JP6778275B2 - 基板のコーティング方法および基板のコーティング装置 - Google Patents

基板のコーティング方法および基板のコーティング装置 Download PDF

Info

Publication number
JP6778275B2
JP6778275B2 JP2018556960A JP2018556960A JP6778275B2 JP 6778275 B2 JP6778275 B2 JP 6778275B2 JP 2018556960 A JP2018556960 A JP 2018556960A JP 2018556960 A JP2018556960 A JP 2018556960A JP 6778275 B2 JP6778275 B2 JP 6778275B2
Authority
JP
Japan
Prior art keywords
coating
sector
magnet assembly
angular
substrate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2018556960A
Other languages
English (en)
Other versions
JP2019515135A (ja
Inventor
ヒュンチャン パク,
ヒュンチャン パク,
トーマス ゲーベレ,
トーマス ゲーベレ,
アジャイ サンパース ボーロカム,
アジャイ サンパース ボーロカム,
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Applied Materials Inc
Original Assignee
Applied Materials Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Applied Materials Inc filed Critical Applied Materials Inc
Publication of JP2019515135A publication Critical patent/JP2019515135A/ja
Application granted granted Critical
Publication of JP6778275B2 publication Critical patent/JP6778275B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/34Sputtering
    • C23C14/35Sputtering by application of a magnetic field, e.g. magnetron sputtering
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/34Sputtering
    • C23C14/3407Cathode assembly for sputtering apparatus, e.g. Target
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/54Controlling or regulating the coating process
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/32Gas-filled discharge tubes
    • H01J37/34Gas-filled discharge tubes operating with cathodic sputtering
    • H01J37/3402Gas-filled discharge tubes operating with cathodic sputtering using supplementary magnetic fields
    • H01J37/3405Magnetron sputtering
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/32Gas-filled discharge tubes
    • H01J37/34Gas-filled discharge tubes operating with cathodic sputtering
    • H01J37/3411Constructional aspects of the reactor
    • H01J37/345Magnet arrangements in particular for cathodic sputtering apparatus
    • H01J37/3455Movable magnets
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/32Gas-filled discharge tubes
    • H01J37/34Gas-filled discharge tubes operating with cathodic sputtering
    • H01J37/3464Operating strategies
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J2237/00Discharge tubes exposing object to beam, e.g. for analysis treatment, etching, imaging
    • H01J2237/32Processing objects by plasma generation
    • H01J2237/33Processing objects by plasma generation characterised by the type of processing
    • H01J2237/332Coating

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Plasma & Fusion (AREA)
  • Analytical Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Physical Vapour Deposition (AREA)
  • Electrodes Of Semiconductors (AREA)

Description

[0001]本開示は、基板をコーティングする方法、および基板をコーティングするためのコーティング装置に関する。より具体的には、本開示は、スパッタリングによって基板を薄層でコーティングする方法、および基板をコーティングするスパッタ装置に関する。より具体的には、本開示は、スパッタターゲットが回転可能なターゲットであり得るマグネトロンスパッタリングに関する。
[0002]高い均一性(すなわち、広がった表面上の均一な厚さおよび均一な電気的特性)で基板上に層を形成することは、多くの技術分野に関連する問題である。例えば、薄膜トランジスタ(TFT)の分野では、厚さの均一性および電気的特性の均一性が、ディスプレイチャネル領域を高信頼度で製造するために問題となる可能性がある。さらに、均一な層は、典型的には、製造の再現性を容易にする。
[0003]基板上に層を形成するための1つの方法はスパッタリングであり、様々な製造分野、例えばTFTの製造において貴重な方法として開発されている。スパッタリングの間、高エネルギー粒子(例えば、エネルギーを与えられた、不活性ガスまたは反応性ガスのイオン)を照射することによって、原子が、スパッタターゲットの材料から放出される。放出された原子は、基板上に堆積してもよく、その結果、スパッタリングされた材料の層を基板上に形成することができる。
[0004]広い基板表面上のスパッタリングされた材料の均一な層は、例えば、スパッタリングされた材料の不規則な空間分布に起因して、達成するのが困難であり得る。基板上に複数のスパッタターゲットを設けることにより、層の均一性を改善することができる。成長した結晶構造、堆積された層の比抵抗または他の電気的特性、および層の応力などの特性に関して高度の均質性を有することが、さらに有益であり得る。例えば、メタライズ層の製造において、信号遅延は、層の厚さに依存し、例えば、ディスプレイの製造において、厚さのばらつきは、わずかに異なる時間に活性化される画素をもたらす可能性がある。異なる位置で同じエッチング結果を達成するために、層をエッチングするときに均一な層の厚さを達成することが、さらに有益である。
[0005]したがって、スパッタリングされた材料の非常に均一な層を促進するための、さらなる方法および/またはスパッタ装置が、有益である。
[0002]上記に鑑みて、基板をコーティングする方法および基板をコーティングするためのコーティング装置が提供される。
[0003]本開示の1つの態様によれば、スパッタターゲットを有する少なくとも1つのカソードアセンブリと、回転軸の周りに回転可能な磁石アセンブリとを用いて、基板をコーティングする方法が、提供される。本方法は、磁石アセンブリを第1の角度セクタ内で往復運動させながら、基板をコーティングすることと、磁石アセンブリを第1の角度セクタとは異なる第2の角度セクタ内で往復運動させながら、基板を次にコーティングすることと、を含む。
[0004]さらなる態様によれば、回転可能なスパッタターゲットを有する少なくとも1つのカソードアセンブリと、回転可能なスパッタターゲットの内部に配置された磁石アセンブリとを用いて、基板をコーティングする方法が提供され、磁石アセンブリは、回転軸の周りに回転可能である。本方法は、第1の角度セクタの第1の中心角度位置が、基板から回転軸に垂直に延びる平面の第1の側に位置するような第1の角度セクタ内で磁石アセンブリを往復運動させながら、基板をコーティングすることと、ターゲットを本質的にゼロの電圧に保ちながら、磁石アセンブリを第1の角度セクタとは異なる第2の角度セクタに配置することと、第2の角度セクタの第2の中心角度位置が前記平面の第2の側に位置するような第2の角度セクタ内で、磁石アセンブリを往復運動させながら、基板を次にコーティングすることと、を含む。
[0005]さらに別の態様によれば、基板をコーティングするためのコーティング装置が、提供される。コーティング装置は、スパッタターゲットを有する少なくとも1つのカソードアセンブリと、スパッタターゲットの内部に配置され、回転軸の周りに回転可能な磁石アセンブリと、コーティング中に磁石アセンブリを、2つ以上の異なる角度セクタ内で連続して往復運動させるように構成されたアクチュエータとを含み、角度セクタの中心角度位置および広がり角度は、それぞれ調節可能である。
[0006]本開示のさらなる態様、利点、および特徴が、従属請求項、明細書、および添付図面から明らかになる。
[0015]本開示の上記列挙した特徴が詳細に理解できるように、上記で簡潔に要約した本開示のより詳細な説明が、実施形態を参照してなされ得る。添付の図面は、本開示の実施形態に関するものであり、以下に説明される。いくつかの実施形態が、図面に描かれており、以下の説明で詳述される。
本明細書に記載の実施形態による、基板のコーティング方法を説明するためのコーティング装置の概略断面図である。 本明細書に記載の実施形態による、基板のコーティング方法を説明するためのコーティング装置の概略断面図である。 本明細書に記載の実施形態による、基板のコーティング方法を示すコーティング装置の概略図である。 従来のスパッタプロセスによって堆積された膜の厚さの均一性と、本明細書に記載のスパッタプロセスの均一性との比較を示す。 従来のスパッタプロセスによって堆積された膜の電気的特性と、本明細書に記載のスパッタプロセスの電気的特性との比較を示す。 本明細書に記載された実施形態による方法を示すフロー図である。
[0022]次に、本開示の様々な実施形態が詳細に参照され、その1つ以上の例が、図に示されている。各例は、説明のために提供され、限定を意味するものではない。例えば、1つの実施形態の一部として図示または記載された特徴は、他の実施形態で使用されて、または他の実施形態と共に使用されて、さらに別の実施形態を生成することができる。本開示は、そのような変更および変形を含むことが、意図されている。
[0023]以下の図面の説明において、同じ参照番号は、同じまたは類似の構成要素を指す。一般に、個々の実施形態に関する相違点のみが、記載されている。特に明記しない限り、1つの実施形態におけるある部分または態様の記載は、別の実施形態における対応する部分または態様にも適用される。
[0024]本明細書に記載されているような材料で基板をコーティングするプロセスは、典型的には薄膜用途を参照する。「コーティングする」という用語および「堆積させる」という用語は、本明細書では同義語として使用される。本明細書に記載の実施形態で使用されるコーティングプロセスは、スパッタリングである。
[0025]スパッタリングは、ダイオードスパッタリングまたはマグネトロンスパッタリングとして行うことができる。マグネトロンスパッタリングは、堆積速度がやや高いという点で、特に有利である。ターゲット表面のすぐ近くで生成される自由電子を磁場内に閉じ込めるために、スパッタターゲットのスパッタ材料の後ろに磁石アセンブリまたはマグネトロンを配置することによって、これらの電子は、磁場内で運動することを強いられ、逃げることができない。これは、ガス分子を電離する確率を、典型的には数桁、高める。これは、次に、堆積速度を大きく増加させる。例えば、本質的に円筒の形状を有する回転可能なスパッタターゲットの場合、磁石アセンブリを、回転可能なスパッタターゲットの内部に配置することができる。
[0026]本明細書で使用する「磁石アセンブリ」という用語は、磁場を生成することができるユニットを指すことができる。典型的には、磁石アセンブリは、永久磁石からなることができる。この永久磁石は、生成された磁場内、例えばスパッタターゲットの上方の領域に荷電粒子を閉じ込めることができるように、スパッタターゲット内に配置されてもよい。いくつかの実施形態では、磁石アセンブリは、磁石ヨークを含む。
[0027]コーティング中に基板は、カソードアセンブリを通り過ぎて連続的に移動させることができ(「動的コーティング」)、またはコーティング中に基板は、本質的に一定の位置に置かれていてもよい(「静的コーティング」)。本開示に記載の方法は、特に、静的コーティングプロセスに関する。
[0028]静的堆積プロセスでは、基板は、コーティング中に静止したままであってもよい。「動的」堆積プロセスと比較して異なる「静的」堆積プロセスという用語は、当業者であればわかるように、基板のいかなる動きも排除するというものではないことに留意されたい。例えば、本明細書に記載された実施形態によれば、静的スパッタリングは、例えば、堆積中に静止している基板位置(基板のいかなる動きもない)、堆積中に振動する基板位置、堆積中に実質的に一定の平均基板位置、堆積中に揺れ動く基板位置および/または堆積中に揺動する基板位置を含むことができる。したがって、静的堆積プロセスは、静止した位置を有する堆積プロセス、実質的に静止した位置を有する堆積プロセス、または基板の部分的に静止した位置を有する堆積プロセスとして理解することができる。
[0029]動的コーティングの場合には基板ホルダもまたしばしばコーティングされるので、静的コーティングは、コーティングに使用されるターゲット材料の量が動的コーティングに比べて少ないという点で有利になり得る。静的コーティングは、特に大面積基板のコーティングを可能にする。基板は、1つ以上のスパッタターゲットの前にあるコーティング領域に入れられ、コーティングが実行され、基板は、コーティング後にコーティング領域から取り出される。
[0030]本明細書に記載されている例は、例えばリチウム電池製造またはエレクトロクロミック窓用の、大面積基板上の堆積のために利用することができる。一例として、低融点材料を含む層を処理する冷却装置を用いて、大面積基板上に複数の薄膜電池を形成することができる。いくつかの例によれば、大面積基板は、約0.67mの基板(0.73×0.92m)に対応するGEN4.5、約1.4mの基板(1.1m×1.3m)に対応するGEN5、約4.29mの基板(1.95m×2.2m)に対応するGEN7.5、約5.3mの基板(2.16m×2.46m)に対応するGEN8、または約9.0mの基板(2.88m×3.13m)に対応するGEN10でさえあってもよい。GEN11、GEN12などのよりいっそう大きな世代および/または対応する基板面積を、同様に実施することができる。
[0031]本明細書で使用される「基板」という用語は、詳細には、ガラス板などの非可撓性基板を含むものとする。本開示は、これに限定されず、「基板」という用語は、ウェブまたはフォイルなどの可撓性基板を含んでもよい。
[0032]スパッタリングは、ディスプレイの製造に使用することができる。より詳細には、電極またはバスの生成などのメタライゼーションにスパッタリングを使用することができる。スパッタリングは、薄膜トランジスタ(TFT)の生成にも使用される。スパッタリングはまた、ITO(インジウムスズ酸化物)層の生成に使用されてもよい。スパッタリングは、薄膜太陽電池の製造にも使用することができる。薄膜太陽電池は、バックコンタクトと、吸収層と、透明導電性酸化物層(TCO)とを含む。バックコンタクトおよびTCO層は、スパッタリングによって製造することができ、一方、吸収層は、化学気相堆積プロセスで製造することができる。
[0033]本開示の一態様によれば、コーティング装置を用いて基板をコーティングする方法が記載される。図1Aおよび図1Bは、本明細書に記載された方法を実施するように構成された装置を概略断面図で示す。
[0034]図1Aおよび図1Bに示すコーティング装置は、堆積される材料を提供するためのスパッタターゲット20を含むカソードアセンブリ10と、回転軸Aの周りを移動可能な磁石アセンブリ25とを含む。
[0035]スパッタターゲット20は、アルミニウム、シリコン、タンタル、モリブデン、ニオブ、チタン、インジウム、ガリウム、亜鉛、スズ、銀および銅を含む群から選択される少なくとも1つの材料で作られるか、またはそれらを含むことができる。詳細には、ターゲット材料は、インジウム、ガリウムおよび亜鉛を含む群から選択することができる。
[0036]いくつかの実施形態では、スパッタターゲット20は、回転可能なスパッタターゲットであってもよい。例えば、スパッタターゲット20は、本質的に円筒形のターゲットであってもよく、かつ/または磁石アセンブリの回転軸Aに一致し得る軸の周りを回転可能であってもよい。いくつかの実施形態では、磁石アセンブリ25は、スパッタターゲット20の内部に配置され、磁石アセンブリ移動経路に沿ってスパッタターゲット20の回転軸の周りに旋回することができる。
[0037]コーティングすべき基板100は、基板がカソードアセンブリ10のスパッタターゲット20に面するように、配置することができる。そこで、基板100は、コーティング装置の中に搬送され、コーティング装置の中から外に搬送され得る基板ホルダ上に保持され得る。基板100をコーティングするために、負の電位などの電位をスパッタターゲット20に印加することができる。
[0038]本明細書に記載したスパッタ法の第1のコーティング段階Iが、図1Aに示され、第1のコーティング段階Iの後に行われるべきスパッタ法の次のコーティング段階IIが、図1Bに示されている。第1のコーティング段階Iは、図1Aに示すように、磁石アセンブリ25が第1の角度セクタ12内で往復運動している間の基板100のコーティングを含み、次のコーティング段階IIは、図1Bに示すように、磁石アセンブリ25が第2の角度セクタ14内で往復運動している間の基板100のコーティングを含む。
[0039]本明細書で使用される往復運動は、繰り返しの前後運動として、詳細には、それぞれ、角度セクタ内の、詳細には2つの角度位置の間の、回転軸Aの周りの磁石アセンブリ25の繰り返しの時計回りおよび反時計回りの回転として、理解することができる。例えば、第1のコーティング段階I(図1Aに示す)の間に、磁石アセンブリ25は、第1の角度セクタ12の第1の折り返し角度位置16と第2の折り返し角度位置17との間で繰り返し往復運動することができ、次のコーティング段階II(図1Bに示す)の間に、磁石アセンブリ25は、第2の角度セクタ14の第1の折り返し角度位置26と第2の折り返し角度位置27との間で繰り返し往復運動することができる。いくつかの実施形態では、第1の角度セクタ12の第1の折り返し角度位置16および第2の折り返し角度位置17と、第2の角度セクタ14の第1の折り返し角度位置26および第2の折り返し角度位置27とは、それぞれ、異なる角度位置である。
[0040]例えば、いくつかの実施形態では、第1の角度セクタ12および第2の角度セクタ14は、全体的にではないが、部分的に、例えば30°以下、詳細には15°以下の重なり角度で重なる。他の実施形態では、第1の角度セクタ12と第2の角度セクタ14とは、重ならない。例えば、第2の角度セクタ14は、第1の角度セクタ12が終わる角度位置で始まる。換言すれば、第1の角度セクタ12の第1の折り返し角度位置16は、図1Aおよび図1Bに示すように、第2の角度セクタ14の第1の折り返し角度位置26に一致してもよい。さらに別の実施形態では、第1の角度セクタ12は、第2の角度セクタ14から離れていてもよく、その結果、第1の角度セクタ12と第2の角度セクタ14は、共通の角度位置を共有しない。
[0041]往復運動は、本明細書では、磁石アセンブリの揺動運動とも呼ばれる。揺動運動中、磁石アセンブリ25は、最初に中心角度位置の第1の側に移動し、次に第1の折り返し位置で向きを変え、中心角度位置の第2の側に移動し、次に第2の折り返し位置で再び向きを変え、中心角度位置の第1の側に戻り、そこで、状況に応じて、揺動運動が停止してもよいし、または継続してもよい。スパッタ堆積が、磁石アセンブリの揺動運動の間に行われてもよい。換言すれば、基板は、磁石アセンブリの揺動運動中に薄い材料層でコーティングされる。単一のスパッタターゲットを使用して、磁石アセンブリの揺動運動のために基板のより大きな面積をコーティングすることができるので、基板上に堆積された層の厚さ均一性を改善することができる。詳細には、磁石アセンブリの揺動は、第1の半径方向と第2の半径方向との間を往復するように時計回りおよび反時計回りに空間的にシフトする荷電粒子雲につながる可能性がある。
[0042]いくつかの実施形態では、揺動運動は、本質的に連続的な運動であってもよい。そこでは、磁石アセンブリは、折り返し角度位置で本質的に停止することなく、角度セクタ内で時計回りおよび反時計回りに移動することができる。例えば、折り返し位置での磁石アセンブリの停止時間は、0.1秒以下の短い時間であってもよいし、または0.05秒以下であってもよい。
[0043]本明細書で開示される方法によれば、磁石アセンブリ25の揺動は、磁石アセンブリ移動経路の2つ以上の異なる角度セクタ内で連続して起こる。まず、図1Aに示すように、第1の揺動段階の間に、基板の第1の部分が、主にコーティングされ、その後、図1Bに示すように、第2の揺動段階の間に、基板の第2の部分が、次に主にコーティングされてもよい。第1の揺動段階の間に、層の第1の部分または第1の層が、基板上に堆積され、第2の揺動段階の間に、層の第2の部分または第2の層が、基板上に堆積されてもよい。異なる角度セクタ内での磁石アセンブリの連続する揺動は、堆積された層の均質性をさらに改善することができる。詳細には、電気的特性などの層特性の均一性の変化、例えば、堆積された層の導電率の均一性の変化は、異なる中心角度位置の周りでの次の揺動によって低減され得る。詳細には、大きな揺動セクタを2つ以上のより小さい角度セクタに分割し、その中で揺動が連続して行われることにより、全体的な層均一性が改善される。
[0044]いくつかの実施形態では、第1のコーティング段階Iの間に、磁石アセンブリは、第1の角度セクタ12の第1の折り返し角度位置16と第2の折り返し角度位置17との間で、2回以上、詳細には3回以上、より詳細には4回以上、または5回以上さえも、前後に運動する。代替的にまたは追加的に、いくつかの実施形態では、次のコーティング段階IIの間に、磁石アセンブリは、第2の角度セクタ14の第1の折り返し角度位置26と第2の折り返し角度位置27との間で、2回以上、詳細には3回以上、より詳細には4回以上、または5回以上さえも、前後に運動する。折り返し位置は、それぞれの角度セクタの2つの外側角度位置を画定することができる。
[0045]磁石アセンブリ25が回転軸Aの周りを移動する間、磁石アセンブリの向きは、磁石アセンブリの角度位置に対応して変化してもよい。例えば、磁石アセンブリ25が、第1の角度位置に配置されているとき、磁石アセンブリによって生成される磁場は、荷電粒子が、回転軸から第1の角度位置を通って延びる第1の半径方向の周りに閉じ込められるように、配向され得る。したがって、磁石アセンブリ25が、第2の角度位置に移動すると、磁石アセンブリによって生成される磁場は、自由帯電粒子を、回転軸から第2の角度位置を通って延びる第2の半径方向の周りに閉じ込めるように、移動することができる。
[0046]第1の角度セクタ12および第2の角度セクタ14は、異なる角度セクタである。いくつかの実施形態では、第1の角度セクタ12の角度広がりαは、第2の角度セクタ14の第2の角度広がりβと異なっていてもよい。本明細書で開示される他の実施形態と組み合わせることができるいくつかの実施形態では、第1の角度セクタ12の第1の中心角度位置18は、第2の角度セクタ14の第2の中心角度位置28と異なっていてもよい。
[0047]本明細書で使用する角度セクタの中心角度位置は、角度セクタの2つの外側角度位置(折り返し角度位置)間の角度位置、詳細には2つの外側角度位置間の中央の角度位置として理解することができる。例えば、角度セクタが、30°の角度広がりにわたって延びている場合、中心角度位置は、角度セクタの2つの外側角度位置の間に、両方の外側角度位置から15°の位置に、位置することができる。
[0048]いくつかの実施形態では、第1の角度セクタ12および第2の角度セクタ14は、本質的に同じ角度広がりα、βを有する。したがって、第1の角度セクタ12の第1の折り返し角度位置16と第2の折り返し角度位置17との間の角度αは、第2の角度セクタ14の第1の折り返し角度位置26と第2の折り返し角度位置27との間の角度βと本質的に一致していてもよい。しかしながら、第1の角度セクタ12の第1の中心角度位置18は、第2の角度セクタ14の第2の中心角度位置28と異なっていてもよい。この場合、コーティング中、磁石アセンブリ25によって生成される磁場は、2つの異なる中心角度位置の周りで本質的に同じ量だけ揺動することができる。
[0049]本明細書に記載される他の実施形態と組み合わせることができるいくつかの実施形態では、第1の角度セクタ12の第1の中心角度位置18は、第2の角度セクタ14の第2の中心角度位置28と異なっている。より詳細には、いくつかの実施形態では、第1の中心角度位置18および第2の中心角度位置28は、30°以上、詳細には45°以上、より詳細には60°、さらには90°までの角度を囲むことができる。したがって、第1のコーティング段階Iの間、基板の第1の部分が、主にコーティングされ、次のコーティング段階IIの間、基板の第2の部分が、主にコーティングされてもよい。
[0050]本明細書に開示される他の実施形態と組み合わせることができるいくつかの実施形態では、第1の角度セクタ12は、15°以上60°以下の第1の角度広がりαにわたって延びていてもよく、および/または第2の角度セクタ14は、15°以上60°以下の角度広がりβにわたって延びていてもよい。堆積した層の均一性を改善することができる。
[0051]いくつかの実施形態では、カソードアセンブリは、単一の磁石アセンブリのみを含むことができる。例えば、回転軸の周りを移動可能な単一の磁石アセンブリが、回転可能なターゲットの内部に配置され、異なる角度セクタ内での次の揺動が、この単一の磁石アセンブリで可能になるように、構成されてもよい。スパッタターゲットが、それぞれ単一の磁石アセンブリのみを含む場合、2つ以上の磁石アセンブリ間の相互作用および干渉を回避することができる。
[0052]本明細書で開示される他の実施形態と組み合わせることができるいくつかの実施形態では、基板100から回転軸Aに垂直に延びる平面22が、回転軸Aに対する磁石アセンブリ25のゼロ角度位置を定める。磁石アセンブリ25のゼロ角度位置は、本質的に円形の磁石アセンブリ移動経路と前記平面22との交差点であってもよい。例えば、磁石アセンブリのゼロ角度位置は、磁石アセンブリと基板との間の最小距離を有する磁石アセンブリの角度位置であってもよい。180°の角度で、磁石アセンブリと基板との間の距離が、最大であってもよい。磁石アセンブリ25は、ゼロ角度位置から回転軸Aの周りを時計回りに回転させることができ(正の角度範囲)、かつゼロ角度位置から回転軸Aの周りを反時計回りに回転させることもでき(負の角度範囲)、またはその逆でもよい。
[0053]第1の角度セクタ12の第1の中心角度位置18が、ゼロ角度位置からオフセットされていてもよく、かつ第2の角度セクタ14の第2の中心角度位置28が、ゼロ角度位置からオフセットされていてもよい。いくつかの実施形態では、第1の中心角度位置18が、平面22の第1の側に位置し、第2の中心角度位置28が、平面22の第2の側に位置してもよい。例えば、第1の中心角度位置18は、前記平面22の第1の側の、ゼロ角度位置から15°と45°との間に位置し、第2の中心角度位置28は、前記平面22の第2の側の、ゼロ角度位置から−15°と−45°との間に位置してもよい。詳細には、第2の中心角度位置28は、前記平面22に対して第1の中心角度位置18のミラー位置であってもよい。したがって、第1のコーティング段階Iの間に堆積される堆積層の第1の部分は、次のコーティング段階IIの間に堆積される堆積層の第2の部分の、前記平面22に対するミラー部分であってもよい。全体的な層均一性を改善することができる。
[0054]図1Aに示すように、いくつかの実施形態では、第1の中心角度位置18は、ゼロ角度位置に対して15°から25°の間の角度に位置し、図1Bに示すように、第2の中心角度位置28は、平面22によって定められるゼロ角度位置に対して−15°から−25°の間の角度に位置してもよい。さらに、第1の角度セクタ12および第2の角度セクタ14の角度広がりα、βは、共に30°と60°との間であってもよいが、前記平面22の反対側、すなわちゼロ角度位置から時計回りおよび反時計回りに位置してもよい。
[0055]いくつかの実施形態では、第1の角度セクタ12の第1の折り返し角度位置16、すなわち内側折り返し角度位置は、第2の角度セクタ14の第1の折り返し角度位置26、すなわち内側折り返し角度位置に一致してもよく、両方の内側折り返し角度位置が、本質的に前記平面22内に位置してもよい。これにより、スパッタターゲットに近い基板領域から、例えば隣接する2つのスパッタターゲットの中間における、スパッタターゲットから離れた基板領域までのコーティング層の厚さを一定にすることができる。
[0056]第1の角度セクタ12が、部分的または全体的に前記平面22の第1の側に位置し、第2の角度セクタ14が、部分的または全体的に前記平面22の反対側に位置している場合に、スパッタターゲットのイオン照射をより一定に保つことができる。例えば、第1の角度セクタ12の80%超または95%超が、前記平面22の第1の側に位置し、第2の角度セクタ14の80%超または95%超が、前記平面22の第2の側に位置してもよい。本明細書で開示される他の実施形態と組み合わされ得るいくつかの実施形態において、第1の角度セクタ12は、前記平面22で鏡映された第2の角度セクタ14に一致してもよい。
[0057]イオン照射は、ターゲットから基板までの距離、および異なるマグネトロン位置におけるイオンの入射角に依存し得るので、コーティング中に単一の角度セクタ内で磁石アセンブリを揺動させるようなスパッタモード、または磁石アセンブリの一定の位置を維持しながらコーティングするようなスパッタモードは、層の均一性に関して改善することができる。より均一にイオン照射を制御するために、本明細書で開示される方法は、次に磁石アセンブリを異なる角度セクタ内で往復運動させることを含む。本明細書に記載された実施形態による、このような「分割揺動堆積モード」は、前述のスパッタモードと比較して、より広いイオン照射制御を提供し、堆積層の層の厚さおよび電気的特性に関して、層の均一性を高めることができる。
[0058]図2Aおよび図2Bは、本明細書に記載された方法に従って動作するように構成されたスパッタ堆積のためのコーティング装置を示す。図2Aは、第1のコーティング段階Iを示し、磁石アセンブリ25を第1の角度セクタ12内で往復運動させながら、基板100が、コーティングされる。図2Bは、次のコーティング段階IIを示し、磁石アセンブリ25を第2の角度セクタ14内で往復運動させながら、基板100が、コーティングされる。図2Aおよび図2Bに示すコーティング方法は、ここで繰り返さないが、上述のコーティング方法の特徴のいくつかまたはすべてを含むことができる。
[0059]コーティング動作を開始する前に、第1の角度セクタ12の第1の中心角度位置18と第2の角度セクタ14の第2の中心角度位置28が、適切に設定されてもよい。例えば、第1のコーティング段階Iの間、磁石アセンブリが、平面22の第1の側の第1の中心角度位置18に関して往復運動して旋回するように、第1の中心角度位置18が、設定されてもよい。そこでは、平面22は、基板100から磁石アセンブリ25の回転軸Aを通って垂直に延びる。次のコーティング段階IIの間、磁石アセンブリが、第1の側の反対側の平面22の第2の側の第2の中心角度位置28に関して往復運動して旋回するように、第2の中心角度位置28が、設定されてもよい。
[0060]本明細書で説明する他の実施形態と組み合わせることができるいくつかの実施形態では、第1の角度セクタ12の第1の角度広がりαおよび第2の角度セクタ14の第2の角度広がりβが、コーティング動作を開始する前に、適切に設定されてもよい。いくつかの実施形態では、第1の角度広がりおよび第2の角度広がりは、本質的に同一である。いくつかの実施形態では、第2の角度セクタ14は、前記平面22に関する第1の角度セクタ12の鏡像である。いくつかの実施形態では、第1の角度セクタ12と第2の角度セクタ14とは、重ならない。しかし、第1の角度セクタ12の内側折り返し角度位置および第2の角度セクタ14の内側折り返し角度位置は、前記平面22内の同じ場所、すなわち基板までの最小距離の位置に配置されてもよい。
[0061]いくつかの実施形態では、カソードアセンブリ10のスパッタターゲット20は、コーティング動作中にスパッタターゲットをある電位、例えば負の電位に設定し、および/またはコーティング動作の前後に本質的にゼロの電位に設定するための電源30に接続される。
[0062]いくつかの実施形態では、正電位または接地電位に設けられ得る1つ以上のアノード(図2Aおよび図2Bには図示せず)が、スパッタターゲット20の近くに、すなわちスパッタターゲットの外側に配置されてもよい。そのようなアノードは、バーの形状を有することができ、バーの軸が、典型的にはスパッタターゲットの回転軸に平行に配置されている。いくつかの実施形態では、別個のバイアス電圧が、基板に印加されてもよい。
[0063]本明細書に記載の実施形態で使用される永久磁石は、2つの北磁極と1つの南磁極を有することができる。磁極は、それぞれ、磁石アセンブリ25の、ある面を指している。面は、典型的にはスパッタターゲット20の内部からスパッタターゲット20に面している。
[0064]多くの場合、第1の極が、中央に位置し、2つの反対の極が、第1の極に隣接して配置される。図2Aにおいて、そのような状況を説明するために、磁石アセンブリ25の拡大図が示されている。示されているように、南磁極が中央に位置し、北磁極が南磁極を囲む。磁極面の形状は、回転可能な湾曲したスパッタターゲットの曲率に適合させることができる。いくつかの実施形態では、各磁極の面は、平面を定める。磁極の平面は、一般に平行ではない。しかしながら、中央に配置された磁極の面によって定められる平面は、典型的には外側磁極の磁極によって定められる平面の向きの正確に中央にある向きを、有する。より数学的に言えば、外側磁極の面のベクトル成分の和が、内側磁極の面のベクトル成分になる。すなわち、「磁石アセンブリが、非ゼロ角度位置に配置されている」という語句は、磁石アセンブリのすべての磁極面のベクトル和として定義される平均面が、基板表面の向きとは異なる向きを有する、という状況を記述する。
[0065]基板の表面は、示された図に水平に配置された平面を定める。基板100から回転軸Aに垂直に延びる平面22が、磁石アセンブリのゼロ角度位置を定め、「基板−ターゲット相互接続平面」とも呼ばれ得る。図2Aの断面図において、基板−ターゲット相互接続平面は、基板100の中心を通って垂直方向に延びる。
[0066]図面に示された実施形態は、スパッタターゲット20を、水平に配置された基板の上に配置されるように示しており、基板−ターゲット相互接続平面の定義は、これらの実施形態に関して例示的に説明されたが、空間における基板の向きは垂直であってもよい、ということが言及されるべきである。詳細には、大面積のコーティングを考慮すると、基板の本質的に垂直な向きによって、基板の搬送および取り扱いを単純化することができる。本明細書で使用される「本質的に垂直な」は、垂直平面に対して15°未満の角度を指すことができる。
[0067]本開示の一態様によれば、磁石アセンブリは、第1のコーティング段階Iの間、基板−ターゲット相互接続平面に関して非対称に、すなわち基板−ターゲット相互接続平面の第1の側に配置され、次のコーティング段階IIの間、基板−ターゲット相互接続平面に関して非対称に、すなわち基板−ターゲット相互接続平面の第2の側に配置される。
[0068]第1のコーティング段階Iは、30秒以上5分以下の持続時間を有してもよく、次のコーティング段階IIは、30秒以上5分以下の持続時間を有してもよいことに留意されたい。例えば、角度セクタのうちの1つの第1の折り返し角度位置から第2の折り返し角度位置へ移動して、その後第1の折り返し角度位置に戻る磁石アセンブリの1回の移動にかかる時間が、10秒以上30秒以下であってもよい。
[0069]したがって、いくつかの実施形態では、第1のコーティング段階Iが、30秒以上にわたって実行され、次のコーティング段階IIが、30秒以上にわたって実行されてもよい。
[0070]いくつかの実施形態では、基板100は、少なくとも第1のコーティング段階Iの間および次のコーティング段階IIの間、静止状態に維持されてもよい。いくつかの実施形態では、基板100は、第1のコーティング段階Iと次のコーティング段階IIとの間、静止状態に維持されてもよい。層均一性を改善することができる。
[0071]本明細書に開示された実施形態のいくつかによれば、例えば、本質的にゼロの電圧と、スパッタ動作に使用される非ゼロ電圧との間で時間とともに変化する電圧が、スパッタターゲット20に供給されてもよい。
[0072]例えば、角度セクタ間での磁石アセンブリの再配置中のゼロ電圧は、スパッタ動作中のスパッタターゲットの非ゼロ電圧値の10%未満、より典型的には5%未満の値に低減される。
[0073]磁石アセンブリが往復運動していない時に、電場、すなわち電圧が、低減またはスイッチオフされる場合、層の均一性はさらに改善され得る。例えば、磁石アセンブリが、第1の角度セクタでも揺動されず、第2の角度セクタでも揺動されていない時に、スパッタリングが一時停止される場合、堆積された層の均質性が、増加され得る。
[0074]コーティング動作を開始する前に、磁石アセンブリは、第1の角度セクタ12内に、例えば第1の角度セクタ12の第1の中心角度位置18に、配置されてもよい。磁石アセンブリの配置の間、本質的にゼロの電位が、スパッタターゲット20に印加されてもよい。次いで、コーティング動作が、図2Aに示すように、ある電位を、例えば、負の電圧をスパッタターゲット20に印加することによって開始することができる。プラズマが、負に帯電したスパッタターゲット20と正に帯電したまたは接地されたアノード表面との間に確立された電場によって、生成されてもよい。
[0075]図2Aに示されている第1のコーティング段階Iの間、磁石アセンブリ25は、第1の角度セクタ12の第1の折り返し角度位置16と第2の折り返し角度位置17との間で往復運動し、その間、スパッタターゲット20に印加される電位は、負に、例えば一定の負電圧に維持されてもよい。例えば、磁石アセンブリ25は、一定の負のターゲット電圧を維持しながら、第1の折り返し角度位置16と第2の折り返し角度位置17との間で2回以上前後に移動してもよい。層の第1の部分が、基板100上に堆積されてもよい。
[0076]第1のコーティング段階Iの後、磁石アセンブリ25は、第1の角度セクタ12から第2の角度セクタ14に、例えば、第2の角度セクタ14の第2の中心角度位置28に配置され得る。磁石アセンブリ25を第2の角度セクタ14に配置する間、本質的にゼロの電位が、スパッタターゲットに印加されてもよい。したがって、コーティング動作は、第1のコーティング段階Iの後から第2のコーティング段階IIの開始前まで停止されてもよい。
[0077]図2Bに示されている第2のコーティング段階IIの間、磁石アセンブリ25は、第2の角度セクタ14の第1の折り返し角度位置26と第2の折り返し角度位置27との間で往復運動し、その間、スパッタターゲット20に印加される電位は、負に、例えば一定の負電圧に維持されてもよい。例えば、磁石アセンブリ25は、本質的に一定の負のターゲット電圧を維持しながら、第2の角度セクタ14の第1の折り返し角度位置26と第2の折り返し角度位置27との間で2回以上前後に移動してもよい。層の第2の部分が、基板100上に堆積されてもよい。
[0078]換言すれば、いくつかの実施形態では、ターゲット電圧は、コーティング中および次のコーティング中に非ゼロであり、コーティング後かつ次のコーティングの前に第1の角度セクタ12から第2の角度セクタ14へ磁石アセンブリを配置している間、本質的にゼロであってもよい。
[0079]本明細書に開示される他の実施形態と組み合わせることができるいくつかの実施形態では、コーティング方法は、第2のコーティング段階IIの後に完了することができる。例えば、第2のコーティング段階IIの後に、基板100は、図に示されるコーティング領域から移動されてもよい。
[0080]他の実施形態では、第2のコーティング段階IIの後に、コーティングが継続してもよい。例えば、いくつかの実施形態では、第3のコーティング段階が続き、第1および第2の角度セクタの両方と異なる第3の角度セクタ内で磁石アセンブリを往復運動させながら、基板がコーティングされ、詳細には、第3の角度セクタの第3の中心角度位置は、第1および第2の中心角度位置と異なる。いくつかの実施形態では、第2のコーティング段階IIの後、磁石アセンブリを第1の角度セクタ12に戻して、磁石アセンブリを第1の角度セクタ内で往復運動させながら、基板をコーティングすることによって、コーティングを継続することができる。その後、方法は、状況に応じて、停止してもよいし、継続してもよい。
[0081]本明細書に開示されるさらなる態様によれば、回転可能なスパッタターゲット20を有する少なくとも1つのカソードアセンブリ10と、回転可能なスパッタターゲット20の内部に配置され、回転軸Aの周りに回転可能である磁石アセンブリ25とを用いて基板100をコーティングする方法が、提供される。この方法は、図6に示すフロー図によって示される。
[0082]図6の任意選択のボックス210において、ターゲットを本質的にゼロの電圧に保っている間に、磁石アセンブリ25が、第1の角度セクタ12内に配置される。ボックス212において、第1の角度セクタ12内で磁石アセンブリを往復運動させながら、基板100がコーティングされ、第1の角度セクタ12の第1の中心角度位置18は、基板から回転軸Aに垂直に延びる平面22の第1の側に位置している。任意選択のボックス214において、ターゲット20を本質的にゼロの電圧に保っている間に、磁石アセンブリ25が、第2の角度セクタ14内に配置される。ボックス216において、第2の角度セクタ14内で磁石アセンブリを往復運動させながら、基板が、次にコーティングされ、第2の角度セクタの第2の中心角度位置28は、前記平面22の第2の側に位置している。
[0083]ターゲット電圧は、ボックス212および21によって示されるコーティング段階の間、非ゼロであり得る。
[0084]さらなる態様によれば、本明細書に記載の方法に従って動作するように構成されたコーティング装置が、提供される。
[0085]本明細書に記載の実施形態に従って基板をコーティングするコーティング装置は、スパッタターゲット20を有する少なくとも1つのカソードアセンブリ10と、スパッタターゲット20の内部に配置されることができ、回転軸Aの周りに回転可能である磁石アセンブリと、コーティング中に磁石アセンブリを、2つ以上の異なる角度セクタ内で連続して往復運動させるように構成されたアクチュエータとを含み、角度セクタの中心角度位置および広がり角度は、調節可能である。
[0086]コーティング装置は、スパッタターゲット20に可変電圧を供給するように構成された、詳細には、第1のコーティング段階I中および第2のコーティング段階II中に、磁石アセンブリを往復運動させながら、スパッタターゲット20に非ゼロ電圧を供給し、ならびに/または磁石アセンブリを第1の角度セクタ12および/もしくは第2の角度セクタ14に配置している間、スパッタターゲット20に本質的にゼロの電圧を提供するように構成されたコントローラを備えてもよい。
[0087]本開示の一態様によれば、スパッタターゲットに印加される電圧は、時間とともに変化させることができる。すなわち、一定でない電圧をスパッタターゲットに印加することができる。スパッタ出力は、磁石アセンブリの位置に依存するだけでなく、スパッタターゲットに印加される電圧にも依存して変化する。印加電圧とスパッタ出力との間の関係は、第一近似では線形であってもよい。
[0088]本明細書に開示された他の実施形態と組み合わせることができるいくつかの実施形態では、スパッタターゲット20をバッキングチューブ上に配置することができる。バッキングチューブは、主に、堆積されるべきスパッタ材料を含むスパッタターゲットを取り付けるためのものである。スパッタリングプロセスから生じるスパッタターゲットの高温を低下させるために、多くの実施形態では、スパッタターゲットが、冷却材料チューブと位置合わせされる。冷却材料として水が使用されてもよい。潜在的には数キロワットのオーダの、スパッタリングプロセスに投入されるエネルギーの大部分が、スパッタターゲットの熱になるため、冷却は有益である。磁石アセンブリは、バッキングチューブおよび冷却材料チューブ内に配置されて、その中で、詳細には本質的に円形の磁石アセンブリ移動経路に沿って、異なる角度位置に移動できるようにされてもよい。他の実施形態によれば、ターゲットチューブの内側部分全部が、水などの冷却材料で満たされる。
[0089]いくつかの実施形態では、磁石アセンブリは、円筒形の回転可能なスパッタターゲットの軸に取り付けられてもよい。本明細書に記載の磁石アセンブリの旋回運動は、回転力を提供する電動機によって引き起こされてもよい。いくつかの実施形態では、カソードアセンブリは、2つのシャフト、すなわち、回転可能なスパッタターゲットチューブが取り付けられた第1のシャフトと、第2のシャフトとを備えている。第1のシャフトは、カソードアセンブリの動作中に回転することができる。移動可能な磁石アセンブリは、典型的には、第2のシャフトに取り付けられる。第2のシャフトは、本明細書に記載の磁石アセンブリの回転運動または旋回運動を可能にするように、第1のシャフトから独立して動くことができる。したがって、コーティングアセンブリのアクチュエータは、第2のシャフトと、第2のシャフトを駆動するためのモータと、本明細書に記載のように磁石アセンブリを移動させるように構成された制御システムとを含むことができる。
[0090]いくつかの実施形態では、アクチュエータは、プロセッサ、ならびにコーティング方法を適切に調整するために、少なくとも2つの角度セクタの中心角度位置および/または広がり角度を入力するように構成されたユーザインターフェースに接続されるか、またはそれらを含むことができる。
[0091]本開示内で、図面は、例示的に示された基板と共にコーティング装置の断面概略図を示す。典型的には、カソードアセンブリ10は、円筒の形状を有することができるスパッタターゲット20を含む。換言すれば、スパッタターゲットの軸は、図の紙面に対して垂直に延びている。同じことが、同様に断面要素としてのみ概略的に示されている磁石アセンブリに関して当てはまる。磁石アセンブリの回転軸Aは、図の紙面に対して垂直に延びている。磁石アセンブリは、円筒形のスパッタターゲットの全長に沿って延びることができる。技術的な理由から、磁石アセンブリは、円筒長さの少なくとも80%を超えて、より典型的には円筒長さの少なくとも90%を超えて延びていることが、有益である。
[0092]本明細書に記載の一態様によれば、それぞれが回転可能なスパッタターゲット20を有する多数のカソードアセンブリ10が、大面積基板をコーティングするために提供される。基板100をコーティングするために適合された領域は、「コーティング領域」と呼ばれる。コーティング領域は、1つの時点で1つの基板100をコーティングするように適合されていてもよい。多数の基板100をコーティング領域内で次々にコーティングすることができる。
[0093]多くの実施形態において、多数のカソードアセンブリ10が、カソードアセンブリのアレイ内に配置される。詳細には、静的な大面積基板堆積のために、直線状に配置された、または代替的に、曲線に沿って、例えば弓状に配置された一次元アレイのカソードアセンブリを提供することが可能である。典型的には、カソードアセンブリの数は、コーティング領域当たり2〜20、より典型的には9〜16である。
[0094]いくつかの実施形態では、カソードアセンブリ10は、互いに等間隔に離間されている。スパッタターゲットの長さが、コーティングされる基板の長さよりわずかに長いことが、さらに有益である。
[0095]それに加えてまたはこれに代えて、カソードアレイは、幅方向Wにおける基板の幅よりもわずかに広くてもよい。「わずかに」とは、典型的には、100%と110%との間の範囲を含む。わずかに大きいコーティング長さ/幅を設けることは、境界効果を回避するのに役立つ。場合によっては、カソードアセンブリは、基板から等距離だけ離れて配置される。
[0096]いくつかの実施形態では、多数のカソードアセンブリは、基板に対して等距離ではなく、円弧の形状に沿って配置される。円弧の形状は、内側のカソードアセンブリが外側のカソードアセンブリよりも基板により近く配置されるような形状であってもよい。このような状況を図3に模式的に示す。あるいは、多数のカソードアセンブリの位置を定める円弧の形状は、外側のカソードアセンブリが内側のカソードアセンブリよりも基板により近く配置されるような形状であってもよい。散乱の挙動は、スパッタされる材料に依存する。したがって、用途、すなわちスパッタされる材料に応じて、カソードアセンブリを円弧状にすることにより、均質性がさらに高まる。円弧の向きは、用途によって異なる。
[0097]また、図3は、本明細書に記載されたいくつかの実施形態で使用され得るカソードアセンブリ間に配置されたアノードバー35を例示的に示す。
[0098]いくつかの実施形態によれば、スパッタターゲット20内のそれぞれの磁石アセンブリは、同期して動くことができる。同期した動きは、層の均質性をさらに高めることができる。
[0099]図3の上部は、第1のコーティング段階Iを示し、図3の下部は、次のコーティング段階IIを示す。第1のコーティング段階Iの間、磁石アセンブリ25は、それぞれのスパッタターゲット内の第1の角度セクタ12内で往復運動するように同期して移動し、第2のコーティング段階の間、磁石アセンブリ25は、それぞれのスパッタターゲット内の、第1の角度セクタとは異なる第2の角度セクタ内で往復運動するように同期して移動する。
[00100]それぞれのスパッタターゲット20内での磁石アセンブリ25の移動軌跡の詳細については、上記の実施形態が参照され、詳細はここで繰返さない。また、それぞれのスパッタターゲット20に印加される電圧については、図2Aおよび図2Bに関する説明が参照される。
[00101]2つ以上の中心角度位置の周りでの、スパッタターゲット内の磁石アセンブリの揺動運動に加えて、基板を揺動させることが、代替的または追加的に可能である。基板を「揺動させる」という用語は、限定された距離内で基板を前後に移動させるものとして、理解されるべきである。典型的には、基板は、所定の時間間隔の間、第1の位置に配置され、所定の時間間隔の間、第2の位置に配置される。さらなる実施形態では、基板は、第3の位置および第4の位置にさらに配置されてもよい。
[00102]本開示は、特に大面積基板コーティングに向けられている。「大面積基板」という用語は、少なくとも1m、例えば2m以上のサイズを有する基板を含むことができる。
[00103]図4Aおよび図4Bは、従来のプロセスによって堆積された膜の厚さと本明細書に記載のプロセスとの比較を示す。堆積は、図4Aの垂直線の位置に配置された2つの隣接する回転可能なスパッタターゲット60および70を使用して行われる。
[00104]図4Aは、従来のプロセスおよび本明細書に記載のプロセスによる堆積後に測定された2つの膜プロファイルを概略的に示す。y軸は、膜厚の任意の単位を表し、x軸は、図2Aにも示されているような基板100の幅方向Wに対応する基板の幅方向Wの単位を表す。図4Aから分かるように、回転可能なスパッタターゲット60と70との間の領域に本明細書に記載のプロセスによって堆積された膜の厚さは、従来のプロセスの場合よりも、回転可能なターゲットの真下の領域の厚さからの偏差が、わずかに小さい。換言すれば、2つのスパッタターゲットの間の中央の基板領域における厚さの均一性を改善することができる。
[00105]本明細書に記載のプロセスは、図1Aおよび図1Bに示すプロセスに対応するのに対して、従来のプロセスでは、基板は、磁石アセンブリの2つの一定の位置を交互に維持しながらコーティングされる。換言すれば、従来のプロセスでは、コーティング動作中に、磁石アセンブリは移動しない。
[00106]図4Bは、従来のプロセスによって堆積された膜の厚さの偏差および本明細書に記載のプロセスによる偏差についての統計的解析を示す。図4Bから分かるように、厚さの偏差は、右側に示されている本明細書に記載のプロセスよりも、左側に示された従来のプロセスの方がわずかに高い。本明細書に記載の実施形態を実施する場合、層の厚さの均一性を高めることができる。
[00107]図5Aおよび図5Bは、2つの従来のプロセスによって堆積された膜の導電率に関連する電気的特性と、本明細書に記載のプロセスを使用した場合の電気的特性との比較を示す。堆積は、図5Aの垂直線の位置に配置された2つの隣接する回転可能なスパッタターゲット60および70を使用して行われる。
[00108]図5Aは、2つの異なる従来のプロセスおよび本明細書に記載されたプロセスによる堆積後に測定された3つの膜プロファイルを概略的に示す。y軸は、膜の電気的特性の任意の単位を表し、x軸は、図2Aにも示されているような基板100の幅方向Wに対応する基板の幅方向Wの単位を表す。図5Aから分かるように、本明細書に記載のプロセスによって堆積された膜の導電率に対応する図示された電気的特性は、従来のプロセスの場合よりも、より一定、具体的には全体的により一定である。
[00109]図5Bは、2つの従来のプロセスによって堆積された膜の電気的特性の偏差および本明細書に記載のプロセスによる偏差についての統計的解析を示す。図5Bから分かるように、図示されている電気的特性の偏差は、右側に示されている本明細書に記載のプロセスよりも、左側および中央に示された従来のプロセスの方が高い。実施形態を実施する場合、堆積された層の電気的特性の均一性を高めることができる。
[00110]本明細書に記載のプロセスは、図1Aおよび図1Bに示すプロセスに対応する。図5Bの左側に示す従来のプロセス1では、磁石アセンブリの2つの一定の位置を交互に維持しながら、基板がコーティングされる。換言すれば、従来のプロセス1では、コーティング動作中に、磁石アセンブリは移動しない。図5Bの中央に示す従来のプロセス2では、単一の角度セクタ内で基板を移動させながら、基板がコーティングされる。換言すれば、従来のプロセス2では、磁石アセンブリは、2つの異なる角度セクタ内で連続して往復運動はしない。
[00111]本明細書で開示される方法およびコーティング装置は、基板上に材料を堆積させるために使用することができる。より詳細には、本明細書で開示される方法は、堆積された層の高い均一性を可能にし、したがって、例えばTFTなどのフラットパネルディスプレイなどのディスプレイの製造に使用することができる。開示された方法は、太陽電池、特に薄膜太陽電池の製造に使用されてもよい。均一性が改善されると、そのさらなる効果として、全体的な材料消費を低減することができ、これは、高価な材料を使用する場合に特に望ましい。例えば、提案された方法は、フラットパネルディスプレイまたは薄膜太陽電池の製造におけるインジウムスズ酸化物(ITO)層の堆積に使用することができる。
[00112]上記は、本開示の実施形態を対象とするが、本開示の基本的な範囲から逸脱することなく、本開示の他のさらなる実施形態を考え出すこともでき、本開示の範囲は、以下の特許請求の範囲によって決定される。

Claims (15)

  1. スパッタターゲット(20)を有する少なくとも1つのカソードアセンブリ(10)と、回転軸(A)の周りに回転可能な磁石アセンブリ(25)とを用いて基板(100)をコーティングする方法であって、
    第1の角度セクタ(12)内で前記磁石アセンブリ(25)を往復運動させながらの、前記基板(100)のコーティング(I)と、
    前記第1の角度セクタ(12)とは異なる第2の角度セクタ(14)内で前記磁石アセンブリを往復運動させながらの、前記基板(100)の次のコーティング(II)と
    を含み、
    前記コーティング(I)が、前記第1の角度セクタ(12)の第1の折り返し角度位置(16)と前記第1の角度セクタ(12)の第2の折り返し角度位置(17)との間で前記磁石アセンブリ(25)を2回以上往復運動させることを含み、
    前記次のコーティング(II)が、前記第2の角度セクタ(14)の第1の折り返し角度位置(26)と前記第2の角度セクタ(14)の第2の折り返し角度位置(27)との間で前記磁石アセンブリ(25)を2回以上往復運動させることを含む、方法。
  2. 前記第1の角度セクタ(12)の第1の中心角度位置(18)が、前記第2の角度セクタ(14)の第2の中心角度位置(28)とは異なっている、請求項1に記載の方法。
  3. 前記第1の中心角度位置と前記第2の中心角度位置が、30°以上90°以下の角度を囲む、請求項2に記載の方法。
  4. 前記第1の角度セクタ(12)が、15°以上60°以下の第1の角度広がり(α)にわたって延び、かつ、前記第2の角度セクタ(14)が、15°以上60°以下の第2の角度広がり(β)にわたって延びる、請求項1から3のいずれか一項に記載の方法。
  5. 前記基板(100)から前記回転軸(A)へ垂直に延びる平面(22)が、前記回転軸(A)に関する前記磁石アセンブリ(25)のゼロ角度位置を定め、前記第1の角度セクタ(12)の第1の中心角度位置(18)が、前記平面(22)の第1の側に位置し、前記第2の角度セクタ(14)の第2の中心角度位置(28)が、前記平面(22)の第2の側に位置する、請求項1または2に記載の方法。
  6. 前記第1の角度セクタ(12)が、前記平面(22)の第1の側に部分的または全体的に位置し、前記第2の角度セクタ(14)が、前記平面(22)の第2の側に部分的または全体的に位置し、特に、前記第1の角度セクタ(12)が、前記平面(22)で鏡映された前記第2の角度セクタ(14)に一致する、請求項5に記載の方法。
  7. コーティングする前に、前記第1の角度セクタ(12)の第1の中心角度位置および第1の角度広がり(α)を設定することと、前記第2の角度セクタ(14)の第2の中心角度位置および第2の角度広がり(β)を設定することとを含む、請求項1から6のいずれか一項に記載の方法。
  8. 前記スパッタターゲット(20)が、回転可能であり、特に円筒形であり、前記磁石アセンブリ(25)が、前記スパッタターゲット(20)の内部に配置されている、請求項1から7のいずれか一項に記載の方法。
  9. 前記コーティング(I)が、30秒以上にわたって行われ、前記次のコーティング(II)が、30秒以上にわたって行われる、請求項1から8のいずれか一項に記載の方法。
  10. コーティングしている間、前記基板が、静止状態に維持されている、請求項1から9のいずれか一項に記載の方法。
  11. 時間とともに変化する電圧を前記スパッタターゲット(20)に供給することをさらに含む、請求項1から10のいずれか一項に記載の方法。
  12. 前記電圧が、前記コーティング(I)中および前記次のコーティング(II)中、非ゼロであり、前記電圧が、前記コーティング(I)の後かつ前記次のコーティング(II)の前に、前記磁石アセンブリ(25)を前記第1の角度セクタ(12)から前記第2の角度セクタ(14)へ配置している間、本質的にゼロである、請求項11に記載の方法。
  13. 回転可能なスパッタターゲット(20)を有する少なくとも1つのカソードアセンブリ(10)と、前記回転可能なスパッタターゲット(20)の内部に配置され、回転軸(A)の周りに回転可能である磁石アセンブリ(25)とを用いて基板(100)をコーティングする方法であって、
    第1の角度セクタ(12)内で前記磁石アセンブリを往復運動させながらの、前記基板のコーティング(I)であって、前記第1の角度セクタの第1の中心角度位置が、前記基板から前記回転軸(A)へ垂直に延びる平面(22)の第1の側に位置している、コーティング(I)と、
    前記回転可能なスパッタターゲット(20)を本質的にゼロの電圧に保ちながら、前記磁石アセンブリ(25)を第2の角度セクタ(14)に配置することと、
    前記第2の角度セクタ(14)内で前記磁石アセンブリを往復運動させながらの、前記基板の次のコーティング(II)であって、前記第2の角度セクタの第2の中心角度位置が、前記平面(22)の第2の側に位置している、次のコーティング(II)と
    を含む方法。
  14. 基板(100)をコーティングするためのコーティング装置であって、
    スパッタターゲット(20)を有する少なくとも1つのカソードアセンブリ(10)と、
    前記スパッタターゲット(20)の内部に配置され、回転軸(A)の周りに回転可能な磁石アセンブリ(25)と、ここで前記基板(100)から前記回転軸(A)へ垂直に延びる平面(22)が、前記回転軸(A)に関する前記磁石アセンブリ(25)のゼロ角度位置を定めるものであり、
    コーティング中に前記磁石アセンブリを、2つ以上の異なる角度セクタ内で連続して往復運動させるように構成されたアクチュエータであって、第1の角度セクタ(12)の第1の中心角度位置(18)が、前記平面(22)の第1の側に位置するとともに、第2の角度セクタ(14)の第2の中心角度位置(28)が、前記平面(22)の第2の側に位置するように、前記角度セクタの中心角度位置を調整することができる、アクチュエータと
    を備えるコーティング装置。
  15. 前記スパッタターゲットに可変電圧を供給するように構成された、特に、前記磁石アセンブリを往復運動させている間、前記スパッタターゲットに非ゼロ電圧を供給し、かつ、前記磁石アセンブリを第1の角度セクタから第2の角度セクタへ配置している間、前記スパッタターゲットに本質的にゼロの電圧を供給するように構成されたコントローラをさらに備える、請求項14に記載のコーティング装置。
JP2018556960A 2016-05-02 2016-05-02 基板のコーティング方法および基板のコーティング装置 Active JP6778275B2 (ja)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/EP2016/059776 WO2017190763A1 (en) 2016-05-02 2016-05-02 Magnetron sputtering method

Publications (2)

Publication Number Publication Date
JP2019515135A JP2019515135A (ja) 2019-06-06
JP6778275B2 true JP6778275B2 (ja) 2020-10-28

Family

ID=55862798

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018556960A Active JP6778275B2 (ja) 2016-05-02 2016-05-02 基板のコーティング方法および基板のコーティング装置

Country Status (7)

Country Link
US (2) US11118261B2 (ja)
EP (1) EP3452634B1 (ja)
JP (1) JP6778275B2 (ja)
KR (2) KR20200145858A (ja)
CN (1) CN108884558B (ja)
TW (1) TWI652365B (ja)
WO (1) WO2017190763A1 (ja)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109487225A (zh) * 2019-01-07 2019-03-19 成都中电熊猫显示科技有限公司 磁控溅射成膜装置及方法
CN114207181A (zh) * 2019-08-09 2022-03-18 应用材料公司 涂覆基板的方法和涂覆基板的涂覆设备
CN111364026B (zh) * 2020-05-27 2020-08-14 上海陛通半导体能源科技股份有限公司 往复式旋转cvd设备及应用方法

Family Cites Families (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1129866A (ja) 1997-07-11 1999-02-02 Fujitsu Ltd スパッタ装置
US6402904B1 (en) * 2001-03-16 2002-06-11 4 Wave, Inc. System and method for performing sputter deposition using independent ion and electron sources and a target biased with an a-symmetric bi-polar DC pulse signal
JP4071520B2 (ja) * 2002-03-29 2008-04-02 キヤノンアネルバ株式会社 スパッタリング装置
JP2004140022A (ja) 2002-10-15 2004-05-13 Sharp Corp 太陽電池用ウェハおよびその製造方法ならびにそのウェハから得られる太陽電池
CN101297059A (zh) * 2005-10-24 2008-10-29 索莱拉斯有限公司 结合固定或者旋转靶的阴极与移动磁体组件的组合及其应用
KR101213888B1 (ko) 2006-05-08 2012-12-18 엘지디스플레이 주식회사 스퍼터링 장치, 그 구동 방법 및 이를 이용한 패널 제조방법
JP2009024230A (ja) 2007-07-20 2009-02-05 Kobe Steel Ltd スパッタリング装置
WO2009134660A2 (en) 2008-04-28 2009-11-05 Applied Materials, Inc. Photovoltaic cell reference module for solar testing
JP2011077148A (ja) 2009-09-29 2011-04-14 Toray Eng Co Ltd 太陽電池モジュールの製造装置及びその製造方法
EP2306489A1 (en) * 2009-10-02 2011-04-06 Applied Materials, Inc. Method for coating a substrate and coater
US9029689B2 (en) 2010-12-23 2015-05-12 Sunpower Corporation Method for connecting solar cells
JP2013206904A (ja) 2012-03-27 2013-10-07 Alpha- Design Kk 太陽電池セル組立装置
WO2013178252A1 (en) 2012-05-29 2013-12-05 Applied Materials, Inc. Method for coating a substrate and coater
US20140124014A1 (en) 2012-11-08 2014-05-08 Cogenra Solar, Inc. High efficiency configuration for solar cell string
US10090430B2 (en) 2014-05-27 2018-10-02 Sunpower Corporation System for manufacturing a shingled solar cell module
US9899546B2 (en) 2014-12-05 2018-02-20 Tesla, Inc. Photovoltaic cells with electrodes adapted to house conductive paste
WO2017105823A1 (en) 2015-12-14 2017-06-22 Sunpower Corporation Solar panel
CN108713256A (zh) 2016-02-24 2018-10-26 太阳能公司 太阳能电池板
EP3268993B1 (en) 2016-05-06 2019-12-11 Applied Materials Italia S.R.L. Apparatus for manufacturing of solar cell arrangements, system for manufacture of shingled solar cells, and method for manufacture of solar cell arrangements
WO2017190801A1 (en) 2016-05-06 2017-11-09 Applied Materials Italia S.R.L. Apparatus for aligning a solar cell element, system for use in the manufacture of a solar cell arrangement, and method for aligning a solar cell element
CN106449883B (zh) 2016-10-28 2019-07-02 无锡奥特维科技股份有限公司 一种叠片焊接机
CN206293457U (zh) 2016-10-28 2017-06-30 应用材料意大利有限公司 用于处理太阳能电池的设备和用于制造太阳能电池的系统
CN107195719B (zh) 2017-07-03 2024-03-08 滁州隆基乐叶光伏科技有限公司 叠瓦式太阳能光伏组件的生产设备
CN206524340U (zh) 2017-07-18 2017-09-26 东方环晟光伏(江苏)有限公司 高效叠瓦组件

Also Published As

Publication number Publication date
CN108884558A (zh) 2018-11-23
EP3452634A1 (en) 2019-03-13
WO2017190763A1 (en) 2017-11-09
JP2019515135A (ja) 2019-06-06
EP3452634C0 (en) 2023-09-06
TWI652365B (zh) 2019-03-01
US20190161852A1 (en) 2019-05-30
US11624110B2 (en) 2023-04-11
CN108884558B (zh) 2022-03-08
US11118261B2 (en) 2021-09-14
EP3452634B1 (en) 2023-09-06
KR102333039B1 (ko) 2021-11-29
TW201742943A (zh) 2017-12-16
KR20200145858A (ko) 2020-12-30
KR20180132116A (ko) 2018-12-11
US20210355578A1 (en) 2021-11-18

Similar Documents

Publication Publication Date Title
JP6385487B2 (ja) 基板をコーティングするための方法およびコータ
JP6258883B2 (ja) スパッタされた材料の層を形成するシステムおよび方法
US11624110B2 (en) Method of coating a substrate and coating apparatus for coating a substrate
TWI627300B (zh) 用以塗佈一基板之方法及塗佈機
WO2021028010A1 (en) Method of coating a substrate and coating apparatus for coating a substrate

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20190111

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20190111

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20191226

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20200114

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200413

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20200422

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200722

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20200915

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20201009

R150 Certificate of patent or registration of utility model

Ref document number: 6778275

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250