WO2015001799A1 - バベシア症の治療剤及び予防剤 - Google Patents

バベシア症の治療剤及び予防剤 Download PDF

Info

Publication number
WO2015001799A1
WO2015001799A1 PCT/JP2014/003499 JP2014003499W WO2015001799A1 WO 2015001799 A1 WO2015001799 A1 WO 2015001799A1 JP 2014003499 W JP2014003499 W JP 2014003499W WO 2015001799 A1 WO2015001799 A1 WO 2015001799A1
Authority
WO
WIPO (PCT)
Prior art keywords
babesia
clofazimine
babesias
pharmaceutical composition
acid
Prior art date
Application number
PCT/JP2014/003499
Other languages
English (en)
French (fr)
Inventor
郁男 五十嵐
直明 横山
ダバスレン バトドルジ
モハマド アブレラ
大村 智
亜紀 石山
一彦 乙黒
正人 岩月
宏実 筏井
Original Assignee
学校法人北里研究所
国立大学法人帯広畜産大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 学校法人北里研究所, 国立大学法人帯広畜産大学 filed Critical 学校法人北里研究所
Publication of WO2015001799A1 publication Critical patent/WO2015001799A1/ja

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/33Heterocyclic compounds
    • A61K31/395Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins
    • A61K31/495Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins having six-membered rings with two or more nitrogen atoms as the only ring heteroatoms, e.g. piperazine or tetrazines
    • A61K31/498Pyrazines or piperazines ortho- and peri-condensed with carbocyclic ring systems, e.g. quinoxaline, phenazine
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P33/00Antiparasitic agents
    • A61P33/02Antiprotozoals, e.g. for leishmaniasis, trichomoniasis, toxoplasmosis

Definitions

  • the present invention relates to a therapeutic agent and a preventive agent for human and domestic animal babesiosis, which contains the phenazine compound clofazimine as an active ingredient.
  • Babesia is a Babesia infection that mainly affects livestock animals.
  • babies Bobesia gibsoni
  • bovine babesia Bovine babesia
  • Babesia bigemina horse babesia
  • horse babesia Babesia caballi
  • Babesia Theileria
  • ticks Beetia babies
  • Infected by Babesia repeats proliferation in erythrocytes, so it exhibits fever, splenomegaly, anemia, hemoglobinuria, and its mortality rate is 10-50%.
  • Robe babesia has also been reported to infect humans and is recognized as a zoonotic disease.
  • death may occur, particularly in elderly people, splenectomized patients, and AIDS patients.
  • subclinical infection there are concerns about infection to others by blood transfusion.
  • Ganazek diminazen acetate
  • imidocarb imidocarb
  • phenamidine and trypan blue
  • Ganazek diminazen acetate
  • imidocarb imidocarb
  • phenamidine and trypan blue
  • Babesia resistant to these drugs has been reported.
  • a combination of azithromycin and atovacon or quinine and clindamycin is used to treat human babesiosis, but no new therapeutic agent has been developed.
  • Clofazimine has been reported to have antituberculous action, anti-inflammatory action, and immunosuppressive action, and is a compound known as a therapeutic drug for leprosy (Patent Document 1 and Non-Patent Document 1).
  • Patent Document 1 discloses a production method and properties of clofazimine.
  • the relationship between clofazimine and Babesia was not known.
  • an object of the present invention is to provide a novel pharmaceutical composition for the treatment and prevention of babesiosis in humans and livestock caused by infection with Babesias, such as dog Babesia, bovine Babesia, horse Babesia, rodent Babesia. is there.
  • the object of the present invention is to provide a pharmaceutical composition for treatment and / or prevention of human and veterinary babesiosis that is effective not only in vitro but also in vivo, has low toxicity, and is clinically applicable. It is to be.
  • the present inventors have conducted intensive studies on compounds effective in vitro and in vivo against various babessia. It was found that the compound is excellent in inhibiting the growth of, and has low toxicity. In particular, the present inventors have found that clofazimine exhibits an excellent therapeutic effect and safety in a Babesia-infected animal model, and has completed the present invention.
  • the present invention provides a novel pharmaceutical composition for the treatment and prevention of infectious diseases in humans and livestock such as Babesias, for example, Dog Babesia, Bovine Babesia, Horse Babesia, Rodent Babesia, and the inhibition of growth of Babesia. Therefore, clofazimine is provided as a novel pharmaceutical composition. Specifically, the present invention relates to a pharmaceutical composition for inhibiting the growth of Babesias containing clofazimine, clofazimine free base or a pharmacologically acceptable salt thereof as an active ingredient.
  • the present invention also relates to the use of clofazimine, clofazimine free base or a pharmacologically acceptable salt thereof for inhibiting the growth of Babesias.
  • the present invention also relates to a method for inhibiting the growth of Babesia, comprising administering clofazimine, clofazimine free base or a pharmacologically acceptable salt thereof.
  • the present invention also relates to a pharmaceutical composition for treating and / or preventing Babesia infections, which contains clofazimine, clofazimine free base or a pharmacologically acceptable salt thereof as an active ingredient.
  • the present invention also relates to the use of clofazimine, clofazimine free base or a pharmacologically acceptable salt thereof for the treatment and / or prevention of Babesia infections.
  • the present invention also relates to a method for treating and / or preventing Babesia infections characterized by administering clofazimine, clofazimine free base or a pharmacologically acceptable salt thereof.
  • clofazimine is represented by the following formula, and has a chemical name of 2- (4-chloroanilino) -3-isopropylimino-5- (4-chlorophenyl) 3,5-dihydrophenazine, It is a phenazine-based compound having a molecular weight of 473.40 represented by C 27 H 22 Cl 2 N 4 .
  • clofazimine has a secondary or tertiary amine group, protons can coordinate to form a base in an aqueous solution or the like.
  • clofazimine includes such (free) base of clofazimine.
  • clofazimine in the present specification is a salt formed by combining such a clofazimine base and an inorganic or organic acid, and is a salt that can be administered to the body as a pharmaceutical (pharmacology). Acceptable salts).
  • the “pharmacologically acceptable salt” is a salt formed by combining clofazimine with an inorganic or organic base or acid, and acceptable for administration to the body as a medicine. .
  • salts are described, for example, by Berge et al. Pharm. Sci. 66: 1-19 (1977) and the like.
  • the salt include salts of mineral acids such as hydrochloric acid, hydrobromic acid, sulfuric acid, nitric acid, and phosphoric acid; methanesulfonic acid, benzenesulfonic acid, paratoluenesulfonic acid, acetic acid, propionate, tartaric acid, fumaric acid, Salts with organic acids such as maleic acid, malic acid, oxalic acid, succinic acid, citric acid, benzoic acid, mandelic acid, cinnamic acid, lactic acid, glycolic acid, glucuronic acid, ascorbic acid, nicotinic acid, salicylic acid; or asparagine Examples thereof include salts with acidic amino acids such as acid and glutamic acid.
  • Babesias having the ability to infect humans or livestock are preferable as Babesias. Whether or not Babesias are infectious to humans or livestock is determined by known literature or by contacting the test Babesias with red blood cells derived from the test animals and measuring whether or not the Babesias are proliferating. Can be examined by determining that the test animal is infectious.
  • Babesias include dog Babesia (Babesia gibsoni), cattle Babesia (Babesia bovis, Babesia bigenimina), horse babesia (Babesia caballi), and Tyleria (Basilia, Thieleia), and Tebelia (Telieria) teeth.
  • the Babesias are preferably dog Babesia (Babesia gibsoni), Theileria (Babesia (Theileria) equui), and rodent Babesia (Babesia microti). Further, in the present specification, the Babesias are preferably drug resistant Babesias.
  • the drug resistant drug babesia is not particularly limited as long as it is a drug that can be used or can be used as an anti-babesial drug, for example, Ganazek (Diminazen Acetate), Mention may be made of imidocarb, phenamidine or trypan blue. Whether or not the test Babesia is a drug-resistant Babesia can be known from known information regarding the Babesia.
  • test Babesias are drug-resistant Babesias.
  • whether or not the test Babesias are drug-resistant Babesias is determined by contacting the test Babesias with erythrocytes derived from animals together with the anti-Babesia drug at a concentration capable of exerting an anti-Babesia action, so that the Babesias grow.
  • the test Babesias can be examined by determining that they are drug resistant Babesias.
  • the vertical axis represents the protozoa-infected red blood cell rate (Parasisitemia) (%), and the horizontal axis represents the number of days elapsed after Babesia administration (Days post-inoculation).
  • Black circles indicate a negative control group with no drug added
  • white circles indicate a group in which clofazimine was orally administered at 20 mg / kg
  • triangles indicate groups in which clofazimine was administered intraperitoneally at 20 mg / kg
  • inverted triangles indicate ganazek at 25 mg / kg. Shows the group administered subcutaneously.
  • Clofazimine which is a phenazine-based compound represented by the above formula (I), can be produced according to the method described in US Pat. No. 2,948,726. Clofazimine can also be purchased as a commercial product (eg, Sigma, USA).
  • the pharmaceutical composition of the present invention can be used in an oral dosage form or a parenteral dosage form such as an injection (intramuscular injection, intravenous injection, subcutaneous injection), a drip infusion or the like.
  • the method for inhibiting the growth of Babesias (in a subject infected with Babesias) and the method for treating and preventing Babesia infections of the present invention include clofazimine, free base of clofazimine, or a pharmacologically acceptable salt thereof.
  • mammals are preferable, and particularly humans and domestic animals (dogs, cats, horses, sheep, goats, cattle, Mammals such as pigs, horses, horses, alpaca, guinea pigs, rabbits, minks, rats, and mice), more preferably humans, cows, horses, dogs, and rodents, most preferably humans, Cattle and horses.
  • the pharmaceutical composition of the present invention may be orally administered as a tablet, powder, granule, syrup or the like, or may be parenterally administered as an injection or infusion. Good.
  • clofazimine, clofazimine free base or a pharmacologically acceptable salt thereof varies depending on the degree of symptoms, age, type of disease, etc., but usually 50 mg to 500 mg per day for an adult is divided into 1 to several times a day. To administer.
  • the pharmaceutical composition of the present invention can be formulated by a conventional method using a normal pharmaceutically acceptable carrier.
  • a solid preparation for oral administration add excipients to the active ingredient and, if necessary, binders, disintegrants, lubricants, etc., and then add solvents, granules, powders, capsules, etc. by conventional methods.
  • a pH adjuster, a buffer, a stabilizer, a solubilizing agent, etc. are added to the main drug as necessary to obtain a subcutaneous or intravenous injection by a conventional method.
  • the pharmaceutical composition for the treatment and / or prevention of infectious diseases of Babesia comprising clofazimine of the present invention, free base of clofazimine or a pharmacologically acceptable salt thereof as an active ingredient, or Babesias
  • the pharmaceutical composition for inhibiting the growth of can be used in combination with an existing therapeutic agent and / or prophylactic agent for Babesia infections, or with an existing Babesia growth inhibitor as necessary.
  • the therapeutic agent and / or prophylactic agent of the present invention is an existing therapeutic agent and / or prophylactic agent for an infectious disease of Babesias, or an existing Babesias anti-proliferative agent that has strong side effects.
  • the dosage of the drug can be reduced. Examples of such existing drugs include ganazec, imidocarb, phenamidine, trypan blue, azithromycin, atovacon, kinin, and clindamycin.
  • protozoa-infected erythrocytes subcultured using RPMI1640 culture medium supplemented with 20% canine serum and fresh dog erythrocytes in a 24-well culture plate were diluted (hematocrit value: 5-10%, protozoa-infected erythrocyte rate: The cells were cultured at 0.5 to 1%) at 37 ° C. under 5% CO 2 -95% air, followed by continuous culture by daily medium exchange and addition of fresh erythrocytes every 4 to 5 days.
  • Babesia bovis, Babesia bigemina, Babesia caballi, for the culture of Babesia equi respectively Levy and Ristic methods (Levy, MG and Ristic, M., Babesia bovis:. Continuouscultivation in a microaerophilous stationary phase culture, Science, 207:. 1218 -1220, (1985)), Vega et al. (Vega, CA,. Buening, GM., Green, TJ., Carson, CA., In vitro culture of Babesia bigegina,. y Research., 46: 416-420 (1985)), the method of Holman et al.
  • Babesia gibsoni was isolated from a naturally infected Aomori Tosa dog and maintained in continuous culture.
  • Babesia bovis and Babesia bigemina were professor of Guy Palmer, Washington State University Veterinary Medicine, and Babesia caballi and Babesia equi were distributed by the director of the Tochigi Branch of the Japanese Racehorse Research Institute.
  • the drug susceptibility test is based on the method of Matsuu (Matsuu, A., Yamasaki, M., Xuan, X., Ikadai, H., Hikasa, Y., In vitro evaluation of the growth of bioactivity in bioactivity 15). strain)., Vet Parasitol., 157: 1-8 (2008) and the method of Bork et al.
  • the measurement of protozoa growth is the method of Matsuu (Matsuu, A., Yamasaki, M., Xuan, X., Ikadai, H., Hikasa, Y., In vitro evaluation of the growth of bioactivity 15). strain)., Vet Parasitol., 157: 1-8 (2008) and the method of Bork et al. (Bork, S., Yokoyama, N., Ikehara, Y., Kumar, S., Sugimoto, C., Igarashi, I .. Growth inhibition effect of heparin on Babesia pa asites, Antimicrobial Agents and Chemotherapy, 48:.. 236-241 (2004)) was used to change slightly.
  • a smear was prepared using a part of the infected erythrocytes, and fixed with methanol, followed by Giemsa staining. Thereafter, about 1,000 red blood cells were observed, the number of red blood cells infected with Babesia was determined, and the infection rate was calculated.
  • the 50% protozoan growth inhibitory concentration (IC50 value) of the compound was determined from the compound concentration action curve using the Babesia infection rate on the 3rd day of culture.
  • the anti-babesial activity of cultured clofazimine compounds used in the present invention and known anti-babesial agents against cultured Babesia was as shown in Table 1.
  • the IC 50 values for clofazimine are as follows: 4 for M, 0.7 for M, 4 for Babessia (Babesia gibsoni), 2 for Bobesia bovisia (Babesia bogemina), 2 for Ubababesia (Babesia caballi, Babesia equini), respectively. , 3.0 ⁇ M, 4.3 ⁇ M, 0.29 ⁇ M, exhibiting anti-Babesia activity that is about 1/477 to 0.46 times that of Ganazek, which is an existing anti-babesia agent, and the growth-inhibiting effect on Babesia equi is particularly It was remarkable.
  • Clofazimine cytotoxicity test was performed by the method of Otoguro et al. (Otoguro, K., Kohana, A., Manabe, C., Ishiyama, A., Ui, H., Shiomi, K., Yamada, H. et al.). & Omura, S .: Potential axial activity of polyetherantiotic, X-206. J. Antibiot., 54: 658-663, (2001)). That is, Dr. L.
  • Human fetal lung-derived normal fibroblasts MRC-5 cells a model of host cells, distributed from Maes (Tibotec NV, Mechelen, Belgium) in 10% fetal calf serum (FCS) and antibiotic-added MEM medium Those subjected to maintenance and subculture were used.
  • FCS fetal calf serum
  • Table 2 shows the cytotoxicity of clofazimine used in the present invention and existing anti-babessia agents.
  • the cytotoxicity (IC50 value) of clofazimine against human fetal lung-derived normal fibroblast MRC-5 was 211.24 ⁇ M. Further, the cytotoxicity value of Ganazec, which is an existing drug, was 18.40 ⁇ M. The cytotoxicity of clofazimine was as weak as about 11.5 times that of Ganazek.
  • Table 3 shows the selective toxicity ratio (SI) between clofazimine used in the present invention and the existing anti-babessia agent.
  • the selectivity ratio (SI: Selectivity Index) was calculated by (IC50 value of cytotoxicity) / (IC50 value of anti-babesial activity).
  • the selective toxicity ratio (SI) of clofazimine was as follows: Canes bebecia (Babesia gibsoni), two types of bovine bebesia (Babesia bovisia, Babesia bigemina), two types of beumabesia (Babesia caballi, Babesia equi, in order of 85, 47, respectively) , 70, 49, 728.
  • mice 8-week-old BALB / c mice (CLEA Japan, Inc.), females with a body weight of 19 to 22 g were used. B. maintained and passaged in vivo passage. Microti 1 ⁇ 10 7 infected erythrocytes were infected by intraperitoneal inoculation.
  • clofazimine dissolved in 10% aqueous dimethyl sulfoxide (DMSO) is injected intraperitoneally (ip) when the erythrocyte infection rate reaches 1% (day 1 after infection) or Oral (po) administration, or Ganazec subcutaneously (sc) as a control, followed by continuous administration of the drug once a day for 5 days (1st to 5th day), daily A blood smear was prepared from the tail vein, and the protozoa-infected red blood cell rate (parasitemia) was measured.
  • DMSO dimethyl sulfoxide
  • FIG. 1 shows the results of therapeutic effects in an infection experiment model of clofazimine used in the present invention and an existing anti-babessia agent.
  • the ratio of the protozoa-infected erythrocyte in Babesia microti reached the highest value of 45.9% 7 days after the infection, and then gradually decreased and disappeared from the peripheral blood 20 days after the infection.
  • intraperitoneal administration of clofazimine at 20 mg / kg a maximum parasitism rate of 8.8% was observed 7 days after infection, and the protozoa-infected erythrocyte rate was suppressed by 80.8% compared to the control group, and a therapeutic effect was observed. .
  • clofazimine has the same therapeutic effect at the same dose as ganazek by intraperitoneal administration or oral administration.
  • the LD50 for oral administration of clofazimine is> 13,300 mg / kg for rats, 8,400 mg / kg for rats, 4,400 mg / kg for guinea pigs, and 1,500 mg / kg for rabbits (reference: Japanese standard product classification number). 87239 pharmaceutical interview form).
  • LD50 in the subcutaneous administration of Ganazec is 258 mg / kg for mice, which is known to be more toxic than clofazimine (Bauer, F,. Arzneimitel-utz-terrorism. 6: 674-677 (1956)).
  • clofazimine used in the present invention exhibits anti-babesial activity in vitro and in vivo against Babesias, and therefore is used for clinical application of humans and livestock as a therapeutic and preventive agent for Babesia. be able to.

Landscapes

  • Health & Medical Sciences (AREA)
  • Veterinary Medicine (AREA)
  • Chemical & Material Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Epidemiology (AREA)
  • Tropical Medicine & Parasitology (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Organic Chemistry (AREA)
  • Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)

Abstract

【課題】 ヒト及び家畜感染性バベシア類として、イヌバベシア、ウシバベシア、ウマバベシア、げっ歯類バベシアの増殖抑制剤、治療剤及び予防剤を提供する。 【解決手段】 クロファジミン、クロファジミンの遊離塩基又はその薬理学的に許容される塩を有効成分として含有する、イヌバベシア、ウマバベシア、ウシバベシア、げっ歯類バベシア等のバベシア類の増殖抑制用薬剤、並びに、クロファジミン、クロファジミンの遊離塩基又はその薬理学的に許容される塩を有効成分として含有する、ヒト及び家畜におけるバベシア類感染症の治療用又は予防用薬剤等。

Description

バベシア症の治療剤及び予防剤 クロスリファレンス
 本出願は、2013年7月2日に日本国において出願された特願2013-138824号に基づく優先権を主張するものであり、当該出願に記載された内容は全て、参照によりそのまま本明細書に援用される。また、本願において引用した全ての特許、特許出願及び文献に記載された内容は全て、参照によりそのまま本明細書に援用される。
 本発明は、フェナジン系化合物クロファジミン(clofazimine)を有効成分として含有するヒト及び家畜のバベシア症の治療剤及び予防剤に関する。
 バベシア症は主に家畜動物に発症するバベシア感染症である。イヌバベシア(Babesia gibsoni)、ウシバベシア(Babesia bovis、Babesia bigemina)、ウマバベシア(Babesia caballi、 Babesia (Theileria) equi)、げっ歯類バベシア(Babesia microti)などがあり、これらはマダニ科のダニによって媒介され、吸血により感染する。バベシアは赤血球内で増殖を繰り返すため、発熱、脾腫、貧血、血色素尿を呈し、その死亡率は10~50%に至る。また、げっ歯類バベシアはヒトにも感染することが報告されており、人獣共通感染症として認識されている。ヒトのバベシア症の場合、特に高齢者、脾臓摘出患者、AIDS患者においては死に至る場合がある。また、不顕性感染の場合があり、輸血などで他者への感染が危惧される。
 家畜に対するバベシア症には、既存の薬剤としてガナゼック(ジミナゼンアセチュレート)、イミドカルブ、フェナミジン、トリパンブルーが用いられるが、いずれも原虫を完全に殺滅することが困難であり、また肝毒性といった重篤な副作用を伴うこと、また、その残留性が問題となっている。さらにはこれら薬剤に耐性を持つバベシアの出現が報告されている。ヒトのバベシア症の治療にはアジスロマイシンとアトバコンの併用、又はキニンとクリンダマイシンの併用を用いるが、新たな治療薬は開発されていない。
 このように、既存の抗バベシア薬の欠点を克服する新規な抗バベシア薬剤の開発が望まれている。特に中南米、アフリカ、アジア、オセアニア諸国などでの大規模な家畜経営において家畜のバベシア症は生産性の低下をもたらし、食糧経済問題につながることが危惧される。さらに、最近における地球規模での環境変化によりバベシア類の流行地域がさらに拡大傾向の様相を呈している。従って今後殺原虫効果が高く、かつ宿主に対する毒性が低い新規抗バベシア薬開発の必要性が極めて高いものと考えられている。
 抗バベシア薬の開発においては、in vitroで効果が確認されたものは報告されているが、in vivoでは効果が確認できない、毒性が確認される、一部のバベシアに対して効果を示さない等の問題があり、安全で有効な薬剤は未だ見出されていない。
 クロファジミンは抗結核作用、抗炎症作用、免疫抑制作用が報告されており、ハンセン病治療薬として知られている化合物である(特許文献1及び非特許文献1)。例えば特許文献1にはクロファジミンの製造法及び性状が開示されている。しかしながら、クロファジミンとバベシアとの関係は知られていなかった。
US Patent 2,948,726
M.C.Cholo,H.C.Steel,P.B.Fouria W.A. Germishuizen&R.Anderson:Clofazimine:current status and future prospects.Journal of Antimicrobial Chemotherapy 29:290-298,2012
 よって、本発明の目的は、バベシア類、例えば、イヌバベシア、ウシバベシア、ウマバベシア、げっ歯類バベシアの感染による、ヒト及び家畜のバベシア症の治療及び予防のための新規の医薬組成物を提供することである。また、本発明の目的は、in vitroのみならず、in vivoで有効であり、毒性が低く、臨床において適用可能なヒト及び家畜のバベシア症の治療及び/又は予防のための医薬組成物を提供することである。
 本発明者らは、上述の既存の抗バベシア薬における種々の問題点を解決すべく、種々のバベシアに対してin vitro及びin vivoの両方で有効な化合物について鋭意研究したところ、クロファジミンがバベシア類の増殖抑制に対して優れた有効性を示し、かつ、毒性の低い化合物であることを見出した。特に、本発明者らは、クロファジミンがバベシア感染動物モデルにおいて優れた治療効果と安全性を示すことを見出し、本発明を完成するに至った。
 よって、本発明は、バベシア類、例えば、イヌバベシア、ウシバベシア、ウマバベシア、げっ歯類バベシアなどのヒト及び家畜への感染症の治療及び予防のための新規の医薬組成物、並びにバベシア類の増殖抑制のための新規の医薬組成物として、クロファジミンを提供するものである。
 具体的には、本発明は、クロファジミン、クロファジミンの遊離塩基又はその薬理学的に許容される塩を有効成分として含有するバベシア類の増殖抑制のための医薬組成物に関する。また、本発明は、バベシア類の増殖抑制のためのクロファジミン、クロファジミンの遊離塩基又はその薬理学的に許容される塩の使用に関する。また、本発明はクロファジミン、クロファジミンの遊離塩基又はその薬理学的に許容される塩を投与することを特徴とするバベシア類の増殖抑制方法に関する。
 本発明はまた、クロファジミン、クロファジミンの遊離塩基又はその薬理学的に許容される塩を有効成分として含有する、バベシア類の感染症の治療及び/又は予防のための医薬組成物に関する。また、本発明は、バベシア類の感染症の治療及び/又は予防のためのクロファジミン、クロファジミンの遊離塩基又はその薬理学的に許容される塩の使用に関する。また、本発明はクロファジミン、クロファジミンの遊離塩基又はその薬理学的に許容される塩を投与することを特徴とするバベシア類の感染症の治療方法及び/又は予防方法に関する。
 本明細書において、「クロファジミン」とは、下記式で表わされる、化学名が2-(4-クロロアニリノ)-3-イソプロピルイミノ-5-(4-クロロフェニル)3,5-ジヒドロフェナジンであり、分子式C2722Clで表される分子量473.40のフェナジン系化合物である。
Figure JPOXMLDOC01-appb-C000001
 クロファジミンは二級又は三級のアミン基を有することから、水溶液中等においてプロトンが配位して塩基となることができる。本明細書においてクロファジミンとは、このようなクロファジミンの(遊離)塩基を包含する。また、同様に本明細書におけるクロファジミンは、このようなクロファジミンの塩基と無機又は有機の酸とが結合して形成した塩であって、医薬として体内に投与することが許容可能な塩(薬理学的に許容される塩)を包含する。「薬理学的に許容される塩」とは、クロファジミンが、無機又は有機の塩基又は酸と結合して形成した塩であって、医薬として体内に投与することが許容可能な塩のことである。このような塩は、例えば、Bergeら、J.Pharm.Sci.66:1-19(1977)等に記載されている。塩としては、例えば、塩酸、臭化水素酸、硫酸、硝酸、リン酸等の鉱酸の塩;メタンスルホン酸、ベンゼンスルホン酸、パラトルエンスルホン酸、酢酸、プロピオン酸塩、酒石酸、フマル酸、マレイン酸、リンゴ酸、シュウ酸、コハク酸、クエン酸、安息香酸、マンデル酸、ケイ皮酸、乳酸、グリコール酸、グルクロン酸、アスコルビン酸、ニコチン酸、サリチル酸等の有機酸との塩;又はアスパラギン酸、グルタミン酸などの酸性アミノ酸との塩などを挙げることができる。なお、クロファジミンの水和物又は溶媒和物及びクロファジミンの塩の水和物又は溶媒和物も本発明のクロファジミンに包含される。
 本明細書において、「バベシア類」とは、アピコンプレクサ門胞子虫綱ピロプラズマ目に属する原虫である。本明細書において、バベシア類としては、ヒト又は家畜に感染する能力を有するバベシア類(ヒト又は家畜感染性バベシア)が好ましい。バベシア類がヒト又は家畜に感染性であるか否かは、公知の文献により、又は被験動物由来の赤血球に被験バベシア類を接触させ、バベシア類が増殖するか否かを測定し、増殖する場合には該被験動物に感染性であると判定することにより調べることができる。バベシア類は、イヌバベシア(Babesia gibsoni)、ウシバベシア(Babesia bovis、Babesia bigemina)、ウマバベシア(Babesia caballi)及びタイレリア(Babesia (Theileria) equi)、並びに、げっ歯類バベシア(Babesia microti)を含む。バベシア類として、好ましくは、イヌバベシア(Babesia gibsoni)、タイレリア(Babesia (Theileria) equi)、及びげっ歯類バベシア(Babesia microti)である。また、本明細書において、バベシア類として好ましくは、薬剤耐性バベシア類である。薬剤耐性バベシア類が耐性を示す薬剤としては、抗バベシア薬として用いられているか、又は用いることができる薬剤であれば特に限定されるものではなく、例えば、ガナゼック(ジミナゼンアセチュレート)、イミドカルブ、フェナミジン、又はトリパンブルーを挙げることができる。被験バベシア類が薬剤耐性バベシア類であるか否かは、該バベシア類に関する公知の情報により知ることができる。あるいは、被験バベシア類が薬剤耐性バベシア類であるか否かは、被験バベシア類を抗バベシア作用が発揮可能な濃度の前記抗バベシア薬と共に動物由来の赤血球に接触させ、バベシア類が増殖するか否かを測定し、増殖する場合には該被験バベシア類は薬剤耐性バベシア類であると判定することにより調べることができる。
クロファジミンのin vivoにおける抗バベシア活性試験の結果を示すグラフである。縦軸は原虫感染赤血球率(Parasitemia)(%)を示し、横軸はバベシア投与後の経過日数(Days post-inoculation)を示す。黒丸は薬剤無添加の陰性対照群を示し、白丸はクロファジミンを20mg/kgで経口投与した群を示し、三角はクロファジミンを20mg/kgで腹腔投与した群を示し、逆三角はガナゼックを25mg/kgで皮下投与した群を示す。
 前記の式(I)で表されるフェナジン系化合物であるクロファジミンは、米国特許第2,948,726号記載の方法に従って製造することができる。また、クロファジミンは、市販品(例えば、Sigma社、米国)として購入することもできる。
 本発明の医薬組成物は、経口投与形態、又は注射剤(筋肉注射、静脈内注射、皮下注射)、点滴剤等の非経口投与形態で用いることができる。本発明の(バベシア類に感染した対象における)バベシア類の増殖抑制方法、並びに、バベシア類感染症の治療方法及び予防方法は、クロファジミン、クロファジミンの遊離塩基又はその薬理学的に許容される塩の有効量をそれを必要とする対象(バベシア類に感染した対象)に投与することを含む。クロファジミン、クロファジミンの遊離塩基又はその薬理学的に許容される塩により治療又は予防する対象としては、哺乳動物が好ましく、特には、ヒト及び家畜動物(犬、猫、馬、羊、山羊、牛、豚、驢馬、駱駝、アルパカ、モルモット、兎、ミンク、ラット、及びネズミ等の哺乳類)であり、更に好ましくは、ヒト、ウシ、ウマ、イヌ、及びげっ歯類であり、最も好ましくは、ヒト、ウシ、及びウマである。本発明の医薬組成物を哺乳動物等に投与する場合、錠剤、散剤、顆粒剤、シロップ剤等として経口投与してもよいし、又は、注射剤、点滴剤として非経口的に投与してもよい。また、本発明の医薬組成物を家畜等へ投与する場合、飼料等へ混和した形で投与することができる。クロファジミン、クロファジミンの遊離塩基又はその薬理学的に許容される塩の投与量は症状の程度、年齢、疾患の種類等により異なるが、通常成人1日当たり50mg~500mgを1日1~数回に分けて投与する。
 本発明の医薬組成物は、通常の薬学的に許容される担体を用いて、常法により製剤化することができる。経口用固形製剤を調製する場合は、主薬に賦形剤、更に必要に応じて、結合剤、崩壊剤、滑沢剤等を加えた後、常法により溶剤、顆粒剤、散剤、カプセル剤等とする。注射剤を調製する場合には、主薬に必要によりpH調整剤、緩衝剤、安定化剤、可溶化剤等を添加し、常法により皮下又は静脈内用注射剤とする。
 また、本発明のクロファジミン、クロファジミンの遊離塩基又はその薬理学的に許容される塩を有効成分として含有する、バベシア類の感染症の治療及び/又は予防のための医薬組成物、あるいは、バベシア類の増殖抑制のための医薬組成物は、必要に応じて既存のバベシア類の感染症の治療剤及び/又は予防剤、あるいは、既存のバベシア類の増殖抑制剤と併用することができる。例えば、本発明の治療剤及び/又は予防剤は、既存のバベシア類の感染症の治療剤及び/又は予防剤、あるいは、既存のバベシア類の増殖抑制剤と併用することにより、副作用の強い既存の薬剤の投与量を低減させることができる。このような、既存の薬剤としては、ガナゼック、イミドカルブ、フェナミジン、トリパンブルー、アジスロマイシン、アトバコン、キニン、クリンダマイシンを挙げることができる。
 以下、実施例により本発明をさらに具体的に説明するが、本発明はこれらにより限定されるものではない。
 クロファジミンのin vitroにおけるバベシア増殖阻害活性
 北里大学獣医学部で保有しているイヌバベシア(Babesia gibsoni)を用いて、イヌバベシアに対するクロファジミンのin vitroにおける抗バベシア活性をMatsuuらの方法(Matsuu, A.,Koshida,Y.,Kawahara, M.,Inoue,K.,Ikadai, H.,Hikasa, Y.,Okano, S.,Higuchi, S., Efficacy of atovaquone against Babesia gibsoni in vivo and in vitro., Vet Parasitol.,124:9-18.(2004))に従って測定した。
 帯広畜産大学原虫病研究センターで保有しているウシバベシア(Babesia bovis、Babesia bigemina)、ウマバベシア(Babesia caballi、 Babesia equi)を用いて、これらのバベシアに対するクロファジミンのin vitroにおける抗バベシア活性をBorkらの方法(Bork,S., Yokoyama, N., Ikehara, Y.,Kumar, S.,Sugimoto, C.,Igarashi, I., Growth inhibitory effect of heparin on Babesia parasites. Antimicrobial Agents and Chemotherapy.,48:236-241(2004))に従って測定した。
 Babesia gibsoniの培養については、Matsuuの方法(Matsuu, A.,Koshida,Y.,Kawahara,M.,Inoue,K.,Ikadai,H.,Hikasa,Y.,Okano,S.,Higuchi,S.,Efficacy of atovaquone against Babesia gibsoni in vivo and in vitro.,Vet Parasitol.,124:9-18(2004))にて、維持、継代を行ったものを用いた。すなわち、24穴培養プレート内で、20%イヌ血清を添加したRPMI1640培養液と新鮮なイヌ赤血球を用いて継代した原虫感染赤血球を希釈し(ヘマトクリット値:5~10%、原虫感染赤血球率:0.5~1%)、37℃にて5%CO-95%air下で培養を行い、毎日の培養液交換と4~5日毎に新鮮な赤血球を添加して連続培養を行った。
 Babesia bovis、Babesia bigemina、Babesia caballi、 Babesia equiの培養については、それぞれLevyとRisticの方法(Levy, MG and Ristic,M.,Babesia bovis: continuouscultivation in a microaerophilous stationary phase culture.,Science.,207:1218-1220,(1985))、Vegaらの方法(Vega,CA,. Buening,GM., Green,TJ.,Carson,CA.,In vitro cultivation of Babesia bigemina,.American Journal of Veterinary Research.,46:416-420(1985))、Holmanらの方法(Holman,PJ., Frerichs,WM.,Chieves,L.,Wagner,GG.,Culture confirmation of the carrier status of Babesia caballi-infected horses.,Journal of Clinical Microbiology.,31:698-701(1993)、Holmanらの方法(Holman,PJ.,Chieves,L.,Frerichs,WM.,Olson,D.,Wagner,GG.,Babesia equi erythrocytic stage continuously cultured in an enriched medium.,Journal of Parasitology.,80:232-236 (1994))を若干改変し、維持、継代を行ったものを用いた。すなわち、24穴培養プレート内で、40%ウシあるいはウマ血漿を添加した199(Babesia bovis、Babesia bigemina、Babesia equi)あるいはRPMI1640(Babesia caballi)培養液と新鮮なウシあるいはウマ赤血球を用いて継代した原虫感染赤血球を希釈し(ヘマトクリット値:5~10%、原虫感染赤血球率:0.5~1%)、37℃にて5%O-5%CO-90%Nの混合ガス下で培養を行い、毎日の培養液交換と4~5日毎に新鮮な赤血球を添加して連続培養を行った。
 Babesia gibsoniは自然感染した青森の土佐犬から分離し、連続培養で維持した株を用いた。Babesia bovis及びBabesia bigeminaはワシントン州立大学獣医学部Guy Palmer教授、Babesia caballi、Babesia equiは日本競馬界競走馬総合研究所栃木支所金丸卓美所長より分与を受けた。
 薬剤感受性試験は、Matsuuの方法(Matsuu, A.,Yamasaki,M.,Xuan,X.,Ikadai, H.,Hikasa, Y.,In vitro evaluation of the growth inhibitory activities of 15 drugs against Babesia gibsoni(Aomori strain) .,Vet Parasitol.,157:1-8(2008)及びBorkらの方法(Bork, S.,Yokoyama, N.,Ikehara, Y.,Kumar, S., Sugimoto,C.,Igarashi,I.,Growth inhibitory effect of heparin on Babesia parasites.,Antimicrobial Agents and Chemotherapy., 48:236-241 (2004))に従って測定した。被験化合物としては、クロファジミン、既存抗バベシア剤であるガナゼック(ジミナゼンジアセチュレート、ノバルティス社)を用いた。具体的には、Babesia gibsoniの場合、96穴プレートの各ウェルに200μLの培養したバベシア感染赤血球(感染率:1~3%)、最終濃度0.0001~1μMとなるような濃度段階希釈した被験化合物を含む20%血漿加培養液(RPMI1640)が含まれる条件で培養を行った。24時間毎に被験化合物を含む培養液を交換した。Babesia bovis、Babesia bigemina、Babesia caballi、Babesia equiの場合、96穴プレートの各ウェルに培養したバベシア感染赤血球(感染率:1%)20μLと最終濃度0.05~200μMとなるような濃度段階希釈した被験化合物を含む40%血漿加培養液(RPMI1640あるいは199培養液)200μLを混和し、前述の混合ガス下で96時間培養を行った。24時間毎に被験化合物を含む培養液を交換した。
 原虫増殖の測定はMatsuuの方法(Matsuu, A.,Yamasaki,M.,Xuan,X.,Ikadai,H.,Hikasa,Y.,In vitro evaluation of the growth inhibitory activities of 15 drugs against Babesia gibsoni(Aomori strain) .,Vet Parasitol.,157:1-8(2008)及びBorkらの方法(Bork,S.,Yokoyama,N.,Ikehara, Y.,Kumar, S.,Sugimoto,C.,Igarashi,I.,Growth inhibitory effect of heparin on Babesia parasites.,Antimicrobial Agents and Chemotherapy.,48:236-241(2004))を若干変更して用いた。
 すなわち、毎日培養液を換える時に、感染赤血球の一部を用いて塗抹標本を作製し、メタノール固定後、ギムザ染色を行った。その後、約1000個の赤血球を観察し、バベシアに感染している赤血球の数を求め、感染率を算出した。化合物の50%原虫増殖阻止濃度(IC50値)は培養3日のバベシア感染率を用いて化合物濃度作用曲線より求めた。
 本発明に用いたクロファジミンの化合物と既知の抗バベシア剤の培養バベシアに対する抗バベシア活性は表1に示す通りであった。
Figure JPOXMLDOC01-appb-T000001
 クロファジミンのIC50値は、イヌバベシア(Babesia gibsoni)、2種類のウシバベシア(Babesia bovis、Babesia bigemina)、2種類のウマバベシア(Babesia caballi、Babesia equi)に対して、それぞれ順に、0.74μM、4.5μM、3.0μM、4.3μM、0.29μMであり、既存の抗バベシア剤であるガナゼックの1/477~1/0.46倍程度の抗バベシア活性を示し、特にBabesia equiに対する増殖抑制効果は顕著であった。
 クロファジミンの細胞毒性試験
 クロファジミンの細胞毒性試験は乙黒らの方法(Otoguro,K., Kohana,A., Manabe,C., Ishiyama,A., Ui,H., Shiomi,K.,Yamada,H. & Omura,S.:Potent antimalarial activity of polyether antibiotic,X-206.J.Antibiot.,54:658-663,(2001))に準じて行った。すなわち、Dr. L. Maes (Tibotec NV, Mechelen, ベルギー)より分与された、宿主細胞のモデルであるヒト胎児肺由来正常繊維芽細胞MRC-5細胞を10%牛胎児血清(FCS)及び抗生物質添加MEM培地にて維持、継代培養を行ったものを用いた。
 10%FCS-MEMにて1×10細胞/ウェルとなるように調整したヒト胎児肺由来正常繊維芽細胞MRC-5細胞浮遊液を、96穴プレートに100μL添加し混和後、37℃にて5%CO-95%air下で24時間培養を行った。その後、各ウェルに10%FCS-MEM 90μLと最終濃度250~0.1μg/mLとなるような濃度段階希釈した被験化合物の溶液(5%ジメチルスルホキシド水溶液)10μLを添加し、混和後、前述のガス下で7日間培養を行った。MRC-5細胞の増殖の有無はMTT法にて比色定量した。化合物の50%細胞増殖阻止濃度(IC50値)は化合物濃度作用曲線より求めた。また、選択毒性比(SI: Selectivity Index)は、(細胞毒性のIC50値)/(抗バベシア活性のIC50値)により計算して求めた。
 本発明に用いたクロファジミンと既存の抗バベシア剤の細胞毒性を表2に示す
Figure JPOXMLDOC01-appb-T000002
 クロファジミンのヒト胎児肺由来正常繊維芽細胞MRC-5に対する細胞毒性(IC50値)は211.24μMであった。また、既存薬であるガナゼックの細胞毒性値は18.40μMであった。クロファジミンの細胞毒性はガナゼックの1/11.5倍程度と弱いものであった。
 本発明に用いたクロファジミンと既存の抗バベシア剤の選択毒性比(SI)を表3に示す。
Figure JPOXMLDOC01-appb-T000003
 選択毒性比(SI: Selectivity Index)は、(細胞毒性のIC50値)/(抗バベシア活性のIC50値)により計算して求めた。
 クロファジミンの選択毒性比(SI)は、イヌバベシア(Babesia gibsoni)、2種類のウシバベシア(Babesia bovis、Babesia bigemina)、2種類のウマバベシア(Babesia caballi、Babesia equi)、に対して、それぞれ順に、285、47、70、49、728であった。
 クロファジミンのin vivoにおける抗バベシア活性試験
 クロファジミンのネズミバベシア(Babesia microti ミュンヘン株感染実験モデルに対するin vivoでの治療効果をAbouLailaらの方法(AbouLaila, M., Munkhjargal, T., Sivakumar, T., Ueno, A., Nakano, Y., Yokoyama, M., Yoshinary, T., Nagano, D., Katayama, K., El-Bahy, N., Yokoyama, N., and Igarashi, I. Apicoplast-targeting antibacterials inhibit the growth of Babesia parasites. Antimicrobial Agents and Chemotherapy, 56:3196-3206 (2012))を用いて測定した。
 ネズミバベシアBabesia microtiミュンヘン株は、Dr.O.Heydorn(Free University of Berin、ドイツ)より分与を受けた。
 供試動物としては8週令のBALB/cマウス(日本クレア社)の雌、体重19~22gの一群5匹を用いた。in vivo passageにて維持・継代したB.microti 1×10個の感染赤血球を腹腔内接種にて感染させた。感染日を0日目として、赤血球感染率が1%に達した時(感染後1日目)に10%ジメチルスルホキサイド水溶液(DMSO)に溶解したクロファジミンを腹腔内(i.p.)又は経口(p.o.)投与し、あるいは、コントロールとしてガナゼックを皮下(s.c.)に投与し、以後1日1回5日間、同薬剤を連続投与し(1~5日目)、毎日尾静脈より血液塗末標本を作製し、原虫感染赤血球率(parasitemia)を測定した。
 本発明に用いたクロファジミンと既存の抗バベシア剤の感染実験モデルにおける治療効果の結果を図1に示す。
 薬剤無添加の対照群では、感染後7日でBabesia microtiの原虫感染赤血球率が45.9%と最高に達し、以後漸減し感染後20日で抹消血液中から消失した。クロファジミンの20mg/kgの腹腔内投与で、8.8%の最高寄生率が感染後7日で認められ、対照群と比べ原虫感染赤血球率が80.8%抑制され、治療効果が認められた。更に、クロファジミンの20mg/kgの経口投与では、感染後5日で最高寄生率が5.3%より認められず、対照群と比べ88.5%の原虫感染赤血球率の抑制効果を示し、更なる治療効果が認められた。一方、陽性対照として用いた既存の抗バベシア剤であるガナゼックは、25mg/kgの皮下投与で、感染後6日で5.4%の最高寄生率に達し、無添加対照群と比較して88.2%の原虫感染赤血球率の抑制効果が認められた。このことより、クロファジミンは、腹腔内投与又は経口投与でガナゼックと同程度の用量で同等の治療効果があることが示された。
 なお、クロファジミンの経口投与におけるLD50は、マウスに対し>13,300mg/kg、ラット8,400mg/kg、モルモット4,400mg/kg、ウザギ1,500mg/kgである(文献:日本標準商品分類番号876239 医薬品インタビューフォーム)。一方、ガナゼックの皮下投与におけるLD50はマウスに対し258mg/kgであり、クロファジミンよりも毒性が高いことが知られている(Bauer,F,. Arzneimittel-forschung.6:674-677(1956))。
 以上説明したように、本発明に用いたクロファジミンは、バベシア類に対してin vitro及びin vivoで抗バベシア活性を示すことから、バベシア症に対する治療薬及び予防剤としてヒト及び家畜の臨床応用に用いることができる。

Claims (6)

  1. クロファジミン、クロファジミンの遊離塩基又はその薬理学的に許容される塩を有効成分として含有する、バベシア類の増殖抑制のための医薬組成物。
  2. クロファジミン、クロファジミンの遊離塩基又はその薬理学的に許容される塩を有効成分として含有する、バベシア類感染症の治療又は予防のための医薬組成物。
  3.  ヒト又は家畜動物におけるバベシア類の感染症を治療又は予防するための、請求項2に記載の医薬組成物。
  4.  バベシア類が、ヒト及び家畜感染性バベシアである請求項1~3のいずれか1項に記載の医薬組成物。
  5.  バベシア類が、イヌバベシア、ウマバベシア、ウシバベシア、げっ歯類バベシアである請求項1~3のいずれか1項に記載の医薬組成物。
  6.  経口投与形態又は非経口的投与形態である請求項1~5のいずれか1項に記載の医薬組成物。
PCT/JP2014/003499 2013-07-02 2014-07-01 バベシア症の治療剤及び予防剤 WO2015001799A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2013-138824 2013-07-02
JP2013138824A JP2016164125A (ja) 2013-07-02 2013-07-02 バベシア症の治療剤及び予防剤

Publications (1)

Publication Number Publication Date
WO2015001799A1 true WO2015001799A1 (ja) 2015-01-08

Family

ID=52143399

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/003499 WO2015001799A1 (ja) 2013-07-02 2014-07-01 バベシア症の治療剤及び予防剤

Country Status (2)

Country Link
JP (1) JP2016164125A (ja)
WO (1) WO2015001799A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115177628A (zh) * 2022-07-21 2022-10-14 中国农业科学院兰州兽医研究所 西奈芬净在制备预防或治疗巴贝斯虫病药物中的应用

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2948726A (en) * 1956-04-27 1960-08-09 Geigy Chem Corp New phenazine derivatives
JPH07277982A (ja) * 1994-04-05 1995-10-24 Adcock Ingram Pharmaceut Ltd Mdr耐性治療
JPH08231401A (ja) * 1995-01-31 1996-09-10 Adcock Ingram Ltd マラリアの予防または治療薬
WO2009113569A1 (ja) * 2008-03-12 2009-09-17 学校法人星薬科大学 ベンゾ[a]フェノキサチン化合物を有効成分として含有する原虫疾患予防又は治療用医薬組成物
WO2012003190A1 (en) * 2010-06-29 2012-01-05 Global Alliance For Tb Drug Development Riminophenazines with 2-(heteroaryl)amino substituents and their anti-microbial activity
JP2012509338A (ja) * 2008-11-19 2012-04-19 メリアル リミテッド 二量体1−アリールピラゾール誘導体

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2948726A (en) * 1956-04-27 1960-08-09 Geigy Chem Corp New phenazine derivatives
JPH07277982A (ja) * 1994-04-05 1995-10-24 Adcock Ingram Pharmaceut Ltd Mdr耐性治療
JPH08231401A (ja) * 1995-01-31 1996-09-10 Adcock Ingram Ltd マラリアの予防または治療薬
WO2009113569A1 (ja) * 2008-03-12 2009-09-17 学校法人星薬科大学 ベンゾ[a]フェノキサチン化合物を有効成分として含有する原虫疾患予防又は治療用医薬組成物
JP2012509338A (ja) * 2008-11-19 2012-04-19 メリアル リミテッド 二量体1−アリールピラゾール誘導体
WO2012003190A1 (en) * 2010-06-29 2012-01-05 Global Alliance For Tb Drug Development Riminophenazines with 2-(heteroaryl)amino substituents and their anti-microbial activity

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
MOLOKO C. CHOLO ET AL.: "Clofazimine: current status and future prospects", JOURNAL OF ANTIMICROBIAL CHEMOTHERAPY, vol. 67, no. 2, 20 October 2011 (2011-10-20), pages 290 - 298 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115177628A (zh) * 2022-07-21 2022-10-14 中国农业科学院兰州兽医研究所 西奈芬净在制备预防或治疗巴贝斯虫病药物中的应用

Also Published As

Publication number Publication date
JP2016164125A (ja) 2016-09-08

Similar Documents

Publication Publication Date Title
Loo et al. Artemisinin and its derivatives in treating protozoan infections beyond malaria
Thuita et al. Efficacy of the diamidine DB75 and its prodrug DB289, against murine models of human African trypanosomiasis
Pradel et al. Antibiotics in malaria therapy and their effect on the parasite apicoplast
TWI387456B (zh) 用於治療瘧疾之二茂鐵氯奎(ferroquine)及黃花蒿素(artemisinin)衍生物之組合
Munkhjargal et al. Inhibitory effects of pepstatin A and mefloquine on the growth of Babesia parasites
US7776911B2 (en) Antimalarial drug containing synergistic combination of curcumin and artemisinin
HU201672B (en) Process for producing pharmaceutical compositions comprising podophyllotoxin
US20110118199A1 (en) Use of cns penetrating anticancer compounds for the treatment of protozoal diseases
WO2015001799A1 (ja) バベシア症の治療剤及び予防剤
Murata et al. Potentiation by febrifugine of host defense in mice against Plasmodium berghei NK65
CZ289171B6 (cs) Kombinace 2-/4-(4-chlorfenyl)cyklohexyl/-3-hydroxy-1,4-naftochinonu a proguanilu pro léčení protozoálních parazitických infekcí
WO2017143964A1 (zh) Quisinostat,一种新型的高效抗疟药物
US4696921A (en) Antimalarial pharmaceutical compositions
TW201000098A (en) Combination of a bisthiazolium salt or a precursor thereof and artemisinin or a derivative thereof for the treatment of severe malaria
KR102304573B1 (ko) c-Met 카이네이즈 억제제를 유효성분으로 포함하는 톡소포자충 감염증 예방 또는 치료용 약학적 조성물
US20110009490A1 (en) Preparation of the formaurindikarboxyl acid base and its derivations and use
KR101540739B1 (ko) 펠리티닙을 포함하는 톡소포자충 감염증의 예방 및 치료용 조성물
US9629866B2 (en) Use of cordycepin in manufacture of medicaments for anti-depression
Starzengruber et al. Mirincamycin, an old candidate for malaria combination treatment and prophylaxis in the 21st century: in vitro interaction profiles with potential partner drugs in continuous culture and field isolates
JP5789827B2 (ja) マラリア原虫類の感染治療及び予防剤
WO2020179902A1 (ja) マラリア原虫の増殖抑制剤
KR101508610B1 (ko) 다코미티닙을 포함하는 톡소포자충 감염증의 예방 및 치료용 조성물
JP2012025671A (ja) 抗トリパノソーマ剤およびトリパノソーマ症治療薬
JP2011037814A (ja) マラリア原虫疾患予防又は治療用の5−ヘテロ環置換イミノ−9−ジアルキルアミノベンゾ[a]フェノキサチン化合物又はその塩とアーテミシニン誘導体との組み合わせ
JP2022152709A (ja) マラリア予防治療薬

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14820588

Country of ref document: EP

Kind code of ref document: A1

DPE1 Request for preliminary examination filed after expiration of 19th month from priority date (pct application filed from 20040101)
NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14820588

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP