WO2015000563A1 - Verfahren zum ermitteln eines wasserstofftankdrucks - Google Patents

Verfahren zum ermitteln eines wasserstofftankdrucks Download PDF

Info

Publication number
WO2015000563A1
WO2015000563A1 PCT/EP2014/001735 EP2014001735W WO2015000563A1 WO 2015000563 A1 WO2015000563 A1 WO 2015000563A1 EP 2014001735 W EP2014001735 W EP 2014001735W WO 2015000563 A1 WO2015000563 A1 WO 2015000563A1
Authority
WO
WIPO (PCT)
Prior art keywords
tank
pressure
filling line
hydrogen
filling
Prior art date
Application number
PCT/EP2014/001735
Other languages
English (en)
French (fr)
Inventor
Wilfried-Henning Reese
Harald Kraus
Tobias Kederer
Michael WESTERMEIER
Original Assignee
Linde Aktiengesellschaft
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Linde Aktiengesellschaft filed Critical Linde Aktiengesellschaft
Priority to US14/898,604 priority Critical patent/US20160131307A1/en
Priority to EP14737145.4A priority patent/EP3017236A1/de
Priority to JP2016522320A priority patent/JP2016527450A/ja
Priority to CN201480031288.7A priority patent/CN105264280A/zh
Priority to BR112015028521A priority patent/BR112015028521A2/pt
Priority to KR1020157037235A priority patent/KR20160029757A/ko
Priority to CA2911197A priority patent/CA2911197A1/en
Publication of WO2015000563A1 publication Critical patent/WO2015000563A1/de

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C5/00Methods or apparatus for filling containers with liquefied, solidified, or compressed gases under pressures
    • F17C5/002Automated filling apparatus
    • F17C5/007Automated filling apparatus for individual gas tanks or containers, e.g. in vehicles
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C5/00Methods or apparatus for filling containers with liquefied, solidified, or compressed gases under pressures
    • F17C5/02Methods or apparatus for filling containers with liquefied, solidified, or compressed gases under pressures for filling with liquefied gases
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16KVALVES; TAPS; COCKS; ACTUATING-FLOATS; DEVICES FOR VENTING OR AERATING
    • F16K15/00Check valves
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16KVALVES; TAPS; COCKS; ACTUATING-FLOATS; DEVICES FOR VENTING OR AERATING
    • F16K17/00Safety valves; Equalising valves, e.g. pressure relief valves
    • F16K17/02Safety valves; Equalising valves, e.g. pressure relief valves opening on surplus pressure on one side; closing on insufficient pressure on one side
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C9/00Methods or apparatus for discharging liquefied or solidified gases from vessels not under pressure
    • F17C9/02Methods or apparatus for discharging liquefied or solidified gases from vessels not under pressure with change of state, e.g. vaporisation
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01LMEASURING FORCE, STRESS, TORQUE, WORK, MECHANICAL POWER, MECHANICAL EFFICIENCY, OR FLUID PRESSURE
    • G01L7/00Measuring the steady or quasi-steady pressure of a fluid or a fluent solid material by mechanical or fluid pressure-sensitive elements
    • G01L7/02Measuring the steady or quasi-steady pressure of a fluid or a fluent solid material by mechanical or fluid pressure-sensitive elements in the form of elastically-deformable gauges
    • G01L7/024Measuring the steady or quasi-steady pressure of a fluid or a fluent solid material by mechanical or fluid pressure-sensitive elements in the form of elastically-deformable gauges with mechanical transmitting or indicating means
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01MTESTING STATIC OR DYNAMIC BALANCE OF MACHINES OR STRUCTURES; TESTING OF STRUCTURES OR APPARATUS, NOT OTHERWISE PROVIDED FOR
    • G01M3/00Investigating fluid-tightness of structures
    • G01M3/02Investigating fluid-tightness of structures by using fluid or vacuum
    • G01M3/26Investigating fluid-tightness of structures by using fluid or vacuum by measuring rate of loss or gain of fluid, e.g. by pressure-responsive devices, by flow detectors
    • G01M3/32Investigating fluid-tightness of structures by using fluid or vacuum by measuring rate of loss or gain of fluid, e.g. by pressure-responsive devices, by flow detectors for containers, e.g. radiators
    • G01M3/3236Investigating fluid-tightness of structures by using fluid or vacuum by measuring rate of loss or gain of fluid, e.g. by pressure-responsive devices, by flow detectors for containers, e.g. radiators by monitoring the interior space of the containers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2205/00Vessel construction, in particular mounting arrangements, attachments or identifications means
    • F17C2205/03Fluid connections, filters, valves, closure means or other attachments
    • F17C2205/0302Fittings, valves, filters, or components in connection with the gas storage device
    • F17C2205/0323Valves
    • F17C2205/0335Check-valves or non-return valves
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2221/00Handled fluid, in particular type of fluid
    • F17C2221/01Pure fluids
    • F17C2221/012Hydrogen
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2223/00Handled fluid before transfer, i.e. state of fluid when stored in the vessel or before transfer from the vessel
    • F17C2223/01Handled fluid before transfer, i.e. state of fluid when stored in the vessel or before transfer from the vessel characterised by the phase
    • F17C2223/0146Two-phase
    • F17C2223/0153Liquefied gas, e.g. LPG, GPL
    • F17C2223/0161Liquefied gas, e.g. LPG, GPL cryogenic, e.g. LNG, GNL, PLNG
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2223/00Handled fluid before transfer, i.e. state of fluid when stored in the vessel or before transfer from the vessel
    • F17C2223/03Handled fluid before transfer, i.e. state of fluid when stored in the vessel or before transfer from the vessel characterised by the pressure level
    • F17C2223/033Small pressure, e.g. for liquefied gas
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2225/00Handled fluid after transfer, i.e. state of fluid after transfer from the vessel
    • F17C2225/01Handled fluid after transfer, i.e. state of fluid after transfer from the vessel characterised by the phase
    • F17C2225/0107Single phase
    • F17C2225/0123Single phase gaseous, e.g. CNG, GNC
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2225/00Handled fluid after transfer, i.e. state of fluid after transfer from the vessel
    • F17C2225/03Handled fluid after transfer, i.e. state of fluid after transfer from the vessel characterised by the pressure level
    • F17C2225/036Very high pressure, i.e. above 80 bars
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2227/00Transfer of fluids, i.e. method or means for transferring the fluid; Heat exchange with the fluid
    • F17C2227/01Propulsion of the fluid
    • F17C2227/0128Propulsion of the fluid with pumps or compressors
    • F17C2227/0135Pumps
    • F17C2227/0142Pumps with specified pump type, e.g. piston or impulsive type
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2227/00Transfer of fluids, i.e. method or means for transferring the fluid; Heat exchange with the fluid
    • F17C2227/03Heat exchange with the fluid
    • F17C2227/0302Heat exchange with the fluid by heating
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2227/00Transfer of fluids, i.e. method or means for transferring the fluid; Heat exchange with the fluid
    • F17C2227/03Heat exchange with the fluid
    • F17C2227/0367Localisation of heat exchange
    • F17C2227/0388Localisation of heat exchange separate
    • F17C2227/0393Localisation of heat exchange separate using a vaporiser
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2250/00Accessories; Control means; Indicating, measuring or monitoring of parameters
    • F17C2250/06Controlling or regulating of parameters as output values
    • F17C2250/0605Parameters
    • F17C2250/0626Pressure
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2250/00Accessories; Control means; Indicating, measuring or monitoring of parameters
    • F17C2250/06Controlling or regulating of parameters as output values
    • F17C2250/0689Methods for controlling or regulating
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2250/00Accessories; Control means; Indicating, measuring or monitoring of parameters
    • F17C2250/06Controlling or regulating of parameters as output values
    • F17C2250/0689Methods for controlling or regulating
    • F17C2250/0694Methods for controlling or regulating with calculations
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2260/00Purposes of gas storage and gas handling
    • F17C2260/02Improving properties related to fluid or fluid transfer
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2270/00Applications
    • F17C2270/01Applications for fluid transport or storage
    • F17C2270/0134Applications for fluid transport or storage placed above the ground
    • F17C2270/0139Fuel stations
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2270/00Applications
    • F17C2270/01Applications for fluid transport or storage
    • F17C2270/0165Applications for fluid transport or storage on the road
    • F17C2270/0168Applications for fluid transport or storage on the road by vehicles
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/32Hydrogen storage

Definitions

  • the invention relates to a method for determining a tank pressure in a tank before refueling the tank with pressurized gaseous hydrogen according to the preamble of claim 1.
  • Vehicles that fill up with hydrogen gas as fuel require specially designed filling stations, which conduct the hydrogen under relatively high pressure (up to 850 bar) into the vehicle tank.
  • Such filling stations may have a vacuum-insulated, cryostatic storage with liquid hydrogen (-253 ⁇ ), which serves as a reservoir for the hydrogen supply to the gas station. Since the hydrogen is to be in the gaseous phase for refueling, such a refueling station usually has gaseous storage tanks that feed from the reservoir and from which refueling of a tank (e.g., a hydrogen powered vehicle) takes place.
  • SAE J2601 envisages that hydrogen-powered vehicles will be refueled to 700 bar within three minutes without causing the temperature of the vehicle's tank to rise above 85 ⁇ .
  • the SAE J2601 standard provides that a pressure and leak test be carried out before refueling the tank, among other things to ensure that the filling station filling line has been correctly connected to the vehicle tank.
  • a pressure and leak test be carried out before refueling the tank, among other things to ensure that the filling station filling line has been correctly connected to the vehicle tank.
  • the initially unknown pressure in the tank of the vehicle is determined by the tank is briefly opened with a connected filling line by a pressure surge to effect a pressure equalization between the filling pipe and the tank of the vehicle.
  • the applied pressure in the filling line then corresponds to the tank pressure of the tank.
  • the pressure surge for the pressure and tightness test is usually carried out directly from a high-pressure gas storage tank, so that downstream elements in the filling line, such as pressure transmitter, thermometer,
  • Pressure peak in the downstream elements which is due to a pressurized residual volume in parts of the filling line.
  • Such load changes in the filling line contribute to the faster wear of the downstream elements and thus to a shortening of the life of these components.
  • the present invention is based on the problem to provide a method for determining a tank pressure in a tank, in which such load changes are reduced in the filling line.
  • the hydrogen is pumped by means of a pump from the memory in the filling line and this is measured in the filling line adjusting filling line pressure, wherein the check valve is opened when the filling line pressure exceeds the tank pressure, and wherein the tank pressure than the at Opening the check valve prevailing Arttechnischstik is determined.
  • the pump is a cryogenic pump which pumps hydrogen at a constant mass flow from the reservoir into the filling line, that reservoir in particular being a vacuum-insulated, cryostatic reservoir.
  • the liquid hydrogen is compressed by the pump before it is converted via a high-pressure evaporator into the gaseous phase, which is then fed into the filling line.
  • such a pump is preferably designed as a piston pump, which pumps a certain volume per piston stroke, which corresponds in particular to the cylinder volume of the piston pump, into the filling line.
  • the pressure in the filling line can be increased almost continuously until the filling line pressure is sufficient to press the check valve. This ensures that the pump can in particular depress the filling line to approx. 850 bar in order to open the check valve with certainty;
  • the tank of the vehicle can be depressed with hydrogen up to a maximum of 700 bar.
  • the pressure in the filling line is preferably detected by a pressure transmitter so that the time profile of the pressure in the filling line can be reconstructed.
  • the filling line pressure corresponds to the tank pressure.
  • the tank pressure is determined on the basis of the time profile of the filling line pressure.
  • the tank pressure is determined as the fill line pressure that prevails after the timing of the fill line pressure has leveled off. This is particularly the case when the check valve rises and the volume to be oppressed by the pump becomes larger, since the tank represents an additional volume to the filling line. As a result, the pressure increase at constant pump power is lower.
  • the tank starting from the determined tank pressure, is refueled with hydrogen at a predefined pressure ramp.
  • a constant pressure rate which is selected in particular according to the aforementioned standard as a function of the ambient temperature and the pressure in the vehicle tank.
  • Fig. 1 is a schematic representation of a device for filling a
  • FIG. 2 shows a schematic illustration of a pressure curve in the filling line during a pressure and leak test and the subsequent refueling of the tank;
  • FIG. 1 shows a schematic representation of a device for filling a tank with gaseous hydrogen, which has a memory 1, which preferably stores liquid hydrogen.
  • the reservoir 1 is connected via a pumping line 6 to a pump 3, which is connected via a filling line 2 and a check valve 4 of the tank 5 to be refueled with the tank 5.
  • FIG. 2 shows the schematic, temporal pressure curve 11 in the filling line 2 during the implementation of the method according to the invention.
  • the filling line pressure p is plotted on the ordinate
  • the abscissa shows the time t during the pressure or tightness test and the subsequent refueling of the tank 5.
  • a pressure increase is recorded 7, by pressing the

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Filling Or Discharging Of Gas Storage Vessels (AREA)

Abstract

Die Erfindung betrifft ein Verfahren zum Ermitteln eines Tankdrucks (12) in einem Tank (5) vor einem Betanken des Tanks (5) mit unter Druck stehendem, gasförmigem Wasserstoff, bei dem ein Speicher (1), in dem der zum Betanken zu verwendende Wasserstoff als flüssiger Wasserstoff gespeichert ist, über eine Füllleitung (2) sowie ein nachfolgendes Rückschlagventil (4) des Tanks (5) mit dem Tank (5) verbunden ist, wobei mittels einer Pumpe (3) Wasserstoff aus dem Speicher (1) in die Füllleitung (2) gepumpt wird und der sich hierbei in der Füllleitung (2) einstellende Füllleitungsdruck (11) gemessen wird, wobei das Rückschlagventil (4) geöffnet wird, wenn der Füllleitungsdruck (11) den Tankdruck (12) überschreitet, und wobei der Tankdruck (12) als der beim Öffnen des Rückschlagventils (4) herrschende Füllleitungsdruck (11) bestimmt wird.

Description

Beschreibung Verfahren zum Ermitteln eines Wasserstofftankdrucks
Die Erfindung betrifft ein Verfahren zum Ermitteln eines Tankdrucks in einem Tank vor einem Betanken des Tanks mit unter Druck stehendem, gasförmigem Wasserstoff gemäß dem Oberbegriff des Anspruchs 1.
Fahrzeuge, die als Treibstoff gasförmigen Wasserstoff tanken, benötigen speziell ausgebildete Tankstellen, die den unter vergleichsweise hohem Druck stehenden Wasserstoff (bis zu 850 bar) in den Fahrzeug Tank leiten. Derartige Tankstellen können einen vakuumisolierten, kryostatischen Speicher mit flüssigem Wasserstoff (-253 Ό) aufweisen, der als Reservoir für die Wass erstoffversorgung der Tankstelle dient. Da der Wasserstoff für die Betankung in der gasförmigen Phase vorliegen soll, verfügt eine solche Tankstelle für gewöhnlich über Gaspufferspeicher, die sich aus dem Reservoir speisen und aus denen dann die Betankung eines Tanks (z.B. eines wasserstoffbetriebenen Fahrzeugs) stattfindet.
Um die Sicherheit (Explosionsgefahr) für die Umwelt beim Betanken von Fahrzeugen dieser Art zu gewährleisten und um einen Standard für den Betankungsprozess zu schaffen, einigte sich ein Konsortium bestehend aus mehreren Fahrzeugherstellern auf den Standard SAE J2601. Der Standard gibt u.a. sicherheitsrelevante Grenzen und Leistungsanforderungen für den Tankvorgang insbesondere von Fahrzeugen ohne fahrzeugseitige Kommunikation vor. SAE J2601 sieht vor, dass wasserstoffgetriebene Fahrzeuge innerhalb von drei Minuten auf 700 bar betankt werden ohne dass dabei die Temperatur des Tanks des Fahrzeugs über eine Temperatur von 85 Ό ansteigt.
Des Weiteren sieht der Standard SAE J2601 vor, dass vor dem Betanken des Tanks ein Druck- und Dichtheitstest durchgeführt wird, unter anderem um zu gewährleisten, dass die Füllleitung der Tankstelle korrekt am Fahrzeugtank angeschlossen wurde. Bei besagtem Drucktest wird der zunächst unbekannte Druck im Tank des Fahrzeugs ermittelt, indem der Tank bei angeschlossener Füllleitung durch einen Druckstoß kurz geöffnet wird, um einen Druckausgleich zwischen der Füllleitung und dem Tank des Fahrzeugs zu bewirken. Der in der Füllleitung anliegende Druck entspricht dann dem Tankdruck des Tanks. Der Druckstoß für den Druck- und Dichtheitstest wird für gewöhnlich direkt von einem unter Hochdruck stehenden Gaspufferspeicher durchgeführt, so dass nachgeschaltete Elemente in der Füllleitung, wie z.B. Drucktransmitter, Thermometer,
Durchflussmessgeräte, Ventile und Schraubverbindungen diesem Druckstoß (ca. 850 bar) unmittelbar ausgesetzt sind. Des Weiteren kommt es bei einem solchen Drucktest beim Start des eigentlichen Betankungsvorgangs oftmals zu einem weiteren
Druckpeak in den nachgeschalteten Elementen, der auf ein unter Druck stehendes Restvolumen in Teilen der Füllleitung zurückzuführen ist. Derartige Lastwechsel in der Füllleitung tragen zur schnelleren Abnutzung der nachgeschalteten Elemente und damit zu einer Verkürzung der Lebensdauer dieser Komponenten bei.
Hiervon ausgehend liegt daher der vorliegenden Erfindung das Problem zugrunde, ein Verfahren zum Ermitteln eines Tankdrucks in einem Tank zu schaffen, bei dem derartige Lastwechsel in der Füllleitung gemindert sind.
Dieses Problem wird durch ein Verfahren mit den Merkmalen des Anspruchs 1 gelöst.
Danach ist vorgesehen, dass der Wasserstoff mittels einer Pumpe aus dem Speicher in die Füllleitung gepumpt wird und der sich hierbei in der Füllleitung einstellende Füllleitungsdruck gemessen wird, wobei das Rückschlagventil geöffnet wird, wenn der Füllleitungsdruck den Tankdruck überschreitet, und wobei der Tankdruck als der beim Öffnen des Rückschlagventils herrschende Füllleitungsdruck bestimmt wird. Bevorzugt handelt es sich bei der Pumpe um eine kryogene Pumpe, die Wasserstoff mit einem konstanten Massenstrom aus dem Speicher in die Füllleitung pumpt, wobei jener Speicher insbesondere ein vakuumisolierter, kryostatischer Speicher ist.
Vorzugsweise wird der flüssige Wasserstoff durch die Pumpe verdichtet, bevor er über einen Hochdruckverdampfer in die gasförmige Phase überführt wird, die dann in die Füllleitung eingespeist wird.
Des Weiteren ist eine solche Pumpe vorzugsweise als Kolbenpumpe ausgebildet, die pro Kolbenhub ein bestimmtes Volumen, das insbesondere dem Zylindervolumen der Kolbenpumpe entspricht, in die Füllleitung pumpt. Auf diese Weise kann annährend kontinuierlich der Druck in der Füllleitung erhöht werden, und zwar solange, bis der Füllleitungsdruck ausreicht, um das Rückschlagventil aufzudrücken. Dabei wird sichergestellt, dass die Pumpe die Füllleitung insbesondere auf ca. 850 bar bedrücken kann, um das Rückschlagventil mit Sicherheit zu öffnen; der Tank des Fahrzeugs kann mit Wasserstoff bis maximal 700 bar bedrückt sein.
Der Druck in der Füllleitung wird vorzugsweise durch einen Drucktransmitter erfasst, so dass der zeitliche Verlauf des Drucks in der Füllleitung rekonstruiert werden kann. Insbesondere wenn das Rückschlagventil geöffnet ist, entspricht der Füllleitungsdruck dem Tankdruck. In einer Variante der Erfindung wird daher der Tankdruck anhand des zeitlichen Verlaufs des Füllleitungsdrucks ermittelt.
Diesbezüglich wird in einer bevorzugten Ausführungsform der Erfindung der Tankdruck als der Füllleitungsdruck bestimmt, der nach einem Abflachen des zeitlichen Verlaufs des Füllleitungsdrucks herrscht. Dies ist insbesondere dann der Fall, wenn das Rückschlagventil aufgeht und das durch die Pumpe zu bedrückende Volumen größer wird, da der Tank ein zusätzliches Volumen zur Füllleitung darstellt. Dadurch wird der Druckanstieg bei gleichbleibender Pumpleistung geringer.
In einer Variante der Erfindung wird nach einem Ermitteln des Tankdrucks zur
Durchführung eines Dichtheitstests der Füllleitung über eine vordefinierte Zeitspanne von vorzugsweise 5 bis 25 Sekunden zunächst kein weiterer Wasserstoff in den Tank gepumpt, wobei insbesondere bei einem konstanten zeitlichen Verlauf des
Füllleitungsdrucks über jene Zeitspanne auf eine dichte Füllleitung geschlossen wird. Hier wird insbesondere getestet, ob die Füllleitung korrekt an den Fahrzeugtank angeschlossen ist, und ob ein Leck in der Verbindung zum Tank, das ein Ausströmen von u.U. erheblichen Mengen von Wasserstoff während des sich anschließenden Betankungsvorgangs zur Folge hätte, ausgeschlossen werden kann.
Vorzugsweise wird im Falle einer dichten Füllleitung der Tank, ausgehend vom ermittelten Tankdruck, mit einer vordefinierten Druckrampe mit Wasserstoff betankt. Dies geschieht insbesondere mit einer konstanten Druckrate, die insbesondere nach dem vorgenannten Standard in Abhängigkeit von der Umgebungstemperatur und dem Druck im Fahrzeugtank gewählt wird. Weitere Einzelheiten und Vorteile der Erfindung sollen durch die nachfolgenden Figurenbeschreibungen eines Ausführungsbeispiels anhand der Figuren erläutert werden. Es zeigen:
Fig. 1 eine schematische Darstellung einer Einrichtung zum Befüllen eines
Tanks mit gasförmigem Wasserstoff; und Fig. 2 eine schematische Darstellung eines Druckverlaufs in der Füllleitung während eines Druck- und Dichtheitstests und der anschließenden Betankung des Tanks;
Figur 1 zeigt eine schematische Darstellung einer Einrichtung zum Befüllen eines Tanks mit gasförmigem Wasserstoff, die einen Speicher 1 aufweist, der vorzugsweise flüssigen Wasserstoff speichert. Der Speicher 1 ist dabei über eine Pumpleitung 6 mit einer Pumpe 3 verbunden, die über eine Füllleitung 2 und einem Rückschlagventil 4 des zu betankenden Tanks 5 mit dem Tank 5 verbunden ist. Figur 2 zeigt den schematischen, zeitlichen Druckverlauf 11 in der Füllleitung 2 während der Durchführung des erfindungsgemäßen Verfahrens. Dabei ist auf der Ordinate der Füllleitungsdruck p aufgetragen, die Abszisse zeigt die Zeit t während des Druck- bzw. Dichtigkeitstests und der nachfolgenden Betankung des Tanks 5. Zunächst ist ein Druckanstieg 7 zu verzeichnen, der durch das Bedrücken der
Füllleitung 2 mittels der Pumpe 3 zustande kommt, aber anfänglich zu gering ist, um das Rückschlagventil 4 des Tanks 5 zu öffnen. Sobald das Rückschlagventil 4 durch fortlaufendes Pumpen der Pumpe 3 geöffnet ist, flacht der Druckanstieg 8 ab, da ein zusätzliches Volumen, nämlich das des Tanks 5, bedrückt werden muss. Der im Tank 5 herrschende Tankdruck 12 ist nunmehr der in der Füllleitung 2 gemessene
Füllleitungsdruck p. Nach Feststellen des abgeflachten Druckanstiegs 8, folgt der Dichtheitstest 9, bei dem über einen vordefinierten Zeitraum kein weiterer Wasserstoff in den Tank 5 gepumpt wird. Bleibt der Druck 9 in der Füllleitung 2 idealerweise konstant, kann auf eine dichte Füllleitung 2 bzw. Verbindung zum Tank 5 geschlossen werden. Sobald der Dichtheitstest 9 erfolgreich durchgeführt wurde, beginnt der eigentliche Tankvorgang mit einer vordefinierten Druckrampe 10.
Bezugszeichenliste
1 Speicher
2 Füllleitung
3 Pumpe
4 Rückschlagventil
5 Tank
6 Pumpleitung
7 Druckanstieg in der Füllleitung
8 Abflachen des Druckanstiegs
9 Dichtheitstest
10 Druckrampe
11 Druckverlauf
12 Tankdruck
P Füllleitungsdruck
T Zeit
V Hochdruckverdampfer

Claims

Patentansprüche
1. Verfahren zum Ermitteln eines Tankdrucks (12) in einem Tank (5) vor einem Betanken des Tanks (5) mit unter Druck stehendem, gasförmigem Wasserstoff, bei dem ein Speicher (1 ), in dem der zum Betanken zu verwendende Wasserstoff als flüssiger Wasserstoff gespeichert ist, über eine Füllleitung (2) sowie ein
nachfolgendes Rückschlagventil (4) des Tanks (5) mit dem Tank (5) verbunden ist, dadurch gekennzeichnet, dass mittels einer Pumpe (3) Wasserstoff aus dem Speicher (1 ) in die Füllleitung (2) gepumpt wird und der sich hierbei in der
Füllleitung (2) einstellende Füllleitungsdruck (1 1 ) gemessen wird, wobei das Rückschlagventil (4) geöffnet wird, wenn der Füllleitungsdruck (11 ) den Tankdruck (12) überschreitet, und wobei der Tankdruck (12) als der beim Öffnen des
Rückschlagventils (4) herrschende Füllleitungsdruck (11 ) bestimmt wird.
Verfahren nach Anspruch 1 , dadurch gekennzeichnet, dass der flüssige
Wasserstoff stromab der Pumpe (3) in die gasförmige Phase überführt wird, insbesondere mittels eines Hochdruckverdampfers (V), die dann in die Füllleitung (2) eingespeist wird.
Verfahren nach Anspruch 1 oder 2, dadurch gekennzeichnet, dass der
Tankdruck (12) anhand des zeitlichen Verlaufs des Füllleitungsdrucks (11 ) ermittelt wird.
Verfahren nach einem der vorhergehenden Ansprüche, dadurch
gekennzeichnet, dass der Tankdruck (12) als der Füllleitungsdruck (1 1 ) bestimmt wird, der nach einem Abflachen (8) des zeitlichen Verlaufs des Füllleitungsdrucks (11 ) herrscht.
Verfahren nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass nach einem Ermitteln des Tankdrucks (12) zur Durchführung eines
Dichtheitstests (9) der Füllleitung (2) über eine vordefinierte Zeitspanne zunächst kein weiterer Wasserstoff in den Tank (5) gepumpt wird, wobei insbesondere bei einem konstanten zeitlichen Verlauf des Füllleitungsdrucks (11 ) über jene
Zeitspanne auf eine dichte Füllleitung (2) geschlossen wird. Verfahren nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass der Tank (5) ausgehend vom ermittelten Tankdruck (12) mit einer vordefinierten Druckrampe (10) mit Wasserstoff betankt wird.
PCT/EP2014/001735 2013-07-02 2014-06-26 Verfahren zum ermitteln eines wasserstofftankdrucks WO2015000563A1 (de)

Priority Applications (7)

Application Number Priority Date Filing Date Title
US14/898,604 US20160131307A1 (en) 2013-07-02 2014-06-26 Method for determining a hydrogen tank pressure
EP14737145.4A EP3017236A1 (de) 2013-07-02 2014-06-26 Verfahren zum ermitteln eines wasserstofftankdrucks
JP2016522320A JP2016527450A (ja) 2013-07-02 2014-06-26 水素タンク圧力を求める方法
CN201480031288.7A CN105264280A (zh) 2013-07-02 2014-06-26 确定氢气罐压力的方法
BR112015028521A BR112015028521A2 (pt) 2013-07-02 2014-06-26 processo para determinar uma pressão de tanque de hidrogênio
KR1020157037235A KR20160029757A (ko) 2013-07-02 2014-06-26 수소 탱크 압력을 결정하기 위한 방법
CA2911197A CA2911197A1 (en) 2013-07-02 2014-06-26 Method for determining a hydrogen tank pressure

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102013011052.1 2013-07-02
DE201310011052 DE102013011052A1 (de) 2013-07-02 2013-07-02 Verfahren zum Ermitteln eines Wasserstofftankdrucks

Publications (1)

Publication Number Publication Date
WO2015000563A1 true WO2015000563A1 (de) 2015-01-08

Family

ID=51167843

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2014/001735 WO2015000563A1 (de) 2013-07-02 2014-06-26 Verfahren zum ermitteln eines wasserstofftankdrucks

Country Status (9)

Country Link
US (1) US20160131307A1 (de)
EP (1) EP3017236A1 (de)
JP (1) JP2016527450A (de)
KR (1) KR20160029757A (de)
CN (1) CN105264280A (de)
BR (1) BR112015028521A2 (de)
CA (1) CA2911197A1 (de)
DE (1) DE102013011052A1 (de)
WO (1) WO2015000563A1 (de)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR3080906B1 (fr) * 2018-05-07 2021-01-15 Air Liquide Procede et installation de stockage et de distribution d'hydrogene liquefie
US10921037B1 (en) * 2019-10-30 2021-02-16 Reflect Scientific Inc. Cryogenic liquid chiller with multi-fill points optimized for efficiency, capability, and versatility

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6152191A (en) * 1999-04-07 2000-11-28 Fuelmaker Corporation Apparatus and method for controlling and prevention of venting of gaseous fuel to atmosphere from a vehicle tank at completion of a fuelling process
DE102009037611A1 (de) * 2009-08-14 2011-03-03 Linde Aktiengesellschaft Dichtheitsprüfung während des Befüllens eines Speicherbehälters
DE102009039645A1 (de) * 2009-09-01 2011-03-10 Linde Aktiengesellschaft Befüllen von Speicherbehältern mit verdichteten Medien

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6354088B1 (en) * 2000-10-13 2002-03-12 Chart Inc. System and method for dispensing cryogenic liquids
US6619336B2 (en) * 2002-02-14 2003-09-16 Air Products And Chemicals, Inc. System and method for dispensing pressurized gas
US6810924B2 (en) * 2003-03-17 2004-11-02 Praxair Technology, Inc. Compressed gas stream introduction method and filling station
US7168464B2 (en) * 2004-09-09 2007-01-30 Pinnacle Cng Systems, Llc Dual-service system and method for compressing and dispensing natural gas and hydrogen
US20070079892A1 (en) * 2005-10-10 2007-04-12 Cohen Joseph P Gas filling system
US7568507B2 (en) * 2005-12-06 2009-08-04 Air Products And Chemicals, Inc. Diagnostic method and apparatus for a pressurized gas supply system
JP5332933B2 (ja) * 2009-06-17 2013-11-06 トヨタ自動車株式会社 水素充填システム
DE112009005107B4 (de) * 2009-07-29 2017-10-19 Toyota Jidosha Kabushiki Kaisha Gasabfüllsystem
JP2011080495A (ja) * 2009-10-05 2011-04-21 National Institute Of Advanced Industrial Science & Technology 水素充填システムの水素用熱交換器
JP5261408B2 (ja) * 2010-01-25 2013-08-14 トヨタ自動車株式会社 燃料ガスステーション、燃料ガス充填システム、燃料ガス供給方法
KR101588173B1 (ko) * 2011-04-26 2016-01-25 가부시키가이샤 고베 세이코쇼 수소 스테이션
KR101303560B1 (ko) * 2011-11-17 2013-09-09 기아자동차주식회사 차량용 엘피지 봄베의 압력유지시스템
CN202938010U (zh) * 2012-11-27 2013-05-15 武汉钢铁(集团)公司 一种自动充装系统

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6152191A (en) * 1999-04-07 2000-11-28 Fuelmaker Corporation Apparatus and method for controlling and prevention of venting of gaseous fuel to atmosphere from a vehicle tank at completion of a fuelling process
DE102009037611A1 (de) * 2009-08-14 2011-03-03 Linde Aktiengesellschaft Dichtheitsprüfung während des Befüllens eines Speicherbehälters
DE102009039645A1 (de) * 2009-09-01 2011-03-10 Linde Aktiengesellschaft Befüllen von Speicherbehältern mit verdichteten Medien

Also Published As

Publication number Publication date
CA2911197A1 (en) 2015-01-08
DE102013011052A1 (de) 2015-01-08
US20160131307A1 (en) 2016-05-12
JP2016527450A (ja) 2016-09-08
BR112015028521A2 (pt) 2017-07-25
EP3017236A1 (de) 2016-05-11
KR20160029757A (ko) 2016-03-15
CN105264280A (zh) 2016-01-20

Similar Documents

Publication Publication Date Title
EP2909524B1 (de) Verfahren zum befüllen einer kraftstoffspeicheranlage eines kraftfahrzeugs
EP3746762B1 (de) Prüfvorrichtung und verfahren zur lastwechselprüfung
DE102007012080A1 (de) Verfahren zum Befüllen eines Wasserstoff-Speicherbehälters
EP2893247B1 (de) Verfahren zur durchführung eines drucktests an einem tank und betankungseinrichtung
EP2035739A1 (de) Verfahren zum betrieb einer vorrichtung zur befüllung eines behälters mit kryogen gespeichertem kraftstoff
WO2015000563A1 (de) Verfahren zum ermitteln eines wasserstofftankdrucks
DE102012023329A1 (de) Verfahren zur Durchführung eines Druck- und Dichtheitstests
DE102011109824A1 (de) Betanken eines Fahrzeuges mit einem unter Druck stehenden, gasförmigen Medium
DE102015016327A1 (de) Tankstelle mit Konstantdruckspeicher
WO2021260100A1 (de) Befüllvorrichtung zur befüllung von speicherbehältern mit verdichtetem wasserstoff, tankstelle aufweisend selbige und verfahren zur befüllung eines speicherbehälters
EP1466122A1 (de) Verfahren zum betanken eines speicherbehälters mit einem gasförmigen treibstoff
DE102012218856A1 (de) Kraftstoffspeicheranlage eines Kraftfahrzeugs
WO2023160895A1 (de) Verfahren zum betreiben eines druckgastanksystems sowie steuergerät
DE102015016331A1 (de) Konstantdruckspeichereinheit
DE102018132268A1 (de) Brennstoffversorgungssystem zur Bereitstellung von Brennstoff sowie Kraftfahrzeug und Verfahren
WO2011029546A1 (de) Verfahren zum befüllen eines speicherbehältnisses
DE102015015967A1 (de) Verfahren und System zur Datenübertragung zwischen einer Kommunikationseinheit und einer Kontrolleinheit einer Flüssiggas-Tankvorrichtung
EP3879164A1 (de) Befüllvorrichtung und verfahren zum befüllen
EP2619497A1 (de) Befüllen von speicherbehältern mit einem komprimierten medium
DE102013015229A1 (de) Tankanlage für eine mit einem gasförmigen Kraftstoff betreibbare Verbrennungskraftmaschine eines Kraftwagens sowie Verfahren zum Betreiben einer solchen Tankanlage
DE102009037611A1 (de) Dichtheitsprüfung während des Befüllens eines Speicherbehälters
WO2022100902A1 (de) Druckspeichereinrichtung zum speichern eines mediums und verfahren zum betreiben einer druckspeichereinrichtung
DE709277C (de) Verfahren zum Einpressen von unter Druck stehenden verfluessigten Gasen in Behaelter
DE102018217331A1 (de) Verfahren und Vorrichtung zur Ansteuerung eines digitalen Hochdruckreduzierventils
WO2009089854A1 (de) Wasserstoff-distribution

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201480031288.7

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14737145

Country of ref document: EP

Kind code of ref document: A1

REEP Request for entry into the european phase

Ref document number: 2014737145

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2014737145

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2911197

Country of ref document: CA

REG Reference to national code

Ref country code: BR

Ref legal event code: B01A

Ref document number: 112015028521

Country of ref document: BR

WWE Wipo information: entry into national phase

Ref document number: 14898604

Country of ref document: US

ENP Entry into the national phase

Ref document number: 2016522320

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 20157037235

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 112015028521

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20151113