WO2015000446A1 - 一种排水排煤粉采煤层气的方法及其装置 - Google Patents

一种排水排煤粉采煤层气的方法及其装置 Download PDF

Info

Publication number
WO2015000446A1
WO2015000446A1 PCT/CN2014/082573 CN2014082573W WO2015000446A1 WO 2015000446 A1 WO2015000446 A1 WO 2015000446A1 CN 2014082573 W CN2014082573 W CN 2014082573W WO 2015000446 A1 WO2015000446 A1 WO 2015000446A1
Authority
WO
WIPO (PCT)
Prior art keywords
pump
coal
hydraulic jet
jet pump
liquid
Prior art date
Application number
PCT/CN2014/082573
Other languages
English (en)
French (fr)
Inventor
张树华
王洪星
韩克楚
王红荣
张强坤
Original Assignee
胜利油田隆迪石油技术(装备)有限责任公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 胜利油田隆迪石油技术(装备)有限责任公司 filed Critical 胜利油田隆迪石油技术(装备)有限责任公司
Priority to US14/902,568 priority Critical patent/US9850744B2/en
Publication of WO2015000446A1 publication Critical patent/WO2015000446A1/zh

Links

Images

Classifications

    • EFIXED CONSTRUCTIONS
    • E21EARTH OR ROCK DRILLING; MINING
    • E21BEARTH OR ROCK DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
    • E21B43/00Methods or apparatus for obtaining oil, gas, water, soluble or meltable materials or a slurry of minerals from wells
    • E21B43/006Production of coal-bed methane

Definitions

  • the invention relates to a method and a device for coalbed methane mining, in particular to a method and a device for coalbed methane exploitation in an inclined well containing water, coal powder and sand in coalbed methane.
  • Coalbed methane is unconventional natural gas that is self-generated and self-storing in coal seams.
  • the value of unconventional resources such as coalbed methane has been recognized, so CBM exploration and development is gradually being carried out on a global scale.
  • coal seam water must be discharged to reduce the bottom hole pressure of the coalbed methane well, so that the coalbed methane continuously flows into the wellbore under a certain production pressure difference.
  • the coal seam gas production characteristics require that the coal seam water must be smoothly produced with reasonable drainage intensity. Due to topographical conditions, investment scale and national land policy constraints, the drilling method of the cluster well group (multiple wells drilled in one well site) is increasingly used. Due to the drilling method of the cluster well group, most of the gas wells are inclined wells, and the coal seams are buried shallow, resulting in a small radius of curvature of the gas wells. This leads to the following problems in the coal seam drainage process:
  • the gas well has a large slope and the radius of curvature of the well body is small. Even in the existing vertical wells, there is a case where the well inclination is serious and the rate of change of the full angle is large. Commonly used rod pumps (tube pumps, screw pumps) have severe wear on the rods, frequent workovers, and large loss of rod material.
  • the use conditions of the sand-receiving method are relatively close to the technical requirements for the drainage of coal-fired coal-bed methane, but they have not been applied in the field of drainage and coal-fired coal mining. It is necessary to improve the wellbore process structure and the method of use to meet the technical requirements for drainage of coal-fired coal bed gas.
  • the technical problem to be solved by the present invention is to provide a method for draining coal dust from coal mining, which enables water and coal powder in the coal seam to be sufficiently sucked into the hydraulic jet pump and discharged to the ground.
  • Another technical problem to be solved by the present invention is to provide an apparatus for implementing the above method.
  • the present invention is achieved by a method for draining coal powder and coal bed gas, and sending the power liquid into the downhole power liquid pipe in the wellbore through a wellhead device with a flow channel, and then sending the power liquid to the underground well
  • the hydraulic jet pump in the pump cylinder connected to the power liquid pipe operates the hydraulic jet pump, and the hydraulic jet pump draws the formation liquid into the pump through the lower suction port, and sends the mixed liquid formed by mixing the power liquid with the power liquid.
  • the pulverized coal mixture is sent up by a downhole mixing pipe with a small cross-sectional area in the wellbore, and the pulverized coal mixture flows upward through the wellhead device at a flow rate far greater than the pulverized coal sedimentation velocity.
  • the lower limit of the hydraulic jet pump pump to the coal seam to prevent the coal powder from burying the coal seam, and the coalbed methane is sprayed through the casing annular space to the ground gas collecting device.
  • the device for draining coal powder coal mining coal gas in the invention is realized by the same, which has a wellhead device with a flow channel, the power liquid inlet on the wellhead device passes through the flow channel in the wellhead device and the underground power in the well casing
  • the liquid pipe is connected, and the mixed liquid outlet on the wellhead device is connected to the downhole mixed liquid pipe in the wellbore through the flow passage in the wellhead device, and the underground power liquid pipe and the downhole mixed liquid pipe are connected with the hydraulic jet pump, and the hydraulic jet pump is connected.
  • the cylinder is located at the lower boundary of the coal seam.
  • the power liquid enters and operates the hydraulic jet pump through the wellhead device and the downhole power liquid pipe, and the hydraulic jet pump sucks the formation liquid containing coal seam water and coal powder.
  • the pump is mixed with the power liquid to form a mixed liquid, and the mixed liquid is sent up to the wellhead through the downhole mixed liquid pipe to discharge the ground, and the coal layer water drainage process containing the coal powder is completed.
  • the bottom hole pressure (moving liquid surface) of the coalbed methane well is gradually reduced.
  • the bottom hole pressure (moving liquid surface) of the coalbed methane well drops to a certain extent, the coalbed methane enters the wellbore under the action of the production pressure difference.
  • the coalbed methane Since the density of coalbed methane is much smaller than the density of coal seam water, the coalbed methane will move upward along the casing annular space and enter the ground gas collecting device through the gas well casing valve.
  • the hydraulic jet pump cylinder is located at the lower boundary of the coal seam and will not cause coal slag to bury the coal seam. Since there is no packer in the well, the casing pressure and hydrodynamic surface data of the gas well can be detected and recorded in time.
  • the speed of drainage can be reasonably controlled by adjusting the technical parameters of the downhole hydraulic jet pump and the pressure of the power fluid to meet the requirements of coal seam drainage. There are no moving parts in the well, and there is no problem of partial wear of the pipe rod. Therefore, the method and the device for using the drainage coal powder to recover coal bed gas simplifies the drainage process of the coal containing coal powder, greatly reduces the production cost and improves the overall benefit of the coal bed gas exploitation.
  • FIG. 1 is a schematic view showing an embodiment of an apparatus for draining coal dust and coal bed gas of the present invention.
  • FIG. 2 is a schematic view showing the structure of a hydraulic jet pump in a positive circulating mode of a power liquid in a device for draining coal pulverized coal and coal bed gas according to the present invention.
  • FIG. 3 is a schematic view showing the structure of a hydraulic jet pump of a power liquid reverse circulation mode in a device for draining coal pulverized coal mining coal gas according to the present invention.
  • a device for draining coal slag for coal mining gas has a wellhead device 12 with a flow passage, and a power liquid inlet 2 on the wellhead device passes through a flow passage and a well casing in the wellhead device.
  • the downhole power liquid pipe 7 in the pipe 5 is connected, and the mixed liquid outlet 3 on the wellhead device passes through the flow channel in the wellhead device and the downhole mixed liquid pipe in the wellbore 6
  • the downhole power liquid pipe and the downhole mixed liquid pipe are in communication with the hydraulic jet pump 9, and the hydraulic jet pump cylinder 10 is located at the lower boundary of the coal seam.
  • the working principle of this device is.
  • the high-pressure power liquid drives the downhole hydraulic jet pump, and the cross-sectional area of the downhole mixed liquid pipe flow passage is small, so that the mixed liquid containing the pulverized coal flows upward through the wellhead device mixed liquid outlet 3 at a flow rate far greater than the pulverized coal sedimentation speed. ground.
  • the coalbed methane continuously flows into the wellbore and flows along the bottom hole between the well casing 5 and the downhole power liquid pipe 7 through the casing valve of the wellhead device under the action of the bottom hole flow pressure. 4 Enter the ground and its process.
  • the pulverized coal mixed solution is fed by the small cross-sectional area of the flow passage in the wellbore, which means that the cross-sectional area of the downhole mixed liquid pipe flow passage is smaller than the cross-sectional area of the downhole power liquid pipe flow passage, so as to be able to make coal
  • the mixture of the powder flows upward at a flow rate far greater than the sedimentation speed of the pulverized coal.
  • the present invention discloses a drainage coal slag coal mining gas layer device, which has a wellhead device 12 with a flow passage, and a power liquid inlet 2 on the wellhead device.
  • the flow passage in the wellhead device communicates with the downhole power liquid pipe 7 in the well casing 5, and the mixed liquid outlet 3 on the wellhead device passes through the flow passage in the wellhead device and the downhole mixed liquid pipe in the wellbore 6
  • the downhole power liquid pipe and the downhole mixed liquid pipe are in communication with the water jet pump 9, and the suction port 10 of the downhole hydraulic jet pump is located at the lower boundary of the coal seam.
  • the high-pressure power liquid drives the downhole hydraulic jet pump to work through the optimal design of the cross-sectional area of the downhole mixed liquid pipe and the rational configuration of the power and liquid volume, so that the mixed liquid containing coal powder is much larger than the sedimentation speed of the coal powder in the reservoir.
  • the flow rate flows upward through the wellhead assembly mixture outlet 3 to the surface.
  • the coalbed methane continuously flows into the wellbore and is placed along the wellhead with a casing valve under the action of the bottomhole flow pressure along the annular space between the well casing 5 and the downhole power liquid pipe 7. 4 Enter the ground and its process.
  • the lowermost end of the wellbore is an artificial well bottom 11.
  • the fishing device 1 can be passed through the wellhead device. It is sent to the downhole power liquid pipe and sent to the working position in the pump cylinder with the power fluid.
  • the power liquid can be injected into the mixed liquid outlet, so that the flow direction of the power liquid is opposite to the working time, and the hydraulic jet pump is
  • the downhole power liquid pipe is sent up to the fishing device on the wellhead and taken out.
  • the high-pressure power fluid required for the downhole jet pump is provided by the ground power liquid pump.
  • the power fluid can be used as the coal seam water produced by the coalbed methane well, and can be recycled after simple sedimentation.
  • the coal seam water produced by each coal seam 8 in the coalbed methane well is discharged to the ground and enters the water collecting system.
  • the first sealing ring A1 is used for sealing between the power fluid and the production fluid.
  • the second sealing ring B1 is used for sealing between the produced liquid and the mixed liquid, and the first pump core seat C1 is used to support the hydraulic jet pump core.
  • the power liquid enters the hydraulic jet pump from the first power liquid pump flow passage D1, and the mixed liquid flows out from the mixed liquid outlet E1.
  • the pump core of the hydraulic jet pump there is a first nozzle 6.1, and the first nozzle is a first throat. 6.2, a first one-way valve 6.3 is installed in the first formation liquid inlet F1 in the lower part of the pump body.
  • the third seal ring A2 is used for sealing between the produced liquid and the mixed liquid.
  • the fourth seal ring B2 is used for sealing between the power fluid and the production fluid, and the second pump core seat C2 is for supporting the hydraulic jet pump core.
  • the motive liquid enters the hydraulic jet pump from the second power liquid pump passage E2, and the mixed liquid flows out from the mixed liquid outlet D2.

Landscapes

  • Engineering & Computer Science (AREA)
  • Geology (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Mining & Mineral Resources (AREA)
  • Physics & Mathematics (AREA)
  • Environmental & Geological Engineering (AREA)
  • Fluid Mechanics (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Chemical & Material Sciences (AREA)
  • Jet Pumps And Other Pumps (AREA)

Abstract

一种排水排煤粉采煤层气的方法,通过一带流道的井口装置(12)将动力液送入井筒内的井下动力液管(7)中,并进而将动力液送至与井下动力液管(7)相连通的泵筒内的水力喷射泵(9),使水力喷射泵(9)工作,水力喷射泵(9)通过其下部的吸入口将地层液吸入泵内,并将其与动力液混合后形成的混合液向上送至地面,含煤粉的混合液以远远大于煤粉沉降速度的流速向上通过井口装置流至地面,防止煤粉沉降,水力喷射泵的吸入口下至煤层(8)的下界,以防止煤粉埋煤层,煤层气经套管环形空间自喷至地面集气装置。还公开一种排水排煤粉采煤层气的装置。这种采煤层气的方法及其装置,简化了含煤粉煤层水的排采工艺,大幅度降低了生产费用,提高了煤层气开采的整体效益。

Description

一种排水排煤粉采煤层气的方法及其装置 技术领域
本发明涉及一种煤层气开采的方法及其装置,尤其是煤层气中含有水、煤粉和砂的斜井中的煤层气开采的方法及其装置。
背景技术
煤层气是煤层本身自生自储式的非常规天然气,世界上有74个国家蕴藏着煤层气资源,中国煤层气资源量达36.8万亿立方米,居世界第三位。中国煤层气可采资源量约10万亿立方米。如今,人们已认识到煤层气这种非常规资源的价值,因此煤层气勘探和开发正逐步在全球范围内展开。
在煤层气开采过程中,由于煤层中含有大量的煤层水,造成煤层气井井底压力过高,煤层气不能流入井筒。因此,必须将煤层水排出,以降低煤层气井的井底压力,使得煤层气在一定的生产压差作用下连续流入井筒。同时,煤层气的生产特点所要求,煤层水必须以合理的排采强度平稳采出。由于地形条件、投资规模和国家土地政策的限制,丛式井组的钻井方式(在一个井场钻多口井)被越来越多地采用。由于丛式井组的钻井方式所决定,煤气井绝大多数为斜井,同时煤层埋藏较浅,造成了煤气井井身曲率半径小。这就导致煤层水排采过程中主要存在如下问题:
1、煤气井斜度大,井身曲率半径小,即使是现有的垂直井,也存在井斜严重、全角变化率大的情况。常用的有杆泵(管式泵、螺杆泵)杆管磨损严重,修井作业频繁,杆管材料损耗大。
2、在产出的煤层水中含有煤粉及压裂砂(因所有煤气井都要在压裂后投产),造成现行的煤层水举升装置(管式泵、螺杆泵、电潜泵等)中的杆、管、泵磨蚀、堵泵、卡泵等故障经常发生,修井作业频繁。
3、大部分煤气井产水量少,低于电潜泵对最小排量的要求,不符合电潜泵选井条件。
4、排砂采油方法的使用条件虽然与排水排煤粉采煤层气的技术要求比较接近,但还也没有在排水排煤粉采煤层气领域应用。需要对其井筒工艺结构和使用方法进行中的改进,以适应排水排煤粉采煤层气的技术要求。
综合上述原因,目前常规的煤层水举升工艺,不仅造成煤层气井频繁修井作业,大幅度提高了煤层气的开采成本。同时,煤气井频繁修井作业,最易造成储层伤害,直接影响煤层气的开采效果。
发明内容
本发明所要解决的技术问题是提供一种排水排煤粉采煤层气的方法,它能使煤层中的水和煤粉充分被吸入水力喷射泵内,并排出地面。
本发明所要解决的另一技术问题是提供一种实现上述方法的装置。
本发明是这样实现的,一种排水排煤粉采煤层气的方法,通过一带流道的井口装置将动力液送入井筒内的井下动力液管中,并进而将动力液送至与井下动力液管相连通的泵筒内的水力喷射泵,使水力喷射泵工作,水力喷射泵通过其下部的吸入口将地层液吸入泵内,并将其与动力液混合后形成的混合液向上送至地面,含煤粉的混合液的上送由井筒内的流道横截面积小的井下混合液管完成,含煤粉的混合液以远远大于煤粉沉降速度的流速向上通过井口装置流至地面,防止煤粉沉降,水力喷射泵泵筒下至煤层的下界,以防止煤粉埋煤层,煤层气经套管环形空间自喷至地面集气装置。
本发明之一种排水排煤粉采煤层气的装置是这样实现的,它有带流道的井口装置,井口装置上的动力液进口经井口装置内的流道与井筒套管内的井下动力液管相连通,井口装置上的混合液出口经井口装置内的流道与井筒内的井下混合液管相连通,井下动力液管和井下混合液管与水力喷射泵相连通,水力喷射泵泵筒位于煤层下界。
采用上述的排水排煤粉采煤层气的方法及其装置,动力液经井口装置、井下动力液管进入水力喷射泵并使其工作,水力喷射泵将包含煤层水和煤粉的地层液吸入泵内,并与动力液混合形成混合液,混合液经井下混合液管向上送至井口,排出地面,完成含煤粉的煤层水排采过程。随着煤层水的排出,煤层气井的井底压力(动液面)逐渐降低,当煤层气井的井底压力(动液面)下降到一定程度后,煤层气在生产压差的作用下进入井筒,由于煤层气的密度远远小于煤层水的密度,所以煤层气会沿着套管环形空间向上运动,经煤气井套管阀门进入地面集气装置。水力喷射泵泵筒位于煤层的下界,不会造成煤粉埋煤层。由于井下不设封隔器,可及时检测、录取煤气井的套压和动液面资料。排水的速度可以通过调整井下水力喷射泵的技术参数和动力液的压力来合理控制,以符合煤层水排采的要求。且井下没有运动部件,不存在管杆偏磨的问题。因此,采用这种排水排煤粉采煤层气的方法及装置简化了含煤粉煤层水的排采工艺,大幅度降低了生产费用,提高了煤层气开采的整体效益。
附图说明
图1是本发明之一种排水排煤粉采煤层气的装置的一种实施例的示意图。
图2是本发明之一种排水排煤粉采煤层气的装置中的动力液正循环方式的水力喷射泵结构示意图。
图3是本发明之一种排水排煤粉采煤层气的装置中的动力液反循环方式的水力喷射泵结构示意图。
具体实施方式
下面结合附图进一步说明本发明。     
如附图所示,本发明之一种排水排煤粉采煤层气的装置,它有带流道的井口装置12,井口装置上的动力液进口2经井口装置内的流道与井筒套管5内的井下动力液管7相连通,井口装置上的混合液出口3经井口装置内的流道与井筒内的井下混合液管6 相连通,井下动力液管和井下混合液管与水力喷射泵9相连通,水力喷射泵泵筒10位于煤层下界。
按动力液正循环方式叙述,这种装置的工作原理是。高压动力液驱动井下水力喷射泵工作,井下混合液管流道的横截面积小,从而使含煤粉的混合液以远远大于煤粉沉降速度的流速向上通过井口装置混合液出口3流至地面。随着含煤粉的煤层水被有控制地排出,煤层气连续流入井筒并在井底流压的作用下沿井筒套管5和井下动力液管7之间的环形空间经井口装置的套管阀门4进入地面及其流程。
含煤粉的混合液的上送由井筒内的流道横截面积小是指,井下混合液管流道的横截面积小于井下动力液管流道的横截面积,小至能够使含煤粉的混合液以远远大于煤粉沉降速度的流速向上流动。
如附图1、图3所示按动力液反循环方式叙述,本发明之一种排水排煤粉采煤层气装置,它有带流道的井口装置12,井口装置上的动力液进口2经井口装置内的流道与井筒套管5内的井下动力液管7相连通,井口装置上的混合液出口3经井口装置内的流道与井筒内的井下混合液管6 相连通,井下动力液管和井下混合液管与水力喷射泵9相连通,井下水力喷射泵的吸入口10位于煤层下界。高压动力液驱动井下水力喷射泵工作,通过井下混合液管流道的横截面积的优化设计和动力液量的合理配置,从而使含煤粉的混合液以远远大于油藏煤粉沉降速度的流速向上通过井口装置混合液出口3流至地面。随着含煤粉的煤层水被有控制地排出,煤层气连续流入井筒并在井底流压的作用下沿井筒套管5和井下动力液管7之间的环形空间经井口装的套管阀门4进入地面及其流程。井筒最下端为人工井底11。
在将水力喷射泵泵芯送入井下时,可通过井口装置上的投捞器1 将其送入井下动力液管,用动力液送至泵筒内的工作位置。
在需要将水力喷射泵泵芯从井下起出到地面时,可在混合液出口内注入动力液,使动力液的流动方向与工作时相反,将水力喷射泵沿 井下动力液管向上送至井口上的投捞器内,将其取出。
随着煤层水的排出,煤层气井井底压力逐渐降低,煤层气沿煤层裂缝流入井筒,然后沿套管环形空间自喷至地面集气装置。
井下喷射泵所需高压动力液由地面动力液泵提供,动力液可采用煤层气井产出的煤层水,经简单沉降后可循环使用。煤层气井中各煤层8所产的煤层水排至地面后进入集水系统。
在图2中,第一密封圈A1用于动力液与产出液之间的密封。第二密封圈B1用于产出液与混合液之间的密封,第一泵芯座C1用于承托水力喷射泵泵芯。动力液从第一动力液泵芯流道D1进入水力喷射泵内,混合液从混合液出口E1流出,在水力喷射泵的泵芯内有第一喷嘴6.1、第一喷嘴下面为第一喉管6.2,泵体下部的第一地层液入口F1内安装有第一单向阀6.3。
在图3中,第三密封圈A2用于产出液与混合液之间的密封。第四密封圈B2用于动力液与产出液之间的密封,第二泵芯座C2用于承托水力喷射泵泵芯。动力液从第二动力液泵芯流道E2进入水力喷射泵内,混合液从混合液出口D2流出。在水力喷射泵的泵芯内有第二喷嘴8.1、第二喷嘴下面为第二喉管8.2,泵体下部的第二地层液入口F2内安装有第二单向阀8.3。

Claims (4)

  1. 一种排水排煤粉采煤层气的方法,其特征在于,通过一带流道的井口装置将动力液送入井筒内的井下动力液管中,并进而将动力液送至与井下动力液管相连通的泵筒内的水力喷射泵,使水力喷射泵工作,水力喷射泵通过其下部的吸入口将地层液吸入泵内,并将其与动力液混合后形成的混合液向上送至地面,含煤粉的混合液的上送由井筒内的流道横截面积小的井下混合液管完成,含煤粉的混合液以远远大于煤粉沉降速度的流速向上通过井口装置流至地面,防止煤粉沉降,水力喷射泵泵筒下至煤层的下界,以防止煤粉埋煤层,煤层气经套管环形空间自喷至地面集气装置。
  2. 一种实现权利要求1所述方法的装置,其特征在于,它有带流道的井口装置(12),井口装置上的动力液进口(2)经井口装置内的流道与井筒套管(5)内的井下动力液管(7)相连通,井口装置上的混合液出口(3)经井口装置内的流道与井筒内的井下混合液管(6) 相连通,井下动力液管和井下混合液管与水力喷射泵(9)相连通,水力喷射泵泵筒(10)位于煤层下界。
  3. 根据权利要求2所述的装置,其特征在于:动力液正循环方式中的水力喷射泵(9)的泵芯内设置第一喷嘴(6.1),第一喷嘴(6.1)下面设置第一喉管(6.2),水力喷射泵(9)下部的第一地层液入口(F1)内安装第一单向阀(6.3),在水力喷射泵(9)的泵芯下部安装第一泵芯座(C1),动力液从第一动力液泵芯流道(D1)进入水力喷射泵(9)内,混合液从混合液出口(E1)流出。
  4. 根据权利要求2所述的装置,其特征在于:动力液反循环方式中的水力喷射泵(9)的泵芯内设置第二喷嘴(8.1),第二喷嘴(8.1)下面设置第二喉管(8.2),水力喷射泵(9)下部的第二地层液入口(F2)内安装第二单向阀(8.3),水力喷射泵(9)的泵芯下部安装第二泵芯座(C2),动力液从第二动力液泵芯流道(E2)进入水力喷射泵(9)内,混合液从混合液出口(D2)流出。
PCT/CN2014/082573 2013-07-03 2014-07-21 一种排水排煤粉采煤层气的方法及其装置 WO2015000446A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US14/902,568 US9850744B2 (en) 2013-07-03 2014-07-21 Method for extracting coalbed gas through water and coal dust drainage and a device thereof

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN2013102754386A CN103321613A (zh) 2013-07-03 2013-07-03 一种排水排煤粉采煤层气的方法及其装置
CN201310275438.6 2013-07-03

Publications (1)

Publication Number Publication Date
WO2015000446A1 true WO2015000446A1 (zh) 2015-01-08

Family

ID=49190630

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2014/082573 WO2015000446A1 (zh) 2013-07-03 2014-07-21 一种排水排煤粉采煤层气的方法及其装置

Country Status (3)

Country Link
US (1) US9850744B2 (zh)
CN (1) CN103321613A (zh)
WO (1) WO2015000446A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110067535A (zh) * 2019-03-22 2019-07-30 中国石油大学(华东) 一种煤层气井无动力井底碎化煤粉助排装置
CN115234214A (zh) * 2021-04-23 2022-10-25 中国石油天然气股份有限公司 过滤装置及排采系统

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103321613A (zh) * 2013-07-03 2013-09-25 胜利油田隆迪石油技术(装备)有限责任公司 一种排水排煤粉采煤层气的方法及其装置
CN105525894A (zh) * 2014-10-23 2016-04-27 中国石油天然气股份有限公司 一种煤层气井螺杆泵的卡泵解决方法
CN104533358A (zh) * 2014-10-30 2015-04-22 中矿瑞杰(北京)科技有限公司 排水采气的方法及其装置
CN108240184A (zh) * 2016-12-27 2018-07-03 北京九尊能源技术股份有限公司 煤层气井反循环洗井方法及装置
CN108533536A (zh) * 2018-03-13 2018-09-14 北京泰斯特威尔技术有限公司 一种射流雾化装置及低压天然气井口采集装置
CN110821425A (zh) * 2019-12-31 2020-02-21 中国石油大学(华东) 一种煤层气井井壁清洗设备及循环洗井方法
CN113217079B (zh) * 2021-03-01 2023-07-14 柴兆喜 均压循环矿井瓦斯抽采煤孔

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1397717A (zh) * 2002-08-30 2003-02-19 曾细平 无人下井钻孔水力采煤方法
WO2008033268A1 (en) * 2006-09-11 2008-03-20 The Regents Of The University Of California Production of hydrogen from underground coal gasification
US20080202757A1 (en) * 2007-02-27 2008-08-28 Conocophillips Company Method of stimulating a coalbed methane well
CN101775975A (zh) * 2010-01-28 2010-07-14 郑州大学 水力掏穴卸压开采煤层气方法
CN102518412A (zh) * 2011-12-29 2012-06-27 郑州大学 水力旋喷冲刷采煤采气方法
CN103321613A (zh) * 2013-07-03 2013-09-25 胜利油田隆迪石油技术(装备)有限责任公司 一种排水排煤粉采煤层气的方法及其装置
CN203412552U (zh) * 2013-07-03 2014-01-29 胜利油田隆迪石油技术(装备)有限责任公司 一种排水排煤粉采煤层气的装置

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5372190A (en) * 1993-06-08 1994-12-13 Coleman; William P. Down hole jet pump
US5501279A (en) * 1995-01-12 1996-03-26 Amoco Corporation Apparatus and method for removing production-inhibiting liquid from a wellbore
US6959764B2 (en) * 2003-06-05 2005-11-01 Yale Matthew Preston Baffle system for two-phase annular flow
US7073597B2 (en) * 2003-09-10 2006-07-11 Williams Danny T Downhole draw down pump and method
US7163063B2 (en) * 2003-11-26 2007-01-16 Cdx Gas, Llc Method and system for extraction of resources from a subterranean well bore
CN101429862A (zh) * 2008-12-11 2009-05-13 韩继超 正反循环一体化水力喷射采油方法及装置
RU2389909C1 (ru) * 2009-01-30 2010-05-20 Борис Анатольевич ДУДНИЧЕНКО Скважинная струйная насосная установка для дегазации угольных пластов
CN101666223B (zh) * 2009-09-15 2011-10-05 河南华盛能源工程有限公司 煤层气井智能排采方法及煤层气井潜液泵智能排采设备
CN102797422B (zh) * 2012-07-19 2014-12-24 中国石油天然气股份有限公司 煤层气井捞煤粉、排水采气一体化管柱

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1397717A (zh) * 2002-08-30 2003-02-19 曾细平 无人下井钻孔水力采煤方法
WO2008033268A1 (en) * 2006-09-11 2008-03-20 The Regents Of The University Of California Production of hydrogen from underground coal gasification
US20080202757A1 (en) * 2007-02-27 2008-08-28 Conocophillips Company Method of stimulating a coalbed methane well
CN101775975A (zh) * 2010-01-28 2010-07-14 郑州大学 水力掏穴卸压开采煤层气方法
CN102518412A (zh) * 2011-12-29 2012-06-27 郑州大学 水力旋喷冲刷采煤采气方法
CN103321613A (zh) * 2013-07-03 2013-09-25 胜利油田隆迪石油技术(装备)有限责任公司 一种排水排煤粉采煤层气的方法及其装置
CN203412552U (zh) * 2013-07-03 2014-01-29 胜利油田隆迪石油技术(装备)有限责任公司 一种排水排煤粉采煤层气的装置

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110067535A (zh) * 2019-03-22 2019-07-30 中国石油大学(华东) 一种煤层气井无动力井底碎化煤粉助排装置
CN115234214A (zh) * 2021-04-23 2022-10-25 中国石油天然气股份有限公司 过滤装置及排采系统

Also Published As

Publication number Publication date
US9850744B2 (en) 2017-12-26
CN103321613A (zh) 2013-09-25
US20160145979A1 (en) 2016-05-26

Similar Documents

Publication Publication Date Title
WO2015000446A1 (zh) 一种排水排煤粉采煤层气的方法及其装置
WO2017190484A1 (zh) 双管负压排水采气设备
CN103527092B (zh) 水平定向钻孔内射吸排屑扩孔方法
CN205225215U (zh) 一种用于两套油层分层开采的开采装置
CN105178859A (zh) 一种用于油气钻井的全井段自吸式反循环气体钻井系统
CN203285416U (zh) 一种双电潜泵井下油水分离装置
CN111350487B (zh) 一种射流泵-双螺杆泵同井注采复合举升系统
CN205036295U (zh) 一种全井段自吸式反循环气体钻井系统
CN108756847A (zh) 一种泵前油水分离单机组双泵注采系统
CN102913274B (zh) 一种用于瓦斯抽采钻井增产的系统及其方法
CN110067597A (zh) 一种矿井俯角负压探放老空区积水的方法
CN105178897A (zh) 一种气体钻井地面管汇连接结构
CN201874543U (zh) 井下增压注水工艺管柱
CN205036331U (zh) 反循环气体钻井钻具组合结构
CN103867148B (zh) 煤层气井同心管排煤粉系统及排煤粉方法
CN203412552U (zh) 一种排水排煤粉采煤层气的装置
CN103452531A (zh) 欠平衡下油管、不压井气举、转抽、检泵和检修油管的方法
CN205036327U (zh) 气体钻井地面管汇连接结构
CN207296957U (zh) 一种两气共采装置
CN104912520B (zh) 水平对接井水力冲刷运移卸压消突采气法
CN206522127U (zh) 单封隔器管柱适用的地面驱动螺杆泵井下油水分离装置
CN113550720B (zh) 一种多源煤系气分层控压单独计量排采装置及方法
CN206071508U (zh) 一种水力螺杆自循环捞砂装置
CN206495664U (zh) 液力投捞式排砂排煤粉采气装置
CN202900099U (zh) 同心双管柱反循环连续冲煤粉系统井口装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14819829

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 14902568

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14819829

Country of ref document: EP

Kind code of ref document: A1