电 荷的交替沉积来制备聚电解质自组装多层膜。 该技术制备的薄膜具有良好的 机械和化学稳定性, 甚至能做成超薄膜。 但是对于微电子领域, 为了提高薄 膜晶体管液晶显示器的透过率及对比度, 需要组成透明薄膜的原子、 分子排 列规则有序, 以减少光的折射、 反射和散射, 缩短光程。 LBL技术在制备薄 膜过程中, 并没有提出对原子、 分子排列及薄膜结构进行控制的方法, 即其 所制备的薄膜在微观结构上不具备规则有序性。
电解池电镀技术是当电流通过电解质溶液时在阴、 阳两极引起氧化还原 反应而成膜的技术, 此技术在 莫领域被广泛应用。 但是此法存在的不足之 处在于: 1、 电解质在沉积时随机排列, 薄膜结构无规则且薄膜中缺陷较多; 2、 需要将待镀基板置于溶液中, 对待镀基板有腐蚀性等。 传统技术在制备薄膜晶体管阵列基板的工艺过程中,均要用到 莫技术。 现阶段工业上应用于薄膜晶体管阵列基板的! ¾ 技术包括磁控溅射、 等离子 溶胶凝胶等技术。这些方法在工艺上较为成熟,但是通过磁控溅射和 PECVD 方法制备的薄膜中的杂质含量较高, 薄膜硬度较低, 且沉积速率过快时还会 导致薄膜内出现空洞等缺陷。 图 1为传统技术中采用磁控溅射制备薄膜的原 理示意图。 如图 1所示, 在靶 12的表面引入磁场 B, 磁场方向为靶 12下方 磁条的 N极指向 S极的方向,利用磁场 B对带电粒子的约束来提高等离子体 密度以增加溅射率, 电子 e在电场 E的作用下, 在飞向基板 10过程中与氩 ( Ar )原子发生碰撞, 使 Ar原子电离产生出氩正离子( Ar+ )和新的电子, 新电子飞向基板 10, Ar+在电场作用下加速飞向靶 12, 并以高能量轰击靶 12 表面,使靶材发生溅射, 在溅射过程中, 中性的靶原子沉积在基板 10上形成 薄膜。 由于靶 12表面存在许多空位 11 , 使得在基板 10上沉积得到的薄膜中 会产生空洞。 这些缺陷会破坏薄膜的结构, 使薄膜的光学效果降低。 另外, 磁控溅射或 PECVD不具备对精细结构进行微操作的功能, 对 观离子结构 的有序排列和紧密薄膜厚度都不能进行人为的精准控制, 这阻碍了精密光学 仪器的发展和高效光电器件的性能提高。
综上所述, 传统的工业镀膜技术不能制备粒子排列规则的薄膜、 不能精 确控制薄膜的层数(即, 薄膜的厚度) 。 传统的工业镀膜工艺能耗大、 原材 料消耗严重、 对设备要求较高, 镀膜过程中产生的剧烈噪音、 强光辐射、 有 害气体、 金属蒸汽粉尘等对人体有害。 另外, 传统技术制备的薄膜结构无序 杂乱, 存在空位缺陷, 光路较长, 光损失较多, 无法进一步提高薄膜的透过 率。 发明内容
本发明实施例提供了一种! ¾ 方法, 该方法包括:
在溶液槽的底部设置下基板, 并在溶液槽的上方设置上基板, 将待镀基 板吸附于上基板上, 且待镀基板面向溶液槽;
在溶液槽中加入待镀物的溶液, 其中包括用于形成单层分子膜的待镀离 子; 在下基板和上基板上同时施加外场作用力, 使得所述溶液中的待镀离子 形成单层分子膜;
使所述单层分子膜在待镀基板的表面形成薄膜层。
本发明实施例还提供了一种镀膜装置, 所述装置包括: 溶液槽、 用于对 溶液槽中的待镀物的溶液施加外场作用力以使得待镀物的溶液中的待镀离子 形成单层分子膜的上基板和下基板, 其中上基板位于溶液槽上方, 下基板位 于溶液槽底部, 并且上基板还用于吸附待镀基板。
本发明实施例还提供了一种显示器, 所述显示器中的薄膜层包括用所述 的镀膜方法所制备的薄膜。 附图说明
为了更清楚地说明本发明实施例的技术方案, 下面将对实施例的附图作 筒单地介绍,显而易见地,下面描述中的附图仅仅涉及本发明的一些实施例, 而非对本发明的限制。
图 1为传统技术中采用磁控溅射制备薄膜的原理示意图;
图 2为根据本发明实施例的 莫方法的流程图;
图 3为在根据本发明实施例的镀膜方法中将待镀物的溶液加入到溶液槽 中的正视图;
图 4为在根据本发明实施例的镀膜方法中在给上基板和下基板通电后溶 液中的待镀离子形成单层分子膜的正视图;
图 5为在根据本发明实施例的镀膜方法中将单层分子膜吸附到待镀基板 的正视图;
图 6为在根据本发明实施例的镀膜方法中对待镀基板上所吸附的单层分 子膜进行热固化处理的正视图;
图 7为在根据本发明实施例的镀膜方法中在待 Itt板上镀多层膜的过程 中待 Itt板向下移动的正视图;
图 8为在根据本发明实施例的镀膜方法中在待 Itt板上镀多层膜的过程 中待 Itt板向上移动的正视图;
图 9为在根据本发明实施例的镀膜方法中在待 Itt板上镀多层膜的正视 图; 图 10 为在根据本发明实施例的 莫方法中在待 Itt板上! ¾莫的立体示 意图。 具体实施方式
为使本发明实施例的目的、技术方案和优点更加清楚,下面将结合附图, 对本发明实施例的技术方案进行清楚、 完整地描述。 显然, 所描述的实施例 是本发明的一部分实施例, 而不是全部的实施例。 基于所描述的本发明的实 施例, 本领域普通技术人员在无需创造性劳动的前提下所获得的所有其他实 施例, 都属于本发明保护的范围。
本发明实施例提供了一种! ¾ 方法、 镀膜装置以及包含所述镀膜方法制 备的薄膜的显示器, 能够制备出粒子排列规则有序且厚度可控的超薄膜, 使 微观粒子结构更加有序, 从而提高了液晶显示器的光学效果, 提高了显示效 果。
本发明实施例提供了一种! ¾ 方法。 参见图 2, 该方法包括以下步骤: S101、 在溶液槽的底部设置下基板, 在溶液槽的上方设置上基板, 将待 itt板吸附于上基板上, 且待镀基板面向溶液槽;
5102、 在溶液槽中加入待镀物的溶液, 其中包括用于形成单层分子膜的 待镀离子;
5103、 在下基板和上基板上同时施加外场作用力, 使得所述溶液中的待 镀离子形成单层分子膜;
5104、 使所述单层分子膜在待镀基板的表面形成薄膜层。
例如, 使所述单层分子膜在待镀基板的表面形成薄膜层包括:
将上基板向所述单层分子膜移动, 在外场作用力下, 将单层分子膜吸附 到待 Itt板上;
提拉上基板, 并将吸附有单层分子膜的待镀基板进行热固化处理, 使得 在待镀基板的表面形成薄膜层。
例如, 将吸附有单层分子膜的待镀基板进行热固化处理, 包括: 将吸附有单层分子膜的待 Itt板进行预固化, 其中固化温度为 130 ± 5 °C , 固化时间为 80s;
将吸附有单层分子膜的待 Itt板再次进行固化,其中固化温度为 230士 5 °C , 固化时间为 1500s。
例如, 该方法还包括: 通过在溶液槽中多次注入包含有待镀离子的所述 待镀物的溶液, 并在下基板和上基板上同时施加外场作用力, 在待镀基板的 表面形成多层薄膜层。
例如, 所述待镀离子, 包括单一离子或复合离子。
例如, 所述外场作用力为电场力或磁场力。
例如, 所述电场力为匀强电场力, 所述磁场力为匀强磁场力。
例如, 形成所述单层分子膜之后, 该方法还包括: 将溶液槽中不用于形 成所述单层分子膜的剩余离子通过溶液槽底部的排出口排出。
例如, 所述待镀物的溶液还包括溶液阴离子。
下面, 将结合附图对本发明的实施例进行更加详细的说明。
如图 3所示, 在溶液槽 3的底部设置下基板 5 , 在溶液槽 3的上方设置 上基板 1 , 将待镀基板 2吸附于上基板 1上, 且待镀基板 2面向溶液槽 3。在 溶液槽 3中加入待镀物的溶液 4, 其中待镀物的溶液 4包括用于形成单层分 子膜的待镀离子 7和溶液阴离子 6。 在未施加外场作用力时待镀离子 7和溶 液阴离子 6在溶液 4中随机排列。 溶液槽 3的底部还设置有用于注入待镀物 的溶液的注入口 9和将不用于形成所述单层分子膜的剩余离子排出的排出口 8。 另夕卜,本发明实施例中的单层分子膜, 包括一切通过作用力(如,磁场力、 分子间作用力等)和非作用力在物体表面上由例如液体、 粉体、 固体等形式 的物质形成的单层分子膜或排列规则有序的分子膜层。
例如, 待 Itt板 2为玻璃基板。 例如, 在下基板 5和上基板 1上同时施 加的外场作用力为匀强电场力, 如图 4所示。 继续参见图 4, 溶液槽 3底部 的下基板 5具有正电极, 溶液槽 3上方设置的上基板 1具有负电极, 向溶液 槽 3内加入一定量的待镀物的盐溶液 4 (如 Mg、 Al、 In、 Zn等的醋酸盐溶 液、 氯化盐溶液、 硝酸盐溶液等) 以提供成膜所需要的金属离子。 加入的溶 液的浓度可根据实际需要进行调整。 溶液槽 3内还可以加入能溶于有机溶剂 的金属络合物, 以提供成膜所需要的金属络合物。 在正、 负电极上通电, 从 而在下基板 5和上基板 1之间形成匀强电场。 匀强电场是指电场强度不随距 离的变化而变化。 溶液槽 3的底部带正电, 将盐溶液中的阴离子 6吸附于槽 底, 阳离子 7则被排斥于溶:^面。 在溶: ^面的阳离子 7, 由于受到匀强 电场的作用, 在溶液表面形成均匀规则排列的单层分子膜。
如图 5所示, 将载有玻璃基板 2的带负电的上基板 1向下匀速移动。 上 基板 1的移动速度根据溶液浓度、 温度等因素决定, 使玻璃基板 2靠近液面 而与溶:^面相隔一定距离, 此距离非常微小并根据匀强电场的强度而定。 在均强电场的作用下, 由于正负相吸原理, 玻璃基板 2将液面上规则有序排 列的单层分子膜吸附于玻璃基板 2表面并成膜。 此薄膜厚度仅为原子级别, 因此可以称之为超薄膜。制备得到的超薄膜可以改善液晶显示器的光学效果。 之后, 向上提拉上基板 1 , 为了保证玻璃基板 2上的单层分子膜的完整性, 提拉速度与上述上基板 1向下移动的速度一致。 另外, 本发明实施例中的吸 引待镀离子成膜的力, 包括一切能将待镀离子吸附到待 Itt板的力。
如图 6所示,将镀有一层单层分子膜的玻璃基板 2放入加热箱 60中进行 热固化处理。 热固化处理过程为: 首先将吸附有单层分子膜的玻璃基板 2进 行预固化, 其中固化温度为 130 ± 5 °C , 固化时间为 80s; 接着将吸附有单层 分子膜的玻璃基板 2再次进行固化处理, 其中固化温度为 230 ± 5°C , 固化时 间为 1500s。 在实际生产工艺中热固化处理时的温度及时间可以根据实际情 况决定, 而不限于本发明实施例提供的热固化处理温度及时间, 当然也可以 根据实际需要而不进行热固化处理。 热固化处理后, 在玻璃基板 2表面形成 一层所需的氧化物薄膜。
如图 7和图 8所示, 将不用于形成图 6中单层分子膜的剩余离子通过溶 液槽底部的排出口 8排出, 将待镀物的盐溶液 4通过溶液槽 3底部的注入口 9注入到溶液槽 3中, 并将载有镀有一层薄膜的玻璃基板 2的上基板 1再次 向下勾速移动,在玻璃基板 2表面形成的薄膜表面上又形成一层单层分子膜, 之后再向上提拉上基板 1 , 并对玻璃基板 2进行热固化处理, 处理后在玻璃 基板 2表面形成两层所需的氧化物薄膜。
如图 9所示, 可以根据生产需求, 重复上述步骤以进行多次镀膜。 在镀 完一层薄膜后, 可以不断的将待镀物的盐溶液 4通过溶液槽 3底部的注入口 9注入到溶液槽 3中, 并将不用于形成单层分子膜的剩余离子通过溶液槽底 部的排出口 8排出, 这样既可以保证溶液槽 3内部电荷的平衡, 还可以源源 不断的提供待镀离子 7并控制待镀薄膜的层数及厚度。 如此循环, 可以得到 理想厚度的薄膜,而且由于匀强电场的作用,各层薄膜间原子排列规则缜密, 可做到无缺陷 莫,结构规则缜密的薄膜能有效提高液晶显示器的光学效果。 另外, 在镀膜过程中, 可以通过在溶液槽 3中注入不同的待镀离子溶液来制 备复合薄膜, 如分别加入 Zn+、 Ga+、 In+等的盐溶液, 来制备 IGZO、 ITO等 透明导电薄膜。
由上可知, 在本发明实施例提供的! ¾莫方法中, 带负电的上基板 1上下 移动, 将浮于液面的规则有序排列的阳离子单层膜吸附于玻璃基板 2表面。 通过调节上基板 1上下移动的次数制备的薄膜的立体示意图如图 10所示。
本发明实施例还提供了一种镀膜装置。 所述装置包括: 溶液槽、 用于对 溶液槽中的待镀物的溶液施加外场作用力以使得待镀物的溶液中的待镀离子 形成单层分子膜的上基板和下基板; 其中, 上基板位于溶液槽上方, 下基板 位于溶液槽底部, 并且上基板还用于吸附待镀基板。
例如, 所述装置还包括用于将吸附有单层分子膜的待镀基板进行热固化 处理的加热箱。
例如, 所述装置中的溶液槽底部设置有注入口与排出口, 其中待镀物的 溶液通过注入口注入溶液槽中, 溶液槽中不用于形成单层分子膜的剩余离子 通过排出口排出。
本发明的实施例还提供一种显示器, 所述显示器中的薄膜层包括用所述 莫方法所制备的薄膜。
综上所述, 在本发明实施例提供的技术方案中, 在溶液槽的底部设置下 基板, 在溶液槽的上方设置上基板, 将待镀基板吸附于上基板上, 且待镀基 板面向溶液槽; 在溶液槽中加入待镀物的溶液, 其中包括用于形成单层分子 膜的待镀离子; 在下基板和上基板上同时施加外场作用力, 使得所述溶液中 的待镀离子形成单层分子膜; 以及使所述单层分子膜在待镀基板表面以形成 薄膜层。 这样一来, 能够制备出粒子排列规则有序且厚度可控的超薄膜, 使 微观粒子结构更加有序, 从而提高了液晶显示器的光学效果, 提高了显示效 果。 在本发明实施例提供的技术方案中, 薄膜制备工艺的温度较低, 适合生 产新型柔性显示器, 且制备薄膜时的能耗小, 原材料能循环使用、 材料利用 率大, 节约成本。
以上所述仅是本发明的示范性实施方式, 而非用于限制本发明的保护范 围, 本发明的保护范围由所附的权利要求确定。

Claims

权利要求书
1、 一种镀膜的方法, 包括:
在溶液槽的底部设置下基板, 并在溶液槽的上方设置上基板, 将待镀基 板吸附于上基板上, 且待镀基板面向溶液槽;
在溶液槽中加入待镀物的溶液, 其中包括用于形成单层分子膜的待镀离 子;
在下基板和上基板上同时施加外场作用力, 使得所述溶液中的待镀离子 形成单层分子膜;
使所述单层分子膜在待镀基板的表面形成薄膜层。
2、根据权利要求 1所述的方法,其中使所述单层分子膜在待镀基板的表 面形成薄膜层包括:
将上基板向所述单层分子膜移动, 在外场作用力下, 将单层分子膜吸附 到待 Itt板上;
提拉上基板, 并将吸附有单层分子膜的待镀基板进行热固化处理, 使得 在待镀基板的表面形成薄膜层。
3、根据权利要求 2所述的方法,其中将吸附有单层分子膜的待镀基板进 行热固化处理, 包括:
将吸附有单层分子膜的待 Itt板进行预固化, 其中固化温度为 130 ± 5 °C , 固化时间为 80s;
将吸附有单层分子膜的待 Itt板再次进行固化,其中固化温度为 230 ± 5 °C , 固化时间为 1500s。
4、根据权利要求 1所述的方法, 其中该方法还包括: 通过在溶液槽中多 次注入包含有待镀离子的待镀物的溶液, 并在下基板和上基板上同时施加外 场作用力, 在待镀基板表面形成多层薄膜层。
5、根据权利要求 1所述的方法,其中所述待镀离子包括单一离子或复合 离子。
6、根据权利要求 1所述的方法,其中所述外场作用力为电场力或磁场力。
7、根据权利要求 6所述的方法, 其中所述电场力为匀强电场力, 所述磁 场力为匀强磁场力。
8、根据权利要求 1所述的方法, 其中形成所述单层分子膜之后, 该方法 还包括:
将溶液槽中不用于形成所述单层分子膜的剩余离子通过溶液槽底部的排 出口排出。
9、根据权利要求 1所述的方法,其中所述待镀物的溶液还包括溶液阴离 子。
10、 一种通过权利要求 1-8任一权项所述的方法进行 莫的装置, 其中 所述装置包括: 溶液槽、 用于对溶液槽中的待镀物的溶液施加外场作用力以 使得待镀物的溶液中的待镀离子形成单层分子膜的上基板和下基板,
其中上基板位于溶液槽上方, 下基板位于溶液槽底部, 并且上基板还用 于吸附待镀基板。
11、根据权利要求 10所述的装置,其中所述装置还包括用于将吸附有单 层分子膜的待镀基板进行热固化处理的加热箱。
12、根据权利要求 10所述的装置,其中所述装置中的溶液槽底部设置有 注入口与排出口, 其中待镀物的溶液通过注入口注入溶液槽中, 溶液槽中不 用于形成单层分子膜的剩余离子通过排出口排出。
13、 一种显示器, 其中所述显示器中的薄膜层包括通过权利要求 1-8任 一权项所述的方法所制备的薄膜。
PCT/CN2013/087162 2013-07-11 2013-11-14 镀膜方法、镀膜装置及显示器 WO2015003445A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201310291588.6 2013-07-11
CN201310291588.6A CN103359951B (zh) 2013-07-11 2013-07-11 一种镀膜方法、装置及显示器

Publications (1)

Publication Number Publication Date
WO2015003445A1 true WO2015003445A1 (zh) 2015-01-15

Family

ID=49362324

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2013/087162 WO2015003445A1 (zh) 2013-07-11 2013-11-14 镀膜方法、镀膜装置及显示器

Country Status (2)

Country Link
CN (1) CN103359951B (zh)
WO (1) WO2015003445A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103359951B (zh) * 2013-07-11 2015-10-14 北京京东方光电科技有限公司 一种镀膜方法、装置及显示器

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3174919A (en) * 1962-10-31 1965-03-23 Corning Glass Works Methods for electrolyzing glass
CA2084218A1 (en) * 1991-12-20 1993-06-21 Alain M. J. Beguin Method and apparatus for burying waveguide paths
CN101845627A (zh) * 2010-05-28 2010-09-29 北京工业大学 一种用于刚性基底单面镀膜的方法及装置
CN103359951A (zh) * 2013-07-11 2013-10-23 北京京东方光电科技有限公司 一种镀膜方法、装置及显示器

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5320564B2 (ja) * 2007-02-21 2013-10-23 国立大学法人北海道大学 微小カーボン単分子膜の形成方法及び表面コーティング方法並びにコーティング体
CN102300399B (zh) * 2011-07-12 2013-05-22 祝琼 一种多功能叠层电子膜及其制作方法
CN102629027B (zh) * 2011-07-27 2014-09-24 北京京东方光电科技有限公司 取向膜、其制备方法及液晶显示组件
CN102436094B (zh) * 2011-12-19 2014-08-20 深圳市华星光电技术有限公司 液晶显示装置及其制作方法
CN102557475B (zh) * 2012-02-24 2014-06-04 陕西科技大学 一种基于静电引力自下而上反向吸附制备功能薄膜的方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3174919A (en) * 1962-10-31 1965-03-23 Corning Glass Works Methods for electrolyzing glass
CA2084218A1 (en) * 1991-12-20 1993-06-21 Alain M. J. Beguin Method and apparatus for burying waveguide paths
CN101845627A (zh) * 2010-05-28 2010-09-29 北京工业大学 一种用于刚性基底单面镀膜的方法及装置
CN103359951A (zh) * 2013-07-11 2013-10-23 北京京东方光电科技有限公司 一种镀膜方法、装置及显示器

Also Published As

Publication number Publication date
CN103359951A (zh) 2013-10-23
CN103359951B (zh) 2015-10-14

Similar Documents

Publication Publication Date Title
CN102934197B (zh) 用于形成溅射材料层的系统和方法
CN104919541B (zh) 透明导电性薄膜及其制造方法
KR101331521B1 (ko) 그래핀 박막의 제조 방법
JP2016513753A (ja) 酸素分圧を有する環境内におけるアルミニウム源の使用によって酸化アルミニウムを基板上に成長させ、透光性、耐スクラッチ性の窓部材を形成する方法。
CN104937676A (zh) 透明导电薄膜及其制造方法
CN103154299B (zh) 成膜方法和成膜装置
JP5721831B2 (ja) 気体遮断膜形成装置及び気体遮断膜形成方法
CN101983914A (zh) 制备微观数密度或尺寸梯度金属纳米粒子点阵的方法
JP4877510B2 (ja) イオンプレーティング用蒸発源材料の原料粉末、イオンプレーティング用蒸発源材料及びその製造方法、及びガスバリア性シートの製造方法
WO2015003445A1 (zh) 镀膜方法、镀膜装置及显示器
JP4580636B2 (ja) 成膜装置および成膜方法
JP6778275B2 (ja) 基板のコーティング方法および基板のコーティング装置
KR101242591B1 (ko) 지문방지층 증착방법
US20150252466A1 (en) High surface areas (hsa) coatings and methods for forming the same
JP6485628B2 (ja) 成膜方法及び成膜装置
Kwon et al. Uniform anti-reflective films fabricated by layer-by-layer ultrasonic spray method
Kormunda et al. A single target RF magnetron co-sputtered iron doped tin oxide films with pillars
Lambert et al. Ag–Al2O3 optical nanocomposites with narrow particle size distribution prepared by pulsed laser deposition
Shi et al. Facile titania nanocoating using single droplet assembly of 2D nanosheets
KR101763177B1 (ko) 진공증착된 가스베리어 필름 제조방법
JP4316265B2 (ja) 液晶表示パネルの製造方法
CN103663544A (zh) 一种氧化锌纳米棒的制备方法
RU144988U1 (ru) Составная мишень для получения планарно градиентных композитных пленок металл-диэлектрик
CN109368628B (zh) 一种超声辅助的纳米薄膜制备装置及制备方法
Aleksandrova Oxide coatings on flexible substrates for electrochromic applications

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13888960

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13888960

Country of ref document: EP

Kind code of ref document: A1