WO2015001633A1 - Imaging device and production equipment - Google Patents

Imaging device and production equipment Download PDF

Info

Publication number
WO2015001633A1
WO2015001633A1 PCT/JP2013/068271 JP2013068271W WO2015001633A1 WO 2015001633 A1 WO2015001633 A1 WO 2015001633A1 JP 2013068271 W JP2013068271 W JP 2013068271W WO 2015001633 A1 WO2015001633 A1 WO 2015001633A1
Authority
WO
WIPO (PCT)
Prior art keywords
imaging
objects
component
imaging device
circuit board
Prior art date
Application number
PCT/JP2013/068271
Other languages
French (fr)
Japanese (ja)
Inventor
神藤 高広
Original Assignee
富士機械製造株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 富士機械製造株式会社 filed Critical 富士機械製造株式会社
Priority to JP2015524951A priority Critical patent/JP6267200B2/en
Priority to PCT/JP2013/068271 priority patent/WO2015001633A1/en
Publication of WO2015001633A1 publication Critical patent/WO2015001633A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K13/00Apparatus or processes specially adapted for manufacturing or adjusting assemblages of electric components
    • H05K13/08Monitoring manufacture of assemblages
    • H05K13/081Integration of optical monitoring devices in assembly lines; Processes using optical monitoring devices specially adapted for controlling devices or machines in assembly lines
    • H05K13/0812Integration of optical monitoring devices in assembly lines; Processes using optical monitoring devices specially adapted for controlling devices or machines in assembly lines the monitoring devices being integrated in the mounting machine, e.g. for monitoring components, leads, component placement

Definitions

  • the present invention relates to an imaging apparatus that images a target object, and a production facility that controls production processing based on image data obtained by the imaging apparatus.
  • Patent Document 1 discloses a configuration in which a component camera or a board camera is applied to a component mounter that is a production facility used for production of various products in the industrial field. Has been.
  • this component mounter the accuracy of the mounting control is improved by reflecting the state of the electronic component or the like recognized based on the image data captured by the imaging device in the mounting control.
  • an imaging device applied to a production facility such as a component mounter may be restricted in external dimensions and installation location due to a request for downsizing of the component mounter, for example.
  • a fixed focus lens or a variable focus lens may be employed in the optical system of the image pickup apparatus in order to reduce the external dimensions.
  • the distances from the image sensor to the object to be imaged are approximately equal to each other or within the field of view of the imaging device fixed to the component mounter.
  • an optical path from the object to the image sensor is formed using an optical member such as a reflector.
  • the types of image data required in the control of production processing are also diversified. Therefore, when a fixed focus lens is adopted in the optical system, if the imaging objects are separated from each other by a predetermined distance or more, the adjustment of the optical path length is not easy even if an optical member is used, There is a possibility that suitable image data cannot be obtained. Further, when a variable focus lens is employed in the optical system, there is a concern about an increase in loads such as imaging processing and image processing because imaging is performed for each imaging target.
  • the present invention has been made in view of such circumstances, and is capable of reducing the load of imaging processing and image processing even in imaging of a plurality of objects while reducing the size of the entire apparatus. It is an object of the present invention to provide a production facility including an apparatus and an imaging device.
  • the imaging apparatus includes a variable focus lens that can change a focal length in accordance with an applied voltage, and a plurality of objects at different distances from the imaging apparatus when the imaging apparatus images each of the distances.
  • An imaging control unit that applies a corresponding voltage to the variable focus lens, and a part of the imaging region that can be imaged by the imaging device including the target object as an effective region in advance for each of the plurality of target objects.
  • a storage unit that stores each of the set effective areas; an image processing unit that generates a combined data by combining a plurality of pieces of image data acquired by imaging the plurality of objects based on the effective areas; Is provided.
  • the imaging apparatus since the imaging apparatus employs a variable focus lens in the optical system, it is possible to perform imaging while focusing on a plurality of objects at different distances. Therefore, the apparatus can be reduced in size as compared with the mechanical type that varies the distance between the plurality of lenses.
  • the image processing unit when imaging a plurality of objects, the image processing unit combines the image data based on the effective areas each including the plurality of objects, so that imaging processing and image processing outside the effective area are not necessary. The load of these processes can be reduced. Therefore, when the production facility includes an imaging device having such a configuration, the production facility control device can acquire a plurality of necessary image data as combined data, so that efficient production process control is performed. Can do.
  • FIG. 1 is an overall view showing a component mounter in an embodiment. It is the front view which expanded a part of component mounting head. It is an A direction arrow directional view of FIG. It is a block diagram which shows the control apparatus and imaging device of a component mounting machine. It is a top view which shows the structure of the liquid crystal lens of a board
  • FIG. 9 is an activity diagram showing a mounting process in FIG. 8.
  • the production facility targets a circuit board product produced by mounting electronic components on a circuit board, and constitutes a production line for this circuit board product.
  • the structure whose production equipment is a component mounting machine is illustrated.
  • the component mounter is a device that mounts a plurality of electronic components on a circuit board, for example, in an integrated circuit manufacturing process.
  • This circuit board is coated with cream solder at an electronic component mounting position by, for example, a screen printing machine, and is sequentially transported through a plurality of component mounting machines to mount the electronic component. Thereafter, the circuit board on which the electronic component is mounted is transported to a reflow furnace and soldered to constitute an integrated circuit as a circuit board product.
  • the component mounter 1 includes a board transfer device 10, a component supply device 20, a component transfer device 30, a component camera 60, a head camera device 70, and a control device 90.
  • the devices 10, 20, 30 and the component camera 60 are provided on the base 2 of the component mounter 1 and are controlled by the control device 90.
  • the horizontal direction of the component mounter 1 (direction from the upper left to the lower right in FIG. 1) is the X-axis direction, and the horizontal longitudinal direction of the component mounter 1 (from the upper right to the lower left in FIG. 1).
  • the direction of heading is the Y-axis direction
  • the vertical height direction vertical direction in FIG. 1) is the Z-axis direction.
  • the board transfer device 10 transfers the circuit board B in the X-axis direction and positions the circuit board B at a predetermined position.
  • substrate conveyance apparatus 10 is a double conveyor type comprised by the 1st conveyance mechanism 11 and the 2nd conveyance mechanism 12 which were arranged in parallel by the Y-axis direction.
  • the first transport mechanism 11 includes a pair of guide rails 11a and 11b and a conveyor belt (not shown).
  • the pair of guide rails 11a and 11b are arranged in the upper part of the base 2 in parallel with the X-axis direction, and guide the circuit board B which is placed on the conveyor belt and conveyed.
  • the circuit board B transported to a predetermined position is clamped by being pushed up from the base 2 side by a clamping device (not shown). Since the second transport mechanism 12 is configured in the same manner as the first transport mechanism 11, detailed description thereof is omitted.
  • the component supply device 20 is a device that supplies electronic components mounted on the circuit board B.
  • the component supply device 20 is disposed on the front side in the Y-axis direction of the component mounter 1 (the left front side in FIG. 1).
  • the component supply apparatus 20 is a feeder system that uses a plurality of cassette-type feeders 21.
  • the feeder 21 includes a feeder main body portion 21a that is detachably attached to the base 2, and a reel housing portion 21b that is provided on the rear end side of the feeder main body portion 21a.
  • the feeder 21 holds a supply reel 22 around which a component packaging tape is wound by a reel accommodating portion 21b.
  • the above-described component packaging tape includes a carrier tape in which electronic components are stored at a predetermined pitch, and a top tape that is bonded to the upper surface of the carrier tape and covers the electronic components.
  • the feeder 21 pitch feeds the component packaging tape drawn from the supply reel 22 by a pitch feed mechanism (not shown).
  • the feeder 21 peels the top tape from the carrier tape to expose the electronic component.
  • the feeder 21 supplies the electronic component so that the component transfer device 30 can suck the electronic component at the component supply position Ps located on the front end side of the feeder main body 21a.
  • the component transfer device 30 is a device that transfers electronic components from the component supply position Ps to the mounting position of the circuit board B.
  • the component transfer device 30 is an orthogonal coordinate type disposed above the substrate transfer device 10 and the component supply device 20.
  • a Y-axis moving table 32 is provided on a pair of Y-axis rails 31 extending in the Y-axis direction so as to be movable in the Y-axis direction.
  • the Y-axis moving table 32 is controlled by the operation of the Y-axis motor 33 via a ball screw mechanism.
  • the Y-axis moving table 32 is provided with an X-axis moving table 34 that can move in the X-axis direction.
  • the X-axis moving table 34 is controlled by the operation of the X-axis motor 35 via a ball screw mechanism (not shown).
  • a component mounting head 40 (corresponding to the “moving head” of the present invention) is attached to the X-axis moving table 34 of the component transfer apparatus 30.
  • the component mounting head 40 supports a plurality of suction nozzles 42 so as to be movable up and down by a nozzle holder 41 (corresponding to a “holder member” of the present invention) that can rotate around an R axis parallel to the Z axis.
  • the frame 43 is fixed to the X-axis moving table 34, and the R-axis motor 44 and the Z-axis motor 45 are supported on the upper part of the frame.
  • the nozzle holder 41 of the component mounting head 40 is formed in a cylindrical shape as a whole, and is connected to the output shaft of the R-axis motor 44 via an index shaft 46 as shown in FIG. .
  • the nozzle holder 41 is configured to be rotationally controlled by the R-axis motor 44 and the index shaft 46.
  • the nozzle holder 41 can slide a plurality of (12 in this embodiment) nozzle spindles 47 in the Z-axis direction at equal intervals in the circumferential direction on the circumference concentric with the R-axis. I support it.
  • suction nozzles 42 are attached to the lower ends of the nozzle spindles 47 in a replaceable manner.
  • the nozzle holder 41 supports each suction nozzle 42 via each nozzle spindle 47.
  • a nozzle gear 47 a is formed at the upper end of the nozzle spindle 47.
  • the nozzle gear 47a meshes with the ⁇ -axis gear 51 supported on the outer peripheral side of the index shaft 46 so as to be relatively rotatable so as to be slidable in the Z-axis direction.
  • the ⁇ -axis gear 51 has a tooth width of a predetermined length in the Z-axis direction, is connected to a ⁇ -axis motor (not shown) via a speed change mechanism 52, and is rotationally driven by the ⁇ -axis motor.
  • each suction nozzle 42 rotates with respect to the nozzle holder 41 by the rotation of the ⁇ -axis motor, and is configured to be able to be controlled for rotation by the ⁇ -axis motor or the like.
  • a compression spring 48 is provided on the outer peripheral side of the nozzle spindle 47 and between the upper surface of the nozzle holder 41 and the lower surface of the nozzle gear 47a.
  • the nozzle spindle 47 is biased upward with respect to the nozzle holder 41 by the compression spring 48, and the upward movement is restricted by the large diameter portion 47 b formed at the lower end contacting the lower surface of the nozzle holder 41. ing. That is, the state in which the large-diameter portion 47b of the nozzle spindle 47 is in contact with the nozzle holder 41 is the state in which the suction nozzle 42 attached to the nozzle spindle 47 is raised most.
  • the nozzle lever 53 is in contact with the upper end surface of the nozzle spindle 47 that is indexed to a lifting position H1 described later among the plurality of nozzle spindles 47.
  • the nozzle lever 53 is connected to the output shaft of the Z-axis motor 45 via a ball screw mechanism (not shown), and is controlled to move in the Z-axis direction by the rotational drive of the Z-axis motor 45.
  • the suction nozzle 42 is moved up and down with the movement of the nozzle spindle 47 in the Z-axis direction by the lifting mechanism constituted by the Z-axis motor 45, the compression spring 48, and the like.
  • the component mounting head 40 can sequentially index the plurality of suction nozzles 42 to the lift position H1 of the component mounting head 40 by the rotation of the nozzle holder 41, and the circuit board B from the component supply position Ps. Is provided so as to be movable to the positioned component mounting position.
  • a negative pressure is supplied to each suction nozzle 42 from a suction nozzle driving device (not shown) via a nozzle spindle 47.
  • each suction nozzle 42 can suck the electronic component T at its tip.
  • the component camera 60 is a digital imaging device having an imaging element such as a CCD (Charge Coupled Device) or a CMOS (Complementary Metal Oxide Semiconductor).
  • the component camera 60 captures an image within a range that falls within the camera field of view based on a control signal from the control device 90 that is communicably connected, and sends image data acquired by the image capture to the control device 90.
  • the component camera 60 is fixed to the base 2 so that the optical axis is in the Z-axis direction, and is configured to be able to image the electronic component T in a state of being sucked by the suction nozzle 42.
  • the control device 90 that has acquired the image data from the component camera 60 recognizes the holding state of the electronic component T by the suction nozzle 42 by image processing. Thus, by correcting the position and angle of the suction nozzle 42 in accordance with the holding state of the electronic component T, it is possible to improve the accuracy of the mounting control.
  • the head camera device 70 is an imaging device that is disposed on the outer peripheral side of the suction nozzle 42 and is fixed to the component mounting head 40 via a bracket (not shown). In this embodiment, the head camera device 70 is used for both imaging of the tip of the suction nozzle 42 and imaging of the upper surface of the circuit board B.
  • the tip of the suction nozzle 42 is indexed to the lift position H1 in the nozzle holder 41, and the two standby positions H1- adjacent to the lift position H1 are indexed.
  • the tip of the suction nozzle 42 indexed to 1, H1 + 1 is set as an object to be imaged.
  • the image data obtained by the imaging is used for image processing in which the control device 90 recognizes the holding state of the electronic component T by the suction nozzle 42 and the mounting state of the circuit board B.
  • the head camera device 70 includes an imaging case 71, a plurality of irradiation bodies 72, an optical member 73, and a camera body 80, as shown in FIG.
  • the imaging case 71 is disposed so as to surround a part of the plurality of suction nozzles 42 disposed on the circumference from the outer peripheral side.
  • the plurality of irradiators 72 are light sources such as light emitting diodes disposed on the cylindrical inner peripheral surface of the imaging case 71 on the suction nozzle 42 side toward the reflector disposed at the rotation center of the nozzle holder 41.
  • the optical member 73 is disposed inside the imaging case 71 and forms an optical path from the tip of the suction nozzle 42 that is an imaging target to the camera body 80. Specifically, the optical member 73 receives the two first prisms 73a arranged at positions corresponding to the standby positions H1-1 and H1 + 1 of the suction nozzle 42 and the light refracted by the respective first prisms 73a. The second prism 73b that refracts light parallel to the optical axis of the camera body 80.
  • the second prism 73 b of the optical member 73 refracts light incident from the opening formed on the lower surface of the imaging case 71 into light parallel to the optical axis of the camera body 80.
  • the camera body 80 uses the tip portion of the suction nozzle 42 indexed to the standby positions H1-1 and H1 + 1 and the member positioned below the component mounting head 40 as the imaging object.
  • the first prism 73a and the second prism 73b are formed so that the lengths of the optical paths from the suction nozzles 42 indexed to the standby positions H1-1 and H1 + 1 to the camera body 80 are equal. .
  • the camera body 80 includes a fixed lens 81, a liquid crystal lens 82 (corresponding to the “variable focus lens” of the present invention), an imaging element 83, an imaging control unit 84, and a storage unit 85. And an image processing unit 86.
  • the fixed lens 81 and the liquid crystal lens 82 are arranged so as to be coaxial with the optical axis of the image sensor 83.
  • the fixed lens 81 is an objective lens arranged at the outermost part of the lens unit constituting the optical system, and has a function of preventing entry of foreign matters into the unit.
  • the liquid crystal lens 82 is a variable focus lens capable of changing the focal length according to the applied voltage.
  • a liquid crystal lens in which a liquid crystal layer is disposed between two electrodes is employed as the variable focus lens.
  • the liquid crystal lens 82 includes a first electrode 82a having a rectangular outer shape and a second electrode 82b having a circular shape.
  • the first electrode 82a and the second electrode 82b each have two electrodes provided on a pair of transparent substrates arranged in parallel, and the same liquid crystal layer is interposed between the two electrodes.
  • the liquid crystal lens 82 having such a configuration When the liquid crystal lens 82 having such a configuration is applied with different voltages to the first electrode 82a and the second electrode 82b, the alignment state of the liquid crystal molecules changes according to the direction of the electric field, and acts as a lens. Further, by making the applied voltage Vb to the second electrode 82b higher than the applied voltage Va to the first electrode 82a (Va ⁇ Vb), the liquid crystal lens 82 substantially functions as a convex lens. When the amplitudes of the applied voltages Va and Vb are constant, the focal length of the liquid crystal lens 82 can be controlled by the difference between the applied voltages Va and Vb.
  • the image sensor 83 is a CCD or CMOS, and converts the light transmitted through the fixed lens 81 and the liquid crystal lens 82 into an electrical signal.
  • the imaging control unit 84 controls the operation of the liquid crystal lens 82 constituting the lens unit based on a control signal input from the outside, a set value stored in the storage unit 85, and the like. Further, the imaging control unit 84 images the object by converting the electrical signal converted by the imaging element 83 into a digital signal. Then, the imaging control unit 84 transfers an image acquired by imaging to the control device 90.
  • the storage unit 85 is configured by a flash memory or the like, and stores various setting values used for imaging processing, lens characteristics of the liquid crystal lens 82, and the like.
  • the set value includes each effective area set in advance for each of a plurality of objects, with a part of the imaging area (camera field of view) that can be captured by the camera body 80 including an object as an effective area. It is.
  • the camera body 80 is capable of imaging when the component mounting head 40 moves above the tip portions of the two suction nozzles 42 indexed to the standby positions H1-1 and H1 + 1 and above the circuit board B.
  • the three objects combined with the upper surface portion of the circuit board B are set as objects of imaging. That is, the effective area corresponds to three areas obtained by dividing the camera field of view corresponding to the three objects.
  • the imaging control unit 84 has a difference in the length of the optical path from the tip of the suction nozzle 42 to the upper surface of the circuit board B to the camera body 80, which is larger than the depth of field of the lens unit. I cannot focus at the same time. That is, when either one is focused, the other is not focused. Therefore, by performing imaging processing based on a predetermined effective area, image processing for an out-of-focus part of the camera field of view is omitted, thereby speeding up imaging processing and reducing processing load. Yes.
  • the lens characteristics stored in advance in the storage unit 85 indicate the relationship between the voltage applied to the liquid crystal lens 82 and the distance from the object to the camera body 80 (hereinafter also referred to as “object distance”). Is.
  • lens characteristics corresponding to the liquid crystal lens 82 as shown in FIG. 6, as a map showing the object distance determined by the applied voltage Va to the first electrode 82a and the applied voltage Vb to the second electrode 82b. Yes.
  • this object distance has a correlation with the focal distance that varies depending on the voltage applied to the liquid crystal lens 82. Therefore, the lens characteristics may indirectly indicate the relationship between the applied voltage and the focal length.
  • the various setting values stored in the storage unit 85 are targets indicating each distance from the head camera device 70 to the plurality of objects (corresponding to the length of the optical path from the image sensor 83 to the plurality of objects).
  • Object distance information and focal distance information indicating each focal distance of the liquid crystal lens 82 corresponding to each distance of a plurality of objects are included.
  • a predetermined voltage corresponding to the object distance is applied to the liquid crystal lens.
  • a method is adopted in which focusing is performed by applying the voltage to 82.
  • the imaging control unit 84 corresponds to the object distance acquired from the object distance information and the effective area acquired from the focal distance information when performing imaging processing of a predetermined effective area in the camera field of view.
  • the applied voltage to the liquid crystal lens 82 is calculated based on the focal length and the lens characteristics. According to such an imaging process, the adjustment process of the voltage applied to the liquid crystal lens 82 based on the image process is not required, so that the efficiency of the imaging process can be improved.
  • the image processing unit 86 combines a plurality of image data acquired by imaging a plurality of objects based on each effective area to generate combined data.
  • the camera body 80 of the head camera device 70 has the three objects as imaging targets as described above.
  • the tip of the suction nozzle 42 indexed to the standby positions H1-1 and H1 + 1 of the nozzle holder 41 is formed with an equal optical path length to the camera body 80 by the optical member 73. Therefore, since the imaging control unit 84 can focus on the tip of each suction nozzle 42 at the same time, it is possible to capture images simultaneously.
  • the image data combining process by the image processing unit 86 is first performed by image data obtained by imaging the tip of each suction nozzle 42 and imaging of the upper surface of the circuit board B at different times as shown in the upper part of FIG. Image data is acquired. At this time, each imaging with a different target object is performed based on each effective area (inside the thick line frame in FIG. 7) preset for each of the plurality of target objects. Therefore, image processing is not performed on the outside of the effective area (shaded area in FIG. 7), and a part of the image data is missing. Next, the image processing unit 86 combines based on the corresponding effective areas so as to interpolate the respective image data, and focuses on the three objects as shown in the lower part of FIG. Generate sharp combined data.
  • the control device 90 is mainly composed of a CPU, various memories, and a control circuit, and controls the operation of the component mounting head 40 based on image data (including combined data) acquired by imaging of the component camera 60 and the head camera device 70. To do. As shown in FIG. 4, in the control device 90, an input / output interface 94 is connected to a mounting control unit 91, an image processing unit 92, and a storage unit 93 via a bus. A motor control circuit 95 and an imaging control circuit 96 are connected to the input / output interface 94.
  • the mounting control unit 91 controls the position of the component mounting head 40 and the operation of the suction mechanism via the motor control circuit 95. More specifically, the mounting control unit 91 inputs information output from various sensors provided in the component mounting machine 1 and results of various recognition processes. The mounting control unit 91 then sends a control signal to the motor control circuit 95 based on the control program stored in the storage unit 93, information from various sensors, and the results of image processing and recognition processing.
  • the image processing unit 92 acquires image data obtained by imaging the component camera 60 and the head camera device 70 via the imaging control circuit 96, and executes image processing according to the application. This image processing includes, for example, processing such as binarization of image data, filtering, and hue extraction.
  • the storage unit 93 is configured by an optical drive device such as a hard disk device or a flash memory.
  • the storage unit 93 includes a control program for operating the component mounter 1, image data and combined data transferred from the component camera 60 and the head camera device 70 to the control device 90 via the bus and communication cable, and image processing. Temporary data for processing by the unit 92 is stored.
  • the input / output interface 94 is interposed between the CPU and storage unit 93 and the control circuits 95 and 96, and adjusts data format conversion and signal strength.
  • the motor control circuit 95 controls the Y-axis motor 33, the X-axis motor 35, the R-axis motor 44, the Z-axis motor 45, and the ⁇ -axis motor based on the control signal from the mounting control unit 91.
  • the component mounting head 40 is positioned in each axial direction, and the suction nozzle 42 is controlled to have a predetermined angle.
  • the imaging control circuit 96 controls imaging by the component camera 60 and the head camera device 70 based on imaging control signals from the CPU of the control device 90 and the like. Further, the imaging control circuit 96 acquires image data obtained by imaging of the component camera 60 and the head camera device 70 and stores the acquired image data in the storage unit 93 via the input / output interface 94.
  • step 11 (hereinafter, “step” is referred to as “S”)
  • step S the suction process
  • the component mounting head 40 passes above the component camera 60, and at that time, the imaging process of the electronic component T by the component camera 60 is executed. Thereafter, a mounting process (S13) for sequentially mounting the electronic components T on the circuit board B is executed.
  • the control device 90 first rotates the nozzle holder 41 to index the specific suction nozzle 42 that sucks the component to the lift position H1 (S131).
  • the suction nozzles 42 used for the next mounting and the suction nozzles 42 used for the previous mounting are indexed at the standby positions H1-1 and H1 + 1 of the nozzle holder 41.
  • the imaging control unit 84 of the head camera device 70 inputs a control signal from the control device 90, and performs imaging using the upper surface portion of the circuit board B as an imaging target (S231).
  • the imaging control unit 84 first acquires the object distance from the upper surface of the circuit board B to the camera body 80 based on the object distance information stored in the storage unit 85. Next, the imaging control unit 84 acquires the focal length of the liquid crystal lens 82 corresponding to the object distance of the upper surface portion of the circuit board B based on the focal length information stored in the storage unit 85.
  • the imaging control unit 84 applies a voltage calculated based on the focal length and the lens characteristics to the liquid crystal lens 82 so that the camera body 80 is focused on the upper surface of the circuit board B. Then, the imaging control unit 84 acquires an effective area from the storage unit 85 when the upper surface portion of the circuit board B is an imaging target. The imaging control unit 84 acquires partial image data that falls within the acquired effective area in the camera field of view by imaging, and temporarily stores it in the storage unit 85.
  • the control device 90 positions the component mounting head 40 and raises and lowers the suction nozzle 42 based on the control program, the correction value calculated after the previous mounting, the holding state of the recognized electronic component T, and the like. Then, the electronic component T is mounted at a predetermined position (S132). At this time, the imaging control unit 84 of the head camera device 70 inputs a control signal from the control device 90, and the tip of the suction nozzle 42 that is indexed to the standby positions H1-1 and H1 + 1 in the component mounting head 40 is displayed. Imaging is performed as an imaging target (S232).
  • the imaging control unit 84 acquires the object distance from the tip of each suction nozzle 42 to the camera body 80 based on the object distance information.
  • the length of the optical path from the image sensor 83 to the tip of each suction nozzle 42 is set equal by the optical member 73. Therefore, in the object distance information, the same value is written as the object distance related to the tip of each suction nozzle 42.
  • the imaging control part 84 acquires the focal distance of the liquid-crystal lens 82 corresponding to the target object distance of the front-end
  • the imaging control unit 84 applies a voltage calculated based on the focal length and the lens characteristics to the liquid crystal lens 82, and the camera body 80 is focused on the tip of each suction nozzle 42. To do. Then, the imaging control unit 84 acquires an effective area from the storage unit 85 when the tip of the suction nozzle 42 is an imaging target. The imaging control unit 84 acquires partial image data that falls within the acquired effective area in the camera field of view by imaging, and temporarily stores it in the storage unit 85.
  • the imaging control unit 84 applies a voltage corresponding to each object distance to the liquid crystal lens 82 to perform focusing. Do. Further, in the imaging process (S231) using the upper surface portion of the circuit board B as an object, the mounting state of the circuit board B by the previous mounting and the printing state of the cream solder at the next mounting position are included in the image data. In the imaging process (S232) using the tip portions of the plurality of suction nozzles 42 as an object, the holding state of the electronic component T by the suction nozzles 42 used in the next mounting and the suction nozzles 42 used in the previous mounting are used. Whether or not the electronic component T is taken home is included in the image data.
  • the image processing unit 86 of the head camera device 70 combines the image data stored in the storage unit 85 by the respective imaging processes (S231, S232) based on the corresponding effective areas (S233). As a result, as shown in FIG. 7, combined data in which a plurality of objects at different object distances are in focus is generated. This combined data is transferred from the head camera device 70 to the control device 90 and stored in the storage unit 93 of the control device 90.
  • the mounting control unit 91 of the control device 90 determines whether or not the mounting process is completed depending on whether or not all the held electronic components T are mounted on the circuit board B (S133). If the mounting process is not completed (S133: No), the control device 90 executes a correction process such as calculating a correction value of the control program based on the analysis result of the combined data by the image processing unit 92. (S134). Further, based on the above analysis result, the control device 90 holds the electronic component T by the suction nozzle 42 used for the next mounting, or brings back the electronic component T by the suction nozzle 42 used for the previous mounting. Recognition processing such as the presence or absence of the circuit board B and the mounting state of the circuit board B is performed (S135).
  • control device 90 executes indexing of the suction nozzle 42 (S131) and the like again.
  • state confirmation process S135
  • the control device 90 performs a recovery process corresponding to each event.
  • the control device 90 repeats such an operation, and when the mounting of all the electronic components T required in the mounting process is completed (S133: Yes), the mounting process ends.
  • the imaging device (head camera device 70) is configured to employ the variable focus lens (liquid crystal lens 82) in the lens unit constituting the optical system.
  • the head camera device 70 can also be used for imaging a plurality of objects at different object distances.
  • the apparatus can be reduced in size as compared with a mechanical type that changes the distance between a plurality of lenses.
  • the image processing unit 86 is configured to generate combined data obtained by combining image data obtained by imaging a plurality of objects based on each effective area. Thereby, the imaging control unit 84 and the image processing unit 86 do not need imaging processing and image processing outside the effective area, and can reduce the load of these processing. Therefore, since the control device 90 of the component mounter 1 can acquire a plurality of necessary image data as combined data, the correction process (S134) and the state recognition process (S135) can be performed efficiently.
  • the imaging control unit 84 performs focusing of the lens unit by applying a voltage calculated based on the object distance information, focal length information, and lens characteristics to the liquid crystal lens 82 when imaging the object. It was.
  • the head camera device 70 employs a focusing method in which a predetermined voltage is applied to the liquid crystal lens 82 on the assumption that the object distance is recognized in advance. Therefore, since the head camera device 70 does not require adjustment of the applied voltage based on image processing at the time of imaging, the imaging process can be speeded up and the imaging process can be performed efficiently.
  • the head camera device 70 forms the optical path by the optical member 73 so that the lengths of the optical paths from the imaging element 83 to the two different suction nozzles 42 are equal.
  • the two suction nozzles 42 are in different regions in the camera field of the camera body 80, and images can be simultaneously captured with the same focal length. Therefore, since the head camera device 70 can image a plurality of effective areas at the same time on the assumption that the object distance is generally recognized, the imaging process can be made more efficient.
  • the production facility is a component mounter 1 that forms a production line for circuit board products and mounts electronic components on the circuit board.
  • a component mounter 1 is desired to have a finer target product and higher production process accuracy, and the application of the head camera device 70 having the above-described configuration to the component mounter 1 is particularly useful.
  • the head camera device 70 includes the tip of the suction nozzle 42 and the upper surface of the circuit board B in the imaging target.
  • the control device 90 recognizes the holding state of the suction nozzle 42 and the mounting state of the circuit board B based on the combined data generated by combining the image data obtained by capturing the plurality of objects (S135).
  • the mounting control part 91 of the control apparatus 90 can perform mounting control based on each state, while being able to improve the precision of mounting control, generation
  • the component mounting head 40 of the component transfer apparatus 30 is configured to support the plurality of suction nozzles 42 by the nozzle holder 41.
  • the head camera device 70 when the predetermined suction nozzle 42 is indexed at the lift position H1, the two suction nozzles 42 indexed at two standby positions H1-1 and H1 + 1 adjacent to the lift position H1.
  • Each of the tip portions is included in the object to be imaged. That is, the tip portion of the suction nozzle 42 before and after the mounting process is an object to be imaged.
  • the control apparatus 90 can recognize the holding state of the electronic component T by the suction nozzle 42, the presence / absence of take-out, the presence / absence of a tip portion, and the like. Therefore, it is possible to further improve the accuracy of the mounting control and promptly shift to the execution of an appropriate recovery process.
  • the head camera device 70 uses the tip portions of the two suction nozzles 42 indexed at the standby positions H1-1 and H1 + 1 and the upper surface portion of the circuit board B as objects to be imaged.
  • the number of objects to be imaged may be three or more as long as there are a plurality of objects, and various members can be objects to be imaged as long as they are within the camera field of view by the configuration of the optical member 73 and the like.
  • the control apparatus 90 can recognize the supply state of the electronic component T by image processing, and can reflect in the adsorption
  • the imaging control unit 84 applies a predetermined voltage calculated for each of the objects to the liquid crystal lens 82 in order to improve the efficiency of the imaging process when imaging each object (S231). , S232).
  • the lens unit is focused on the object to be imaged, for example, by adjusting the applied voltage based on at least a part of the image processing. You may do it. Thereby, even when the variable focus lens is affected by the imaging environment including the ambient temperature, it is possible to reliably focus on the object to be imaged.
  • a liquid lens may be employed as the variable focus lens.
  • the configuration applied to the head camera device 70 is exemplified as the imaging device having the above configuration.
  • the present invention can be similarly applied to other imaging devices such as the component camera 60 used in the component mounter 1. That is, a variable focus lens is used for the lens unit of the component camera 60, and in addition to the electronic component T held by the suction nozzle 42, the component camera 60 picks up a part of the substrate transfer device 10, the component supply device 20, and the like. It is good also as a structure made into a target object.
  • the imaging control unit 84 may be configured to correct the applied voltage when the calculated predetermined voltage is applied to the liquid crystal lens 82. That is, when the imaging target includes the electronic component T held at the tip of the suction nozzle 42, the imaging control unit 84 acquires the dimension information of the electronic component T included in the control program. Then, the imaging control unit 84 corrects the applied voltage based on the length in the optical axis direction of the head camera device 70 in the electronic component T.
  • the imaging control unit 84 first acquires, for example, a part number as dimension information of the electronic part T included in the control program. Then, the imaging control unit 84 acquires the dimension of the camera body 80 in the optical axis direction from the component table in which the dimension of the electronic component T is recorded corresponding to the component number. The dimension in the direction of the optical axis corresponds to the traveling direction of light at a portion that intersects the electronic component T in the optical path refracted by the optical member 73. Subsequently, the imaging control unit 84 calculates the amount of change in the voltage applied to the liquid crystal lens 82 as the adjustment voltage when the focal length of the lens unit is shortened by the dimension based on the lens characteristics.
  • the imaging control unit 84 corrects the applied voltage calculated based on the focal length information and the lens characteristics by adding the adjustment voltage.
  • this corrected voltage is applied to the liquid crystal lens 82, the focus of the lens unit of the camera body 80 is in a state where it is aligned with the side surface of the electronic component sucked by the suction nozzle 42.
  • the applied voltage can be adjusted with higher accuracy, so that sharper image data can be acquired.
  • the present configuration is applied to the component camera 60.
  • the present invention can also be applied to the configuration applied to the above.
  • the imaging control unit 84, the storage unit 85, and the image processing unit 86 constitute the camera body 80 of the head camera device 70.
  • the imaging control unit 84, the storage unit 85, and the image processing unit 86 may be arranged in a control device 90 that is communicably connected to the head camera device 70.
  • a part of the control device 90 constitutes a part of the imaging device, and the same effects as those of the present embodiment are achieved.
  • the embodiment exemplified in this embodiment is preferable.
  • the imaging device is configured to generate a combination data based on each effective area by imaging a plurality of objects having different object distances.
  • it may be used as a single imaging device.
  • the imaging device can also be applied to other printing machines and inspection machines that constitute a production line for circuit board products.
  • the imaging device can also be applied to production equipment such as machine tools and general-purpose assembly machines that produce products other than circuit board products. Even in such a configuration, the same effects as in the embodiment can be obtained, and the application to a production facility where miniaturization and high accuracy of a product are desired is particularly useful.

Abstract

The purpose of this invention is to provide the following: an imaging device that makes it possible, with the overall size of said imaging device reduced, to also reduce loads associated with imaging and image processing, for example, even when imaging a plurality of subjects; and production equipment provided with said imaging device. This imaging device is provided with a varifocal lens, an imaging control unit that applies distance-dependent voltages to said varifocal lens, a storage unit that stores a preset effective region for each of a plurality of subjects, and an image processing unit that generates combined data by combining, on the basis of the aforementioned effective regions, a plurality of pieces of image data acquired by imaging the plurality of subjects.

Description

撮像装置および生産設備Imaging device and production equipment
 本発明は、対象物を撮像する撮像装置、および撮像装置による画像データに基づいて生産処理を制御する生産設備に関するものである。 The present invention relates to an imaging apparatus that images a target object, and a production facility that controls production processing based on image data obtained by the imaging apparatus.
 撮像装置は、様々な分野に用いられ、例えば特許文献1には、工業分野において種々の製品の生産に用いられる生産設備である部品実装機に、部品カメラや基板カメラとして適用された構成が開示されている。この部品実装機においては、撮像装置の撮像による画像データに基づいて認識した電子部品などの状態を実装制御に反映させて、実装制御の精度の向上が図られている。ここで、部品実装機などの生産設備に適用される撮像装置は、例えば部品実装機の小型化などの要請によって、外形寸法や設置場所が制約されることがある。 An imaging apparatus is used in various fields. For example, Patent Document 1 discloses a configuration in which a component camera or a board camera is applied to a component mounter that is a production facility used for production of various products in the industrial field. Has been. In this component mounter, the accuracy of the mounting control is improved by reflecting the state of the electronic component or the like recognized based on the image data captured by the imaging device in the mounting control. Here, an imaging device applied to a production facility such as a component mounter may be restricted in external dimensions and installation location due to a request for downsizing of the component mounter, for example.
 そのため、撮像装置の光学系には、外形寸法を小さくするために、固定焦点レンズや可変焦点レンズ(特許文献2を参照)を採用することがある。このような構成において、撮像の対象物が複数ある場合には、撮像素子から撮像の対象物までの各距離を概ね等しくするために、または部品実装機に固定された撮像装置の視野内に各対象物を収めるために、反射板などの光学部材を用いて対象物から撮像素子までの光路が形成される。 For this reason, a fixed focus lens or a variable focus lens (see Patent Document 2) may be employed in the optical system of the image pickup apparatus in order to reduce the external dimensions. In such a configuration, when there are a plurality of objects to be imaged, the distances from the image sensor to the object to be imaged are approximately equal to each other or within the field of view of the imaging device fixed to the component mounter. In order to accommodate the object, an optical path from the object to the image sensor is formed using an optical member such as a reflector.
特開2013-26278号公報JP 2013-26278 A 特開2011-86847号公報JP 2011-86847 A
 ところで、生産設備に対する生産処理の精度向上の要請に伴い、生産処理の制御において必要とされる画像データの種類も多様となっている。そのため、光学系に固定焦点レンズを採用している場合には、撮像の対象物が互いに所定の距離以上に離れていると、光学部材を用いたとしても光路長さの調整が容易でなく、好適な画像データを得られないおそれがある。また、光学系に可変焦点レンズを採用している場合には、撮像の対象物ごとに撮像するため、撮像処理や画像処理などの負荷の増大が懸念される。 By the way, along with a request for improving the accuracy of production processing for production facilities, the types of image data required in the control of production processing are also diversified. Therefore, when a fixed focus lens is adopted in the optical system, if the imaging objects are separated from each other by a predetermined distance or more, the adjustment of the optical path length is not easy even if an optical member is used, There is a possibility that suitable image data cannot be obtained. Further, when a variable focus lens is employed in the optical system, there is a concern about an increase in loads such as imaging processing and image processing because imaging is performed for each imaging target.
 本発明は、このような事情に鑑みてなされたものであり、装置全体の小型化を図りつつ、複数の対象物の撮像においても撮像処理や画像処理などの負荷を軽減することが可能な撮像装置、および撮像装置を備える生産設備を提供することを目的とする。 The present invention has been made in view of such circumstances, and is capable of reducing the load of imaging processing and image processing even in imaging of a plurality of objects while reducing the size of the entire apparatus. It is an object of the present invention to provide a production facility including an apparatus and an imaging device.
 本発明の撮像装置は、印加電圧に応じて焦点距離を変動可能な可変焦点レンズと、前記撮像装置から互いに異なる距離にある複数の対象物を前記撮像装置が撮像する際に、各前記距離に応じた電圧を前記可変焦点レンズにそれぞれ印加する撮像制御部と、前記撮像装置が撮像可能な撮像領域のうち前記対象物を含む一部の領域を有効領域として、前記複数の対象物ごとに予め設定された各前記有効領域を記憶する記憶部と、前記複数の対象物の撮像により取得された複数の画像データを各前記有効領域に基づいて結合して結合データを生成する画像処理部と、を備える。 The imaging apparatus according to the present invention includes a variable focus lens that can change a focal length in accordance with an applied voltage, and a plurality of objects at different distances from the imaging apparatus when the imaging apparatus images each of the distances. An imaging control unit that applies a corresponding voltage to the variable focus lens, and a part of the imaging region that can be imaged by the imaging device including the target object as an effective region in advance for each of the plurality of target objects. A storage unit that stores each of the set effective areas; an image processing unit that generates a combined data by combining a plurality of pieces of image data acquired by imaging the plurality of objects based on the effective areas; Is provided.
 このような構成によると、撮像装置は、光学系に可変焦点レンズを採用しているので、異なる距離にある複数の対象物に焦点合わせをして撮像することができる。よって、複数のレンズ間の距離を変動させる機械式と比較して装置の小型化を図ることができる。また、複数の対象物を撮像する際に、画像処理部により複数の対象物がそれぞれ含まれる有効領域に基づいて画像データが結合されるので、有効領域の外部に対する撮像処理や画像処理が不要となり、これらの処理の負荷を軽減することができる。よって、生産設備がこのような構成からなる撮像装置を備える場合には、生産設備の制御装置は、必要な複数の画像データを結合データとして取得できるので、効率的な生産処理の制御を行うことができる。 According to such a configuration, since the imaging apparatus employs a variable focus lens in the optical system, it is possible to perform imaging while focusing on a plurality of objects at different distances. Therefore, the apparatus can be reduced in size as compared with the mechanical type that varies the distance between the plurality of lenses. In addition, when imaging a plurality of objects, the image processing unit combines the image data based on the effective areas each including the plurality of objects, so that imaging processing and image processing outside the effective area are not necessary. The load of these processes can be reduced. Therefore, when the production facility includes an imaging device having such a configuration, the production facility control device can acquire a plurality of necessary image data as combined data, so that efficient production process control is performed. Can do.
実施形態における部品実装機を示す全体図である。1 is an overall view showing a component mounter in an embodiment. 部品装着ヘッドの一部を拡大した正面図である。It is the front view which expanded a part of component mounting head. 図2のA方向矢視図である。It is an A direction arrow directional view of FIG. 部品実装機の制御装置と撮像装置を示すブロック図である。It is a block diagram which shows the control apparatus and imaging device of a component mounting machine. 基板カメラの液晶レンズの構成を示す平面図である。It is a top view which shows the structure of the liquid crystal lens of a board | substrate camera. 液晶レンズのレンズ特性を示す図である。It is a figure which shows the lens characteristic of a liquid crystal lens. 複数の画像データを結合した結合データを示す図である。It is a figure which shows the combined data which combined several image data. 部品実装機による実装処理を示すフロー図である。It is a flowchart which shows the mounting process by a component mounting machine. 図8における装着処理を示すアクティビティ図である。FIG. 9 is an activity diagram showing a mounting process in FIG. 8.
 <実施形態>
 以下、本発明の撮像装置および生産設備を具体化した実施形態について図面を参照して説明する。本実施形態において、生産設備は、回路基板に電子部品を実装して生産される回路基板製品を対象とし、この回路基板製品の生産ラインを構成する。また、本実施形態では、生産設備が部品実装機である構成を例示する。部品実装機は、例えば集積回路の製造工程において、回路基板上に複数の電子部品を装着する装置である。この回路基板は、例えばスクリーン印刷機により電子部品の装着位置にクリームハンダを塗布され、複数の部品実装機を順に搬送されて電子部品を装着される。その後に、電子部品を装着された回路基板は、リフロー炉に搬送されてハンダ付けされることにより回路基板製品として集積回路を構成する。
<Embodiment>
DESCRIPTION OF EMBODIMENTS Hereinafter, embodiments in which an imaging device and a production facility of the present invention are embodied will be described with reference to the drawings. In the present embodiment, the production facility targets a circuit board product produced by mounting electronic components on a circuit board, and constitutes a production line for this circuit board product. Moreover, in this embodiment, the structure whose production equipment is a component mounting machine is illustrated. The component mounter is a device that mounts a plurality of electronic components on a circuit board, for example, in an integrated circuit manufacturing process. This circuit board is coated with cream solder at an electronic component mounting position by, for example, a screen printing machine, and is sequentially transported through a plurality of component mounting machines to mount the electronic component. Thereafter, the circuit board on which the electronic component is mounted is transported to a reflow furnace and soldered to constitute an integrated circuit as a circuit board product.
 (部品実装機の全体構成)
 部品実装機1の全体構成について、図1~図4を参照して説明する。部品実装機1は、基板搬送装置10と、部品供給装置20と、部品移載装置30と、部品カメラ60と、ヘッドカメラ装置70と、制御装置90とを備えて構成される。各装置10,20,30および部品カメラ60は、部品実装機1の基台2に設けられ、制御装置90により制御される。また、図1に示すように、部品実装機1の水平幅方向(図1の左上から右下に向かう方向)をX軸方向、部品実装機1の水平長手方向(図1の右上から左下に向かう方向)をY軸方向、鉛直高さ方向(図1の上下方向)をZ軸方向とする。
(Overall configuration of component mounter)
The overall configuration of the component mounter 1 will be described with reference to FIGS. The component mounter 1 includes a board transfer device 10, a component supply device 20, a component transfer device 30, a component camera 60, a head camera device 70, and a control device 90. The devices 10, 20, 30 and the component camera 60 are provided on the base 2 of the component mounter 1 and are controlled by the control device 90. Further, as shown in FIG. 1, the horizontal direction of the component mounter 1 (direction from the upper left to the lower right in FIG. 1) is the X-axis direction, and the horizontal longitudinal direction of the component mounter 1 (from the upper right to the lower left in FIG. 1). The direction of heading is the Y-axis direction, and the vertical height direction (vertical direction in FIG. 1) is the Z-axis direction.
 基板搬送装置10は、回路基板BをX軸方向に搬送するとともに、回路基板Bを所定位置に位置決めする。この基板搬送装置10は、Y軸方向に並設された第一搬送機構11と第二搬送機構12とにより構成されたダブルコンベアタイプである。第一搬送機構11は、一対のガイドレール11a,11bと、図示しないコンベアベルトなどにより構成される。一対のガイドレール11a,11bは、基台2の上部にX軸方向に平行に配置され、コンベアベルトに載置されて搬送される回路基板Bを案内する。また、所定位置まで搬送された回路基板Bは、図示しないクランプ装置により基台2側から押し上げられることでクランプされる。第二搬送機構12は、第一搬送機構11と同様に構成されているため、詳細な説明を省略する。 The board transfer device 10 transfers the circuit board B in the X-axis direction and positions the circuit board B at a predetermined position. This board | substrate conveyance apparatus 10 is a double conveyor type comprised by the 1st conveyance mechanism 11 and the 2nd conveyance mechanism 12 which were arranged in parallel by the Y-axis direction. The first transport mechanism 11 includes a pair of guide rails 11a and 11b and a conveyor belt (not shown). The pair of guide rails 11a and 11b are arranged in the upper part of the base 2 in parallel with the X-axis direction, and guide the circuit board B which is placed on the conveyor belt and conveyed. The circuit board B transported to a predetermined position is clamped by being pushed up from the base 2 side by a clamping device (not shown). Since the second transport mechanism 12 is configured in the same manner as the first transport mechanism 11, detailed description thereof is omitted.
 部品供給装置20は、回路基板Bに実装される電子部品を供給する装置である。部品供給装置20は、部品実装機1のY軸方向の前部側(図1の左前側)に配置されている。この部品供給装置20は、本実施形態において、複数のカセット式のフィーダ21を用いたフィーダ方式としている。フィーダ21は、基台2に対して着脱可能に取り付けられるフィーダ本体部21aとフィーダ本体部21aの後端側に設けられたリール収容部21bとを有する。フィーダ21は、リール収容部21bにより部品包装テープが巻回された供給リール22を保持している。 The component supply device 20 is a device that supplies electronic components mounted on the circuit board B. The component supply device 20 is disposed on the front side in the Y-axis direction of the component mounter 1 (the left front side in FIG. 1). In the present embodiment, the component supply apparatus 20 is a feeder system that uses a plurality of cassette-type feeders 21. The feeder 21 includes a feeder main body portion 21a that is detachably attached to the base 2, and a reel housing portion 21b that is provided on the rear end side of the feeder main body portion 21a. The feeder 21 holds a supply reel 22 around which a component packaging tape is wound by a reel accommodating portion 21b.
 上記の部品包装テープは、電子部品が所定ピッチで収納されたキャリアテープと、このキャリアテープの上面に接着されて電子部品を覆うトップテープとにより構成される。フィーダ21は、図示しないピッチ送り機構により供給リール22から引き出された部品包装テープをピッチ送りする。そして、フィーダ21は、キャリアテープからトップテープを剥離して電子部品を露出させている。これにより、フィーダ21は、フィーダ本体部21aの前端側に位置する部品供給位置Psにおいて、部品移載装置30が電子部品を吸着可能となるように電子部品の供給を行っている。 The above-described component packaging tape includes a carrier tape in which electronic components are stored at a predetermined pitch, and a top tape that is bonded to the upper surface of the carrier tape and covers the electronic components. The feeder 21 pitch feeds the component packaging tape drawn from the supply reel 22 by a pitch feed mechanism (not shown). The feeder 21 peels the top tape from the carrier tape to expose the electronic component. Thereby, the feeder 21 supplies the electronic component so that the component transfer device 30 can suck the electronic component at the component supply position Ps located on the front end side of the feeder main body 21a.
 部品移載装置30は、電子部品を部品供給位置Psから回路基板Bの実装位置に移載する装置である。本実施形態において、部品移載装置30は、基板搬送装置10および部品供給装置20の上方に配置された直交座標型としている。この部品移載装置30は、Y軸方向に延在する一対のY軸レール31にY軸方向に移動可能にY軸移動台32が設けられている。Y軸移動台32は、ボールねじ機構を介してY軸モータ33の動作により制御される。また、Y軸移動台32には、X軸移動台34がX軸方向に移動可能に設けられている。X軸移動台34は、図示しないボールねじ機構を介してX軸モータ35の動作により制御される。 The component transfer device 30 is a device that transfers electronic components from the component supply position Ps to the mounting position of the circuit board B. In the present embodiment, the component transfer device 30 is an orthogonal coordinate type disposed above the substrate transfer device 10 and the component supply device 20. In the component transfer device 30, a Y-axis moving table 32 is provided on a pair of Y-axis rails 31 extending in the Y-axis direction so as to be movable in the Y-axis direction. The Y-axis moving table 32 is controlled by the operation of the Y-axis motor 33 via a ball screw mechanism. The Y-axis moving table 32 is provided with an X-axis moving table 34 that can move in the X-axis direction. The X-axis moving table 34 is controlled by the operation of the X-axis motor 35 via a ball screw mechanism (not shown).
 また、部品移載装置30のX軸移動台34には、部品装着ヘッド40(本発明の「移動ヘッド」に相当する)が取り付けられている。この部品装着ヘッド40は、Z軸と平行なR軸回りに回転可能なノズルホルダ41(本発明の「ホルダ部材」に相当する)により複数の吸着ノズル42を昇降可能に支持する。また、部品装着ヘッド40は、フレーム43をX軸移動台34に固定され、当該フレームの上部にR軸モータ44およびZ軸モータ45を支持している。 Also, a component mounting head 40 (corresponding to the “moving head” of the present invention) is attached to the X-axis moving table 34 of the component transfer apparatus 30. The component mounting head 40 supports a plurality of suction nozzles 42 so as to be movable up and down by a nozzle holder 41 (corresponding to a “holder member” of the present invention) that can rotate around an R axis parallel to the Z axis. In the component mounting head 40, the frame 43 is fixed to the X-axis moving table 34, and the R-axis motor 44 and the Z-axis motor 45 are supported on the upper part of the frame.
 より詳細には、部品装着ヘッド40のノズルホルダ41は、全体形状としては円柱状に形成され、図2に示すように、インデックス軸46を介してR軸モータ44の出力軸に連結されている。これにより、ノズルホルダ41は、R軸モータ44およびインデックス軸46によって回転制御可能に構成されている。また、ノズルホルダ41は、図3に示すように、R軸と同心の円周上において周方向に等間隔に複数(本実施形態では12本)のノズルスピンドル47をZ軸方向に摺動可能に支持している。各ノズルスピンドル47の下端部には、図2に示すように、吸着ノズル42が交換可能にそれぞれ取り付けられている。このように、ノズルホルダ41は、各ノズルスピンドル47を介して各吸着ノズル42を支持している。 More specifically, the nozzle holder 41 of the component mounting head 40 is formed in a cylindrical shape as a whole, and is connected to the output shaft of the R-axis motor 44 via an index shaft 46 as shown in FIG. . As a result, the nozzle holder 41 is configured to be rotationally controlled by the R-axis motor 44 and the index shaft 46. In addition, as shown in FIG. 3, the nozzle holder 41 can slide a plurality of (12 in this embodiment) nozzle spindles 47 in the Z-axis direction at equal intervals in the circumferential direction on the circumference concentric with the R-axis. I support it. As shown in FIG. 2, suction nozzles 42 are attached to the lower ends of the nozzle spindles 47 in a replaceable manner. Thus, the nozzle holder 41 supports each suction nozzle 42 via each nozzle spindle 47.
 また、ノズルスピンドル47の上端部にはノズルギヤ47aが形成されている。このノズルギヤ47aは、インデックス軸46の外周側に相対回転可能に支持されたθ軸ギヤ51とZ軸方向に摺動可能に噛合している。θ軸ギヤ51は、Z軸方向に所定長さの歯幅を有し、図示しないθ軸モータと変速機構52を介して連結され、θ軸モータにより回転駆動する。このような構成により、θ軸モータが回転すると、変速機構52およびθ軸ギヤ51を介して、ノズルホルダ41に支持された全てのノズルスピンドル47が回転する。よって、各吸着ノズル42は、θ軸モータの回転によりノズルホルダ41に対して自転し、θ軸モータ等によって回転制御可能に構成されている。 Also, a nozzle gear 47 a is formed at the upper end of the nozzle spindle 47. The nozzle gear 47a meshes with the θ-axis gear 51 supported on the outer peripheral side of the index shaft 46 so as to be relatively rotatable so as to be slidable in the Z-axis direction. The θ-axis gear 51 has a tooth width of a predetermined length in the Z-axis direction, is connected to a θ-axis motor (not shown) via a speed change mechanism 52, and is rotationally driven by the θ-axis motor. With such a configuration, when the θ-axis motor rotates, all the nozzle spindles 47 supported by the nozzle holder 41 rotate via the speed change mechanism 52 and the θ-axis gear 51. Accordingly, each suction nozzle 42 rotates with respect to the nozzle holder 41 by the rotation of the θ-axis motor, and is configured to be able to be controlled for rotation by the θ-axis motor or the like.
 また、ノズルスピンドル47の外周側であって、ノズルホルダ41の上面とノズルギヤ47aの下面との間には圧縮スプリング48が設けられている。ノズルスピンドル47は、この圧縮スプリング48によりノズルホルダ41に対して上方に付勢され、下端部に形成された大径部47bがノズルホルダ41の下面に当接することで上方への移動を規制されている。つまり、ノズルスピンドル47の大径部47bがノズルホルダ41に当接している状態は、ノズルスピンドル47に取り付けられた吸着ノズル42が最も上昇した状態にある。 Further, a compression spring 48 is provided on the outer peripheral side of the nozzle spindle 47 and between the upper surface of the nozzle holder 41 and the lower surface of the nozzle gear 47a. The nozzle spindle 47 is biased upward with respect to the nozzle holder 41 by the compression spring 48, and the upward movement is restricted by the large diameter portion 47 b formed at the lower end contacting the lower surface of the nozzle holder 41. ing. That is, the state in which the large-diameter portion 47b of the nozzle spindle 47 is in contact with the nozzle holder 41 is the state in which the suction nozzle 42 attached to the nozzle spindle 47 is raised most.
 複数のノズルスピンドル47のうち後述する昇降位置H1に割出されたノズルスピンドル47の上端面には、ノズルレバー53が当接している。ノズルレバー53は、Z軸モータ45の出力軸に図示しないボールねじ機構を介して連結され、Z軸モータ45の回転駆動によりZ軸方向に移動制御される。このような構成により、Z軸モータ45が回転すると、ノズルレバー53がノズルスピンドル47を押圧し、ノズルスピンドル47が圧縮スプリング48の弾性力に抗してZ軸方向にノズルスピンドル47を下降させる。 The nozzle lever 53 is in contact with the upper end surface of the nozzle spindle 47 that is indexed to a lifting position H1 described later among the plurality of nozzle spindles 47. The nozzle lever 53 is connected to the output shaft of the Z-axis motor 45 via a ball screw mechanism (not shown), and is controlled to move in the Z-axis direction by the rotational drive of the Z-axis motor 45. With this configuration, when the Z-axis motor 45 rotates, the nozzle lever 53 presses the nozzle spindle 47, and the nozzle spindle 47 moves the nozzle spindle 47 downward in the Z-axis direction against the elastic force of the compression spring 48.
 このように、吸着ノズル42は、Z軸モータ45や圧縮スプリング48等により構成される昇降機構によって、ノズルスピンドル47のZ軸方向移動に伴って昇降するようになっている。また、このような構成により、部品装着ヘッド40は、ノズルホルダ41の回転により部品装着ヘッド40における昇降位置H1に、複数の吸着ノズル42を順次割出し可能とし、部品供給位置Psから回路基板Bが位置決めされた部品装着位置まで移動可能に設けられている。また、各吸着ノズル42には、ノズルスピンドル47を介して図示しない吸着ノズル駆動装置から負圧が供給される。これにより、各吸着ノズル42は、その先端部で電子部品Tを吸着可能としている。 As described above, the suction nozzle 42 is moved up and down with the movement of the nozzle spindle 47 in the Z-axis direction by the lifting mechanism constituted by the Z-axis motor 45, the compression spring 48, and the like. Also, with this configuration, the component mounting head 40 can sequentially index the plurality of suction nozzles 42 to the lift position H1 of the component mounting head 40 by the rotation of the nozzle holder 41, and the circuit board B from the component supply position Ps. Is provided so as to be movable to the positioned component mounting position. A negative pressure is supplied to each suction nozzle 42 from a suction nozzle driving device (not shown) via a nozzle spindle 47. Thus, each suction nozzle 42 can suck the electronic component T at its tip.
 部品カメラ60は、CCD(Charge Coupled Device)やCMOS(Complementary Metal Oxide Semiconductor)等の撮像素子を有するデジタル式の撮像装置である。部品カメラ60は、通信可能に接続された制御装置90による制御信号に基づいてカメラ視野に収まる範囲の撮像を行い、当該撮像により取得した画像データを制御装置90に送出する。この部品カメラ60は、光軸がZ軸方向となるように基台2に固定され、吸着ノズル42に吸着された状態の電子部品Tを撮像可能に構成されている。この部品カメラ60から画像データを取得した制御装置90は、画像処理により吸着ノズル42による電子部品Tの保持状態を認識する。このように、電子部品Tの保持状態に応じて吸着ノズル42の位置および角度を補正することで、実装制御の精度向上を図ることが可能となる。 The component camera 60 is a digital imaging device having an imaging element such as a CCD (Charge Coupled Device) or a CMOS (Complementary Metal Oxide Semiconductor). The component camera 60 captures an image within a range that falls within the camera field of view based on a control signal from the control device 90 that is communicably connected, and sends image data acquired by the image capture to the control device 90. The component camera 60 is fixed to the base 2 so that the optical axis is in the Z-axis direction, and is configured to be able to image the electronic component T in a state of being sucked by the suction nozzle 42. The control device 90 that has acquired the image data from the component camera 60 recognizes the holding state of the electronic component T by the suction nozzle 42 by image processing. Thus, by correcting the position and angle of the suction nozzle 42 in accordance with the holding state of the electronic component T, it is possible to improve the accuracy of the mounting control.
 ヘッドカメラ装置70は、吸着ノズル42の外周側に配置され、図示しないブラケットを介して部品装着ヘッド40に固定された撮像装置である。このヘッドカメラ装置70は、本実施形態においては、吸着ノズル42の先端部の撮像と、回路基板Bの上面部の撮像に兼用される。また、吸着ノズル42の先端部については、図3に示すように、ノズルホルダ41における昇降位置H1に所定の吸着ノズル42が割出されることによって昇降位置H1と隣り合う2箇所の待機位置H1-1,H1+1に割出された吸着ノズル42の先端部を撮像の対象物とする。この撮像による画像データは、制御装置90が吸着ノズル42による電子部品Tの保持状態や回路基板Bの装着状態を認識する画像処理に用いられる。 The head camera device 70 is an imaging device that is disposed on the outer peripheral side of the suction nozzle 42 and is fixed to the component mounting head 40 via a bracket (not shown). In this embodiment, the head camera device 70 is used for both imaging of the tip of the suction nozzle 42 and imaging of the upper surface of the circuit board B. In addition, as shown in FIG. 3, the tip of the suction nozzle 42 is indexed to the lift position H1 in the nozzle holder 41, and the two standby positions H1- adjacent to the lift position H1 are indexed. The tip of the suction nozzle 42 indexed to 1, H1 + 1 is set as an object to be imaged. The image data obtained by the imaging is used for image processing in which the control device 90 recognizes the holding state of the electronic component T by the suction nozzle 42 and the mounting state of the circuit board B.
 このヘッドカメラ装置70は、図2に示すように、撮像ケース71と、複数の照射体72と、光学部材73と、カメラ本体80とを有する。撮像ケース71は、円周上に配置された複数の吸着ノズル42の一部を外周側から囲うように配置されている。複数の照射体72は、撮像ケース71の吸着ノズル42側の円筒状の内周面に、ノズルホルダ41の回転中心に配置された反射体に向けて配置された発光ダイオードなどの光源である。 The head camera device 70 includes an imaging case 71, a plurality of irradiation bodies 72, an optical member 73, and a camera body 80, as shown in FIG. The imaging case 71 is disposed so as to surround a part of the plurality of suction nozzles 42 disposed on the circumference from the outer peripheral side. The plurality of irradiators 72 are light sources such as light emitting diodes disposed on the cylindrical inner peripheral surface of the imaging case 71 on the suction nozzle 42 side toward the reflector disposed at the rotation center of the nozzle holder 41.
 光学部材73は、撮像ケース71の内側に配置され、撮像の対象物である吸着ノズル42の先端部からカメラ本体80に至るまでの光路を形成する。具体的には、光学部材73は、吸着ノズル42の待機位置H1-1,H1+1に対応する位置に配置された2つの第一プリズム73aと、それぞれの第一プリズム73aにより屈折された光を入射してカメラ本体80の光軸に平行な光に屈折させる第二プリズム73bとにより構成される。 The optical member 73 is disposed inside the imaging case 71 and forms an optical path from the tip of the suction nozzle 42 that is an imaging target to the camera body 80. Specifically, the optical member 73 receives the two first prisms 73a arranged at positions corresponding to the standby positions H1-1 and H1 + 1 of the suction nozzle 42 and the light refracted by the respective first prisms 73a. The second prism 73b that refracts light parallel to the optical axis of the camera body 80.
 また、光学部材73の第二プリズム73bは、撮像ケース71の下面に形成された開口部から入射する光を、カメラ本体80の光軸に平行な光に屈折させる。このような光学部材73により、カメラ本体80は、待機位置H1-1,H1+1に割出された吸着ノズル42の先端部と、部品装着ヘッド40の下方に位置する部材を撮像の対象物とすることが可能となっている。また、第一プリズム73aおよび第二プリズム73bにより、待機位置H1-1,H1+1に割出された各吸着ノズル42からカメラ本体80に至るまでの光路の長さが等しくなるように形成されている。 Further, the second prism 73 b of the optical member 73 refracts light incident from the opening formed on the lower surface of the imaging case 71 into light parallel to the optical axis of the camera body 80. With such an optical member 73, the camera body 80 uses the tip portion of the suction nozzle 42 indexed to the standby positions H1-1 and H1 + 1 and the member positioned below the component mounting head 40 as the imaging object. It is possible. Further, the first prism 73a and the second prism 73b are formed so that the lengths of the optical paths from the suction nozzles 42 indexed to the standby positions H1-1 and H1 + 1 to the camera body 80 are equal. .
 カメラ本体80は、図4に示すように、固定レンズ81と、液晶レンズ82(本発明の「可変焦点レンズ」に相当する)と、撮像素子83と、撮像制御部84と、記憶部85と、画像処理部86とを有する。固定レンズ81および液晶レンズ82は、撮像素子83の光軸と同軸となるように配置されている。固定レンズ81は、光学系を構成するレンズユニットの最外部に配置された対物レンズであって、ユニット内部への異物の侵入等を防止する機能を有する。 As shown in FIG. 4, the camera body 80 includes a fixed lens 81, a liquid crystal lens 82 (corresponding to the “variable focus lens” of the present invention), an imaging element 83, an imaging control unit 84, and a storage unit 85. And an image processing unit 86. The fixed lens 81 and the liquid crystal lens 82 are arranged so as to be coaxial with the optical axis of the image sensor 83. The fixed lens 81 is an objective lens arranged at the outermost part of the lens unit constituting the optical system, and has a function of preventing entry of foreign matters into the unit.
 液晶レンズ82は、印加電圧に応じて焦点距離を変動可能な可変焦点レンズである。本実施形態では、可変焦点レンズとして、2つの電極間に液晶層を配置された液晶レンズを採用している。詳細には、液晶レンズ82は、図5に示すように、外形が矩形状からなる第一電極82aと、円形状からなる第二電極82bとを有する。第一電極82aおよび第二電極82bは、平行に配置された一対の透明基板に設けられた2つの電極をそれぞれ有し、2つの電極間に同一の液晶層を介在させている。 The liquid crystal lens 82 is a variable focus lens capable of changing the focal length according to the applied voltage. In this embodiment, a liquid crystal lens in which a liquid crystal layer is disposed between two electrodes is employed as the variable focus lens. Specifically, as shown in FIG. 5, the liquid crystal lens 82 includes a first electrode 82a having a rectangular outer shape and a second electrode 82b having a circular shape. The first electrode 82a and the second electrode 82b each have two electrodes provided on a pair of transparent substrates arranged in parallel, and the same liquid crystal layer is interposed between the two electrodes.
 このような構成からなる液晶レンズ82は、第一電極82aおよび第二電極82bにそれぞれ異なる電圧が印加されると、電界の方向に応じて液晶分子の配向状態が変化してレンズとして作用する。また、第一電極82aへの印加電圧Vaよりも第二電極82bへの印加電圧Vbを高くすることで(Va<Vb)、液晶レンズ82は、実質的に凸レンズとして機能する。また、印加電圧Va,Vbの振幅を一定とした場合には、印加電圧Va,Vbの差分により液晶レンズ82の焦点距離を制御することができる。 When the liquid crystal lens 82 having such a configuration is applied with different voltages to the first electrode 82a and the second electrode 82b, the alignment state of the liquid crystal molecules changes according to the direction of the electric field, and acts as a lens. Further, by making the applied voltage Vb to the second electrode 82b higher than the applied voltage Va to the first electrode 82a (Va <Vb), the liquid crystal lens 82 substantially functions as a convex lens. When the amplitudes of the applied voltages Va and Vb are constant, the focal length of the liquid crystal lens 82 can be controlled by the difference between the applied voltages Va and Vb.
 撮像素子83は、CCDやCMOSなどであり、固定レンズ81および液晶レンズ82の透過光を電気信号に変換する。撮像制御部84は、外部入力される制御信号および記憶部85に記憶されている設定値等に基づいて、レンズユニットを構成する液晶レンズ82の動作を制御する。また、撮像制御部84は、撮像素子83により変換された電気信号をデジタル信号に変換して対象物を撮像する。そして、撮像制御部84は、撮像により取得した画像を制御装置90に転送する。 The image sensor 83 is a CCD or CMOS, and converts the light transmitted through the fixed lens 81 and the liquid crystal lens 82 into an electrical signal. The imaging control unit 84 controls the operation of the liquid crystal lens 82 constituting the lens unit based on a control signal input from the outside, a set value stored in the storage unit 85, and the like. Further, the imaging control unit 84 images the object by converting the electrical signal converted by the imaging element 83 into a digital signal. Then, the imaging control unit 84 transfers an image acquired by imaging to the control device 90.
 記憶部85は、フラッシュメモリなどにより構成され、撮像処理に用いられる各種の設定値や液晶レンズ82のレンズ特性等を記憶する。上記の設定値には、カメラ本体80が撮像可能な撮像領域(カメラ視野)のうち対象物を含む一部の領域を有効領域として、複数の対象物ごとに予め設定された各有効領域が含まれる。ここで、カメラ本体80は、待機位置H1-1,H1+1に割出された2つの吸着ノズル42の先端部と、回路基板Bの上方に部品装着ヘッド40が移動した際に撮像可能となる当該回路基板Bの上面部と、を合わせた3つの対象物を撮像の対象とする。つまり、上記の有効領域は、カメラ視野を3つの対象物に対応して分割した3つの領域に相当する。 The storage unit 85 is configured by a flash memory or the like, and stores various setting values used for imaging processing, lens characteristics of the liquid crystal lens 82, and the like. The set value includes each effective area set in advance for each of a plurality of objects, with a part of the imaging area (camera field of view) that can be captured by the camera body 80 including an object as an effective area. It is. Here, the camera body 80 is capable of imaging when the component mounting head 40 moves above the tip portions of the two suction nozzles 42 indexed to the standby positions H1-1 and H1 + 1 and above the circuit board B. The three objects combined with the upper surface portion of the circuit board B are set as objects of imaging. That is, the effective area corresponds to three areas obtained by dividing the camera field of view corresponding to the three objects.
 上記のように、3つの対象物は、光学部材73によりカメラ本体80のカメラ視野に収められる。但し、撮像制御部84は、吸着ノズル42の先端部と回路基板Bの上面部とでは、カメラ本体80に至るまでの光路の長さの差分がレンズユニットの被写界深度よりも大きいため、同時に焦点を合わせられない。つまり、何れか一方に焦点を合わせている場合には、他方に焦点が合っていない状態となる。そこで、予め定められた有効領域に基づいて撮像処理を行うことにより、カメラ視野のうち焦点の合っていない部分に対する画像処理などを省略して、撮像処理の高速化および処理負荷の軽減を図っている。 As described above, the three objects are stored in the camera field of the camera body 80 by the optical member 73. However, the imaging control unit 84 has a difference in the length of the optical path from the tip of the suction nozzle 42 to the upper surface of the circuit board B to the camera body 80, which is larger than the depth of field of the lens unit. I cannot focus at the same time. That is, when either one is focused, the other is not focused. Therefore, by performing imaging processing based on a predetermined effective area, image processing for an out-of-focus part of the camera field of view is omitted, thereby speeding up imaging processing and reducing processing load. Yes.
 ここで、記憶部85に予め記憶されるレンズ特性とは、液晶レンズ82への印加電圧と、対象物からカメラ本体80までの距離(以下、「対象物距離」とも称する)との関係を示すものである。本実施形態では、液晶レンズ82に対応するレンズ特性として、図6に示すように、第一電極82aへの印加電圧Va、第二電極82bへの印加電圧Vbにより定まる対象物距離を示すマップとしている。また、この対象物距離は、液晶レンズ82への印加電圧により変動する焦点距離と相関がある。そのため、レンズ特性としては、印加電圧と焦点距離との関係を間接的に示すものとしてもよい。 Here, the lens characteristics stored in advance in the storage unit 85 indicate the relationship between the voltage applied to the liquid crystal lens 82 and the distance from the object to the camera body 80 (hereinafter also referred to as “object distance”). Is. In the present embodiment, as lens characteristics corresponding to the liquid crystal lens 82, as shown in FIG. 6, as a map showing the object distance determined by the applied voltage Va to the first electrode 82a and the applied voltage Vb to the second electrode 82b. Yes. In addition, this object distance has a correlation with the focal distance that varies depending on the voltage applied to the liquid crystal lens 82. Therefore, the lens characteristics may indirectly indicate the relationship between the applied voltage and the focal length.
 さらに、記憶部85が記憶する各種の設定値には、ヘッドカメラ装置70から複数の対象物までの各距離(撮像素子83から複数の対象物までの光路の長さに相当する)を示す対象物距離情報と、複数の対象物の各距離に対応する液晶レンズ82の各焦点距離を示す焦点距離情報とが含まれる。本実施形態において、撮像制御部84は、撮像素子83から撮像の対象物までの概ねの対象物距離を予め認識していることを前提として、当該対象物距離に応じた所定の電圧を液晶レンズ82へ印加することをもって焦点合わせがなされたものとする方式を採用している。つまり、撮像制御部84は、カメラ視野のうち所定の有効領域の撮像処理を行う際には、対象物距離情報から取得される対象物距離と、焦点距離情報から取得される当該有効領域に対応する焦点距離と、レンズ特性とに基づいて液晶レンズ82への印加電圧を算出する。このような撮像処理によると、画像処理に基づく液晶レンズ82への印加電圧の調整処理を要しないので、撮像処理の効率化を図ることが可能となる。 Furthermore, the various setting values stored in the storage unit 85 are targets indicating each distance from the head camera device 70 to the plurality of objects (corresponding to the length of the optical path from the image sensor 83 to the plurality of objects). Object distance information and focal distance information indicating each focal distance of the liquid crystal lens 82 corresponding to each distance of a plurality of objects are included. In the present embodiment, on the assumption that the imaging control unit 84 recognizes in advance the approximate object distance from the imaging element 83 to the imaging object, a predetermined voltage corresponding to the object distance is applied to the liquid crystal lens. A method is adopted in which focusing is performed by applying the voltage to 82. In other words, the imaging control unit 84 corresponds to the object distance acquired from the object distance information and the effective area acquired from the focal distance information when performing imaging processing of a predetermined effective area in the camera field of view. The applied voltage to the liquid crystal lens 82 is calculated based on the focal length and the lens characteristics. According to such an imaging process, the adjustment process of the voltage applied to the liquid crystal lens 82 based on the image process is not required, so that the efficiency of the imaging process can be improved.
 画像処理部86は、複数の対象物の撮像により取得された複数の画像データを各有効領域に基づいて結合して結合データを生成する。ここで、本実施形態においては、ヘッドカメラ装置70のカメラ本体80は、上述のように3つの対象物を撮像の対象としている。このうちノズルホルダ41の待機位置H1-1,H1+1に割出された吸着ノズル42の先端部は、光学部材73によりカメラ本体80に至るまでの光路の長さが等しく形成されている。そのため、撮像制御部84は、各吸着ノズル42の先端部に対して同時に焦点を合わせることができるので、同時に撮像することが可能である。 The image processing unit 86 combines a plurality of image data acquired by imaging a plurality of objects based on each effective area to generate combined data. Here, in the present embodiment, the camera body 80 of the head camera device 70 has the three objects as imaging targets as described above. Among these, the tip of the suction nozzle 42 indexed to the standby positions H1-1 and H1 + 1 of the nozzle holder 41 is formed with an equal optical path length to the camera body 80 by the optical member 73. Therefore, since the imaging control unit 84 can focus on the tip of each suction nozzle 42 at the same time, it is possible to capture images simultaneously.
 画像処理部86による画像データの結合処理は、先ず、異なる時刻において、図7の上段に示すように、各吸着ノズル42の先端部の撮像による画像データと、回路基板Bの上面部の撮像による画像データとが取得される。このとき、対象物が異なるそれぞれの撮像は、複数の対象物ごとに予め設定された各有効領域(図7の太線枠内)に基づいて行われる。そのため、有効領域の外部(図7の斜線部)については画像処理がなされず、画像データとしては一部が欠落した状態となっている。次に、画像処理部86は、それぞれの画像データを補間するように、対応する有効領域に基づいて結合して、図7の下段に示すように、3つの対象物に対して焦点の合った鮮鋭な結合データを生成する。 The image data combining process by the image processing unit 86 is first performed by image data obtained by imaging the tip of each suction nozzle 42 and imaging of the upper surface of the circuit board B at different times as shown in the upper part of FIG. Image data is acquired. At this time, each imaging with a different target object is performed based on each effective area (inside the thick line frame in FIG. 7) preset for each of the plurality of target objects. Therefore, image processing is not performed on the outside of the effective area (shaded area in FIG. 7), and a part of the image data is missing. Next, the image processing unit 86 combines based on the corresponding effective areas so as to interpolate the respective image data, and focuses on the three objects as shown in the lower part of FIG. Generate sharp combined data.
 制御装置90は、主として、CPUや各種メモリ、制御回路により構成され、部品カメラ60およびヘッドカメラ装置70の撮像により取得した画像データ(結合データを含む)に基づいて部品装着ヘッド40の動作を制御する。この制御装置90は、図4に示すように、実装制御部91、画像処理部92、および記憶部93に、バスを介して入出力インターフェース94が接続されている。入出力インターフェース94には、モータ制御回路95および撮像制御回路96が接続されている。 The control device 90 is mainly composed of a CPU, various memories, and a control circuit, and controls the operation of the component mounting head 40 based on image data (including combined data) acquired by imaging of the component camera 60 and the head camera device 70. To do. As shown in FIG. 4, in the control device 90, an input / output interface 94 is connected to a mounting control unit 91, an image processing unit 92, and a storage unit 93 via a bus. A motor control circuit 95 and an imaging control circuit 96 are connected to the input / output interface 94.
 実装制御部91は、モータ制御回路95を介して部品装着ヘッド40の位置や吸着機構の動作を制御する。より詳細には、実装制御部91は、部品実装機1に複数設けられた各種センサから出力される情報や、各種の認識処理の結果を入力する。そして、実装制御部91は、記憶部93に記憶されている制御プログラム、各種センサによる情報、画像処理や認識処理の結果に基づいて、モータ制御回路95に制御信号を送出する。画像処理部92は、撮像制御回路96を介して部品カメラ60およびヘッドカメラ装置70の撮像による画像データを取得して、用途に応じた画像処理を実行する。この画像処理には、例えば、画像データの二値化、フィルタリング、色相抽出などの加工処理などが含まれる。 The mounting control unit 91 controls the position of the component mounting head 40 and the operation of the suction mechanism via the motor control circuit 95. More specifically, the mounting control unit 91 inputs information output from various sensors provided in the component mounting machine 1 and results of various recognition processes. The mounting control unit 91 then sends a control signal to the motor control circuit 95 based on the control program stored in the storage unit 93, information from various sensors, and the results of image processing and recognition processing. The image processing unit 92 acquires image data obtained by imaging the component camera 60 and the head camera device 70 via the imaging control circuit 96, and executes image processing according to the application. This image processing includes, for example, processing such as binarization of image data, filtering, and hue extraction.
 記憶部93は、ハードディスク装置などの光学ドライブ装置、またはフラッシュメモリなどにより構成される。この記憶部93には、部品実装機1を動作させるための制御プログラム、バスや通信ケーブルを介して部品カメラ60およびヘッドカメラ装置70から制御装置90に転送された画像データや結合データ、画像処理部92による処理の一時データなどが記憶される。入出力インターフェース94は、CPUや記憶部93と各制御回路95,96との間に介在し、データ形式の変換や信号強度を調整する。 The storage unit 93 is configured by an optical drive device such as a hard disk device or a flash memory. The storage unit 93 includes a control program for operating the component mounter 1, image data and combined data transferred from the component camera 60 and the head camera device 70 to the control device 90 via the bus and communication cable, and image processing. Temporary data for processing by the unit 92 is stored. The input / output interface 94 is interposed between the CPU and storage unit 93 and the control circuits 95 and 96, and adjusts data format conversion and signal strength.
 モータ制御回路95は、実装制御部91による制御信号に基づいて、Y軸モータ33、X軸モータ35、R軸モータ44、Z軸モータ45、およびθ軸モータを制御する。これにより、部品装着ヘッド40が各軸方向に位置決めされるとともに、吸着ノズル42が所定角度となるように制御される。撮像制御回路96は、制御装置90のCPUなどによる撮像の制御信号に基づいて、部品カメラ60およびヘッドカメラ装置70による撮像を制御する。また、撮像制御回路96は、部品カメラ60およびヘッドカメラ装置70の撮像による画像データを取得して、入出力インターフェース94を介して記憶部93に記憶させる。 The motor control circuit 95 controls the Y-axis motor 33, the X-axis motor 35, the R-axis motor 44, the Z-axis motor 45, and the θ-axis motor based on the control signal from the mounting control unit 91. Thus, the component mounting head 40 is positioned in each axial direction, and the suction nozzle 42 is controlled to have a predetermined angle. The imaging control circuit 96 controls imaging by the component camera 60 and the head camera device 70 based on imaging control signals from the CPU of the control device 90 and the like. Further, the imaging control circuit 96 acquires image data obtained by imaging of the component camera 60 and the head camera device 70 and stores the acquired image data in the storage unit 93 via the input / output interface 94.
 (部品実装機における実装処理)
 上記の部品実装機1による電子部品Tの実装処理について、図8,9を参照して説明する。この実装処理は、生産設備(部品実装機)による対象製品の「生産処理」に相当する。部品実装機1は、準備処理を実行した後に、電子部品Tの実装制御に移行する。この実装制御では、先ず、複数の吸着ノズル42に電子部品Tを順次吸着させる吸着処理(ステップ11(以下、「ステップ」を「S」と表記する))が実行される。次に、部品装着ヘッド40を回路基板Bにおける装着位置の上方まで移動させる(S12)。このとき、部品装着ヘッド40は、部品カメラ60の上方を経由し、その際に部品カメラ60による電子部品Tの撮像処理が実行される。その後に、電子部品Tを回路基板Bに順次装着する装着処理(S13)が実行される。
(Mounting process in component mounter)
The mounting process of the electronic component T by the component mounter 1 will be described with reference to FIGS. This mounting process corresponds to a “production process” of a target product by a production facility (component mounting machine). The component mounter 1 shifts to mounting control of the electronic component T after executing the preparation process. In this mounting control, first, a suction process (step 11 (hereinafter, “step” is referred to as “S”)) in which the electronic components T are sequentially suctioned by the plurality of suction nozzles 42 is executed. Next, the component mounting head 40 is moved to above the mounting position on the circuit board B (S12). At this time, the component mounting head 40 passes above the component camera 60, and at that time, the imaging process of the electronic component T by the component camera 60 is executed. Thereafter, a mounting process (S13) for sequentially mounting the electronic components T on the circuit board B is executed.
 そして、全ての電子部品Tの装着が終了したか否かを判定し(S14)、装着が終了するまで上記処理(S11~S14)が繰り返される。上記の装着処理(S13)では、吸着ノズル42の昇降や割出しと並行して、待機位置H1-1,H1+1に割出された吸着ノズル42の先端部、および回路基板Bの上面部の撮像処理が実行される。さらに、実装制御部91は、実装精度の向上を図るために、各吸着ノズル42による電子部品Tの保持状態、および回路基板Bの装着状態に基づいて、電子部品Tの実装を制御する。そのため、制御装置90は、部品カメラ60およびヘッドカメラ装置70の撮像により取得された画像データおよび結合データを画像処理することにより、電子部品Tの保持状態および回路基板Bの装着状態を認識するようにしている。 Then, it is determined whether or not all the electronic components T have been mounted (S14), and the above processing (S11 to S14) is repeated until the mounting is completed. In the mounting process (S13), in parallel with the raising and lowering and indexing of the suction nozzle 42, imaging of the tip of the suction nozzle 42 indexed to the standby positions H1-1 and H1 + 1 and the upper surface of the circuit board B are performed. Processing is executed. Further, the mounting control unit 91 controls the mounting of the electronic component T based on the holding state of the electronic component T by each suction nozzle 42 and the mounting state of the circuit board B in order to improve mounting accuracy. Therefore, the control device 90 recognizes the holding state of the electronic component T and the mounting state of the circuit board B by performing image processing on the image data and the combined data acquired by the imaging of the component camera 60 and the head camera device 70. I have to.
 より詳細には、制御装置90は、図9に示すように、先ずノズルホルダ41を回転させて部品を吸着した特定の吸着ノズル42を昇降位置H1に割出す(S131)。これにより、ノズルホルダ41の待機位置H1-1,H1+1には、次回の装着に使用される吸着ノズル42と、前回の装着に使用された吸着ノズル42が割出されることになる。このとき、ヘッドカメラ装置70の撮像制御部84は、制御装置90による制御信号を入力して、回路基板Bの上面部を撮像の対象物として撮像を行う(S231)。 More specifically, as shown in FIG. 9, the control device 90 first rotates the nozzle holder 41 to index the specific suction nozzle 42 that sucks the component to the lift position H1 (S131). As a result, the suction nozzles 42 used for the next mounting and the suction nozzles 42 used for the previous mounting are indexed at the standby positions H1-1 and H1 + 1 of the nozzle holder 41. At this time, the imaging control unit 84 of the head camera device 70 inputs a control signal from the control device 90, and performs imaging using the upper surface portion of the circuit board B as an imaging target (S231).
 詳細には、撮像制御部84は、先ず、記憶部85に記憶された対象物距離情報に基づいて、回路基板Bの上面部からカメラ本体80まで対象物距離を取得する。次に、撮像制御部84は、記憶部85に記憶された焦点距離情報に基づいて、回路基板Bの上面部の対象物距離に対応する液晶レンズ82の焦点距離を取得する。 Specifically, the imaging control unit 84 first acquires the object distance from the upper surface of the circuit board B to the camera body 80 based on the object distance information stored in the storage unit 85. Next, the imaging control unit 84 acquires the focal length of the liquid crystal lens 82 corresponding to the object distance of the upper surface portion of the circuit board B based on the focal length information stored in the storage unit 85.
 そして、撮像制御部84は、当該焦点距離とレンズ特性とに基づいて算出された電圧を液晶レンズ82へ印加し、カメラ本体80の焦点が回路基板Bの上面部に合っている状態とする。そして、撮像制御部84は、回路基板Bの上面部を撮像の対象物とした場合の有効領域を記憶部85から取得する。撮像制御部84は、カメラ視野のうち取得した有効領域に収まる部分的な画像データを撮像により取得して、記憶部85に一時的に記憶させる。 Then, the imaging control unit 84 applies a voltage calculated based on the focal length and the lens characteristics to the liquid crystal lens 82 so that the camera body 80 is focused on the upper surface of the circuit board B. Then, the imaging control unit 84 acquires an effective area from the storage unit 85 when the upper surface portion of the circuit board B is an imaging target. The imaging control unit 84 acquires partial image data that falls within the acquired effective area in the camera field of view by imaging, and temporarily stores it in the storage unit 85.
 続いて、制御装置90は、制御プログラム、前回の装着後に算出された補正値、認識された電子部品Tの保持状態等に基づいて、部品装着ヘッド40を位置決めするとともに吸着ノズル42を昇降させて、電子部品Tを所定の位置に装着する(S132)。このとき、ヘッドカメラ装置70の撮像制御部84は、制御装置90による制御信号を入力して、部品装着ヘッド40において待機位置H1-1,H1+1に割出されている吸着ノズル42の先端部を撮像の対象物として撮像を行う(S232)。 Subsequently, the control device 90 positions the component mounting head 40 and raises and lowers the suction nozzle 42 based on the control program, the correction value calculated after the previous mounting, the holding state of the recognized electronic component T, and the like. Then, the electronic component T is mounted at a predetermined position (S132). At this time, the imaging control unit 84 of the head camera device 70 inputs a control signal from the control device 90, and the tip of the suction nozzle 42 that is indexed to the standby positions H1-1 and H1 + 1 in the component mounting head 40 is displayed. Imaging is performed as an imaging target (S232).
 詳細には、撮像制御部84は、対象物距離情報に基づいて、各吸着ノズル42の先端部からカメラ本体80までの対象物距離を取得する。ここで、撮像素子83から各吸着ノズル42の先端部までの光路の長さは、光学部材73により等しく設定されている。よって、対象物距離情報には、各吸着ノズル42の先端部に係る対象物距離として同値が記されている。そして、撮像制御部84は、焦点距離情報に基づいて、各吸着ノズル42の先端部の対象物距離に対応する液晶レンズ82の焦点距離を取得する。 Specifically, the imaging control unit 84 acquires the object distance from the tip of each suction nozzle 42 to the camera body 80 based on the object distance information. Here, the length of the optical path from the image sensor 83 to the tip of each suction nozzle 42 is set equal by the optical member 73. Therefore, in the object distance information, the same value is written as the object distance related to the tip of each suction nozzle 42. And the imaging control part 84 acquires the focal distance of the liquid-crystal lens 82 corresponding to the target object distance of the front-end | tip part of each suction nozzle 42 based on focal distance information.
 次に、撮像制御部84は、当該焦点距離とレンズ特性とに基づいて算出された電圧を液晶レンズ82へ印加し、カメラ本体80の焦点が各吸着ノズル42の先端部に合っている状態とする。そして、撮像制御部84は、吸着ノズル42の先端部を撮像の対象物とした場合の有効領域を記憶部85から取得する。撮像制御部84は、カメラ視野のうち取得した有効領域に収まる部分的な画像データを撮像により取得して、記憶部85に一時的に記憶させる。 Next, the imaging control unit 84 applies a voltage calculated based on the focal length and the lens characteristics to the liquid crystal lens 82, and the camera body 80 is focused on the tip of each suction nozzle 42. To do. Then, the imaging control unit 84 acquires an effective area from the storage unit 85 when the tip of the suction nozzle 42 is an imaging target. The imaging control unit 84 acquires partial image data that falls within the acquired effective area in the camera field of view by imaging, and temporarily stores it in the storage unit 85.
 このように、撮像制御部84は、対象物距離の異なる複数の対象物をヘッドカメラ装置70が撮像する際に、各対象物距離に応じた電圧を液晶レンズ82にそれぞれ印加して焦点合わせを行う。また、回路基板Bの上面部を対象物とした撮像処理(S231)では、前回の装着による回路基板Bの装着状態、および次回の装着位置におけるクリームハンダの印刷状態が画像データに含まれる。複数の吸着ノズル42の先端部を対象物とした撮像処理(S232)では、次回の装着で使用される吸着ノズル42による電子部品Tの保持状態、および前回の装着で使用された吸着ノズル42による電子部品Tの持ち帰りの有無が画像データに含まれる。 As described above, when the head camera device 70 images a plurality of objects with different object distances, the imaging control unit 84 applies a voltage corresponding to each object distance to the liquid crystal lens 82 to perform focusing. Do. Further, in the imaging process (S231) using the upper surface portion of the circuit board B as an object, the mounting state of the circuit board B by the previous mounting and the printing state of the cream solder at the next mounting position are included in the image data. In the imaging process (S232) using the tip portions of the plurality of suction nozzles 42 as an object, the holding state of the electronic component T by the suction nozzles 42 used in the next mounting and the suction nozzles 42 used in the previous mounting are used. Whether or not the electronic component T is taken home is included in the image data.
 ヘッドカメラ装置70の画像処理部86は、各撮像処理(S231,S232)により記憶部85に記憶された各画像データを、対応する各有効領域に基づいて結合する(S233)。これにより、図7に示すように、異なる対象物距離にある複数の対象物に焦点が合った結合データが生成される。この結合データは、ヘッドカメラ装置70から制御装置90に転送され、制御装置90の記憶部93に記憶される。 The image processing unit 86 of the head camera device 70 combines the image data stored in the storage unit 85 by the respective imaging processes (S231, S232) based on the corresponding effective areas (S233). As a result, as shown in FIG. 7, combined data in which a plurality of objects at different object distances are in focus is generated. This combined data is transferred from the head camera device 70 to the control device 90 and stored in the storage unit 93 of the control device 90.
 制御装置90の実装制御部91は、保持した電子部品Tを回路基板Bに全て装着したかにより装着処理が終了したか否かを判定する(S133)。装着処理が終了していない場合には(S133:No)、制御装置90は、画像処理部92による結合データの解析結果に基づいて、制御プログラムの補正値を算出するなどの補正処理を実行する(S134)。さらに、制御装置90は、上記の解析結果に基づいて、次回の装着に使用される吸着ノズル42による電子部品Tの保持状態や、前回の装着に使用された吸着ノズル42による電子部品Tの持ち帰りの有無、回路基板Bの装着状態などの認識処理を行う(S135)。 The mounting control unit 91 of the control device 90 determines whether or not the mounting process is completed depending on whether or not all the held electronic components T are mounted on the circuit board B (S133). If the mounting process is not completed (S133: No), the control device 90 executes a correction process such as calculating a correction value of the control program based on the analysis result of the combined data by the image processing unit 92. (S134). Further, based on the above analysis result, the control device 90 holds the electronic component T by the suction nozzle 42 used for the next mounting, or brings back the electronic component T by the suction nozzle 42 used for the previous mounting. Recognition processing such as the presence or absence of the circuit board B and the mounting state of the circuit board B is performed (S135).
 そして、制御装置90は、再び吸着ノズル42の割出し(S131)等を実行する。また、制御装置90は、上記の状態確認処理(S135)により、例えば装着不良や吸着ノズル42の欠損等の事象が認識された場合には、各事象に対応するリカバリ処理を実行する。制御装置90は、このような動作を繰り返すことにより、装着処理において必要とする電子部品Tの全ての装着を終了すると(S133:Yes)、当該装着処理を終了する。 Then, the control device 90 executes indexing of the suction nozzle 42 (S131) and the like again. In addition, when an event such as a mounting failure or a loss of the suction nozzle 42 is recognized by the state confirmation process (S135), the control device 90 performs a recovery process corresponding to each event. The control device 90 repeats such an operation, and when the mounting of all the electronic components T required in the mounting process is completed (S133: Yes), the mounting process ends.
 (実施形態の構成による効果)
 上述した部品実装機1によると、撮像装置(ヘッドカメラ装置70)は、光学系を構成するレンズユニットに可変焦点レンズ(液晶レンズ82)を採用する構成とした。これにより、異なる対象物距離にある複数の対象物の撮像にヘッドカメラ装置70を兼用することができる。また、液晶レンズ82は印加電圧によって焦点距離を変動可能なので、複数のレンズ間の距離を変動させる機械式と比較して装置の小型化を図ることができる。
(Effects of the configuration of the embodiment)
According to the component mounting machine 1 described above, the imaging device (head camera device 70) is configured to employ the variable focus lens (liquid crystal lens 82) in the lens unit constituting the optical system. As a result, the head camera device 70 can also be used for imaging a plurality of objects at different object distances. Further, since the focal length of the liquid crystal lens 82 can be changed by the applied voltage, the apparatus can be reduced in size as compared with a mechanical type that changes the distance between a plurality of lenses.
 また、画像処理部86は、複数の対象物の撮像による画像データを各有効領域に基づいて結合した結合データを生成する構成とした。これにより、撮像制御部84および画像処理部86は、有効領域の外部に対する撮像処理や画像処理が不要となり、これらの処理の負荷を軽減することができる。よって、部品実装機1の制御装置90は、必要な複数の画像データを結合データとして取得できるので、補正処理(S134)や状態認識処理(S135)を効率的に行うことができる。 Further, the image processing unit 86 is configured to generate combined data obtained by combining image data obtained by imaging a plurality of objects based on each effective area. Thereby, the imaging control unit 84 and the image processing unit 86 do not need imaging processing and image processing outside the effective area, and can reduce the load of these processing. Therefore, since the control device 90 of the component mounter 1 can acquire a plurality of necessary image data as combined data, the correction process (S134) and the state recognition process (S135) can be performed efficiently.
 撮像制御部84は、対象物を撮像する際に、対象物距離情報、焦点距離情報およびレンズ特性に基づいて算出された電圧を液晶レンズ82に印加することにより、レンズユニットの焦点合わせを行うものとした。このように、ヘッドカメラ装置70は、対象物距離を予め認識していることを前提として、所定の電圧を液晶レンズ82に印加する焦点合わせの方法を採用している。よって、ヘッドカメラ装置70は、撮像の際に画像処理に基づく印加電圧の調整を要しないので、撮像処理の高速化および撮像処理の効率化を図ることができる。 The imaging control unit 84 performs focusing of the lens unit by applying a voltage calculated based on the object distance information, focal length information, and lens characteristics to the liquid crystal lens 82 when imaging the object. It was. As described above, the head camera device 70 employs a focusing method in which a predetermined voltage is applied to the liquid crystal lens 82 on the assumption that the object distance is recognized in advance. Therefore, since the head camera device 70 does not require adjustment of the applied voltage based on image processing at the time of imaging, the imaging process can be speeded up and the imaging process can be performed efficiently.
 ヘッドカメラ装置70は、光学部材73によって、撮像素子83から異なる2つの吸着ノズル42までの光路の長さが等しくなるように、当該光路を形成するものとした。これにより、2つの吸着ノズル42については、カメラ本体80のカメラ視野においてそれぞれ異なる領域に収まることになり、等しい焦点距離をもって同時に撮像することが可能となる。よって、ヘッドカメラ装置70は、対象物距離を概ね認識していることを前提として、複数の有効領域を同時に撮像できるので、撮像処理をより効率化することができる。 The head camera device 70 forms the optical path by the optical member 73 so that the lengths of the optical paths from the imaging element 83 to the two different suction nozzles 42 are equal. As a result, the two suction nozzles 42 are in different regions in the camera field of the camera body 80, and images can be simultaneously captured with the same focal length. Therefore, since the head camera device 70 can image a plurality of effective areas at the same time on the assumption that the object distance is generally recognized, the imaging process can be made more efficient.
 本実施形態において、生産設備は、回路基板製品を対象とした生産ラインを構成し、回路基板に電子部品を装着する部品実装機1であるものとした。このような部品実装機1には、対象製品の微細化や生産処理の高精度化が望まれており、上述した構成からなるヘッドカメラ装置70の部品実装機1への適用は特に有用である。そして、本実施形態では、ヘッドカメラ装置70は、撮像の対象物に吸着ノズル42の先端部、および回路基板Bの上面部が含まれるものとした。そして、制御装置90は、これら複数の対象物の撮像による画像データを結合して生成された結合データに基づいて、吸着ノズル42の保持状態および回路基板Bの装着状態を認識する(S135)。これにより、制御装置90の実装制御部91は、各状態に基づいて実装制御を実行できるので、実装制御の精度を向上できるとともに、装着不良の発生を抑制できる。 In this embodiment, the production facility is a component mounter 1 that forms a production line for circuit board products and mounts electronic components on the circuit board. Such a component mounter 1 is desired to have a finer target product and higher production process accuracy, and the application of the head camera device 70 having the above-described configuration to the component mounter 1 is particularly useful. . In the present embodiment, the head camera device 70 includes the tip of the suction nozzle 42 and the upper surface of the circuit board B in the imaging target. Then, the control device 90 recognizes the holding state of the suction nozzle 42 and the mounting state of the circuit board B based on the combined data generated by combining the image data obtained by capturing the plurality of objects (S135). Thereby, since the mounting control part 91 of the control apparatus 90 can perform mounting control based on each state, while being able to improve the precision of mounting control, generation | occurrence | production of mounting defect can be suppressed.
 また、部品移載装置30の部品装着ヘッド40は、ノズルホルダ41により複数の吸着ノズル42を支持する構成とした。そして、ヘッドカメラ装置70は、昇降位置H1に所定の吸着ノズル42が割出されることによって、昇降位置H1と隣り合う2箇所の待機位置H1-1,H1+1に割出された2つの吸着ノズル42の各先端部を撮像の対象物に含む構成とした。つまり、装着処理の前後における吸着ノズル42の先端部が撮像の対象となる。これにより、制御装置90は、吸着ノズル42による電子部品Tの保持状態、持ち帰り有無、先端部の欠損有無などを認識できる。よって、実装制御の精度をさらに向上できるとともに、適正なリカバリ処理の実行に速やかに移行できる。 In addition, the component mounting head 40 of the component transfer apparatus 30 is configured to support the plurality of suction nozzles 42 by the nozzle holder 41. In the head camera device 70, when the predetermined suction nozzle 42 is indexed at the lift position H1, the two suction nozzles 42 indexed at two standby positions H1-1 and H1 + 1 adjacent to the lift position H1. Each of the tip portions is included in the object to be imaged. That is, the tip portion of the suction nozzle 42 before and after the mounting process is an object to be imaged. Thereby, the control apparatus 90 can recognize the holding state of the electronic component T by the suction nozzle 42, the presence / absence of take-out, the presence / absence of a tip portion, and the like. Therefore, it is possible to further improve the accuracy of the mounting control and promptly shift to the execution of an appropriate recovery process.
 <実施形態の変形態様>
 本実施形態において、ヘッドカメラ装置70は、待機位置H1-1,H1+1に割出された2つの吸着ノズル42の先端部と、回路基板Bの上面部とを撮像の対象物とした。撮像の対象物としては、複数であれば3以上でもよく、また光学部材73などの構成によりカメラ視野に収まるのであれば、種々の部材を撮像の対象物とすることができる。例えば、部品装着ヘッド40が吸着処理(S11)の際に部品供給装置20の上方に移動した場合には、部品供給位置Psにある電子部品Tを撮像の対象物としてもよい。これにより、制御装置90は、画像処理により、電子部品Tの供給状態を認識して、吸着処理に反映することができる。
<Modification of Embodiment>
In the present embodiment, the head camera device 70 uses the tip portions of the two suction nozzles 42 indexed at the standby positions H1-1 and H1 + 1 and the upper surface portion of the circuit board B as objects to be imaged. The number of objects to be imaged may be three or more as long as there are a plurality of objects, and various members can be objects to be imaged as long as they are within the camera field of view by the configuration of the optical member 73 and the like. For example, when the component mounting head 40 moves above the component supply device 20 during the suction process (S11), the electronic component T at the component supply position Ps may be used as an imaging target. Thereby, the control apparatus 90 can recognize the supply state of the electronic component T by image processing, and can reflect in the adsorption | suction process.
 また、撮像制御部84は、各対象物を撮像する際に、撮像処理の効率化を図るために、何れに対しても算出された所定の電圧を液晶レンズ82に印加するものとした(S231,S232)。これに対して、撮像処理にある程度の時間を要してもよい場合には、例えば少なくとも一部の画像処理に基づく印加電圧の調整をすることで、レンズユニットの焦点を撮像の対象物に合わせるようにしてもよい。これにより、周辺温度を含む撮像環境に可変焦点レンズが影響を受ける場合であっても、確実に撮像の対象物に焦点合わせを行うことができる。また、可変焦点レンズとしては、本実施形態で例示した液晶レンズの他に、液体レンズを採用してもよい。 Further, the imaging control unit 84 applies a predetermined voltage calculated for each of the objects to the liquid crystal lens 82 in order to improve the efficiency of the imaging process when imaging each object (S231). , S232). On the other hand, when a certain amount of time may be required for the imaging process, the lens unit is focused on the object to be imaged, for example, by adjusting the applied voltage based on at least a part of the image processing. You may do it. Thereby, even when the variable focus lens is affected by the imaging environment including the ambient temperature, it is possible to reliably focus on the object to be imaged. In addition to the liquid crystal lens exemplified in this embodiment, a liquid lens may be employed as the variable focus lens.
 本実施形態では、上記の構成からなる撮像装置として、ヘッドカメラ装置70に適用する構成を例示した。これに対して、部品実装機1に用いられる部品カメラ60など他の撮像装置についても同様に適用することができる。即ち、部品カメラ60のレンズユニットに可変焦点レンズを採用するとともに、部品カメラ60が吸着ノズル42に保持された電子部品Tに加えて、基板搬送装置10や部品供給装置20などの一部を撮像の対象物とする構成としてもよい。 In the present embodiment, the configuration applied to the head camera device 70 is exemplified as the imaging device having the above configuration. On the other hand, the present invention can be similarly applied to other imaging devices such as the component camera 60 used in the component mounter 1. That is, a variable focus lens is used for the lens unit of the component camera 60, and in addition to the electronic component T held by the suction nozzle 42, the component camera 60 picks up a part of the substrate transfer device 10, the component supply device 20, and the like. It is good also as a structure made into a target object.
 また、撮像制御部84は、算出された所定の電圧を液晶レンズ82に印加する場合において、その印加電圧を補正する構成としてもよい。つまり、撮像制御部84は、撮像の対象物に吸着ノズル42の先端部に保持された電子部品Tが含まれる場合に、制御プログラムに含まれる電子部品Tの寸法情報を取得する。そして、撮像制御部84は、電子部品Tにおけるヘッドカメラ装置70の光軸方向長さに基づいて、印加電圧を補正する。 Further, the imaging control unit 84 may be configured to correct the applied voltage when the calculated predetermined voltage is applied to the liquid crystal lens 82. That is, when the imaging target includes the electronic component T held at the tip of the suction nozzle 42, the imaging control unit 84 acquires the dimension information of the electronic component T included in the control program. Then, the imaging control unit 84 corrects the applied voltage based on the length in the optical axis direction of the head camera device 70 in the electronic component T.
 具体的には、撮像制御部84は、先ず、制御プログラムに含まれる電子部品Tの寸法情報として、例えば部品番号などを取得する。そして、撮像制御部84は、部品番号に対応して当該電子部品Tの寸法が記録された部品テーブルから、カメラ本体80の光軸方向の寸法を取得する。この光軸方向の寸法とは、光学部材73により屈折する光路のうち電子部品Tと交差する部位の光の進行方向に相当する。続いて、撮像制御部84は、レンズ特性に基づいて、レンズユニットの焦点距離が寸法だけ短くなった場合に、液晶レンズ82に印加する電圧の変化量を調整電圧として算出する。 Specifically, the imaging control unit 84 first acquires, for example, a part number as dimension information of the electronic part T included in the control program. Then, the imaging control unit 84 acquires the dimension of the camera body 80 in the optical axis direction from the component table in which the dimension of the electronic component T is recorded corresponding to the component number. The dimension in the direction of the optical axis corresponds to the traveling direction of light at a portion that intersects the electronic component T in the optical path refracted by the optical member 73. Subsequently, the imaging control unit 84 calculates the amount of change in the voltage applied to the liquid crystal lens 82 as the adjustment voltage when the focal length of the lens unit is shortened by the dimension based on the lens characteristics.
 そして、撮像制御部84は、焦点距離情報およびレンズ特性に基づいて算出された印加電圧に、上記の調整電圧を付加して補正する。この補正された電圧が液晶レンズ82に印加されると、カメラ本体80のレンズユニットの焦点が吸着ノズル42に吸着された電子部品の側面に合っている状態となる。これにより、さらに高精度に印加電圧を調整できるので、より鮮鋭な画像データを取得できる。また、このような補正方法は、撮像の対象物に電子部品Tが含まれる場合であれば、上記のように、部品供給位置Psにある電子部品を撮像する場合や、本構成を部品カメラ60に適用した構成においても適用することができる。 Then, the imaging control unit 84 corrects the applied voltage calculated based on the focal length information and the lens characteristics by adding the adjustment voltage. When this corrected voltage is applied to the liquid crystal lens 82, the focus of the lens unit of the camera body 80 is in a state where it is aligned with the side surface of the electronic component sucked by the suction nozzle 42. Thereby, the applied voltage can be adjusted with higher accuracy, so that sharper image data can be acquired. Further, in such a correction method, when the electronic component T is included in the object to be imaged, as described above, when the electronic component at the component supply position Ps is imaged, the present configuration is applied to the component camera 60. The present invention can also be applied to the configuration applied to the above.
 また、本実施形態では、撮像制御部84、記憶部85、および画像処理部86は、ヘッドカメラ装置70のカメラ本体80を構成するものとした。これに対して、撮像制御部84、記憶部85、および画像処理部86は、ヘッドカメラ装置70と通信可能に接続された制御装置90に配置される構成としてもよい。このような構成においては、制御装置90の一部が撮像装置の一部を構成し、本実施形態と同様の効果を奏する。但し、制御装置90での処理負荷の軽減、およびヘッドカメラ装置70と制御装置90の通信処理の軽減という観点からは、本実施形態で例示した態様が好適である。 In this embodiment, the imaging control unit 84, the storage unit 85, and the image processing unit 86 constitute the camera body 80 of the head camera device 70. On the other hand, the imaging control unit 84, the storage unit 85, and the image processing unit 86 may be arranged in a control device 90 that is communicably connected to the head camera device 70. In such a configuration, a part of the control device 90 constitutes a part of the imaging device, and the same effects as those of the present embodiment are achieved. However, from the viewpoints of reducing the processing load on the control device 90 and reducing the communication processing between the head camera device 70 and the control device 90, the embodiment exemplified in this embodiment is preferable.
 さらに、撮像装置は、部品実装機1に適用される他に、対象物距離の異なる複数の対象物を撮像して各有効領域に基づいて結合データを生成する構成であれば、他の生産設備や撮像装置単体として使用されるようにしてもよい。例えば、撮像装置は、回路基板製品の生産ラインを構成する他の印刷機や検査機に適用することも可能である。さらに、撮像装置は、回路基板製品以外の製品を生産の対象とする工作機械や汎用組立機などの生産設備に適用することも可能である。このような構成においても、実施形態と同様の効果を奏するとともに、製品の微細化や高精度化が望まれる生産設備への適用は特に有用である。 Furthermore, in addition to being applied to the component mounting machine 1, the imaging device is configured to generate a combination data based on each effective area by imaging a plurality of objects having different object distances. Alternatively, it may be used as a single imaging device. For example, the imaging device can also be applied to other printing machines and inspection machines that constitute a production line for circuit board products. Furthermore, the imaging device can also be applied to production equipment such as machine tools and general-purpose assembly machines that produce products other than circuit board products. Even in such a configuration, the same effects as in the embodiment can be obtained, and the application to a production facility where miniaturization and high accuracy of a product are desired is particularly useful.
 1:部品実装機(生産設備)、 2:基台
 10:基板搬送装置、 20:部品供給装置、 30:部品移載装置
  40:部品装着ヘッド(移動ヘッド)
   41:ノズルホルダ(ホルダ部材)、 42:吸着ノズル
 60:部品カメラ
 70:ヘッドカメラ装置(撮像装置)
  71:撮像ケース、 72:照射体、 73:光学部材
   73a:第一プリズム、 73b:第二プリズム
  80:カメラ本体、
   81:固定レンズ、 82:液晶レンズ(可変焦点レンズ)
   83:撮像素子、 84:撮像制御部、 85:記憶部
   86:画像処理部
 90:制御装置
 Ps:部品供給位置、 B:回路基板、 T:電子部品
1: component mounting machine (production equipment), 2: base 10: substrate transfer device, 20: component supply device, 30: component transfer device 40: component mounting head (moving head)
41: Nozzle holder (holder member), 42: Suction nozzle 60: Component camera 70: Head camera device (imaging device)
71: Imaging case 72: Irradiating body 73: Optical member 73a: First prism 73b: Second prism 80: Camera body
81: Fixed lens, 82: Liquid crystal lens (variable focus lens)
83: Imaging device, 84: Imaging control unit, 85: Storage unit, 86: Image processing unit, 90: Control device, Ps: Component supply position, B: Circuit board, T: Electronic component

Claims (8)

  1.  印加電圧に応じて焦点距離を変動可能な可変焦点レンズと、
     前記撮像装置から互いに異なる距離にある複数の対象物を前記撮像装置が撮像する際に、各前記距離に応じた電圧を前記可変焦点レンズにそれぞれ印加する撮像制御部と、
     前記撮像装置が撮像可能な撮像領域のうち前記対象物を含む一部の領域を有効領域として、前記複数の対象物ごとに予め設定された各前記有効領域を記憶する記憶部と、
     前記複数の対象物の撮像により取得された複数の画像データを各前記有効領域に基づいて結合して結合データを生成する画像処理部と、
     を備える撮像装置。
    A variable focus lens capable of changing the focal length according to the applied voltage;
    An imaging control unit that applies a voltage corresponding to each distance to the variable focus lens when the imaging device images a plurality of objects at different distances from the imaging device;
    A storage unit that stores each of the effective areas set in advance for each of the plurality of objects, using a part of the imaging area that can be captured by the imaging apparatus as an effective area.
    An image processing unit configured to combine a plurality of pieces of image data acquired by imaging the plurality of objects based on the effective areas to generate combined data;
    An imaging apparatus comprising:
  2.  前記記憶部は、
     前記撮像装置から前記複数の対象物までの各前記距離を示す対象物距離情報と、
     前記複数の対象物の各前記距離にそれぞれ対応する前記可変焦点レンズの各前記焦点距離を示す焦点距離情報と、
     前記可変焦点レンズへの印加電圧と焦点距離との関係を示すレンズ特性と、を記憶し、
     前記撮像制御部は、前記対象物を撮像する際に、前記対象物距離情報、前記焦点距離情報および前記レンズ特性に基づいて算出される電圧を前記可変焦点レンズに印加する、請求項1の撮像装置。
    The storage unit
    Object distance information indicating each of the distances from the imaging device to the plurality of objects;
    Focal length information indicating each focal length of the variable focus lens corresponding to each of the distances of the plurality of objects;
    Storing lens characteristics indicating a relationship between a voltage applied to the variable focus lens and a focal length;
    The imaging according to claim 1, wherein the imaging control unit applies a voltage calculated based on the object distance information, the focal length information, and the lens characteristics to the variable focus lens when imaging the object. apparatus.
  3.  前記撮像装置は、3以上の前記対象物を撮像の対象とし、3以上の前記対象物のうち複数の前記対象物から前記撮像装置に至るまでの光路の長さが等しくなるように、複数の前記対象物のうち少なくとも一つの前記対象物の前記光路を形成する光学部材を有し、
     前記撮像制御部は、前記光路の長さが等しい複数の前記対象物について前記撮像装置から同一の距離にあるものとして、可変焦点レンズに当該距離に応じた電圧を印加して撮像を行う、請求項1または2の撮像装置。
    The imaging device takes three or more objects as imaging targets, and a plurality of optical paths from the plurality of objects to the imaging device among the three or more objects are equal to each other. An optical member that forms the optical path of at least one of the objects;
    The imaging control unit performs imaging by applying a voltage corresponding to the distance to a variable focus lens, assuming that the plurality of objects having the same optical path length are at the same distance from the imaging device. Item 3. The imaging device according to Item 1 or 2.
  4.  請求項1~3の何れか一項の前記撮像装置と、
     前記撮像装置と通信可能に接続され、前記撮像装置から撮像による画像データを取得し、前記結合データと予め記憶している制御プログラムに基づいて生産処理を制御する制御装置と、
     を備える生産設備。
    The imaging apparatus according to any one of claims 1 to 3,
    A control device that is communicably connected to the imaging device, acquires image data obtained by imaging from the imaging device, and controls a production process based on the combined data and a pre-stored control program;
    Production equipment with.
  5.  前記生産設備は、回路基板に電子部品を実装して生産される回路基板製品を対象とし、前記回路基板製品の生産ラインを構成する、請求項4の生産設備。 The production equipment according to claim 4, wherein the production equipment is for circuit board products produced by mounting electronic components on a circuit board, and constitutes a production line for the circuit board products.
  6.  前記生産設備は、
     部品供給位置に供給された前記電子部品を吸着して保持する1又は複数の吸着ノズルと、
     前記吸着ノズルを昇降可能に支持し、前記部品供給位置から回路基板が位置決めされた部品装着位置まで移動可能に設けられた移動ヘッドと、
     をさらに備え、前記制御装置の制御により前記回路基板に前記電子部品を装着する部品実装機であり、
     前記複数の対象物には、前記吸着ノズルの先端部、および前記回路基板の上面部が含まれ、
     前記制御装置は、前記撮像装置の撮像による前記結合データに含まれる前記吸着ノズルの保持状態および前記回路基板の装着状態に基づいて、前記電子部品の実装を制御する、請求項5の生産設備。
    The production equipment is
    One or more suction nozzles for sucking and holding the electronic component supplied to the component supply position;
    A movable head that supports the suction nozzle so as to be movable up and down and is movable from the component supply position to a component mounting position where the circuit board is positioned;
    A component mounter for mounting the electronic component on the circuit board under the control of the control device,
    The plurality of objects include a tip portion of the suction nozzle and an upper surface portion of the circuit board,
    The production facility according to claim 5, wherein the control device controls mounting of the electronic component based on a holding state of the suction nozzle and a mounting state of the circuit board included in the combined data obtained by imaging of the imaging device.
  7.  前記移動ヘッドは、回転可能なホルダ部材により複数の前記吸着ノズルを支持し、当該ホルダ部材の回転により前記移動ヘッドにおいて前記吸着ノズルを昇降可能とする昇降位置に複数の前記吸着ノズルを順次割出し可能に構成され、
     前記複数の対象物に含まれる前記吸着ノズルの先端部には、前記昇降位置に所定の前記吸着ノズルが割出されることによって前記昇降位置と隣り合う2箇所の待機位置に割出された2つの前記吸着ノズルの各先端部が含まれる、請求項6の生産設備。
    The moving head supports a plurality of the suction nozzles by a rotatable holder member, and sequentially indexes the plurality of suction nozzles to a lifting position where the suction head can be lifted and lowered by the rotation of the holder member. Configured and possible
    At the tip of the suction nozzles included in the plurality of objects, two predetermined indexing nozzles are indexed at the elevation position, and two indexed positions at the two standby positions adjacent to the elevation position are obtained. The production facility according to claim 6, wherein each tip of the suction nozzle is included.
  8.  前記撮像制御部は、前記複数の対象物に前記電子部品が含まれる場合に、前記制御プログラムに含まれる前記電子部品の寸法情報を取得し、前記電子部品における前記撮像装置の光軸方向長さに基づいて、前記可変焦点レンズへの印加電圧をさらに補正する、請求項5~7の何れか一項の生産設備。 When the electronic parts are included in the plurality of objects, the imaging control unit acquires dimensional information of the electronic parts included in the control program, and the length in the optical axis direction of the imaging device in the electronic parts The production facility according to any one of claims 5 to 7, wherein the applied voltage to the variable focus lens is further corrected based on the following.
PCT/JP2013/068271 2013-07-03 2013-07-03 Imaging device and production equipment WO2015001633A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2015524951A JP6267200B2 (en) 2013-07-03 2013-07-03 Imaging device and production equipment
PCT/JP2013/068271 WO2015001633A1 (en) 2013-07-03 2013-07-03 Imaging device and production equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2013/068271 WO2015001633A1 (en) 2013-07-03 2013-07-03 Imaging device and production equipment

Publications (1)

Publication Number Publication Date
WO2015001633A1 true WO2015001633A1 (en) 2015-01-08

Family

ID=52143253

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/068271 WO2015001633A1 (en) 2013-07-03 2013-07-03 Imaging device and production equipment

Country Status (2)

Country Link
JP (1) JP6267200B2 (en)
WO (1) WO2015001633A1 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2016139753A1 (en) * 2015-03-03 2017-12-07 富士機械製造株式会社 Component mounter
JP2017220544A (en) * 2016-06-07 2017-12-14 富士機械製造株式会社 Component mounting machine
WO2018154673A1 (en) * 2017-02-23 2018-08-30 株式会社Fuji Component mounting device
WO2019016848A1 (en) * 2017-07-18 2019-01-24 株式会社Fuji Component-mounting machine and method for adjusting illumination light amount thereof
WO2020012588A1 (en) * 2018-07-12 2020-01-16 株式会社Fuji Image processing method and component mounting machine
CN113455117A (en) * 2019-02-19 2021-09-28 株式会社富士 Component mounting machine

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005072046A (en) * 2003-08-26 2005-03-17 Juki Corp Apparatus for packaging electronic component
JP2008311476A (en) * 2007-06-15 2008-12-25 Fuji Mach Mfg Co Ltd Mounting component mounting head and device
JP2009206831A (en) * 2008-02-27 2009-09-10 Kyocera Corp Imaging apparatus, method of generating image, and electronic equipment
JP2009210705A (en) * 2008-03-03 2009-09-17 Citizen Holdings Co Ltd Projection display device
JP2011086847A (en) * 2009-10-19 2011-04-28 Juki Corp Electronic component mounting apparatus
JP2011228554A (en) * 2010-04-21 2011-11-10 Fuji Mach Mfg Co Ltd Component image processing device and method thereof
JP2013025507A (en) * 2011-07-19 2013-02-04 Nippon Telegr & Teleph Corp <Ntt> Printed information reading device

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4234402B2 (en) * 2002-11-21 2009-03-04 富士機械製造株式会社 Electronic circuit component image acquisition device
JP5202100B2 (en) * 2008-05-20 2013-06-05 富士機械製造株式会社 Holding device with imaging device

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005072046A (en) * 2003-08-26 2005-03-17 Juki Corp Apparatus for packaging electronic component
JP2008311476A (en) * 2007-06-15 2008-12-25 Fuji Mach Mfg Co Ltd Mounting component mounting head and device
JP2009206831A (en) * 2008-02-27 2009-09-10 Kyocera Corp Imaging apparatus, method of generating image, and electronic equipment
JP2009210705A (en) * 2008-03-03 2009-09-17 Citizen Holdings Co Ltd Projection display device
JP2011086847A (en) * 2009-10-19 2011-04-28 Juki Corp Electronic component mounting apparatus
JP2011228554A (en) * 2010-04-21 2011-11-10 Fuji Mach Mfg Co Ltd Component image processing device and method thereof
JP2013025507A (en) * 2011-07-19 2013-02-04 Nippon Telegr & Teleph Corp <Ntt> Printed information reading device

Cited By (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2016139753A1 (en) * 2015-03-03 2017-12-07 富士機械製造株式会社 Component mounter
JP2017220544A (en) * 2016-06-07 2017-12-14 富士機械製造株式会社 Component mounting machine
JP7002831B2 (en) 2016-06-07 2022-01-20 株式会社Fuji Parts mounting machine
WO2018154673A1 (en) * 2017-02-23 2018-08-30 株式会社Fuji Component mounting device
US11419251B2 (en) 2017-02-23 2022-08-16 Fuji Corporation Component mounting device
CN110291854A (en) * 2017-02-23 2019-09-27 株式会社富士 Element fixing apparatus
CN110291854B (en) * 2017-02-23 2021-08-31 株式会社富士 Component mounting apparatus
EP3657926A4 (en) * 2017-07-18 2020-07-29 Fuji Corporation Component-mounting machine and method for adjusting illumination light amount thereof
CN110870400A (en) * 2017-07-18 2020-03-06 株式会社富士 Component mounting machine and method for adjusting illumination light quantity of component mounting machine
US10939518B2 (en) 2017-07-18 2021-03-02 Fuji Corporation Component-mounting machine and method for adjusting illumination light amount thereof
CN110870400B (en) * 2017-07-18 2021-07-23 株式会社富士 Component mounting machine and method for adjusting illumination light quantity of component mounting machine
JPWO2019016848A1 (en) * 2017-07-18 2020-02-27 株式会社Fuji Component mounter and method of adjusting illumination light amount
JP7026115B2 (en) 2017-07-18 2022-02-25 株式会社Fuji Parts mounting machine
WO2019016848A1 (en) * 2017-07-18 2019-01-24 株式会社Fuji Component-mounting machine and method for adjusting illumination light amount thereof
CN112369135A (en) * 2018-07-12 2021-02-12 株式会社富士 Image processing method and component mounting machine
JPWO2020012588A1 (en) * 2018-07-12 2021-03-11 株式会社Fuji Image processing method and component mounting machine
WO2020012588A1 (en) * 2018-07-12 2020-01-16 株式会社Fuji Image processing method and component mounting machine
CN113455117A (en) * 2019-02-19 2021-09-28 株式会社富士 Component mounting machine
CN113455117B (en) * 2019-02-19 2023-05-16 株式会社富士 Component assembling machine

Also Published As

Publication number Publication date
JP6267200B2 (en) 2018-01-24
JPWO2015001633A1 (en) 2017-02-23

Similar Documents

Publication Publication Date Title
JP6212134B2 (en) Assembly machine
JP6267200B2 (en) Imaging device and production equipment
US8782879B2 (en) Workpiece transfer apparatus
JP6262536B2 (en) Manufacturing method of camera module
JP6166069B2 (en) Die bonder and collet position adjustment method
JP6684792B2 (en) Mounting device, imaging processing method, and imaging unit
JP6298064B2 (en) Component mounter
JP2012222305A (en) Component mounting machine
JP6147016B2 (en) Assembly machine
JP6271514B2 (en) Production equipment
JP6309962B2 (en) Assembly machine
WO2017126025A1 (en) Mounting apparatus and image processing method
JP5988839B2 (en) Component mounter
JP6475264B2 (en) Component mounter
JP2012248717A (en) Position recognition camera and position recognition device
JP6334528B2 (en) Imaging device and production equipment
JP2009188265A (en) Mounter

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13888788

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2015524951

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13888788

Country of ref document: EP

Kind code of ref document: A1