WO2015001641A1 - 保護リレー装置 - Google Patents

保護リレー装置 Download PDF

Info

Publication number
WO2015001641A1
WO2015001641A1 PCT/JP2013/068364 JP2013068364W WO2015001641A1 WO 2015001641 A1 WO2015001641 A1 WO 2015001641A1 JP 2013068364 W JP2013068364 W JP 2013068364W WO 2015001641 A1 WO2015001641 A1 WO 2015001641A1
Authority
WO
WIPO (PCT)
Prior art keywords
data
analog
unit
amu
nmu
Prior art date
Application number
PCT/JP2013/068364
Other languages
English (en)
French (fr)
Inventor
圭吾 足立
Original Assignee
三菱電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱電機株式会社 filed Critical 三菱電機株式会社
Priority to PCT/JP2013/068364 priority Critical patent/WO2015001641A1/ja
Priority to KR1020157035504A priority patent/KR101777038B1/ko
Priority to EP13888570.2A priority patent/EP3018782B1/en
Priority to JP2014502914A priority patent/JP5518274B1/ja
Publication of WO2015001641A1 publication Critical patent/WO2015001641A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J13/00Circuit arrangements for providing remote indication of network conditions, e.g. an instantaneous record of the open or closed condition of each circuitbreaker in the network; Circuit arrangements for providing remote control of switching means in a power distribution network, e.g. switching in and out of current consumers by using a pulse code signal carried by the network
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02HEMERGENCY PROTECTIVE CIRCUIT ARRANGEMENTS
    • H02H7/00Emergency protective circuit arrangements specially adapted for specific types of electric machines or apparatus or for sectionalised protection of cable or line systems, and effecting automatic switching in the event of an undesired change from normal working conditions
    • H02H7/26Sectionalised protection of cable or line systems, e.g. for disconnecting a section on which a short-circuit, earth fault, or arc discharge has occured
    • H02H7/261Sectionalised protection of cable or line systems, e.g. for disconnecting a section on which a short-circuit, earth fault, or arc discharge has occured involving signal transmission between at least two stations
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J13/00Circuit arrangements for providing remote indication of network conditions, e.g. an instantaneous record of the open or closed condition of each circuitbreaker in the network; Circuit arrangements for providing remote control of switching means in a power distribution network, e.g. switching in and out of current consumers by using a pulse code signal carried by the network
    • H02J13/00006Circuit arrangements for providing remote indication of network conditions, e.g. an instantaneous record of the open or closed condition of each circuitbreaker in the network; Circuit arrangements for providing remote control of switching means in a power distribution network, e.g. switching in and out of current consumers by using a pulse code signal carried by the network characterised by information or instructions transport means between the monitoring, controlling or managing units and monitored, controlled or operated power network element or electrical equipment
    • H02J13/00016Circuit arrangements for providing remote indication of network conditions, e.g. an instantaneous record of the open or closed condition of each circuitbreaker in the network; Circuit arrangements for providing remote control of switching means in a power distribution network, e.g. switching in and out of current consumers by using a pulse code signal carried by the network characterised by information or instructions transport means between the monitoring, controlling or managing units and monitored, controlled or operated power network element or electrical equipment using a wired telecommunication network or a data transmission bus
    • H02J13/00017Circuit arrangements for providing remote indication of network conditions, e.g. an instantaneous record of the open or closed condition of each circuitbreaker in the network; Circuit arrangements for providing remote control of switching means in a power distribution network, e.g. switching in and out of current consumers by using a pulse code signal carried by the network characterised by information or instructions transport means between the monitoring, controlling or managing units and monitored, controlled or operated power network element or electrical equipment using a wired telecommunication network or a data transmission bus using optical fiber
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J13/00Circuit arrangements for providing remote indication of network conditions, e.g. an instantaneous record of the open or closed condition of each circuitbreaker in the network; Circuit arrangements for providing remote control of switching means in a power distribution network, e.g. switching in and out of current consumers by using a pulse code signal carried by the network
    • H02J13/00032Systems characterised by the controlled or operated power network elements or equipment, the power network elements or equipment not otherwise provided for
    • H02J13/00034Systems characterised by the controlled or operated power network elements or equipment, the power network elements or equipment not otherwise provided for the elements or equipment being or involving an electric power substation
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J13/00Circuit arrangements for providing remote indication of network conditions, e.g. an instantaneous record of the open or closed condition of each circuitbreaker in the network; Circuit arrangements for providing remote control of switching means in a power distribution network, e.g. switching in and out of current consumers by using a pulse code signal carried by the network
    • H02J13/00032Systems characterised by the controlled or operated power network elements or equipment, the power network elements or equipment not otherwise provided for
    • H02J13/00036Systems characterised by the controlled or operated power network elements or equipment, the power network elements or equipment not otherwise provided for the elements or equipment being or involving switches, relays or circuit breakers
    • H02J13/0004Systems characterised by the controlled or operated power network elements or equipment, the power network elements or equipment not otherwise provided for the elements or equipment being or involving switches, relays or circuit breakers involved in a protection system
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J3/00Circuit arrangements for ac mains or ac distribution networks
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02HEMERGENCY PROTECTIVE CIRCUIT ARRANGEMENTS
    • H02H3/00Emergency protective circuit arrangements for automatic disconnection directly responsive to an undesired change from normal electric working condition with or without subsequent reconnection ; integrated protection
    • H02H3/006Calibration or setting of parameters
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y04INFORMATION OR COMMUNICATION TECHNOLOGIES HAVING AN IMPACT ON OTHER TECHNOLOGY AREAS
    • Y04SSYSTEMS INTEGRATING TECHNOLOGIES RELATED TO POWER NETWORK OPERATION, COMMUNICATION OR INFORMATION TECHNOLOGIES FOR IMPROVING THE ELECTRICAL POWER GENERATION, TRANSMISSION, DISTRIBUTION, MANAGEMENT OR USAGE, i.e. SMART GRIDS
    • Y04S10/00Systems supporting electrical power generation, transmission or distribution
    • Y04S10/18Systems supporting electrical power generation, transmission or distribution using switches, relays or circuit breakers, e.g. intelligent electronic devices [IED]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y04INFORMATION OR COMMUNICATION TECHNOLOGIES HAVING AN IMPACT ON OTHER TECHNOLOGY AREAS
    • Y04SSYSTEMS INTEGRATING TECHNOLOGIES RELATED TO POWER NETWORK OPERATION, COMMUNICATION OR INFORMATION TECHNOLOGIES FOR IMPROVING THE ELECTRICAL POWER GENERATION, TRANSMISSION, DISTRIBUTION, MANAGEMENT OR USAGE, i.e. SMART GRIDS
    • Y04S10/00Systems supporting electrical power generation, transmission or distribution
    • Y04S10/20Systems supporting electrical power generation, transmission or distribution using protection elements, arrangements or systems
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y04INFORMATION OR COMMUNICATION TECHNOLOGIES HAVING AN IMPACT ON OTHER TECHNOLOGY AREAS
    • Y04SSYSTEMS INTEGRATING TECHNOLOGIES RELATED TO POWER NETWORK OPERATION, COMMUNICATION OR INFORMATION TECHNOLOGIES FOR IMPROVING THE ELECTRICAL POWER GENERATION, TRANSMISSION, DISTRIBUTION, MANAGEMENT OR USAGE, i.e. SMART GRIDS
    • Y04S40/00Systems for electrical power generation, transmission, distribution or end-user application management characterised by the use of communication or information technologies, or communication or information technology specific aspects supporting them
    • Y04S40/12Systems for electrical power generation, transmission, distribution or end-user application management characterised by the use of communication or information technologies, or communication or information technology specific aspects supporting them characterised by data transport means between the monitoring, controlling or managing units and monitored, controlled or operated electrical equipment
    • Y04S40/124Systems for electrical power generation, transmission, distribution or end-user application management characterised by the use of communication or information technologies, or communication or information technology specific aspects supporting them characterised by data transport means between the monitoring, controlling or managing units and monitored, controlled or operated electrical equipment using wired telecommunication networks or data transmission busses

Definitions

  • MUs that collect analog data indicating the amount of system electricity and those that collect digital data that indicates the amount of system electricity.
  • an MU that collects analog data is also referred to as “AMU (Analog Merging Unit)”, and an MU that collects digital data is also referred to as “NMU (Numerical Merging Unit)”.
  • AMU and NMU are selectively used according to the configuration of the corresponding instrument transformer. In FIG. 1, analog data output from the CT / VT 8 is input to the AMU 2. On the other hand, digital data output from the ECT / EVT 4 is input to the NMU 3.
  • the A / D conversion timing in the A / D converter 43 inside the ECT / EVT 4 is controlled by the A / D conversion request signal generated by the NMU 3 according to the synchronization signal from the synchronization signal output device 5.
  • the A / D conversion timing in the A / D converter 23 in the AMU 2 is controlled by the synchronization signal from the synchronization signal output device 5.
  • the computing unit 24 computes the digital signal from the A / D converter 23. Specifically, the arithmetic unit 24 performs processing such as gain adjustment and phase correction on the digital signal output from the A / D converter 23 so that digital data (in accordance with a protocol defined as the process bus 6) ( AI data) is generated.
  • AI data serial data in which measured values are arranged in time series for each sampling period is used as described above.
  • ECT / EVT 4 includes an analog input unit 41, a multiplexer 42, an A / D converter 43, a calculation unit 44, a transmission unit 45, and a sampling timing generation unit 46.
  • the transmission unit 45 transmits the digital data generated by the calculation unit 44 to the NMU 3.
  • the NMU 3 includes a reception unit 31, a calculation unit 32, a transmission / reception unit 33, and a timing synchronization circuit 34.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Emergency Protection Circuit Devices (AREA)
  • Computer Networks & Wireless Communication (AREA)

Abstract

 AMU2は、系統電気量を示すアナログデータをCT/VT(8)から受けるとともに、外部から供給される同期信号に同期して、入力されたアナログデータをディジタルデータに変換してIED(1)に出力する。NMU(3)は、同期信号を受けてA/D変換要求信号を生成してECT/EVT(4)に出力する。ECT/EVT(4)は、NMU(3)からのA/D変換要求信号に同期してアナログデータをディジタルデータに変換してNMU(3)に出力する。NMU(3)は、入力されたディジタルデータをIED(1)に出力する。IED(1)は、AMU(2)からIED(1)に入力されるディジタルデータの位相を遅らせることにより、AMU(2)とNMU(3)(ECT/EVT4)との間のA/D変換タイミングのずれを補償する。

Description

保護リレー装置
 本発明は、電力系統を保護する目的で設置される保護リレー装置に関するものである。
 電力系統から電流および電圧などの情報(以下「系統電気量」と称す。)を収集するとともに、電力系統または電力設備に事故が発生した場合に、当該事故を検出するとともに、当該事故を電力系統から切り離すために、保護リレー装置が用いられている。
 電力系統に係る設備においては、近年の情報通信技術およびディジタル制御技術の進歩に伴なって、ネットワーク化が進んでいる。このようなネットワーク化の一つとして、分散型の保護リレー装置が提案され、実用化されている。分散型の保護リレー装置は、従来の保護リレー装置を機能的に分離させたものであり、電力系統から系統電気量を収集する1つまたは複数の統合ユニットと、これらの統合ユニットからの情報に基づいて電力系統を保護、制御、監視するための1つまたは複数の演算装置とからなる。
 たとえば、特開2002-315233号公報(特許文献1)に開示される変電機器保護制御システムにおいては、母線、開閉器および送電線から構成される変電機器本体に流れる交流電流と、変電機器本体に印加されている交流電圧とを計器用変成器により抽出し、この抽出したアナログ電気量をA/D変換(アナログ/ディジタル変換)した後、ディジタルデータとして統合ユニットを介してプロセスバスに送信する。そして、このディジタルデータは、プロセスバスに接続される保護制御ユニットに取り込まれ、変電機器本体の監視、制御および保護の演算に用いられる。保護制御ユニットからの制御指令および変電機器本体からの監視情報等はプロセスバスを介して機器制御ユニットによって授受され、この機器制御ユニットによって開閉器に対する遮断指令等が出力される。
特開2002-315233号公報
 上述のような分散型の保護リレー装置は、保護リレー装置を構成する複数の回路をディジタル化し、かつ当該複数の回路間をプロセスバスにより結合したことによって、装置の小型化を実現する。また、情報の有効活用も可能となるため、保守運用性および経済性を向上できる。
 その一方で、演算装置は、プロセスバスで結合される複数の統合ユニットの各々から、系統電気量に対応したディジタルデータを取り込むため、複数の統合ユニットの間でディジタルデータの位相を一致させる必要がある。これには、複数の統合ユニットの間でA/D変換のタイミングの同期をとる必要がある。
 しかしながら、統合ユニットには、計器用変成器から収集したアナログ電気量を、内蔵するA/D変換器を用いてディジタルデータに変換してプロセスバスに出力するように構成されたものと、計器用変成器内部のA/D変換器で生成されたディジタルデータを収集してプロセスバスに出力するように構成されたものとがある。なお、後者の構成においては、統合ユニットが計器用変成器におけるA/D変換のタイミングを制御する。そのため、1つの保護リレー装置に上記2つの構成の統合ユニットを用いた場合には、統合ユニット間でA/D変換タイミングにずれが生じてしまうという問題が生じる。この結果、複数の統合ユニット間でディジタルデータの位相が異なるため、演算装置が正常に機能しなくなる。
 本発明は、このような問題を解決するためになされたものであり、その目的は、複数の統合ユニット間でディジタルデータの位相を一致させることが可能な分散型の保護リレー装置を提供することである。
 本発明のある局面に従えば、保護リレー装置は、電力系統から系統電気量を示す情報を収集するための複数の統合ユニットと、上記複数の統合ユニットからの情報に基づいて、電力系統を保護するための演算装置とを備える。第1の統合ユニットは、系統電気量を示すアナログデータを第1の変成器から受けるとともに、外部から供給される同期信号に同期して、入力されたアナログデータをディジタルデータに変換して演算装置に出力するように構成される。第2の統合ユニットは、系統電気量を示すアナログデータから生成されたディジタルデータを第2の変成器から受けるとともに、入力されたディジタルデータを演算装置に出力するように構成される。第2の統合ユニットは、同期信号を受けてアナログ/ディジタル変換を要求する要求信号を生成して第2の変成器に出力する。第2の変成器は、第2の統合ユニットからの要求信号に同期してアナログデータをディジタルデータに変換して前記第2の統合ユニットに出力する。保護リレー装置は、第1の統合ユニットと第2の変成器との間のアナログ/ディジタル変換タイミングのずれを補償するための補正部を備える。
 この発明によれば、分散型の保護リレー装置において、複数の統合ユニットの間でディジタルデータの位相を一致させることができる。
この発明の実施の形態1による保護リレー装置の全体構成図である。 AMUでのA/D変換タイミングおよびNMUでのA/D変換タイミングの関係を示す波形図である。 この実施の形態1による保護リレー装置におけるIEDの機能ブロック図である。 IEDの位相補正部におけるAIデータの位相補正を説明する図である。 位相補正後のAMUデータを示すベクトル図である。 この発明の実施の形態2による保護リレー装置におけるAMUの機能ブロック図である。 この発明の実施の形態2による保護リレー装置におけるECT/EVTおよびNMUの機能ブロック図である。 AMU、NMUおよびECT/EVTの各々の処理手順を示すフローチャートである。 この発明の実施の形態3による保護リレー装置の全体構成図である。 この発明の実施の形態4による保護リレー装置におけるIEDの機能ブロック図である。 この発明の実施の形態5による保護リレー装置におけるIEDおよびAMUの機能ブロック図である。
 本発明の実施の形態について、図面を参照しながら詳細に説明する。なお、図中の同一または相当部分については、同一符号を付してその説明は繰り返さない。
実施の形態1.
 (保護リレー装置の全体構成)
 図1は、この発明の実施の形態1による保護リレー装置の全体構成図である。
 図1を参照して、この発明の実施の形態1による保護リレー装置は、電力系統を構成する送電線7の近傍に設置され、電力系統から電流および電圧などの情報(系統電気量)を収集する。保護リレー装置は、収集した系統電気量に基づいて、電力系統の保護、制御および監視等の処理を実行する。
 具体的には、保護リレー装置は、電力系統から系統電気量を収集する複数の統合ユニット(Merging Unit:以下「MU」とも称す。)2,3と、電力系統の保護、制御および監視するための演算装置(Intelligent Electric Device:以下「IED」とも称す。)1とを備える。複数のMU2,3とIED1との間は、プロセスバス6を介して互いにデータ通信可能になっている。すなわち、本実施の形態1による保護リレー装置は、プロセスバス6を用いて保護リレー装置の機能を主に2つの機能に分割した、プロセスバス対応保護リレー装置を構成する。
 プロセスバス対応保護リレー装置においては、電力系統に事故が発生したときに事故が起きた箇所を即時に遮断するために、複数のMU2,3がタイミングを合わせて系統電気量を収集し、IED1へ送信する必要がある。複数のMU2,3およびIED1の間で時刻を同期するために、保護リレー装置は、同期信号出力装置5をさらに備える。同期信号出力装置5は、たとえばGPS(全地球測位システム)を用いて高精度に時刻を把握し、時刻を示した同期信号をMU2,3およびIED1へ出力する。
 複数のMU2,3の各々は、収集した系統電気量をIED1へ送出する。IED1は、各MUから送信される系統電気量に基づいて、電力系統の保護、制御、監視等の処理を実行する。一般的な保護リレー装置では、用途(たとえば、保護の対象や制御の対象毎)に応じて複数のIED1が配置される。このような用途別のIEDとしては、たとえば、保護機能を実現する保護IEDや、制御機能を実現する制御IEDが挙げられる。
 IED1は、保護機能の一例として、予め定められたリレー演算ロジックが成立するかを所定周期毎に判断する。リレー演算ロジックが成立したとき、IED1は、対応する遮断器に対してトリップ信号を出力する。このトリップ信号は、プロセスバス6を介して伝送されてもよい。IED1は、制御機能の一例として、電力系統における開閉器の投入/開放などの指令を出力することもできる。
 さらに、IED1は、監視機能の一例として、電力系統に何らかの故障が発生した場合に、その発生前後における電力系統の情報の波形記録(ロギング)を行なうことができ、また、電力系統の情報をリアルタイムで出力することもできる。たとえば、IED1は、図示は省略するが、ステーションバスを介して、変電所自動化システム(Substation Automation System:SAS)および遠方監視制御装置と接続される。IED1は、変電所自動化システムおよび遠方監視制御装置へ電力系統の情報を出力することができる。IED1には、上述した処理以外の任意の処理を実装することもできる。たとえば、IED1を用いて、変電所自動化システムに相当する機能を実現してもよい。
 図1において、送電線7には、遮断器10が設けられるとともに、計器用変成器4,8が設けられる。計器用変成器とは、変流器(Current Transformer:CT)および計器用変圧器(Voltage Transformer:VT)の総称である。計器用変成器4,8は、送電線7を流れる電流の情報(電流波形)と、送電線7に生じる電圧の情報(電圧波形)とを測定する。計器用変成器4,8が測定した電流および電圧の情報(系統電気量)は、対応するMU2,3へ入力される。すなわち、MU2,3は、送電線7を流れる電流および送電線7に生じる電圧の情報(系統電気量)を収集する。
 ここで、計器用変成器には、測定した電流および電圧の情報を示すアナログデータを出力するように構成された計器用変成器と、当該アナログデータを、内蔵するA/D変換器を用いてディジタルデータに変換して出力するように構成された計器用変成器とがある。以下の説明では、それぞれの計器用変成器を区別するために、アナログデータを出力する計器用変成器8を「CT/VT」とも表記し、当該アナログデータを、内蔵するA/D変換器43を用いてディジタルデータに変換して出力する計器用変成器4を「ECT/EVT」とも表記する。
 さらに、MUには、系統電気量を示すアナログデータを収集するものと、系統電気量を示すディジタルデータを収集するものとがある。以下の説明では、アナログデータを収集するMUを「AMU(Analog Merging Unit)」とも表記し、ディジタルデータを収集するMUを「NMU(Numerical Merging Unit)」とも表記する。AMUおよびNMUは、対応する計器用変成器の構成に応じて使い分けられる。図1では、CT/VT8から出力されるアナログデータはAMU2へ入力される。一方、ECT/EVT4から出力されるディジタルデータはNMU3へ入力される。
 AMU2は、CT/VT8の測定値であるアナログデータを収集し、この収集したアナログデータを、内蔵するA/D変換器23を用いてディジタルデータへ変換する。具体的には、A/D変換器23は、予め定められたサンプリング周期毎にアナログデータをサンプリングして量子化する。A/D変換器23のサンプリングタイミングは、同期信号出力装置5からの同期信号によって制御される。AMU2はさらに、A/D変換器23から出力されるディジタルデータに対してゲイン調整および位相補正などの処理を施すことにより、AI(Analog Input)データを生成する。AMU2は、生成したAIデータをプロセスバス6を介してIED1へ送信する。IED1へ送信されるAIデータとしては、典型的には、測定値をサンプリング周期毎に時系列に並べたシリアルデータが用いられる。すなわち、AMU2は、CT/VT8からの測定値(アナログデータ)を入力とし、A/D変換後にシリアルデータであるAIデータとしてプロセスバス6を介して出力する。なお、プロセスバス6は、電気信号の形でAIデータを伝送する構成であってもよいし、光ファイバを用いて光信号の形でAIデータを伝送する構成であってもよい。
 NMU3は、ECT/EVT4から出力されるディジタルデータを収集し、収集したディジタルデータに対してゲイン調整および位相補正などの処理を施すことにより、AIデータを生成する。NMU3は、生成したAIデータをプロセスバス6を介してIED1へ送信する。すなわち、NMU3は、ECT/EVT4からの測定値(ディジタルデータ)を入力とし、シリアルデータであるAIデータとしてプロセスバス6を介して出力する。
 IED1は、プロセスバス6を介してAMU2から送信されたAIデータおよびNMU3から送信されたAIデータを受信する。IED1は、AMU2およびNMU3から送信されたAIデータに基づいて、予め定められたリレー演算ロジックが成立するかを所定周期毎に判断する。リレー演算ロジックが成立すると、IED1は、対応する遮断器10に対してトリップ信号を出力する。
 ここで、ECT/EVT4において、A/D変換器43のサンプリングタイミング(A/D変換タイミング)は、NMU3からのA/D変換要求信号によって制御される。具体的には、NMU3は、同期信号出力装置5からの同期信号を受信すると、この同期信号を用いて、A/D変換の開始を指示するA/D変換要求信号を生成する。NMU3は、生成したA/D変換要求信号をA/D変換器43へ送信する。A/D変換器43は、NMU3からのA/D変換要求信号に同期してA/D変換を行ない、ディジタルデータをNMU3へ出力する。
 すなわち、ECT/EVT4内部のA/D変換器43におけるA/D変換タイミングは、同期信号出力装置5からの同期信号に従ってNMU3が生成するA/D変換要求信号によって制御される。これに対して、AMU2内部のA/D変換器23におけるA/D変換タイミングは、同期信号出力装置5からの同期信号によって制御される。
 図2は、AMU2でのA/D変換タイミングおよびNMU3でのA/D変換タイミングの関係を示す波形図である。図2では、各MUにおけるA/D変換タイミング(サンプリングタイミング)を矢印で示している。また、各MUにおけるサンプリング時間をT0で示している。
 図2を参照して、NMU3でのA/D変換タイミングは、実質的には、ECT/EVT4内部のA/D変換器43のA/D変換タイミングに相当する。NMU3でのA/D変換タイミングは、上述したように、同期信号出力装置5からの同期信号を受けてNMU3から出力されるA/D変換要求信号によって制御される。これに対して、AMU2でのA/D変換タイミングは、同期信号出力装置5からの同期信号によって制御される。そのため、図2に示すように、NMU3でのA/D変換タイミングは、AMU2でのA/D変換タイミングよりも遅れてしまい、AMU2とNMU3との間で系統電気量を収集するタイミングにずれが生じてしまう。
 そこで、本実施の形態1による保護リレー装置では、IED1に、通常の保護機能、制御機能および監視機能に加えて、AMU2およびNMU3の間のA/D変換タイミングのずれを補償するための補正機能を持たせる。
 (IEDの構成)
 図3を参照して、IED1についてさらに説明する。図3は、本実施の形態1による保護リレー装置におけるIED1の機能ブロック図である。なお、図3に記載された各機能ブロックについては、予め設定されたプログラムに従ってIED1がソフトウェア処理を実行することにより実現される。あるいは、IED1の内部に、当該機能ブロックに相当する機能を有する回路(ハードウェア)を構成することも可能である。
 図3を参照して、IED1は、入力部11と、位相補正部12と、演算部13と、タイミング同期回路14とを含む。
 入力部11は、プロセスバス6と接続するためのインターフェイスであり、MU2,3および他のIEDとの間で、必要なデータをやり取りする。入力部11は、プロセスバス6を介してAIデータを受け付けると、当該AIデータを、AMU2からのAIデータであるAMUデータと、NMU3からのAIデータであるNMUデータとに分離する。
 位相補正部12は、保護リレー装置の外部から入力される位相補正データを用いて、AIデータ(AMUデータおよびNMUデータ)の位相を補正する。具体的には、位相補正部12は、位相補正回路120,121と、位相補正設定回路122とを含む。
 位相補正設定回路122は、外部から入力される位相補正データに基づいて、AMUデータおよびNMUデータの位相が一致するように、AMUデータおよびNMUデータの位相の補正量を設定する。位相補正データとは、AMU2とNMU3との間のA/D変換タイミングのずれに起因して生じる、AMUデータとNMUデータとの間の位相のずれ量を示すデータである。この位相補正データは、予め測定されたA/D変換タイミングのずれの大きさ(以下「遅延量」とも称す。)に応じて設定され、IED1に外部入力される。
 位相補正回路120は、位相補正設定回路122により設定された位相補正量に基づいて、AMUデータ110の位相を補正する。位相補正回路121は、位相補正設定回路122により設定された位相補正量に基づいて、NMUデータ111の位相を補正する。
 演算部13は、補正後のAMUデータおよびNMUデータに対して演算処理を実行する。演算部13での演算タイミングは、タイミング同期回路14によって制御される。具体的には、タイミング同期回路14は、同期信号出力装置5からの同期信号に従って、演算部13の演算タイミングを制御する。演算部13は、予め定められたリレー演算ロジックが成立するかを所定周期毎に判断する。そして、リレー演算ロジックが成立する場合、対応する遮断器10(図1)に対してトリップ信号を出力する。
 以下、図4を参照して、位相補正部12におけるAIデータの位相補正を説明する。
 上述したように、位相補正部12には、入力部11からのAIデータ(AMUデータおよびNMUデータ)が入力される。図4では、入力部11から入力されるAMUデータを波形a(t)(図4において点線の波形)で表わすとともに、入力部11から入力されるNMUデータを波形n(t)(図4において実線の波形)で表わしている。さらに図4では、演算部13における演算タイミングを矢印で示している。なお、演算部13での演算タイミングは、同期信号出力装置5からの同期信号を受けるタイミング同期回路14によって制御される。
 図2に示したように、NMU3でのA/D変換タイミングは、AMU2でのA/D変換タイミングよりも遅くなる。このA/D変換タイミングの遅れに起因して、NMUデータを示す波形n(t)は、AMUデータを示す波形a(t)と比較して、位相に遅れが生じている。
 このようにAMU2およびNMU3の両方を用いて保護リレー装置を構成した場合、AMU2から出力されるAIデータ(AMUデータ)の位相と、NMU3から出力されるAIデータ(NMUデータ)の位相とが異なる。したがって、各演算タイミングでの演算処理を正確に行なうことができなくなり、系統事故の発生時に即時に遮断器10を開放し損ねる可能性がある。あるいは、電力系統が正常であるにもかかわらず遮断器10を誤って開放してしまう可能性がある。
 そこで、位相補正部12は、AMUデータを示す波形a(t)の位相を遅らせることにより、各演算タイミングでのAMUデータおよびNMUデータの位相を揃える。図4では、位相補正後のAMUデータを波形a♯(t)(図4において実線の波形)で表わしている。これにより、演算部13は、各演算タイミングにおいて、同一のタイミングで収集されるAIデータを用いることが可能となる。
 具体的には、位相補正設定回路122は、位相補正データに基づいてAMUデータの位相の補正量Tを設定する。一方、位相補正設定回路122は、NMUデータの位相の補正量を零とする。位相補正回路120は、位相補正量Tに従って、AMUデータの位相を遅らせる。一方、位相補正回路121は、NMUデータの位相を補正せず、そのままとする。
 図5に、あるサンプリングタイミングtにおけるAMUデータa(t)と、前回のサンプリングタイミング(t-T0)におけるAMUデータa(t-T0)とをベクトル表示する。位相補正後のAMUデータa♯(t)は、AMUデータa(t)から見て補正量Tだけ位相が遅れている。すなわち、位相補正後のAMUデータa♯(t)は、a(t-T)に相当する。
 図5のベクトル図において、位相補正後のAMUデータa♯(t)を、サンプリングタイミングtにおけるAMUデータa(t)を所定の係数倍(係数をAとする)したものと、前回のサンプリングタイミング(t-T0)におけるAMUデータa(t-T0)を所定の係数倍(係数をBとする)したものとをベクトル合成したものと考える。位相補正後のAMUデータa♯(t)は、下記の式(1)のように表わされる。
 a♯(t)=a(t-T)=A・a(t)+B・a(t-T0) ・・・(1)
 ここで、3つのベクトルA・a(t),B・a(t-T0),a♯(t)の間には、正弦定理により、下記の式(2)の関係が成立する。
 A・a(t)/sin(T0-T)
=B・a(t-T0)/sin(T)=a♯(t)/sin(180°-T)・・・(2)
 上記の式(1),(2)を整理することにより、係数A,Bは下記の式(3),(4)となる。
 A=sin(T0-T)/sin(180°-T) ・・・(3)
 B=sin(T)/sin(180°-T) ・・・(4)
 すなわち、上記式(3),(4)で表わされる係数A,Bを用いてサンプリングタイミングtにおけるAIデータa(t)と前回のサンプリングタイミング(t-T0)におけるAIデータa(t-T0)とを加算することにより、位相補正後のAMUデータa♯(t)を導出することができる。このようにしてAMUデータの位相を遅らせることにより、AMUデータおよびNMUデータの位相を一致させる。
 以上のように、この発明の実施の形態1による保護リレー装置によれば、AMUおよびNMUからのAIデータを受信するIEDがAMUデータの位相を遅らせることにより、実質的に、AMUおよびNMUの間のA/D変換タイミングのずれを補償することができる。これにより、AMUとNMUとの間で系統電気量を収集するタイミングを揃えることができるため、保護リレー装置は、電力系統の保護、制御および監視等の処理を正確に行なうことが可能となる。
実施の形態2.
 上記の実施の形態1による保護リレー装置では、AMUおよびNMUの間のA/D変換タイミングのずれを補償する補正機能をIEDに持たせる構成について説明した。一方、プロセスバス対応保護リレー装置においては、この補正機能を、IEDに代えて、MUに持たせることも可能である。実施の形態2では、A/D変換タイミングのずれを補償するための補正機能をMUに持たせる構成について説明する。
 (AMUの構成)
 図6は、この発明の実施の形態2による保護リレー装置におけるAMU2の機能ブロック図である。なお、図6に記載された各機能ブロックについては、予め設定されたプログラムに従ってAMU2がソフトウェア処理を実行することにより実現される。あるいは、AMU2の内部に、当該機能ブロックに相当する機能を有する回路(ハードウェア)を構成することも可能である。
 図6を参照して、AMU2は、アナログ入力部21と、マルチプレクサ22と、A/D変換器23と、演算部24と、送受信部25と、タイミング同期回路26とを含む。
 アナログ入力部21は、CT/VT8からの系統電気量(アナログデータ)を、電子回路に取扱い容易な所定範囲内のレベルに変換して出力する。具体的には、アナログ入力部21は、CTからの電流信号を所定範囲内の電流信号に変換するとともに、VTからの電圧信号を所定範囲内の電圧信号に変換する。さらに、アナログ入力部21は、図示しないアナログフィルタを用いて、変換された電流信号および電圧信号から不要な周波数成分(典型的には、高調波成分)を除去する。
 マルチプレクサ22は、上記のアナログフィルタから出力される複数のアナログ信号の中から1つのアナログ信号を所定順序に従って順次選択してA/D変換器23へ出力する。このような構成とすることで、単一のA/D変換器23を用いて、複数のアナログ信号にそれぞれ対応する複数のディジタル信号を得ることができる。
 演算部24は、A/D変換器23からのディジタル信号を演算処理する。具体的には、演算部24は、A/D変換器23から出力されるディジタル信号に対してゲイン調整および位相補正などの処理を施すことにより、プロセスバス6として規定されるプロトコルに従うディジタルデータ(AIデータ)を生成する。AIデータとしては、上述のように、測定値をサンプリング周期毎に時系列に並べたシリアルデータが用いられる。
 タイミング同期回路26は、同期信号出力装置5(図1)からの同期信号に従って、A/D変換器23でのサンプリングタイミング(A/D変換タイミング)および演算部24での演算タイミングを制御する。タイミング同期回路26はさらに、後述する方法によって、保護リレー装置の外部から入力される位相補正データを用いて、A/D変換器23におけるA/D変換タイミングを補正する。
 送受信部25は、演算部24により生成されたAIデータをプロセスバス6(図1)を介してIED1へ送信する。送受信部25はさらに、IED1からのトリップ信号をプロセスバス6を介して受信すると、トリップ信号の受信を演算部24へ通知する。
 演算部24は、IED1からトリップ信号を受信したことが通知されると、その通知タイミングを基準とする所定時間に亘ってディジタルデータをログデータとして格納する。この格納されたログデータは、図示しない変電所自動化システムに接続された解析装置へ送信される。解析装置は、ログデータとともにIED1からも記録された情報を収集し、これらの情報に基づいて系統事故が発生した原因を解析する。
 (ECT/EVT4およびNMU3の構成)
 図7は、この発明の実施の形態2による保護リレー装置におけるECT/EVT4およびNMU3の機能ブロック図である。なお、図7に記載された各機能ブロックについては、予め設定されたプログラムに従ってECT/EVT4およびNMU3がソフトウェア処理を実行することにより実現される。あるいは、ECT/EVT4およびNMU3の内部に、当該機能ブロックに相当する機能を有する回路(ハードウェア)を構成することも可能である。
 図7を参照して、ECT/EVT4は、アナログ入力部41と、マルチプレクサ42と、A/D変換器43と、演算部44と、送信部45と、サンプリングタイミング発生部46とを含む。
 アナログ入力部41は、測定した系統電気量(アナログデータ)を、電子回路に取扱い容易な所定範囲内のレベルに変換して出力する。具体的には、アナログ入力部41は、電力系統からの電流信号を所定範囲内の電流信号に変換するとともに、電力系統からの電圧信号を所定範囲内の電圧信号に変換する。さらに、アナログ入力部41は、図示しないアナログフィルタを用いて、変換された電流信号および電圧信号から不要な周波数成分(典型的には、高調波成分)を除去する。
 マルチプレクサ42は、上記のアナログフィルタから出力される複数のアナログ信号の中から1つのアナログ信号を所定順序に従って順次選択してA/D変換器43へ出力する。
 演算部44は、A/D変換器43からのディジタル信号を演算処理する。具体的には、演算部24は、A/D変換器23から出力されるディジタル信号に対してゲイン調整および位相補正などの処理を施すことにより、ディジタルデータを生成する。
 サンプリングタイミング発生部46は、NMU3内部のタイミング同期回路34からのA/D変換要求信号を受ける。サンプリングタイミング発生部46は、このA/D変換要求信号に応答して、A/D変換器43のサンプリングタイミングを示すタイミング信号を発生する。A/D変換器43は、サンプリングタイミング発生部46からのタイミング信号に同期してA/D変換を行なう。このようにして、A/D変換器43におけるA/D変換タイミングは、同期信号出力装置5からの同期信号に従ってNMU3から出力されるA/D変換要求信号に同期させたタイミング信号によって制御される。
 送信部45は、演算部44により生成されたディジタルデータをNMU3へ送信する。
 NMU3は、受信部31と、演算部32と、送受信部33と、タイミング同期回路34とを含む。
 受信部31は、ECT/EVT4からのディジタルデータを受信すると、このディジタルデータを演算部32へ出力する。
 演算部32は、ディジタルデータからプロセスバス6として規定されるプロトコルに従うディジタルデータ(AIデータ)を生成する。AIデータとしては、上述のように、測定値をサンプリング周期毎に時系列に並べたシリアルデータが用いられる。
 タイミング同期回路34は、同期信号出力装置5(図1)からの同期信号に従って、演算部32での演算タイミングを制御する。タイミング同期回路34はさらに、同期信号に基づいてA/D変換要求信号を生成し、生成したA/D変換要求信号をA/D変換器43へ送信する。
 以下、図8を参照して、AMU2におけるA/D変換タイミングの補正を説明する。
 図8は、AMU2、NMU3およびECT/EVT4の各々の処理手順を示すフローチャートである。上述したように、AMU2およびNMU3はそれぞれ、同期信号出力装置5(図1)から出力される同期信号を受信する。しかしながら、ECT/EVT4内部のA/D変換器43のA/D変換タイミングは、上述したように、同期信号出力装置5からの同期信号を受けてNMU3から出力されるA/D変換要求信号によって制御される。これに対して、AMU2でのA/D変換タイミングは、同期信号出力装置5からの同期信号によって制御される。そのため、NMU3でのA/D変換タイミングは、AMU2でのA/D変換タイミングよりも遅れてしまう。
 そこで、AMU2は、A/D変換タイミングを遅らせることにより、AMU2およびNMU3のA/D変換タイミングを一致させる。具体的には、AMU2内部のタイミング同期回路26は、位相補正データに基づいてA/D変換タイミングの補正量を設定し、その設定した補正量に従ってA/D変換タイミングを遅らせる。
 以上のように、この発明の実施の形態2による保護リレー装置によれば、AMUがA/D変換のタイミングを遅らせることにより、AMUおよびNMUの間のA/D変換タイミングのずれを補償することができる。これにより、AMUとNMUとの間で系統電気量を収集するタイミングを揃えることができるため、保護リレー装置は、電力系統の保護、制御および監視等の処理を正確に行なうことが可能となる。
 このように、本発明による保護リレー装置は、AMUおよびNMUの間のA/D変換タイミングのずれ(実際には、AMUおよびECT/EVTの間のA/D変換タイミングのずれに相当)を補償するための「補正部」を備えている。上述の実施の形態1および2では、IEDまたはAMUが「補正部」を実現する。
実施の形態3.
 上記の実施の形態1,2では、保護リレー装置の外部から入力される位相補正データに基づいて、IEDまたはAMUがA/D変換タイミングのずれを補償する構成について説明したが、この位相補正データを、保護リレー装置内部で取得するようにしてもよい。実施の形態3では、A/D変換タイミングのずれの大きさ(遅延量)を自動測定する構成について説明する。
 図9は、この発明の実施の形態3による保護リレー装置の全体構成図である。この発明の実施の形態3による保護リレー装置の全体構成は、A/D変換タイミングの遅延量を自動測定する機能を除いて、図1に示す構成と同様であるので、詳細な説明を繰返さない。
 この発明の実施の形態3による保護リレー装置は、図1に示す保護リレー装置において、試験装置9をさらに設けたものである。試験装置9は、系統電気量を模擬したアナログデータを生成し、生成したアナログデータをAMU2およびECT/EVT4へ入力する。すなわち、AMU2およびECT/EVT4には、互いに同位相のアナログデータが入力される。
 AMU2は、試験装置9からのアナログデータをA/D変換器23を用いてディジタルデータへ変換する。AMU2はさらに、A/D変換器23から出力されるディジタルデータに対してゲイン調整および位相補正などの処理を施すことにより、AIデータを生成する。AMU2は、生成したAIデータをプロセスバス6を介してIED1へ送信する。
 ECT/EVT4は、NMU3からのA/D変換要求信号を受信すると、試験装置9からのアナログデータをA/D変換器43を用いてディジタルデータへ変換してNMU3へ出力する。NMU3は、ECT/EVT4から出力されるディジタルデータに対してゲイン調整および位相補正などの処理を施すことにより、AIデータを生成する。NMU3は、生成したAIデータをプロセスバス6を介してIED1へ送信する。
 IED1は、プロセスバス6を介してAIデータを受け付けると、当該AIデータを、AMU2からのAIデータであるAMUデータと、NMU3からのAIデータであるNMUデータとに分離する。そして、IED1は、AMUデータとNMUデータとを比較することにより、A/D変換タイミングの遅延量を演算する。
 以上のように、この発明の実施の形態3による保護リレー装置によれば、保護リレー装置の内部でA/D変換タイミングの遅延量を自動測定することができるため、装置外部から位相補正データを取り込んで保持しておくための構成が不要となる。したがって、保護リレー装置の構成を簡略化できる。
 また、保護リレー装置を変電所等の電気所の所内に設置して実際に使用する際にA/Dタイミングの遅延量を自動測定することにより、A/D変換タイミングの遅延量の正確度を高めることができる。さらに、定期的に遅延量を自動測定を行なう構成とすることで、A/D変換タイミングの遅延量の正確度を保証できる。
実施の形態4.
 本実施の形態4では、上記の実施の形態3で述べたA/D変換タイミングの遅延量を自動測定する機能を、実施の形態1による保護リレー装置に適用した構成について説明する。
 なお、この発明の実施の形態4による保護リレー装置は、図1に示す保護リレー装置において、IED1に代えてIED1Aを設けたものである。保護リレー装置の全体構成は、IED1Aでの制御構造を除いて、図1に示す構成と同じであるので、詳細な説明を繰返さない。
 図10は、この発明の実施の形態4による保護リレー装置におけるIED1Aの機能ブロック図である。なお、図10に記載された各機能ブロックについては、予め設定されたプログラムに従ってIED1Aがソフトウェア処理を実行することにより実現される。あるいは、IED1Aの内部に、当該機能ブロックに相当する機能を有する回路(ハードウェア)を構成することも可能である。
 図10を参照して、IED1Aは、入力部11と、位相補正部12と、演算部13と、タイミング同期回路14と、遅延量演算部15とを含む。
 入力部11は、プロセスバス6を介してAIデータを受け付けると、当該AIデータを、AMU2からのAIデータであるAMUデータと、NMU3からのAIデータであるNMUデータとに分離する。
 遅延量演算部15は、AMUデータの位相とNMUデータの位相とを比較することにより、A/D変換タイミングの遅延量を演算する。遅延量演算部15は、算出した遅延量を位相補正部12内部の位相補正設定回路122へ出力する。
 位相補正部12は、遅延量演算部15から入力される遅延量を用いて、AIデータ(AMUデータおよびNMUデータ)の位相を補正する。具体的には、位相補正設定回路122は、算出された遅延量に基づいてAMUデータの位相の補正量Tを設定する。位相補正回路120は、位相補正設定回路122により設定された位相補正量Tに基づいて、AMUデータの位相を遅らせる。一方、位相補正回路121は、NMUデータの位相を補正せず、そのままとする。このようにして、位相補正部12は、AMUデータおよびNMUデータの位相を一致させる。
 演算部13は、補正後のAMUデータおよびNMUデータに対して演算処理を実行する。演算部13での演算タイミングは、タイミング同期回路14によって制御される。演算部13は、予め定められたリレー演算ロジックが成立するかを所定周期毎に判断する。演算部13は、リレー演算ロジックが成立する場合、対応する遮断器10(図1)に対してトリップ信号を出力する。
 以上のように、この発明の実施の形態4による保護リレー装置によれば、保護リレー装置内部で自動測定したA/D変換タイミングの遅延量に応じてIEDがAMUデータの位相を遅らせる。これにより、簡易な装置構成で、AMUおよびNMUの間のA/D変換タイミングのずれを確実に補償することができる。
実施の形態5.
 本実施の形態5では、上記の実施の形態3で述べたA/D変換タイミングの遅延量を自動測定する機能を、実施の形態2による保護リレー装置に適用した構成について説明する。
 なお、この発明の実施の形態5による保護リレー装置は、図1に示す保護リレー装置において、IED1に代えて、IED1Bを設けたものである。保護リレー装置の全体構成は、IED1Bでの制御構造を除いて、図1に示す構成と同じであるので、詳細な説明を繰返さない。
 図11は、本実施の形態5による保護リレー装置におけるIED1BおよびAMU2の機能ブロック図である。なお、図11に記載された各機能ブロックについては、予め設定されたプログラムに従ってIED1BおよびAMU2がソフトウェア処理を実行することにより実現される。あるいは、IED1BおよびAMU2の内部に、当該機能ブロックに相当する機能を有する回路(ハードウェア)を構成することも可能である。
 図11を参照して、IED1Bは、入力部11と、演算部13と、タイミング同期回路14と、遅延量演算部15とを含む。
 入力部11は、プロセスバス6を介してAIデータを受け付けると、当該AIデータを、AMU2からのAIデータであるAMUデータと、NMU3からのAIデータであるNMUデータとに分離する。
 遅延量演算部15は、AMUデータの位相とNMUデータの位相とを比較することにより、A/D変換タイミングの遅延量を演算する。なお、遅延量の演算は、実施の形態3で説明したように、保護リレー装置が設置された際に(もしくは定期的に)試験装置9(図9)から入力される疑似アナログデータを用いて行なわれる。遅延量演算部15は、算出した遅延量を位相補正データとしてAMU2内部のタイミング同期回路26へ出力する。
 AMU2において、タイミング同期回路26は、同期信号出力装置5(図1)からの同期信号に従って、A/D変換器23でのサンプリングタイミング(A/D変換タイミング)および演算部24での演算タイミングを制御する。タイミング同期回路26はさらに、IED1Bから入力される位相補正データを用いて、A/D変換器23におけるA/D変換タイミングを補正する。具体的には、タイミング同期回路26は、位相補正データに基づいてA/D変換タイミングの補正量を設定し、その設定した補正量に従ってA/D変換タイミングを遅らせる。このようにして、AMU2のA/D変換タイミングとNMU3のA/D変換タイミングと一致させることにより、IED1Bの入力部11に入力されるAMUデータおよびNMUデータの位相が一致する。
 IED1Bにおいて、演算部13は、入力部11からのAMUデータおよびNMUデータに対して演算処理を実行することにより、予め定められたリレー演算ロジックが成立するかを所定周期毎に判断する。演算部13は、リレー演算ロジックが成立する場合、対応する遮断器10(図1)に対してトリップ信号を出力する。
 以上のように、この発明の実施の形態5による保護リレー装置によれば、保護リレー装置内部で自動測定したA/D変換タイミングの遅延量に応じてAMUがA/D変換タイミングを遅らせる。これにより、簡易な装置構成で、AMUおよびNMUの間のA/D変換タイミングのずれを確実に補償することができる。
 なお、実施の形態1~5では、保護リレー装置の一例として、AMUおよびNMUを備え、かつAMUおよびNMUの間のA/D変換タイミングのずれを補償することが可能な保護リレー装置の構成について説明した。しかしながら、本発明の適用はこのような保護リレー装置に限られるものではない。具体的には、異なるメーカーのAMUを複数個備える保護リレー装置や、異なるメーカーのNMUを複数個備える保護リレー装置についても、複数のAMU間のA/D変換タイミングのずれ、または複数のNMU間のA/D変換タイミングのずれを補償するために、本発明を適用することが可能である。
 今回開示された実施の形態はすべての点で例示であって制限的なものではないと考えられるべきである。本発明の範囲は、上記した説明ではなく、請求の範囲によって示され、請求の範囲と均等の意味および範囲内でのすべての変更が含まれることが意図される。
 1,1A,1B IED、2 AMU、3 NMU、4 ECT/EVT、5 同期信号出力装置、6 プロセスバス、7 送電線、8 CT/VT、9 試験装置、10 遮断器、11 入力部、12 位相補正部、13,24,32,44 演算部、14,26,34 タイミング同期回路、15 遅延量演算部、21,41 アナログ入力部、22,42 マルチプレクサ、23,43 A/D変換器、25,33 送受信部、31 受信部、46 サンプリングタイミング発生部、45 送信部。

Claims (6)

  1.  電力系統から系統電気量を示す情報を収集するための複数の統合ユニットと、
     前記複数の統合ユニットからの情報に基づいて、前記電力系統を保護するための演算装置とを備え、
     前記複数の統合ユニットは、
     系統電気量を示すアナログデータを第1の変成器から受けるとともに、外部から供給される同期信号に同期して、前記入力されたアナログデータをディジタルデータに変換して前記演算装置に出力するように構成された第1の統合ユニットと、
     前記系統電気量を示すアナログデータから生成されたディジタルデータを第2の変成器から受けるとともに、前記入力されたディジタルデータを前記演算装置に出力するように構成された第2の統合ユニットとを含み、
     前記第2の統合ユニットは、前記同期信号を受けてアナログ/ディジタル変換を要求する要求信号を生成して前記第2の変成器に出力し、
     前記第2の変成器は、前記第2の統合ユニットからの前記要求信号に同期してアナログデータをディジタルデータに変換して前記第2の統合ユニットに出力し、
     前記第1の統合ユニットと前記第2の変成器との間のアナログ/ディジタル変換タイミングのずれを補償するための補正部をさらに備える、保護リレー装置。
  2.  前記補正部は、前記演算装置に設けられ、前記第1の統合ユニットにおけるアナログ/ディジタル変換タイミングからの前記第2の変成器のアナログ/ディジタル変換タイミングの遅延量に応じて、前記第1の統合ユニットから前記演算装置に入力されるディジタルデータの位相を遅らせる、請求項1に記載の保護リレー装置。
  3.  前記アナログ/ディジタル変換タイミングの遅延量を演算するための演算部をさらに備え、
     前記補正部は、前記演算部からの前記アナログ/ディジタル変換タイミングの遅延量に応じて、前記第1の統合ユニットから前記演算装置に入力されるディジタルデータの位相を遅らせる、請求項2に記載の保護リレー装置。
  4.  前記補正部は、前記第1の統合ユニットに設けられ、前記第1の統合ユニットにおけるアナログ/ディジタル変換タイミングからの前記第2の変成器のアナログ/ディジタル変換タイミングの遅延量に応じて、前記第1の統合ユニットにおけるアナログ/ディジタル変換タイミングを遅らせる、請求項1に記載の保護リレー装置。
  5.  前記アナログ/ディジタル変換タイミングの遅延量を演算するための演算部をさらに備え、
     前記補正部は、前記演算部からの前記アナログ/ディジタル変換タイミングの遅延量に応じて、前記第1の統合ユニットにおけるアナログ/ディジタル変換タイミングを遅らせる、請求項4に記載の保護リレー装置。
  6.  前記第1の変成器および前記第2の変成器の各々に互いに同位相の疑似アナログデータを入力するための試験装置をさらに備え、
     前記演算部は、前記疑似アナログデータに応じて前記第1の統合ユニットから前記演算装置に入力されるディジタルデータと、前記疑似アナログデータ応じて前記第2の統合ユニットから前記演算装置に入力されるディジタルデータとを比較することにより、前記アナログ/ディジタル変換タイミングの遅延量を演算する、請求項3または5に記載の保護リレー装置。
PCT/JP2013/068364 2013-07-04 2013-07-04 保護リレー装置 WO2015001641A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
PCT/JP2013/068364 WO2015001641A1 (ja) 2013-07-04 2013-07-04 保護リレー装置
KR1020157035504A KR101777038B1 (ko) 2013-07-04 2013-07-04 보호 릴레이 장치
EP13888570.2A EP3018782B1 (en) 2013-07-04 2013-07-04 Protection relay device
JP2014502914A JP5518274B1 (ja) 2013-07-04 2013-07-04 保護リレー装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2013/068364 WO2015001641A1 (ja) 2013-07-04 2013-07-04 保護リレー装置

Publications (1)

Publication Number Publication Date
WO2015001641A1 true WO2015001641A1 (ja) 2015-01-08

Family

ID=51031281

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/068364 WO2015001641A1 (ja) 2013-07-04 2013-07-04 保護リレー装置

Country Status (4)

Country Link
EP (1) EP3018782B1 (ja)
JP (1) JP5518274B1 (ja)
KR (1) KR101777038B1 (ja)
WO (1) WO2015001641A1 (ja)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6550703B2 (ja) * 2014-09-11 2019-07-31 富士電機株式会社 マージングユニット、トリガ信号出力方法、及びマージングユニットテストシステム
CN105548769B (zh) * 2016-01-13 2018-06-19 江苏省电力公司电力科学研究院 一种继电保护动作延时分级测试系统及方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002315233A (ja) 2001-02-09 2002-10-25 Toshiba Corp 変電機器保護制御システム
JP2004282856A (ja) * 2003-03-13 2004-10-07 Tm T & D Kk 電力系統保護制御システム及び方法
JP2006300963A (ja) * 1999-05-28 2006-11-02 Fuji Electric Systems Co Ltd 分散制御システム
JP2013038841A (ja) * 2011-08-04 2013-02-21 Hitachi Ltd ディジタル保護継電装置

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3139803B2 (ja) * 1992-01-10 2001-03-05 松下電器産業株式会社 インパルス応答測定装置
US8560255B2 (en) * 2008-12-12 2013-10-15 Schneider Electric USA, Inc. Power metering and merging unit capabilities in a single IED
EP2294675A4 (en) * 2009-04-13 2012-04-04 Abb Research Ltd INTELLIGENT PROCESS INTERFACE AND UNDER STATION AUTOMATION SYSTEM
ES2458930T3 (es) * 2011-03-24 2014-05-07 Schneider Electric Energy Gmbh Unidad de fusión y procedimiento de operación de una unidad de fusión

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006300963A (ja) * 1999-05-28 2006-11-02 Fuji Electric Systems Co Ltd 分散制御システム
JP2002315233A (ja) 2001-02-09 2002-10-25 Toshiba Corp 変電機器保護制御システム
JP2004282856A (ja) * 2003-03-13 2004-10-07 Tm T & D Kk 電力系統保護制御システム及び方法
JP2013038841A (ja) * 2011-08-04 2013-02-21 Hitachi Ltd ディジタル保護継電装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3018782A4

Also Published As

Publication number Publication date
EP3018782A4 (en) 2017-03-15
JP5518274B1 (ja) 2014-06-11
JPWO2015001641A1 (ja) 2017-02-23
EP3018782B1 (en) 2020-02-19
KR20160008628A (ko) 2016-01-22
KR101777038B1 (ko) 2017-09-08
EP3018782A1 (en) 2016-05-11

Similar Documents

Publication Publication Date Title
US10859611B2 (en) Measuring and mitigating channel delay in remote data acquisition
JP3352411B2 (ja) 制御システム、電力系統保護制御システムおよびプログラムを記憶した記憶媒体
KR100465944B1 (ko) 디지털 보호계전장치
US9128140B2 (en) Detection of a fault in an ungrounded electric power distribution system
US20090088990A1 (en) Synchronized phasor processor for a power system
US8902558B2 (en) Control device for controlling a circuit breaker, and methods
US20100301872A1 (en) Method for Determination of a Setting Value Which Indicates a Ground Impedance, and Measurement Device
MXPA04010164A (es) Rele protector con capacidad sincronizada de medicion de fasor para el uso en sistemas de energia electrica.
JP5020421B1 (ja) 保護制御装置
EP2693586B1 (en) Clock synchronization for line differential protection
JP2008125251A (ja) 電気所におけるリレー方式およびpcm電流差動リレー方式
US9680297B2 (en) Current differential relay
JP5518274B1 (ja) 保護リレー装置
WO2019043821A1 (ja) 電流差動リレーおよびサンプリング同期方法
JP6548592B2 (ja) 保護制御装置
JP2012163384A (ja) 短絡容量計測システム
Lin et al. Dynamic performance test of single-phase phasor measurement units
US20230077975A1 (en) Time synchronization between ieds of different substations
EP2413447A2 (en) Method and apparatus for use in monitoring operation of electrical switchgear
Thompson The Future of Substations: Centralized Protection and Control
Kojima et al. Novel synchronous sampling scheme based on oversampling for a process bus system
JP5634333B2 (ja) 保護制御装置
Jesus et al. Feeder differential protection in hybrid mode: Scheme performance with mix of− 9-2le sampled values and analogue inputs
Goldstein et al. Synchrophasor Measurement System Industry Standards and Guidance: A Comprehensive Overview
Qiangsheng et al. Research on synchronization test method for distributed sampling data based on precise time-setting

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2014502914

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13888570

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20157035504

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 2013888570

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE