WO2015001222A1 - Batterie hybride de demarrage d'un vehicule automobile - Google Patents

Batterie hybride de demarrage d'un vehicule automobile Download PDF

Info

Publication number
WO2015001222A1
WO2015001222A1 PCT/FR2014/051570 FR2014051570W WO2015001222A1 WO 2015001222 A1 WO2015001222 A1 WO 2015001222A1 FR 2014051570 W FR2014051570 W FR 2014051570W WO 2015001222 A1 WO2015001222 A1 WO 2015001222A1
Authority
WO
WIPO (PCT)
Prior art keywords
super
lithium
starter battery
battery according
battery
Prior art date
Application number
PCT/FR2014/051570
Other languages
English (en)
Inventor
Gwennaelle Pascaly
Masato Origuchi
Sophie GENIN-DEMURE
Benoît SOUCAZE-GUILLOUS
Original Assignee
Renault S.A.S.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Renault S.A.S. filed Critical Renault S.A.S.
Publication of WO2015001222A1 publication Critical patent/WO2015001222A1/fr

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L3/00Electric devices on electrically-propelled vehicles for safety purposes; Monitoring operating variables, e.g. speed, deceleration or energy consumption
    • B60L3/0023Detecting, eliminating, remedying or compensating for drive train abnormalities, e.g. failures within the drive train
    • B60L3/0061Detecting, eliminating, remedying or compensating for drive train abnormalities, e.g. failures within the drive train relating to electrical machines
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L3/00Electric devices on electrically-propelled vehicles for safety purposes; Monitoring operating variables, e.g. speed, deceleration or energy consumption
    • B60L3/04Cutting off the power supply under fault conditions
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L50/00Electric propulsion with power supplied within the vehicle
    • B60L50/40Electric propulsion with power supplied within the vehicle using propulsion power supplied by capacitors
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L58/00Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles
    • B60L58/10Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries
    • B60L58/18Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries of two or more battery modules
    • B60L58/22Balancing the charge of battery modules
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/08Structural combinations, e.g. assembly or connection, of hybrid or EDL capacitors with other electric components, at least one hybrid or EDL capacitor being the main component
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/10Multiple hybrid or EDL capacitors, e.g. arrays or modules
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/425Structural combination with electronic components, e.g. electronic circuits integrated to the outside of the casing
    • H01M10/4264Structural combination with electronic components, e.g. electronic circuits integrated to the outside of the casing with capacitors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M16/00Structural combinations of different types of electrochemical generators
    • H01M16/003Structural combinations of different types of electrochemical generators of fuel cells with other electrochemical devices, e.g. capacitors, electrolysers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/40Drive Train control parameters
    • B60L2240/54Drive Train control parameters related to batteries
    • B60L2240/547Voltage
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/40Drive Train control parameters
    • B60L2240/54Drive Train control parameters related to batteries
    • B60L2240/549Current
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/4207Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells for several batteries or cells simultaneously or sequentially
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2220/00Batteries for particular applications
    • H01M2220/20Batteries in motive systems, e.g. vehicle, ship, plane
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/13Energy storage using capacitors
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/70Energy storage systems for electromobility, e.g. batteries

Definitions

  • the invention relates to a starter battery of a motor vehicle.
  • lead-acid starter batteries have been exempted, but this should be discussed again in the coming years. It is therefore becoming increasingly urgent and urgent to find new technologies, technically and economically viable, to replace lead batteries.
  • patent DE102006048872 can be cited, which relates to the use of a lead-acid starter battery and a lithium / iron / phosphate electric power supply battery, the management of said batteries being carried out at the same time. means of a switch placed between them depending on the use phase of the vehicle. Although such an arrangement can reduce the size of the lead battery and therefore limit lead emissions into the atmosphere, the fact remains that it does not completely eliminate the presence of lead within said vehicle.
  • Lithium-ion batteries Another solution would be to use Lithium-ion batteries.
  • this type of battery has two major drawbacks compared to use in a vehicle:
  • a starter battery of a vehicle according to the invention makes it possible to completely solve the pollution problems related to lead, while avoiding the disadvantages noted in the state of the art.
  • the invention relates to a starter battery for a vehicle.
  • the main characteristic of a starter battery according to the invention is that it comprises at least one lithium-ion type cell placed in parallel with at least one super capacitance.
  • a battery can generally be used on thermal vehicles with a conventional alternator / starter, on hybrid vehicles or on hybrid plug-ins with an alternator-starter. It is also possible to use it on electric vehicles.
  • the combination of a lithium-ion type cell composed of a negative electrode based on a titanium oxide and a positive electrode based on a lamellar metal oxide, with a super capacity allows the battery to ensure a cold start of the vehicle, which is efficient and safe, without having to oversize said battery.
  • such a starter battery can easily be recharged by means of an external charger during a consequent discharge of said battery.
  • Lithium-ion type cell is based on a reversible exchange of a lithium ion between a positive electrode made most often in a lithiated transition metal oxide, and a negative graphite electrode.
  • said battery comprises at least one pair consisting of a lithium-ion type cell connected in parallel with a super capacitance.
  • a pair thus represents a unitary element of said battery that can be repetitive within said battery.
  • a starter battery according to the invention comprises a plurality of pairs connected in series.
  • a starter battery according to the invention comprises six pairs each consisting of a lithium-ion type cell connected in parallel with a super capacitance.
  • all the couples are identical.
  • said battery comprises a first branch consisting of at least two lithium-ion type cells connected in series and a second branch formed by at least two super-mounted capacitors. in series, said two branches being connected in parallel.
  • the battery does not include unit elements. It involves only two circuits connected in parallel, one materialized by a series of lithium-ion cells mounted in series, and the other materialized by a succession of super capacitors connected in series.
  • a starter battery according to the invention comprises the same number of lithium-ion type cells as super capacitances.
  • a starter battery according to the invention comprises six lithium-ion type cells and six super capacitors.
  • each super capacitance consists of two porous electrolyte electrolyte impregnated carbon electrodes, said electrodes being separated by an insulating and porous membrane.
  • a starter battery according to the invention comprises a switch for isolating it from the rest of an electrical circuit of the vehicle in the case of a self-discharge of at least one super capacity.
  • a starter battery according to the invention comprises a load loop associated with a switch, said switch being able to disconnect each super capacity to connect it with said loop.
  • the switch can adopt a first position for which it closes the super capacitance circuit and allows the starter battery to be operational, and a second position for which it opens said circuit and allows the charging loop. to be in relation with each said super abilities to recharge them. In this way, in the case of a complete discharge of at least one super capacity, it is still possible to recharge locally, regardless of the characteristics of the rest of the electrical circuit of the vehicle, which is connected to the starter battery.
  • a starter battery according to the invention has the advantage of contributing effectively to the starting function of a vehicle, eliminating any risk of pollution by lead because it does not have any, while remaining of a small footprint . It also has the advantage of being of limited cost because it implements a limited number of lithium-ion type cells and super capacities. The following is a detailed description of two preferred embodiments of a starter battery according to the invention with reference to Figures 1 to 5C.
  • FIG. 1A is a schematic view of a first preferred embodiment of a starter battery according to the invention
  • FIG. 1B is a schematic view of a second preferred embodiment of a starter battery according to the invention.
  • FIG. 2A is a general block diagram of a first preferred embodiment of an electric circuit of a motor vehicle involving a starter battery according to the invention
  • FIG. 2B is a general block diagram of a second preferred embodiment of an electric circuit of a motor vehicle involving a starter battery according to the invention
  • FIG. 2C is a general block diagram of a third preferred embodiment of an electric circuit of a motor vehicle involving a starter battery according to the invention
  • FIG. 3 is a diagram illustrating an example of variation of electric current and of voltage with time during a start at -25 ° C. involving a starter battery according to the invention
  • FIG. 4 is a diagram illustrating a example of variation of electric current and of voltage with time during a start at 25 ° C. involving a starter battery according to the invention
  • FIGS. 5A, 5B and 5C illustrate a pair composed of a lithium-ion type cell and a super capacitor connected in parallel, respectively during a phase of a first current draw, of a phase of relaxation and a phase of a second current draw.
  • a starter battery according to the invention can be generally used on thermal vehicles with a conventional alternator / starter, on hybrid vehicles or on hybrid plug-ins with an alternator-starter. It is also possible to use it on electric vehicles.
  • a first preferred embodiment of a starter battery 1 comprises a first branch 2 constituted by six identical 3 cells of the Lithium-ion type and mounted in series, and a second branch 4 constituted by six super capacitors 5 connected in series, said first and said second branches 2.4 being connected in parallel within said stack 1.
  • a second preferred embodiment of a starter battery 10 comprises six identical pairs 16 connected in series, each of said pairs 16 being composed of a lithium-type cell 13. and a super capacitance 15 connected in parallel.
  • each lithium-ion type cell 3,13 must be composed of a very particular electrochemical couple, using a titanium oxide Li4Ti5012 (LTO) as a negative electrode and a lamellar metal oxide for the positive electrode, such as for example LiNixMnyCoz02 or LiNi0.8Co0.15AI0.05O2, in order to obtain a voltage similar to that of super capacitors, located at around 2.2V at rated and 2.7V at max. Obtaining this similar voltage will facilitate their paralleling.
  • LTO titanium oxide Li4Ti5012
  • a lamellar metal oxide for the positive electrode such as for example LiNixMnyCoz02 or LiNi0.8Co0.15AI0.05O2
  • Each super capacitance 5.15 is preferably composed of two porous electrodes, generally made of activated carbon and impregnated with electrolyte, said electrodes being separated by an insulating and porous membrane to ensure ionic conduction.
  • An electronic circuit is used to make it possible to rebalance the cells 3 in series, said circuit being able for example to implement a passive balancing circuit via resistors, or active by transferring energy from one cell 3 to another.
  • a passive balancing circuit via resistors, or active by transferring energy from one cell 3 to another.
  • the electronic circuit can also monitor the voltages of the cells, and transmit a signal to a vehicle computer in the event of a failure of a cell. This electronic circuit can also be used as a diagnostic tool.
  • a starter battery 1 For the first preferred embodiment of a starter battery 1 according to the invention involving two distinct branches 2.4, two microcomputers should be used for balancing and monitoring voltages.
  • a starter battery 10 according to the invention involving a single branch comprising several pairs 16 each composed of a super capacitance 15 and a cell 13, a single microcomputer is sufficient for balancing. and measuring the voltages.
  • a first preferred embodiment of a vehicle electrical circuit makes it possible to connect to each other, a starter 20, an alternator 21, current consumers 22 such as, for example, an air-conditioning unit or a radio , and a starter battery 1 according to the invention.
  • a switch 23 placed between the starter battery 1 and the starter 20 makes it possible to electrically connect or disconnect these two elements 1.20.
  • the switch 23 can close the circuit to allow said battery 1 to activate the starter 20.
  • the switch 23 can open the circuit so electrically isolating the starter 20 of the battery 20, and allow the alternator 21 to charge the battery 1 starting. Whatever the position of the switch 23, the alternator 21 supplies power to the various consumers 22 of the vehicle.
  • a second preferred embodiment of a vehicle electrical circuit differs from the first mode described above by the fact that the starting battery 1 according to the invention can be equipped with a switch 24 to electrically isolate said battery 1 from the rest of the electrical circuit, in the case for example of a failure of the alternator 21.
  • a third preferred embodiment of a vehicle electrical circuit differs from the first mode described above by the fact that the second branch 4 of the starter battery 1 according to the invention, which is composed of a succession of super capacitors 5 connected in series, is provided with a switch 25 and a load loop 26.
  • super capacitors 5 have a stronger tendency to self-discharge than cells 3 of lithium-ion type.
  • this self-discharge becomes critical and empty of the lithium-ion cells 3, it is desirable to interrupt it by disconnecting the super capacitors 5 by means of this switch 25, and to activate the charging loop 26 for reloading said super capacitors 5.
  • the switch 25 closes the internal circuit of the battery 1, it allows said battery 1 to operate normally by generating a possible discharge of the super capacitors 5.
  • it interrupts this internal circuit it simultaneously activates the charging loop 16 to allow said super capacitors 3 to recharge.
  • the six pairs 16 "super capacitance 15 / lithium-ion cell 13" can be connected in series to achieve a typical starting battery voltage of 10. between 12V and 15V.
  • the voltage range of the Li-ion cells 13 varies between a minimum of 1.5V and a maximum of 2.5V, with a nominal value of 2.2 V.
  • the voltage range of the super capacitors 15 varies between a minimum of 0V and a maximum of 2.5V, with a nominal value of 2.2V.
  • a starter battery 1 according to the invention involving a first branch 2 of six cells 3 of lithium-ion type connected in series and a second branch 4 of six super capacitors 5 connected in series, an example of implementation could involve:
  • the capacity of a cell 3 may vary according to the needs related to the type of vehicle considered.
  • Li-ion cells 3.13 or super capacitors 5.15 may for example be cylindrical or prismatic and have a rigid or flexible envelope.
  • the current is divided between the super capacitors 5,15 and the lithium-ion type cells 3,13 with respectively a distribution of 2 / 3, 1/3 cold, at the time of the strong peak current at about 600A, corresponding to the engine start. The first seconds before the appearance of this peak, are devoted to the preheating of the battery 1.10.
  • the current oscillations corresponding to the compressions according to the rotation of the motor, it is observed that the current distribution between the lithium-ion cells 3, 13 and the super-capacitors 5, 15 tends to be reversed, since said super capacitors 5, 15 empty completely.
  • the current of the super-capacitors 5, 15 is negative, since the lithium-ion cells 3, 13 recharge them naturally. It is estimated that this return to equilibrium between 6 and 7 seconds. It should be noted that the voltage at the peak at 600A drops to about 7V.
  • the repeated low temperature start is possible. Indeed, with reference to FIG. 5A, during the cold start it is the super-capacity 5.15 that will be mainly used, since the cold lithium-ion cells 3, 13 are much more resistive.
  • the arrow 30 in this figure materializes the direction of the current from the super capacitance 5.15 to the lithium-ion cell 3.13 during a start attempt. Thus, the super capacity 5.15 will be completely discharged after this attempt.
  • the super capacity 5.15 will be naturally recharged by the Li-ion cell 3.13 connected in parallel, the arrow 31 in this figure, indicating the current direction supplied by the lithium-ion cell 3,13.
  • the driver of the vehicle can repeat the start operation. This operation can be repeated as many times as there is enough energy in said Li-ion cell 3,13.
  • the lithium ion cells 3, 13 will take on more current because their internal resistance becomes smaller than that of the super capacitors 5, 15. Indeed, the temperature sensitivity of 3.13 Li-ion cells is greater than that of super capacitors 5.15. For example, from 25 ° C to -25 ° C, the internal resistance of a lithium-ion cell 3.13 with a negative titanium oxide electrode is multiplied by 4, while that of a super capacitor 5.15 is multiplied by 1.5.
  • the advantage of a starter battery 1.10 according to the invention is to mainly solicit Li-ion cells 3.13 at an ambient temperature of the order of 20 ° C. At lower temperatures, the resistances of the lithium-ion cells 3, 13 are larger, and it is therefore the super capacitors 5, 15 that will be the most solicited first.
  • the main advantages associated with the use of a starter battery 1.10 according to the invention are the following:
  • the volume of a lead battery is 8.5L, while it is only 5L for a battery according to the invention.
  • Lithium-ion makes it possible to reuse the battery safely even after a complete discharge.
  • the collector used for a titanium oxide anode (LTO) is aluminum. So there is no risk of copper dissolution during a complete discharge up to 0V, or risk of formation of Cu dendrite during a recharge that can create a internal short circuit.
  • This LTO-based LTO-based Li-ion battery technology allows us to eliminate the risk of an incident in the event that the customer recharges his starter battery via a charger.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Transportation (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Mechanical Engineering (AREA)
  • Electrochemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • General Chemical & Material Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Secondary Cells (AREA)
  • Charge And Discharge Circuits For Batteries Or The Like (AREA)

Abstract

L'invention se rapporte à une batterie (1) de démarrage pour un véhicule. La principale caractéristique d'une batterie selon l'invention, est qu'elle comprend au moins une cellule (3,13) de type Lithium-ion mise en parallèle avec au moins une super capacité (5). Avantageusement, chaque cellule (3,13) de type Lithium-ion est composée d'une électrode négative à base d'un oxyde de titane et d'une électrode positive à base d'un oxyde métallique lamellaire.

Description

BATTERIE HYBRIDE DE DEMARRAGE D'UN VEHICULE AUTOMOBILE
L'invention se rapporte à une batterie de démarrage d'un véhicule automobile. II existe actuellement une réglementation visant à supprimer l'utilisation du plomb dans les véhicules. Jusqu'à aujourd'hui, les batteries de démarrage au plomb ont bénéficié d'une exemption, mais celle-ci devrait être à nouveau discutée dans les années à venir. Il devient donc de plus en plus pressant et urgent de trouver de nouvelles technologies, techniquement et économiquement viables, pour remplacer les batteries au plomb.
L'utilisation d'une combinaison de batteries dans un véhicule existe et a déjà fait l'objet de brevets. On peut, par exemple, citer le brevet DE102006048872, qui se rapporte à l'utilisation d'une batterie de démarrage au plomb et d'une batterie de fourniture de courant électrique au lithium/fer/phosphate, la gestion desdites batteries étant effectuée au moyen d'un interrupteur placé entre celles-ci en fonction de la phase d'utilisation du véhicule. Bien qu'un tel arrangement permette de réduire les dimensions de la batterie en plomb et donc de limiter les émissions de plomb dans l'atmosphère, il n'en demeure pas moins qu'il ne permet pas d'éliminer complètement la présence de plomb au sein dudit véhicule.
Une autre solution consisterait à recourir à des batteries de type Lithium-ion. Or, ce type de batterie présente deux inconvénients majeurs par rapport à une utilisation dans un véhicule :
- elles doivent être surdimensionnées et donc être d'un coût très élevé, pour satisfaire aux exigences de démarrage à basses températures en raison d'une résistance interne élevée. En effet, à basses températures, bien que l'énergie soit suffisante pour alimenter des auxiliaires, le courant demandé lors du premier pic de démarrage, amène habituellement à fortement surdimensionner la batterie Lithium-ion à environ 40Ah, alors qu'une quinzaine d'ampères heure suffit pour le reste des exigences fonctionnelles d'une batterie de démarrage ou de servitude.
- elles ne peuvent pas être rechargées avec un chargeur externe lors d'une décharge conséquente, car le collecteur de l'électrode négative, qui est habituellement en cuivre se dissout. La batterie ne sera donc pas fonctionnelle en cas de recharge après une très forte décharge.
Pour remplacer une batterie au plomb, des super capacités pourraient aussi être utilisées, car elles sont intrinsèquement très puissantes, mais du fait de leur faible densité d'énergie, il faudrait en mettre un grand nombre en parallèle, pour atteindre le niveau d'énergie demandé. Il en résulterait un surcoût et un encombrement importants.
Une batterie de démarrage d'un véhicule selon l'invention, permet de résoudre complètement les problèmes de pollution liés au plomb, tout en s'affranchissant des inconvénients relevés dans l'état de la technique.
L'invention a pour objet une batterie de démarrage pour un véhicule.
La principale caractéristique d'une batterie de démarrage selon l'invention, est qu'elle comprend au moins une cellule de type Lithium-ion mise en parallèle avec au moins une super capacité. Une telle batterie peut être utilisée de façon générale sur des véhicules thermiques avec un alternateur/démarreur classique, sur des véhicules hybrides ou sur des plug- ins hybrides avec un alterno-démarreur. Il est également possible de l'utiliser sur des véhicules électriques. L'association d'une cellule de type Lithium-ion composée d'une électrode négative à base d'un oxyde de titane et d'une électrode positive à base d'un oxyde métallique lamellaire, avec une super capacité, permet à la batterie d'assurer un démarrage à froid du véhicule, qui est efficace et sûr, sans avoir à surdimensionner ladite batterie. De plus, une telle batterie de démarrage peut-être facilement rechargée au moyen d'un chargeur externe lors d'une décharge conséquente de ladite batterie. Il est rappelé que le fonctionnement d'une cellule de type Lithium-ion est basé sur un échange réversible d'un ion lithium entre une électrode positive réalisée le plus souvent dans un oxyde de métal de transition lithié, et une électrode négative en graphite.
Selon un premier mode de réalisation préféré d'une batterie de démarrage selon l'invention, ladite batterie comprend au moins un couple constitué par une cellule de type Lithium-ion montée en parallèle avec une super capacité. Un tel couple représente ainsi un élément unitaire de ladite batterie pouvant être répétitif au sein de ladite batterie.
Avantageusement, une batterie de démarrage selon l'invention comporte une pluralité de couples montés en série. De façon préférentielle, une batterie de démarrage selon l'invention comprend six couples constitués chacun d'une cellule de type Lithium-ion montée en parallèle avec une super capacité. En effet, il convient de réaliser une batterie de démarrage qui ne soit pas trop encombrante et donc de la dimensionner au plus juste, afin qu'elle puisse assurer la fonction de démarrage sans occuper un volume trop important. Préférentiellement, tous les couples sont identiques.
Selon un deuxième mode de réalisation préféré d'une batterie de démarrage selon l'invention, ladite batterie comprend une première branche constituée par au moins deux cellules de type Lithium-ion montées en série et une deuxième branche constituée par au moins deux super capacités montées en série, lesdites deux branches étant montées en parallèle. Pour cette configuration, la batterie ne comprend pas d'éléments unitaires. Elle n'implique que deux circuits montés en parallèle, l'un matérialisé par une succession de cellules de type Lithium-ion montées en série, et l'autre matérialisé par une succession de super capacités montées en série.
Préférentiellement, une batterie de démarrage selon l'invention comprend le même nombre de cellules de type Lithium-ion que de super capacités.
De façon avantageuse, une batterie de démarrage selon l'invention comprend six cellules de type Lithium-ion et six super capacités. Pour des questions d'encombrement, il est souhaitable de dimensionner au plus juste la batterie afin qu'elle puisse assurer sa fonction sans prendre trop de place dans le véhicule.
Avantageusement, chaque super capacité est constituée de deux électrodes poreuses en charbon actif et imprégnée d'électrolyte, lesdites électrodes étant séparées par une membrane isolante et poreuse. Il s'agit d'un mode de réalisation particulièrement adapté à une batterie de démarrage selon l'invention, mais ne constitue pas le seul exemple susceptible de satisfaire aux exigences d'une batterie de démarrage selon l'invention. Préférentiellement, une batterie de démarrage selon l'invention comprend un interrupteur permettant de l'isoler du reste d'un circuit électrique du véhicule dans le cas d'une autodécharge d'au moins une super capacité.
De façon avantageuse, une batterie de démarrage selon l'invention comprend une boucle de charge associée à un interrupteur, ledit interrupteur étant apte à déconnecter chaque super capacité pour la mettre en liaison avec ladite boucle. Autrement dit, l'interrupteur peut adopter une première position pour laquelle il ferme le circuit comportant les super capacités et permet à la batterie de démarrage d'être opérationnelle, et une deuxième position pour laquelle il ouvre ledit circuit et permet à la boucle de charge d'être en relation avec chacune dites super capacités pour les recharger. De cette manière, dans le cas d'une décharge complète d'au moins une super capacité, il demeure toujours possible de la recharger localement, indépendamment des caractéristiques du reste du circuit électrique du véhicule, sur lequel est connectée la batterie de démarrage. Une batterie de démarrage selon l'invention présente l'avantage de contribuer efficacement à la fonction de démarrage d'un véhicule, en éliminant tout risque de pollution par le plomb car elle n'en possède pas, tout en demeurant d'un encombrement réduit. Elle a de plus l'avantage d'être d'un coût limité car elle met en œuvre un nombre restreint de cellules de type Lithium-ion et de super capacités. On donne ci-après, une description détaillée de deux modes de réalisation préférés d'une batterie de démarrage selon l'invention en se référant aux figures 1 à 5C.
- La figure 1A est une vue schématique d'un premier mode de réalisation préféré d'une batterie de démarrage selon l'invention,
- La figure 1B est une vue schématique d'un deuxième mode de réalisation préféré d'une batterie de démarrage selon l'invention,
La figure 2A est un schéma de principe général d'un premier mode de réalisation préféré d'un circuit électrique d'un véhicule automobile impliquant une batterie de démarrage selon l'invention,
- La figure 2B est un schéma de principe général d'un deuxième mode de réalisation préféré d'un circuit électrique d'un véhicule automobile impliquant une batterie de démarrage selon l'invention,
- La figure 2C est un schéma de principe général d'un troisième mode de réalisation préféré d'un circuit électrique d'un véhicule automobile impliquant une batterie de démarrage selon l'invention,
- La figure 3 est un diagramme illustrant un exemple de variation de courant électrique et de tension avec le temps lors d'un démarrage à -25°C impliquant une batterie de démarrage selon l'invention, - La figure 4 est un diagramme illustrant un exemple de variation de courant électrique et de tension avec le temps lors d'un démarrage à 25°C impliquant une batterie de démarrage selon l'invention,
- Les figures 5A, 5B et 5C illustrent un couple composé d'une cellule de type Lithium-ion et d'une super capacité montées en parallèle, respectivement au cours d'une phase d'un premier appel de courant, d'une phase de relaxation et d'une phase d'un deuxième appel de courant. Une batterie de démarrage selon l'invention, peut être utilisée de façon générale sur des véhicules thermiques avec un alternateur/démarreur classique, sur des véhicules hybrides ou sur des plug-ins hybrides avec un alterno-démarreur. Il est également possible de l'utiliser sur des véhicules électriques.
En se référant à la figure 1A, un premier mode de réalisation préféré d'une batterie 1 de démarrage selon l'invention, comprend une première branche 2 constituée par six cellules 3 identiques de type Lithium-ion et montées en série, et une deuxième branche 4 constituée par six super capacités 5 montées en série, ladite première et ladite deuxième branches 2,4 étant montées en parallèle au sein de ladite pile 1.
En se référant à la figure 1 B, un deuxième mode de réalisation préféré d'une batterie 10 de démarrage selon l'invention, comprend six couples 16 identiques montés en série, chacun desdits couples 16 étant composé d'une cellule 13 de type Lithium-ion et d'une super capacité 15 montées en parallèle.
Que ce soit pour le premier ou pour le deuxième mode de réalisation préféré d'une batterie de démarrage 1,10 selon l'invention, chaque cellule 3,13 de type Lithium-ion doit être composée d'un couple électrochimique bien particulier, utilisant un oxyde de titane Li4Ti5012 (LTO) comme électrode négative et un oxyde métallique lamellaire pour l'électrode positive, comme par exemple LiNixMnyCoz02 ou LiNi0.8Co0.15AI0.05O2, afin d'obtenir une tension similaire à celle des super capacités, située aux alentours de 2,2V au nominal et de 2,7V en tension max. L'obtention de cette tension similaire va faciliter leur mise en parallèle.
Chaque super capacité 5,15 est préférentiellement constituée de deux électrodes poreuses, généralement en charbon actif et imprégnées d'électrolyte, lesdites électrodes étant séparées par une membrane isolante et poreuse pour assurer la conduction ionique.
Un circuit électronique est utilisé pour permettre de rééquilibrer les cellules 3 en série, ledit circuit pouvant par exemple mettre en œuvre un circuit d'équilibrage passif via des résistances, ou actif en transférant l'énergie d'une cellule 3 à une autre. Afin de limiter les surcoûts, il est préférable de recourir à une électronique simple, basée sur des comparateurs de tensions entre les cellules 3, et à un équilibrage dit « passif ». Le circuit électronique peut aussi surveiller les tensions des cellules, et transmettre un signal à un calculateur du véhicule dans le cas d'une défaillance d'une cellule. Ce circuit électronique peut également être utilisé comme outil de diagnostic.
Pour le premier mode de réalisation préféré d'une batterie 1 de démarrage selon l'invention impliquant deux branches 2,4 distinctes, deux microcalculateurs devront être utilisés pour l'équilibrage et la surveillance des tensions. Pour le deuxième mode de réalisation préféré d'une batterie 10 de démarrage selon l'invention impliquant une seule branche comprenant plusieurs couples 16 composés chacun d'une super capacité 15 et d'une cellule 13, un seul microcalculateur suffit pour faire l'équilibrage et la mesure des tensions.
En se référant à la figure 2A, un premier mode de réalisation préféré d'un circuit électrique de véhicule, permet de connecter entre eux, un démarreur 20, un alternateur 21, des consommateurs 22 de courant tels que par exemple une climatisation ou une radio, et une batterie de démarrage 1 selon l'invention. Un interrupteur 23 placé entre la batterie de démarrage 1 et le démarreur 20 permet de connecter ou de déconnecter électriquement ces deux éléments 1,20. Ainsi, lorsque la batterie 1 est chargée en courant, l'interrupteur 23 peut fermer le circuit pour permettre à ladite batterie 1 d'activer le démarreur 20. Une fois que le démarrage a été effectif, l'interrupteur 23 peut ouvrir le circuit afin d'isoler électriquement le démarreur 20 de la batterie 20, et permettre à l'alternateur 21 de charger en courant la batterie 1 de démarrage. Quelle que soit la position de l'interrupteur 23, l'alternateur 21 alimente en courant les différents consommateurs 22 du véhicule. En se référant à la figure 2B, un deuxième mode de réalisation préféré d'un circuit électrique de véhicule se distingue du premier mode ci-avant décrit par le fait que la batterie 1 de démarrage selon l'invention, peut être équipée d'un interrupteur 24 pour isoler électriquement ladite batterie 1 du reste du circuit électrique, dans le cas par exemple d'une défaillance de l'alternateur 21.
En se référant à la figure 2C, un troisième mode de réalisation préféré d'un circuit électrique de véhicule, se distingue du premier mode ci-avant décrit par le fait que la deuxième branche 4 de la batterie 1 de démarrage selon l'invention, qui est composée d'une succession de super capacités 5 montées en série, est munie d'un interrupteur 25 et d'une boucle 26 de charge. En effet, les super capacités 5 ont une plus forte tendance à s'auto- décharger que les cellules 3 de type Lithium-ion. De ce fait, lorsque cette autodécharge devient critique et vide les cellules 3 de type Lithium-ion, il est souhaitable de l'interrompre en déconnectant les super capacités 5 au moyen de cet interrupteur 25, et d'activer la boucle de charge 26 pour recharger lesdites super capacités 5. Ainsi, lorsque l'interrupteur 25 ferme le circuit interne de la batterie 1, il permet à ladite batterie 1 de fonctionner normalement en engendrant une éventuelle décharge des super capacités 5. Lorsqu'il interrompt ce circuit interne, il active simultanément la boucle de charge 16 pour permettre auxdites super capacités 3 de se recharger.
Pour le deuxième mode de réalisation préféré d'une batterie 10 de démarrage selon l'invention, les six couples 16 « super capacité 15/cellule Lithium-ion 13 » peuvent être branchés en série pour atteindre une tension typique de batterie 10 de démarrage comprise entre 12V et 15V. Pour cette configuration et à titre d'exemple,
la plage de tension des cellules Li-ion 13 varie entre un minimum de 1 ,5V et un maximum de 2,5V, avec une valeur nominale à 2,2 V.
- la plage de tension des super capacités 15 varie entre un minimum de 0V et un maximum de 2,5 V, avec une valeur nominale à 2,2V. Pour le premier mode de réalisation préféré d'une batterie 1 de démarrage selon l'invention, impliquant une première branche 2 de six cellules 3 de type Lithium-ion montées en série et une deuxième branche 4 de six super capacités 5 montées en série, un exemple de mise en œuvre pourrait impliquer:
- six cellules 3 de type Lithium-ion de 15 Ah ayant une résistance de 1 à 2 milli-ohm à température ambiante. La capacité d'une cellule 3 peut varier en fonction des besoins liés au type de véhicule considéré.
- six supers capacités 5 de 600F ayant une résistance voisine de 1 milli- ohm.
- un circuit simple de rééquilibrage avec comparateur. Le rééquilibrage s'effectue de manière passive avec de petites résistances.
Les cellules Li-ion 3,13 ou super capacités 5,15 peuvent par exemple être cylindriques ou prismatiques et posséder une enveloppe rigide ou souple. En se référant à la figure 3, avec une batterie de démarrage 1,10 selon l'invention, le courant se partage entre les super capacités 5,15 et les cellules de type Lithium-ion 3,13 avec respectivement une répartition de 2/3, 1/3 à froid, au moment du fort pic de courant à environ 600A, correspondant au démarrage du moteur. Les premières secondes avant l'apparition de ce pic, sont consacrées au préchauffage de la batterie 1,10. Pendant les oscillations de courant, correspondant aux compressions selon la rotation du moteur, on observe que la répartition de courant entre les cellules Lithium-ion 3,13 et les super capacités 5,15 tend à s'inverser, car lesdites super capacités 5,15 se vident complètement. A la fin du profil, le courant des super capacités 5,15 est négatif, car les cellules Lithium-ion 3,13 les rechargent naturellement. On estime ce retour à l'équilibre entre 6 et 7 secondes. Il est à noter que la tension lors du pic à 600A, chute à environ 7V.
On peut imaginer des stratégies permettant de recharger les super capacités 5,15 plus rapidement, en jouant par exemple sur le dimensionnement de leur capacité et de leur résistance interne, et/ou en demandant à l'alternateur 21 du circuit électrique de délivrer quelques ampères.
Avec une batterie 1,10 de démarrage selon l'invention, le démarrage à basse température répété est possible. En effet, en se référant à la figure 5A, lors du démarrage à froid c'est la super capacité 5,15 qui va être principalement utilisée, car les cellules Lithium-ion 3,13 à froid sont beaucoup plus résistives. La flèche 30 sur cette figure matérialise le sens du courant allant de la super capacité 5,15 vers la cellule Lithium-ion 3,13 lors d'une tentative de démarrage. Ainsi, la super capacité 5,15 sera complètement déchargée après cette tentative.
En se référant à la figure 5B, dès la fin de la première tentative de démarrage, la super capacité 5,15 va être naturellement rechargée par la cellule Li-ion 3,13 branchée en parallèle, la flèche 31 sur cette figure, matérialisant le sens du courant fourni par la cellule Lithium-ion 3,13. En se référant à la figure 5C, une fois que la super capacité 5,15 aura été rechargée par la cellule Lithium-ion 3,13, le conducteur du véhicule pourra répéter l'opération de démarrage. Cette opération pourra être répétée autant de fois qu'il restera suffisamment d'énergie dans ladite cellule Li-ion 3,13.
En se référant à la figure 4, à une température de l'ordre de 20°C, les cellules Lithium ion 3,13 vont prendre plus de courant, car leur résistance interne devient plus petite que celle des super capacités 5,15. En effet, la sensibilité à la température des cellules 3,13 Li-ion est plus importante que celle des super capacités 5,15. Par exemple, de 25°C à -25°C, la résistance interne d'une cellule Lithium-ion 3,13 avec une électrode négative en oxyde de titane est multipliée par 4, alors que celle d'une super capacité 5,15 est multipliée par 1,5. L'intérêt d'une batterie 1,10 de démarrage selon l'invention, est de solliciter majoritairement les cellules Li-ion 3,13 à une température ambiante de l'ordre de 20°C. Aux plus basses températures, les résistances des cellules Lithium-ion 3,13 sont plus importantes, et ce sont donc les super capacités 5,15 qui vont être le plus sollicitées en premier. Les principaux avantages liés à l'utilisation d'une batterie 1,10 de démarrage selon l'invention, sont les suivants :
- Pour le Stop & Start : l'une des problématiques aujourd'hui des batteries au plomb se situe lors des phases de redémarrage du moteur après les phases d'arrêt court du véhicule. En effet, la batterie au plomb voit sa tension fortement s'abaisser, ce qui a un effet sur la tension du réseau de bord. Par exemple, au moment du « start», la luminosité des phares diminue un court instant de l'ordre de quelques msec. Une batterie selon l'invention permet d'éviter cette baisse de tension du fait de sa résistance plus faible, voisine de 5 milli-ohm.
- une diminution de la masse de la batterie. On passe en effet d'une masse de 20kg pour une batterie au plomb à une masse de 7 kg pour une batterie selon l'invention. Il en résulte une réduction de la masse du véhicule et donc une réduction de rémission de C02.
une diminution du volume de la batterie. En effet, le volume d'une batterie au plomb est de 8,5L, alors qu'il n'est plus que de 5L pour une batterie selon l'invention.
- un gain économique. En effet, le coût d'une batterie de démarrage n'utilisant que la technologie « Lithium-ion » ou que la technologie « super capacité », serait environ le double de celui d'une batterie selon l'invention. - possibilité d'une recharge par chargeur extérieur. La chimie
« Lithium-ion » permet de pouvoir réutiliser la batterie sans danger même après une complète décharge. En effet, le collecteur utilisé pour une anode en oxyde de titane (LTO) est en aluminium. Il n'y a donc pas de risque de dissolution du cuivre lors d'une complète décharge jusqu'à 0V, ni de risque de formation de dendrite de Cu lors d'une recharge qui peut créer un court-circuit interne. Cette technologie de batterie Li-ion à base de LTO à l'anode nous permet de lever le risque d'incident dans le cas où le client recharge sa batterie de démarrage via un chargeur.
une fonction de récupération d'énergie et d'alimentation des auxiliaires peut aussi être ajoutée.
En cas de défaillance de l'alternateur, lorsque par exemple la tension monte jusqu'à 18V, les cellules et les super capacités peuvent supporter cette surcharge sans problème de sécurité. En effet, pour une cellule Lithium-ion, il a été démontré qu'une surcharge jusqu'à 5,5V, soit 33V au niveau d'une batterie comportant 6 cellules, n'entraine pas de problème sécuritaire. Donc, même si 3 cellules sont défaillantes, il n'y a pas de risque sécuritaire.

Claims

REVENDI CATI ONS
Batterie (1,10) de démarrage pour un véhicule caractérisée en ce qu'elle comprend au moins une cellule (3,13) de type Lithium-ion composée d'une électrode négative à base d'un oxyde de titane et d'une électrode positive à base d'un oxyde métallique lamellaire, mise en parallèle avec au moins une super capacité (5,15).
Batterie de démarrage selon la revendication 1, caractérisée en ce qu'elle comprend au moins un couple (16) constitué par une cellule (13) de type Lithium-ion montée en parallèle avec une super capacité (15).
Batterie de démarrage selon la revendication 2, caractérisée en ce qu'elle comporte une pluralité de couples (16) montés en série.
Batterie de démarrage selon la revendication 1, caractérisée en ce qu'elle comprend une première branche (2) constituée par au moins deux cellules (3) de type Lithium-ion montées en série et une deuxième branche (4) constituée par au moins deux super capacités (5) montées en série, et en ce que lesdites deux branches (2,4) sont montées en parallèle.
Batterie de démarrage selon la revendication 4, caractérisée en ce qu'elle comprend le même nombre de cellules (13) de type Lithium-ion que de super capacités (15).
Batterie de démarrage selon la revendication 5, caractérisée en ce qu'elle comprend six cellules (13) de type Lithium-ion et six super capacités (15).
Batterie de démarrage selon l'une quelconque des revendications 1 à 6, caractérisée en ce que chaque super capacité (5,15) est constituée de deux électrodes poreuses en charbon actif et imprégnée d'électrolyte, et en ce que lesdites électrodes sont séparées par une membrane isolante et poreuse. Batterie de démarrage selon l'une quelconque des revendications 1 à 8, caractérisée en ce qu'elle comprend un interrupteur (24) permettant de l'isoler du reste d'un circuit électrique du véhicule, dans le cas d'une autodécharge d'au moins une super capacité (5,15).
Batterie de démarrage selon l'une quelconque des revendications 1 à 8, caractérisée en ce qu'elle comprend une boucle (26) de charge associée à un interrupteur (25), et en ce que ledit interrupteur (25) est apte à déconnecter chaque super capacité (5,15) pour la mettre en liaison avec ladite boucle (26).
PCT/FR2014/051570 2013-07-03 2014-06-24 Batterie hybride de demarrage d'un vehicule automobile WO2015001222A1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR1356504A FR3008236B1 (fr) 2013-07-03 2013-07-03 Batterie de demarrage d'un vehicule automobile
FR1356504 2013-07-03

Publications (1)

Publication Number Publication Date
WO2015001222A1 true WO2015001222A1 (fr) 2015-01-08

Family

ID=49212908

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/FR2014/051570 WO2015001222A1 (fr) 2013-07-03 2014-06-24 Batterie hybride de demarrage d'un vehicule automobile

Country Status (2)

Country Link
FR (1) FR3008236B1 (fr)
WO (1) WO2015001222A1 (fr)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018006422A1 (fr) * 2016-07-08 2018-01-11 深圳市思倍生电子科技有限公司 Bloc de puissance de démarrage portable
WO2019224527A1 (fr) * 2018-05-21 2019-11-28 Bae Systems Plc Agencement de supercondensateur pour améliorer les performances de puissance électronique de véhicules flottants
CN110611118A (zh) * 2018-06-15 2019-12-24 沈明东 一种锂离子二次电池
US10903016B2 (en) 2015-12-08 2021-01-26 Avx Corporation Voltage tunable multilayer capacitor

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20070161455A1 (en) * 2006-01-09 2007-07-12 General Electric Company Hybrid vehicle and method of assembling same
DE102006048872A1 (de) 2006-10-17 2008-05-08 Dr.Ing.H.C. F. Porsche Ag Bordnetz eines Kraftfahrzeugs
JP2009199830A (ja) * 2008-02-20 2009-09-03 Daikin Ind Ltd 蓄電装置
CN101888001A (zh) * 2010-06-21 2010-11-17 韩福忠 复合电池及其制备方法和应用
WO2011097196A2 (fr) * 2010-02-03 2011-08-11 International Battery, Inc. Unité de stockage d'énergie étendue
US20120235473A1 (en) * 2011-03-16 2012-09-20 Johnson Controls Technology Company Systems and methods for overcharge protection and charge balance in combined energy source systems

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20070161455A1 (en) * 2006-01-09 2007-07-12 General Electric Company Hybrid vehicle and method of assembling same
DE102006048872A1 (de) 2006-10-17 2008-05-08 Dr.Ing.H.C. F. Porsche Ag Bordnetz eines Kraftfahrzeugs
JP2009199830A (ja) * 2008-02-20 2009-09-03 Daikin Ind Ltd 蓄電装置
WO2011097196A2 (fr) * 2010-02-03 2011-08-11 International Battery, Inc. Unité de stockage d'énergie étendue
CN101888001A (zh) * 2010-06-21 2010-11-17 韩福忠 复合电池及其制备方法和应用
US20120235473A1 (en) * 2011-03-16 2012-09-20 Johnson Controls Technology Company Systems and methods for overcharge protection and charge balance in combined energy source systems

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10903016B2 (en) 2015-12-08 2021-01-26 Avx Corporation Voltage tunable multilayer capacitor
WO2018006422A1 (fr) * 2016-07-08 2018-01-11 深圳市思倍生电子科技有限公司 Bloc de puissance de démarrage portable
WO2019224527A1 (fr) * 2018-05-21 2019-11-28 Bae Systems Plc Agencement de supercondensateur pour améliorer les performances de puissance électronique de véhicules flottants
GB2574196A (en) * 2018-05-21 2019-12-04 Bae Systems Plc Supercapacitor arrangement for enhancing electronic power performance of waterborne vehicles
GB2574196B (en) * 2018-05-21 2022-08-24 Bae Systems Plc Supercapacitor arrangement for enhancing electronic power performance of waterborne vehicles
US11858359B2 (en) 2018-05-21 2024-01-02 Bae Systems Plc Supercapacitor arrangement for enhancing electronic power performance of waterborne vehicles
CN110611118A (zh) * 2018-06-15 2019-12-24 沈明东 一种锂离子二次电池

Also Published As

Publication number Publication date
FR3008236B1 (fr) 2016-10-28
FR3008236A1 (fr) 2015-01-09

Similar Documents

Publication Publication Date Title
US10711757B2 (en) Battery pack with temperature sensing unit
JP6599975B2 (ja) 電池を低温で高速充電するためのシステムおよび方法
EP2684274B1 (fr) Systeme d'equilibrage de charge pour batteries
EP2957018B1 (fr) Gestion de la charge d'une batterie
US10608291B2 (en) Battery pack having a supplemental power supply
CA2911485C (fr) Batterie rechargeable a multiples niveaux de resistance
JP2009072039A (ja) 電源システム
EP2771960A2 (fr) Procede d'equilibrage du niveau de charge et de decharge d'une batterie par commutation de ses blocs de cellules
WO2011138381A2 (fr) Systeme d'equilibrage pour batterie de puissance et procede d'equilibrage de charge correspondant
US20140253045A1 (en) Method and apparatus for battery control
FR2668865A1 (fr) Systeme de demarrage de moteur a combustion interne.
EP2994341A1 (fr) Système de sécurisation pour module de batterie d'accumulateurs et procédé d'équilibrage d'un module de batterie correspondant
WO2015001222A1 (fr) Batterie hybride de demarrage d'un vehicule automobile
WO2017086400A1 (fr) Système de batterie d'accumulateurs, et dispositif et procédé de batterie d'accumulateurs
EP2816221A1 (fr) Dispositif de démarrage de secours pour véhicules avec moteur à combustion interne
EP2859636B1 (fr) Batterie d'accumulateurs protegee contre les courts-circuits externes
EP2722963B1 (fr) Système d'alimentation électrique à capacité modulable
EP2079125B1 (fr) Procédé de gestion de la charge d'une batterie
EP3972875A1 (fr) Système de stockage hybride d'énergie électrique
FR2849298A1 (fr) Dispositif de controle de l'etat de charge, a tension constante, d'un ensemble de batterie a generateurs electrochimiques secondaires
WO2023105125A1 (fr) Surveillance de la recharge en courant continu d'une batterie de véhicule pour la détection d'une ouverture de circuit
FR3094680A1 (fr) Vehicule automobile comprenant un circuit d’alimentation electrique a double accumulateur au lithium
FR3060232A1 (fr) Systeme d'alimentation electrique comprenant la mise en parallele d'un accumulateur electrochimique et d'un supercondensateur
FR3122786A1 (fr) Procede de gestion d’un niveau de charge d’un stockeur d’energie basse tension
FR2978625A1 (fr) Methode et dispositif d'equilibrage des batteries d'accumulateurs electriques

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14742268

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14742268

Country of ref document: EP

Kind code of ref document: A1