WO2015001589A1 - Brown's gas generation device and fuel production/supply system - Google Patents

Brown's gas generation device and fuel production/supply system Download PDF

Info

Publication number
WO2015001589A1
WO2015001589A1 PCT/JP2013/006949 JP2013006949W WO2015001589A1 WO 2015001589 A1 WO2015001589 A1 WO 2015001589A1 JP 2013006949 W JP2013006949 W JP 2013006949W WO 2015001589 A1 WO2015001589 A1 WO 2015001589A1
Authority
WO
WIPO (PCT)
Prior art keywords
fuel
brown gas
gas
mixer
path
Prior art date
Application number
PCT/JP2013/006949
Other languages
French (fr)
Japanese (ja)
Inventor
勉 勅使河原
一志 今中
高志 竹本
Original Assignee
有限会社ノートイス
勅使河原 誠人
株式会社豊代
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 有限会社ノートイス, 勅使河原 誠人, 株式会社豊代 filed Critical 有限会社ノートイス
Publication of WO2015001589A1 publication Critical patent/WO2015001589A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B1/00Electrolytic production of inorganic compounds or non-metals
    • C25B1/01Products
    • C25B1/02Hydrogen or oxygen
    • C25B1/04Hydrogen or oxygen by electrolysis of water
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B11/00Electrodes; Manufacture thereof not otherwise provided for
    • C25B11/02Electrodes; Manufacture thereof not otherwise provided for characterised by shape or form
    • C25B11/036Bipolar electrodes
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B9/00Cells or assemblies of cells; Constructional parts of cells; Assemblies of constructional parts, e.g. electrode-diaphragm assemblies; Process-related cell features
    • C25B9/70Assemblies comprising two or more cells
    • C25B9/73Assemblies comprising two or more cells of the filter-press type
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B9/00Cells or assemblies of cells; Constructional parts of cells; Assemblies of constructional parts, e.g. electrode-diaphragm assemblies; Process-related cell features
    • C25B9/70Assemblies comprising two or more cells
    • C25B9/73Assemblies comprising two or more cells of the filter-press type
    • C25B9/75Assemblies comprising two or more cells of the filter-press type having bipolar electrodes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/36Hydrogen production from non-carbon containing sources, e.g. by water electrolysis

Definitions

  • the present invention relates to a brown gas generator that electrolyzes water in an electrolytic cell to generate a brown gas containing hydrogen, and a fuel generation and supply system having a brown gas generator that is the brown gas generator.
  • This brown gas generation device contains water, an electrolysis tank provided with an electrode that decomposes water and generates brown gas composed of hydrogen gas and hydrogen gas, and a power supply means for supplying current to the electrode, A first measuring means for measuring the water temperature of the water in the water electrolyzer, a second measuring means for measuring a current or voltage applied to the electrode, and an amount of brown gas generated in the water electrolyzer. And third measuring means for measuring.
  • the brown gas generation device described in Patent Document 1 requires the three measurement means described above, and the amount of data to be handled increases, resulting in complicated processing and configuration. Furthermore, the brown gas generator of Patent Document 1 acquires the measurement results by the cooling means for cooling the water in the water electrolyzer and the first, second and third measurement means, and according to the measurement results.
  • the power supply means determines the current or voltage value and water temperature supplied to the electrode, and instructs the power supply means to output the determined current or voltage, and the cooling so that the determined water temperature is achieved.
  • the size of the apparatus is unavoidable as long as it has the control means for driving the means and the control function for managing and controlling the gas generation efficiency in the optimum state. In addition, there is no suggestion that the generated fuel will be “energy-saving” for conventional fuel.
  • the present invention provides a flexible portion that can be bent with respect to the spacer mounting portion by connecting the main electrode plate and the induction electrode plate that is electrostatically induced therebetween via a spacer. Accordingly, it is an object of the present invention to provide a brown gas generator and a fuel generation and supply system that can achieve "simplification and compactness of the apparatus", “improvement of brown gas generation efficiency”, and “energy saving”.
  • a brown gas generator 1 is a brown gas generator that electrolyzes water W in an electrolytic cell 2 to generate a brown gas B containing hydrogen.
  • the pair of main electrode plates 3 and 3 to which the electric charge is applied and one or a plurality of induction electrode plates 4 electrostatically induced between the pair of main electrode plates 3 and 3 are immersed in the water W.
  • the water W is electrolyzed between each of the pair of main electrode plates 3 and 3 and the induction electrode plate 4 to generate the brown gas B, and the pair of main electrode plates 3 and 3
  • Each of the induction electrode plates 4 is connected to each other via a spacer 5, and has a spacer mounting portion 6 for mounting the spacer 5, and a flexible portion 7 that can be bent with respect to the spacer mounting portion 6. This is the first feature.
  • a pair of main electrode plates 3 and 3 and an induction electrode plate 4 are provided in the electrolytic cell 2 in a state where they are immersed in water W, and a space between the pair of main electrode plates 3 and 3 and the induction electrode plate 4 is provided.
  • the water W is electrolyzed to generate brown gas B, and a spacer mounting portion 6 for mounting the spacer 5 on the pair of main electrode plates 3, 3 and induction electrode plate 4, and the spacer mounting portion 6 is bent.
  • the flexible portion 7 that can be used, the main electrode plates 3, 3 and the induction electrode plate 4 can be connected to each other because of the simplified structure only through the spacer 5.
  • the Brown gas generator 1 of the present invention since positive or negative terminals are connected to each electrode plate, it is necessary to provide a space between the electrode plates by the amount of the terminal mounting portion, and between the positive and negative electrode plates.
  • the device becomes thicker and thicker, for example, by sandwiching an insulator to prevent short circuit.
  • the main electrode plates 3 and 3 and the induction electrode plate 4 can be brought close to each other, so that "simplification and downsizing of the apparatus" can be achieved. .
  • positive and negative charges are applied not only to the main electrode plates 3 and 3 but also to the front and back surfaces of the induction electrode plate 4 electrostatically induced between them, hydrogen, oxygen, etc. (Brown gas B) are generated.
  • the area of the electrode plate that can be increased increases, and the flexible portion 7 that can be bent with respect to the spacer mounting portion 6 applies a voltage to the main electrode plates 3 and 3 in order to electrolyze the water W (current flows). ), And this vibration makes it easy for hydrogen, oxygen, and the like that have become bubbles on the surfaces of the main electrode plates 3 and 3 and the induction electrode plate 4 to be separated from the electrode plates 3 and 4, and always one after another. Then, since the water W comes into contact with the surfaces of the electrode plates 3 and 4 that can generate the brown gas B, it is possible to “improve the brown gas generation efficiency”. In other words, it is possible to achieve both “simplification and compactness of the device” and “improvement of brown gas generation efficiency”.
  • the “Brown gas” is also called oxyhydrogen gas or HHO gas
  • the “Brown gas B containing hydrogen” in the present invention is a gas containing at least hydrogen, in addition to hydrogen (H 2 ), Oxygen (O 2 ), ozone (O 3 ), or the like may be included.
  • a fuel generation and supply system 20 is a fuel generation and supply system having a brown gas generation unit 1 which is the brown gas generation device described above, and the brown gas B generated by the brown gas generation unit 1 is bubbled.
  • the mixer 8 that generates the mixed fuel M mixed with the liquid fuel E
  • the mixing tank 9 that can store the mixed fuel M generated by the mixer 8, and the mixed fuel M in the mixing tank 9 to the outside of the system
  • the brown gas B collected from the mixed fuel M in the mixing tank 9 is bubbled again by the mixer 8 and remixed into the mixed fuel M from the mixing tank 9.
  • a first feature is that the fuel tank has a remixing path 11 that generates the mixed fuel M and returns the mixed fuel M to the mixing tank 9.
  • a second feature of the fuel generation and supply system 20 is a fuel generation and supply system having a brown gas generation unit 1 that generates a brown gas B containing hydrogen, which is generated in the brown gas generation unit 1.
  • a mixer 8 that generates a mixed fuel M obtained by bubbling Brown gas B and mixed with a liquid fuel E, a mixing tank 9 that can store the mixed fuel M generated by the mixer 8, and a mixing in the mixing tank 9
  • a supply path 10 for sending the fuel M to the outside of the system.
  • the brown gas B that has accumulated from the mixed fuel M in the mixing tank 9 is bubbled again by the mixer 8, and is supplied from the mixing tank 9.
  • There is also a remixing path 11 that generates a mixed fuel M remixed with the mixed fuel M and returns the remixed mixed fuel M to the mixing tank 9.
  • a third feature of the fuel generation and supply system 20 according to the present invention is that, in addition to the first or second feature, the mixer 8, the mixing tank 9, the supply path 10, the remixing path 11, and the brown gas generation.
  • the part 1 is separated by a heat insulating structure 12 that suppresses heat transfer, and the temperature in the region on the mixer 8, the mixing tank 9, the supply path 10, and the remixing path 11 side is adjusted from the heat insulating structure 12.
  • the temperature adjusting means 13 is provided.
  • a fourth feature of the fuel generation and supply system 20 according to the present invention is that a plurality of the remixing paths 11 are provided in addition to any of the first to third features.
  • a fifth feature of the fuel generation and supply system 20 is a fuel generation and supply system having a brown gas generation unit 1 that generates brown gas B containing hydrogen, and is generated in the brown gas generation unit 1.
  • a mixer 8 that generates a mixed fuel M obtained by bubbling Brown gas B and mixed with a liquid fuel E, a mixing tank 9 that can store the mixed fuel M generated by the mixer 8, and a mixing in the mixing tank 9
  • a supply path 10 for sending the fuel M to the outside of the system, and the mixer 8, the mixing tank 9 and the supply path 10 are separated from the Brown gas generator 1 by a heat insulating structure 12 that suppresses heat transfer.
  • the heat-insulating structure 12 has temperature adjusting means 13 for adjusting the temperature in the region on the mixer 8, the mixing tank 9, and the supply path 10 side.
  • a sixth feature of the fuel generation and supply system 20 according to the present invention is that a plurality of the mixers 8 are provided in addition to any one of the first to fifth features.
  • the seventh feature of the fuel generation and supply system 20 according to the present invention is that, in addition to any one of the first to sixth features, the mixer 8 is more than 1 liter for 10 liters of the liquid fuel E.
  • the brown gas B of 1000 liters or less is mixed.
  • the mixer 8 that generates the mixed fuel M in which the brown gas B generated by the brown gas generator (Brown gas generator 1) is bubbled and mixed with the liquid fuel E, and the mixed fuel M are stored.
  • the remixing path 11 as in Patent Document 1, the odor gas, the brown gas, and the fuel are mixed and then clustered or nanobubbled, so that the brown gas B in the fuel (liquid fuel E) The dissolution rate is increased and the combustion efficiency is dramatically improved.
  • the “liquid fuel E” in the present invention is a fuel that is liquid at room temperature (for example, a temperature range of 20 ° C. ⁇ 15 ° C. according to JIS-Z-8703), and includes heavy oil, kerosene, gasoline, light oil, crude oil, etc. This refers to liquid petroleum fuels (fossil fuels) linked in a chain of carbon, alcohols such as methanol and ethanol containing carbon, rapeseed oil, pine oil, and waste cooking oil.
  • the main electrode plate and the induction electrode plate are connected via the spacer, and the flexible portion that can be bent with respect to the spacer mounting portion is provided, thereby simplifying the device. It is possible to achieve both “compact” and “improve brown gas generation efficiency”.
  • FIG. 1 is a schematic diagram showing a fuel generation and supply system according to a first embodiment of the present invention. It is side surface sectional drawing which shows the brown gas generator which concerns on this invention. It is a disassembled perspective view which shows a brown gas generator. It is a front view which shows the induction electrode plate and spacer of a brown gas generator. It is a perspective view which shows the flow-through member in the induction
  • FIG. 1 shows a fuel generation and supply system 20 according to the first embodiment of the present invention.
  • the fuel generation and supply system 20 generates a mixed fuel M obtained by mixing the brown gas B from the brown gas generator (hereinafter referred to as a brown gas generator) 1 according to the present invention and a conventional liquid fuel E, and supplies the mixed fuel M to the outside.
  • a brown gas generator the brown gas generator 1
  • a conventional liquid fuel E the brown gas generator
  • the fuel generation and supply system 20 includes a brown gas generator 1, a mixer 8 that mixes brown gas B and liquid fuel E, a mixing tank 9 that can store the mixed fuel M, and a supply that sends the mixed fuel M out of the system.
  • a path 10 and a remixing path 11 for returning the mixed fuel M obtained by remixing the brown gas B accumulated in the mixing tank 9 to the mixing tank 9 are provided.
  • Other configurations will be described after the existing combustion apparatus 100 is described.
  • the existing combustion apparatus 100 includes a conventional fuel tank 101 for storing liquid fuel E, a fuel path 102 for sending the liquid fuel E from the fuel tank 101, and a liquid fuel E connected to the lowermost end of the fuel path 102. And a boiler 104 that combusts the liquid fuel E injected from the fuel injection pump 103.
  • the fuel path 102 is provided with a fuel valve 105 and a flow meter 106 in this order from the upstream side to the downstream side.
  • the fuel valve 105 may be a gate valve for turning on / off the supply of the liquid fuel E, or a flow rate adjusting valve for adjusting the flow rate of the liquid fuel E.
  • the combustion generation and supply system 20 of the present invention is connected to the downstream side of the flow meter 106 in the fuel path 102, that is, between the flow meter 106 and the fuel injection pump 103.
  • a part of the fuel path 102 may be configured by a flexible hose, tube, or the like, and conversely, it may be configured by a non-flexible tube or the like.
  • the fuel generation and supply system 20 has the following configuration in addition to the brown gas generator 1, the mixer 8, the mixing tank 9, the supply path 10, and the remixing path 11 described above.
  • the fuel generation and supply system 20 includes a branching device 21 that branches the liquid fuel E from the fuel path 102 of the existing combustion apparatus 100 and a supply pump (tank pump) that sends the liquid fuel E branched by the branching device 21 to the mixing tank 9. ) 22 and the tank path 23, and the liquid fuel E or the mixed fuel M in the mixing tank 9 is circulated to the mixing tank 9 through the mixer 8 and mixed with the circulation pump (loop pump) 24 and the loop path 25 and the mixer 8.
  • the gas path 26 for supplying the brown gas B to be supplied from the brown gas generator 1, the gas tank 27 for storing the brown gas B provided in the middle of the gas path 26, and the gas tank 26 from the mixing tank 9 are merged and mixed.
  • the branching tool 21 is provided on the downstream side of the flow meter 106 in the fuel path 102 of the existing combustion apparatus 100.
  • the branching device 21 divides the flow of the liquid fuel E into the fuel generation and supply system 20 and the eruption pump 103 on the downstream side of the base valve 21 a provided on the downstream side of the flow meter 106.
  • a branch member 21b, a system valve 21c provided downstream of the branch member 21b to the fuel generation and supply system 20, and a fuel injection valve 21d provided downstream of the branch member 21b to the fuel injection pump 103 are provided. Have.
  • the base valve 21a, the system valve 21c, and the fuel injection valve 21d in the branching device 21 are plungers (iron pieces) using gate valves, ball valves, and electromagnets (solenoids) that turn on / off the supply of the liquid fuel E. ) And an electromagnetic signal that is turned on / off by an electrical signal, or a flow rate adjusting valve that adjusts the flow rate of the liquid fuel E. Further, another valve may be provided on the further downstream side (tank path 23 side) of the system valve 21c (not shown). Furthermore, when a part of the fuel path 102 of the combustion apparatus 100 is configured by a flexible hose or the like, a joint may be provided between the hose or the like and the fuel injection valve 21d. Not shown (not shown).
  • the supply pump 22 is provided in the middle of the tank path 23 that connects the system valve 21 c of the branching tool 21 to the mixing tank 9.
  • an upper tank connecting member 23a, an upper tank valve 23b, a supply strainer 23c, an upper tank pressure gauge 23d, a supply pump (tank pump) 22, a lower tank pressure gauge 23e, an intermediate tank valve 23f, A lower tank valve 23g and a lower tank connecting member 23h are provided in this order from the upstream side.
  • the upper tank connecting member 23a formed of a flexible hose or the like is connected to the system valve 21c of the branching tool 21.
  • An upper tank valve 23b composed of a ball valve or the like is provided on the downstream side of the upper tank connecting member 23a.
  • solid components A supply strainer 23c, which is a net-like instrument used for removing dust, impurities, etc., is provided on the downstream side of the upper tank valve 23b.
  • An upper tank pressure gauge 23d is provided on the downstream side of the supply strainer 23c and the upstream side of the supply pump 22 (that is, between the supply strainer 23c and the supply pump 22), and the liquid fuel enters the input 22a of the supply pump 22 The pressure of E can be measured.
  • the supply pump 22 is a pump that sucks the liquid fuel E that has passed through the supply strainer 23c and the upper tank pressure gauge 23d from the input 22a, discharges the liquid fuel E whose pressure has been increased from the output 22b, and raises the liquid fuel E to the top of the mixing tank 9.
  • An internal gear type Trochoid (registered trademark) pump or the like in which an external gear and an internal gear mesh with each other and rotate is used.
  • the supply pump 22 is a non-volume (turbo) using a pump such as a trochoid (registered trademark) pump, a volume pump such as a screw pump or a piston pump, or a blade-like rotor. Shape) may be a pump or the like.
  • the power source of the supply pump 22 may be any one, but may be, for example, a commercial power source (outlet), a generator, a battery, or the like. The same applies to the power sources of the above-described eruption pump 103 and the circulation pump 24 described later.
  • a lower tank pressure gauge 23e for measuring the pressure of the liquid fuel E output from the output 22b of the supply pump 22 is provided, and on the downstream side of the lower tank pressure gauge 23e and by a solenoid valve or the like.
  • An intermediate tank valve 23f that is configured, and a lower tank valve 23g that is formed on the downstream side of the intermediate tank valve 23f and includes a ball valve or the like are provided.
  • each of the upper tank valve 23b, the middle tank valve 23f, and the lower tank valve 23g in the tank passage 23 is a gate valve for turning on / off the supply of the liquid fuel E in addition to the electromagnetic valve and the ball valve described above, A flow rate adjusting valve that adjusts the flow rate of the liquid fuel E may be used.
  • a lower tank connecting member 23h for pouring the liquid fuel E into the mixing tank 9 is connected to the lower tank valve 23g at the lowermost end side in the tank passage 23.
  • the lower tank connecting member 23h is a member such as a pipe, and extends upward from the lower tank valve 23g. After entering the inside from the upper part of the mixing tank 9, its lower end is the inner bottom surface of the mixing tank 9. It extends downward to the vicinity.
  • each connection material of the upper tank connection material 23a and the lower tank connection material 23h may be a flexible tube in addition to the above-described hose, and conversely, is configured by a non-flexible tube or the like. It does not matter.
  • an openable / closable discharge port may be provided between the supply pump 22 and the lower tank pressure gauge 23e (not shown), and between the upper tank connecting member 23a and the system valve 21c of the branching device 21.
  • a joint may be provided between the upper tank connecting member 23a and the upper tank valve 23b, and between the lower tank valve 23g and the lower tank connecting member 23h (not shown).
  • the mixing tank 9 is a tank capable of storing the mixed fuel M generated by the fuel generation and supply system 20, and the liquid fuel E that flows from the existing fuel tank 101 through the tank path 23. It is also possible to store the mixed fuel M in which the brown gas B is mixed in the mixer 8 or the mixture of the mixed fuel M and the liquid fuel E added from the fuel tank 101. It can be said that the mixture of the mixed fuel M and the liquid fuel E is the mixed fuel M in which the dissolution rate of the brown gas B is lowered by the amount of addition of the liquid fuel E.
  • mixed fuel M a mixture of the mixed fuel M and the liquid fuel E
  • mixed fuel M the term indicating at least one of the mixed fuel M and the liquid fuel E is referred to as “mixed fuel”.
  • the shape of the mixing tank 9 is not specifically limited, For example, a vertically long substantially cylindrical shape etc. may be sufficient.
  • the mixing tank 9 includes a storage amount sensor 9a (for example, on the upper part (upper bottom surface) of the substantially cylindrical mixing tank 9) for measuring the amount of the mixed fuel M or the like stored therein. A predetermined amount of the mixed fuel M and the like in the mixing tank 9 is maintained by the sensor 9a.
  • the storage amount sensor 9a may have any configuration as long as it can maintain a certain amount of the mixed fuel M or the like. For example, the distance from the storage amount sensor 9a itself to the liquid level of the mixed fuel M or the like A level sensor that measures D may be used.
  • the distance D is, if it becomes smaller than the distance D H from the storage amount sensors 9a up liquid level H is the storage amount sensors 9a to the supply pump 22, a signal for stopping the supply of the liquid fuel E is output . Conversely, when the distance D is greater than the distance D L from the storage amount sensor 9a to the lowest liquid level L, a signal for starting the supply of the liquid fuel E is output from the storage amount sensor 9a to the supply pump 22. Is done.
  • the highest liquid level H is the liquid level when the amount of the mixed fuel M or the like is the largest (that is, the highest) in the mixing tank 9, and the lowest liquid level L is mixed in the mixing tank 9.
  • the liquid level when the amount of the fuel M or the like is the smallest (that is, the lowest) (see FIG. 1).
  • a bottom portion (outer bottom surface) of the mixing tank 9 may be provided with a leg portion 9b extending downward and a tank discharge valve 9c for discharging the mixed fuel M and the like.
  • One end (inlet) of the loop path 25 is connected to the bottom (outer bottom surface) of the mixing tank 9, and the tip of the lower tank connecting member 23 h in the tank path 23 is above the inlet of the loop path 25. The opening is located.
  • the other end (exit) of the loop path 25 is connected to the side portion (side peripheral surface) of the mixing tank 9.
  • a slope that gradually descends from the exit of the loop path 25 may be formed.
  • one end (inlet) of a supply path (supply path) 10 is connected to the side portion (side peripheral surface) of the mixing tank 9 and above the outlet of the loop path 25.
  • the circulation pump 24 is provided in the middle of a loop path 25 that returns from the bottom of the mixing tank 9 through the mixer 8 to the side of the mixing tank 9 again.
  • the circulation pump 24 is disposed upstream of the mixer 8.
  • a mixer 8 a lower loop pressure gauge 25g, a lower loop connecting member 25h, and a lower loop valve 25i are provided in this order from the upstream side.
  • an upper loop valve 25a constituted by a ball valve or the like is provided immediately below the bottom of the mixing tank 9.
  • An upper loop connecting member 25b composed of a flexible hose or the like is connected to the downstream side of the upper loop valve 25a, and the mixed fuel M is connected to the downstream side of the upper loop connecting member 25b before the circulation pump 24.
  • a circulation strainer 25c that removes solid components from the like is provided.
  • An upper loop pressure gauge 25d is provided downstream of the circulation strainer 25c and upstream of the circulation pump 24 (that is, between the circulation strainer 25c and the circulation pump 24), and the mixed fuel enters the input 24a of the circulation pump 24. The pressure such as M can be measured.
  • the circulation pump 24 sucks the mixed fuel M and the like that has passed through the circulation strainer 25c and the upper loop pressure gauge 25d from the input 24a, and discharges the mixed fuel M and the like whose pressure has been increased from the output 24b, and then mixes the mixer 8 with a predetermined momentum.
  • This is a pump that feeds the mixed fuel M and the like.
  • an internal gear type Trochoid (registered trademark) pump or the like in which the external gear and the internal gear mesh with each other is used as the circulation pump 24.
  • the circulation pump 24 may be another gear pump, a volume pump such as a screw pump or a piston pump, or a non-volume pump.
  • An intermediate loop valve 25e composed of a gate valve or the like is provided on the downstream side of the circulation pump 24, and an output 24b of the circulation pump 24 is output downstream of the intermediate loop valve 25e (that is, the mixer 8).
  • An intermediate loop pressure gauge 25f for measuring the pressure of the mixed fuel M or the like is provided.
  • a mixer 8 which will be described in detail later is provided on the downstream side of the middle loop pressure gauge 25f, and the downstream side of the mixer 8 is used to measure the pressure of the mixed fuel M and the like coming out of the mixer 8.
  • a loop pressure gauge 25g is provided.
  • a lower loop connecting member 25h composed of a flexible hose or the like is connected to the downstream side of the lower loop pressure gauge 25g.
  • a lower loop valve 25i configured by a ball valve or the like is provided on the downstream side of the lower loop coupling member 25h.
  • each of the upper loop valve 25a, the middle loop valve 25e, and the lower loop valve 25i in the loop path 25 is not limited to the above-described gate valve and ball valve, but also an electromagnetic valve that is turned on / off by an electrical signal, or a mixing valve. It may be a flow rate adjusting valve that adjusts the flow rate of the fuel M or the like.
  • each of the connecting members of the upper loop connecting member 25b and the lower loop connecting member 25h may be a flexible tube, or conversely, a non-flexible tube in addition to the above-described hose.
  • an openable / closable discharge port may be provided between the circulation pump 24 and the middle loop valve 25e (not shown), and between the upper loop valve 25a and the upper loop connecting member 25b, or the upper loop connecting member.
  • a joint may be provided between 25b and the circulation strainer 25c, between the lower loop pressure gauge 25g and the lower loop connecting member 25h, and between the lower loop connecting member 25h and the lower loop valve 25i (not shown). ).
  • the mixer 8 in FIG. 1 has a pipe body having a spiral recess formed on the inner surface, and the mixed fuel discharged from the output 24b of the circulation pump 24 to the liquid inlet 8a on the upstream side of the pipe body. M etc. flows.
  • the downstream end of the gas passage 26 is connected to the gas inlet 8b on the side peripheral surface of the tube of the mixer 8, and the Brown gas B is sucked into the tube (Venturi effect).
  • the mixed fuel M and the brown gas B that have entered the mixer 8 are mixed and swirled while being swirled, whereby the bubbles of the brown gas B are refined in the mixed fuel M and the like ( To create nanobubbles (nano-brown gas) having a diameter (bubble diameter) of 1 nm to 1000 nm.
  • the rotational speed of the swirling of the mixed fuel M and the brown gas B in the mixer 8 is not particularly limited as long as nanobubbles can be generated.
  • the rotational speed may be 400 to 600 times per second.
  • nanobubbles may be formed by a pore method using a filter, a pressure dissolution method, a shock wave method, an ultrasonic method, or the like.
  • nano-bubble in the present invention means that the diameter (bubble diameter) of the brown gas B that has become bubbles in the liquid fuel E, the mixed fuel M, or the like is 1 nm or more and 1000 nm or less.
  • the brown gas B composed of bubbles (nano bubbles) having a bubble diameter of 1 nm to 1000 nm is referred to as nano brown gas.
  • the mixer 8 not only nano-brown gas but also bubbles with a bubble diameter larger than 1000 nm are generated (note that the brown gas B composed of bubbles larger than the nano-brown gas bubble is converted into non-nano-brown gas. To do).
  • the surface of the bubbles of the brown gas B is charged in the mixed fuel M and the like, and the bubble diameter is larger than that of a general milli-order bubble. It has a feature that it can be efficiently dissolved in the mixed fuel M or the like.
  • the characteristics of the refined bubbles include a high pressure inside the bubbles and a long or semi-permanent remaining in the liquid.
  • the rising speed of the bubbles of the brown gas B in the mixed fuel M or the like varies greatly depending on the size.
  • a non-nano brown gas millibubble with a bubble diameter of 3 mm has an ascending speed of about 0.3 m / sec
  • a microbubble with a bubble diameter of 100 ⁇ m has an ascending speed of about 0.005 m / sec. That is, among the bubbles of the brown gas B mixed with the mixed fuel M or the like by the mixer 8, those having a bubble diameter larger than a predetermined size rise and escape from the mixed fuel M and the like in the mixing tank 9. It will be accumulated.
  • the bubble diameter of the brown gas B having a predetermined bubble diameter (for example, 1 ⁇ m or more and 50 ⁇ m or less) when bubbled enters the mixed fuel M or the like, surface tension acts on the interface of the bubbles. Most of them begin to shrink after mixing. More specifically, the surface tension is a force that attracts molecules to condense each other, and if it is a droplet, it tends to be spherical. It is the same that even if the bubbles are in the mixed fuel M or the like, the bubbles tend to become spherical due to the surface tension acting on the interface between the mixed fuel M and the brown gas B.
  • a predetermined bubble diameter for example, 1 ⁇ m or more and 50 ⁇ m or less
  • the surface of the bubble of the brown gas B is charged in the mixed fuel M or the like as described above, but due to this charging, the surface of the bubble exists in the mixed fuel M or the like. Many ions gather (concentration of charge). Since this charge concentration occurs at the interface of the bubbles of the brown gas B, an electrostatic repulsive force acting between the charges on the opposite sides of the bubble sphere acts to prevent the bubbles from shrinking from a predetermined bubble diameter.
  • the bubble diameter at the time of generation of the bubble of the brown gas B is a predetermined value (1 ⁇ m or more and 50 ⁇ m or less, etc.)
  • it is initially not a nanobubble (it is a non-nano brown gas), but starts to contract,
  • a value of for example, 1 nm or more and 200 nm or less
  • the contraction is stopped (stable) by the electrostatic repulsive force, and nano-brown gas is obtained.
  • the bubble diameter may be stabilized to be greater than 200 nm and not greater than 1000 nm.
  • nano-brown gas composed of stable bubbles (nano-bubbles) with a bubble diameter of 1 nm or more and 1000 nm or less into the mixed fuel M or the like
  • the nano-brown gas is one month, sometimes several months or more. It exists in the mixed fuel M and the like for a long time.
  • the gas passage 26 connects a brown gas generator 1 to a mixer 8, which will be described in detail later, and a gas tank 27 is provided in the middle of the gas passage 26.
  • the gas connecting material 26a, the gas tank 27, the upper gas valve 26b, the filter regulator 26c, the middle gas valve 26d, the needle valve 26e, the lower gas valve 26f, and the gas merging member 26g are provided from the upstream side. They are provided in this order.
  • a gas connecting member 26a composed of a flexible tube or the like is connected to the most brown gas generating part 1 side (uppermost stream side) of the gas passage 26, and downstream of the gas connecting member 26a.
  • the gas tank 27 is provided.
  • the gas tank 27 is a tank for storing the brown gas B generated by the brown gas generator 1, and the shape of the gas tank 27 is not particularly limited.
  • the gas tank 27 may be a vertically long substantially cylindrical shape. good.
  • a gas discharge valve 27 a that discharges the brown gas B may be provided in the gas tank 27 (for example, the lower portion of the side peripheral surface).
  • an upper gas valve 26 b composed of a ball valve or the like is provided on the side peripheral surface of the gas tank 27.
  • a regulator 26c is provided.
  • An intermediate gas valve 26d composed of an electromagnetic valve or the like is provided on the downstream side of the filter regulator 26c, and a needle for adjusting the flow rate of the brown gas B entering the mixer 8 is provided on the downstream side of the intermediate gas valve 26d.
  • a valve 26e is provided, and further, a lower gas valve 26f composed of a ball valve or the like is provided downstream of the needle valve 26e.
  • a gas merging member 26g that merges with a recycling path 28 that connects the mixing tank 9 and the mixer 8. The downstream side is connected to the mixer 8.
  • each valve of the upper gas valve 26b, the middle gas valve 26d, and the lower gas valve 26f in the gas passage 26 may be a gate valve in addition to the above-described ball valve and electromagnetic valve.
  • the gas connecting member 26a is configured by a flexible tube or the like, but the gas path 26 from the gas tank 27 to the mixer 8 may also be configured by a flexible tube or the like. It may be a flexible hose or, on the contrary, a non-flexible tube.
  • a joint may be provided between the gas merging member 26g and the mixer 8 (not shown).
  • the recycle path 28 is connected from the mixing tank 9 to the gas joining member 26 g of the gas path 26, and in the mixing tank 9, the mixed fuel M (that is, the mixed fuel M or the mixed fuel M).
  • the brown gas B collected from the liquid fuel E is bubbled again by the mixer 8 and remixed with the mixed fuel M from the mixing tank 9.
  • the most mixing tank 9 side (the most upstream side) of the recycle path 28 communicates with the inside of the mixing tank 9 above the highest liquid level H in the mixing tank 9.
  • the recycle path 28 is provided with a recycle valve 28 a composed of a ball valve or the like on the most downstream side, and the downstream side of the recycle valve 28 a is connected to the gas junction member 26 g of the gas path 26.
  • the remixing path 11 in the present invention is configured by the loop path 25, a part of the gas path 26 (from the gas joining member 26 g to the mixer 8), and the recycling path 28.
  • the remixing path 11 of the present invention is not limited to this, and instead of using the loop path 25 and a part of the gas path 26 as a part, the brown collected separately in the mixing tank 9 for remixing.
  • a path, a mixer, and a pump that remixes the gas B with the mixed fuel M from the mixing tank 9 and returns it to the mixing tank 9 may be provided.
  • the recycle valve 28a in the recycle path 28 may be an electromagnetic valve or a gate valve in addition to the ball valve described above.
  • the recycling path 28 may be constituted by a flexible tube, hose, or the like, and conversely, may be a non-flexible tube or the like.
  • a valve composed of a joint, a ball valve, or the like is provided on the most upstream side of the recycle path 28, a joint is provided between the recycle valve 28a and the gas merging member 26g of the gas path 26, or a mixing tank. 9 and a recycle valve 28a may be provided with a needle valve (not shown).
  • the supply path (supply path) 10 connects the mixing tank 9 to the joining tool 29, and sends the mixed fuel M in the mixing tank 9 to the outside of the system via the joining tool 29. Is.
  • the most mixing tank 9 side (uppermost stream side) of the supply path 10 communicates with the inside of the mixing tank 9 below (the side peripheral surface of) the lowest liquid level L in the mixing tank 9.
  • an upper supply valve 10 a, a supply connecting material 10 b, a lower supply valve 10 c, and a joining tool 29 are provided in this order from the upstream side.
  • an upper supply valve 10a composed of a ball valve or the like is provided near the side surface of the mixing tank 9 on the most upstream side of the supply path 10, and on the downstream side of the upper supply valve 10a.
  • a supply connecting member 10b composed of a flexible hose or the like is connected.
  • a lower supply valve 10c composed of a gate valve or the like is provided on the downstream side of the supply connecting material 10b.
  • the mixed fuel M from the supply path 10 is supplied to the combustion device 100 on the downstream side of the lower supply valve 10c.
  • a merging device (merging member) 29 for merging with the combustion path 102 is provided. This joining tool 29 is provided on the downstream side of the fuel passage 102 so as to connect the supply passage 10 of the fuel generation and supply system 20 of the present invention and the existing combustion apparatus 100.
  • Each of the upper supply valve 10a and the lower supply valve 10c in the supply path 10 may be a solenoid valve or a flow rate adjusting valve that adjusts the flow rate of the mixed fuel M in addition to the ball valve and the gate valve described above. Absent.
  • the supply path 10 may also be configured by a flexible tube or the like, and conversely, may be a non-flexible tube or the like. Further, a flexible hose or the like is provided between the upper supply valve 10a and the supply connecting material 10b, between the supply connecting material 10b and the lower supply valve 10c, and further, a part of the fuel path 102 of the combustion device 100. In this case, a joint may be provided between the hose or the like and the merging tool 29 (not shown).
  • ⁇ Overall configuration of brown gas generator (Brown gas generator 1)> 1 to 5 show a brown gas generator 1 according to the present invention which is a brown gas generator 1 of a fuel generation and supply system 20.
  • the brown gas generator 1 electrolyzes water W to generate brown gas B.
  • the brown gas B generated by the apparatus 1 is supplied to the mixed fuel M or the like via a gas path 26. Mixed.
  • the brown gas generator 1 includes an electrolytic cell 2 filled with water W, a pair of main electrode plates 3, 3 and 1 or a plurality of induction electrode plates 4 provided in the electrolytic cell 2, and a main electrode plate 3, 3 and a spacer 5 for connecting the induction electrode plate 4 to each other.
  • the brown gas generator 1 includes a suction member 31 that feeds water W into the electrolytic cell 2, a discharge member 32 that feeds brown gas B generated in the electrolytic cell 2 out of the device, A power transmission member 33 that allows current to flow through the electrode plate 3 and a flow-through member 34 that passes water W and brown gas B between the pair of main electrode plates 3 and 3 and the induction electrode plate 4 are also provided.
  • the brown gas generator 1 may have an electrolytic cell 2 and a housing on which the members 31 to 34 are mounted.
  • the electrolytic cell 2 holds the main electrode plates 3 and 3 and the induction electrode plate 4 in a state of being immersed in the water W, and prevents leakage of the internal water W.
  • the plates 3 and 4 are also insulated, and water W is electrolyzed between the main electrode plates 3 and 3 and the induction electrode plate 4 inside the electrolytic cell 2 to generate brown gas B.
  • the electrolytic cell 2 includes a tank frame body 35 that surrounds the main electrode plates 3 and 3 and the induction electrode plate 4 and opens in the front and rear, a pair of sealing plates 36 and 36 that close the front and rear openings of the tank frame body 35, and A pair of exterior plates 37, 37 covering the pair of sealing plates 36, 36, and a plurality of fixtures 38 for attaching these exterior plates 37, 37 to the tank frame 35 are provided.
  • the tank frame 35 is an annular frame having a substantially rectangular shape when viewed from the front and having front and rear openings (front opening 35a and rear opening 35b). The shape is also substantially rectangular in the same front view. Of the two openings 35a and 35b, a locking protrusion 35d is provided at the rear end of the frame inner surface 35c so as to surround the rear opening 35b so that the rear opening 35b is smaller than the front opening 35a. Yes.
  • the front view shape of the frame inner surface 35c is substantially similar to the front view shapes of the main electrode plates 3, 3 and the induction electrode plate 4 and is formed slightly larger (that is, the frame inner surface 35c and the main electrode plate 3). In addition, there is a slight gap between the induction electrode plate 4 and the induction electrode plate 4). Each induction electrode plate 4 can enter only from the front opening 35 a and does not fall out from the rear opening 35 b.
  • a slightly larger front step portion 35e is formed so as to border the front opening 35a, and there is a front end surface 35f that is slightly larger so as to border the front step portion 35e. Therefore, in the front view of the tank frame 35, the front end surface of the locking protrusion 35d can be seen on the back side (rear end portion) of the front step portion 35e, the front end surface 35f, and the frame inner surface 35c.
  • the front end surface 35f of the tank frame body 35 is provided with a plurality of inner fixing holes 35g that pass through to a rear end surface 35i described later at a predetermined interval.
  • a rear step portion 35h that is slightly larger so as to border the rear opening 35b is formed, and there is a rear end surface 35i that is slightly larger so as to border this rear step portion 35h. Therefore, in the rear view of the tank frame 35, the rear end surface of the rear protrusion 35d, the rear end surface 35i, and the front side (rear end portion) of the frame inner surface 35c can be seen.
  • the material of the tank frame 35 is not particularly limited as long as it can hold and insulate the main electrode plates 3 and 3 and the induction electrode plate 4, but for example, polyacetal (POM), polyamide (PA), polycarbonate ( PC, modified polyphenylene ether (m-PPE), polybutylene terephthalate (PBT) and other engineering plastics with heat resistance and strength, amorphous polyarylate (PAR), polyimide (PI), fluororesin, etc.
  • POM polyacetal
  • PA polyamide
  • PC polycarbonate
  • m-PPE modified polyphenylene ether
  • PBT polybutylene terephthalate
  • other engineering plastics with heat resistance and strength amorphous polyarylate (PAR), polyimide (PI), fluororesin, etc.
  • Super engineering plastics with heat resistance and the like may be used.
  • each sealing plate 36 is substantially similar to the front view shape of the front and rear step portions 35e and 35g of the tank frame 35 in order to block the front and rear openings 35a and 35b of the tank frame 35 described above, and the water W Is formed to be slightly small so as not to leak.
  • Each sealing plate 36 is formed with a laterally long oblong hole 36a penetrating through the sealing plate 36 at an approximately upper (or lower) center in a front view, and communicates the inside and outside of the sealing plate 36. Further, a pair of middle electrode holes 36b, 36b are formed in a penetrating manner at a substantially central portion in a front view of each sealing plate 36 at a predetermined interval in the left-right direction.
  • Each sealing plate 36 has the same shape as that closing the front and rear openings 35a and 35b of the tank frame 35, and the sealing plate 36 closing the front opening 35a is oriented so that the middle long hole 36a is at the top. And fitted into the front portion 35e of the tank frame 35.
  • the sealing plate 36 that closes the rear opening 35b is fitted into the rear stage portion 35h of the tank frame body 35 in the direction in which the middle long hole 36a becomes the lower portion.
  • each sealing plate 36 is not particularly limited as long as it can hold and insulate the main electrode plates 3 and 3 and the induction electrode plate 4 together with the tank frame 35.
  • engineering such as polyacetal (POM) is possible.
  • -Super engineering plastics such as plastic and an amorphous polyarylate (PAR), may be sufficient.
  • each exterior plate 37 and 37 are horizontally long and substantially rectangular plates that cover the respective internal sealing plates 36 and form the front and rear surfaces of the electrolytic cell 2.
  • the size and shape of each exterior plate 37 are formed substantially the same as the front-view shape of the front and rear end faces 35f and 35i of the tank frame 35 described above.
  • Each of the exterior plates 37 is formed with a laterally long outer long hole 37a penetrating the exterior plate 37 at a position where it can communicate with the middle long hole 36a of the internal sealing plate 36 at the upper (or lower) approximate center in a front view.
  • a horizontally long cover 37b that covers the entire outer long hole 37a without leakage is provided.
  • the above-described suction member 31 and discharge member 32 are connected to the center of the cover 37b in the left-right direction.
  • a pair of outer electrode holes 37c at a predetermined interval in the left-right direction is provided at a position where the outer plate 37 can communicate with the middle electrode holes 36b, 36b in the inner sealing plate 36 at a substantially central portion when viewed from the front.
  • 37c is formed in a penetrating shape.
  • a plurality of outer fixing holes 37d are provided at positions that can communicate with the inner fixing holes 35g of the tank frame 35 at the peripheral end portion of the outer surface (surface opposite to the sealing plate 36) of each exterior plate 37. ing.
  • the outer fixing holes 37d in the front and rear outer plates 37, 37 are aligned with the inner fixing holes 35g of the tank frame 35 from the front and rear, and the outer plates are fixed by the fixing members 38 such as bolts and nuts and washers.
  • 37 and 37 can be attached to a tank frame 35 in which the main electrode plate 3 and the induction electrode plate 4 are inserted and the sealing plates 36 are fitted.
  • a plurality of laterally long and substantially trapezoidal fins (heat radiating plates) 37 e in a plan view are provided on the outer surface of each exterior plate 37 at predetermined intervals in the vertical direction.
  • the exterior plate 37 covers the front and rear sealing plates 36 in the same shape, and the exterior plate 37 covering the front side sealing plate 36 is arranged in such a direction that the outer long hole 37a and the cover 37b are on the upper side.
  • the exterior plate 37 that covers the sealing plate 36 on the rear surface side is arranged in such a direction that the outer long hole 37a and the cover 37b are on the lower side.
  • the material of each exterior plate 37 is not particularly limited as long as it covers the sealing plate 36 together with the tank frame 35 and can hold the main electrode plates 3 and 3 and the induction electrode plate 4. Carbon steel may be used.
  • the pair of main electrode plates 3, 3 and the one or more induction electrode plates 4 between them are plate-like bodies that are horizontally long in a front view, and as described above, Each is connected via a spacer 5 and arranged substantially parallel to each other.
  • the pair of main electrode plates 3 and 3 and the induction electrode plate 4 are arranged in a state where they are immersed in the water W in the electrolytic cell 2, and are simply introduced into the electrolytic cell 2 (that is, each main electrode plate 3 and the induction plate 4 are guided).
  • the peripheral edge of the electrode plate 4 is held (in a state where it is not fixed to the electrolytic cell 2).
  • an electric field is generated between the main electrode plates 3 and 3 by passing a current through the main electrode plates 3 and 3 and applying positive and negative charges only to the main electrode plates 3 and 3, respectively.
  • the induction electrode plate 4 is electrostatically induced and charges move in each induction electrode plate 4, and positive charges and negative charges are collected on the front and back surfaces (front and rear surfaces) of the induction electrode plate 4.
  • the surface of the induction electrode plate 4 on the side close to the main electrode plate 3 to which a positive charge is applied collects negative charges (charges negatively), and conversely, a negative charge is applied.
  • positive charges are collected (positively charged).
  • the brown gas B can be generated by electrolyzing water W on the inner surfaces of the main electrode plates 3 and 3 and the front and back surfaces of each induction electrode plate 4.
  • potassium hydroxide KOH
  • sodium hydroxide NaOH
  • the material of the main electrode plate 3 is not particularly limited as long as the material can be charged (conducted) with positive and negative charges applied thereto.
  • carbon (C) platinum (Pt), gold (Au)
  • Precious metals such as copper (Cu), iron (Fe), aluminum (Al), tin (Sn), lead (Pb) and other soluble electrode materials
  • titanium (Ti) base metal surface is plated with platinum (Pt)
  • an insoluble electrode material such as a material obtained by firing iridium oxide (IrO 2 ) on the surface of a titanium (Ti) base material.
  • the main electrode plate 3 imparting a positive charge serves as a catalyst for generating oxygen gas (O 2 ) on the surface of a base material such as titanium (Ti) or iron (Fe).
  • a main electrode plate 3 that uses a material plated with lithium oxide (Li 2 O) or the like and imparts a negative charge hydrogen gas (H 2 ) is formed on the surface of a base material such as titanium (Ti) or iron (Fe).
  • a material plated with nickel (Ni) or a platinum group element (platinum (Pt), ruthenium (Ru), rhodium (Rh), palladium (Pd)) or the like, which is a catalyst for generation, may be used.
  • the material of the induction electrode plate 4 is not particularly limited as long as it is a material that causes electrostatic induction in an electric field.
  • a material that causes electrostatic induction in an electric field for example, carbon (C), platinum (Pt), gold (
  • the surface of a base material such as a soluble electrode material such as Au), copper (Cu), iron (Fe), aluminum (Al), tin (Sn), lead (Pb) or titanium (Ti) is made of platinum (Pt). It may be an insoluble electrode material plated or baked with iridium oxide (IrO 2 ).
  • titanium (Ti) or the like is used as a base material, and a surface of the main electrode plate 3 side to which a positive charge is applied (that is, a negative charge is charged) is provided with hydrogen gas ( H 2 ) Oxygen gas (O 2 ) is generated on the surface of the main electrode plate 3 side that is negatively charged (that is, charged with a positive charge) by plating nickel (Ni) or the like as a catalyst for generation of H 2 )
  • a material plated with lithium oxide (Li 2 O) or the like serving as a catalyst may be used.
  • the main electrode plates 3 and 3 and the induction electrode plates 4 have substantially the same size and shape when viewed from the front, and enter the inner surface 35c of the tank frame 35 as described above. That is, the front main electrode plate 3 and each induction electrode plate 4 enter the frame inner surface 35c from the front opening 35a, and the rear main electrode plate 3 from the rear stage portion 35h side of the tank frame 35 enters the frame inner surface 35c. In order to enter, the front opening 35a and the rear stage portion 35h of the tank frame 35 are substantially similar in shape to the front view and are formed slightly smaller.
  • each main electrode plate 3 is located at a position where it can communicate with the middle long hole 36 a of the outer sealing plate 36 in the upper (or lower) approximate center in front view.
  • a horizontally long inner long hole 3 a penetrating the main electrode plate 3 is formed, and the inside and outside of the main electrode plate 3 communicate with each other.
  • Each induction electrode plate 4 is provided with a pair of through holes 4a, 4a in a substantially circular shape at a position communicating with the inner long hole 3a and at an upper portion and a lower portion at predetermined intervals in the left-right direction. In this pair of through-holes 4a and 4a, a substantially cylindrical flow-through member 34, which will be described later, is inserted.
  • a pair of inner electrode holes 3b with a predetermined interval in the left-right direction is also provided at a position where the main electrode plate 3 can communicate with the middle electrode holes 36b, 36b of the outer sealing plate 36 at a substantially central portion when viewed from the front. 3b are formed in a penetrating shape.
  • the main electrode plate 3 has the same shape as the front and rear main electrode plates 3, and the front main electrode plate 3 is oriented so that the inner long hole 3a is at the top.
  • the main electrode plate 3 on the rear surface side is arranged in a direction in which the inner long hole 3a is a lower part.
  • each main electrode plate 3 and each induction electrode plate 4 is not particularly limited, but may be, for example, 0.5 mm or more and 2.0 mm or less.
  • the number of induction plates 4 is one or more and is not particularly limited. For example, the number of induction plates 4 may be ten or more.
  • These induction electrode plates 4 and a pair of main electrode plates 3 and 3 sandwiching these induction electrode plates 4 are connected to each other via a spacer 5, and the main electrode plates 3 and 3 and the induction electrode plate 4 are connected to each other.
  • a spacer mounting portion 6 for mounting the spacer 5 and a flexible portion 7 other than the spacer mounting portion 6 are provided.
  • the spacer 5 is a substantially ring-shaped member, and has a predetermined interval at the front and rear surfaces of the main electrode plate 3 and the induction electrode plate 4 in a substantially central portion in the vertical and horizontal directions. A plurality of them are attached (for example, 2 ⁇ 4 vertical and horizontal).
  • the outer diameter and inner diameter of the spacer 5 are not particularly limited as long as a plurality of the outer diameter and inner diameter can be attached to the main electrode plate 3 and the induction electrode plate 4. Or, the inner diameter of the spacer 5 may naturally be a value smaller than the outer diameter and not less than 5 mm and not more than 30 mm.
  • the width of the substantially annular spacer 5 is not particularly limited, but may be, for example, 5 mm or more and 20 mm or less.
  • the thickness (height or axial length) of the spacer 5 has the same value as the interval between the main electrode plate 3 and the induction electrode plate 4 and the interval between the induction electrode plates 4, but this value is also particularly limited. For example, it may be 0.8 mm or more and 3.0 mm or less, or may be slightly thicker than the main electrode plate 3 and the induction electrode plate 4.
  • the spacer 5 can be made of any material as long as the main electrode plate 3 and the induction electrode plate 4 to be connected can be insulated (a short circuit can be prevented) and the connection state between the electrode plates 3 and 4 can be maintained.
  • the material may be a material, but may be an engineering plastic such as polyacetal (POM) or a super engineering plastic such as amorphous polyarylate (PAR).
  • the substantially annular portion that is connected (adhered or the like) to these spacers 5 is the spacer mounting portion 6 in the main electrode plate 3 and the induction electrode plate 4, and these spacer mounting portions 6 are also like the spacer 5 described above.
  • the main electrode plate 3 and the induction electrode plate 4 are positioned at substantially the center in the vertical direction and the horizontal direction. Therefore, the peripheral end portions (portions surrounding the substantially central portion) other than the substantially central portion (spacer mounting portion 6) in the main electrode plates 3 and 3 and the induction electrode plates 4 are as described above. And since the periphery of the induction electrode plate 4 is not fixed to the electrolytic cell 2, it is possible to bend in the front-rear direction with respect to the spacer mounting portion 6 (substantially central portion). That is, the main electrode plates 3 and 3 and each induction electrode plate 4 have a flexible portion 7 at the peripheral end.
  • the flexible portion 7 is charged positively or negatively to the flexible portion 7 of the main electrode plate 3, and the flexible portion 7 of the induction electrode plate 4 is charged. Both sides are positively and negatively charged by electrostatic induction. That is, the surface of the negatively charged induction electrode plate 4 is present closest to the positively charged main electrode plate 3, and positive and negative appear alternately on the front and back surfaces of each induction electrode body 4. Near the charged main electrode plate 3 is the surface of the positively charged induction plate 4. Therefore, the induction electrode plate 4 closest to the positively charged main electrode plate 3 is naturally pulled by the positively charged main electrode plate 3 rather than the farthest negatively charged main electrode plate 3.
  • the induction electrode plate 4 closest to the negatively charged main electrode plate 3 is naturally pulled by the negatively charged main electrode plate 3 rather than the farthest positively charged main electrode plate 3. means. Accordingly, the flexible portions 7 of the induction electrode plate 4 are bent toward the closer main electrode plate 3 side (that is, the front-rear direction outer side).
  • the electric current passed through the main electrode plates 3 and 3 is a direct current
  • the degree of bending in the flexible portion 7 changes according to the change (that is, Vibrate).
  • the current flowing through the main electrode plates 3 and 3 is an alternating current (commercial current or the like).
  • the portion 7 is almost free from bending of the flexible portion 7 at the moment when the current when the positive and negative directions are reversed, but when the main electrode plate 3 is negatively charged, the induction is caused by electrostatic induction.
  • the flexible portion 7 of the induction electrode body 4 is also bent toward the main electrode plate 3 side. That is, every time the polarity of the current is switched, the presence / absence of bending in the flexible portion 7 is switched, that is, it vibrates. Similarly, the current flowing through the main electrode plates 3 and 3 is the same as the pulse current, and the flexible portion 7 vibrates in accordance with the change of the pulse.
  • a substantially cylindrical flow-through member 34 is inserted into each of the through-holes 4a and 4a in the induction electrode plate 4, and the gap between the flow-through member 34 and the induction electrode plate 4 is as shown in FIG.
  • each through hole 4 a is formed so that at least one of the vertical and horizontal directions is slightly larger than the cross section of the flow-through member 34 so that the gap 4 b is formed. Due to the gap 4b, the induction plate 4 can be bent even if the flow-through member 34 is inserted.
  • the flexible portion 7 that can be bent with respect to the spacer mounting portion 6 can vibrate by applying a voltage to electrolyze the water W, and this vibration causes the main electrode plates 3 and 3 and the induction electrode plate 4 to vibrate. Hydrogen, oxygen, etc. that have become bubbles on the surface of the electrode easily become separated from the respective electrode plates 3, 4, and water W always touches the surface of the electrode plates 3, 4 that can generate the brown gas B one after another. It becomes. At the same time, since positive and negative charges are applied not only to the main electrode plates 3 and 3 but also to the front and back of the induction electrode plate 4 electrostatically induced therebetween, hydrogen, oxygen, etc.
  • the main electrode plate 3 also has the flexible portion 7 on the induction electrode plate 4 side (that is, the front-rear inner side) because the surface on the near side of the nearest induction electrode plate 4 is charged positively or negatively. Can bend. Further, even if there is only one induction electrode plate 4, the vibration of the flexible portion 7 described above can be reduced if it is arranged to be shifted from the middle position between the pair of main electrode plates 3, 3 to either front or back. Occur.
  • the current flowing through the main electrode plates 3 and 3 is a commercial current, it is not a sine wave current that changes with an accurate period, but is actually more than 50 or 60 Hz due to various noises (radio waves, etc.).
  • High frequency vibrations eg, ultrasonic vibrations
  • hydrogen, oxygen, and the like that have become bubbles on the surfaces of the main electrode plates 3 and 3 and the induction electrode plate 4 are repeatedly expanded and contracted in size according to the period of vibration. If this expansion / contraction is explained in detail, the surface area of bubbles such as hydrogen is naturally larger than the surface area during contraction when the bubbles themselves expand.
  • the bubble expands at every period of vibration. Some of the growing bubbles finally expand to a critical size where the bubbles themselves cannot be maintained, and water W rushes into the bubbles and is compressed and broken. Although the bubbles to be compressed and destroyed are very small in an instant, high temperature and high pressure (for example, several thousand degrees, 100 atm to 1000 atm, etc.) are instantaneously generated in a minute region.
  • high temperature and high pressure for example, several thousand degrees, 100 atm to 1000 atm, etc.
  • the surrounding water W is also decomposed by heat generated by such bubble compression breakage, and hydrogen ions (H + ) and hydroxide ions (OH ⁇ ) having very high reactivity are generated.
  • hydrogen ions (H + ) and hydroxide ions (OH ⁇ ) having very high reactivity are generated.
  • ozone (O 3 ) may be formed by these highly reactive ions (hydrogen ions (H + ), hydroxide ions ( OH ⁇ ), ozone (O 3 ), water vapor (H 2 O), hydrogen peroxide (H 2 O 2 ), etc. may also be included in the brown gas B).
  • the suction member 31 in the brown gas generator 1 sucks water W into the electrolytic cell 2.
  • a water tank 31a, a suction connecting member 31b, and a suction path 31c are provided in this order from the upstream side.
  • a water tank 31a containing water W is provided on the uppermost stream side of the suction member 31, and a suction connection composed of a flexible hose or the like is provided on the downstream side of the water tank 31a.
  • the material 31b is connected.
  • a suction path 31c for sending water W to the electrolytic cell 2 is connected to the downstream side of the suction connection member 31b, and the downstream side (that is, the side closest to the electrolytic cell 2) of the suction path 31c is in the electrolytic cell 2. It communicates with the cover 37b of the exterior plate 37 on the rear side.
  • the suction connecting member 31b may be a flexible tube, or conversely, a non-flexible tube, in addition to the above-described hose. Further, a joint may be provided between the water tank 31a and the suction connecting member 31b, and between the suction connecting member 31b and the suction passage 31c (not shown).
  • the discharge member 32 in the brown gas generator 1 sends out the brown gas B in the electrolytic cell 2 to the outside of the apparatus.
  • a discharge path 32a and a separator 32b provided in the discharge path 32a are provided.
  • the gas passage 26 gas coupling material 26a from the cover 37b of the exterior plate 37 on the front surface side in the electrolytic cell 2 is provided.
  • the discharge path 32a extends substantially straight forward and then upwards along the normal direction of the front exterior plate 37 of the electrolytic cell 2.
  • a separator 32b that removes impurities and the like from the brown gas B discharged from the electrolytic cell 2 is provided in the middle of the substantially straight forward portion of the discharge channel 32a and at a front position of the electrolytic cell 2.
  • the separator 32b is a substantially cylindrical member through a curved pipe from a straight part of the discharge path 32a, and removes impurities in the brown gas B passing through the straight part of the discharge path 32a and dissolves in the water W.
  • water vapor (H 2 O) and hydrogen peroxide (H 2 O 2 ) that have become gases go straight through the discharge path 32a. It also plays the role of separating the liquid that passes through the part (gas-liquid separation).
  • the power transmission member 33 in the brown gas generator 1 imparts positive and negative charges (flows current) to each of the pair of main electrode plates 3 and 3.
  • the power transmission member 33 includes a terminal 33a that is electrically connected to each main electrode plate 3, and a cord 33b that is connected to the terminal 33a and transmits power.
  • the terminal 33a is composed of a bolt, a nut, a washer, and the like.
  • the bolt is formed in a substantially disk shape with a thin head portion
  • the screw body is an inner electrode hole 3b, 3b of the main electrode plate 3.
  • the middle electrode holes 36b and 36b of the sealing plate 36 and the outer electrode holes 37c and 37c of the outer plate 37 the screw body passes through the main electrode plate 3, the sealing plate 36 and the outer plate 37
  • the screw tip portion A terminal 33a is attached to the electrolytic cell 2 by screwing a nut or the like to the side.
  • the terminal 33 a also serves to attach the substantially central portion of each main electrode plate 3 to the electrolytic cell 2, and the approximately central portion of the main electrode plate 3 is connected to the induction electrode plate 4 via the spacer 5. Therefore, the main electrode plates 3 and 3 and the induction electrode plate 4 are suspended in the electrolytic cell 2. Due to this suspended state, the tank frame 35 does not hinder the bending of the flexible portion 7 in the main electrode plates 3 and 3 and the induction electrode plate 4. All the peripheral end portions of the end portion and the left and right end portions can be the flexible portion 7.
  • the cord 33b is connected to a washer or the like sandwiched between the nut of the terminal 33a and the exterior plate 37, and a current is supplied from the power source (power is supplied) through the cord 33b.
  • the current flowing through the main electrode plates 3 and 3 may be a direct current, an alternating current, a pulse current, or a current that changes in a triangular wave shape.
  • the power source for supplying these currents is not particularly limited, but may be built in the housing of the brown gas generator 1, or may be a commercial power source (outlet), a separate generator, a battery, or the like. May be.
  • the flow-through member 34 in the brown gas generator 1 passes the water W from the suction member 31 to between the pair of main electrode plates 3 and 3 and the induction electrode plate 4.
  • the brown gas B generated between the main electrode plates 3 and 3 and the induction electrode plate 4 is passed to the discharge member 32.
  • the flow-through member 34 allows water W that has entered the space between the rear main electrode plate 3 and the induction electrode plate 4 from the rear suction member 31 to the front side of the main electrode plate 3. It is inserted between the induction electrode plates 4 on the (inner side) and between the foremost induction electrode plate 4 and the main electrode plate 3 on the front side (discharge member 32 side).
  • the flow-through member 34 generates brown gas B generated between the main electrode plate 3 and the induction electrode plate 4 on the rear side (on the suction member 31 side) of the electrolytic cell 2 and between the induction electrode plates 4. In addition, it passes through the space between the main electrode plate 3 and the induction electrode plate 4 on the front side (discharge member 32 side) of the electrolytic cell 2 and exits from the discharge member 32 on the front side of the electrolytic cell 2. Therefore, the flow-through member 34 inserted in the lower part of the induction electrode plate 4 mainly passes the water W, and the flow-through member 34 inserted in the upper part of the induction electrode plate 4 mainly passes the brown gas B.
  • the flow-through member 34 that plays such a role is a substantially cylindrical body, and a part of the side peripheral surface thereof is notched in the cylinder axis direction (notch portion 34a), and is formed in a substantially C-shaped cross section.
  • the notch 34a of the flow-through member 34 is arranged such that the lower flow-through member 34 faces downward and the upper flow-through member 34 faces upward.
  • the water W passing through the through-flow member 34 easily escapes downward between the induction electrode plates 4, and the brown gas B passing through the through-flow member 34 easily escapes upward between the induction electrode plates 4.
  • the flow-through members 34 are provided in a pair on the left and right, the water W can be convected by the lower flow-through member 34 and the brown gas B can be convected by the upper flow-through member 34.
  • the fuel generation and supply system 20 is a mixed fuel M (gas-gas-liquid mix energy) having higher combustion efficiency than the conventional liquid fuel E.
  • the application trademark) can be generated and supplied to the combustion apparatus (boiler 104, etc.).
  • the combustion condition of the mixed fuel M generated and supplied by the fuel generation and supply system 20 is whiter than the conventional liquid fuel E (kerosene) only, and burns more completely. I understand that.
  • the molecule of liquid fuel E such as kerosene is a combination of carbon atoms (C) and hydrogen electrons (H), and has a main chain in which carbon atoms (C) are chained.
  • the brown having a size of 1 nm to 1000 nm (nanosize)
  • the molecule of the liquid fuel E (the main chain of carbon atoms (C)) has a higher reaction rate than the carbon atoms (C) (for example, 7 times to 10 times times or less).
  • the hydrogen atoms (H) can be brought close to each other, and the hydrogen atoms (H) undergo a violent oxidation reaction (burn) near the main chain of the carbon atoms (C).
  • C Invite the oxidation reaction (combustion) of itself. Furthermore, since this combustion attraction / oxidation reaction occurs continuously, the combustion of carbon atoms (C) in the liquid fuel E occurs surely, approaching complete combustion, and the combustion efficiency is greatly improved.
  • the total fuel consumption of heavy oil which is the conventional liquid fuel E
  • 80 liters per hour in two boilers The operating time of these two boilers is one day. If it is 10 hours, in the conventional case (when only heavy oil is used), "800 liters per day” is consumed (if the unit price of heavy oil is 90 yen per liter, the fuel cost is 72,000 yen per day) Takes).
  • the mixed fuel M by the fuel generation and supply system 20 according to the first embodiment of the present invention will be described.
  • the two boilers consume 80 liters of heavy oil per hour.
  • the brown gas generator 1 (brown gas generator) 1 is "800 liters per hour" Gas B is generated (consumed).
  • the remixing path 11 (loop path 25, gas path) is used against 80 liters of heavy oil consumed by the two boilers per hour. 26, the recycling path 28) may be used to increase the dissolution rate of the brown gas B.
  • the circulation pump 24 in the loop passage 25 may not be operated for one hour, and only 30 minutes in one hour.
  • the circulation pump 24 (and the brown gas generator 1) can be operated, and the circulation pump 24 (and the brown gas generator 1) can be stopped (rested) for the remaining 30 minutes. Therefore, the amount of the brown gas B generated by the brown gas generator 1 is also almost halved, and may be “450 liters per hour”.
  • the consumption amount per hour of the conventional liquid fuel E can be reduced to 5% or more and 50% or less.
  • 10 liters of liquid fuel E may be mixed with 1 to 1000 liters of brown gas B, preferably 30 to 500 liters, more preferably, 50 liters or more and 300 liters or less.
  • the supply pump 22 and the circulation pump 24 must also be operated (that is, power consumption is required).
  • FIG. 7 shows a fuel generation and supply system 20 according to the second embodiment of the present invention.
  • the second embodiment is most different from the first embodiment in that the remixing path 11 is not provided.
  • the second embodiment has the loop path 25 and the gas path 26 but does not have the recycle path 28.
  • the number, position, and type of valves in the branching device 21, the tank passage 23, the loop passage 25, and the merging device 29, and the mounting position on the most upstream side of the loop passage 25 are the first embodiment. Is different.
  • the system valve 21c is configured as a set of an electromagnetic valve and a ball valve, and the same applies to the fuel injection valve 21d.
  • an upper tank valve 23b is provided on the downstream side of the supply strainer 23c and on the upstream side of the upper tank pressure gauge 23d (that is, between the supply strainer 23c and the upper tank pressure gauge 23d).
  • the tank valve 23g is configured as a set of an electromagnetic valve and a ball valve.
  • the uppermost stream side of the loop path 25 is not the outer bottom surface of the mixing tank 9 but the side peripheral surface of the mixing tank 9 and is mounted at substantially the same height as the lowermost end of the lower tank connecting member 23h of the tank path 23. And provided upstream of the circulation strainer 25c and upstream of the upper loop pressure gauge 25d (ie, between the circulation strainer 25c and the upper loop pressure gauge 25d).
  • a ball valve and an electromagnetic valve are newly provided on the side connected to the fuel path 102, and the lower supply valve 10c on the most downstream side of the supply path 10 is provided on the fuel generation and supply system 20 side.
  • an electromagnetic valve is newly provided on the further downstream side and the upstream side of the merging tool 29 itself (between the lower supply valve 10c of the supply path 10 and the merging tool 29).
  • the other fuel generation and supply system 20 and the configuration, operation effect, and usage of the brown gas generator 1 are the same as those in the first embodiment.
  • FIG. 8 shows a fuel generation and supply system 20 according to the third embodiment of the present invention.
  • the brown gas B is mixed with the conventional gaseous fuel A instead of the liquid.
  • the “gaseous fuel A” in the present invention is a gaseous fuel at normal temperature (for example, a temperature range of 20 ° C. ⁇ 15 ° C. according to JIS-Z-8703), and is propane (C 3 H 8 ), butane. It refers to liquefied petroleum gas (LPG) whose main component is (C 4 H 10 ), natural gas (LNG) whose main component is methane (CH 4 ), dimethyl ether and the like.
  • LPG liquefied petroleum gas
  • LNG natural gas
  • CH 4 methane
  • the existing combustion apparatus 200 includes a gas tank 201 for storing the conventional gas fuel A, a gas path 202 for sending the gas fuel A from the gas tank 201, and a gas fuel A connected to the most downstream side of the gas path 202. It has a gas boiler 203 that burns.
  • the shape of the gas tank 201 is not particularly limited, and may be, for example, a vertically long substantially cylindrical shape. Further, an air discharge valve 201a for discharging the gaseous fuel A may be provided in the gas tank 201 (for example, the lower part of the side peripheral surface). In the gas path 202 on the downstream side of the gas tank 201, an upper air valve 202 a configured by a ball valve or the like is provided on the side peripheral surface of the gas tank 201. On the downstream side of the upper air valve 202a, a gas is used to remove dust, impurities and the like from the gaseous fuel A before entering the gas boiler 203 and adjusts the pressure of the gaseous fuel A entering the gas boiler 203 to a predetermined value. A filter regulator 202b is provided.
  • a middle air valve 202c constituted by an electromagnetic valve or the like is provided on the downstream side of the gas filter regulator 202b, and the flow rate of the gaseous fuel A entering the gas boiler 203 is adjusted on the downstream side of the middle air valve 202c.
  • An air variable throttle valve 202d is provided.
  • the gas boiler 203 is immediately provided on the downstream side of the air variable throttle valve 202d.
  • each of the upper air valve 202a and the middle air valve 202c in the gas path 202 may be a gate valve in addition to the above-described ball valve or electromagnetic valve.
  • the fuel generation and supply system 20 of the third embodiment includes an air mixer 8 ′ provided on the downstream side of the air variable throttle valve 202 d in the gas path 202 of the existing combustion device 200 described above, and the air mixer 8 ′.
  • An upper mix valve 202e that is provided on the downstream side of the upper mix valve and is constituted by a gate valve or the like, a mixed gas tank 202f that is provided on the downstream side of the upper mix valve 202e, and a gas discharge valve that is provided on the mixed gas tank 202f 202 g and a lower mix valve 202 h provided on the downstream side of the mixed gas tank 202 f and configured by a ball valve or the like.
  • the third embodiment includes a brown gas generation unit (brown gas generation device) 1 and a gas passage 26 extending from the brown gas generation unit 1 to the air mixer 8 ′, as in the first embodiment. is doing.
  • a gas variable throttle valve 26e ′ is provided at that position.
  • the air mixer 8 ′ may have any configuration as long as the brown gas B and the conventional gaseous fuel A can be mixed.
  • the air mixer 8 ′ may have a configuration in which the gas path 26 merges with the gas path 202. Absent.
  • the air mixer 8 ′ has a gas passage 26 and a gas passage 202 attached to a substantially cylindrical body having an upper and lower bottom shape along the tangential direction of the cylindrical cross section, and the brown gas B and the gaseous fuel A are respectively attached.
  • a configuration may be adopted in which the mixed fuel (mixed gas) M ′ of the brown gas B and the gaseous fuel A is discharged by a discharge pipe provided in the cylindrical axis direction by turning in a substantially cyclonic manner inside the substantially cylindrical body.
  • the shape of the mixed gas tank 202f is not particularly limited, but may be, for example, a vertically long substantially cylindrical shape.
  • the mixed tank 9 is a gas for measuring the amount of the mixed gas M ′ stored therein.
  • a sensor may be provided.
  • a bottom portion (outer bottom surface) of the mixed gas tank 202f may be provided with a leg portion extending downward and a gas discharge valve 202g for discharging the mixed gas M ′.
  • the continuation of the gas path 202 is connected to the upper part of the outer peripheral surface of the mixed gas tank 202f via the lower mix valve 202h.
  • Each of the upper mix valve 202e, the gas discharge valve 202g, and the lower mix valve 202h may be an electromagnetic valve or a flow rate adjusting valve that adjusts the flow rate of the mixed gas M ′. Further, between the variable air throttle valve 202 d in the gas path 202 and the air mixer 8 ′, between the variable gas throttle valve 26 e ′ in the gas path 26 and the air mixer 8 ′, and from the lower mix valve 202 h to the gas boiler 203. It may be configured to have a flexible hose or tube, or joints on both ends of the hose or tube, etc. It doesn't matter.
  • the existing combustion apparatus 200 of the gaseous fuel A does not need to have the mixed gas tank 201f, the gas discharge valve 202g, and the lower mix valve 202h.
  • the suction member 31 in the combustion generation supply system 20 does not have the suction connection member 31b.
  • the other fuel generation and supply system 20 and the configuration, operation effect, and usage of the brown gas generator 1 are the same as those in the first embodiment.
  • the fuel generation and supply system 20 of the third embodiment generates a mixed gas M ′ (a gas / liquid mix energy (application trademark)) with higher combustion efficiency from a conventional gaseous fuel A, and a combustion apparatus (a gas boiler 203 or the like). ).
  • a mixed gas M ′ a gas / liquid mix energy (application trademark)
  • the combustion condition of the mixed gas M ′ generated and supplied by the fuel generation and supply system 20 is larger in flame and purple than the conventional combustion of only the gaseous fuel A (propane gas). It can be seen that it is more completely burned.
  • the combustion temperature of only the gaseous fuel A shows 605 ° C. (FIG. 11 (a)), but the combustion temperature of the mixed gas M ′ further increases to 850 ° C.
  • the fuel generation and supply system 20 of the present invention can improve combustion efficiency, reduce the amount of fuel consumed (cost), and save energy even when the conventional gaseous fuel A and the brown gas b are mixed.
  • ⁇ Fourth embodiment> 9 and 10 show a fuel generation and supply system 20 according to a fourth embodiment of the present invention.
  • the features of the fourth embodiment are the heat insulating structure 12 that separates the mixer 8, the mixing tank 9, the supply path 10 and the like from the brown gas generator 1 and the temperature on the side of the mixer 8 and the like from the heat insulating structure 12.
  • the temperature adjusting means 13 for adjusting the temperature is included.
  • the liquid fuel E to be used is not particularly limited.
  • the liquid fuel E to be used has little fluidity or no fluidity at room temperature or the like.
  • three kinds (C heavy oil) may be used. Incidentally, if described in detail C heavy oil, if the kinematic viscosity of 250 mm 2 / s or less (more than a 50mm 2 / s 250mm 2 / s or less) three No.
  • kinematic viscosity 400 mm 2 / s or less (250 mm 2 / If it exceeds s and is 400 mm 2 / s or less), it will be class 3 No. 2, and if the kinematic viscosity is 1000 mm 2 / s or less (over 400 mm 2 / s and 1000 mm 2 / s or less), it will be class 3 No. 3.
  • JIS-K-2205 In 2006, among the heavy oil, two if the kinematic viscosity of 50 mm 2 / s or less (20mm 2 / s and beyond 50 mm 2 / s or less) (B heavy oil), kinematic viscosity 20mm If it is 2 / s or less, it is specified as one type (A heavy oil).
  • FIG. 9 shows Example 1 of the fuel generation and supply system 20 according to the fourth embodiment of the present invention.
  • the basic structure of the fuel generation and supply system 20 of the first embodiment is the same as that of the first embodiment, but the supply pump 22 includes the mixer 8, the mixing tank 9, the supply path 10, and the remixing path 11.
  • the point that the tank path 23, the circulation pump 24, and the loop path 25 are covered (covered) with the heat insulating structure 12 is different from the first embodiment.
  • the term “covered (covered)” by the heat insulating structure 12 is sufficient to cover at least a part of the object to be covered. Even if it is up to the front (upstream side of the lower supply valve 10c) connected to the tool 29, or if it is the tank path 23, it may be up to the front (downstream of the system valve 21c) connected to the branching tool 21, There is no change in “covering” the supply path 10 and the tank path 23.
  • the heat insulating structure 12 may have any configuration as long as it suppresses the movement of heat (reduces the amount of heat flowing through the heat insulating structure 12). good.
  • the sheet-like material 41 may be any material as long as it suppresses the movement of heat.
  • a reflective sheet in which aluminum, copper, platinum, brass, or the like is fixed to the surface of a heat insulating sheet is used. They may be stacked (in this case, the mixer 8 is covered so that the reflection sheet side is exposed).
  • Materials for the heat insulation sheet include fiber insulation such as glass wool, rock wool, cellulose fiber, carbonized cork and wool insulation, and foam insulation such as urethane foam, phenol foam, polystyrene foam and foam rubber. Also good.
  • the sheet-like object 41 does not necessarily need to have a reflective sheet.
  • the shape and thickness of the sheet-like material 41 are not particularly limited, and may be, for example, a tape-like material.
  • the fuel generation and supply system 20 of the first embodiment is a heat insulating structure 12 (sheet-like material 41), and includes a mixer 8, a mixing tank 9, a supply path 10, a remixing path 11, a supply pump 22, a tank path 23, The circulation pump 24 and the loop path 25 are covered together.
  • electrical equipment for example, the storage amount sensor 9a of the mixing tank 9 and the electromagnetic valve as the middle tank valve 23f
  • the heat insulating structure 12 is covered by the heat insulating structure 12 separately. Even if the temperature in the heat insulation structure 12 becomes high by the temperature adjusting means 13 described below, normal operation can be ensured. Even if it is the sheet-like material 41 that directly covers or collectively covers the mixer 8 and the like, it can be said that the mixer 8 and the blankun gas generating unit 1 are separated from each other.
  • the temperature adjusting means 13 may have any configuration as long as it adjusts the temperature in the region on the side of the mixer 8, the mixing tank 9, the supply path 10, the remixing path 11, and the like from the heat insulating structure 12. However, as long as C heavy oil having a high viscosity (dynamic viscosity) at room temperature is used as the liquid fuel E, for example, a heater (heating device) may be included.
  • the heater warms the air (atmosphere) in the region closer to the mixer 8 and the like than the heat insulating structure 12 (according to this, the liquid fuel E and the mixed fuel in the region closer to the mixer 8 and the like from the heat insulating structure 12)
  • Any configuration may be used as long as M can be heated), for example, an oil heater, an electric heater, a gas heater, or the like.
  • the heater is provided in a region on the side of the mixer 8 and the like from the heat insulating structure 12 (inside the heat insulating structure 12 covering the mixer 8 and the like), has a temperature sensor, and has a thermostat, a thyristor, a timer.
  • the heater is turned on / off manually or the like, and the temperature of the region on the side of the mixer 8 etc. from the heat insulating structure 12 is kept at a predetermined value.
  • the temperature at which the heater should be adjusted and maintained may be any temperature as long as it does not interfere with the mixing of the liquid fuel E and the brown gas B, but may be about 100 ° C., for example.
  • the heater while the heater is turned off, the temperature of the region is maintained for a while due to the residual heat, and in this case, the above-described heat insulating structure 12 exhibits a heat retaining effect.
  • the temperature adjusting means 13 may have a fan (blower). By this fan, the air (atmosphere) in the region from the region on the side of the mixer 8 or the like from the heat insulating structure 12. It may be exhausted to maintain a predetermined temperature. In addition, even if it does not have a fan, the opening-and-closing window which connects the said area
  • a fan blower
  • the mixer 8, the mixing tank 9, the supply path 10 and the like are separated from the brown gas generator 1 by the heat insulating structure 12, and the temperature adjusting means 13 is provided on the mixer 8 and the like side from the heat insulating structure 12.
  • a liquid fuel E having a high viscosity (kinematic viscosity) such as C heavy oil is used, it becomes possible to mix brown gas B having a predetermined dissolution rate, There is no influence of heat on the equipment such as the brown gas generator 1.
  • FIG. 10 shows Example 2 of the fuel generation and supply system 20 according to the fourth embodiment of the present invention.
  • a partition wall 42 that partitions the housing of the fuel generation and supply system 20, and a drive source 44 that transmits a driving force to the pumps 22 and 24 via the belt 43 through the partition wall 42.
  • the second embodiment is also characterized in that each of the mixer 8, the remixing path 11, the circulation pump 24, and the loop path 25 is provided.
  • the member 31, the electrolytic cell 2, the discharge member 32, etc. are omitted.
  • FIG. 10 shows a control panel 45 for controlling the above-described Brown gas generator 1, the drive source 44, etc., and for the user to control.
  • a circulation pump 24 is provided on the downstream side of each mixer 8 in the two loop paths 25, and further, on each mixing path 8 on the downstream side of the gas joining member 26 g of the gas path 26. It also has a branching material 46 that branches off.
  • Partition wall 42 As shown in FIG. 10, the partition wall 42 is provided between the mixer 8, the mixing tank 9, the supply path 10, the remixing path 11, and the brown gas generator 1, and the mixer 8 and the like.
  • the partition wall 42 also constitutes the heat insulating structure 12 because it separates the brown gas generator 1 and suppresses the movement of heat.
  • the partition wall 42 may be a specific partition wall that separates the inside of the housing of the fuel generation and supply system 20 from the side of the mixer 8 and the like and the brown gas generator (brown gas generator) 1 and the like. Any general configuration may be used.
  • the partition wall 42 may be any material as long as it suppresses the movement of heat. Further, on the surface of the partition wall 42 on the side of the mixer 8 or the like, aluminum or the like is used to suppress the heat in the region on the side of the mixer 8 or the like from moving to the region on the side of the brown gas generator 1 or the like. A coating sheet that reflects the heat of the region on the mixer 8 side, etc. may be formed by applying a reflective sheet with the surface fixed to the surface or applying a heat shielding paint.
  • the belt 43 and the drive source 44 are provided for each of the pumps 22 and 24. Specifically, the driving force is transmitted to the supply pump 22 from the driving source 44 (44a) via the belt 43 (43a), and the supply pump 22 is driven.
  • the belt 43 may have any configuration as long as the driving force can be transmitted through the partition wall 42, and may be a transmission means other than the belt.
  • the drive source 44 may have any configuration such as a motor or an engine.
  • the driving force is transmitted from the drive source 44 (44b) via the belt 43 (43b), and to the other circulation pump 24.
  • the driving force is transmitted from the driving source 44 (44c) via the belt 43 (43c). Accordingly, the amount of the mixed fuel M to be circulated (the amount of the brown gas B to be mixed) can be adjusted for each circulation pump 24.
  • the speed at which the brown gas B is mixed with the liquid fuel E is increased.
  • the mixer 8 and the remixing path 11 may each have three or more numbers.
  • the recycle path 28 for sending out the brown gas B that has been removed from the mixed fuel M in the mixing tank 9 is configured to be thicker than the pipe from the gas merging member 26 g in the gas path 26 to the gas inlet 8 b of each mixer 8. May be.
  • the other fuel generation and supply system 20 and the configuration, operation effect, and usage of the brown gas generator 1 are the same as those in the first embodiment.
  • the present invention is not limited to the embodiment described above.
  • Each configuration of the brown gas generator 1 and the fuel generation and supply system 20 or the entire structure, shape, dimensions, and the like can be appropriately changed in accordance with the spirit of the present invention.
  • the number of Brown gas generators 1 in the fuel generation and supply system 20 may be not only one but a plurality.
  • the mixer 8, the mixing tank 9, the supply path 10, the remixing path 11, and the like in the fuel generation and supply system 20 may be provided in the housing.
  • the number of induction plates 4 may be one. In that case, the flow-through member 34 may not be inserted into the pair of through holes 4a and 4a.
  • the flow-through member 34 may not be inserted into the pair of through holes 4a and 4a.
  • the flow-through member 34 may not be inserted into the induction electrode plate 4 without the flow-through member 34.
  • the spacer 5 connects the substantially central portions of each of the pair of main electrode plates 3 and 3 and the induction electrode plate 4, but other portions may be connected, and the pair of main electrode plates 3 and 3. If the induction electrode plate 4 has the flexible portion 7, for example, the upper end portions, the lower end portions, and the left and right end portions of the main electrode plates 3, 3 and the induction electrode plate 4 are connected to each other. It doesn't matter. Further, the space 5 is connected so that the main electrode plates 3, 3 and the induction electrode plate 4 are connected at the upper ends, and the main electrode plates 3, 3 and the induction electrode plate 4 adjacent to each other are connected at the lower ends. You may connect so that the spacer attachment part 6 (namely, flexible part 7) may be provided in an up-and-down zigzag. Further, the space 5 may be provided with a flexible portion 7 in a zigzag manner with the main electrode plates 3 and 3 and the induction electrode plate 4 being left and right.
  • the spacer attachment part 6 namely, flexible part 7
  • the fuel generation and supply system 20 has one brown gas generation unit 1 (brown gas generation device), but the brown gas B generated by one brown gas generation device 1 is used as a plurality of fuel generation and supply systems 20.
  • the mixed fuel M generated by each fuel generation and supply system 20 may be used by each combustion apparatus 100 connected to each fuel generation and supply system 20.
  • the combustion generation supply system 20 has one mixer 8 and one remixing path 11, but may have a plurality of mixers 8 and remixing paths 11, for example, the mixer 8 also.
  • the same number of remixing paths 11 may be provided, one mixer 8 and one remixing path 11 may be provided, or a plurality of mixers 8 and one remixing path 11 may be provided.
  • the heat insulating structure 12 may be a vacuum heat insulating material.
  • Brown gas generator (Brown gas generator) DESCRIPTION OF SYMBOLS 2 Electrolyzer 3, 3 A pair of main electrode plate 4 Induction electrode plate 5 Spacer 6 Spacer attachment part 7 Flexible part 8 Mixer 9 Mixing tank 10 Supply path 11 Remix path 12 Heat insulation structure 13 Temperature adjustment means 20 Fuel supply System W Water B Brown gas E Liquid fuel M Mixed fuel

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Electrolytic Production Of Non-Metals, Compounds, Apparatuses Therefor (AREA)
  • Fuel Cell (AREA)

Abstract

[Problem] To simultaneously achieve "simplification and miniaturization of a device" and "improvement of Brown's gas generation efficiency" by connecting main electrode plates to induction electrode plates, which are subjected to electrostatic induction between the main electrode plates, via spacers and by providing flexible sections which can bend relative to spacer mounting sections. [Solution] In a Brown's gas generation device, a pair of main electrode plates (3, 3), to which positive and negative electric charges are respectively applied, and one or multiple induction electrode plates (4), which are subjected to electrostatic induction between the main electrode plates (3, 3), are arranged in a submerged state in water (W) inside an electrolytic cell (2), a Brown's gas (B) is generated by means of electrolysis of the water (W) between the main electrode plates (3, 3) and the respective induction electrode plates (4), and the main electrode plates (3, 3) and the respective induction electrode plates (4) are connected to each other via spacers (5) and have spacer mounting sections (6) for mounting the spacers (5) and flexible sections (7) which can bend relative to the spacer mounting sections (6). A fuel production/supply system has a Brown's gas generation unit (1), which is the Brown's gas generation device.

Description

ブラウンガス発生装置、及び、燃料生成供給システムBrown gas generator and fuel generation and supply system
 本発明は、電解槽内で水を電気分解して、水素を含むブラウンガスを発生するブラウンガス発生装置、及び、このブラウンガス発生装置であるブラウンガス発生部を有した燃料生成供給システムに関する。 The present invention relates to a brown gas generator that electrolyzes water in an electrolytic cell to generate a brown gas containing hydrogen, and a fuel generation and supply system having a brown gas generator that is the brown gas generator.
 従来、ブラウンガス生成装置が知られている(特許文献1)。
 このブラウンガス生成装置は、水を収容するとともに、水を分解して水素ガス及び水素ガスからなるブラウンガスを生成する電極を備えた水電解槽と、前記電極に電流を供給する電源手段と、前記水電解槽内の水の水温を測定する第1の測定手段と、前記電極に加えられる電流又は電圧を測定する第2の測定手段と、前記水電解槽内で発生したブラウンガスの量を測定する第3の測定手段とを有する。
Conventionally, a brown gas generator is known (Patent Document 1).
This brown gas generation device contains water, an electrolysis tank provided with an electrode that decomposes water and generates brown gas composed of hydrogen gas and hydrogen gas, and a power supply means for supplying current to the electrode, A first measuring means for measuring the water temperature of the water in the water electrolyzer, a second measuring means for measuring a current or voltage applied to the electrode, and an amount of brown gas generated in the water electrolyzer. And third measuring means for measuring.
特開2010-007038号公報JP 2010-007038 A
 しかしながら、特許文献1に記載されたブラウンガス生成装置は、上述した3つの測定手段を必須として、扱うデータが多くなり処理や構成の複雑化を招く。
 更に、特許文献1のブラウンガス生成装置は、前記水電解槽内の水を冷却する冷却手段や、前記第1、第2及び第3の測定手段による測定結果を取得し、測定結果に応じて前記電源手段が前記電極に供給する電流又は電圧の値及び水温を決定し、決定した値の電流又は電圧を出力するように前記電源手段に命令するともに、前記決定した水温となるように前記冷却手段を駆動させる制御手段と、ガス発生効率を最適状態に管理制御するコントロール機能をも有する分だけ、装置の大型化が避けられない。
 又、生成したブラウンガスにより、従来の燃料の「省エネ」を図るとの示唆もない。
However, the brown gas generation device described in Patent Document 1 requires the three measurement means described above, and the amount of data to be handled increases, resulting in complicated processing and configuration.
Furthermore, the brown gas generator of Patent Document 1 acquires the measurement results by the cooling means for cooling the water in the water electrolyzer and the first, second and third measurement means, and according to the measurement results. The power supply means determines the current or voltage value and water temperature supplied to the electrode, and instructs the power supply means to output the determined current or voltage, and the cooling so that the determined water temperature is achieved. The size of the apparatus is unavoidable as long as it has the control means for driving the means and the control function for managing and controlling the gas generation efficiency in the optimum state.
In addition, there is no suggestion that the generated fuel will be “energy-saving” for conventional fuel.
 本発明は、このような点に鑑み、主極板及びその間で静電誘導される誘導極板それぞれを、スペーサを介して接続し、スペーサ取付部に対して撓曲可能な可撓部を設けることで、「装置の簡素化・コンパクト化」や、「ブラウンガス生成効率の向上」、「省エネ」を図れるブラウンガス発生装置、及び、燃料生成供給システムを提供することを目的とする。 In view of such a point, the present invention provides a flexible portion that can be bent with respect to the spacer mounting portion by connecting the main electrode plate and the induction electrode plate that is electrostatically induced therebetween via a spacer. Accordingly, it is an object of the present invention to provide a brown gas generator and a fuel generation and supply system that can achieve "simplification and compactness of the apparatus", "improvement of brown gas generation efficiency", and "energy saving".
 本発明に係るブラウンガス発生装置1は、電解槽2内で水Wを電気分解して、水素を含むブラウンガスBを発生するブラウンガス発生装置であって、前記電解槽2内には、正負の電荷がそれぞれ付与される一対の主極板3、3と、この一対の主極板3、3の間で静電誘導される1又は複数の誘導極板4とが、前記水Wに浸かった状態で配備され、前記一対の主極板3、3及び誘導極板4それぞれの間で水Wを電気分解して前記ブラウンガスBを発生させていて、前記一対の主極板3、3及び誘導極板4それぞれは、互いにスペーサ5を介して接続されていると共に、前記スペーサ5を取り付けるスペーサ取付部6と、このスペーサ取付部6に対して撓曲可能な可撓部7とを有していることを第1の特徴とする。 A brown gas generator 1 according to the present invention is a brown gas generator that electrolyzes water W in an electrolytic cell 2 to generate a brown gas B containing hydrogen. The pair of main electrode plates 3 and 3 to which the electric charge is applied and one or a plurality of induction electrode plates 4 electrostatically induced between the pair of main electrode plates 3 and 3 are immersed in the water W. The water W is electrolyzed between each of the pair of main electrode plates 3 and 3 and the induction electrode plate 4 to generate the brown gas B, and the pair of main electrode plates 3 and 3 Each of the induction electrode plates 4 is connected to each other via a spacer 5, and has a spacer mounting portion 6 for mounting the spacer 5, and a flexible portion 7 that can be bent with respect to the spacer mounting portion 6. This is the first feature.
 この特徴により、電解槽2内に、一対の主極板3、3と誘導極板4を水Wに浸かった状態で配備し、一対の主極板3、3及び誘導極板4それぞれの間で水Wを電気分解してブラウンガスBを発生させ、一対の主極板3、3及び誘導極板4に、スペーサ5を取り付けるスペーサ取付部6と、このスペーサ取付部6に対して撓曲可能な可撓部7とを設けることで、スペーサ5を介するだけという簡素化された構造のため、主極板3、3及び誘導極板4の接続が出来ると共に、従来のブラウンガス発生装置(図12参照)では、1つ1つの電極板に正又は負の端子を接続していたため、その端子取付部の分だけ、各電極板の間にスペースを空ける必要があり、更に、正負の電極板間で短絡を防ぐための絶縁体を間に挟む等によって、装置が分厚く大型化していたが、本発明のブラウンガス発生装置1では、主極板3、3及び誘導極板4のそれぞれを、近接させることも可能となって、「装置の簡素化・コンパクト化」が図れる。
 更に同時に、主極板3、3だけでなく、その間で静電誘導される誘導極板4の表裏にも、正負の電荷がそれぞれ付与されるため、水素、酸素等(ブラウンガスB)を発生させ得る極板の面積が増えると共に、スペーサ取付部6に対して撓曲可能な可撓部7が、水Wを電気分解させるために、主極板3、3に電圧をかける(電流を流す)ことで振動し得て、この振動により、主極板3、3及び誘導極板4の表面で気泡になった水素、酸素等が、それぞれの極板3、4から離れやすくなり、常に次々と、水Wが、ブラウンガスBを発生させ得る極板3、4の表面に触れることとなるため、「ブラウンガス生成効率の向上」も可能となる。
 つまり、「装置の簡素化・コンパクト化」と「ブラウンガス生成効率の向上」の両立を実現する。
 尚、「ブラウンガス」とは、酸水素ガス、HHOガスとも呼ばれ、本発明における「水素を含むブラウンガスB」とは、少なくとも水素を含むガスであって、水素(H2 )の他、酸素(O2 )や、オゾン(O3 )等を含んでいても構わない。
Due to this feature, a pair of main electrode plates 3 and 3 and an induction electrode plate 4 are provided in the electrolytic cell 2 in a state where they are immersed in water W, and a space between the pair of main electrode plates 3 and 3 and the induction electrode plate 4 is provided. The water W is electrolyzed to generate brown gas B, and a spacer mounting portion 6 for mounting the spacer 5 on the pair of main electrode plates 3, 3 and induction electrode plate 4, and the spacer mounting portion 6 is bent. By providing the flexible portion 7 that can be used, the main electrode plates 3, 3 and the induction electrode plate 4 can be connected to each other because of the simplified structure only through the spacer 5. In FIG. 12), since positive or negative terminals are connected to each electrode plate, it is necessary to provide a space between the electrode plates by the amount of the terminal mounting portion, and between the positive and negative electrode plates. The device becomes thicker and thicker, for example, by sandwiching an insulator to prevent short circuit. However, in the Brown gas generator 1 of the present invention, the main electrode plates 3 and 3 and the induction electrode plate 4 can be brought close to each other, so that "simplification and downsizing of the apparatus" can be achieved. .
At the same time, since positive and negative charges are applied not only to the main electrode plates 3 and 3 but also to the front and back surfaces of the induction electrode plate 4 electrostatically induced between them, hydrogen, oxygen, etc. (Brown gas B) are generated. The area of the electrode plate that can be increased increases, and the flexible portion 7 that can be bent with respect to the spacer mounting portion 6 applies a voltage to the main electrode plates 3 and 3 in order to electrolyze the water W (current flows). ), And this vibration makes it easy for hydrogen, oxygen, and the like that have become bubbles on the surfaces of the main electrode plates 3 and 3 and the induction electrode plate 4 to be separated from the electrode plates 3 and 4, and always one after another. Then, since the water W comes into contact with the surfaces of the electrode plates 3 and 4 that can generate the brown gas B, it is possible to “improve the brown gas generation efficiency”.
In other words, it is possible to achieve both “simplification and compactness of the device” and “improvement of brown gas generation efficiency”.
The “Brown gas” is also called oxyhydrogen gas or HHO gas, and the “Brown gas B containing hydrogen” in the present invention is a gas containing at least hydrogen, in addition to hydrogen (H 2 ), Oxygen (O 2 ), ozone (O 3 ), or the like may be included.
 本発明に係る燃料生成供給システム20は、上述のブラウンガス発生装置であるブラウンガス発生部1を有した燃料生成供給システムであって、前記ブラウンガス発生部1で発生したブラウンガスBをバブル化して液体燃料Eに混合した混合燃料Mを生成する混合器8と、この混合器8で生成した混合燃料Mを貯蔵可能な混合タンク9と、この混合タンク9内の混合燃料Mをシステム外へ送る供給経路10とを有し、前記混合タンク9内で混合燃料Mから抜けて溜まったブラウンガスBを前記混合器8で再びバブル化して、前記混合タンク9内からの混合燃料Mに再混合した混合燃料Mを生成し、且つ、この再混合した混合燃料Mを前記混合タンク9に戻す再混合経路11も有していることを第1の特徴とする。 A fuel generation and supply system 20 according to the present invention is a fuel generation and supply system having a brown gas generation unit 1 which is the brown gas generation device described above, and the brown gas B generated by the brown gas generation unit 1 is bubbled. The mixer 8 that generates the mixed fuel M mixed with the liquid fuel E, the mixing tank 9 that can store the mixed fuel M generated by the mixer 8, and the mixed fuel M in the mixing tank 9 to the outside of the system The brown gas B collected from the mixed fuel M in the mixing tank 9 is bubbled again by the mixer 8 and remixed into the mixed fuel M from the mixing tank 9. A first feature is that the fuel tank has a remixing path 11 that generates the mixed fuel M and returns the mixed fuel M to the mixing tank 9.
 本発明に係る燃料生成供給システム20の第2の特徴は、水素を含むブラウンガスBを発生するブラウンガス発生部1を有した燃料生成供給システムであって、前記ブラウンガス発生部1で発生したブラウンガスBをバブル化して液体燃料Eに混合した混合燃料Mを生成する混合器8と、この混合器8で生成した混合燃料Mを貯蔵可能な混合タンク9と、この混合タンク9内の混合燃料Mをシステム外へ送る供給経路10とを有し、前記混合タンク9内で混合燃料Mから抜けて溜まったブラウンガスBを前記混合器8で再びバブル化して、前記混合タンク9内からの混合燃料Mに再混合した混合燃料Mを生成し、且つ、この再混合した混合燃料Mを前記混合タンク9に戻す再混合経路11も有している点にある。 A second feature of the fuel generation and supply system 20 according to the present invention is a fuel generation and supply system having a brown gas generation unit 1 that generates a brown gas B containing hydrogen, which is generated in the brown gas generation unit 1. A mixer 8 that generates a mixed fuel M obtained by bubbling Brown gas B and mixed with a liquid fuel E, a mixing tank 9 that can store the mixed fuel M generated by the mixer 8, and a mixing in the mixing tank 9 And a supply path 10 for sending the fuel M to the outside of the system. The brown gas B that has accumulated from the mixed fuel M in the mixing tank 9 is bubbled again by the mixer 8, and is supplied from the mixing tank 9. There is also a remixing path 11 that generates a mixed fuel M remixed with the mixed fuel M and returns the remixed mixed fuel M to the mixing tank 9.
 本発明に係る燃料生成供給システム20の第3の特徴は、上記第1又は2の特徴に加えて、前記混合器8、混合タンク9、供給経路10及び再混合経路11と、前記ブラウンガス発生部1とは、熱の移動を抑制する断熱構造体12で隔てられ、この断熱構造体12より前記混合器8、混合タンク9、供給経路10及び再混合経路11側の領域における温度を調整する温度調整手段13を有している点にある。 A third feature of the fuel generation and supply system 20 according to the present invention is that, in addition to the first or second feature, the mixer 8, the mixing tank 9, the supply path 10, the remixing path 11, and the brown gas generation. The part 1 is separated by a heat insulating structure 12 that suppresses heat transfer, and the temperature in the region on the mixer 8, the mixing tank 9, the supply path 10, and the remixing path 11 side is adjusted from the heat insulating structure 12. The temperature adjusting means 13 is provided.
 本発明に係る燃料生成供給システム20の第4の特徴は、上記第1~3の何れかの特徴に加えて、前記再混合経路11を複数有している点にある。 A fourth feature of the fuel generation and supply system 20 according to the present invention is that a plurality of the remixing paths 11 are provided in addition to any of the first to third features.
 本発明に係る燃料生成供給システム20の第5の特徴は、水素を含むブラウンガスBを発生するブラウンガス発生部1を有した燃料生成供給システムであって、前記ブラウンガス発生部1で発生したブラウンガスBをバブル化して液体燃料Eに混合した混合燃料Mを生成する混合器8と、この混合器8で生成した混合燃料Mを貯蔵可能な混合タンク9と、この混合タンク9内の混合燃料Mをシステム外へ送る供給経路10とを有し、前記混合器8、混合タンク9及び供給経路10と、前記ブラウンガス発生部1とは、熱の移動を抑制する断熱構造体12で隔てられ、この断熱構造体12より前記混合器8、混合タンク9及び供給経路10側の領域における温度を調整する温度調整手段13を有している点にある。 A fifth feature of the fuel generation and supply system 20 according to the present invention is a fuel generation and supply system having a brown gas generation unit 1 that generates brown gas B containing hydrogen, and is generated in the brown gas generation unit 1. A mixer 8 that generates a mixed fuel M obtained by bubbling Brown gas B and mixed with a liquid fuel E, a mixing tank 9 that can store the mixed fuel M generated by the mixer 8, and a mixing in the mixing tank 9 A supply path 10 for sending the fuel M to the outside of the system, and the mixer 8, the mixing tank 9 and the supply path 10 are separated from the Brown gas generator 1 by a heat insulating structure 12 that suppresses heat transfer. In addition, the heat-insulating structure 12 has temperature adjusting means 13 for adjusting the temperature in the region on the mixer 8, the mixing tank 9, and the supply path 10 side.
 本発明に係る燃料生成供給システム20の第6の特徴は、上記第1~5の何れかの特徴に加えて、前記混合器8を複数有している点にある。 A sixth feature of the fuel generation and supply system 20 according to the present invention is that a plurality of the mixers 8 are provided in addition to any one of the first to fifth features.
 本発明に係る燃料生成供給システム20の第7の特徴は、上記第1~6の何れかの特徴に加えて、前記混合器8は、10リットルの前記液体燃料Eに対して、1リットル以上1000リットル以下の前記ブラウンガスBを混合させている点にある。 The seventh feature of the fuel generation and supply system 20 according to the present invention is that, in addition to any one of the first to sixth features, the mixer 8 is more than 1 liter for 10 liters of the liquid fuel E. The brown gas B of 1000 liters or less is mixed.
 これらの特徴により、上述のブラウンガス発生装置(ブラウンガス発生部1)で発生したブラウンガスBをバブル化して液体燃料Eに混合した混合燃料Mを生成する混合器8と、混合燃料Mを貯蔵可能な混合タンク9と、混合燃料Mをシステム外へ送り出す供給経路10と、混合タンク9内で混合燃料Mから抜けたブラウンガスBを再びバブル化して混合した混合燃料Mを混合タンク9に戻す再混合経路11を有することで、特許文献1のように、臭気ガスとブラウンガスと燃料を混合してから、クラスター化又はナノバブル化する場合より、燃料(液体燃料E)中のブラウンガスBの溶存率が高まり、燃焼効率が飛躍的に向上する。
 更に、ブラウンガス発生部1で一旦発生させたブラウンガスBを逃がすことなく、より高密度に何度も液体燃料Eに再混合させることが可能となる。
 これに加えて、この再混合中は、ブラウンガス発生部1を休止させることが出来、その分、ブラウンガス発生部(ブラウンガス発生装置)1の消費電力を削減できる。
 尚、本発明における「液体燃料E」とは、常温(例えば、JIS-Z-8703による20℃±15℃の温度範囲)で液体の燃料であって、重油、灯油、ガソリン、軽油、原油など炭素の鎖状連結した液体の石油系燃料(化石燃料)や、炭素を含むメタノール、エタノールなどのアルコール類、ナタネ油、松根油、廃食用油の油類のこと等を言う。
Due to these characteristics, the mixer 8 that generates the mixed fuel M in which the brown gas B generated by the brown gas generator (Brown gas generator 1) is bubbled and mixed with the liquid fuel E, and the mixed fuel M are stored. A possible mixing tank 9, a supply path 10 for sending the mixed fuel M out of the system, and the Brown gas B that has escaped from the mixed fuel M in the mixing tank 9 is bubbled again to return the mixed fuel M to the mixing tank 9. By having the remixing path 11, as in Patent Document 1, the odor gas, the brown gas, and the fuel are mixed and then clustered or nanobubbled, so that the brown gas B in the fuel (liquid fuel E) The dissolution rate is increased and the combustion efficiency is dramatically improved.
Furthermore, the brown gas B once generated by the brown gas generator 1 can be remixed with the liquid fuel E many times at a higher density without escaping.
In addition, during this remixing, the brown gas generator 1 can be stopped, and the power consumption of the brown gas generator (brown gas generator) 1 can be reduced accordingly.
The “liquid fuel E” in the present invention is a fuel that is liquid at room temperature (for example, a temperature range of 20 ° C. ± 15 ° C. according to JIS-Z-8703), and includes heavy oil, kerosene, gasoline, light oil, crude oil, etc. This refers to liquid petroleum fuels (fossil fuels) linked in a chain of carbon, alcohols such as methanol and ethanol containing carbon, rapeseed oil, pine oil, and waste cooking oil.
 そして、混合器8、混合タンク9、供給経路10等と、ブラウンガス発生部1とを断熱構造体12で隔て、断熱構造体12より混合器8等側に温度調整手段13を有することで、例えば、常温で粘度が高い(流動性が少ない、又は、流動性が無い)液体燃料Eを用いた場合であっても、所定の溶存率のブラウンガスBを混合させることが可能となると同時に、ブラウンガス発生部1等の機器に熱の影響はない。
 更に加えて、混合器8や再混合経路11を複数有することで、液体燃料EにブラウンガスBを混合させる速度が上がる。
And by separating the mixer 8, the mixing tank 9, the supply path 10 and the like from the brown gas generator 1 by the heat insulating structure 12, and having the temperature adjusting means 13 on the mixer 8 etc. side from the heat insulating structure 12, For example, even when a liquid fuel E having a high viscosity at room temperature (low fluidity or no fluidity) is used, brown gas B having a predetermined dissolution rate can be mixed, There is no influence of heat on the equipment such as the brown gas generator 1.
In addition, by providing a plurality of mixers 8 and remixing paths 11, the speed at which the brown gas B is mixed with the liquid fuel E is increased.
 又、10リットルの液体燃料Eに対して、1リットル以上1000リットル以下のブラウンガスBを混合させることで、生成された混合燃料Mの燃料効率が上がり、その結果、消費する液体燃料Eの量が削減できるため、更なる省エネが図れる。 Also, by mixing 10 liters of liquid fuel E with 1 to 1000 liters of brown gas B, the fuel efficiency of the produced mixed fuel M increases, and as a result, the amount of liquid fuel E consumed. Can be reduced, further energy saving can be achieved.
 本発明に係るブラウンガス発生装置によると、主極板及び誘導極板をスペーサを介して接続し、スペーサ取付部に対して撓曲可能な可撓部を設けることで、「装置の簡素化・コンパクト化」と「ブラウンガス生成効率の向上」を両立できる。 According to the Brown gas generator according to the present invention, the main electrode plate and the induction electrode plate are connected via the spacer, and the flexible portion that can be bent with respect to the spacer mounting portion is provided, thereby simplifying the device. It is possible to achieve both “compact” and “improve brown gas generation efficiency”.
本発明の第1実施形態に係る燃料生成供給システムを示す概要図である。1 is a schematic diagram showing a fuel generation and supply system according to a first embodiment of the present invention. 本発明に係るブラウンガス発生装置を示す側面断面図である。It is side surface sectional drawing which shows the brown gas generator which concerns on this invention. ブラウンガス発生装置を示す分解斜視図である。It is a disassembled perspective view which shows a brown gas generator. ブラウンガス発生装置の誘導極板及びスペーサを示す正面図である。It is a front view which shows the induction electrode plate and spacer of a brown gas generator. ブラウンガス発生装置の誘導極板における貫流部材を示す斜視図である。It is a perspective view which shows the flow-through member in the induction | guidance | derivation electrode plate of a brown gas generator. 従来の液体燃料(灯油)と、本発明の混合燃料との燃焼差を示す図面代用写真であって、(a)が灯油のみの燃焼具合を示し、(b)が混合燃料の燃焼具合を示す。It is drawing substitute photograph which shows the combustion difference of the conventional liquid fuel (kerosene) and the mixed fuel of this invention, (a) shows the combustion condition of only kerosene, (b) shows the combustion condition of mixed fuel. . 本発明の第2実施形態に係る燃料生成供給システムを示す概要図である。It is a schematic diagram which shows the fuel production supply system which concerns on 2nd Embodiment of this invention. 本発明の第3実施形態に係る燃料生成供給システムを示す概要図である。It is a schematic diagram which shows the fuel production supply system which concerns on 3rd Embodiment of this invention. 本発明の第4実施形態に係る燃料生成供給システムの実施例1を示す概要図である。It is a schematic diagram which shows Example 1 of the fuel production supply system which concerns on 4th Embodiment of this invention. 本発明の第4実施形態に係る燃料生成供給システムの実施例2を示す概要図である。It is a schematic diagram which shows Example 2 of the fuel production supply system which concerns on 4th Embodiment of this invention. 従来の気体燃料(プロパンガス)と、本発明の混合燃料との燃焼差を示す図面代用写真であって、(a)がプロパンガスのみの燃焼具合を示し、(b)が混合燃料の燃焼具合を示す。It is drawing substitute photograph which shows the combustion difference of the conventional gaseous fuel (propane gas) and the mixed fuel of this invention, (a) shows the combustion condition of only propane gas, (b) is the combustion condition of mixed fuel. Indicates. 従来のブラウンガス発生装置を示す斜視図である。It is a perspective view which shows the conventional brown gas generator.
 以下、本発明の実施形態を、図面を参照して説明する。
<第1実施形態>
 図1には、本発明の第1実施形態に係る燃料生成供給システム20が示されている。
 この燃料生成供給システム20は、本発明に係るブラウンガス発生装置(以下、ブラウンガス発生部)1からのブラウンガスBと、従来の液体燃料Eを混合した混合燃料Mを生成し、外部へ供給するシステムである。
Embodiments of the present invention will be described below with reference to the drawings.
<First Embodiment>
FIG. 1 shows a fuel generation and supply system 20 according to the first embodiment of the present invention.
The fuel generation and supply system 20 generates a mixed fuel M obtained by mixing the brown gas B from the brown gas generator (hereinafter referred to as a brown gas generator) 1 according to the present invention and a conventional liquid fuel E, and supplies the mixed fuel M to the outside. System.
 燃料生成供給システム20は、ブラウンガス発生部1と、ブラウンガスBと液体燃料Eを混合する混合器8と、混合燃料Mを貯蔵可能な混合タンク9と、混合燃料Mをシステム外へ送り出す供給経路10と、混合タンク9内で溜まったブラウンガスBを再混合した混合燃料Mを混合タンク9に戻す再混合経路11などを有している。
 この他の構成は、既設の燃焼装置100を説明した後に述べる。
The fuel generation and supply system 20 includes a brown gas generator 1, a mixer 8 that mixes brown gas B and liquid fuel E, a mixing tank 9 that can store the mixed fuel M, and a supply that sends the mixed fuel M out of the system. A path 10 and a remixing path 11 for returning the mixed fuel M obtained by remixing the brown gas B accumulated in the mixing tank 9 to the mixing tank 9 are provided.
Other configurations will be described after the existing combustion apparatus 100 is described.
<既設の液体燃料Eの燃焼装置100>
 図1に示されたように、燃料生成供給システム20は、既設の液体燃料Eの燃焼装置100に取り付けられる。
 既設の燃焼装置100は、従来の液体燃料Eを貯蔵する燃料タンク101と、この燃料タンク101から液体燃料Eを送る燃料路102と、この燃料路102の最下端側に連結され且つ液体燃料Eを噴射させる噴燃ポンプ103と、この噴燃ポンプ103から噴射された液体燃料Eを燃焼させるボイラー104を有している。
<Existing Combustion Device 100 for Liquid Fuel E>
As shown in FIG. 1, the fuel generation and supply system 20 is attached to an existing liquid fuel E combustion apparatus 100.
The existing combustion apparatus 100 includes a conventional fuel tank 101 for storing liquid fuel E, a fuel path 102 for sending the liquid fuel E from the fuel tank 101, and a liquid fuel E connected to the lowermost end of the fuel path 102. And a boiler 104 that combusts the liquid fuel E injected from the fuel injection pump 103.
 又、燃料路102には、燃料弁105と、流量計106が、この順に、上流側から下流側にかけて設けられている。
 尚、燃料弁105は、液体燃料Eの供給をON/OFFする仕切弁であったり、液体燃料Eの流量を調整する流量調整弁であっても構わない。
 燃料路102における流量計106の下流側、つまり、流量計106と噴燃ポンプ103の間に、本発明の燃焼生成供給システム20を連結することとなる。
 又、燃料路102の一部は、可撓性のあるホースやチューブ等で構成されていても良く、逆に、可撓性のない管等で構成されていても構わない。
The fuel path 102 is provided with a fuel valve 105 and a flow meter 106 in this order from the upstream side to the downstream side.
The fuel valve 105 may be a gate valve for turning on / off the supply of the liquid fuel E, or a flow rate adjusting valve for adjusting the flow rate of the liquid fuel E.
The combustion generation and supply system 20 of the present invention is connected to the downstream side of the flow meter 106 in the fuel path 102, that is, between the flow meter 106 and the fuel injection pump 103.
Further, a part of the fuel path 102 may be configured by a flexible hose, tube, or the like, and conversely, it may be configured by a non-flexible tube or the like.
<第1実施形態の燃料生成供給システム20の全体構成>
 図1に示す如く、燃料生成供給システム20は、上述したブラウンガス発生部1、混合器8、混合タンク9、供給経路10、再混合経路11の他に、以下の構成を有する。
 燃料生成供給システム20は、既設の燃焼装置100の燃料路102から液体燃料Eを分岐させる分岐具21と、この分岐具21で分岐された液体燃料Eを混合タンク9へ送る供給ポンプ(タンクポンプ)22及びタンク路23と、混合タンク9内の液体燃料E又は混合燃料Mを混合器8を経て混合タンク9へ循環させる循環ポンプ(ループポンプ)24及びループ路25と、混合器8で混合させるブラウンガスBをブラウンガス発生部1から供給するガス路26と、このガス路26の途中に設けられたブラウンガスBを貯蔵するガスタンク27と、混合タンク9からガス路26に合流して混合器8に繋がるリサイクル路28と、混合タンク9から供給経路(サプライ路)10を経て混合燃料Mを燃料路102に合流させる合流具29とを有している。
<Overall Configuration of Fuel Generation and Supply System 20 of First Embodiment>
As shown in FIG. 1, the fuel generation and supply system 20 has the following configuration in addition to the brown gas generator 1, the mixer 8, the mixing tank 9, the supply path 10, and the remixing path 11 described above.
The fuel generation and supply system 20 includes a branching device 21 that branches the liquid fuel E from the fuel path 102 of the existing combustion apparatus 100 and a supply pump (tank pump) that sends the liquid fuel E branched by the branching device 21 to the mixing tank 9. ) 22 and the tank path 23, and the liquid fuel E or the mixed fuel M in the mixing tank 9 is circulated to the mixing tank 9 through the mixer 8 and mixed with the circulation pump (loop pump) 24 and the loop path 25 and the mixer 8. The gas path 26 for supplying the brown gas B to be supplied from the brown gas generator 1, the gas tank 27 for storing the brown gas B provided in the middle of the gas path 26, and the gas tank 26 from the mixing tank 9 are merged and mixed. A recycle path 28 connected to the vessel 8 and a merging device 29 for merging the mixed fuel M to the fuel path 102 from the mixing tank 9 via the supply path (supply path) 10. To have.
<分岐具21>
 図1に示されたように、分岐具21は、既設の燃焼装置100の燃料路102における流量計106の下流側に設けられている。
 分岐具21は、流量計106の直下流側に設けられた基元弁21aと、この基元弁21aの下流側で液体燃料Eを燃料生成供給システム20と噴燃ポンプ103へと流れを分ける分岐部材21bと、この分岐部材21bにおける燃料生成供給システム20への下流側に設けられたシステム弁21cと、この分岐部材21bにおける噴燃ポンプ103への下流側に設けられた噴燃弁21dを有している。
<Branching tool 21>
As shown in FIG. 1, the branching tool 21 is provided on the downstream side of the flow meter 106 in the fuel path 102 of the existing combustion apparatus 100.
The branching device 21 divides the flow of the liquid fuel E into the fuel generation and supply system 20 and the eruption pump 103 on the downstream side of the base valve 21 a provided on the downstream side of the flow meter 106. A branch member 21b, a system valve 21c provided downstream of the branch member 21b to the fuel generation and supply system 20, and a fuel injection valve 21d provided downstream of the branch member 21b to the fuel injection pump 103 are provided. Have.
 尚、分岐具21における基元弁21a、システム弁21c、噴燃弁21dの各弁は、液体燃料Eの供給をON/OFFする仕切弁やボール弁、電磁石(ソレノイド)を用いてプランジャ(鉄片)を動かし且つ電気的な信号でON/OFFする電磁弁、又は、液体燃料Eの流量を調整する流量調整弁であっても構わない。
 又、システム弁21cの更に下流側(タンク路23側)に、もう1つ弁を備えていても良い(図示省略)。
 更に、燃焼装置100の燃料路102の一部が、可撓性のあるホース等で構成されている場合には、このホース等と噴燃弁21dとの間に、継手を設けていても構わない(図示省略)。
The base valve 21a, the system valve 21c, and the fuel injection valve 21d in the branching device 21 are plungers (iron pieces) using gate valves, ball valves, and electromagnets (solenoids) that turn on / off the supply of the liquid fuel E. ) And an electromagnetic signal that is turned on / off by an electrical signal, or a flow rate adjusting valve that adjusts the flow rate of the liquid fuel E.
Further, another valve may be provided on the further downstream side (tank path 23 side) of the system valve 21c (not shown).
Furthermore, when a part of the fuel path 102 of the combustion apparatus 100 is configured by a flexible hose or the like, a joint may be provided between the hose or the like and the fuel injection valve 21d. Not shown (not shown).
<供給ポンプ22、タンク路23>
 図1で示した如く、供給ポンプ22は、分岐具21のシステム弁21cから混合タンク9までを繋ぐタンク路23の中途に設けられている。
 具体的には、タンク路23では、上タンク連結材23a、上タンク弁23b、供給ストレーナ23c、上タンク圧力計23d、供給ポンプ(タンクポンプ)22、下タンク圧力計23e、中タンク弁23f、下タンク弁23g、下タンク連結材23hが、上流側からこの順で設けられている。
<Supply pump 22 and tank path 23>
As shown in FIG. 1, the supply pump 22 is provided in the middle of the tank path 23 that connects the system valve 21 c of the branching tool 21 to the mixing tank 9.
Specifically, in the tank passage 23, an upper tank connecting member 23a, an upper tank valve 23b, a supply strainer 23c, an upper tank pressure gauge 23d, a supply pump (tank pump) 22, a lower tank pressure gauge 23e, an intermediate tank valve 23f, A lower tank valve 23g and a lower tank connecting member 23h are provided in this order from the upstream side.
 詳解すれば、タンク路23の最上流側では、分岐具21のシステム弁21cに、可撓性のホース等で構成される上タンク連結材23aが連結されている。
 この上タンク連結材23aの下流側には、ボール弁等で構成される上タンク弁23bが設けられ、この上タンク弁23bの下流側には、供給ポンプ22前で液体燃料Eから固形成分(ゴミ、不純物等)を取り除くために用いる網状の器具である供給ストレーナ23cが設けられている。
 この供給ストレーナ23cの下流側で且つ供給ポンプ22の上流側(つまり、供給ストレーナ23cと供給ポンプ22の間)には、上タンク圧力計23dが設けられ、供給ポンプ22の入力22aに入る液体燃料Eの圧力を測定できる。
Specifically, on the uppermost stream side of the tank path 23, the upper tank connecting member 23a formed of a flexible hose or the like is connected to the system valve 21c of the branching tool 21.
An upper tank valve 23b composed of a ball valve or the like is provided on the downstream side of the upper tank connecting member 23a. On the downstream side of the upper tank valve 23b, solid components ( A supply strainer 23c, which is a net-like instrument used for removing dust, impurities, etc., is provided.
An upper tank pressure gauge 23d is provided on the downstream side of the supply strainer 23c and the upstream side of the supply pump 22 (that is, between the supply strainer 23c and the supply pump 22), and the liquid fuel enters the input 22a of the supply pump 22 The pressure of E can be measured.
 供給ポンプ22は、供給ストレーナ23cや上タンク圧力計23dを通った液体燃料Eを入力22aから吸い込み、圧力を上げた液体燃料Eを出力22bから吐き出して、混合タンク9の上部まで上げるポンプであって、外歯車と内歯車がかみ合って回転する内接歯車方式のトロコイド(登録商標)ポンプ等が用いられる。
 尚、供給ポンプ22は、トロコイド(登録商標)ポンプのように、歯車のかみ合わせを使うその他のギアポンプをはじめ、ネジポンプやピストンポンプなどの容積ポンプ、又は、羽根状の回転子を使う非容積(ターボ形)ポンプ等であっても良い。
 尚、供給ポンプ22の動力源は、何れのものでも構わないが、例えば、商用電源(コンセント)や、発電機、電池等であっても構わない。又、上述の噴燃ポンプ103や後述の循環ポンプ24の電源も同様である。
The supply pump 22 is a pump that sucks the liquid fuel E that has passed through the supply strainer 23c and the upper tank pressure gauge 23d from the input 22a, discharges the liquid fuel E whose pressure has been increased from the output 22b, and raises the liquid fuel E to the top of the mixing tank 9. An internal gear type Trochoid (registered trademark) pump or the like in which an external gear and an internal gear mesh with each other and rotate is used.
The supply pump 22 is a non-volume (turbo) using a pump such as a trochoid (registered trademark) pump, a volume pump such as a screw pump or a piston pump, or a blade-like rotor. Shape) may be a pump or the like.
The power source of the supply pump 22 may be any one, but may be, for example, a commercial power source (outlet), a generator, a battery, or the like. The same applies to the power sources of the above-described eruption pump 103 and the circulation pump 24 described later.
 供給ポンプ22の下流側には、供給ポンプ22の出力22bから出た液体燃料Eの圧力を測定する下タンク圧力計23eが設けられ、この下タンク圧力計23eの下流側で且つ電磁弁等で構成される中タンク弁23fと、この中タンク弁23fの下流側で且つボール弁等で構成される下タンク弁23gが設けられている。
 ここで、タンク路23における上タンク弁23b、中タンク弁23f、下タンク弁23gの各弁も、上述した電磁弁やボール弁以外に、液体燃料Eの供給をON/OFFする仕切弁や、液体燃料Eの流量を調整する流量調整弁であっても構わない。
On the downstream side of the supply pump 22, a lower tank pressure gauge 23e for measuring the pressure of the liquid fuel E output from the output 22b of the supply pump 22 is provided, and on the downstream side of the lower tank pressure gauge 23e and by a solenoid valve or the like. An intermediate tank valve 23f that is configured, and a lower tank valve 23g that is formed on the downstream side of the intermediate tank valve 23f and includes a ball valve or the like are provided.
Here, each of the upper tank valve 23b, the middle tank valve 23f, and the lower tank valve 23g in the tank passage 23 is a gate valve for turning on / off the supply of the liquid fuel E in addition to the electromagnetic valve and the ball valve described above, A flow rate adjusting valve that adjusts the flow rate of the liquid fuel E may be used.
 タンク路23における最も下端側には、下タンク弁23gに、混合タンク9の内部に液体燃料Eを流し込む下タンク連結材23hが連結されている。
 この下タンク連結材23hは、パイプ等の部材であって、下タンク弁23gから上方に延設され、混合タンク9の上部からその内部に入った後、その下端は、混合タンク9の内底面近傍まで下方に延設している。
A lower tank connecting member 23h for pouring the liquid fuel E into the mixing tank 9 is connected to the lower tank valve 23g at the lowermost end side in the tank passage 23.
The lower tank connecting member 23h is a member such as a pipe, and extends upward from the lower tank valve 23g. After entering the inside from the upper part of the mixing tank 9, its lower end is the inner bottom surface of the mixing tank 9. It extends downward to the vicinity.
 尚、上タンク連結材23a、下タンク連結材23hの各連結材は、上述したホース以外に、可撓性のあるチューブであっても良く、逆に、可撓性のない管等で構成されていても構わない。
 又、供給ポンプ22と下タンク圧力計23eとの間に、開閉自在な排出口を設けていても良く(図示省略)、更に、上タンク連結材23aと分岐具21のシステム弁21cとの間や、上タンク連結材23aと上タンク弁23bとの間、下タンク弁23gと下タンク連結材23hとの間に、継手を設けていても構わない(図示省略)。
In addition, each connection material of the upper tank connection material 23a and the lower tank connection material 23h may be a flexible tube in addition to the above-described hose, and conversely, is configured by a non-flexible tube or the like. It does not matter.
Further, an openable / closable discharge port may be provided between the supply pump 22 and the lower tank pressure gauge 23e (not shown), and between the upper tank connecting member 23a and the system valve 21c of the branching device 21. Alternatively, a joint may be provided between the upper tank connecting member 23a and the upper tank valve 23b, and between the lower tank valve 23g and the lower tank connecting member 23h (not shown).
<混合タンク9>
 図1に示したように、混合タンク9は、燃料生成供給システム20で生成される混合燃料Mを貯蔵可能なタンクであると共に、既設の燃料タンク101からタンク路23を介して流れ込む液体燃料Eを貯蔵したり、混合器8でブラウンガスBが混合された混合燃料Mや、この混合燃料Mと燃料タンク101から追加された液体燃料Eが混ざったものを貯蔵することも可能である。
 この混合燃料Mと液体燃料Eが混ざったものは、液体燃料Eの追加分だけブラウンガスBの溶存率が下がった混合燃料Mと言える。
 よって、以下では、混合燃料Mのみと、混合燃料Mと液体燃料Eが混ざったものを含めて「混合燃料M」と呼び、混合燃料M、液体燃料Eの少なくとも一方を指すものを「混合燃料M等」と呼ぶ。
<Mixing tank 9>
As shown in FIG. 1, the mixing tank 9 is a tank capable of storing the mixed fuel M generated by the fuel generation and supply system 20, and the liquid fuel E that flows from the existing fuel tank 101 through the tank path 23. It is also possible to store the mixed fuel M in which the brown gas B is mixed in the mixer 8 or the mixture of the mixed fuel M and the liquid fuel E added from the fuel tank 101.
It can be said that the mixture of the mixed fuel M and the liquid fuel E is the mixed fuel M in which the dissolution rate of the brown gas B is lowered by the amount of addition of the liquid fuel E.
Therefore, hereinafter, only the mixed fuel M and a mixture of the mixed fuel M and the liquid fuel E are referred to as “mixed fuel M”, and the term indicating at least one of the mixed fuel M and the liquid fuel E is referred to as “mixed fuel”. M ”etc.
 混合タンク9の形状は、特に限定されるものではないが、例えば、縦長の略円柱状等であっても良い。
 又、混合タンク9は、内部で貯蔵する混合燃料M等の量を測定する貯蔵量センサ9aを(例えば、略円柱状の混合タンク9の上部(上底面)に)備えており、この貯蔵量センサ9aによって、混合タンク9内の混合燃料M等が所定の一定量に保たれる。
 尚、貯蔵量センサ9aは、混合燃料M等の一定量を保てるのであれば、何れの構成であっても構わないが、例えば、貯蔵量センサ9a自身から混合燃料M等の液面までの距離Dを測定するレベルセンサなどであっても構わない。
Although the shape of the mixing tank 9 is not specifically limited, For example, a vertically long substantially cylindrical shape etc. may be sufficient.
Further, the mixing tank 9 includes a storage amount sensor 9a (for example, on the upper part (upper bottom surface) of the substantially cylindrical mixing tank 9) for measuring the amount of the mixed fuel M or the like stored therein. A predetermined amount of the mixed fuel M and the like in the mixing tank 9 is maintained by the sensor 9a.
The storage amount sensor 9a may have any configuration as long as it can maintain a certain amount of the mixed fuel M or the like. For example, the distance from the storage amount sensor 9a itself to the liquid level of the mixed fuel M or the like A level sensor that measures D may be used.
 この距離Dが、貯蔵量センサ9aから最高液面Hまでの距離DH より小さくなった場合には、貯蔵量センサ9aから供給ポンプ22へ、液体燃料Eの供給を停止させる信号が出力される。
 逆に、距離Dが、貯蔵量センサ9aから最低液面Lまでの距離DL より大きくなった場合には、貯蔵量センサ9aから供給ポンプ22へ、液体燃料Eの供給を開始させる信号が出力される。
 ここで、最高液面Hとは、混合タンク9内で混合燃料M等の量が最も多い(つまり、最も高い)時の液面であり、最低液面Lとは、混合タンク9内で混合燃料M等の量が最も少ない(つまり、最も低い)時の液面である(図1参照)。
The distance D is, if it becomes smaller than the distance D H from the storage amount sensors 9a up liquid level H is the storage amount sensors 9a to the supply pump 22, a signal for stopping the supply of the liquid fuel E is output .
Conversely, when the distance D is greater than the distance D L from the storage amount sensor 9a to the lowest liquid level L, a signal for starting the supply of the liquid fuel E is output from the storage amount sensor 9a to the supply pump 22. Is done.
Here, the highest liquid level H is the liquid level when the amount of the mixed fuel M or the like is the largest (that is, the highest) in the mixing tank 9, and the lowest liquid level L is mixed in the mixing tank 9. The liquid level when the amount of the fuel M or the like is the smallest (that is, the lowest) (see FIG. 1).
 混合タンク9の底部(外底面)には、下方に延びる脚部9bや、混合燃料M等を排出するタンク排出弁9cが設けられていても良い。
 又、混合タンク9の底部(外底面)には、ループ路25の一端(入口)が連結されており、このループ路25の入口の上方には、タンク路23における下タンク連結材23hの先端開口が位置している。
A bottom portion (outer bottom surface) of the mixing tank 9 may be provided with a leg portion 9b extending downward and a tank discharge valve 9c for discharging the mixed fuel M and the like.
One end (inlet) of the loop path 25 is connected to the bottom (outer bottom surface) of the mixing tank 9, and the tip of the lower tank connecting member 23 h in the tank path 23 is above the inlet of the loop path 25. The opening is located.
 混合タンク9の側部(側周面)には、ループ路25の他端(出口)が連結されている。尚、このループ路25の出口から徐々に下るスロープが形成されていても良い。
 又、混合タンク9の側部(側周面)で且つループ路25の出口の上方には、供給経路(サプライ路)10の一端(入口)が連結されている。
The other end (exit) of the loop path 25 is connected to the side portion (side peripheral surface) of the mixing tank 9. A slope that gradually descends from the exit of the loop path 25 may be formed.
Further, one end (inlet) of a supply path (supply path) 10 is connected to the side portion (side peripheral surface) of the mixing tank 9 and above the outlet of the loop path 25.
<循環ポンプ24、ループ路25>
 図1で示した如く、循環ポンプ24は、混合タンク9の底部から混合器8を経て再び混合タンク9の側部に戻るループ路25の中途に設けられている。尚、循環ポンプ24は、混合器8より上流側に配置される。
 具体的には、ループ路25では、上ループ弁25a、上ループ連結材25b、循環ストレーナ25c、上ループ圧力計25d、循環ポンプ(ループポンプ)24、中ループ弁25e、中ループ圧力計25f、混合器8、下ループ圧力計25g、下ループ連結材25h、下ループ弁25iが、上流側からこの順で設けられている。
<Circulating pump 24, loop path 25>
As shown in FIG. 1, the circulation pump 24 is provided in the middle of a loop path 25 that returns from the bottom of the mixing tank 9 through the mixer 8 to the side of the mixing tank 9 again. The circulation pump 24 is disposed upstream of the mixer 8.
Specifically, in the loop path 25, the upper loop valve 25a, the upper loop coupling member 25b, the circulation strainer 25c, the upper loop pressure gauge 25d, the circulation pump (loop pump) 24, the middle loop valve 25e, the middle loop pressure gauge 25f, A mixer 8, a lower loop pressure gauge 25g, a lower loop connecting member 25h, and a lower loop valve 25i are provided in this order from the upstream side.
 詳解すれば、ループ路25の最上流側には、混合タンク9の底部の直下で、ボール弁等で構成される上ループ弁25aが設けられている。
 この上ループ弁25aの下流側には、可撓性のホース等で構成される上ループ連結材25bが連結され、この上ループ連結材25bの下流側には、循環ポンプ24前で混合燃料M等から固形成分を取り除く循環ストレーナ25cが設けられている。
 この循環ストレーナ25cの下流側で且つ循環ポンプ24の上流側(つまり、循環ストレーナ25cと循環ポンプ24の間)には、上ループ圧力計25dが設けられ、循環ポンプ24の入力24aに入る混合燃料M等の圧力を測定できる。
Specifically, on the uppermost stream side of the loop path 25, an upper loop valve 25a constituted by a ball valve or the like is provided immediately below the bottom of the mixing tank 9.
An upper loop connecting member 25b composed of a flexible hose or the like is connected to the downstream side of the upper loop valve 25a, and the mixed fuel M is connected to the downstream side of the upper loop connecting member 25b before the circulation pump 24. A circulation strainer 25c that removes solid components from the like is provided.
An upper loop pressure gauge 25d is provided downstream of the circulation strainer 25c and upstream of the circulation pump 24 (that is, between the circulation strainer 25c and the circulation pump 24), and the mixed fuel enters the input 24a of the circulation pump 24. The pressure such as M can be measured.
 循環ポンプ24は、循環ストレーナ25cや上ループ圧力計25dを通った混合燃料M等を入力24aから吸い込み、圧力を上げた混合燃料M等を出力24bから吐き出して、所定の勢いで、混合器8へ混合燃料M等を流れ入れるポンプである。
 循環ポンプ24も、供給ポンプ22と同様に、外歯車と内歯車がかみ合って回転する内接歯車方式のトロコイド(登録商標)ポンプ等が用いられる。
 尚、循環ポンプ24も、トロコイド(登録商標)ポンプ以外に、その他のギアポンプや、ネジポンプ、ピストンポンプなどの容積ポンプ、又は、非容積ポンプ等であっても良い。
The circulation pump 24 sucks the mixed fuel M and the like that has passed through the circulation strainer 25c and the upper loop pressure gauge 25d from the input 24a, and discharges the mixed fuel M and the like whose pressure has been increased from the output 24b, and then mixes the mixer 8 with a predetermined momentum. This is a pump that feeds the mixed fuel M and the like.
Similarly to the supply pump 22, an internal gear type Trochoid (registered trademark) pump or the like in which the external gear and the internal gear mesh with each other is used as the circulation pump 24.
In addition to the Trochoid (registered trademark) pump, the circulation pump 24 may be another gear pump, a volume pump such as a screw pump or a piston pump, or a non-volume pump.
 循環ポンプ24の下流側には、仕切弁等で構成される中ループ弁25eが設けられ、この中ループ弁25eの下流側には、循環ポンプ24の出力24bから出た(つまり、混合器8に入る)混合燃料M等の圧力を測定する中ループ圧力計25fが設けられている。
 この中ループ圧力計25fの下流側には、後に詳述する混合器8が設けられ、この混合器8の下流側には、混合器8から出てきた混合燃料M等の圧力を測定する下ループ圧力計25gが設けられている。
An intermediate loop valve 25e composed of a gate valve or the like is provided on the downstream side of the circulation pump 24, and an output 24b of the circulation pump 24 is output downstream of the intermediate loop valve 25e (that is, the mixer 8). An intermediate loop pressure gauge 25f for measuring the pressure of the mixed fuel M or the like is provided.
A mixer 8 which will be described in detail later is provided on the downstream side of the middle loop pressure gauge 25f, and the downstream side of the mixer 8 is used to measure the pressure of the mixed fuel M and the like coming out of the mixer 8. A loop pressure gauge 25g is provided.
 この下ループ圧力計25gの下流側には、可撓性のホース等で構成される下ループ連結材25hが連結されている。この下ループ連結材25hの下流側には、ボール弁等で構成される下ループ弁25iが設けられている。
 ここで、ループ路25における上ループ弁25a、中ループ弁25e、下ループ弁25iの各弁も、上述した仕切弁やボール弁の他、電気的な信号でON/OFFする電磁弁や、混合燃料M等の流量を調整する流量調整弁であっても構わない。
A lower loop connecting member 25h composed of a flexible hose or the like is connected to the downstream side of the lower loop pressure gauge 25g. A lower loop valve 25i configured by a ball valve or the like is provided on the downstream side of the lower loop coupling member 25h.
Here, each of the upper loop valve 25a, the middle loop valve 25e, and the lower loop valve 25i in the loop path 25 is not limited to the above-described gate valve and ball valve, but also an electromagnetic valve that is turned on / off by an electrical signal, or a mixing valve. It may be a flow rate adjusting valve that adjusts the flow rate of the fuel M or the like.
 又、上ループ連結材25b、下ループ連結材25hの各連結材も、上述したホースの他、可撓性のあるチューブや、逆に、可撓性のない管等であっても良い。
 更に、循環ポンプ24と中ループ弁25eとの間に、開閉自在な排出口を設けていても良く(図示省略)、上ループ弁25aと上ループ連結材25bとの間や、上ループ連結材25bと循環ストレーナ25cとの間、下ループ圧力計25gと下ループ連結材25hとの間、下ループ連結材25hと下ループ弁25iとの間に、継手を設けていても構わない(図示省略)。
Further, each of the connecting members of the upper loop connecting member 25b and the lower loop connecting member 25h may be a flexible tube, or conversely, a non-flexible tube in addition to the above-described hose.
Furthermore, an openable / closable discharge port may be provided between the circulation pump 24 and the middle loop valve 25e (not shown), and between the upper loop valve 25a and the upper loop connecting member 25b, or the upper loop connecting member. A joint may be provided between 25b and the circulation strainer 25c, between the lower loop pressure gauge 25g and the lower loop connecting member 25h, and between the lower loop connecting member 25h and the lower loop valve 25i (not shown). ).
<混合器8>
 図1における混合器8は、内面に螺旋状の凹部が形成された管体を有していて、この管体の上流側の液体入口8aに、循環ポンプ24の出力24bから吐き出された混合燃料M等が流れ込む。
 混合器8の管体における側周面の気体入口8bには、上述したガス路26の下流端が連結され、管体の内部にブラウンガスBが吸い込まれる(ベンチュリ効果)。
<Mixer 8>
The mixer 8 in FIG. 1 has a pipe body having a spiral recess formed on the inner surface, and the mixed fuel discharged from the output 24b of the circulation pump 24 to the liquid inlet 8a on the upstream side of the pipe body. M etc. flows.
The downstream end of the gas passage 26 is connected to the gas inlet 8b on the side peripheral surface of the tube of the mixer 8, and the Brown gas B is sucked into the tube (Venturi effect).
 このように、混合器8内に入った混合燃料M等とブラウンガスBは、混合して旋回しながら攪拌されることによって、混合燃料M等の中で、ブラウンガスBの気泡が微細化(バブル化)して、直径(バブル径)が1nm以上1000nm以下のナノバブル(ナノブラウンガス)を生成する(ナノバブル化する)。
 尚、混合器8内における混合燃料M等とブラウンガスBの旋回の回転数は、ナノバブルを生成できるのであれば、特に限定されないが、例えば、毎秒400回以上600回以下の回転数でも良い。
 又、混合器8は、ブラウンガスBを、混合燃料M等の中で、ナノバブル化できるのであれば、上記のような管体やファン等によって渦流を発生させる方法(気液剪断法)だけでなく、フィルタを用いる細孔法であったり、加圧溶解法、衝撃波法、超音波法などによって、ナノバブル化しても良い。
In this way, the mixed fuel M and the brown gas B that have entered the mixer 8 are mixed and swirled while being swirled, whereby the bubbles of the brown gas B are refined in the mixed fuel M and the like ( To create nanobubbles (nano-brown gas) having a diameter (bubble diameter) of 1 nm to 1000 nm.
Note that the rotational speed of the swirling of the mixed fuel M and the brown gas B in the mixer 8 is not particularly limited as long as nanobubbles can be generated. For example, the rotational speed may be 400 to 600 times per second.
If the mixer 8 can turn the brown gas B into nano-bubbles in the mixed fuel M or the like, only the method (gas-liquid shearing method) that generates vortex by the tube or fan as described above can be used. Alternatively, nanobubbles may be formed by a pore method using a filter, a pressure dissolution method, a shock wave method, an ultrasonic method, or the like.
 ここで、本発明における「ナノバブル化」とは、液体燃料Eや混合燃料M等の中で、気泡(バブル)となったブラウンガスBの直径(バブル径)を、1nm以上1000nm以下とすることを言い、バブル径が1nm以上1000nm以下の気泡(ナノバブル)で構成されるブラウンガスBを、ナノブラウンガスとする。
 一方、混合器8では、ナノブラウンガスばかりではなく、バブル径が1000nmより大きい気泡も生成される(尚、ナノブラウンガスのバブルより大きい気泡で構成されるブラウンガスBを、非ナノブラウンガスとする)。
Here, “nano-bubble” in the present invention means that the diameter (bubble diameter) of the brown gas B that has become bubbles in the liquid fuel E, the mixed fuel M, or the like is 1 nm or more and 1000 nm or less. The brown gas B composed of bubbles (nano bubbles) having a bubble diameter of 1 nm to 1000 nm is referred to as nano brown gas.
On the other hand, in the mixer 8, not only nano-brown gas but also bubbles with a bubble diameter larger than 1000 nm are generated (note that the brown gas B composed of bubbles larger than the nano-brown gas bubble is converted into non-nano-brown gas. To do).
 これらブラウンガスBの気泡は、混合燃料M等の中で表面が帯電しており、バブル径が、一般的なミリオーダーの気泡よりも同体積当たりの表面積が大きくなり、ブラウンガスBを高い溶解効率で、混合燃料M等に溶け込ませることができる特徴を有している。
 この他にも、微細化した気泡の特徴としては、気泡内部の圧力が高いこと、長く又は半永久的に液中に残存すること等がある。
The surface of the bubbles of the brown gas B is charged in the mixed fuel M and the like, and the bubble diameter is larger than that of a general milli-order bubble. It has a feature that it can be efficiently dissolved in the mixed fuel M or the like.
In addition to this, the characteristics of the refined bubbles include a high pressure inside the bubbles and a long or semi-permanent remaining in the liquid.
 特に、バブル化したブラウンガスBが、混合燃料M等の中で長時間残存することについて詳しく述べれば、混合燃料M等の中においてブラウンガスBの気泡は、その大きさによって上昇速度が大きく変わり、例えば、非ナノブラウンガスであるバブル径が3mmのミリバブルは上昇速度が約0.3m/秒であり、バブル径が100μmのマイクロバブルは上昇速度は約0.005m/秒である。
 つまり、混合器8によって、混合燃料M等に混合させたブラウンガスBの気泡うち、バブル径が所定の大きさ以上のものは、上昇して混合燃料M等から抜けて、混合タンク9内で溜まることとなる。
In particular, if the bubbled brown gas B remains in the mixed fuel M or the like for a long time, the rising speed of the bubbles of the brown gas B in the mixed fuel M or the like varies greatly depending on the size. For example, a non-nano brown gas millibubble with a bubble diameter of 3 mm has an ascending speed of about 0.3 m / sec, and a microbubble with a bubble diameter of 100 μm has an ascending speed of about 0.005 m / sec.
That is, among the bubbles of the brown gas B mixed with the mixed fuel M or the like by the mixer 8, those having a bubble diameter larger than a predetermined size rise and escape from the mixed fuel M and the like in the mixing tank 9. It will be accumulated.
 尚、バブル化された時のバブル径が所定の値(例えば、1μm以上50μm以下)のブラウンガスBの気泡は、混合燃料M等の中に入ると、気泡の界面において表面張力が作用するため、そのほとんどが混合後に収縮を開始する。
 詳しく述べれば、表面張力とは、分子同士が引き合って凝縮しようとする力であり、液滴であれば、球形になろうとする。
 これは、混合燃料M等の中の気泡であっても、混合燃料M等とブラウンガスBとの界面に働く表面張力によって球形になろうとすることは同様である。
Note that when the bubble diameter of the brown gas B having a predetermined bubble diameter (for example, 1 μm or more and 50 μm or less) when bubbled enters the mixed fuel M or the like, surface tension acts on the interface of the bubbles. Most of them begin to shrink after mixing.
More specifically, the surface tension is a force that attracts molecules to condense each other, and if it is a droplet, it tends to be spherical.
It is the same that even if the bubbles are in the mixed fuel M or the like, the bubbles tend to become spherical due to the surface tension acting on the interface between the mixed fuel M and the brown gas B.
 また、特徴として上述したように、ブラウンガスBの気泡は、混合燃料M等の中で表面が帯電しているが、この帯電によって、気泡の表面には、混合燃料M等の中に存在するイオンが多く集まる(電荷の濃縮)。
 この電荷の濃縮が、ブラウンガスBの気泡の界面で起こるため、気泡球の反対側同士の電荷間に働く静電気的な反発力が働いて、所定のバブル径より気泡が縮小することを妨げる。
As described above, the surface of the bubble of the brown gas B is charged in the mixed fuel M or the like as described above, but due to this charging, the surface of the bubble exists in the mixed fuel M or the like. Many ions gather (concentration of charge).
Since this charge concentration occurs at the interface of the bubbles of the brown gas B, an electrostatic repulsive force acting between the charges on the opposite sides of the bubble sphere acts to prevent the bubbles from shrinking from a predetermined bubble diameter.
 この結果、ブラウンガスBの気泡は、生成時におけるバブル径が所定の値(1μm以上50μm以下等)であれば、当初はナノバブルでない(非ナノブラウンガスである)ものの、収縮を開始し、所定の値(例えば、1nm以上200nm以下)となるまで収縮すると、静電気的な反発力によって収縮が止まり (安定して)、ナノブラウンガスとなる。尚、このナノバブルの生成過程において、バブル径が200nmより大きく1000nm以下で安定する場合もある。
 このように、バブル径が1nm以上1000nm以下で安定した気泡(ナノバブル)で構成されたナノブラウンガスを、混合燃料M等に混合させることで、ナノブラウンガスは、1ヶ月、時には数ヶ月間以上もの長期にわたって、混合燃料M等の中で存在する。
As a result, if the bubble diameter at the time of generation of the bubble of the brown gas B is a predetermined value (1 μm or more and 50 μm or less, etc.), it is initially not a nanobubble (it is a non-nano brown gas), but starts to contract, When it shrinks to a value of (for example, 1 nm or more and 200 nm or less), the contraction is stopped (stable) by the electrostatic repulsive force, and nano-brown gas is obtained. In this nanobubble generation process, the bubble diameter may be stabilized to be greater than 200 nm and not greater than 1000 nm.
In this way, by mixing nano-brown gas composed of stable bubbles (nano-bubbles) with a bubble diameter of 1 nm or more and 1000 nm or less into the mixed fuel M or the like, the nano-brown gas is one month, sometimes several months or more. It exists in the mixed fuel M and the like for a long time.
<ガス路26、ガスタンク27>
 図1に示すように、ガス路26は、後で詳述するブラウンガス発生部1から混合器8までを繋いでおり、このガス路26の中途にガスタンク27が設けられている。
 具体的には、ガス路26では、ガス連結材26a、ガスタンク27、上ガス弁26b、フィルタレギュレータ26c、中ガス弁26d、ニードル弁26e、下ガス弁26f、ガス合流部材26gが、上流側からこの順で設けられている。
<Gas path 26, gas tank 27>
As shown in FIG. 1, the gas passage 26 connects a brown gas generator 1 to a mixer 8, which will be described in detail later, and a gas tank 27 is provided in the middle of the gas passage 26.
Specifically, in the gas passage 26, the gas connecting material 26a, the gas tank 27, the upper gas valve 26b, the filter regulator 26c, the middle gas valve 26d, the needle valve 26e, the lower gas valve 26f, and the gas merging member 26g are provided from the upstream side. They are provided in this order.
 詳解すれば、ガス路26の最もブラウンガス発生部1側(最上流側)には、可撓性のチューブ等で構成されるガス連結材26aが連結され、このガス連結材26aの下流側には、ガスタンク27が設けられている。
 ガスタンク27は、ブラウンガス発生部1で発生されるブラウンガスBを貯蔵するタンクであり、ガスタンク27の形状も、特に限定されるものではないが、例えば、縦長の略円柱状等であっても良い。
 ガスタンク27(例えば、側周面の下部)には、ブラウンガスBを排出するガス排出弁27aが設けられていても良い。
More specifically, a gas connecting member 26a composed of a flexible tube or the like is connected to the most brown gas generating part 1 side (uppermost stream side) of the gas passage 26, and downstream of the gas connecting member 26a. The gas tank 27 is provided.
The gas tank 27 is a tank for storing the brown gas B generated by the brown gas generator 1, and the shape of the gas tank 27 is not particularly limited. For example, the gas tank 27 may be a vertically long substantially cylindrical shape. good.
A gas discharge valve 27 a that discharges the brown gas B may be provided in the gas tank 27 (for example, the lower portion of the side peripheral surface).
 ガスタンク27の下流側には、ガスタンク27の側周面に、ボール弁等で構成される上ガス弁26bが設けられている。
 この上ガス弁26bの下流側には、混合器8に入る前でブラウンガスBからゴミ、不純物等を取り除くために用い且つ混合器8に入るブラウンガスBの圧力を所定の値に調節するフィルタレギュレータ26cが設けられている。
On the downstream side of the gas tank 27, an upper gas valve 26 b composed of a ball valve or the like is provided on the side peripheral surface of the gas tank 27.
A filter used to remove dust, impurities and the like from the brown gas B before entering the mixer 8 and to adjust the pressure of the brown gas B entering the mixer 8 to a predetermined value is provided downstream of the upper gas valve 26b. A regulator 26c is provided.
 このフィルタレギュレータ26cの下流側には、電磁弁等で構成される中ガス弁26dが設けられ、この中ガス弁26dの下流側には、混合器8に入るブラウンガスBの流量を調整するニードル弁26eが設けられ、更に、このニードル弁26eの下流側には、ボール弁等で構成される下ガス弁26fが設けられている。
 この下ガス弁26fの下流側には、混合タンク9と混合器8を繋ぐリサイクル路28と合流するガス合流部材26gが設けられ、このガス合流部材26gの下流側、つまり、ガス路26の最下流側が、混合器8に連結している。
An intermediate gas valve 26d composed of an electromagnetic valve or the like is provided on the downstream side of the filter regulator 26c, and a needle for adjusting the flow rate of the brown gas B entering the mixer 8 is provided on the downstream side of the intermediate gas valve 26d. A valve 26e is provided, and further, a lower gas valve 26f composed of a ball valve or the like is provided downstream of the needle valve 26e.
On the downstream side of the lower gas valve 26f, there is provided a gas merging member 26g that merges with a recycling path 28 that connects the mixing tank 9 and the mixer 8. The downstream side is connected to the mixer 8.
 ここで、ガス路26における上ガス弁26b、中ガス弁26d、下ガス弁26fの各弁も、上述したボール弁や電磁弁の他、仕切弁であっても構わない。
 又、ガス連結材26aは、可撓性のあるチューブ等で構成されていたが、ガスタンク27から混合器8までのガス路26も、可撓性のあるチューブ等で構成されていても良く、可撓性のあるホースや、逆に、可撓性のない管等であっても構わない。
 更に、ガス連結材26aとブラウンガス発生部1との間や、ガス連結材26aとガスタンク27との間、ガスタンク27と上ガス弁26bとの間、ニードル弁26eと下ガス弁26fとの間、ガス合流部材26gと混合器8との間に、継手を設けていても構わない(図示省略)。
Here, each valve of the upper gas valve 26b, the middle gas valve 26d, and the lower gas valve 26f in the gas passage 26 may be a gate valve in addition to the above-described ball valve and electromagnetic valve.
In addition, the gas connecting member 26a is configured by a flexible tube or the like, but the gas path 26 from the gas tank 27 to the mixer 8 may also be configured by a flexible tube or the like. It may be a flexible hose or, on the contrary, a non-flexible tube.
Further, between the gas connecting member 26a and the brown gas generator 1, between the gas connecting member 26a and the gas tank 27, between the gas tank 27 and the upper gas valve 26b, and between the needle valve 26e and the lower gas valve 26f. A joint may be provided between the gas merging member 26g and the mixer 8 (not shown).
<リサイクル路28>
 図1で示す如く、リサイクル路28は、混合タンク9からガス路26のガス合流部材26gまでを繋いており、混合タンク9内で、混合燃料M(つまり、混合燃料M、又は、混合燃料Mと液体燃料Eが混ざったもの)から抜けて溜まったブラウンガスBを、混合器8で再びバブル化して、混合タンク9内からの混合燃料Mに再混合させるものである。
 リサイクル路28の最も混合タンク9側(最上流側)は、混合タンク9における最高液面Hよりも上方で、混合タンク9の内部と連通している。
 リサイクル路28は、その最下流側に、ボール弁等で構成されるリサイクル弁28aが設けられており、このリサイクル弁28aの下流側が、ガス路26のガス合流部材26gに連結している。
<Recycling road 28>
As shown in FIG. 1, the recycle path 28 is connected from the mixing tank 9 to the gas joining member 26 g of the gas path 26, and in the mixing tank 9, the mixed fuel M (that is, the mixed fuel M or the mixed fuel M). The brown gas B collected from the liquid fuel E is bubbled again by the mixer 8 and remixed with the mixed fuel M from the mixing tank 9.
The most mixing tank 9 side (the most upstream side) of the recycle path 28 communicates with the inside of the mixing tank 9 above the highest liquid level H in the mixing tank 9.
The recycle path 28 is provided with a recycle valve 28 a composed of a ball valve or the like on the most downstream side, and the downstream side of the recycle valve 28 a is connected to the gas junction member 26 g of the gas path 26.
 つまり、本発明における再混合経路11は、ループ路25、ガス路26の一部(ガス合流部材26gから混合器8まで)、リサイクル路28によって構成されている。
 尚、本発明の再混合経路11は、これに限定されず、ループ路25と、ガス路26の一部を兼用するのではなく、再混合用に、別途、混合タンク9内で溜まったブラウンガスBを、混合タンク9内からの混合燃料Mに再混合して、混合タンク9に戻す経路や混合器、ポンプを設けていても良い。
That is, the remixing path 11 in the present invention is configured by the loop path 25, a part of the gas path 26 (from the gas joining member 26 g to the mixer 8), and the recycling path 28.
Note that the remixing path 11 of the present invention is not limited to this, and instead of using the loop path 25 and a part of the gas path 26 as a part, the brown collected separately in the mixing tank 9 for remixing. A path, a mixer, and a pump that remixes the gas B with the mixed fuel M from the mixing tank 9 and returns it to the mixing tank 9 may be provided.
 尚、リサイクル路28におけるリサイクル弁28aは、上述したボール弁の他、電磁弁や仕切弁であっても構わない。
 又、リサイクル路28は、可撓性のあるチューブやホース等で構成されていても良く、逆に、可撓性のない管等であっても構わない。
 更に、リサイクル路28の最上流側には、継手やボール弁等で構成される弁を設けたり、リサイクル弁28aとガス路26のガス合流部材26gとの間に継手を設けていたり、混合タンク9とリサイクル弁28aとの間に、ニードル弁が設けられていても構わない(図示省略)。
The recycle valve 28a in the recycle path 28 may be an electromagnetic valve or a gate valve in addition to the ball valve described above.
The recycling path 28 may be constituted by a flexible tube, hose, or the like, and conversely, may be a non-flexible tube or the like.
Furthermore, a valve composed of a joint, a ball valve, or the like is provided on the most upstream side of the recycle path 28, a joint is provided between the recycle valve 28a and the gas merging member 26g of the gas path 26, or a mixing tank. 9 and a recycle valve 28a may be provided with a needle valve (not shown).
<供給経路10、合流具29>
 図1に示すように、供給経路(サプライ路)10は、混合タンク9から合流具29までを繋いでおり、混合タンク9内の混合燃料Mを、合流具29を介して、システム外へ送るものである。
 供給経路10の最も混合タンク9側(最上流側)は、混合タンク9における最低液面Lよりも下方(の側周面)で、混合タンク9の内部と連通している。
 具体的には、供給経路10では、上サプライ弁10a、サプライ連結材10b、下サプライ弁10c、合流具29が、上流側からこの順で設けられている。
<Supply path 10, merging tool 29>
As shown in FIG. 1, the supply path (supply path) 10 connects the mixing tank 9 to the joining tool 29, and sends the mixed fuel M in the mixing tank 9 to the outside of the system via the joining tool 29. Is.
The most mixing tank 9 side (uppermost stream side) of the supply path 10 communicates with the inside of the mixing tank 9 below (the side peripheral surface of) the lowest liquid level L in the mixing tank 9.
Specifically, in the supply path 10, an upper supply valve 10 a, a supply connecting material 10 b, a lower supply valve 10 c, and a joining tool 29 are provided in this order from the upstream side.
 詳解すれば、供給経路10の最上流側には、混合タンク9の側周面のそばで、ボール弁等で構成される上サプライ弁10aが設けられ、この上サプライ弁10aの下流側には、可撓性のホース等で構成されるサプライ連結材10bが連結されている。
 このサプライ連結材10bの下流側には、仕切弁等で構成される下サプライ弁10cが設けられ、この下サプライ弁10cの下流側には、供給経路10からの混合燃料Mを、燃焼装置100の燃焼路102に合流させる合流具(合流部材)29が設けられている。
 この合流具29は、本発明の燃料生成供給システム20の供給経路10と、既設の燃焼装置100とを連結すべく、燃料路102に下流側に設けられている。
More specifically, an upper supply valve 10a composed of a ball valve or the like is provided near the side surface of the mixing tank 9 on the most upstream side of the supply path 10, and on the downstream side of the upper supply valve 10a. A supply connecting member 10b composed of a flexible hose or the like is connected.
A lower supply valve 10c composed of a gate valve or the like is provided on the downstream side of the supply connecting material 10b. The mixed fuel M from the supply path 10 is supplied to the combustion device 100 on the downstream side of the lower supply valve 10c. A merging device (merging member) 29 for merging with the combustion path 102 is provided.
This joining tool 29 is provided on the downstream side of the fuel passage 102 so as to connect the supply passage 10 of the fuel generation and supply system 20 of the present invention and the existing combustion apparatus 100.
 尚、供給経路10における上サプライ弁10a、下サプライ弁10cの各弁も、上述したボール弁、仕切弁の他、電磁弁や、混合燃料Mの流量を調整する流量調整弁であっても構わない。
 又、供給経路10も、可撓性のあるチューブ等で構成されていても良く、逆に、可撓性のない管等であっても構わない。
 更に、上サプライ弁10aとサプライ連結材10bとの間や、サプライ連結材10bと下サプライ弁10cとの間、更に、燃焼装置100の燃料路102の一部が、可撓性のあるホース等で構成されている場合には、このホース等と合流具29との間に、継手を設けていても構わない(図示省略)。
Each of the upper supply valve 10a and the lower supply valve 10c in the supply path 10 may be a solenoid valve or a flow rate adjusting valve that adjusts the flow rate of the mixed fuel M in addition to the ball valve and the gate valve described above. Absent.
The supply path 10 may also be configured by a flexible tube or the like, and conversely, may be a non-flexible tube or the like.
Further, a flexible hose or the like is provided between the upper supply valve 10a and the supply connecting material 10b, between the supply connecting material 10b and the lower supply valve 10c, and further, a part of the fuel path 102 of the combustion device 100. In this case, a joint may be provided between the hose or the like and the merging tool 29 (not shown).
<ブラウンガス発生部(ブラウンガス発生装置1)の全体構成>
 図1~5には、燃料生成供給システム20のブラウンガス発生部1である本発明に係るブラウンガス発生装置1が示されている。
 このブラウンガス発生装置1は、水Wを電気分解して、ブラウンガスBを発生するものであって、この装置1で発生させたブラウンガスBが、ガス路26を介して混合燃料M等に混合される。
<Overall configuration of brown gas generator (Brown gas generator 1)>
1 to 5 show a brown gas generator 1 according to the present invention which is a brown gas generator 1 of a fuel generation and supply system 20.
The brown gas generator 1 electrolyzes water W to generate brown gas B. The brown gas B generated by the apparatus 1 is supplied to the mixed fuel M or the like via a gas path 26. Mixed.
 ブラウンガス発生装置1は、水Wを内部に満たした電解槽2と、この電解槽2内に設けられた一対の主極板3、3及び1又は複数の誘導極板4と、主極板3、3及び誘導極板4をそれぞれ接続するスペーサ5を有している。
 この他に、ブラウンガス発生装置1は、電解槽2内へ水Wを槽内へ送り込む吸入部材31と、電解槽2内で発生したブラウンガスBを装置外へ送り出す排出部材32と、各主極板3に電流を流す送電部材33と、一対の主極板3、3及び誘導極板4の間で水WとブラウンガスBを通す貫流部材34も有している。尚、ブラウンガス発生装置1は、電解槽2や、各部材31~34を搭載する筐体を有していても良い。
The brown gas generator 1 includes an electrolytic cell 2 filled with water W, a pair of main electrode plates 3, 3 and 1 or a plurality of induction electrode plates 4 provided in the electrolytic cell 2, and a main electrode plate 3, 3 and a spacer 5 for connecting the induction electrode plate 4 to each other.
In addition, the brown gas generator 1 includes a suction member 31 that feeds water W into the electrolytic cell 2, a discharge member 32 that feeds brown gas B generated in the electrolytic cell 2 out of the device, A power transmission member 33 that allows current to flow through the electrode plate 3 and a flow-through member 34 that passes water W and brown gas B between the pair of main electrode plates 3 and 3 and the induction electrode plate 4 are also provided. The brown gas generator 1 may have an electrolytic cell 2 and a housing on which the members 31 to 34 are mounted.
<電解槽2>
 図2~5に示されたように、電解槽2は、主極板3、3及び誘導極板4を、水Wに浸かった状態で保持すると共に、内部の水Wの漏れ防止・各極板3、4の絶縁もするものであって、この電解槽2内部で、主極板3、3及び誘導極板4それぞれの間で水Wを電気分解して、ブラウンガスBを発生させる。
 電解槽2は、主極板3、3及び誘導極板4を取り囲み且つ前後に開口した槽枠体35と、この槽枠体35の前後開口それぞれを塞ぐ一対の密閉板36、36と、この一対の密閉板36、36それぞれを覆う一対の外装板37、37と、これら外装板37、37を槽枠体35に取り付ける複数の固定具38を備えている。
<Electrolysis tank 2>
As shown in FIGS. 2 to 5, the electrolytic cell 2 holds the main electrode plates 3 and 3 and the induction electrode plate 4 in a state of being immersed in the water W, and prevents leakage of the internal water W. The plates 3 and 4 are also insulated, and water W is electrolyzed between the main electrode plates 3 and 3 and the induction electrode plate 4 inside the electrolytic cell 2 to generate brown gas B.
The electrolytic cell 2 includes a tank frame body 35 that surrounds the main electrode plates 3 and 3 and the induction electrode plate 4 and opens in the front and rear, a pair of sealing plates 36 and 36 that close the front and rear openings of the tank frame body 35, and A pair of exterior plates 37, 37 covering the pair of sealing plates 36, 36, and a plurality of fixtures 38 for attaching these exterior plates 37, 37 to the tank frame 35 are provided.
<電解槽2の槽枠体35>
 図2~5に示したように、槽枠体35は、正面視略矩形で前後開口(前開口35a、後開口35b)した環状の枠であって、前後開口35a、35b(枠内)の形状も、同じ正面視で略矩形である。
 2つの開口35a、35bのうち、後開口35bの方が、前開口35aより小さくなるように、枠内面35cの後端部に、係止突条35dが後開口35bを取り囲むように設けられている。
 又、枠内面35cの正面視形状は、主極板3、3及び誘導極板4の正面視形状と略相似形で且つ若干大きく形成されており(つまり、枠内面35cと、主極板3及び誘導極板4との間には、若干の隙間があり)、誘導極板4それぞれは、前開口35aのみから進入可能であると共に、後開口35bから脱落することはない。
<Tank frame 35 of electrolytic cell 2>
As shown in FIGS. 2 to 5, the tank frame 35 is an annular frame having a substantially rectangular shape when viewed from the front and having front and rear openings (front opening 35a and rear opening 35b). The shape is also substantially rectangular in the same front view.
Of the two openings 35a and 35b, a locking protrusion 35d is provided at the rear end of the frame inner surface 35c so as to surround the rear opening 35b so that the rear opening 35b is smaller than the front opening 35a. Yes.
The front view shape of the frame inner surface 35c is substantially similar to the front view shapes of the main electrode plates 3, 3 and the induction electrode plate 4 and is formed slightly larger (that is, the frame inner surface 35c and the main electrode plate 3). In addition, there is a slight gap between the induction electrode plate 4 and the induction electrode plate 4). Each induction electrode plate 4 can enter only from the front opening 35 a and does not fall out from the rear opening 35 b.
 槽枠体35の前面側では、前開口35aを縁取るように一回り大きい前段部35eが形成されており、この前段部35eを縁取るように更に一回り大きい前端面35fがある。
 よって、槽枠体35の正面視では、前段部35eと前端面35fと、枠内面35cの奥手側(後端部)に係止突条35dの前端面が見える。
 尚、槽枠体35の前端面35fには、所定間隔を空けて、後述する後端面35iまで貫通する内固定孔35gが、複数設けられている。
On the front surface side of the tank frame 35, a slightly larger front step portion 35e is formed so as to border the front opening 35a, and there is a front end surface 35f that is slightly larger so as to border the front step portion 35e.
Therefore, in the front view of the tank frame 35, the front end surface of the locking protrusion 35d can be seen on the back side (rear end portion) of the front step portion 35e, the front end surface 35f, and the frame inner surface 35c.
The front end surface 35f of the tank frame body 35 is provided with a plurality of inner fixing holes 35g that pass through to a rear end surface 35i described later at a predetermined interval.
 一方、槽枠体35の後面側でも、後開口35bを縁取るように一回り大きい後段部35hが形成されており、この後段部35hを縁取るように更に一回り大きい後端面35iがある。
 よって、槽枠体35の背面視では、後段部35hと後端面35iと、枠内面35cの手前側(後端部)に係止突条35dの後端面が見える。
On the other hand, also on the rear surface side of the tank frame 35, a rear step portion 35h that is slightly larger so as to border the rear opening 35b is formed, and there is a rear end surface 35i that is slightly larger so as to border this rear step portion 35h.
Therefore, in the rear view of the tank frame 35, the rear end surface of the rear protrusion 35d, the rear end surface 35i, and the front side (rear end portion) of the frame inner surface 35c can be seen.
 槽枠体35の素材は、主極板3、3及び誘導極板4を保持し、絶縁し得るのであれば、特に限定はないが、例えば、ポリアセタール(POM)、ポリアミド(PA)、ポリカーボネート(PC)、変性ポリフェニレンエーテル(m-PPE)、ポリブチレンテレフタレート(PBT)など耐熱性と強度を備えたエンジニアリング・プラスチックや、非晶ポリアリレート(PAR)、ポリイミド(PI)、フッ素樹脂などのより高い耐熱性等を備えたスーパーエンジニアリング・プラスチックであっても良い。 The material of the tank frame 35 is not particularly limited as long as it can hold and insulate the main electrode plates 3 and 3 and the induction electrode plate 4, but for example, polyacetal (POM), polyamide (PA), polycarbonate ( PC, modified polyphenylene ether (m-PPE), polybutylene terephthalate (PBT) and other engineering plastics with heat resistance and strength, amorphous polyarylate (PAR), polyimide (PI), fluororesin, etc. Super engineering plastics with heat resistance and the like may be used.
<電解槽2の密閉板36>
 図2、3に示した如く、一対の密閉板36、36は、正面視で横長略矩形の板体であって、上述した槽枠体35の前後開口35a、35bを塞ぎ、電解槽2内部から水Wが漏れないよう電解槽2を密閉すると共に、密閉板36の内側に配備される主極板3に電流が流されるため、絶縁体の役割も果たす。
 各密閉板36の大きさ・形状は、上述した槽枠体35の前後開口35a、35bを塞ぐために、槽枠体35の前後段部35e、35gの正面視形状と略相似形で且つ水Wが漏れない程度に若干小さく形成されている。
<Sealing plate 36 of the electrolytic cell 2>
As shown in FIGS. 2 and 3, the pair of sealing plates 36 and 36 are horizontally long and substantially rectangular plates in front view, and close the front and rear openings 35 a and 35 b of the tank frame 35 described above. In addition, the electrolytic cell 2 is sealed so that water W does not leak from the water, and a current flows through the main electrode plate 3 disposed inside the sealing plate 36, so that it also serves as an insulator.
The size and shape of each sealing plate 36 is substantially similar to the front view shape of the front and rear step portions 35e and 35g of the tank frame 35 in order to block the front and rear openings 35a and 35b of the tank frame 35 described above, and the water W Is formed to be slightly small so as not to leak.
 各密閉板36は、正面視で上部(又は下部)略中央に、密閉板36を貫通する横長の中長孔36aが形成されており、密閉板36の内外を連通している。
 又、各密閉板36の正面視で略中央部には、左右方向に所定間隔をおいて一対の中電極孔36b、36bが、貫通状に形成されている。
Each sealing plate 36 is formed with a laterally long oblong hole 36a penetrating through the sealing plate 36 at an approximately upper (or lower) center in a front view, and communicates the inside and outside of the sealing plate 36.
Further, a pair of middle electrode holes 36b, 36b are formed in a penetrating manner at a substantially central portion in a front view of each sealing plate 36 at a predetermined interval in the left-right direction.
 尚、各密閉板36は、槽枠体35の前後の開口35a、35bを塞ぐものは、同一の形状であって、前開口35aを塞ぐ密閉板36は、中長孔36aが上部となる向きに、槽枠体35の前段部35eに嵌め込む。
 一方、後開口35bを塞ぐ密閉板36は、中長孔36aが下部となる向きに、槽枠体35の後段部35hにはめ込む。
 各密閉板36を、槽枠体35の各開口35a、35bに嵌めこむ際には、水Wの漏れを更に防止するため、シールをしていても良い。
 各密閉板36の素材も、槽枠体35と共に主極板3、3及び誘導極板4を保持し、絶縁し得るのであれば、特に限定はないが、例えば、ポリアセタール(POM)などのエンジニアリング・プラスチックや、非晶ポリアリレート(PAR)などのスーパーエンジニアリング・プラスチックであっても良い。
Each sealing plate 36 has the same shape as that closing the front and rear openings 35a and 35b of the tank frame 35, and the sealing plate 36 closing the front opening 35a is oriented so that the middle long hole 36a is at the top. And fitted into the front portion 35e of the tank frame 35.
On the other hand, the sealing plate 36 that closes the rear opening 35b is fitted into the rear stage portion 35h of the tank frame body 35 in the direction in which the middle long hole 36a becomes the lower portion.
When each sealing plate 36 is fitted in each opening 35a, 35b of the tank frame 35, sealing may be performed in order to further prevent leakage of the water W.
The material of each sealing plate 36 is not particularly limited as long as it can hold and insulate the main electrode plates 3 and 3 and the induction electrode plate 4 together with the tank frame 35. For example, engineering such as polyacetal (POM) is possible. -Super engineering plastics, such as plastic and an amorphous polyarylate (PAR), may be sufficient.
<電解槽2の外装板37、固定具38>
 図2、3に示した如く、一対の外装板37、37は、正面視で横長略矩形の板体であって、内部の各密閉板36を覆い、電解槽2の前後面を形成する。
 各外装板37の大きさ・形状は、上述した槽枠体35の前後端面35f、35iの正面視形状と略同一に形成されている。
<Exterior plate 37 and fixture 38 of electrolytic cell 2>
As shown in FIGS. 2 and 3, the pair of exterior plates 37 and 37 are horizontally long and substantially rectangular plates that cover the respective internal sealing plates 36 and form the front and rear surfaces of the electrolytic cell 2.
The size and shape of each exterior plate 37 are formed substantially the same as the front-view shape of the front and rear end faces 35f and 35i of the tank frame 35 described above.
 各外装板37は、正面視で上部(又は下部)略中央に、内部の密閉板36の中長孔36aと連通可能な位置に、外装板37を貫通する横長の外長孔37aが形成されており、この外長孔37a全体を漏れなく覆う横長のカバー37bが設けられている。
 尚、このカバー37bの左右方向中央には、上述した吸入部材31、排出部材32が連結される。
 又、各外装板37の正面視で略中央部にも、内部の密閉板36の中電極孔36b、36bと連通可能な位置に、左右方向に所定間隔をおいて一対の外電極孔37c、37cが、貫通状に形成されている。
Each of the exterior plates 37 is formed with a laterally long outer long hole 37a penetrating the exterior plate 37 at a position where it can communicate with the middle long hole 36a of the internal sealing plate 36 at the upper (or lower) approximate center in a front view. A horizontally long cover 37b that covers the entire outer long hole 37a without leakage is provided.
The above-described suction member 31 and discharge member 32 are connected to the center of the cover 37b in the left-right direction.
In addition, a pair of outer electrode holes 37c at a predetermined interval in the left-right direction is provided at a position where the outer plate 37 can communicate with the middle electrode holes 36b, 36b in the inner sealing plate 36 at a substantially central portion when viewed from the front. 37c is formed in a penetrating shape.
 各外装板37の外側面(密閉板36とは反対側の面)の周端部には、槽枠体35の各内固定孔35gと連通可能な位置に、外固定孔37dが複数設けられている。
 前後の外装板37、37における各外固定孔37dを、槽枠体35の各内固定孔35gを前後から位置合わせした状態で、ボルト及びナットや、ワッシャ等の各固定具38によって、外装板37、37を、各主極板3、誘導極板4を進入させ且つ各密閉板36を嵌め込んだ槽枠体35に取り付けることが出来る。
 又、各外装板37の外側面には、横長で平面視略台形のフィン(放熱板)37eが、上下方向に所定間隔をおいて複数設けられている。
A plurality of outer fixing holes 37d are provided at positions that can communicate with the inner fixing holes 35g of the tank frame 35 at the peripheral end portion of the outer surface (surface opposite to the sealing plate 36) of each exterior plate 37. ing.
The outer fixing holes 37d in the front and rear outer plates 37, 37 are aligned with the inner fixing holes 35g of the tank frame 35 from the front and rear, and the outer plates are fixed by the fixing members 38 such as bolts and nuts and washers. 37 and 37 can be attached to a tank frame 35 in which the main electrode plate 3 and the induction electrode plate 4 are inserted and the sealing plates 36 are fitted.
In addition, a plurality of laterally long and substantially trapezoidal fins (heat radiating plates) 37 e in a plan view are provided on the outer surface of each exterior plate 37 at predetermined intervals in the vertical direction.
 尚、外装板37は、前後の密閉板36を覆うものは、同一の形状であって、前面側の密閉板36を覆う外装板37は、外長孔37a及びカバー37bが上部となる向きに配備され、一方、後面側の密閉板36を覆う外装板37は、外長孔37a及びカバー37bが下部となる向きに配備される。
 又、各外装板37の素材は、槽枠体35と共に密閉板36を覆い、主極板3、3及び誘導極板4を保持し得るのであれば、特に限定はないが、例えば、ステンレス鋼、炭素鋼であっても良い。
The exterior plate 37 covers the front and rear sealing plates 36 in the same shape, and the exterior plate 37 covering the front side sealing plate 36 is arranged in such a direction that the outer long hole 37a and the cover 37b are on the upper side. On the other hand, the exterior plate 37 that covers the sealing plate 36 on the rear surface side is arranged in such a direction that the outer long hole 37a and the cover 37b are on the lower side.
The material of each exterior plate 37 is not particularly limited as long as it covers the sealing plate 36 together with the tank frame 35 and can hold the main electrode plates 3 and 3 and the induction electrode plate 4. Carbon steel may be used.
<主極板3、誘導極板4>
 図2~5に示したように、一対の主極板3、3と、その間の1枚以上の誘導極板4は、正面視で横長略矩形の板体であって、上述したように、それぞれがスペーサ5を介して接続され、互いに略平行に並べて配置される。
 一対の主極板3、3及び誘導極板4は、電解槽2内で水Wに浸かった状態で配備され、電解槽2内に進入させるだけによって、(つまり、各主極板3と誘導極板4における周縁が、電解槽2に固定されていない状態で)保持される。
<Main electrode plate 3, induction plate 4>
As shown in FIGS. 2 to 5, the pair of main electrode plates 3, 3 and the one or more induction electrode plates 4 between them are plate-like bodies that are horizontally long in a front view, and as described above, Each is connected via a spacer 5 and arranged substantially parallel to each other.
The pair of main electrode plates 3 and 3 and the induction electrode plate 4 are arranged in a state where they are immersed in the water W in the electrolytic cell 2, and are simply introduced into the electrolytic cell 2 (that is, each main electrode plate 3 and the induction plate 4 are guided). The peripheral edge of the electrode plate 4 is held (in a state where it is not fixed to the electrolytic cell 2).
 このうち、主極板3、3に電流を流して、主極板3、3だけに正負の電荷をそれぞれ付与することによって、主極板3、3の間に電界が生じ、その間に配置された誘導極板4は静電誘導されて、各誘導極板4内で電荷が移動して、誘導極板4の表裏(前面と後面)それぞれに、正の電荷と負の電荷がそれぞれ集まる。
 具体的には、正の電荷が付与された主極板3に近い側の誘導極板4の面は、負の電荷が集まり(負に帯電し)、逆に、負の電荷が付与された主極板3に近い側の誘導極板4の面は、正の電荷が集まる(正に帯電する)。
 このように、主極板3、3における内側の面と、各誘導極板4の表裏それぞれの面で、水Wを電気分解してブラウンガスBを発生させることが出来る。
 尚、水Wは、不純物を含まない純粋な水(純水)や、水道水の他、水Wに電気を通し易くするために、水酸化カリウム(KOH)を加えても良く、又、加えるものとして、水酸化ナトリウム(NaOH)でも構わない。
Among them, an electric field is generated between the main electrode plates 3 and 3 by passing a current through the main electrode plates 3 and 3 and applying positive and negative charges only to the main electrode plates 3 and 3, respectively. The induction electrode plate 4 is electrostatically induced and charges move in each induction electrode plate 4, and positive charges and negative charges are collected on the front and back surfaces (front and rear surfaces) of the induction electrode plate 4.
Specifically, the surface of the induction electrode plate 4 on the side close to the main electrode plate 3 to which a positive charge is applied collects negative charges (charges negatively), and conversely, a negative charge is applied. On the surface of the induction electrode plate 4 on the side close to the main electrode plate 3, positive charges are collected (positively charged).
Thus, the brown gas B can be generated by electrolyzing water W on the inner surfaces of the main electrode plates 3 and 3 and the front and back surfaces of each induction electrode plate 4.
In addition, in order to make it easy to conduct electricity to the water W other than the pure water (pure water) which does not contain an impurity, tap water, potassium hydroxide (KOH) may be added to the water W, and it is added. As a thing, sodium hydroxide (NaOH) may be used.
 主極板3の素材は、正負の電荷をそれぞれ付与されて帯電(導通)可能な素材であれば、特に限定はないが、例えば、炭素(C)や、白金(Pt)、金(Au)等の貴金属、銅(Cu)、鉄(Fe)、アルミニウム(Al)、スズ(Sn)、鉛(Pb)などの溶性電極素材や、チタン(Ti)の母材表面を白金(Pt)でメッキしたものや、チタン(Ti)の母材表面に酸化イリジウム(IrO2 )を焼成させたものなどの不溶性電極素材であっても良い。
 更に、主極板3の素材としては、正の電荷を付与する主極板3として、チタン(Ti)や鉄(Fe)等の母材表面に、酸素ガス(O2 )発生の触媒となる酸化リチウム(Li2 O)等をメッキしたものを用いると共に、負の電荷を付与する主極板3として、チタン(Ti)や鉄(Fe)等の母材表面に、水素ガス(H2 )発生の触媒となるニッケル(Ni)や白金族元素(白金(Pt)、ルテニウム(Ru)、ロジウム(Rh)、パラジウム(Pd))等をメッキしたものを用いても良い。
The material of the main electrode plate 3 is not particularly limited as long as the material can be charged (conducted) with positive and negative charges applied thereto. For example, carbon (C), platinum (Pt), gold (Au) Precious metals such as copper (Cu), iron (Fe), aluminum (Al), tin (Sn), lead (Pb) and other soluble electrode materials, and titanium (Ti) base metal surface is plated with platinum (Pt) Or an insoluble electrode material such as a material obtained by firing iridium oxide (IrO 2 ) on the surface of a titanium (Ti) base material.
Further, as a material of the main electrode plate 3, the main electrode plate 3 imparting a positive charge serves as a catalyst for generating oxygen gas (O 2 ) on the surface of a base material such as titanium (Ti) or iron (Fe). As a main electrode plate 3 that uses a material plated with lithium oxide (Li 2 O) or the like and imparts a negative charge, hydrogen gas (H 2 ) is formed on the surface of a base material such as titanium (Ti) or iron (Fe). A material plated with nickel (Ni) or a platinum group element (platinum (Pt), ruthenium (Ru), rhodium (Rh), palladium (Pd)) or the like, which is a catalyst for generation, may be used.
 誘導極板4の素材は、電界中で静電誘導を生じる素材であれば、特に限定はないが、主極板3と同様に、例えば、炭素(C)や、白金(Pt)、金(Au)、銅(Cu)、鉄(Fe)、アルミニウム(Al)、スズ(Sn)、鉛(Pb)などの溶性電極素材や、チタン(Ti)等の母材表面を、白金(Pt)でメッキしたり、酸化イリジウム(IrO2 )で焼成させた不溶性電極素材であっても良い。
 更に、誘導極板4の素材としては、チタン(Ti)等を母材とし、正の電荷を付与する主極板3側の(つまり、負の電荷が帯電する)面には、水素ガス(H2 )発生の触媒となるニッケル(Ni)等をメッキし、負の電荷を付与する主極板3側の(つまり、正の電荷が帯電する)面には、酸素ガス(O2 )発生の触媒となる酸化リチウム(Li2 O)等をメッキしたものを用いても良い。
The material of the induction electrode plate 4 is not particularly limited as long as it is a material that causes electrostatic induction in an electric field. For example, as with the main electrode plate 3, for example, carbon (C), platinum (Pt), gold ( The surface of a base material such as a soluble electrode material such as Au), copper (Cu), iron (Fe), aluminum (Al), tin (Sn), lead (Pb) or titanium (Ti) is made of platinum (Pt). It may be an insoluble electrode material plated or baked with iridium oxide (IrO 2 ).
Further, as a material of the induction electrode plate 4, titanium (Ti) or the like is used as a base material, and a surface of the main electrode plate 3 side to which a positive charge is applied (that is, a negative charge is charged) is provided with hydrogen gas ( H 2 ) Oxygen gas (O 2 ) is generated on the surface of the main electrode plate 3 side that is negatively charged (that is, charged with a positive charge) by plating nickel (Ni) or the like as a catalyst for generation of H 2 ) A material plated with lithium oxide (Li 2 O) or the like serving as a catalyst may be used.
 主極板3、3と各誘導極板4の正面視の大きさ・形状は、それぞれ略同一であって、上述したように、槽枠体35の枠内面35cに進入する。 
 つまり、前開口35aから前側の主極板3と各誘導極板4が枠内面35cに進入し、且つ、槽枠体35の後段部35h側から後側の主極板3が枠内面35cに進入するため、槽枠体35の前開口35a及び後段部35hの正面視形状と略相似形で且つ若干小さく形成されている。
The main electrode plates 3 and 3 and the induction electrode plates 4 have substantially the same size and shape when viewed from the front, and enter the inner surface 35c of the tank frame 35 as described above.
That is, the front main electrode plate 3 and each induction electrode plate 4 enter the frame inner surface 35c from the front opening 35a, and the rear main electrode plate 3 from the rear stage portion 35h side of the tank frame 35 enters the frame inner surface 35c. In order to enter, the front opening 35a and the rear stage portion 35h of the tank frame 35 are substantially similar in shape to the front view and are formed slightly smaller.
 尚、各主極板3にも、密閉板36、外装板37と同様に、正面視で上部(又は下部)略中央に、外部の密閉板36の中長孔36aと連通可能な位置に、主極板3を貫通する横長の内長孔3aが形成されており、主極板3の内外を連通している。
 尚、各誘導極板4には、この内長孔3aに連通する位置で且つ上部及び下部それぞれに、左右方向に所定間隔をおいて、一対の貫通孔4a、4aが略円形状に設けられており、この一対の貫通孔4a、4aに、後述する略筒状の貫流部材34が、それぞれ挿入される。
 又、各主極板3の正面視で略中央部にも、外部の密閉板36の中電極孔36b、36bと連通可能な位置に、左右方向に所定間隔をおいて一対の内電極孔3b、3bが、貫通状に形成されている。
 主極板3も、密閉板36、外装板37と同様に、前後の主極板3は同一の形状であって、前面側の主極板3は、内長孔3aが上部となる向きに配備され、一方、後面側の主極板3は、内長孔3aが下部となる向きに配備される。
Similarly to the sealing plate 36 and the exterior plate 37, each main electrode plate 3 is located at a position where it can communicate with the middle long hole 36 a of the outer sealing plate 36 in the upper (or lower) approximate center in front view. A horizontally long inner long hole 3 a penetrating the main electrode plate 3 is formed, and the inside and outside of the main electrode plate 3 communicate with each other.
Each induction electrode plate 4 is provided with a pair of through holes 4a, 4a in a substantially circular shape at a position communicating with the inner long hole 3a and at an upper portion and a lower portion at predetermined intervals in the left-right direction. In this pair of through- holes 4a and 4a, a substantially cylindrical flow-through member 34, which will be described later, is inserted.
Further, a pair of inner electrode holes 3b with a predetermined interval in the left-right direction is also provided at a position where the main electrode plate 3 can communicate with the middle electrode holes 36b, 36b of the outer sealing plate 36 at a substantially central portion when viewed from the front. 3b are formed in a penetrating shape.
Similarly to the sealing plate 36 and the exterior plate 37, the main electrode plate 3 has the same shape as the front and rear main electrode plates 3, and the front main electrode plate 3 is oriented so that the inner long hole 3a is at the top. On the other hand, the main electrode plate 3 on the rear surface side is arranged in a direction in which the inner long hole 3a is a lower part.
 各主極板3及び各誘導極板4の厚みは、特に限定されないが、例えば、0.5mm以上2.0mm以下であっても良い。
 又、誘導極板4の枚数は、1又は複数であって、特に限定されないが、例えば、10枚以上であっても良い。
 これらの誘導極板4と、これら誘導極板4を挟む一対の主極板3、3は、互いにスペーサ5を介して接続されていて、主極板3、3と誘導極板4は、このスペーサ5を取り付けるスペーサ取付部6と、このスペーサ取付部6以外の可撓部7を有している。
The thickness of each main electrode plate 3 and each induction electrode plate 4 is not particularly limited, but may be, for example, 0.5 mm or more and 2.0 mm or less.
The number of induction plates 4 is one or more and is not particularly limited. For example, the number of induction plates 4 may be ten or more.
These induction electrode plates 4 and a pair of main electrode plates 3 and 3 sandwiching these induction electrode plates 4 are connected to each other via a spacer 5, and the main electrode plates 3 and 3 and the induction electrode plate 4 are connected to each other. A spacer mounting portion 6 for mounting the spacer 5 and a flexible portion 7 other than the spacer mounting portion 6 are provided.
<スペーサ5、スペーサ取付部6、可撓部7>
 図2~4に示したように、スペーサ5は、略円環状の部材であって、主極板3や誘導極板4の前面、後面の上下方向及び左右方向における略中央部に、所定間隔をおいて、複数取り付けられている(例えば、縦横2×4個等)。
 スペーサ5の外径・内径は、主極板3や誘導極板4に対して、複数取り付けられるのであれば、特に限定はないが、例えば、スペーサ5の外径は、20mm以上40mm以下であったり、スペーサ5の内径は、当然に、外径よりも小さい値で且つ5mm以上30mm以下であっても良い。
<Spacer 5, spacer mounting portion 6, flexible portion 7>
As shown in FIGS. 2 to 4, the spacer 5 is a substantially ring-shaped member, and has a predetermined interval at the front and rear surfaces of the main electrode plate 3 and the induction electrode plate 4 in a substantially central portion in the vertical and horizontal directions. A plurality of them are attached (for example, 2 × 4 vertical and horizontal).
The outer diameter and inner diameter of the spacer 5 are not particularly limited as long as a plurality of the outer diameter and inner diameter can be attached to the main electrode plate 3 and the induction electrode plate 4. Or, the inner diameter of the spacer 5 may naturally be a value smaller than the outer diameter and not less than 5 mm and not more than 30 mm.
 又、略円環状のスペーサ5の幅(外径と内径の差)も、特に限定はないが、例えば、5mm以上20mm以下であっても良い。
 スペーサ5の厚み(高さ又は軸方向長さ)は、主極板3と誘導極板4の間隔、及び、各誘導極板4同士の間隔と同じ値になるが、この値も特に限定はなく、例えば、0.8mm以上3.0mm以下であっても良く、又、主極板3と誘導極板4より若干厚いものとしても構わない。
 又、スペーサ5の素材は、接続する主極板3や誘導極板4間を絶縁し(短絡を防ぎ)得て且つ各極板3、4同士の接続状態を維持できるのであれば、何れの素材でも構わないが、例えば、ポリアセタール(POM)などのエンジニアリング・プラスチックや、非晶ポリアリレート(PAR)などのスーパーエンジニアリング・プラスチックであっても良い。
Further, the width of the substantially annular spacer 5 (difference between the outer diameter and the inner diameter) is not particularly limited, but may be, for example, 5 mm or more and 20 mm or less.
The thickness (height or axial length) of the spacer 5 has the same value as the interval between the main electrode plate 3 and the induction electrode plate 4 and the interval between the induction electrode plates 4, but this value is also particularly limited. For example, it may be 0.8 mm or more and 3.0 mm or less, or may be slightly thicker than the main electrode plate 3 and the induction electrode plate 4.
The spacer 5 can be made of any material as long as the main electrode plate 3 and the induction electrode plate 4 to be connected can be insulated (a short circuit can be prevented) and the connection state between the electrode plates 3 and 4 can be maintained. The material may be a material, but may be an engineering plastic such as polyacetal (POM) or a super engineering plastic such as amorphous polyarylate (PAR).
 これらのスペーサ5と接続(固着等)する略円環状の部分が、主極板3、誘導極板4におけるスペーサ取付部6であって、これらスペーサ取付部6も、上述したスペーサ5のように、各主極板3及び各誘導極板4の上下方向及び左右方向における略中央部に位置している。
 従って、主極板3、3及び各誘導極板4における略中央部(スペーサ取付部6)以外の周端部(略中央部を取り囲む部分)は、上述したように、主極板3、3及び誘導極板4の周縁が電解槽2に固定されていないため、スペーサ取付部6(略中央部)に対して前後方向に撓むことが可能となっている。
 すなわち、主極板3、3及び各誘導極板4は、周端部に、可撓部7を有している。
The substantially annular portion that is connected (adhered or the like) to these spacers 5 is the spacer mounting portion 6 in the main electrode plate 3 and the induction electrode plate 4, and these spacer mounting portions 6 are also like the spacer 5 described above. The main electrode plate 3 and the induction electrode plate 4 are positioned at substantially the center in the vertical direction and the horizontal direction.
Therefore, the peripheral end portions (portions surrounding the substantially central portion) other than the substantially central portion (spacer mounting portion 6) in the main electrode plates 3 and 3 and the induction electrode plates 4 are as described above. And since the periphery of the induction electrode plate 4 is not fixed to the electrolytic cell 2, it is possible to bend in the front-rear direction with respect to the spacer mounting portion 6 (substantially central portion).
That is, the main electrode plates 3 and 3 and each induction electrode plate 4 have a flexible portion 7 at the peripheral end.
 この可撓部7は、主極板3、3間に電流が流された際には当然、主極板3の可撓部7に正負に帯電し、誘導極板4の可撓部7に静電誘導によって表裏が正負に帯電する。
 つまり、正に帯電した主極板3の最も近くには、負に帯電した誘導極板4の面が存在し、以下、正負が交互に、各誘導極体4の表裏面に現れ、負に帯電した主極板3の最も近くには、正に帯電した誘導極板4の面が存在する。
 従って、正に帯電した主極板3に最も近い誘導極板4は、最も遠い負に帯電した主極板3よりも、当然、正に帯電した主極板3に引っ張られる。
 これは逆に、負に帯電した主極板3に最も近い誘導極板4は、最も遠い正に帯電した主極板3よりも、当然、負に帯電した主極板3に引っ張られることも意味する。
 よって、誘導極板4の可撓部7は、それぞれ、近い方の主極板3側(つまり、前後方向外側)に撓む。
When the current flows between the main electrode plates 3 and 3, the flexible portion 7 is charged positively or negatively to the flexible portion 7 of the main electrode plate 3, and the flexible portion 7 of the induction electrode plate 4 is charged. Both sides are positively and negatively charged by electrostatic induction.
That is, the surface of the negatively charged induction electrode plate 4 is present closest to the positively charged main electrode plate 3, and positive and negative appear alternately on the front and back surfaces of each induction electrode body 4. Near the charged main electrode plate 3 is the surface of the positively charged induction plate 4.
Therefore, the induction electrode plate 4 closest to the positively charged main electrode plate 3 is naturally pulled by the positively charged main electrode plate 3 rather than the farthest negatively charged main electrode plate 3.
Conversely, the induction electrode plate 4 closest to the negatively charged main electrode plate 3 is naturally pulled by the negatively charged main electrode plate 3 rather than the farthest positively charged main electrode plate 3. means.
Accordingly, the flexible portions 7 of the induction electrode plate 4 are bent toward the closer main electrode plate 3 side (that is, the front-rear direction outer side).
 ここで、主極板3、3に流される電流は、たとえ直流であっても、多少の変化はしており、その変化に合せて、可撓部7における撓みの度合いも変化する(つまり、振動する)。
 これは、主極板3、3に流される電流が、交流(商用電流など)であっても同様で、例えば、正に帯電した主極板3側に引っ張られた誘導極板4の可撓部7は、正負が逆転する際の電流が0になる瞬間に、可撓部7の撓みもほぼ無くなるが、当該主極板3が逆に負に帯電した時には、静電誘導によって、当該誘導極板4の当該主極板3に近い側の面が正に帯電するため、やはり、当該主極板3側に、当該誘導極体4の可撓部7は撓む。
 すなわち、電流の正負が切り替わるごとに、可撓部7における撓みの有無が切り替わるつまり、振動する。
 又、主極板3、3に流される電流がパルス電流なども同様で、パルスの変化に合せて、可撓部7が振動する。
 尚、誘導極板4における貫通孔4a、4aには、略筒状の貫流部材34がそれぞれ挿入されているが、この貫流部材34と誘導極板4との間には、図5に示すように、隙間4bが生じるように、各貫通孔4aは、貫流部材34の断面より少なくとも縦横何れかが若干大きめに形成されている。
 この隙間4bにより、たとえ貫流部材34が挿入されていても、誘導極板4が撓むことが可能となる。
Here, even if the electric current passed through the main electrode plates 3 and 3 is a direct current, there is a slight change, and the degree of bending in the flexible portion 7 changes according to the change (that is, Vibrate).
This is the same even if the current flowing through the main electrode plates 3 and 3 is an alternating current (commercial current or the like). For example, the flexibility of the induction electrode plate 4 pulled toward the positively charged main electrode plate 3 side. The portion 7 is almost free from bending of the flexible portion 7 at the moment when the current when the positive and negative directions are reversed, but when the main electrode plate 3 is negatively charged, the induction is caused by electrostatic induction. Since the surface of the electrode plate 4 closer to the main electrode plate 3 is positively charged, the flexible portion 7 of the induction electrode body 4 is also bent toward the main electrode plate 3 side.
That is, every time the polarity of the current is switched, the presence / absence of bending in the flexible portion 7 is switched, that is, it vibrates.
Similarly, the current flowing through the main electrode plates 3 and 3 is the same as the pulse current, and the flexible portion 7 vibrates in accordance with the change of the pulse.
A substantially cylindrical flow-through member 34 is inserted into each of the through- holes 4a and 4a in the induction electrode plate 4, and the gap between the flow-through member 34 and the induction electrode plate 4 is as shown in FIG. In addition, each through hole 4 a is formed so that at least one of the vertical and horizontal directions is slightly larger than the cross section of the flow-through member 34 so that the gap 4 b is formed.
Due to the gap 4b, the induction plate 4 can be bent even if the flow-through member 34 is inserted.
 スペーサ取付部6に対して撓曲可能な可撓部7が、水Wを電気分解させるために電圧をかけることで振動し得て、この振動により、主極板3、3及び誘導極板4の表面で気泡になった水素、酸素等が、それぞれの極板3、4から離れやすくなり、常に次々と、水Wが、ブラウンガスBを発生させ得る極板3、4の表面に触れることとなる。
 これと同時に、主極板3、3だけでなく、その間で静電誘導される誘導極板4の表裏にも、正負の電荷がそれぞれ付与されるため、水素、酸素等(ブラウンガスB)を発生させ得る極板の面積が増えるため、「ブラウンガス生成効率の向上」も可能となる。
 更に、上述のスペーサ5、スペーサ取付部6及び可撓部7によって、接続された主極板3、3及び誘導極板4は、簡素化された構造のため、従来のブラウンガス発生装置(図12参照)のように、1つ1つの電極板に正又は負の端子を接続する必要がなく、主極板3、3及び誘導極板4のそれぞれを、近接させることも可能となって、「装置の簡素化・コンパクト化」が図れる。
 つまり、「装置の簡素化・コンパクト化」と「ブラウンガス生成効率の向上」の両立を実現する。
The flexible portion 7 that can be bent with respect to the spacer mounting portion 6 can vibrate by applying a voltage to electrolyze the water W, and this vibration causes the main electrode plates 3 and 3 and the induction electrode plate 4 to vibrate. Hydrogen, oxygen, etc. that have become bubbles on the surface of the electrode easily become separated from the respective electrode plates 3, 4, and water W always touches the surface of the electrode plates 3, 4 that can generate the brown gas B one after another. It becomes.
At the same time, since positive and negative charges are applied not only to the main electrode plates 3 and 3 but also to the front and back of the induction electrode plate 4 electrostatically induced therebetween, hydrogen, oxygen, etc. (Brown gas B) Since the area of the electrode plate that can be generated increases, it is also possible to “improve brown gas generation efficiency”.
Further, the main electrode plates 3 and 3 and the induction electrode plate 4 connected by the spacer 5, the spacer mounting portion 6 and the flexible portion 7 described above have a simplified structure. 12), it is not necessary to connect positive or negative terminals to each electrode plate, and the main electrode plates 3, 3 and the induction electrode plate 4 can be brought close to each other. "Simpler and more compact equipment" can be achieved.
In other words, it is possible to achieve both “simplification and compactness of the device” and “improvement of brown gas generation efficiency”.
 尚、主極板3の方も、可撓部7が、最も近い誘導極板4の近い側の面が、正負逆に帯電しているため、誘導極板4側(つまり、前後方向内側)に撓み得る。
 又、仮に、誘導極板4が、1枚だけであっても、一対の主極板3、3間の中間位置から前後何れかにずらして配備すれば、上述の可撓部7の振動は起こる。
Note that the main electrode plate 3 also has the flexible portion 7 on the induction electrode plate 4 side (that is, the front-rear inner side) because the surface on the near side of the nearest induction electrode plate 4 is charged positively or negatively. Can bend.
Further, even if there is only one induction electrode plate 4, the vibration of the flexible portion 7 described above can be reduced if it is arranged to be shifted from the middle position between the pair of main electrode plates 3, 3 to either front or back. Occur.
 更に、主極板3、3に流される電流が商用電流であっても、正確な周期で変化する正弦波電流ではなく、様々なノイズ(電波等)によって、実際には、50や60Hzよりも高い周波数の振動(例えば、超音波振動)が起こり得る。このとき、主極板3、3及び誘導極板4の表面で気泡になった水素や酸素等は、振動の周期に合せて、気泡の大きさが膨張・収縮を繰り返す。
 この膨張・収縮について詳解すれば、水素等の気泡の表面積は、気泡自体が膨張時には、当然、収縮時の表面積より大きくなる。ここで、気泡へ出入りする気体(水素等)の量は、気泡の表面積に比例するので、膨張時に気泡に入ってくる気体の量は、収縮時に気泡から出て行く気体の量より多い。
 従って、振動の周期ごとに、気泡は膨張していく。
 このように成長していく気泡のうち幾つかは、ついに気泡自身を維持できない臨界的な大きさまで膨張し、一気に水Wが気泡内に突入して圧縮破壊される。
 この圧縮破壊される気泡は、非常に一瞬で微小なものではあるが、瞬間的に高温・高圧(例えば、数千度、100気圧から1000気圧等)を微小な領域に生じさせる。
 このような気泡の圧縮破壊によって生じた熱等によっても、周囲の水Wが分解され、非常に反応性の高い水素イオン(H+ )、水酸化物イオン(OH- )が生成される。
 これらの反応性の高いイオンによって、水素(H2 )や酸素(O2 )の他に、オゾン(O3 )等が形成される場合もある(水素イオン(H+ )、水酸化物イオン(OH- )、オゾン(O3 )、水蒸気(H2 O)、過酸化水素(H2 O2 )等も、ブラウンガスBに含まれ得る)。
Furthermore, even if the current flowing through the main electrode plates 3 and 3 is a commercial current, it is not a sine wave current that changes with an accurate period, but is actually more than 50 or 60 Hz due to various noises (radio waves, etc.). High frequency vibrations (eg, ultrasonic vibrations) can occur. At this time, hydrogen, oxygen, and the like that have become bubbles on the surfaces of the main electrode plates 3 and 3 and the induction electrode plate 4 are repeatedly expanded and contracted in size according to the period of vibration.
If this expansion / contraction is explained in detail, the surface area of bubbles such as hydrogen is naturally larger than the surface area during contraction when the bubbles themselves expand. Here, since the amount of gas (such as hydrogen) entering and exiting the bubble is proportional to the surface area of the bubble, the amount of gas entering the bubble during expansion is greater than the amount of gas exiting from the bubble during contraction.
Therefore, the bubble expands at every period of vibration.
Some of the growing bubbles finally expand to a critical size where the bubbles themselves cannot be maintained, and water W rushes into the bubbles and is compressed and broken.
Although the bubbles to be compressed and destroyed are very small in an instant, high temperature and high pressure (for example, several thousand degrees, 100 atm to 1000 atm, etc.) are instantaneously generated in a minute region.
The surrounding water W is also decomposed by heat generated by such bubble compression breakage, and hydrogen ions (H + ) and hydroxide ions (OH ) having very high reactivity are generated.
In addition to hydrogen (H 2 ) and oxygen (O 2 ), ozone (O 3 ) may be formed by these highly reactive ions (hydrogen ions (H + ), hydroxide ions ( OH ), ozone (O 3 ), water vapor (H 2 O), hydrogen peroxide (H 2 O 2 ), etc. may also be included in the brown gas B).
<吸入部材31>
 図1~3に示された如く、ブラウンガス発生装置1における吸入部材31は、水Wを電解槽2内へ吸入するものである。
 具体的には、吸入部材31では、水タンク31a、吸入連結材31b、吸入路31cが、上流側からこの順で設けられている。
<Suction member 31>
As shown in FIGS. 1 to 3, the suction member 31 in the brown gas generator 1 sucks water W into the electrolytic cell 2.
Specifically, in the suction member 31, a water tank 31a, a suction connecting member 31b, and a suction path 31c are provided in this order from the upstream side.
 詳解すれば、吸入部材31の最上流側には、水Wが入った水タンク31aが設けられており、この水タンク31aの下流側には、可撓性のホース等で構成される吸入連結材31bが連結されている。
 この吸入連結材31bの下流側には、水Wを電解槽2まで送る吸入路31cが連結され、この吸入路31cの下流側(つまり、電解槽2に最も近い側)が、電解槽2における後面側の外装板37のカバー37bに連通している。
Specifically, a water tank 31a containing water W is provided on the uppermost stream side of the suction member 31, and a suction connection composed of a flexible hose or the like is provided on the downstream side of the water tank 31a. The material 31b is connected.
A suction path 31c for sending water W to the electrolytic cell 2 is connected to the downstream side of the suction connection member 31b, and the downstream side (that is, the side closest to the electrolytic cell 2) of the suction path 31c is in the electrolytic cell 2. It communicates with the cover 37b of the exterior plate 37 on the rear side.
 又、吸入連結材31bは、上述したホースの他、可撓性のあるチューブや、逆に、可撓性のない管等であっても良い。                         
 更に、水タンク31aと吸入連結材31bとの間、吸入連結材31bと吸入路31cとの間に、継手を設けていても構わない(図示省略)。
In addition, the suction connecting member 31b may be a flexible tube, or conversely, a non-flexible tube, in addition to the above-described hose.
Further, a joint may be provided between the water tank 31a and the suction connecting member 31b, and between the suction connecting member 31b and the suction passage 31c (not shown).
<排出部材32>
 図1~3に示されたように、ブラウンガス発生装置1における排出部材32は、電解槽2内のブラウンガスBを装置外へ送り出すものである。
 具体的には、排出部材32では、排出路32aと、この排出路32aに設けられたセパレータ32bが設けられている。
<Discharge member 32>
As shown in FIGS. 1 to 3, the discharge member 32 in the brown gas generator 1 sends out the brown gas B in the electrolytic cell 2 to the outside of the apparatus.
Specifically, in the discharge member 32, a discharge path 32a and a separator 32b provided in the discharge path 32a are provided.
 詳解すれば、排出部材32の最上流側(つまり、電解槽2に最も近い側)には、電解槽2における前面側の外装板37のカバー37bから、上述したガス路26(ガス連結材26a)の最上流側までを連通する排出路32aが設けられている。
 この排出路32aは、電解槽2の前側の外装板37における法線方向に沿って、前方へ略直進した後、上方へ延びている。
More specifically, on the most upstream side of the discharge member 32 (that is, the side closest to the electrolytic cell 2), the gas passage 26 (gas coupling material 26a) from the cover 37b of the exterior plate 37 on the front surface side in the electrolytic cell 2 is provided. ) In the uppermost stream side is provided.
The discharge path 32a extends substantially straight forward and then upwards along the normal direction of the front exterior plate 37 of the electrolytic cell 2.
 排出路32aの前方への略直進部分における中途で且つ電解槽2の前方位置には、電解槽2から排出されるブラウンガスBから不純物等を取り除くセパレータ32bが設けられている。
 このセパレータ32bは、排出路32aの直進部分から湾曲した配管を経て略円柱形の部材であって、排出路32aの直進部分を通るブラウンガスB内の不純物を取り除くことと共に、水W中に溶解していて電気分解により電解槽2内で析出した固形成分のほか、電解槽2内では、気体となった水蒸気(H2 O)、過酸化水素(H2 O2 )が排出路32aの直進部分を通るうちに液体となったものを分離する(気液分離)の役割も果たす。
A separator 32b that removes impurities and the like from the brown gas B discharged from the electrolytic cell 2 is provided in the middle of the substantially straight forward portion of the discharge channel 32a and at a front position of the electrolytic cell 2.
The separator 32b is a substantially cylindrical member through a curved pipe from a straight part of the discharge path 32a, and removes impurities in the brown gas B passing through the straight part of the discharge path 32a and dissolves in the water W. In addition to the solid components deposited in the electrolytic cell 2 due to electrolysis, in the electrolytic cell 2, water vapor (H 2 O) and hydrogen peroxide (H 2 O 2 ) that have become gases go straight through the discharge path 32a. It also plays the role of separating the liquid that passes through the part (gas-liquid separation).
<送電部材33>
 図2、3に示す如く、ブラウンガス発生装置1における送電部材33は、一対の主極板3、3それぞれに正負の電荷を付与する(電流を流す)ものである。
 送電部材33は、各主極板3に導通する端子33aと、この端子33aに接続されて電力を送電するコード33bを有している。
<Power transmission member 33>
As shown in FIGS. 2 and 3, the power transmission member 33 in the brown gas generator 1 imparts positive and negative charges (flows current) to each of the pair of main electrode plates 3 and 3.
The power transmission member 33 includes a terminal 33a that is electrically connected to each main electrode plate 3, and a cord 33b that is connected to the terminal 33a and transmits power.
 端子33aは、ボルト及びナット、ワッシャ等で構成されており、特に、ボルトは、頭部が薄肉の略円盤状に形成されており、ねじ胴部が主極板3の内電極孔3b、3bと密閉板36の中電極孔36b、36bと外装板37の外電極孔37c、37cを通り、(ねじ胴部が主極板3、密閉板36、外装板37を貫通し)、ねじ先端部側にナット等が螺合されることで、電解槽2に端子33aが取り付けられている。
 この端子33aは、各主極板3の略中央部を、電解槽2に対して取り付ける役割もしており、主極板3の略中央部が、スペーサ5を介して誘導極板4に接続されていることから、主極板3、3及び誘導極板4は、電解槽2の内部で、宙吊りとなっている。
 この宙吊りの状態により、主極板3、3及び誘導極板4における可撓部7の撓みを、槽枠体35が妨げることはなく、主極板3、3及び誘導極板4において、上下端部及び左右端部の周端部すべてが可撓部7と成り得る。
 尚、ボルトの頭部及びねじ胴部と、主極板3、密閉板36、外装板37の間には、シールなどで、電解槽2から水WやブラウンガスBが漏れない処理(シール等)がされている。
The terminal 33a is composed of a bolt, a nut, a washer, and the like. In particular, the bolt is formed in a substantially disk shape with a thin head portion, and the screw body is an inner electrode hole 3b, 3b of the main electrode plate 3. And through the middle electrode holes 36b and 36b of the sealing plate 36 and the outer electrode holes 37c and 37c of the outer plate 37 (the screw body passes through the main electrode plate 3, the sealing plate 36 and the outer plate 37), and the screw tip portion A terminal 33a is attached to the electrolytic cell 2 by screwing a nut or the like to the side.
The terminal 33 a also serves to attach the substantially central portion of each main electrode plate 3 to the electrolytic cell 2, and the approximately central portion of the main electrode plate 3 is connected to the induction electrode plate 4 via the spacer 5. Therefore, the main electrode plates 3 and 3 and the induction electrode plate 4 are suspended in the electrolytic cell 2.
Due to this suspended state, the tank frame 35 does not hinder the bending of the flexible portion 7 in the main electrode plates 3 and 3 and the induction electrode plate 4. All the peripheral end portions of the end portion and the left and right end portions can be the flexible portion 7.
In addition, between the head part of the bolt and the screw body, and the main electrode plate 3, the sealing plate 36, and the exterior plate 37, a treatment that prevents water W and brown gas B from leaking from the electrolytic cell 2 with a seal or the like (seal or the like) ) Has been.
 コード33bは、端子33aのナットと外装板37の間に挟まれたワッシャ等に接続されており、このコード33bを介して、電源から電流が流される(電力が供給される)。
 主極板3、3に流す電流は、上述したように、直流電流や交流電流、パルス電流の他、三角波状に変化する電流であっても構わない。
 又、これらの電流を流す電源は、特に限定はないが、ブラウンガス発生装置1の筐体に内蔵されていても良く、その他、商用電源(コンセント)や、別途の発電機、電池などであっても良い。
 更に、電源から電圧を変える変圧器や、直流を交流、又は、交流を直流に変換する装置(コンバータ)を備えていても良い。
The cord 33b is connected to a washer or the like sandwiched between the nut of the terminal 33a and the exterior plate 37, and a current is supplied from the power source (power is supplied) through the cord 33b.
As described above, the current flowing through the main electrode plates 3 and 3 may be a direct current, an alternating current, a pulse current, or a current that changes in a triangular wave shape.
The power source for supplying these currents is not particularly limited, but may be built in the housing of the brown gas generator 1, or may be a commercial power source (outlet), a separate generator, a battery, or the like. May be.
Furthermore, you may provide the transformer which changes a voltage from a power supply, and the apparatus (converter) which converts direct current into alternating current or alternating current into direct current.
<貫流部材34>
 図2~5に示されたように、ブラウンガス発生装置1における貫流部材34は、吸入部材31からの水Wを、一対の主極板3、3及び誘導極板4の間まで通し、一対の主極板3、3及び誘導極板4の間で発生したブラウンガスBを排出部材32まで通すものである。
 詳解すれば、貫流部材34は、電解槽2の後側の吸入部材31から、後側の主極板3と誘導極板4の間まで入ってきた水Wを、当該主極板3より前方(内側)にある誘導極板4同士の間、及び、最も前方の誘導極板4と前側(排出部材32側)の主極板3との間に入れるものである。
 これと共に、貫流部材34は、電解槽2の後側(吸入部材31側)の主極板3と誘導極板4との間、及び、誘導極板4同士の間で発生したブラウンガスBを、電解槽2の前側(排出部材32側)の主極板3と誘導極板4の間まで通し、電解槽2の前側の排出部材32から出すものである。
 よって、誘導極板4の下部に挿入された貫流部材34は、主に水Wを通し、誘導極板4の上部に挿入された貫流部材34は、主にブラウンガスBを通す。
<Cross-flow member 34>
As shown in FIGS. 2 to 5, the flow-through member 34 in the brown gas generator 1 passes the water W from the suction member 31 to between the pair of main electrode plates 3 and 3 and the induction electrode plate 4. The brown gas B generated between the main electrode plates 3 and 3 and the induction electrode plate 4 is passed to the discharge member 32.
Specifically, the flow-through member 34 allows water W that has entered the space between the rear main electrode plate 3 and the induction electrode plate 4 from the rear suction member 31 to the front side of the main electrode plate 3. It is inserted between the induction electrode plates 4 on the (inner side) and between the foremost induction electrode plate 4 and the main electrode plate 3 on the front side (discharge member 32 side).
At the same time, the flow-through member 34 generates brown gas B generated between the main electrode plate 3 and the induction electrode plate 4 on the rear side (on the suction member 31 side) of the electrolytic cell 2 and between the induction electrode plates 4. In addition, it passes through the space between the main electrode plate 3 and the induction electrode plate 4 on the front side (discharge member 32 side) of the electrolytic cell 2 and exits from the discharge member 32 on the front side of the electrolytic cell 2.
Therefore, the flow-through member 34 inserted in the lower part of the induction electrode plate 4 mainly passes the water W, and the flow-through member 34 inserted in the upper part of the induction electrode plate 4 mainly passes the brown gas B.
 このような役割を果たす貫流部材34は、略筒状体であって、その側周面の一部が、筒軸方向に切り欠かれており(切欠部34a)、断面略C字状に形成されている。
 尚、貫流部材34の切欠部34aは、下部の貫流部材34は下方に向いて、又、上部の貫流部材34は上方に向いて配備されている。
 これによって、貫流部材34を通る水Wは、誘導極板4同士の間で、下へ抜け易くなり、貫流部材34を通るブラウンガスBは、誘導極板4同士の間で、上へ抜け易くなる。
 又、貫流部材34は、左右一対に設けられているため、水Wは、下部の貫流部材34により、ブラウンガスBは、上部の貫流部材34により対流することも可能である。
The flow-through member 34 that plays such a role is a substantially cylindrical body, and a part of the side peripheral surface thereof is notched in the cylinder axis direction (notch portion 34a), and is formed in a substantially C-shaped cross section. Has been.
The notch 34a of the flow-through member 34 is arranged such that the lower flow-through member 34 faces downward and the upper flow-through member 34 faces upward.
As a result, the water W passing through the through-flow member 34 easily escapes downward between the induction electrode plates 4, and the brown gas B passing through the through-flow member 34 easily escapes upward between the induction electrode plates 4. Become.
Further, since the flow-through members 34 are provided in a pair on the left and right, the water W can be convected by the lower flow-through member 34 and the brown gas B can be convected by the upper flow-through member 34.
<混合燃料Mの燃焼具合>
 上述してきたブラウンガス発生装置(ブラウンガス発生部)1を有する第1実施形態の燃料生成供給システム20は、従来の液体燃料Eから、より燃焼効率の高い混合燃料M(気気液ミックスエナジー(出願商標))を生成し、燃焼装置(ボイラー104等)に供給することが可能となる。
 図6に示すように、燃料生成供給システム20によって生成・供給される混合燃料Mの燃焼具合は、従来の液体燃料E(灯油)のみの燃焼よりも、炎が白く、より完全に燃焼していることがわかる。
 ここで、灯油等の液体燃料Eの分子は、炭素原子(C)と水素電子(H)の組み合わせであり、炭素原子(C)が鎖状に連鎖した主鎖を有しているが、この主鎖において、炭素原子(C)が連鎖すればするほど、酸素原子(O)との反応が不十分になる点を鑑みれば、本発明のように、1nm以上1000nm以下(ナノサイズ)のブラウンガスBを液体燃料Eに混合させることで、液体燃料Eの分子(炭素原子(C)の主鎖)に、炭素原子(C)よりも反応速度の速い(例えば、7倍以上10数倍以下)水素原子(H)を近づけることが可能となって、炭素原子(C)の主鎖のそばで水素原子(H)が激しい酸化反応を起こす(燃焼する)ことにより、主鎖である炭素原子(C)自体の酸化反応(燃焼)を誘引します。
 更には、この燃焼の誘引・酸化反応が、連続的に起こるために、液体燃料Eにおける炭素原子(C)の燃焼が確実に起こり、より完全燃焼に近づいて、燃焼効率が大幅に向上する。
<Burning condition of mixed fuel M>
The fuel generation and supply system 20 according to the first embodiment having the brown gas generator (brown gas generator) 1 described above is a mixed fuel M (gas-gas-liquid mix energy) having higher combustion efficiency than the conventional liquid fuel E. The application trademark)) can be generated and supplied to the combustion apparatus (boiler 104, etc.).
As shown in FIG. 6, the combustion condition of the mixed fuel M generated and supplied by the fuel generation and supply system 20 is whiter than the conventional liquid fuel E (kerosene) only, and burns more completely. I understand that.
Here, the molecule of liquid fuel E such as kerosene is a combination of carbon atoms (C) and hydrogen electrons (H), and has a main chain in which carbon atoms (C) are chained. In view of the point that the reaction with the oxygen atom (O) becomes insufficient as the carbon atom (C) is linked in the main chain, as in the present invention, the brown having a size of 1 nm to 1000 nm (nanosize) By mixing the gas B with the liquid fuel E, the molecule of the liquid fuel E (the main chain of carbon atoms (C)) has a higher reaction rate than the carbon atoms (C) (for example, 7 times to 10 times times or less). ) The hydrogen atoms (H) can be brought close to each other, and the hydrogen atoms (H) undergo a violent oxidation reaction (burn) near the main chain of the carbon atoms (C). (C) Invite the oxidation reaction (combustion) of itself.
Furthermore, since this combustion attraction / oxidation reaction occurs continuously, the combustion of carbon atoms (C) in the liquid fuel E occurs surely, approaching complete combustion, and the combustion efficiency is greatly improved.
<混合割合>
 液体燃料EとブラウンガスBの混合割合について述べれば、例えば、燃料生成供給システム20の混合器8において、液体入口8aから、液体燃料Eを1分間に10リットルを流し込み、気体入口8bから、ブラウンガスBが50リットルを吸い込ませる。
 この工程を、混合タンク9内における10リットルの液体燃料Eに対して、ループ路25及び混合器8を通って、連続2工程繰り返すことで、2工程終了後の混合タンク9内における10リットルの液体燃料Eは、合計100リットルのブラウンガスBを、混合器8によって、混合(接触)させることとなる。
<Mixing ratio>
The mixing ratio of the liquid fuel E and the brown gas B will be described. For example, in the mixer 8 of the fuel generation and supply system 20, 10 liters of liquid fuel E is poured from the liquid inlet 8a per minute and the brown gas is supplied from the gas inlet 8b. Gas B sucks 50 liters.
This process is repeated for the 10 liters of liquid fuel E in the mixing tank 9 through the loop path 25 and the mixer 8 in two consecutive steps, whereby 10 liters of liquid fuel E in the mixing tank 9 after the completion of the two processes is obtained. The liquid fuel E is mixed (contacted) by a mixer 8 with a total of 100 liters of brown gas B.
 更に、他の例を詳解すれば、2台のボイラーにおいて、従来の液体燃料Eである重油の実質燃料消費量の合計が1時間当たり80リットルで、これら2台のボイラーの稼動時間を1日10時間とすると、従来の場合(重油だけを用いた場合)、『1日で800リットル』の重油を消費する(重油単価が1リットル当たり90円であれば、1日で72000円の燃料費がかかる)。
 しかし、本発明の第1実施形態に係る燃料生成供給システム20による混合燃料Mを用いた場合を述べると、例えば、当該2台のボイラーは、1時間当たり80リットルの重油を消費することから、上述と同じく、重油10リットルに対して、合計100リットルの割合で、ブラウンガスBを混合させるとすれば、ブラウンガス発生部(ブラウンガス発生装置)1は、「1時間当たり800リットル」のブラウンガスBを発生(消費)させることとなる。
Furthermore, in another example, the total fuel consumption of heavy oil, which is the conventional liquid fuel E, is 80 liters per hour in two boilers. The operating time of these two boilers is one day. If it is 10 hours, in the conventional case (when only heavy oil is used), "800 liters per day" is consumed (if the unit price of heavy oil is 90 yen per liter, the fuel cost is 72,000 yen per day) Takes).
However, a case where the mixed fuel M by the fuel generation and supply system 20 according to the first embodiment of the present invention is used will be described. For example, the two boilers consume 80 liters of heavy oil per hour. As described above, if the brown gas B is mixed at a ratio of 100 liters with respect to 10 liters of heavy oil, the brown gas generator 1 (brown gas generator) 1 is "800 liters per hour" Gas B is generated (consumed).
 更に、混合タンク9内で抜けたブラウンガスBも有効に利用する等のため、当該2台のボイラーが1時間に消費する80リットルの重油に対し、再混合経路11(ループ路25、ガス路26、リサイクル路28)を使って、よりブラウンガスBの溶存率を高める場合も考える。
 このとき、既に、重油10リットルに対して合計100リットルも混合(接触)させているため、ループ路25における循環ポンプ24は、1時間中作動していなくとも良く、1時間のうち30分だけ循環ポンプ24(及びブラウンガス発生装置1)を作動させ、残り30分は、循環ポンプ24(及びブラウンガス発生装置1)は停止させる(休ませる)ことが出来る。
 従って、ブラウンガス発生装置1が発生させるブラウンガスBの量も略半分となって、「1時間当たり450リットル」であれば良い。
Furthermore, in order to effectively use the brown gas B that has escaped in the mixing tank 9, the remixing path 11 (loop path 25, gas path) is used against 80 liters of heavy oil consumed by the two boilers per hour. 26, the recycling path 28) may be used to increase the dissolution rate of the brown gas B.
At this time, since 100 liters in total are already mixed (contacted) with 10 liters of heavy oil, the circulation pump 24 in the loop passage 25 may not be operated for one hour, and only 30 minutes in one hour. The circulation pump 24 (and the brown gas generator 1) can be operated, and the circulation pump 24 (and the brown gas generator 1) can be stopped (rested) for the remaining 30 minutes.
Therefore, the amount of the brown gas B generated by the brown gas generator 1 is also almost halved, and may be “450 liters per hour”.
 つまり、一旦、ブラウンガスBを混合させた後、更に再混合経路11も使った場合には、総合計で「1時間当たり1250リットル」のブラウンガスBを、ブラウンガス発生装置1で発生(消費)させることとなる。
 尚、ブラウンガス発生装置1を、1時間作動させて2000リットルのブラウンガスbを発生させる場合に7.0kWを消費するのであれば、1時間当たり1250リットルのブラウンガスBを発生させる時の消費電力は、7.0×(1250/2000)=4.375≒4.38kW、つまり、「1時間当たり4.36kW」となる。
In other words, once the brown gas B is mixed and then the remixing path 11 is also used, a total of “1250 liters per hour” of brown gas B is generated (consumed) by the brown gas generator 1. ).
If 7.0 kW is consumed when the brown gas generator 1 is operated for 1 hour to generate 2000 liters of brown gas b, the consumption when generating 1250 liters of brown gas B per hour. The power is 7.0 × (1250/2000) = 4.375≈4.38 kW, that is, “4.36 kW per hour”.
 又、この1250リットルのブラウンガスBを、80リットルの重油に混合(接触)させることから、結局は、重油10リットルに対して、1250÷80=156リットルの割合で、ブラウンガスBを混合させており、この混合比率であれば、従来の液体燃料E(重油)の1時間当たりの消費量を、5%以上50%以下にまで削減できる。(例えば、20%)。
 尚、10リットルの液体燃料E(重油)に対して、何リットルのブラウンガスBを混合させるかについて言及すれば、当然、多くのブラウンガスBを混合させると、燃焼効率は上がるものの、その分、消費電力も上がる。
 そこで、混合器8では、10リットルの液体燃料Eに対して、1リットル以上1000リットル以下のブラウンガスBを混合させることとすれば良く、好ましくは、30リットル以上500リットル以下、更に好ましくは、50リットル以上300リットル以下である。
Moreover, since 1250 liters of brown gas B is mixed (contacted) with 80 liters of heavy oil, eventually, brown gas B is mixed at a ratio of 1250 ÷ 80 = 156 liters with respect to 10 liters of heavy oil. With this mixing ratio, the consumption amount per hour of the conventional liquid fuel E (heavy oil) can be reduced to 5% or more and 50% or less. (For example, 20%).
In addition, when referring to how many liters of brown gas B are mixed with 10 liters of liquid fuel E (heavy oil), naturally, when a large amount of brown gas B is mixed, the combustion efficiency increases, but that amount And power consumption goes up.
Therefore, in the mixer 8, 10 liters of liquid fuel E may be mixed with 1 to 1000 liters of brown gas B, preferably 30 to 500 liters, more preferably, 50 liters or more and 300 liters or less.
 ここで、燃料生成供給システム20で、重油とブラウンガスBを混合させるには、供給ポンプ22と循環ポンプ24も作動させなくてはならない(つまり、消費電力がかかる)ことにも留意する。
 重油とブラウンガスBの混合には、まず、重油80リットルを、既設の燃料タンク101から混合タンク9まで供給ポンプ22で汲み上げなくてはならず、この供給ポンプ22の汲み上げ速度が、1分当たり5リットルであれば、16分間作動させる必要がある。
 この供給ポンプ22を1時間作動させた場合に0.2kWを消費するのであれば、16分間の消費電力は、0.2×(16分/60分)=0.0533・・・≒0.05kWとなる。
Here, it is also noted that in order to mix heavy oil and Brown gas B in the fuel generation and supply system 20, the supply pump 22 and the circulation pump 24 must also be operated (that is, power consumption is required).
To mix heavy oil and brown gas B, 80 liters of heavy oil must first be pumped from the existing fuel tank 101 to the mixing tank 9 by the supply pump 22, and the pumping speed of the supply pump 22 is increased per minute. If it is 5 liters, it needs to run for 16 minutes.
If the supply pump 22 is operated for 1 hour and consumes 0.2 kW, the power consumption for 16 minutes is 0.2 × (16 minutes / 60 minutes) = 0.0533. 05 kW.
 更に、再混合経路11で、混合タンク9内のブラウンガスBも有効に利用した場合もふまえれば、循環ポンプ24は、1時間のうち30分だけ作動しているので、1時間作動させた場合に0.4kWを消費する当該循環ポンプを用いたとすれば、30分間の消費電力は、0.4×(30分/60分)=0.20kWとなる。
 従って、供給ポンプ22及び循環ポンプ24で消費される電力は、「1時間当たり0.25kW」となる。
 つまり、本発明のブラウンガス発生装置1と2つのポンプ22、24で消費される電力は、4.38+0.25=4.63(つまり、1時間当たり4.63kW)、そして、当該2台のボイラーは、1日10時間作動させるため、を用いた場合、『1日で46.3kW』の電力を消費する(電気料金単価が1kW当たり18円であれば、46.3×18=833.4≒833となり、1日で833円の電気代となる)。
Furthermore, if the brown gas B in the mixing tank 9 is also effectively used in the remixing path 11, the circulation pump 24 is operated for 30 minutes in one hour, so it is operated for one hour. If the circulation pump that consumes 0.4 kW is used, the power consumption for 30 minutes is 0.4 × (30 minutes / 60 minutes) = 0.20 kW.
Therefore, the power consumed by the supply pump 22 and the circulation pump 24 is “0.25 kW per hour”.
That is, the power consumed by the brown gas generator 1 and the two pumps 22 and 24 of the present invention is 4.38 + 0.25 = 4.63 (that is, 4.63 kW per hour), and the two Since the boiler operates for 10 hours a day, it consumes “46.3 kW per day” (if the unit price of electricity is 18 yen per kW, 46.3 × 18 = 833. 4≈833, which is an electricity bill of 833 yen per day).
 よって、従来であれば、『1日で800リットル(1日72000円)』の重油を消費する。
 しかし、本発明の燃料生成供給システム20を用いれば、重油が20%は削減されて、「1日で640リットル」で済み(重油単価を、同様に1リットル当たり90円とすれば57600円の燃料費)、833円の電気代を足しても『1日58433円』しかかからない。
 従って、1日当たり重油160リットルの省エネ、13567円のコスト削減となる。
Therefore, conventionally, “800 liters per day (72,000 yen per day)” heavy oil is consumed.
However, if the fuel generation and supply system 20 of the present invention is used, heavy oil is reduced by 20%, and “640 liters per day” is enough (if the unit price of heavy oil is similarly 90 yen per liter, it is 57600 yen. Fuel cost), even if you add 833 yen electricity bill, it costs only "58433 yen a day".
Therefore, energy saving of 160 liters of heavy oil per day and cost reduction of 13567 yen are achieved.
<第2実施形態>
 図7には、本発明の第2実施形態に係る燃料生成供給システム20が示されている。
 この第2実施形態において第1実施形態と最も異なるのは、再混合経路11が設けられていない点である。
 詳解すれば、第2実施形態は、ループ路25、ガス路26は有しているものの、リサイクル路28を有していない。
Second Embodiment
FIG. 7 shows a fuel generation and supply system 20 according to the second embodiment of the present invention.
The second embodiment is most different from the first embodiment in that the remixing path 11 is not provided.
Specifically, the second embodiment has the loop path 25 and the gas path 26 but does not have the recycle path 28.
 又、第2実施形態では、分岐具21、タンク路23、ループ路25及び合流具29における弁の数や位置、種類、そして、ループ路25の最上流側の取付位置が、第1実施形態とは異なる。
 詳解すれば、分岐具21では、システム弁21cが、電磁弁とボール弁とを1組として構成されており、噴燃弁21dも、同様である。
 タンク路23においては、上タンク弁23bが、供給ストレーナ23cの下流側で且つ上タンク圧力計23dの上流側(つまり、供給ストレーナ23cと上タンク圧力計23dとの間)に設けられると共に、下タンク弁23gが、電磁弁とボール弁とを1組として構成されている。
In the second embodiment, the number, position, and type of valves in the branching device 21, the tank passage 23, the loop passage 25, and the merging device 29, and the mounting position on the most upstream side of the loop passage 25 are the first embodiment. Is different.
Specifically, in the branching tool 21, the system valve 21c is configured as a set of an electromagnetic valve and a ball valve, and the same applies to the fuel injection valve 21d.
In the tank passage 23, an upper tank valve 23b is provided on the downstream side of the supply strainer 23c and on the upstream side of the upper tank pressure gauge 23d (that is, between the supply strainer 23c and the upper tank pressure gauge 23d). The tank valve 23g is configured as a set of an electromagnetic valve and a ball valve.
 ループ路25は、その最上流側が、混合タンク9の外底面ではなく、混合タンク9の側周面で且つタンク路23の下タンク連結材23hの最下端と、略同じ高さ位置に取り付けられていると共に、循環ストレーナ25cの下流側で且つ上ループ圧力計25dの上流側(つまり、循環ストレーナ25cと上ループ圧力計25dとの間)に設けられている。
 合流具29では、燃料路102との接続する側に、ボール弁と電磁弁が、新たに設けられていると共に、燃料生成供給システム20側に、供給経路10の最下流側の下供給弁10cの更に下流側で且つ合流具29自体の上流側(供給経路10の下供給弁10cと合流具29との間)に電磁弁が、新たに設けられている。
 その他の燃料生成供給システム20、及び、ブラウンガス発生装置1の構成、作用効果及び使用態様は、第1実施形態と同様である。
The uppermost stream side of the loop path 25 is not the outer bottom surface of the mixing tank 9 but the side peripheral surface of the mixing tank 9 and is mounted at substantially the same height as the lowermost end of the lower tank connecting member 23h of the tank path 23. And provided upstream of the circulation strainer 25c and upstream of the upper loop pressure gauge 25d (ie, between the circulation strainer 25c and the upper loop pressure gauge 25d).
In the merger 29, a ball valve and an electromagnetic valve are newly provided on the side connected to the fuel path 102, and the lower supply valve 10c on the most downstream side of the supply path 10 is provided on the fuel generation and supply system 20 side. Further, an electromagnetic valve is newly provided on the further downstream side and the upstream side of the merging tool 29 itself (between the lower supply valve 10c of the supply path 10 and the merging tool 29).
The other fuel generation and supply system 20 and the configuration, operation effect, and usage of the brown gas generator 1 are the same as those in the first embodiment.
<第3実施形態>
 図8には、本発明の第3実施形態に係る燃料生成供給システム20が示されている。
 この第3実施形態における最も大きな特徴は、ブラウンガスBを、液体ではなく、従来の気体燃料Aと混合させる点である。
 ここで、本発明における「気体燃料A」とは、常温(例えば、JIS-Z-8703による20℃±15℃の温度範囲)で気体の燃料であって、プロパン(C3 H8 )、ブタン(C4 H10)などを主成分とした液化石油ガス(LPG)、メタン(CH4 )などを主成分とした天然ガス(LNG)、ジメチルエーテル等を言う。
<Third Embodiment>
FIG. 8 shows a fuel generation and supply system 20 according to the third embodiment of the present invention.
The greatest feature of the third embodiment is that the brown gas B is mixed with the conventional gaseous fuel A instead of the liquid.
Here, the “gaseous fuel A” in the present invention is a gaseous fuel at normal temperature (for example, a temperature range of 20 ° C. ± 15 ° C. according to JIS-Z-8703), and is propane (C 3 H 8 ), butane. It refers to liquefied petroleum gas (LPG) whose main component is (C 4 H 10 ), natural gas (LNG) whose main component is methane (CH 4 ), dimethyl ether and the like.
<既設の気体燃料Aの燃焼装置200>
 第3実施形態の燃料生成供給システム20は、既設の気体燃料Aの燃焼装置200に取り付けられるため、まず、既設の燃焼装置200に言及する。
 既設の燃焼装置200は、従来の気体燃料Aを貯蔵する気体タンク201と、この気体タンク201から気体燃料Aを送る気体路202と、この気体路202の最下流側に連結され且つ気体燃料Aを燃焼させる気体ボイラー203を有している。
<Existing Gas Fuel A Combustion Device 200>
Since the fuel generation and supply system 20 of the third embodiment is attached to the existing combustion device 200 of the gaseous fuel A, first, the existing combustion device 200 will be referred to.
The existing combustion apparatus 200 includes a gas tank 201 for storing the conventional gas fuel A, a gas path 202 for sending the gas fuel A from the gas tank 201, and a gas fuel A connected to the most downstream side of the gas path 202. It has a gas boiler 203 that burns.
 気体タンク201の形状も、特に限定されるものではないが、例えば、縦長の略円柱状等であっても良い。又、気体タンク201(例えば、側周面の下部)には、気体燃料Aを排出するエア排出弁201aが設けられていても良い。
 この気体タンク201の下流側における気体路202では、気体タンク201の側周面に、ボール弁等で構成される上エア弁202aが設けられている。
 この上エア弁202aの下流側には、気体ボイラー203に入る前で気体燃料Aからゴミ、不純物等を取り除くために用い且つ気体ボイラー203に入る気体燃料Aの圧力を所定の値に調節する気体フィルタレギュレータ202bが設けられている。
The shape of the gas tank 201 is not particularly limited, and may be, for example, a vertically long substantially cylindrical shape. Further, an air discharge valve 201a for discharging the gaseous fuel A may be provided in the gas tank 201 (for example, the lower part of the side peripheral surface).
In the gas path 202 on the downstream side of the gas tank 201, an upper air valve 202 a configured by a ball valve or the like is provided on the side peripheral surface of the gas tank 201.
On the downstream side of the upper air valve 202a, a gas is used to remove dust, impurities and the like from the gaseous fuel A before entering the gas boiler 203 and adjusts the pressure of the gaseous fuel A entering the gas boiler 203 to a predetermined value. A filter regulator 202b is provided.
 この気体フィルタレギュレータ202bの下流側には、電磁弁等で構成される中エア弁202cが設けられ、この中エア弁202cの下流側には、気体ボイラー203に入る気体燃料Aの流量を調整するエア可変絞り弁202dが設けられている。
 既設の燃焼装置202では、このエア可変絞り弁202dの下流側には、直ぐに、気体ボイラー203が設けられている。
 ここで、気体路202における上エア弁202a、中エア弁202cの各弁も、上述したボール弁や電磁弁の他、仕切弁であっても構わない。
A middle air valve 202c constituted by an electromagnetic valve or the like is provided on the downstream side of the gas filter regulator 202b, and the flow rate of the gaseous fuel A entering the gas boiler 203 is adjusted on the downstream side of the middle air valve 202c. An air variable throttle valve 202d is provided.
In the existing combustion apparatus 202, the gas boiler 203 is immediately provided on the downstream side of the air variable throttle valve 202d.
Here, each of the upper air valve 202a and the middle air valve 202c in the gas path 202 may be a gate valve in addition to the above-described ball valve or electromagnetic valve.
<第3実施形態の燃料生成供給システム20の構成>
 第3実施形態の燃料生成供給システム20は、上述した既設の燃焼装置200の気体路202におけるエア可変絞り弁202dの直下流側に設けられたエア混合器8’と、このエア混合器8’の下流側に設けられ且つ仕切弁等で構成される上ミックス弁202eと、この上ミックス弁202eの下流側に設けられた混合気体タンク202fと、この混合気体タンク202fに設けられた気体排出弁202gと、混合気体タンク202fの下流側に設けられ且つボール弁等で構成される下ミックス弁202hとを有する。
 これと共に、第3実施形態は、第1実施形態と同様に、ブラウンガス発生部(ブラウンガス発生装置)1と、このブラウンガス発生部1からエア混合器8’まで延びるガス路26とを有している。
 ここで、第3実施形態のガス路26においては、第1実施形態のようにニードル弁26eではなく、その位置には、ガス可変絞り弁26e’を設けている。
<Configuration of Fuel Generation and Supply System 20 of Third Embodiment>
The fuel generation and supply system 20 of the third embodiment includes an air mixer 8 ′ provided on the downstream side of the air variable throttle valve 202 d in the gas path 202 of the existing combustion device 200 described above, and the air mixer 8 ′. An upper mix valve 202e that is provided on the downstream side of the upper mix valve and is constituted by a gate valve or the like, a mixed gas tank 202f that is provided on the downstream side of the upper mix valve 202e, and a gas discharge valve that is provided on the mixed gas tank 202f 202 g and a lower mix valve 202 h provided on the downstream side of the mixed gas tank 202 f and configured by a ball valve or the like.
At the same time, the third embodiment includes a brown gas generation unit (brown gas generation device) 1 and a gas passage 26 extending from the brown gas generation unit 1 to the air mixer 8 ′, as in the first embodiment. is doing.
Here, in the gas passage 26 of the third embodiment, not the needle valve 26e as in the first embodiment but a gas variable throttle valve 26e ′ is provided at that position.
 エア混合器8’は、ブラウンガスBと、従来の気体燃料Aを混合させられるのであれば、何れの構成でも良いが、例えば、ガス路26が気体路202に合流する構成であっても構わない。
 又、エア混合器8’は、上下有底状の略円筒体に対して、円筒断面の接線方向に沿って、ガス路26及び気体路202を取り付け、ブラウンガスBと気体燃料Aそれぞれを、略円筒体内部で、サイクロン様に旋回させて、筒軸方向に設けられた排出管で、ブラウンガスBと気体燃料Aの混合燃料(混合気体)M’を排出する構成としても構わない。
The air mixer 8 ′ may have any configuration as long as the brown gas B and the conventional gaseous fuel A can be mixed. For example, the air mixer 8 ′ may have a configuration in which the gas path 26 merges with the gas path 202. Absent.
In addition, the air mixer 8 ′ has a gas passage 26 and a gas passage 202 attached to a substantially cylindrical body having an upper and lower bottom shape along the tangential direction of the cylindrical cross section, and the brown gas B and the gaseous fuel A are respectively attached. A configuration may be adopted in which the mixed fuel (mixed gas) M ′ of the brown gas B and the gaseous fuel A is discharged by a discharge pipe provided in the cylindrical axis direction by turning in a substantially cyclonic manner inside the substantially cylindrical body.
 混合気体タンク202fの形状は、特に限定されるものではないが、例えば、縦長の略円柱状等であっても良く、混合タンク9は、内部で貯蔵する混合気体M’の量を測定する気体センサを備えていても良い。
 混合気体タンク202fの底部(外底面)には、下方に延びる脚部や、混合気体M’を排出する気体排出弁202gが設けられていても良い。
 又、混合気体タンク202fの外周面上部には、下ミックス弁202hを経て、気体路202の続きが連結されている。
The shape of the mixed gas tank 202f is not particularly limited, but may be, for example, a vertically long substantially cylindrical shape. The mixed tank 9 is a gas for measuring the amount of the mixed gas M ′ stored therein. A sensor may be provided.
A bottom portion (outer bottom surface) of the mixed gas tank 202f may be provided with a leg portion extending downward and a gas discharge valve 202g for discharging the mixed gas M ′.
The continuation of the gas path 202 is connected to the upper part of the outer peripheral surface of the mixed gas tank 202f via the lower mix valve 202h.
 尚、上ミックス弁202e、気体排出弁202g、下ミックス弁202hの各弁は、電磁弁であったり、混合気体M’の流量を調整する流量調整弁であっても構わない。
 更に、気体路202におけるエア可変絞り弁202dからエア混合器8’までの間、ガス路26におけるガス可変絞り弁26e’からエア混合器8’までの間、下ミックス弁202hから気体ボイラー203までの間は、可撓性のあるホースやチューブ等、又は、ホース、チューブ等の両端に継手を備えた構成とされていても良く、逆に、可撓性のない管等で構成されていても構わない。
 尚、既設の気体燃料Aの燃焼装置200は、混合気体タンク201fや、気体排出弁202g、下ミックス弁202hを有さなくとも良い。
 又、燃焼生成供給システム20における吸入部材31は、吸入連結部材31bを有していない。
 その他の燃料生成供給システム20、及び、ブラウンガス発生装置1の構成、作用効果及び使用態様は、第1実施形態と同様である。
Each of the upper mix valve 202e, the gas discharge valve 202g, and the lower mix valve 202h may be an electromagnetic valve or a flow rate adjusting valve that adjusts the flow rate of the mixed gas M ′.
Further, between the variable air throttle valve 202 d in the gas path 202 and the air mixer 8 ′, between the variable gas throttle valve 26 e ′ in the gas path 26 and the air mixer 8 ′, and from the lower mix valve 202 h to the gas boiler 203. It may be configured to have a flexible hose or tube, or joints on both ends of the hose or tube, etc. It doesn't matter.
In addition, the existing combustion apparatus 200 of the gaseous fuel A does not need to have the mixed gas tank 201f, the gas discharge valve 202g, and the lower mix valve 202h.
Further, the suction member 31 in the combustion generation supply system 20 does not have the suction connection member 31b.
The other fuel generation and supply system 20 and the configuration, operation effect, and usage of the brown gas generator 1 are the same as those in the first embodiment.
<混合気体M’の燃焼具合>
 第3実施形態の燃料生成供給システム20は、従来の気体燃料Aから、より燃焼効率の高い混合気体M’(気気液ミックスエナジー(出願商標))を生成し、燃焼装置(気体ボイラー203等)に供給することが可能となる。
 図11に示すように、燃料生成供給システム20によって生成・供給される混合気体M’の燃焼具合は、従来の気体燃料A(プロパンガス)のみの燃焼よりも、炎が大きく、更に紫がかっており、より完全に燃焼していることがわかる。
 更には、気体燃料Aのみの燃焼温度は、605℃を示している(図11(a))が、混合気体M’の燃焼温度は、850℃までと、より上昇しており(図11(b))、炎前方にある鉄棒の先端が赤くなっていることからもわかる。
 従って、炭素原子(C)からなる主鎖を持たない(メタン(CH4 )か、又は、非常に短い(プロパン(C3 H8 )、ブタン(C4 H10))気体燃料Aであっても、ブラウンガスBを混合することによって、炭素原子(C)よりも反応速度の速い水素原子(H)を多くすることが可能となって、燃焼の誘引・酸化反応を、連続的に起こすことが出来、気体か液体かを問わず、従来の燃料における燃焼効率を向上させることが出来る。
<Burning condition of mixed gas M '>
The fuel generation and supply system 20 of the third embodiment generates a mixed gas M ′ (a gas / liquid mix energy (application trademark)) with higher combustion efficiency from a conventional gaseous fuel A, and a combustion apparatus (a gas boiler 203 or the like). ).
As shown in FIG. 11, the combustion condition of the mixed gas M ′ generated and supplied by the fuel generation and supply system 20 is larger in flame and purple than the conventional combustion of only the gaseous fuel A (propane gas). It can be seen that it is more completely burned.
Furthermore, the combustion temperature of only the gaseous fuel A shows 605 ° C. (FIG. 11 (a)), but the combustion temperature of the mixed gas M ′ further increases to 850 ° C. (FIG. 11 ( b)), the tip of the iron bar in front of the flame is also red.
Therefore, it is a gaseous fuel A having no main chain composed of carbon atoms (C) (methane (CH 4 ) or very short (propane (C 3 H 8 ), butane (C 4 H 10 )). However, by mixing the brown gas B, it becomes possible to increase the number of hydrogen atoms (H) whose reaction rate is faster than that of the carbon atoms (C), and continuously induce the combustion and oxidation reaction. The combustion efficiency in the conventional fuel can be improved regardless of whether it is gas or liquid.
<燃焼効率の向上>
 気体燃料AとブラウンガスBの混合気体M’における燃焼効率の向上について述べれば、例えば、プロパンコンロ上に、水10kgを入れた丸缶を置き、コンロ点火後の10kgの水の温度と経過時間を測定すると、従来の気体燃料(プロパンガス)Aの場合には、水温を9.1℃から90.0℃まで上昇させるには、36分19秒かかり、そのときにつかったプロパンガスは、液体時の重量で「140g」となる。
 しかし、本発明の第3実施形態に係る燃料生成供給システム20による混合気体M’を用いた場合を述べると、例えば、ブラウンガス発生部(ブラウンガス発生装置)1から1分当たり5.8リットルのブラウンガスBを発生・混合させた際には、水温を9.1℃から90.0℃まで上昇させるには、31分33秒で済み、そのときにつかったプロパンガスは、液体時の重量で「115g(プロパンガス消費量を、17.86%削減)」となる。
 又、ブラウンガス発生部1から1分当たり9.9リットルのブラウンガスBを発生・混合させた際には、水温を9.1℃から90.0℃まで上昇させるには、28分47秒で済み、そのときにつかったプロパンガスは、液体時の重量で「105g(プロパンガス消費量を、25.00%削減)」となる。
 更には、ブラウンガス発生部1によるブラウンガスBの発生・混合させた量を、1分当たり12.9リットルまで上げると、水温を9.1℃から90.0℃まで上昇させるには、27分20秒まで短縮され、そのときにつかったプロパンガスは、液体時の重量で「95g(プロパンガス消費量を、32.14%削減)」となる。
 従って、本発明の燃料生成供給システム20は、従来の気体燃料Aと、ブラウンガスbを混合させた場合にも、燃焼効率の向上、消費する燃料量(コスト)の削減、省エネが図れる。
<Improved combustion efficiency>
The improvement of the combustion efficiency in the mixed gas M ′ of the gaseous fuel A and the brown gas B is described. For example, a round can containing 10 kg of water is placed on a propane stove, and the temperature and elapsed time of 10 kg of water after the stove ignition. In the case of conventional gaseous fuel (propane gas) A, it takes 36 minutes 19 seconds to raise the water temperature from 9.1 ° C. to 90.0 ° C. The propane gas used at that time is It becomes “140 g” by weight in liquid.
However, the case where the mixed gas M ′ by the fuel generation and supply system 20 according to the third embodiment of the present invention is used will be described. For example, 5.8 liters per minute from the brown gas generator (Brown gas generator) 1 When the brown gas B is generated and mixed, it takes 31 minutes 33 seconds to raise the water temperature from 9.1 ° C. to 90.0 ° C. The propane gas used at that time is The weight is “115 g (propane gas consumption reduced by 17.86%)”.
Also, when 9.9 liters of brown gas B per minute is generated and mixed from the brown gas generator 1, it takes 28 minutes 47 seconds to raise the water temperature from 9.1 ° C. to 90.0 ° C. The propane gas used at that time is “105 g (propane gas consumption reduced by 25.00%)” in terms of the liquid weight.
Further, when the amount of brown gas B generated and mixed by the brown gas generator 1 is increased to 12.9 liters per minute, the water temperature is increased from 9.1 ° C. to 90.0 ° C. The propane gas used at that time is shortened to 20 minutes, and the weight of the propane gas used at that time becomes “95 g (propane gas consumption is reduced by 32.14%)”.
Therefore, the fuel generation and supply system 20 of the present invention can improve combustion efficiency, reduce the amount of fuel consumed (cost), and save energy even when the conventional gaseous fuel A and the brown gas b are mixed.
<第4実施形態>
 図9、10には、本発明の第4実施形態に係る燃料生成供給システム20が示されている。
 この第4実施形態の特徴は、混合器8、混合タンク9、供給経路10等と、ブラウンガス発生部1等とを隔てる断熱構造体12や、断熱構造体12より混合器8等側の温度調整をする温度調整手段13を有している点である。
<Fourth embodiment>
9 and 10 show a fuel generation and supply system 20 according to a fourth embodiment of the present invention.
The features of the fourth embodiment are the heat insulating structure 12 that separates the mixer 8, the mixing tank 9, the supply path 10 and the like from the brown gas generator 1 and the temperature on the side of the mixer 8 and the like from the heat insulating structure 12. The temperature adjusting means 13 for adjusting the temperature is included.
 又、これら断熱構造体12や温度調整手段13を有する第4実施形態では、用いる液体燃料Eについて、特に制限はないが、例えば、常温等では流動性が少ない、又は、流動性が無いものなど、例えば、JIS-K-2205:2006にて規定された重油のうち、3種(C重油)等でも良い。
 尚、C重油について詳解すれば、動粘度が250mm2 /s以下(50mm2 /sを超え250mm2 /s以下)であれば3種1号、動粘度が400mm2 /s以下(250mm2 /sを超え400mm2 /s以下)であれば3種2号、動粘度が1000mm2 /s以下(400mm2 /sを超え1000mm2 /s以下)であれば3種3号となる。
 又、JIS-K-2205:2006では、重油のうち、動粘度が50mm2 /s以下(20mm2 /sを超え50mm2 /s以下)であれば2種(B重油)、動粘度が20mm2 /s以下であれば1種(A重油)と規定している。
In the fourth embodiment having the heat insulation structure 12 and the temperature adjusting means 13, the liquid fuel E to be used is not particularly limited. For example, the liquid fuel E to be used has little fluidity or no fluidity at room temperature or the like. For example, among the heavy oils defined in JIS-K-2205: 2006, three kinds (C heavy oil) may be used.
Incidentally, if described in detail C heavy oil, if the kinematic viscosity of 250 mm 2 / s or less (more than a 50mm 2 / s 250mm 2 / s or less) three No. 1, kinematic viscosity 400 mm 2 / s or less (250 mm 2 / If it exceeds s and is 400 mm 2 / s or less), it will be class 3 No. 2, and if the kinematic viscosity is 1000 mm 2 / s or less (over 400 mm 2 / s and 1000 mm 2 / s or less), it will be class 3 No. 3.
Also, JIS-K-2205: In 2006, among the heavy oil, two if the kinematic viscosity of 50 mm 2 / s or less (20mm 2 / s and beyond 50 mm 2 / s or less) (B heavy oil), kinematic viscosity 20mm If it is 2 / s or less, it is specified as one type (A heavy oil).
<実施例1>
 図9には、本発明の第4実施形態に係る燃料生成供給システム20の実施例1が示されている。
 この実施例1の燃料生成供給システム20は、基本的な構成は、第1実施形態と同様であるが、混合器8、混合タンク9、供給経路10及び再混合経路11をはじめ、供給ポンプ22や、タンク路23、循環ポンプ24、ループ路25を、断熱構造体12で被っている(被覆している)点が、第1実施形態と異なっている。
<Example 1>
FIG. 9 shows Example 1 of the fuel generation and supply system 20 according to the fourth embodiment of the present invention.
The basic structure of the fuel generation and supply system 20 of the first embodiment is the same as that of the first embodiment, but the supply pump 22 includes the mixer 8, the mixing tank 9, the supply path 10, and the remixing path 11. In addition, the point that the tank path 23, the circulation pump 24, and the loop path 25 are covered (covered) with the heat insulating structure 12 is different from the first embodiment.
 尚、本発明において、断熱構造体12で「被っている(被覆している)」とは、被う対象物の少なくとも一部を被っていれば良く、例えば、供給経路10であれば、合流具29に連結する手前(下サプライ弁10cの上流側)までであったり、タンク路23であれば、分岐具21に連結する手前(システム弁21cの下流側)までであったりしても、供給経路10やタンク路23を「被っている」ことに変わりはない。 In the present invention, the term “covered (covered)” by the heat insulating structure 12 is sufficient to cover at least a part of the object to be covered. Even if it is up to the front (upstream side of the lower supply valve 10c) connected to the tool 29, or if it is the tank path 23, it may be up to the front (downstream of the system valve 21c) connected to the branching tool 21, There is no change in “covering” the supply path 10 and the tank path 23.
<断熱構造体12>
 断熱構造体12は、熱の移動を抑制する(断熱構造体12を通して流れる熱量を少なくする)ものであれば、何れの構成であっても構わないが、例えば、シート状物41であっても良い。
 シート状物41は、熱の移動を抑制するものであれば、何れの素材であっても良いが、例えば、断熱シートにアルミや、銅、白金、真鍮などを表面に固着させた反射シートを重ねたものでも構わない(この場合、反射シート側が露出するように、混合器8等を被う)。
<Insulation structure 12>
The heat insulating structure 12 may have any configuration as long as it suppresses the movement of heat (reduces the amount of heat flowing through the heat insulating structure 12). good.
The sheet-like material 41 may be any material as long as it suppresses the movement of heat. For example, a reflective sheet in which aluminum, copper, platinum, brass, or the like is fixed to the surface of a heat insulating sheet is used. They may be stacked (in this case, the mixer 8 is covered so that the reflection sheet side is exposed).
 断熱シートの素材としては、グラスウール、ロックウール、セルロースファイバー、炭化コルク、羊毛断熱材等の繊維系断熱材や、ウレタンフォーム、フェノールフォーム、ポリスチレンフォーム、発泡ゴム等の発泡系断熱材などであっても良い。
 又、シート状物41は、必ずしも反射シートを有さずとも良い。
 シート状物41の形状や厚みも、特に限定はなく、例えば、テープ状のものであっても良い。
Materials for the heat insulation sheet include fiber insulation such as glass wool, rock wool, cellulose fiber, carbonized cork and wool insulation, and foam insulation such as urethane foam, phenol foam, polystyrene foam and foam rubber. Also good.
Moreover, the sheet-like object 41 does not necessarily need to have a reflective sheet.
The shape and thickness of the sheet-like material 41 are not particularly limited, and may be, for example, a tape-like material.
 更に、実施例1の燃料生成供給システム20は、断熱構造体12(シート状物41)で、混合器8、混合タンク9、供給経路10、再混合経路11、供給ポンプ22、タンク路23、循環ポンプ24及びループ路25などを纏めて被っている。
 尚、断熱構造体12の内部で、電気機器(例えば、混合タンク9の貯蔵量センサ9aや、中タンク弁23fとしての電磁弁など)は、別途、断熱構造体12によって、被われており、以下で述べる温度調整手段13によって、断熱構造体12内の温度が高くなったとしても、正常な動作を確保できる。
 このような混合器8等を直接被う、又は、纏めて被うシート状物41であっても、当然に、混合器8等と、ブランウンガス発生部1とを隔てていると言える。
Further, the fuel generation and supply system 20 of the first embodiment is a heat insulating structure 12 (sheet-like material 41), and includes a mixer 8, a mixing tank 9, a supply path 10, a remixing path 11, a supply pump 22, a tank path 23, The circulation pump 24 and the loop path 25 are covered together.
In addition, inside the heat insulating structure 12, electrical equipment (for example, the storage amount sensor 9a of the mixing tank 9 and the electromagnetic valve as the middle tank valve 23f) is covered by the heat insulating structure 12 separately. Even if the temperature in the heat insulation structure 12 becomes high by the temperature adjusting means 13 described below, normal operation can be ensured.
Even if it is the sheet-like material 41 that directly covers or collectively covers the mixer 8 and the like, it can be said that the mixer 8 and the blankun gas generating unit 1 are separated from each other.
<温度調整手段13>
 温度調整手段13も、断熱構造体12より混合器8、混合タンク9、供給経路10及び再混合経路11等の側の領域における温度を調整するものであれば、何れの構成であっても良いが、液体燃料Eとして、常温で粘度(動粘度)が高いC重油等を用いるのであれば、例えば、ヒーター(暖房器具)を有していても構わない。
 ヒーターは、断熱構造体12より混合器8等の側の領域の空気(雰囲気)を温める(これに伴って、断熱構造体12より混合器8等の側の領域における液体燃料Eや、混合燃料Mを温める)ことが出来るのであれば、何れの構成であっても良く、例えば、オイルヒーターや、電気ヒーター、ガスヒーターなどである。
<Temperature adjusting means 13>
The temperature adjusting means 13 may have any configuration as long as it adjusts the temperature in the region on the side of the mixer 8, the mixing tank 9, the supply path 10, the remixing path 11, and the like from the heat insulating structure 12. However, as long as C heavy oil having a high viscosity (dynamic viscosity) at room temperature is used as the liquid fuel E, for example, a heater (heating device) may be included.
The heater warms the air (atmosphere) in the region closer to the mixer 8 and the like than the heat insulating structure 12 (according to this, the liquid fuel E and the mixed fuel in the region closer to the mixer 8 and the like from the heat insulating structure 12) Any configuration may be used as long as M can be heated), for example, an oil heater, an electric heater, a gas heater, or the like.
 ヒーターは、断熱構造体12より混合器8等の側の領域(混合器8等を纏めて被う断熱構造体12の内部)に設けられ、温度センサ等を有し、サーモスタットや、サイリスタ、タイマー、又は、手動等によって、ヒーターをON/OFF等をし、断熱構造体12より混合器8等の側の領域の温度を、所定の値に保つ。
 ヒーターを調整して保つべき温度は、液体燃料EとブラウンガスBの混合に支障がない温度であれば、何℃であっても構わないが、例えば、約100℃であっても良い。
 尚、ヒーターをOFFしている間は、余熱によって、当該領域の温度がしばらく保たれることとなり、その際には、上述の断熱構造体12は、保温効果を発揮する。
The heater is provided in a region on the side of the mixer 8 and the like from the heat insulating structure 12 (inside the heat insulating structure 12 covering the mixer 8 and the like), has a temperature sensor, and has a thermostat, a thyristor, a timer. Alternatively, the heater is turned on / off manually or the like, and the temperature of the region on the side of the mixer 8 etc. from the heat insulating structure 12 is kept at a predetermined value.
The temperature at which the heater should be adjusted and maintained may be any temperature as long as it does not interfere with the mixing of the liquid fuel E and the brown gas B, but may be about 100 ° C., for example.
In addition, while the heater is turned off, the temperature of the region is maintained for a while due to the residual heat, and in this case, the above-described heat insulating structure 12 exhibits a heat retaining effect.
 温度調整手段13として、ヒーターのほかに、ファン(送風機)を有していても良く、このファンによって、断熱構造体12より混合器8等の側の領域から、当該領域の空気(雰囲気)を排気して、所定の温度を保つものであっても構わない。
 尚、ファンを有さずとも、断熱構造体12より混合器8等の側の領域から、当該領域の空気(雰囲気)を排気(換気)できるよう、当該領域とその外部とを連通する開閉窓等だけであっても良い。
 このように、混合器8、混合タンク9、供給経路10等と、ブラウンガス発生部1とを断熱構造体12で隔て、断熱構造体12より混合器8等側に温度調整手段13を有することによって、例えば、日本国内や海外など、液体燃料EとしてC重油など、粘度(動粘性)が高いものを用いたとしても、所定の溶存率のブラウンガスBを混合させることが可能となると同時に、ブラウンガス発生部1等の機器に熱の影響はない。
In addition to the heater, the temperature adjusting means 13 may have a fan (blower). By this fan, the air (atmosphere) in the region from the region on the side of the mixer 8 or the like from the heat insulating structure 12. It may be exhausted to maintain a predetermined temperature.
In addition, even if it does not have a fan, the opening-and-closing window which connects the said area | region and its exterior so that the air (atmosphere) of the said area | region can be exhausted (ventilated) from the area | region of the mixer 8 grade | etc., From the heat insulation structure 12 Etc.
In this way, the mixer 8, the mixing tank 9, the supply path 10 and the like are separated from the brown gas generator 1 by the heat insulating structure 12, and the temperature adjusting means 13 is provided on the mixer 8 and the like side from the heat insulating structure 12. By, for example, even in Japan and overseas, even when a liquid fuel E having a high viscosity (kinematic viscosity) such as C heavy oil is used, it becomes possible to mix brown gas B having a predetermined dissolution rate, There is no influence of heat on the equipment such as the brown gas generator 1.
<実施例2>
 図10には、本発明の第4実施形態に係る燃料生成供給システム20の実施例2が示されている。
 この実施例2は、実施例1と異なり、燃料生成供給システム20の筐体を仕切る隔壁42と、この隔壁42越しにポンプ22、24に対しベルト43を介して駆動力を伝達する駆動源44とを有する。
 更に、実施例2は、混合器8や再混合経路11、循環ポンプ24、ループ路25を、それぞれ2つ有する点も特徴である。
<Example 2>
FIG. 10 shows Example 2 of the fuel generation and supply system 20 according to the fourth embodiment of the present invention.
In the second embodiment, unlike the first embodiment, a partition wall 42 that partitions the housing of the fuel generation and supply system 20, and a drive source 44 that transmits a driving force to the pumps 22 and 24 via the belt 43 through the partition wall 42. And have.
Further, the second embodiment is also characterized in that each of the mixer 8, the remixing path 11, the circulation pump 24, and the loop path 25 is provided.
 尚、図10においては、燃料弁105、流量計106、分岐具21の基元弁21a、システム弁21c、噴燃弁21d、タンク路23の上タンク弁23b、供給ストレーナ23c、上タンク圧力計23d、下タンク圧力計23e、中タンク弁23f、下タンク弁23g、混合タンク9の貯蔵量センサ9a、タンク排出弁9c、ループ路25の上ループ弁25a、循環ストレーナ25c、上ループ圧力計25d、中ループ弁25e、中ループ圧力計25f、下ループ圧力計25g、下ループ弁25i、ガス路26の上ガス弁26b、中ガス弁26d、ニードル弁26e、ガスタンク27のガス排出弁27a、吸入部材31、電解槽2、排出部材32等は、省略している。 In FIG. 10, the fuel valve 105, the flow meter 106, the base valve 21a of the branching device 21, the system valve 21c, the fuel injection valve 21d, the upper tank valve 23b of the tank passage 23, the supply strainer 23c, and the upper tank pressure gauge 23d, lower tank pressure gauge 23e, middle tank valve 23f, lower tank valve 23g, storage amount sensor 9a of mixing tank 9, tank discharge valve 9c, upper loop valve 25a of loop path 25, circulation strainer 25c, upper loop pressure gauge 25d , Middle loop valve 25e, middle loop pressure gauge 25f, lower loop pressure gauge 25g, lower loop valve 25i, upper gas valve 26b of gas path 26, middle gas valve 26d, needle valve 26e, gas discharge valve 27a of gas tank 27, suction The member 31, the electrolytic cell 2, the discharge member 32, etc. are omitted.
 一方、図10では、上述したブラウンガス発生部1や、駆動源44等を制御したり、使用者がコントロールするための制御盤45が示されている。
 又、実施例2では、2つあるループ路25において、各混合器8の下流側に循環ポンプ24が設けられ、更に、ガス路26のガス合流部材26gの下流側にそれぞれの混合路8に分岐する分岐材46も有している。
On the other hand, FIG. 10 shows a control panel 45 for controlling the above-described Brown gas generator 1, the drive source 44, etc., and for the user to control.
In the second embodiment, a circulation pump 24 is provided on the downstream side of each mixer 8 in the two loop paths 25, and further, on each mixing path 8 on the downstream side of the gas joining member 26 g of the gas path 26. It also has a branching material 46 that branches off.
<隔壁42>
 図10に示されたように、隔壁42は、混合器8、混合タンク9、供給経路10及び再混合経路11等と、ブラウンガス発生部1の間に設けられており、混合器8等と、ブラウンガス発生部1とを隔て、且つ、熱の移動を抑制することから、この隔壁42も、断熱構造体12を構成していると言える。
 又、隔壁42は、燃料生成供給システム20の筐体の内部を、混合器8等の側と、ブラウンガス発生部(ブラウンガス発生装置)1等とを隔てる仕切り状のものであれば、具体的な構成は何れでも良い。
<Partition wall 42>
As shown in FIG. 10, the partition wall 42 is provided between the mixer 8, the mixing tank 9, the supply path 10, the remixing path 11, and the brown gas generator 1, and the mixer 8 and the like. The partition wall 42 also constitutes the heat insulating structure 12 because it separates the brown gas generator 1 and suppresses the movement of heat.
In addition, the partition wall 42 may be a specific partition wall that separates the inside of the housing of the fuel generation and supply system 20 from the side of the mixer 8 and the like and the brown gas generator (brown gas generator) 1 and the like. Any general configuration may be used.
 隔壁42は、熱の移動を抑制するものであれば、何れの素材であっても良い。
 又、この隔壁42における混合器8等の側の面には、混合器8等側の領域の熱が、ブラウンガス発生装置1等の側の領域へ移動するのを抑制するために、アルミ等を表面に固着させた反射シートを貼ったり、遮熱塗料を塗布することで、混合器8等側の領域の熱を反射する塗膜を形成等しても良い。
The partition wall 42 may be any material as long as it suppresses the movement of heat.
Further, on the surface of the partition wall 42 on the side of the mixer 8 or the like, aluminum or the like is used to suppress the heat in the region on the side of the mixer 8 or the like from moving to the region on the side of the brown gas generator 1 or the like. A coating sheet that reflects the heat of the region on the mixer 8 side, etc. may be formed by applying a reflective sheet with the surface fixed to the surface or applying a heat shielding paint.
<ベルト43、駆動源44等>
 図10に示した如く、ベルト43や駆動源44は、各ポンプ22、24ごとに設けられている。
 詳解すれば、供給ポンプ22に対しては、駆動源44(44a)からベルト43(43a)を介して駆動力が伝わり、供給ポンプ22を駆動させる。
 ベルト43は、隔壁42越しに駆動力を伝達できるのであれば、何れの構成であっても良く、又、ベルト以外の伝達手段であっても構わない。
 又、駆動源44も、モーター、エンジンなど、何れの構成であっても良い。
<Belt 43, drive source 44, etc.>
As shown in FIG. 10, the belt 43 and the drive source 44 are provided for each of the pumps 22 and 24.
Specifically, the driving force is transmitted to the supply pump 22 from the driving source 44 (44a) via the belt 43 (43a), and the supply pump 22 is driven.
The belt 43 may have any configuration as long as the driving force can be transmitted through the partition wall 42, and may be a transmission means other than the belt.
The drive source 44 may have any configuration such as a motor or an engine.
 2つある循環ポンプ24に対しても同様で、一方の循環ポンプ24に対しては、駆動源44(44b)からベルト43(43b)を介して駆動力が伝わり、他方の循環ポンプ24に対しては、駆動源44(44c)からベルト43(43c)を介して駆動力が伝わるように構成されている。
 従って、各循環ポンプ24ごとに、循環させる混合燃料Mの量(混合させるブラウンガスBの量)を調整できる。
 このように、混合器8や再混合経路11を複数有すれば、当然に、液体燃料EにブラウンガスBを混合させる速度が上がる。
The same applies to the two circulation pumps 24. For one circulation pump 24, the driving force is transmitted from the drive source 44 (44b) via the belt 43 (43b), and to the other circulation pump 24. Thus, the driving force is transmitted from the driving source 44 (44c) via the belt 43 (43c).
Accordingly, the amount of the mixed fuel M to be circulated (the amount of the brown gas B to be mixed) can be adjusted for each circulation pump 24.
Thus, if there are a plurality of mixers 8 and remixing paths 11, naturally the speed at which the brown gas B is mixed with the liquid fuel E is increased.
 尚、混合器8や再混合経路11は、それぞ、3つ又はそれ以上の数を有していても良い。
 又、混合タンク9内で混合燃料Mから抜けて溜まったブラウンガスBを送り出すリサイクル路28は、ガス路26におけるガス合流部材26gから各混合器8の気体入口8bまでの管より太く構成されていても良い。
 その他の燃料生成供給システム20、及び、ブラウンガス発生装置1の構成、作用効果及び使用態様は、第1実施形態と同様である。
Note that the mixer 8 and the remixing path 11 may each have three or more numbers.
Further, the recycle path 28 for sending out the brown gas B that has been removed from the mixed fuel M in the mixing tank 9 is configured to be thicker than the pipe from the gas merging member 26 g in the gas path 26 to the gas inlet 8 b of each mixer 8. May be.
The other fuel generation and supply system 20 and the configuration, operation effect, and usage of the brown gas generator 1 are the same as those in the first embodiment.
<その他>
 本発明は、前述した実施形態に限定されるものではない。ブラウンガス発生装置1及び燃料生成供給システム20等の各構成又は全体の構造、形状、寸法などは、本発明の趣旨に沿って適宜変更することが出来る。
 燃料生成供給システム20におけるブラウンガス発生装置1の台数は、1台でなく、複数台であっても良い。
 燃料生成供給システム20における混合器8、混合タンク9、供給経路10、再混合経路11等は、筐体の中に設けられていても構わない。
<Others>
The present invention is not limited to the embodiment described above. Each configuration of the brown gas generator 1 and the fuel generation and supply system 20 or the entire structure, shape, dimensions, and the like can be appropriately changed in accordance with the spirit of the present invention.
The number of Brown gas generators 1 in the fuel generation and supply system 20 may be not only one but a plurality.
The mixer 8, the mixing tank 9, the supply path 10, the remixing path 11, and the like in the fuel generation and supply system 20 may be provided in the housing.
 誘導極板4は、1枚となる場合もあるが、その場合には、一対の貫通孔4a、4aに貫流部材34が挿入されていなくとも構わない。
 誘導極板4が、複数である場合に、これら複数の誘導極板4のうち、1枚だけは、貫流部材34との間の隙間4bを設けず、当該誘導極板4以外の誘導極板4には、縦横いずれにも隙間4bを設けることとしても良い。
 又、貫流部材34を有さず、貫流部材34が誘導極板4に挿入されていなくとも良い。
In some cases, the number of induction plates 4 may be one. In that case, the flow-through member 34 may not be inserted into the pair of through holes 4a and 4a.
When there are a plurality of induction electrode plates 4, only one of the plurality of induction electrode plates 4 is not provided with a gap 4 b between the flow-through member 34, and an induction electrode plate other than the induction electrode plate 4 is provided. 4 may be provided with gaps 4b both vertically and horizontally.
Further, the flow-through member 34 may not be inserted into the induction electrode plate 4 without the flow-through member 34.
 スペーサ5は、一対の主極板3、3及び誘導極板4それぞれの略中央部同士を接続していたが、それ以外の部分を接続していても良く、一対の主極板3、3及び誘導極板4が、可撓部7を有するのであれば、例えば、主極板3、3及び誘導極板4における上端部同士、下端部同士、左右何れかの端部同士を接続しても構わない。
 又、スペース5は、主極板3、3及び誘導極板4を上端部同士で接続し、その隣りにある主極板3、3及び誘導極板4では下端部同士で接続するように、上下ジグザグに、スペーサ取付部6(つまり、可撓部7)を設けるように接続しても良い。
 更に、スペース5は、主極板3、3及び誘導極板4を左右ジグザグに、可撓部7を設けていても構わない。
The spacer 5 connects the substantially central portions of each of the pair of main electrode plates 3 and 3 and the induction electrode plate 4, but other portions may be connected, and the pair of main electrode plates 3 and 3. If the induction electrode plate 4 has the flexible portion 7, for example, the upper end portions, the lower end portions, and the left and right end portions of the main electrode plates 3, 3 and the induction electrode plate 4 are connected to each other. It doesn't matter.
Further, the space 5 is connected so that the main electrode plates 3, 3 and the induction electrode plate 4 are connected at the upper ends, and the main electrode plates 3, 3 and the induction electrode plate 4 adjacent to each other are connected at the lower ends. You may connect so that the spacer attachment part 6 (namely, flexible part 7) may be provided in an up-and-down zigzag.
Further, the space 5 may be provided with a flexible portion 7 in a zigzag manner with the main electrode plates 3 and 3 and the induction electrode plate 4 being left and right.
 燃料生成供給システム20は、ブラウンガス発生部1(ブラウンガス発生装置)を1つ有していたが、1つのブラウンガス発生装置1で発生させたブラウンガスBを、複数の燃料生成供給システム20で用いても良く、各燃料生成供給システム20で生成した混合燃料Mを、各燃料生成供給システム20に連結されたそれぞれの燃焼装置100で用いても構わない。
 燃焼生成供給システム20は、混合器8及び再混合経路11を、1つずつ有していたが、混合器8や再混合経路11を、複数有していても良く、例えば、混合器8も再混合経路11も同じ数だけ複数有していたり、混合器8は1つで再混合経路11が複数であったり、混合器8が複数で再混合経路11は1つであっても良い。
 断熱構造体12は、真空断熱材であっても良い。
The fuel generation and supply system 20 has one brown gas generation unit 1 (brown gas generation device), but the brown gas B generated by one brown gas generation device 1 is used as a plurality of fuel generation and supply systems 20. The mixed fuel M generated by each fuel generation and supply system 20 may be used by each combustion apparatus 100 connected to each fuel generation and supply system 20.
The combustion generation supply system 20 has one mixer 8 and one remixing path 11, but may have a plurality of mixers 8 and remixing paths 11, for example, the mixer 8 also. The same number of remixing paths 11 may be provided, one mixer 8 and one remixing path 11 may be provided, or a plurality of mixers 8 and one remixing path 11 may be provided.
The heat insulating structure 12 may be a vacuum heat insulating material.
  1    ブラウンガス発生装置(ブラウンガス発生部)
  2    電解槽
  3、3  一対の主極板
  4    誘導極板
  5    スペーサ
  6    スペーサ取付部
  7    可撓部
  8    混合器
  9    混合タンク
  10   供給経路
  11   再混合経路
  12   断熱構造体
  13   温度調整手段
  20   燃料生成供給システム
  W    水
  B    ブラウンガス
  E    液体燃料
  M    混合燃料
1 Brown gas generator (Brown gas generator)
DESCRIPTION OF SYMBOLS 2 Electrolyzer 3, 3 A pair of main electrode plate 4 Induction electrode plate 5 Spacer 6 Spacer attachment part 7 Flexible part 8 Mixer 9 Mixing tank 10 Supply path 11 Remix path 12 Heat insulation structure 13 Temperature adjustment means 20 Fuel supply System W Water B Brown gas E Liquid fuel M Mixed fuel

Claims (8)

  1.  電解槽(2)内で水(W)を電気分解して、水素を含むブラウンガス(B)を発生するブラウンガス発生装置であって、
     前記電解槽(2)内には、正負の電荷がそれぞれ付与される一対の主極板(3、3)と、この一対の主極板(3、3)の間で静電誘導される1又は複数の誘導極板(4)とが、前記水(W)に浸かった状態で配備され、
     前記一対の主極板(3、3)及び誘導極板(4)それぞれの間で水(W)を電気分解して前記ブラウンガス(B)を発生させていて、
     前記一対の主極板(3、3)及び誘導極板(4)それぞれは、互いにスペーサ(5)を介して接続されていると共に、前記スペーサ(5)を取り付けるスペーサ取付部(6)と、このスペーサ取付部(6)に対して撓曲可能な可撓部(7)とを有していることを特徴とするブラウンガス発生装置。
    A brown gas generator that electrolyzes water (W) in an electrolytic cell (2) to generate brown gas (B) containing hydrogen,
    In the electrolytic cell (2), electrostatic induction is performed between a pair of main electrode plates (3, 3) to which positive and negative charges are respectively applied, and the pair of main electrode plates (3, 3). Or a plurality of induction plates (4) are deployed in the state of being immersed in the water (W),
    The brown gas (B) is generated by electrolyzing water (W) between each of the pair of main electrode plates (3, 3) and the induction electrode plate (4),
    Each of the pair of main electrode plates (3, 3) and the induction electrode plate (4) is connected to each other via a spacer (5), and a spacer mounting portion (6) for attaching the spacer (5); A brown gas generator having a flexible portion (7) that can be bent with respect to the spacer mounting portion (6).
  2.  請求項1に記載のブラウンガス発生装置であるブラウンガス発生部(1)を有した燃料生成供給システムであって、
     前記ブラウンガス発生部(1)で発生したブラウンガス(B)をバブル化して液体燃料(E)に混合した混合燃料(M)を生成する混合器(8)と、この混合器(8)で生成した混合燃料(M)を貯蔵可能な混合タンク(9)と、この混合タンク(9)内の混合燃料(M)をシステム外へ送る供給経路(10)とを有し、
     前記混合タンク(9)内で混合燃料(M)から抜けて溜まったブラウンガス(B)を前記混合器(8)で再びバブル化して、前記混合タンク(9)内からの混合燃料(M)に再混合した混合燃料(M)を生成し、且つ、この再混合した混合燃料(M)を前記混合タンク(9)に戻す再混合経路(11)も有していることを特徴とする燃料生成供給システム。
    A fuel generation and supply system having a brown gas generator (1) which is the brown gas generator according to claim 1,
    A mixer (8) for generating a mixed fuel (M) in which the brown gas (B) generated in the brown gas generating section (1) is bubbled and mixed with the liquid fuel (E), and the mixer (8) A mixing tank (9) capable of storing the generated mixed fuel (M), and a supply path (10) for sending the mixed fuel (M) in the mixing tank (9) to the outside of the system,
    The brown gas (B) that has been discharged from the mixed fuel (M) in the mixing tank (9) is bubbled again by the mixer (8), and then mixed fuel (M) from the mixing tank (9). And a remixing path (11) for producing a remixed mixed fuel (M) and returning the remixed mixed fuel (M) to the mixing tank (9). Generation supply system.
  3.  水素を含むブラウンガス(B)を発生するブラウンガス発生部(1)を有した燃料生成供給システムであって、
     前記ブラウンガス発生部(1)で発生したブラウンガス(B)をバブル化して液体燃料(E)に混合した混合燃料(M)を生成する混合器(8)と、この混合器(8)で生成した混合燃料(M)を貯蔵可能な混合タンク(9)と、この混合タンク(9)内の混合燃料(M)をシステム外へ送る供給経路(10)とを有し、
     前記混合タンク(9)内で混合燃料(M)から抜けて溜まったブラウンガス(B)を前記混合器(8)で再びバブル化して、前記混合タンク(9)内からの混合燃料(M)に再混合した混合燃料(M)を生成し、且つ、この再混合した混合燃料(M)を前記混合タンク(9)に戻す再混合経路(11)も有していることを特徴とする燃料生成供給システム。
    A fuel generation and supply system having a brown gas generation section (1) for generating brown gas (B) containing hydrogen,
    A mixer (8) for generating a mixed fuel (M) in which the brown gas (B) generated in the brown gas generating section (1) is bubbled and mixed with the liquid fuel (E), and the mixer (8) A mixing tank (9) capable of storing the generated mixed fuel (M), and a supply path (10) for sending the mixed fuel (M) in the mixing tank (9) to the outside of the system,
    The brown gas (B) that has been discharged from the mixed fuel (M) in the mixing tank (9) is bubbled again by the mixer (8), and then mixed fuel (M) from the mixing tank (9). And a remixing path (11) for producing a remixed mixed fuel (M) and returning the remixed mixed fuel (M) to the mixing tank (9). Generation supply system.
  4.  前記混合器(8)、混合タンク(9)、供給経路(10)及び再混合経路(11)と、前記ブラウンガス発生部(1)とは、熱の移動を抑制する断熱構造体(12)で隔てられ、
     この断熱構造体(12)より前記混合器(8)、混合タンク(9)、供給経路(10)及び再混合経路(11)側の領域における温度を調整する温度調整手段(13)を有していることを特徴とする請求項2又は3に記載の燃料生成供給システム。
    The mixer (8), the mixing tank (9), the supply path (10), the remixing path (11), and the Brown gas generator (1) are heat insulating structures (12) that suppress heat transfer. Separated by
    There is a temperature adjusting means (13) for adjusting the temperature in the mixer (8), the mixing tank (9), the supply path (10) and the remixing path (11) side from the heat insulating structure (12). The fuel generation and supply system according to claim 2 or 3, wherein
  5.  前記再混合経路(11)を複数有していることを特徴とする請求項2~4の何れか1項に記載の燃料生成供給システム。 The fuel generation and supply system according to any one of claims 2 to 4, wherein a plurality of the remixing paths (11) are provided.
  6.  水素を含むブラウンガス(B)を発生するブラウンガス発生部(1)を有した燃料生成供給システムであって、
     前記ブラウンガス発生部(1)で発生したブラウンガス(B)をバブル化して液体燃料(E)に混合した混合燃料(M)を生成する混合器(8)と、この混合器(8)で生成した混合燃料(M)を貯蔵可能な混合タンク(9)と、この混合タンク(9)内の混合燃料(M)をシステム外へ送る供給経路(10)とを有し、
     前記混合器(8)、混合タンク(9)及び供給経路(10)と、前記ブラウンガス発生部(1)とは、熱の移動を抑制する断熱構造体(12)で隔てられ、
     この断熱構造体(12)より前記混合器(8)、混合タンク(9)及び供給経路(10)側の領域における温度を調整する温度調整手段(13)を有していることを特徴とする燃料生成供給システム。
    A fuel generation and supply system having a brown gas generation section (1) for generating brown gas (B) containing hydrogen,
    A mixer (8) for generating a mixed fuel (M) in which the brown gas (B) generated in the brown gas generating section (1) is bubbled and mixed with the liquid fuel (E), and the mixer (8) A mixing tank (9) capable of storing the generated mixed fuel (M), and a supply path (10) for sending the mixed fuel (M) in the mixing tank (9) to the outside of the system,
    The mixer (8), the mixing tank (9), the supply path (10), and the brown gas generator (1) are separated by a heat insulating structure (12) that suppresses the movement of heat,
    The heat-insulating structure (12) includes temperature adjusting means (13) for adjusting the temperature in the mixer (8), the mixing tank (9), and the region on the supply path (10) side. Fuel generation and supply system.
  7.  前記混合器(8)を複数有していることを特徴とする請求項2~6の何れか1項に記載の燃料生成供給システム。 The fuel generation and supply system according to any one of claims 2 to 6, comprising a plurality of the mixers (8).
  8.  前記混合器(8)は、10リットルの前記液体燃料(E)に対して、1リットル以上1000リットル以下の前記ブラウンガス(B)を混合させていることを特徴とする請求項2~7の何れか1項に記載の燃料生成供給システム。 8. The mixer (8) according to claim 2, wherein the brown gas (B) of 1 to 1000 liters is mixed with 10 liters of the liquid fuel (E). The fuel generation and supply system according to any one of the preceding claims.
PCT/JP2013/006949 2013-07-01 2013-11-26 Brown's gas generation device and fuel production/supply system WO2015001589A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2013138110A JP5357358B1 (en) 2013-07-01 2013-07-01 Fuel generation and supply system
JP2013-138110 2013-07-01

Publications (1)

Publication Number Publication Date
WO2015001589A1 true WO2015001589A1 (en) 2015-01-08

Family

ID=49850260

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/006949 WO2015001589A1 (en) 2013-07-01 2013-11-26 Brown's gas generation device and fuel production/supply system

Country Status (2)

Country Link
JP (1) JP5357358B1 (en)
WO (1) WO2015001589A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
IT201800007170A1 (en) * 2018-07-13 2020-01-13 DEVICE FOR THE REDUCTION OF POLLUTANT EMISSIONS, IN ENDOTHERMIC ENGINES AND THE IMPROVEMENT OF THE COMBUSTION EFFICIENCY
CN114045507A (en) * 2021-11-30 2022-02-15 广州中氢能源科技有限公司 Energy-saving electrolytic tank for medical intelligent hydrogen-oxygen integrated machine

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101448280B1 (en) * 2014-06-09 2014-10-13 김택중 The mixing fuel production apparatus that mixed the hyperfine bubble of hydrogen or oxyhydrogen
JP3195267U (en) * 2014-06-30 2015-01-15 T・D・S株式会社 Simultaneous improvement device of fuel consumption and exhaust gas of internal combustion engine
JPWO2019180796A1 (en) * 2018-03-19 2021-03-11 博 宮永 HHO gas mixed liquid fuel supply device and HHO gas mixed liquid fuel manufacturing method
JP6360984B1 (en) * 2018-03-20 2018-07-18 株式会社神鋼環境ソリューション Hydrogen gas production facility
JP6622374B1 (en) * 2018-10-25 2019-12-18 清水 勲生 Explosion-implosion engine system that uses Brown Gas's explosion-explosion function equipped with a Brown gas generation system.
WO2020241802A1 (en) * 2019-05-28 2020-12-03 三輪 有子 Oxyhydrogen gas mixture generation device, suction apparatus, oxyhydrogen gas mixture generation method and oxyhydrogen gas mixture

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60181371U (en) * 1984-05-09 1985-12-02 谷口 悟 Electrolytic gas generator for oxyhydrogen flame
JP2009102600A (en) * 2007-10-23 2009-05-14 E & E Corp Liquid fuel, its manufacturing system, and its manufacturing method
JP2010007038A (en) * 2008-05-28 2010-01-14 Zet:Kk Reforming method and reforming device of emulsion fuel oil
JP2011058020A (en) * 2009-09-07 2011-03-24 St Hightech:Kk Brown gas production apparatus and apparatus for producing and supplying mixed fuel in which brown gas is mixed

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60181371U (en) * 1984-05-09 1985-12-02 谷口 悟 Electrolytic gas generator for oxyhydrogen flame
JP2009102600A (en) * 2007-10-23 2009-05-14 E & E Corp Liquid fuel, its manufacturing system, and its manufacturing method
JP2010007038A (en) * 2008-05-28 2010-01-14 Zet:Kk Reforming method and reforming device of emulsion fuel oil
JP2011058020A (en) * 2009-09-07 2011-03-24 St Hightech:Kk Brown gas production apparatus and apparatus for producing and supplying mixed fuel in which brown gas is mixed

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
IT201800007170A1 (en) * 2018-07-13 2020-01-13 DEVICE FOR THE REDUCTION OF POLLUTANT EMISSIONS, IN ENDOTHERMIC ENGINES AND THE IMPROVEMENT OF THE COMBUSTION EFFICIENCY
CN114045507A (en) * 2021-11-30 2022-02-15 广州中氢能源科技有限公司 Energy-saving electrolytic tank for medical intelligent hydrogen-oxygen integrated machine

Also Published As

Publication number Publication date
JP5357358B1 (en) 2013-12-04
JP2015045032A (en) 2015-03-12

Similar Documents

Publication Publication Date Title
WO2015001589A1 (en) Brown&#39;s gas generation device and fuel production/supply system
US9284652B2 (en) Electrolyzed hydrogen gas for fuel-fired boilers and hot water heaters
CN104456604B (en) Ultrasound wave gasification atmospheric liquid fuel generating means
US20090194421A1 (en) Apparatus for Generating Electrolytic Gas Composite Fuel, and Method for Generating this Fuel
KR101505917B1 (en) Water using ultrasonic transducer device manufacturing fine bubbles
US8354010B2 (en) Electrolytic cell with cavitating jet
US20030131830A1 (en) Fuel converter
CN107099812A (en) A kind of apparatus for electrolyzing and with the device remove carbon combustion-supporting system
KR20080059533A (en) An apparatus for producing hydrogen and oxygen
CN206843594U (en) A kind of apparatus for electrolyzing and remove carbon combustion-supporting system with the device
JP6422979B2 (en) Method and apparatus for increasing the gaseous content of hydrocarbon fuels
JP2018044549A (en) HHO gas mixed liquid fuel supply device
JP2015134959A (en) Gas generator and gas generation method, and program of gas generation method and recording medium recording the same
WO2010011126A2 (en) Water fuel apparatus
JP2000263062A (en) Apparatus and method for producing modified water and apparatus and method for producing emulsion fuel
JP2006248847A (en) Fuel reformer and fuel reforming apparatus
JP7185057B2 (en) electrolytic cell
CN109913888A (en) The preparation method and device of a kind of active water ion-gas and active water ion-gas
US20080052995A1 (en) Gasification apparatus for atmospheric liquid fuel
JP2015209591A (en) Electrolysis fuel mixer
WO2019180796A1 (en) Hho gas-mixed liquid fuel supply device and method for manufacturing hho gas-mixed liquid fuel
KR20150112467A (en) Brown gas supply apparatus
KR101460983B1 (en) Hybrid Magnetic sorting mixed fuel Manufacturing equipment
KR20170067182A (en) Fuel reformer for vehicle engine
EP1045019A2 (en) Cracking process and electronic apparatus therefor

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13888749

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

NENP Non-entry into the national phase

Ref country code: JP

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 04/05/2016)

122 Ep: pct application non-entry in european phase

Ref document number: 13888749

Country of ref document: EP

Kind code of ref document: A1