WO2015000432A1 - 一种产生模拟干扰的方法及装置 - Google Patents

一种产生模拟干扰的方法及装置 Download PDF

Info

Publication number
WO2015000432A1
WO2015000432A1 PCT/CN2014/081645 CN2014081645W WO2015000432A1 WO 2015000432 A1 WO2015000432 A1 WO 2015000432A1 CN 2014081645 W CN2014081645 W CN 2014081645W WO 2015000432 A1 WO2015000432 A1 WO 2015000432A1
Authority
WO
WIPO (PCT)
Prior art keywords
interference
simulated
characteristic parameters
rank
interference characteristic
Prior art date
Application number
PCT/CN2014/081645
Other languages
English (en)
French (fr)
Inventor
朱孝龙
王明华
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to KR1020167001160A priority Critical patent/KR101814026B1/ko
Priority to EP14819404.6A priority patent/EP2999147B1/en
Publication of WO2015000432A1 publication Critical patent/WO2015000432A1/zh

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B17/00Monitoring; Testing
    • H04B17/30Monitoring; Testing of propagation channels
    • H04B17/391Modelling the propagation channel
    • H04B17/3912Simulation models, e.g. distribution of spectral power density or received signal strength indicator [RSSI] for a given geographic region
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B17/00Monitoring; Testing
    • H04B17/0082Monitoring; Testing using service channels; using auxiliary channels
    • H04B17/0085Monitoring; Testing using service channels; using auxiliary channels using test signal generators
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B17/00Monitoring; Testing
    • H04B17/30Monitoring; Testing of propagation channels
    • H04B17/309Measuring or estimating channel quality parameters
    • H04B17/345Interference values

Definitions

  • the present invention relates to the field of communications technologies, and in particular, to a method and apparatus for generating analog interference.
  • the Long Term Evolution (LTE) system supports multiple-input multiple-output (MIMO) transmission.
  • MIMO multiple-input multiple-output
  • This technology adds spatial dimension division to downlink transmission based on traditional time domain and frequency domain transmission. Provides greater flexibility.
  • the LTE physical layer protocol of the 3rd Generation Partnership Project (3GPP, 3rd Generation Partnership Project) Release 8 and Release 9 provides multiple transmissions such as downlink open-loop transmit diversity, open-loop spatial multiplexing, closed-loop spatial multiplexing, and beamforming.
  • 3GPP, 3rd Generation Partnership Project 3rd Generation Partnership Project
  • a neighboring area In addition to a serving cell, a neighboring area often has a certain number of user equipments for data transmission. In order to better evaluate the performance of MIMO in a multi-cell scenario, neighboring cell loading is required to simulate co-channel interference between cells. Neighbor load is usually implemented in two ways: one is to use real user equipment to generate interference in the neighboring area, and the other is to use the analog load mode to generate interference;
  • the interference signals generated by different transmission technologies have different properties.
  • open-loop transmit diversity technology only transmits a single codeword; closed-loop spatial multiplexing can transmit 1 to 2 codewords and multiple data streams, and the interference signals have certain Directionality;
  • the interference signal of beamforming technology also has a certain directionality.
  • the effects of interference signals generated by different transmission technologies are also different. Under the same power conditions, the more layers of spatial multiplexing, the more serious the impact of interference. For example, the effect of spatially multiplexed interference sources is greater than the impact of interference sources of transmit diversity.
  • An existing method for generating analog interference is to use a single single-stream transmission scheme to generate analog interference, which is equivalent to only one interfering user equipment, or although there are multiple interfering user equipments, all interfering user equipments have unique interference characteristics, ie There is only a single codeword, the rank is equal to 1, and the interference has no directionality.
  • analog interference and real user equipment interference there are significant differences between analog interference and real user equipment interference, which makes it impossible to objectively evaluate the performance of commercial systems.
  • Embodiments of the present invention provide a method and apparatus for generating analog interference, which are used to obtain analog interference consistent with the interference characteristics of real user equipment, thereby more objectively reflecting system performance in different scenarios, and improving technical evaluation effects and efficiency.
  • the first aspect of the present invention provides a method for generating analog interference, which includes: setting one or more simulated load templates, respectively performing interference characteristic parameter configuration on the simulated load template, and using a simulated load template. Simulating one or a class of interferences having the same interference characteristics; generating interference interference by using the interference characteristic parameters configured on the simulated load template, and if multiple simulated load templates are set, the plurality of simulated load templates are simulated The interference is polled in the time domain and/or frequency domain.
  • the interference characteristic parameter includes a transmission mode of the analog load template, a resource utilization rate, a rank RANK, a precoding matrix indication PMI, a modulation and coding scheme MCS, and a time domain. Or frequency domain polling granularity;
  • the performing interference characteristic parameter configuration on the simulated load template includes: configuring, respectively, a transmission mode, a resource utilization rate, a RANK, a PMI, an MCS, a time domain or a frequency domain polling granularity of the simulated load template.
  • configuring a transmission mode of the simulated load template includes: configuring a transmission mode or a transmission scheme of the simulated load template, and accepting or not accepting Constraints on the characteristics of the interfering cell;
  • the resource utilization of the simulated load template is configured to: configure resource block RB utilization and transmit power utilization of the interfering cell to control RB utilization or transmit power utilization of the real user equipment UE scheduled by the interfering cell
  • the preset threshold is lower than the preset threshold
  • the simulated load scheduling is performed.
  • the RB utilization rate and the transmit power utilization rate of the real UE scheduled by the interfering cell are higher than the preset threshold, the simulated load does not take effect;
  • Configuring the RANK and the PMI of the simulated load template includes: configuring, according to the configured transmission mode, the RANK and the PMI corresponding to the RANK and the PMI are respectively a specific value or a preset value range;
  • the MCS of the simulated load template is configured to: configure the MCS of the simulated load template to be a specific value or a preset value range;
  • the configuration of the time domain or the frequency domain polling granularity includes: if multiple simulated load templates are set, respectively configure the time domain polling granularity or the frequency domain polling granularity of the simulated load template, which is a specific value or a preset value.
  • the preset range of the time domain polling granularity ranges from 1 ms to infinity, and the preset range of the frequency domain polling granularity ranges from 1 to 100 RBs.
  • generating the simulated interference using the interference characteristic parameter configured on the simulated load template includes:
  • the method further includes:
  • the interference characteristic parameter configuration of the simulated load template is copied to one or more analog user devices, and the simulated load is loaded to the interference cell by the analog user equipment to achieve a preset simulated load resource utilization.
  • the method further includes:
  • the method further includes:
  • the RRC protocol layer only configures some of the interference characteristic parameters of the interference characteristic parameter, performing analog power interference on the unconfigured interference characteristic parameter according to a default value or a default manner;
  • a preset value range is simulated scrambling according to a method of randomly selecting or polling the selected value range.
  • a second aspect of the present invention provides an apparatus for generating analog interference, including:
  • a parameter configuration module for respectively configuring interference characteristic parameters for one or more simulated load templates, one analog load template for simulating one or one type of interference having the same interference characteristics; and an analog interference generation module for utilizing The interference characteristic parameter configured on the simulated load template generates analog interference. If multiple analog load templates are set, the interference generated by the multiple simulated load template simulations is polled in the time domain and/or the frequency domain.
  • the interference characteristic parameter includes a transmission mode, a resource utilization, a rank RANK, a precoding matrix indication PMI, a modulation and coding scheme, and a time domain of the analog load template. Or frequency domain polling granularity.
  • the parameter configuration module is specifically configured to configure a transmission mode of the simulated load template, and perform resource utilization on the simulated load template.
  • the configuration of the RANK and the PMI of the simulated load template, the configuration of the MCS of the simulated load template, and the configuration of the time domain or the frequency domain polling granularity wherein the configuration of the transmission mode of the simulated load template includes: The transmission mode or the transmission scheme of the simulated load template, and the constraint of the characteristic license for accepting or not accepting the interfering cell;
  • the configuring the resource utilization of the simulated load template includes: configuring the resource block RB utilization rate and the transmit power of the interfering cell The utilization rate is used to control the RB utilization rate of the real UE scheduled by the interfering cell when the RB utilization rate or the transmit power utilization rate of the real user equipment UE scheduled by the interfering cell is lower than a preset threshold.
  • the configuration of the RANK and the PMI of the load template includes: configuring the RANK and the PMI corresponding to the RANK and the PMI respectively to be a specific value or a preset value range according to the configured transmission mode; : Configure the MCS of the simulated load profile to be a specific value or preset value range.
  • Configuring the time domain or frequency domain polling granularity includes: If multiple simulated load templates are set, configure the time domain round of the simulated load template separately.
  • the polling granularity or the frequency domain polling granularity is a specific value or a preset value range, and the preset value range of the time domain polling granularity ranges from 1 ms to infinity, and the frequency domain polling granularity preset value is used.
  • the range is from 1 to 100 RB.
  • the analog interference generating module is specifically configured to: according to different transmission modes, according to media connection
  • the RANK and/or PMI and/or MCS configured in the control layer MAC or radio resource control RRC protocol layer generates analog interference and performs rounds between multiple analog load templates according to the configured time domain or frequency selective polling granularity. Inquiry.
  • the apparatus further includes a parameter copying module, where the parameter copying module is configured to: The interference characteristic parameter configuration of the simulated load template is copied to one or more analog user equipments, and the simulated load is loaded to the interference cell by the analog user equipment to achieve a preset simulated load resource utilization.
  • the apparatus further includes a parameter copying module, where the parameter copying module is configured to perform interference based
  • the mode of the interference characteristic parameter of the simulated load template is copied to one or more analog user equipments, and the simulated load is loaded into the central frequency band and the edge frequency band by the analog user equipment to achieve the Set the simulated load resource utilization.
  • the analog interference generating module is further configured to: if the radio resource control RRC protocol layer only If the interference characteristic parameter of the interference characteristic parameter is configured, the analog interference is performed according to a default value or a default mode for the unconfigured interference characteristic parameter; if the RRC protocol layer only configures the interference characteristic parameter
  • the part of the interference characteristic parameter is a preset value range, and the analog scrambling is performed according to the method of randomly selecting or polling the selected value range.
  • the method and device for generating analog interference provided by the embodiments of the present invention have the following advantages:
  • the interference characteristic parameter configuration and the analog interference generation process are implemented, and each interference source is separately configured. Therefore, the analog interference consistent with the interference characteristics of the real user equipment can be obtained, thereby more objectively reflecting the system performance in different scenarios, saving test input and cost, and improving test efficiency.
  • FIG. 1 is a schematic flowchart of a method for generating analog interference according to an embodiment of the present invention
  • FIG. 2 is a schematic flowchart of another method for generating analog interference according to an embodiment of the present invention
  • FIG. 4 is a schematic structural diagram of another apparatus for generating analog interference according to an embodiment of the present invention.
  • Embodiments of the present invention provide a method and apparatus for generating analog interference, which are used to obtain analog interference consistent with the interference characteristics of real user equipment, thereby more objectively reflecting system performance in different scenarios, and improving technical evaluation effects and efficiency.
  • FIG. 1 is a schematic flowchart of a method for generating analog interference according to an embodiment of the present invention, where the method includes:
  • Step 101 Set one or more simulated load templates, respectively perform interference characteristic parameter configuration on the analog load template, and an analog load template is used to simulate one or a type of interference with the same interference characteristics;
  • each analog load template corresponds to one type of interfering user equipment, and may be composed of one or more interfering user equipments, but has the same interference characteristics.
  • Step 102 Generate interference by using interference characteristic parameters configured on the simulated load template. If multiple simulated load templates are set, interference generated by multiple simulated load template simulations is in a time domain and/or a frequency domain. Polling.
  • the interference characteristic parameter includes a transmission mode, a resource utilization rate, a rank RANK, a precoding matrix indicator (PMI, Preceding Matrix Indicator) of the simulated load template,
  • the modulation and coding scheme MCS, Modulation and Coding Scheme
  • the performing the interference characteristic parameter configuration on the simulated load template may include: a transmission mode and a resource utilization rate of the simulated load template , RANK, PMI, MCS, time domain or frequency domain polling granularity are configured separately.
  • Embodiments of the present invention provide a method for generating analog interference to be applied to multiple input multiple outputs.
  • the MIMO transmission mode is used as an example to obtain analog interference consistent with the interference characteristics of real user equipment. It can be understood that the method is also applicable to single input and single output (SISO, SISO Single Input Single Out), single input and multiple input. Output (SIMO, SIMO Single Input Multiple Out), MISO Multiple Input Single Out (MISO), where SIMO and SISO have only one transmit antenna and cannot be configured with the corresponding transmission mode or transmission scheme, but by configuration
  • the parameters such as the number of users and the MCS can also simulate the interference more objectively, and are not specifically limited herein.
  • the method for generating analog interference provided by the embodiment of the present invention is implemented by the process of interference characteristic parameter configuration and analog interference generation, and each interference source is separately configured, so that interference characteristics with real user equipment can be obtained. Consistent analog interference, which more objectively reflects system performance in different scenarios, saves test input and cost, and improves test efficiency.
  • FIG. 2 is another schematic flowchart of a method for generating analog interference according to an embodiment of the present invention, where the method includes:
  • Step 201 Configure, respectively, a transmission mode, a resource utilization rate, a RANK, a PMI, an MCS, and a time domain or frequency selective polling granularity of the simulated load template.
  • configuring the transmission mode of the simulated load template includes:
  • the configured transmission mode only affects the data transmission of the Physical Downlink Shared Channel (PDSCH), but does not affect the cell.
  • the pilot signal transmission (CRS, Cell-specific Reference Signal) does not affect the values of the pilot transmit power, Pa and Pb, and thus simulates the load and cell interference coordination (ICIC, Inter-Cell Interference Coordination). Can coexist.
  • the characteristic license of the interfering cell may include MIMO/BF (beam forming), and may also include an Active Antenna System (AAS), frequency selection. Scheduling, ICIC, power level and other features.
  • MIMO/BF beam forming
  • AAS Active Antenna System
  • ICIC power level and other features.
  • configuring resource utilization of the simulated load template includes:
  • RB resource block
  • UE User Equipment
  • the resource utilization rate includes the RB utilization rate and the transmission power utilization rate of the interfering cell, and presets the RB utilization rate or the transmission power utilization threshold;
  • configuring the MCS of the simulated load template includes:
  • Configure the MCS of the simulated load template to be a specific value or a preset range of values, which is a subset of 0 to 28.
  • configuring the time domain or frequency domain polling granularity includes:
  • the time domain polling granularity or the frequency domain polling granularity of the simulated load template is respectively configured as a specific value or a preset value range; and the time domain polling granularity is preset.
  • the value ranges from 1 ms to infinity, and the preset range of the frequency domain polling granularity ranges from 1 to 100 RB.
  • configuring the RANK and PMI of the simulated load template includes:
  • the RANK and the PMI corresponding to the configuration are respectively a specific value or a preset value range.
  • specific value range refer to Table 1.
  • Table 1 shows the valid R ANK/PMI for different transmission modes. Range of values;
  • the PMI In the transmission mode based on TM1, TM2, and TM3, the PMI is marked as NA, and the NA is not configured or the configuration is not valid, regardless of whether the Radio Resource Control Protocol (RRC) protocol layer (L3) is The configuration and how to configure the PMI, the physical layer (L1 for short) and the medium access control (MAC, Media Access Control) layer (L2 for short) generate a precoding matrix and a physical downlink shared channel PDSCH signal according to the LTE protocol 36.211; Yes, Ll, L2, and L3 belong to the architectural content of the eNodeB, and are not specifically explained here.
  • RRC Radio Resource Control Protocol
  • L3 The configuration and how to configure the PMI, the physical layer (L1 for short) and the medium access control (MAC, Media Access Control) layer (L2 for short) generate a precoding matrix and a physical downlink shared channel PDSCH signal according to the LTE protocol 36.211; Yes, Ll, L2, and L3 belong to the architectural content of the eNode
  • the PMI is marked as N.A, which means that the PMI is configured regardless of L3, and L2 and L1 generate the beamforming matrix and the PDSCH signal according to the beamforming technique.
  • the PMI may or may not be configured. If the PMI is configured, the precoding matrix and the PDSCH signal are generated according to the codebook defined by 36.211 and 36.213. If the PMI is not configured, the PMI is used according to the application. Beamforming techniques to generate beamforming matrices and PDSCH signals.
  • the configuration of the analog interference may further include: configuring an analog load frequency selection scheduling switch and configuring a number of analog load templates, where the analog load frequency selection scheduling switch indicates whether the analog load uses frequency selection scheduling. If the switch is on, the frequency selection scheduling is used; if the switch is off, the non-frequency selection scheduling is used; the number of simulated load templates indicates the number of templates of the simulated load, and each template can separately configure the transmission mode or transmission scheme, the scheduled RANK, the PMI, and MCS. If the number of analog load templates is zero, analog interference is generated by the default transmission scheme /Rank/MCS.
  • Step 202 Generate analog interference according to a medium access control layer MAC or a radio resource control RRC protocol layer configured RANK and/or PMI and/or MCS according to different transmission modes.
  • L2/L3 generates analog interference according to the configured interference characteristic parameter (RANK and/or PMI and/or MCS), and the interference of each analog load template occupies a continuous SimuLoadTimePeriod transmission time interval in the time domain (TTI, Transmission Time) Interval), but does not include the OFDM (Orthogonal Frequency Division Multiplexing) symbol of the physical downlink control channel (PDCCH), in the case of setting multiple analog load templates.
  • the configured time domain or frequency selective polling granularity is polled between multiple analog load templates, that is, the interference generated by multiple analog load template simulations is polled in the time domain and/or frequency domain.
  • the parameter SimuLoadTimePeriod can be configured according to the actual situation.
  • the RANK of the simulated load profile is configured to accept or not accept the MM and BF license control, and does not accept the codebook subset function limit.
  • Set 1T 4T to indicate the number of antenna ports of the eNodeB.
  • the PMI of the L3 input is meaningless (that is, the PMI is not configured or the configuration is not valid), and L2 generates the precoding matrix according to the protocol 36.211.
  • L2 scheduled PMI performs upper and lower limit processing according to the PMI input by RANK and L3, ensuring that the PMI of RANK1 is 0 ⁇ 3, the PMI of RANK2 is 1 ⁇ 2, and the RANK1 and RANK2 represent space.
  • the number of independent data streams For 1T, L2 performs analog scrambling according to transmission mode TM1 and the set MCS; for 2 ⁇ or 4 ⁇ , if the transmission mode is ⁇ 1, analog scrambling is performed according to ⁇ 2 and the set MCS; for ⁇ 7, L3 input is not Meaning, L2 and L1 generate beamforming matrices based on the beamforming technique used. For ⁇ 8 or ⁇ 9, if L3 is configured with ⁇ , the precoding matrix is generated according to the code defined by 36.211 and 36.213; if ⁇ is not configured, the beamforming matrix is generated according to the beamforming technique.
  • the method for generating analog interference may further include:
  • the interference characteristic parameter configuration of the simulated load template is copied to one or more analog user devices, and the simulated load is loaded into the interference cell by the analog user equipment to achieve a preset analog load resource utilization.
  • a certain resource allocation mode (the LTE protocol 36.213 defines three resource allocation modes 0, 1, 2), the RB resource allocation of each simulated load user is performed, so that an analog user equipment may be found.
  • the RB of the address cannot reach the set analog load level.
  • the method for generating analog interference may further include:
  • the central user and the edge user of the interfering cell have different power control parameters (Pa and Pb) configurations.
  • Pa and Pb power control parameters
  • the parameter configuration of each simulated load template configured is still copied to one or more analog user devices (for example, up to 16 user devices), and scrambling through the analog user devices is implemented in the center band and the edge band respectively.
  • the set simulated load resource utilization is reached.
  • the method for generating the simulated interference may further include: if the RRC protocol layer only configures part of the interference characteristic parameter in the interference characteristic parameter, and according to the default value of the unconfigured interference characteristic parameter Or the default way to perform analog scrambling;
  • the simulation is performed according to a random selection or a polling selection within the preset value range. Disturb.
  • the scrambling can be simulated according to the default RANK1. If the MCS is not configured, the scrambling can be simulated according to the default MCS, or the MCS can be randomly selected to simulate scrambling, or the MCS can be used in some A range of polling methods to simulate scrambling.
  • the embodiment of the present invention can use pseudorandom noise or a specific source signal, and combine the L3 configured transmission mode, RANK, PMI, MCS and other interference characteristic parameters, refer to the protocol 36.211, and generate the PDSCH through the downlink physical channel processing procedure.
  • the signal is mapped to the eNodeB antenna for transmission.
  • the method for generating analog interference may be performed by the eNodeB, and the analog interference is generated on the eNodeB side according to the configured interference characteristic parameter; or a separate device (such as a signal generator) may be used to generate the analog interference.
  • a separate device such as a signal generator
  • the method for generating analog interference provided by the embodiment of the present invention is implemented by the process of interference characteristic parameter configuration and analog interference generation, and each interference source is separately configured, and the interference characteristic parameter of the interference source is configured (including The number of interferers, the transmission mode of each interferer, PMI, RANK, MCS, transmit power, time domain or frequency domain polling granularity, etc.). Thereafter, analog interference data is generated and transmitted in the air interface according to the set interference characteristic parameter.
  • the interference effect generated by the analog interference is equivalent to the interference effect of the real UE, thereby better evaluating/presenting the performance of a specific technology (such as MIMO, AAS) in a multi-cell scenario.
  • a specific technology such as MIMO, AAS
  • the method for generating analog interference specifically includes the following steps:
  • the interference characteristic parameter is used to simulate one or a class of interferences having the same interference characteristics, including the transmission mode, the rank RANK, and the PMI.
  • these interference characteristic parameters can be utilized to generate analog interference.
  • the interference characteristic parameter may include at least a transmission mode, a rank RANK, and a PMI, where the configuration process is specifically:
  • the configuration of the transmission mode includes: configuring a transmission mode or a transmission scheme of the interference characteristic parameter, and accepting or not accepting the characteristics of the interfering cell;
  • the configuration of the RANK and the PMI includes: Configuring the RANK and the PMI corresponding to the RANK and the PMI respectively as a specific value or a preset value range according to the configured transmission mode.
  • the interference characteristic parameter may include other parameters, such as resource utilization and MCS, in addition to the transmission mode, the rank RANK, and the PMI.
  • the resource utilization rate and The process of MCS configuration is as follows: Configuring resource utilization includes: configuring resource block RB utilization and transmission power utilization of the interfering cell to control when the RB utilization rate or the transmission power utilization rate of the real user equipment UE scheduled by the interfering cell is lower than a preset threshold Performing simulated load scheduling. When the RB utilization rate and the transmit power utilization rate of the real UE scheduled by the interfering cell are higher than the preset threshold, the simulated load does not take effect;
  • Configuring the MCS includes: Configuring the MCS to be a specific value or a range of preset values.
  • the interference characteristic parameter may include other parameters in addition to the transmission mode, the rank RANK, and the PMI.
  • the interference characteristic parameter may further include: The domain and/or frequency domain polling granularity, the process of polling the granularity configuration for the time domain and/or the frequency domain is specifically as follows:
  • the time domain polling granularity and/or the frequency domain polling granularity of each group of interference characteristic parameters are respectively configured as a specific value or a preset value range; the preset range of the time domain polling granularity ranges from 1 ms to infinity.
  • the preset value of the frequency domain polling granularity ranges from 1 to 100 RB.
  • the device generating the analog interference may generate analog interference according to the RANK and/or PMI of the RRC layer configuration based on different transmission modes.
  • the apparatus generating the analog interference may generate analog interference according to the RANK and/or PMI of the RRC layer configuration based on different transmission modes, and according to the configured time domain and/or frequency selection polling granularity. Polling between multiple sets of interference characteristic parameters, so that analog interference generated by multiple sets of interference characteristic parameters is polled in the time domain and/or frequency domain.
  • the interference characteristic parameter can also be copied to one or more analog user equipment, and the simulated load is simulated by the analog user equipment. Loaded into the interfering cell to achieve the preset analog load resource utilization.
  • the device that generates the analog interference can copy the interference characteristic parameter to one or more analog user equipments, and load the analog load into the central frequency band and the edge frequency band through the analog user equipment to achieve Preset simulated analog load resource utilization.
  • FIG. 3 is a schematic structural diagram of an apparatus for generating analog interference according to an embodiment of the present invention.
  • the apparatus is applied to the method for generating analog interference according to the foregoing embodiment, where the apparatus includes:
  • the parameter configuration module 301 is configured to separately perform interference characteristic parameter configuration on one or more simulated load templates, and an analog load template is used to simulate one or a type of interference with the same interference characteristics;
  • each analog load template corresponds to one type of interfering user equipment, and may be composed of one or more interfering user equipments, but has the same interference characteristics.
  • the analog interference generating module 302 is configured to generate the analog interference by using the interference characteristic parameter configured on the simulated load template, and if multiple simulated load templates are set, the interference generated by the multiple simulated load template simulations is in the time domain. And/or polling in the frequency domain.
  • the interference characteristic parameter includes a transmission mode of the analog load template, a resource utilization rate, a rank RANK, a precoding matrix indication PMI, and a modulation and coding scheme MCS, a time domain or a frequency domain polling granularity;
  • the parameter configuration module 301 is configured to separately configure a transmission mode, a resource utilization rate, a RANK, a PMI, an MCS, a time domain, or a frequency domain polling granularity of the simulated load template.
  • An embodiment of the present invention provides a device for generating analog interference, which can be applied to a multiple input multiple output MIMO transmission mode for obtaining analog interference consistent with a real user equipment interference characteristic; it can be understood that the device can also It is applied to single-input single-output (SISO, SISO Single Input Single Out), single-input multiple-output (SIMO, SIMO Single Input Multiple Out), and MISO Multiple Input Single Out (MISO Multiple Input Single Out), which are not specifically limited herein.
  • SISO single-input single-output
  • SIMO single-input multiple-output
  • MISO Multiple Input Single Out MISO Multiple Input Single Out
  • the device for generating analog interference provided by the embodiment of the present invention is implemented by the process of interference characteristic parameter configuration and analog interference generation, and each interference source is separately configured, so that interference characteristics with real user equipment can be obtained. Consistent analog interference, which more objectively reflects system performance in different scenarios, saves test input and cost, and improves test efficiency.
  • the parameter configuration module 301 is specifically configured to configure a transmission mode of the simulated load template, configure resource utilization of the simulated load template, and configure RANK and PMI of the simulated load template.
  • the configuring the transmission mode of the simulated load template includes: configuring a transmission mode or a transmission scheme of the simulated load template, and accepting or not accepting the constraint of the characteristic license of the interfering cell; the configured transmission mode only affects the physical downlink shared channel PDSCH Data transmission, but does not affect the transmission of the CRS pilot of the cell-specific reference signal, nor does it affect the values of the pilot transmit power, Pa and Pb, etc., so that the analog load and the cell interference coordination ICIC can coexist; wherein the interference
  • the characteristics of the cell may include MIMO/BF, and may also include active antenna system AAS, frequency selective scheduling, ICIC, power level and other characteristics.
  • the configuring the resource utilization of the simulated load template includes: configuring the resource block RB utilization rate and the transmit power utilization of the interfering cell to control the RB utilization rate or the transmit power of the real user equipment UE scheduled by the interfering cell
  • the simulated load scheduling is performed.
  • the simulated load does not take effect;
  • the configuring the RANK and the PMI of the simulated load template includes: configuring, according to the configured transmission mode, a RANK and a PMI corresponding to the specific value or a preset value range respectively; wherein the specific value range is Refer to Table 1 in the above embodiment;
  • the configuring the MCS of the simulated load template includes: configuring the MCS of the simulated load template to be a specific value or a preset value range, that is, a subset of 0 to 28;
  • the configuring the time domain or the frequency domain polling granularity includes: if multiple simulated load templates are set, respectively configuring the time domain polling granularity or the frequency domain polling granularity of the simulated load template as a specific value or preset
  • the value range of the time domain polling granularity ranges from 1 ms to infinity, and the preset frequency range of the frequency domain polling granularity ranges from 1 to 100 RBs.
  • the simulated interference generating module 302 is specifically configured to: generate, according to different transmission modes, RANK and/or PMI and/or MCS configured according to a medium access control layer MAC or a radio resource control RRC protocol layer. Analog interference; In the case where multiple analog load templates are set, polling is also performed between multiple analog load templates according to the configured time domain or frequency selective polling granularity.
  • the form of the analog interference may be:
  • the PMI is labeled as NA, NA indicates that no configuration or configuration does not take effect.
  • the RRC protocol layer (L3) is configured and how to configure the PMI
  • the physical layer (L1 for short) and the medium access control MAC layer (L2 for short) are generated according to the protocol 36.211.
  • the precoding matrix and the physical downlink shared channel PDSCH signal wherein it can be understood that L1, L2, and L3 belong to the architectural content of the eNodeB, and are not specifically explained herein.
  • the PMI is marked as N.A, which means that the PMI is configured regardless of L3, and L2 and L1 generate the beamforming matrix and the PDSCH signal according to the beamforming technique.
  • the PMI may or may not be configured. If the PMI is configured, the precoding matrix and the PDSCH signal are generated according to the codebook defined by 36.211 and 36.213. If the PMI is not configured, the PMI is used according to the application. Beamforming techniques to generate beamforming matrices and PDSCH signals.
  • the analog interference generating module 302 is configured to generate an analog interference process, which may be specifically:
  • the RANK of the simulated load template is configured to accept or not accept
  • License control for MIMO and BF does not accept codebook subset functionality restrictions.
  • Set 1T 4T to indicate the number of antenna ports of the eNodeB.
  • the PMI of the L3 input is meaningless (that is, the PMI is not configured or the configuration is not valid), and L2 generates the precoding matrix according to the protocol 36.211.
  • 2T closed-loop TM4 or TM5 or TM6 mode L2 scheduled PMI performs upper and lower limit processing according to the PMI input by RANK and L3, ensuring that the PMI of RANK1 is 0 ⁇ 3, the PMI of RANK2 is 1 ⁇ 2, and the RANK1 and RANK2 represent space.
  • the number of independent data streams are possible.
  • L2 performs analog scrambling according to transmission mode TM1 and the set MCS; for 2 ⁇ or 4 ⁇ , if the transmission mode is ⁇ 1, analog scrambling is performed according to ⁇ 2 and the set MCS; for ⁇ 7, L3 input is not Meaning, L2 and L1 generate beamforming matrices based on the beamforming technique used. For ⁇ 8 or ⁇ 9, if L3 is configured with ⁇ , the precoding matrix is generated according to the code defined by 36.211 and 36.213; if ⁇ is not configured, the beamforming matrix is generated according to the beamforming technique.
  • the device may further include a parameter copy module, where the parameter copy module is used
  • the interference characteristic parameter configuration of the simulated load template is copied to one or more analog user equipments, and the simulated load is loaded into the interference cell by the analog user equipment to achieve a preset simulated load resource utilization rate.
  • RB resource allocation for each simulated load user is performed according to a certain resource allocation manner (three resource allocation modes 0, 1, 2 are defined in LTE protocol 36.213), so that an analog user equipment may be found.
  • the RB of the address cannot reach the set analog load level.
  • the parameter copying module may be further configured to copy the interference characteristic parameter configuration of the simulated load template to one or more simulated user equipments by using the interfering cell to enable the ICIC function, and pass the simulation The user equipment loads the analog load into the center band and the edge band to achieve a preset analog load resource utilization.
  • the central user and the edge user of the interfering cell have different power control parameters (Pa and Pb) configurations.
  • Pa and Pb power control parameters
  • the parameter configuration of each simulated load template configured is still copied to one or more analog user devices (for example, up to 16 user devices), and scrambling through the analog user devices is implemented in the center band and the edge band respectively.
  • the set simulated load resource utilization is reached.
  • the analog interference generating module 302 is further configured to: if the RRC protocol layer only configures part of the interference characteristic parameter in the interference characteristic parameter, according to the default value of the unconfigured interference characteristic parameter Or the default mode is used for performing the analog scrambling; if the RRC protocol layer only configures some of the interference characteristic parameters and is a preset value range, the random selection is performed within the preset value range. Or poll the selected way to perform analog scrambling. For example, if RANK is not configured, the scrambling can be simulated according to the default RANK1. If the MCS is not configured, the scrambling can be simulated according to the default MCS, or the MCS can be randomly selected to simulate scrambling, or the MCS can be used in some A range of polling methods to simulate scrambling.
  • the embodiment of the present invention can use pseudorandom noise or a specific source signal, and combine the transmission mode of the L3 configuration, the interference characteristic parameters such as RANK, PMI, and MCS, and refer to the protocol 36.211.
  • the PDSCH signal is generated through the downlink physical channel processing flow and mapped to the eNodeB antenna for transmission.
  • the device for generating analog interference may be an eNodeB, that is, generating analog interference according to the configured interference characteristic parameter on the eNodeB side; or using a separate device (such as a signal generator) to generate analog interference.
  • the device for generating analog interference is implemented by the process of interference characteristic parameter configuration and analog interference generation, and each interference source is separately configured, and the interference characteristic parameter of the interference source is configured (including The number of interferers, the transmission mode of each interferer, PMI, RANK, MCS, transmit power, time domain or frequency domain polling granularity, etc.).
  • analog interference data is generated according to the set interference characteristic parameters and transmitted in the air interface. It can obtain analog interference consistent with the interference characteristics of real user equipment, thereby more objectively reflecting system performance in different scenarios, saving test input and cost, and improving test efficiency.
  • the interference effect generated by the analog interference is equivalent to the interference effect of the real UE, so that the performance of the specific technology (such as MIMO, AAS) in the multi-cell scenario is better evaluated/demonstrated.
  • the specific technology such as MIMO, AAS
  • it has certain flexibility, while saving material and labor costs.
  • FIG. 4 is another schematic structural diagram of an apparatus for generating analog interference according to an embodiment of the present invention, where the apparatus for generating analog interference includes: an input apparatus 401, an output apparatus 402, and a processor 403, where The processor 403 performs the following steps:
  • One or more simulated load templates respectively performing interference characteristic parameter configuration on the simulated load template, and one simulated load template is used to simulate one or a type of interference having the same interference characteristics; using the configured on the simulated load template
  • the interference characteristic parameter generates analog interference. If multiple analog load templates are set, the interference generated by the plurality of analog load template simulations is polled in the time domain and/or the frequency domain.
  • the interference characteristic parameter includes a transmission mode of the analog load template, resource utilization, rank RANK, precoding matrix indication PMI, modulation and coding scheme MCS, time domain or frequency domain polling granularity
  • the processor 403 performs interference characteristic parameter configuration on the simulated load template, including: configuring, respectively, a transmission mode, a resource utilization, a RANK, a PMI, an MCS, a time domain, or a frequency domain polling granularity of the simulated load template;
  • the processor 403 is configured to: configure a transmission mode of the simulated load template, including: configuring a transmission mode or a transmission scheme of the simulated load template, and accepting or not accepting a constraint of the characteristic license of the interfering cell;
  • the resource utilization is configured to: configure resource block RB utilization and transmit power utilization of the interfering cell to control the RB utilization or the transmit power utilization of the real user equipment UE scheduled by the interfering cell is lower than the preset When the threshold is used, the simulated load scheduling is performed.
  • configuring the RANK and PMI of the simulated load template includes: The configured transmission mode, the configuration of the corresponding RANK and the PMI are respectively a specific value or a preset value range; configuring the MCS of the simulated load template includes: configuring the MCS of the simulated load template as a specific value or pre- Set the value range; configure the time domain or frequency domain polling granularity
  • the method includes: if multiple simulated load templates are set, respectively configuring a time domain polling granularity or a frequency domain polling granularity of the simulated load template, which is a specific value or a preset value range; The value ranges from 1 ms to infinity, and the preset range of the frequency domain polling granularity ranges from 1 to 100 RBs.
  • the processor 403 is configured to: generate the analog interference by using the interference characteristic parameter configured on the simulated load template, and: control the RRC protocol layer according to the medium access control layer MAC or the radio resource based on different transmission modes.
  • the configured RANK and/or PMI and/or MCS generate analog interference and poll between multiple analog load templates based on the configured time domain or frequency selective polling granularity.
  • the processor 403 is further configured to: copy the interference characteristic parameter configuration of the analog load template to one or more analog user equipment, and load the simulated load to the interference cell by using the simulated user equipment, to achieve Preset simulated load resource utilization.
  • the processor 403 is further configured to: copy the interference characteristic parameter configuration of the simulated load template to one or more simulated user equipments, and pass the simulated user, in a manner that the ICIC function is enabled based on the interfering cell.
  • the device loads the analog load into the center and edge bands to achieve the simulated analog load resource utilization of the preset.
  • the processor 403 is further configured to:
  • the RRC protocol layer only configures some of the interference characteristic parameters of the interference characteristic parameter, performing analog power interference on the unconfigured interference characteristic parameter according to a default value or a default manner;
  • the simulation is performed according to a random selection or a polling selection within the preset value range. Disturb.
  • the device for generating analog interference is implemented by the process of interference characteristic parameter configuration and analog interference generation, and each interference source is separately configured, and the interference characteristic parameter of the interference source is configured (including The number of interferers, the transmission mode of each interferer, PMI, RANK, MCS, transmit power, time domain or frequency domain polling granularity, etc.).
  • analog interference data is generated according to the set interference characteristic parameters and transmitted in the air interface. It can obtain analog interference consistent with the interference characteristics of real user equipment, thereby more objectively reflecting system performance in different scenarios, saving test input and cost, and improving test efficiency.
  • the interference effect generated by the analog interference is equivalent to the interference effect of the real UE, so that the performance of the specific technology (such as MIMO, AAS) in the multi-cell scenario is better evaluated/demonstrated.
  • the specific technology such as MIMO, AAS
  • it has certain flexibility, while saving material and labor costs.
  • the apparatus for generating analog interference includes:
  • a parameter configuration module configured to configure an interference characteristic parameter, where the interference characteristic parameter is used to simulate one or a type of interference having the same interference characteristic, where the interference characteristic parameter includes a transmission mode, a rank RANK, and a precoding matrix indicating PMI;
  • An analog interference generating module is configured to generate analog interference by using the interference characteristic parameter.
  • the parameter configuration module is specifically configured to configure the transmission mode, the rank RANK, and the PMI.
  • the parameter configuration module configures the transmission mode as follows: configuring a transmission mode or a transmission scheme, and accepting or not accepting the constraint of the characteristic license of the interfering cell;
  • the parameter configuration module configures the RANK and the PMI as follows: According to the configured transmission mode, the RANK and the PMI corresponding to the configuration are respectively a specific value or a preset value range.
  • the interference characteristic parameter may include a transmission mode and a rank.
  • the parameter configuration module configures resource utilization as follows: Configuring resource block RB utilization and transmission power utilization of the interfering cell Rate, to control the RB utilization rate and the transmit power of the real UE scheduled by the interfering cell when the RB utilization rate or the transmit power utilization rate of the real user equipment UE scheduled by the interfering cell is lower than the preset threshold When the utilization rate is higher than the preset threshold, the simulated load does not take effect;
  • the parameter configuration module configures the MCS as follows: Configure the MCS to be a specific value or a preset value range.
  • the interference characteristic parameter may include other parameters in addition to the transmission mode, the rank RANK, and the PMI.
  • the interference characteristic parameter may further include: The domain and/or the frequency domain polling granularity is configured.
  • the parameter configuration module configures the time domain and/or the frequency domain polling granularity as follows: separately configuring the time domain polling granularity of each set of interference characteristic parameters and/or The frequency domain polling granularity is a specific value or a preset value range.
  • the preset range of the time domain polling granularity ranges from 1 ms to infinity, and the preset range of the frequency domain polling granularity ranges from 1 to 100 RB. .
  • the analog interference generating module in this embodiment is specifically configured to: generate analog interference according to different transmission modes, according to RANK and/or PMI configured by the RRC layer.
  • the analog interference generating module in this embodiment is specifically configured to: generate analog interference according to the RANK and/or PMI configured by the RRC layer based on different transmission modes, and according to the configured time domain and / or frequency selection polling granularity, polling between multiple sets of interference characteristic parameters, so that the analog interference generated by multiple sets of interference characteristic parameters is polled in the time domain and / or frequency domain.
  • the apparatus for generating analog interference may further include: a parameter copying module, configured to copy the interference characteristic parameter to one or more simulated user equipment, and by simulating the user equipment The simulated load is loaded into the interfering cell to achieve a preset analog load resource utilization rate;
  • the interference characteristic parameter is copied to one or more analog user equipments according to the manner in which the interfering cell turns on the ICIC function, and the simulated load is loaded into the central frequency band and the edge frequency band by the simulated user equipment to achieve the preset simulated simulated load resource. Utilization rate.
  • the disclosed systems, devices, and methods may be implemented in other modes.
  • the device embodiments described above are merely illustrative.
  • the division of the unit is only a logical function division.
  • there may be another division mode for example, multiple units or components may be combined or Can be integrated into another system, or some features can be ignored, or not executed.
  • the mutual coupling or direct connection or communication connection shown or discussed may be an indirect engagement or communication connection through some interface, device or unit, and may be in electrical, mechanical or other form.
  • the components displayed by the unit may or may not be physical units, that is, may be located in one place, or may be distributed to multiple network units. Some or all of the units may be selected according to actual needs to achieve the objectives of the solution of the embodiment.
  • each functional unit in each embodiment of the present invention may be integrated into one processing unit, or each unit may exist physically separately, or two or more units may be integrated into one unit.
  • the above integrated unit can be implemented in the form of hardware or in the form of a software functional unit.
  • the integrated unit if implemented in the form of a software functional unit and sold or used as a standalone product, may be stored in a computer readable storage medium.
  • the technical solution of the present invention may contribute to the prior art or all or part of the technical solution may be embodied in the form of a software product stored in a storage medium. , including a number of instructions to make a computer device (which can be a personal computer, a server, Or a network device or the like) performing all or part of the steps of the method of the various embodiments of the present invention.
  • the foregoing storage medium includes: a U disk, a removable hard disk, a read-only memory (ROM), a random access memory (RAM), a magnetic disk or an optical disk, and the like, which can store program codes. .

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Electromagnetism (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Mobile Radio Communication Systems (AREA)
  • Quality & Reliability (AREA)

Abstract

一种产生模拟干扰的方法及装置,用于获得与真实用户设备的干扰特性一致的模拟干扰,从而更客观地反映不同场景下的系统性能,提高技术评估效果和效率。本发明实施例包括:配置干扰特性参数配置,所述干扰特性参数用于模拟一个或一类具有相同干扰特性的干扰,所述干扰特性参数包括传输模式、秩RANK以及预编码矩阵指示PMI;利用所述干扰特性参数,产生模拟干扰。

Description

一种产生模拟干扰的方法及装置
本申请要求于 2013 年 7 月 5 日提交中国专利局、 申请号为 201310283161.1 , 发明名称为 "一种产生模拟干扰的方法及装置" 的中国专利 申请的优先权, 其全部内容通过引用结合在本申请中。
技术领域
本发明涉及通信技术领域, 尤其是涉及一种产生模拟干扰的方法及装置。
背景技术
长期演进( LTE, Long Term Evolution ) 系统支持多输入多输出 ( ΜΙΜΟ, Multiple-Input Multiple-Output )传输, 该技术在传统时域和频域传输的基础上 增加了空间维度的划分,给下行传输提供更高的灵活性。 第三代合作伙伴计划 ( 3GPP, 3rd Generation Partnership Project ) Release 8和 Release 9的 LTE物理 层协议提供了下行开环发射分集、开环空间复用、 闭环空间复用以及波束赋形 等多种传输技术, 以适应不同的系统配置、 用户设备(UE, User Equipment ) 能力和信道环境。
在商用的 LTE 系统中, 除了服务小区, 邻区往往有一定数量的用户设备 在进行数据传输。 为了更好地评估 MIMO在多小区场景下的性能, 需要邻区 加载来模拟小区之间的同道干扰。邻区加载通常釆用两种途径实现: 一是釆用 真实的用户设备在邻区产生干扰, 二是釆用模拟负载的模式产生干扰;
但是不同的传输技术所产生的干扰信号性质不同, 例如, 开环发射分集技 术只传输单个码字; 闭环空间复用可以传输 1到 2个码字和多个数据流、且干 扰信号具有一定的方向性; 波束赋形技术的干扰信号也具有一定的方向性。 不 同的传输技术产生的干扰信号的影响也有所不同,在相同的功率条件下, 空间 复用的层数越多, 干扰的影响越严重。 例如, 空间复用干扰源的影响大于发射 分集的干扰源的影响。
也就是说, 如何产生模拟干扰以及干扰源的性质对系统性能有显著的影 响。 现有一种产生模拟干扰的方法是釆用单个单流传输方案来产生模拟干扰, 相当于只有一个干扰用户设备, 或者虽然有多个干扰用户设备,但是所有干扰 用户设备具有唯一的干扰特性, 即只有单个码字,秩等于 1,干扰没有方向性, 加上模拟干扰和真实用户设备干扰又存在明显差异,导致不能客观评估商用系 统的性能。
发明内容
本发明实施例提供了一种产生模拟干扰的方法及装置,用于获得与真实用 户设备的干扰特性一致的模拟干扰, 从而更客观地反映不同场景下的系统性 能, 提高技术评估效果和效率。
有鉴于此, 本发明第一方面提供一种产生模拟干扰的方法, 其中, 包括: 设定一个或多个模拟负载模板,对所述模拟负载模板分别进行干扰特性参 数配置, 一个模拟负载模板用于模拟一个或一类具有相同干扰特性的干扰; 利用所述模拟负载模板上配置的干扰特性参数,产生模拟干扰, 若设定了 多个模拟负载模板, 使得所述多个模拟负载模板模拟产生的干扰在时域和 /或 频域上轮询。
在第一方面的第一种可能的实现方式中,所述干扰特性参数包括所述模拟 负载模板的传输模式、 资源利用率、 秩 RANK、 预编码矩阵指示 PMI、 调制与 编码方案 MCS、 时域或频域轮询粒度;
所述对模拟负载模板进行干扰特性参数配置包括:对所述模拟负载模板的 传输模式、 资源利用率、 RANK、 PMI 、 MCS、 时域或频域轮询粒度分别进 行配置。
结合第一方面的第一种可能的实现方式, 在第二种可能的实现方式中, 对模拟负载模板的传输模式进行配置包括:配置模拟负载模板的传输模式 或传输方案, 以及接受或不接受干扰小区的特性 License的约束;
对模拟负载模板的资源利用率进行配置包括: 配置干扰小区的资源块 RB 利用率和发射功率利用率, 以控制当所述干扰小区所调度的真实用户设备 UE 的 RB利用率或发射功率利用率低于预置门限时, 进行模拟负载调度, 当干扰 小区所调度的真实 UE的 RB利用率和发射功率利用率高于预置门限时, 模拟 负载不生效;
对模拟负载模板的 RANK和 PMI进行配置包括: 根据配置的所述传输模 式,配置与其对应的 RANK和 PMI分别为一个特定值或分别为预置取值范围; 对模拟负载模板的 MCS进行配置包括: 配置模拟负载模板的 MCS为一 个特定值或预置取值范围;
对时域或频域轮询粒度进行配置包括: 若设定了多个模拟负载模板, 分别 配置模拟负载模板的时域轮询粒度或频域轮询粒度,为一个特定值或预置取值 范围; 所述时域轮询粒度的预置取值范围为 1ms到无限大, 所述频域轮询粒 度的预置取值范围为 1~100 RB。
结合第一方面或第一方面的第一种或第二种可能的实现方式,在第三种可 能的实现方式中, 利用所述模拟负载模板上配置的干扰特性参数, 产生模拟干 扰包括:
基于不同的传输模式, 根据媒体接入控制层 MAC或无线资源控制 RRC 协议层配置的 RANK和 /或 PMI和 /或 MCS, 产生模拟干扰, 并根据配置的时 域或频选轮询粒度, 在多个模拟负载模板之间进行轮询。
结合第一方面或第一方面的第一种或第二种可能的实现方式,在第四种可 能的实现方式中, 所述方法还包括:
将所述模拟负载模板的干扰特性参数配置复制到一个或多个模拟用户设 备, 并通过所述模拟用户设备将模拟负载加载到干扰小区, 以达到预设的模拟 负载资源利用率。
结合第一方面或第一方面的第一种或第二种可能的实现方式,在第五种可 能的实现方式中, 所述方法还包括:
在基于干扰小区开启 ICIC功能的方式下, 将所述模拟负载模板的干扰特 性参数配置复制到一个或多个模拟用户设备,并通过所述模拟用户设备将模拟 负载加载到中心频带和边缘频带, 以达到预设模拟的模拟负载资源利用率。
结合第一方面或第一方面的第一种或第二种可能的实现方式,在第六种可 能的实现方式中, 所述方法还包括:
若所述无线资源控制 RRC协议层只配置所述干扰特性参数中的部分干扰 特性参数, 则对于未配置的干扰特性参数,按照缺省值或缺省方式来进行模拟 力口扰;
若所述 RRC协议层只配置所述干扰特性参数中的部分干扰特性参数且为 一个预设取值范围,则按照在该预设取值范围内随机选取或轮询选取的方式来 进行模拟加扰。
本发明第二方面提供一种产生模拟干扰的装置, 其中, 包括:
参数配置模块,用于对设定的一个或多个模拟负载模板分别进行干扰特性 参数配置, 一个模拟负载模板用于模拟一个或一类具有相同干扰特性的干扰; 模拟干扰产生模块, 用于利用所述模拟负载模板上配置的干扰特性参数, 产生模拟干扰, 若设定了多个模拟负载模板,使得所述多个模拟负载模板模拟 产生的干扰在时域和 /或频域上轮询。
在第二方面的第一种可能的实现方式中,所述干扰特性参数包括所述模拟 负载模板的传输模式、 资源利用率、 秩 RANK、 预编码矩阵指示 PMI和调制 与编码方案 MCS、 时域或频域轮询粒度。
结合第二方面的第一种可能的实现方式, 在第二种可能的实现方式中, 所述参数配置模块具体用于对模拟负载模板的传输模式进行配置、对模拟 负载模板的资源利用率进行配置、对模拟负载模板的 RANK和 PMI进行配置、 对模拟负载模板的 MCS进行配置以及对时域或频域轮询粒度进行配置,其中, 所述对模拟负载模板的传输模式进行配置包括:配置模拟负载模板的传输模式 或传输方案, 以及为接受或不接受干扰小区的特性 License的约束; 所述对模 拟负载模板的资源利用率进行配置包括: 配置干扰小区的资源块 RB利用率和 发射功率利用率, 以控制当所述干扰小区所调度的真实用户设备 UE的 RB利 用率或发射功率利用率低于预置门限时, 进行模拟负载调度, 当干扰小区所调 度的真实 UE的 RB利用率和发射功率利用率高于预置门限时, 模拟负载不生 效; 所述对模拟负载模板的 RANK和 PMI进行配置包括: 根据配置的所述传 输模式, 配置与其对应的 RANK和 PMI分别为一个特定值或分别为预置取值 范围; 所述对模拟负载模板的 MCS进行配置包括: 配置模拟负载模板的 MCS 为一个特定值或预置取值范围; 对时域或频域轮询粒度进行配置包括: 若设定 了多个模拟负载模板,分别配置模拟负载模板的时域轮询粒度或频域轮询粒度 为一个特定值或预置取值范围, 所述时域轮询粒度的预置取值范围为 1ms 到 无限大, 所述频域轮询粒度的预置取值范围为 1~100 RB。 结合第二方面或第二方面的第一种或第二种可能的实现方式,在第三种可 能的实现方式中, 所述模拟干扰产生模块具体用于: 基于不同的传输模式, 根 据媒体接入控制层 MAC或无线资源控制 RRC协议层配置的 RANK和 /或 PMI 和 /或 MCS, 产生模拟干扰, 并根据配置的时域或频选轮询粒度, 在多个模拟 负载模板之间进行轮询。
结合第二方面或第二方面的第一种或第二种可能的实现方式,在第四种可 能的实现方式中, 所述装置还包括参数复制模块, 所述参数复制模块用于将所 述模拟负载模板的干扰特性参数配置复制到一个或多个模拟用户设备,并通过 所述模拟用户设备将模拟负载加载到干扰小区,以达到预设的模拟负载资源利 用率。
结合第二方面或第一方面的第一种或第二种可能的实现方式,在第五种可 能的实现方式中, 所述装置还包括参数复制模块, 所述参数复制模块用于在基 于干扰小区开启 ICIC功能的方式下, 将所述模拟负载模板的干扰特性参数配 置复制到一个或多个模拟用户设备,并通过所述模拟用户设备将模拟负载加载 到中心频带和边缘频带, 以达到预设的模拟负载资源利用率。
结合第二方面或第一方面的第一种或第二种可能的实现方式,在第六种可 能的实现方式中, 所述模拟干扰产生模块还用于若所述无线资源控制 RRC协 议层只配置所述干扰特性参数中的部分干扰特性参数,则对于未配置的干扰特 性参数按照缺省值或缺省方式来进行模拟加扰; 若所述 RRC协议层只配置所 述干扰特性参数中的部分干扰特性参数且为一个预设取值范围,则按照在该预 设取值范围内随机选取或轮询选取的方式来进行模拟加扰。
从以上技术方案可以看出,本发明实施例提供的产生模拟干扰的方法及装 置, 具有以下优点: 通过干扰特性参数配置和模拟干扰产生的过程进行实现, 且每个干扰源是单独配置的,因此可以获得与真实用户设备的干扰特性一致的 模拟干扰, 从而更客观地反映不同场景下的系统性能, 节省测试投入和成本, 并提高测试效率。
附图说明
为了更清楚地说明本发明实施例的技术方案,下面将对实施例描述所需要 使用的附图作简单地介绍,显而易见地, 下面描述中的附图仅仅是本发明的一 些实施例, 对于本领域普通技术人员来讲, 在不付出创造性劳动的前提下, 还 可以根据这些附图获得其他的附图。
图 1为本发明实施例提供的一种产生模拟干扰的方法的流程示意图; 图 2为本发明实施例提供的产生模拟干扰的方法的另一流程示意图; 图 3为本发明实施例提供的一种产生模拟干扰的装置的结构示意图; 图 4为本发明实施例提供的产生模拟干扰的装置的另一结构示意图。
具体实施方式
本发明实施例提供了一种产生模拟干扰的方法及装置,用于获得与真实用 户设备的干扰特性一致的模拟干扰, 从而更客观地反映不同场景下的系统性 能, 提高技术评估效果和效率。
下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清 楚、 完整地描述, 显然, 所描述的实施例仅仅是本发明一部分实施例, 而不是 全部的实施例。基于本发明中的实施例, 本领域普通技术人员在没有作出创造 性劳动前提下所获得的所有其它实施例, 都属于本发明保护的范围。
以下分别进行详细说明。
请参考图 1, 图 1为本发明实施例提供的一种产生模拟干扰的方法的流程 示意图, 其中, 所述方法包括:
步骤 101、 设定一个或多个模拟负载模板, 对所述模拟负载模板分别进行 干扰特性参数配置,一个模拟负载模板用于模拟一个或一类具有相同干扰特性 的干扰;
也就是说,每个模拟负载模板对应一类干扰用户设备, 可以由一个或多个 干扰用户设备组成, 但是具有相同的干扰特性。
步骤 102、利用所述模拟负载模板上配置的干扰特性参数,产生模拟干扰, 若设定了多个模拟负载模板,使得多个所述模拟负载模板模拟产生的干扰在时 域和 /或频域上轮询。
本发明实施例中, 所述干扰特性参数包括所述模拟负载模板的传输模式、 资源利用率、 秩 RANK、 预编码矩阵指示(PMI, Preceding Matrix Indicator )、 调制与编码方案( MCS, Modulation and Coding Scheme ),、 时域或频域轮询粒 度; 所述对模拟负载模板进行干扰特性参数配置可以包括: 对所述模拟负载模 板的传输模式、 资源利用率、 RANK、 PMI、 MCS、 时域或频域轮询粒度分别 进行配置。
本发明实施例提供一种产生模拟干扰的方法, 以应用在多输入多输出
MIMO 的传输方式为例, 用于获得与真实用户设备的干扰特性一致的模拟干 扰;可以理解的是,所述方法同样适用于单输入单输出( SISO, SISO Single Input Single Out )、 单输入多输出 (SIMO, SIMO Single Input Multiple Out )、 多输入 单输出 (MISO, MISO Multiple Input Single Out ); 其中, 虽然 SIMO和 SISO 只有一根发射天线, 不能配置相应的传输模式或传输方案,但通过配置用户数 和 MCS等参数, 也可以更客观模拟出干扰, 此处不作具体限定。
由上述可知, 本发明实施例提供的产生模拟干扰的方法,通过干扰特性参 数配置和模拟干扰产生的过程进行实现,且每个干扰源是单独配置的, 因此可 以获得与真实用户设备的干扰特性一致的模拟干扰,从而更客观地反映不同场 景下的系统性能, 节省测试投入和成本, 并提高测试效率。
请参考图 2, 图 2为本发明实施例提供的产生模拟干扰的方法的另一流程 示意图, 其中, 所述方法包括:
步骤 201、 对所述模拟负载模板的传输模式、 资源利用率、 RANK、 PMI、 MCS以及时域或频选轮询粒度分别进行配置;
优选地, 对模拟负载模板的传输模式进行配置包括:
配置模拟负载模板的传输模式或传输方案,以及接受或不接受干扰小区的 特性 License 的约束; 配置的传输模式只影响物理下行共享信道(PDSCH, Physical Downlink Shared Channel ) 的数据传输, 但不影响小区专用参考信号 ( CRS , Cell-specific Reference Signal )导频的发射, 也不影响导频发射功率、 Pa 和 Pb 等参数的取值, 从而模拟负载和小区干扰协调 (ICIC, Inter-Cell Interference Coordination ) 可以共存。
其中, 所述干扰小区的特性 License可以包括 MIMO/BF ( beam forming, 波束赋形), 还可以包括有源天线系统(AAS, Active Antenna System ), 频选 调度, ICIC, 功率等级等其他特性。
优选地, 对模拟负载模板的资源利用率进行配置包括:
配置干扰小区的资源块(RB, Resource Block )利用率和发射功率利用率, 以控制当所述干扰小区所调度的真实用户设备( UE, User Equipment ) 的 RB 利用率或发射功率利用率低于预置门限时, 进行模拟负载调度, 当干扰小区所 调度的真实 UE的 RB利用率和发射功率利用率高于预置门限时, 模拟负载不 生效;
也就是说, 资源利用率包括干扰小区的 RB利用率和发射功率利用率, 并 预先设置 RB利用率或发射功率利用率门限;
优选地, 对模拟负载模板的 MCS进行配置包括:
配置模拟负载模板的 MCS为一个特定值或预设取值范围, 即为 0至 28 的一个子集合。
优选地, 对时域或频域轮询粒度进行配置包括:
若设定了多个模拟负载模板,分别配置模拟负载模板的时域轮询粒度或频 域轮询粒度, 为一个特定值或预置取值范围; 所述时域轮询粒度的预置取值范 围为 1ms到无限大, 所述频域轮询粒度的预置取值范围为 1~100 RB。
优选地, 对模拟负载模板的 RANK和 PMI进行配置包括:
根据配置的所述传输模式, 配置与其对应的 RANK和 PMI分别为一个特 定值或分别为预置取值范围; 具体取值范围可参考表 1, 表 1为不同传输模式 的有效 R ANK/PMI的取值范围;
表 1
传输模式 Rank PMI
TM1 1 N.A.
TM2 1 N.A.
TM3 1-4 N.A.
TM4 1-4 0-15
TM5 1 0-15 TM6 1 0-15
TM7 1 N.A.
TM8 1-2 0-15
TM9 1-8 PMIl : 0-15 PMI2: 0-15 需要说明的是, 结合表 1, 下面针对 LTE协议定义的各传输模式, 根据配 置的干扰特性参数, 对模拟干扰产生的形式进行简单说明:
以基于 TM1、 TM2和 TM3的传输模式下, 所述 PMI标记为 N.A, 所述 N.A 表示为不配置或配置不生效, 无论无线资源控制协议 ( RRC, Radio Resource Control )协议层(简称 L3 )是否配置以及如何配置 PMI, 物理层(简 称 L1 )和媒体接入控制 (MAC, Media Access Control )层(简称 L2 )根据 LTE协议 36.211来生成预编码矩阵和物理下行共享信道 PDSCH信号;其中可 理解的是, Ll、 L2和 L3属于 eNodeB的架构内容, 此处不作具体解释。
以基于 TM7的传输模式下, 所述 PMI标记为 N.A, 即代表无论 L3如何 配置 PMI, L2和 L1根据釆用的波束赋形技术来生成波束赋形矩阵和 PDSCH 信号。
以基于 TM8或 TM9的传输模式下,可以配置也可以不配置 PMI,如果配 置 PMI, 则才艮据 36.211和 36.213定义的码本来生成预编码矩阵和 PDSCH信 号; 如果不配置 PMI, 则根据釆用的波束赋形技术来生成波束赋形矩阵和 PDSCH信号。
可以理解的是, 本发明实施例中, 模拟干扰的配置还可以包括: 配置模拟 负载频选调度开关和配置模拟负载模板数目,所述模拟负载频选调度开关指示 模拟负载是否使用频选调度。 如果开关打开, 使用频选调度; 如果开关关闭, 使用非频选调度; 所述模拟负载模板数目指示模拟负载的模板数 ,每个模板 可单独配置传输模式或传输方案、 调度的 RANK、 PMI和 MCS。 若模拟负载 模板数为零, 则按缺省传输方案 /Rank/MCS来产生模拟干扰。
步骤 202、 基于不同的传输模式, 根据媒体接入控制层 MAC或无线资源 控制 RRC协议层配置的 RANK和 /或 PMI和 /或 MCS, 产生模拟干扰; 可具体地, L2/L3根据配置的干扰特性参数( RANK和 /或 PMI和 /或 MCS ) 生成模拟干扰,每个模拟负载模板的干扰在时域占用连续 SimuLoadTimePeriod 个传输时间间隔( TTI, Transmission Time Interval ), 但不含物理下行控制信道 ( PDCCH, Physical Downlink Control Channel )所在的正交频分复用( OFDM, Orthogonal Frequency Division Multiplexing )符号, 在设定多个模拟负载模板 的情况下,还根据配置的时域或频选轮询粒度, 在多个模拟负载模板之间进行 轮询, 即多个模拟负载模板模拟产生的干扰在时域和 /或频域上轮询。 其中, 参数 SimuLoadTimePeriod可根据实际情况进行配置。
可结合参考表 1, 首先, 模拟负载模板的 RANK 配置为接受或不接受 MIMO和 BF的 License控制, 也不接受码本子集功能限制。 设定 1T 4T表示 eNodeB的天线端口数, 对于 TM1、 TM2和 TM3的传输模式, L3输入的 PMI 无意义(即 PMI为不配置或配置不生效), L2根据协议 36.211来生成预编码 矩阵; 对于 2T闭环 TM4或 TM5或 TM6模式, L2调度的 PMI根据 RANK和 L3输入的 PMI进行上下限幅处理, 保证 RANK1的 PMI在 0~3, RANK2的 PMI在 1~2, 所述 RANK1和 RANK2表示空间独立数据流的数目。 对于 1T, L2根据传输模式 TM1以及设定的 MCS进行模拟加扰; 对于 2Τ或者 4Τ, 若 传输模式为 ΤΜ1, 则根据 ΤΜ2以及设定的 MCS进行模拟加扰; 对于 ΤΜ7, L3输入的 ΡΜΙ无意义, L2和 L1根据釆用的波束赋形技术来生成波束赋形矩 阵。 对于 ΤΜ8或 ΤΜ9, 若 L3配置了 ΡΜΙ, 则根据 36.211和 36.213定义的码 本来生成预编码矩阵; 如果没有配置 ΡΜΙ, 则根据釆用的波束赋形技术来生成 波束赋形矩阵。
进一步优选地, 所述产生模拟干扰的方法还可以包括:
将所述模拟负载模板的干扰特性参数配置复制到一个或多个模拟用户设 备, 并通过所述模拟用户设备将模拟负载加载到干扰小区, 以达到预设模拟负 载资源利用率。
由于在某一个 ΤΤΙ内, 根据某一种资源分配方式( LTE协议 36.213定义 了三种资源分配方式 0、 1、 2 )进行每个模拟负载用户的 RB资源分配, 从而 可能一个模拟用户设备可寻址的 RB不能达到设定的模拟负载水平。 为此, 需 要将配置的每一个模拟负载模板 (相当于模拟负载用户设备 )的干扰特性参数 配置复制到一个或多个模拟用户设备(例如, 最多 8个用户设备), 并通过这 些模拟用户设备加扰来实现达到设定的模拟负载资源利用率。
更进一步地, 所述产生模拟干扰的方法还可以包括:
在基于干扰小区开启 ICIC功能的方式下, 将所述模拟负载模板的干扰特 性参数配置复制到一个或多个模拟用户设备,并通过所述模拟用户设备将模拟 负载加载到中心频带和边缘频带, 以达到预设模拟负载资源利用率。
如果干扰小区开启 ICIC功能, 则干扰小区的中心用户和边缘用户具有不 一样的功控参数(Pa和 Pb ) 配置。 此时, 仍然将配置的每一个模拟负载模板 的参数配置复制到一个或多个模拟用户设备(例如, 最多 16个用户设备), 并 通过这些模拟用户设备加扰在中心频带和边缘频带分别实现达到设定的模拟 负载资源利用率。
优选地,所述产生模拟干扰的方法还可以包括:若所述无线资源控制 RRC 协议层只配置所述干扰特性参数中的部分干扰特性参数,则对于未配置的干扰 特性参数, 按照缺省值或缺省方式来进行模拟加扰;
若所述 RRC协议层只配置所述干扰特性参数中的部分干扰特性参数且为 一个预设取值范围,则按照在该预设取值范围内随机选取或轮询选取的方式来 进行模拟加扰。
例如, 若 RANK未配置, 则可以按照缺省 RANK1来模拟加扰; 若 MCS 未配置, 则可以按照缺省的 MCS来模拟加扰, 或者随机选择 MCS来模拟加 扰, 或者釆用 MCS在某个范围内轮询的方式来模拟加扰。
可以理解的是, 本发明实施例可以釆用伪随机噪声或特定的源信号, 结合 L3配置的传输模式、 RANK、 PMI、 MCS等干扰特性参数, 参考协议 36.211, 经过下行物理信道处理流程生产 PDSCH信号, 并映射到 eNodeB天线上进行 发射。
需要说明的是,所述产生模拟干扰的方法可以由 eNodeB执行,在 eNodeB 侧根据配置的干扰特性参数生成模拟干扰; 也可以釆用一个单独的装置(如信 号发生器)来生成模拟干扰。 由上述可知, 本发明实施例提供的产生模拟干扰的方法,通过干扰特性参 数配置和模拟干扰产生的过程进行实现,且每个干扰源是单独配置的, 配置干 扰源的干扰特性参数(如包括干扰源的数量、 每个干扰源的传输模式、 PMI、 RANK, MCS、 发射功率、 时域或频域轮询粒度等)。 其后根据设定的干扰特 性参数生成模拟干扰数据在空口发送。可以获得与真实用户设备的干扰特性一 致的模拟干扰,从而更客观地反映不同场景下的系统性能, 节省测试投入和成 本, 并提高测试效率。 本发明技术方案中, 由模拟干扰产生的干扰效果与釆用 真实 UE的干扰效果相当, 从而更好的评估 /演示特定技术(如 MIMO、 AAS ) 在多小区场景下的性能。 与釆用真实 UE干扰相比, 具有一定的灵活性, 同时 大幅度节约物料和人力成本。
下面对本发明实施例中另一种产生模拟干扰的方法进行描述, 本实施例 中, 产生模拟干扰的方法具体包括如下步骤:
51、 配置干扰特性参数;
本实施例中,该干扰特性参数用于模拟一个或一类具有相同干扰特性的干 扰, 该干扰特性参数包括传输模式、 秩 RANK以及 PMI。
52、 利用干扰特性参数, 产生模拟干扰。
当配置完干扰特性参数之后, 则可以利用这些干扰特性参数,产生模拟干 扰。
为便于理解, 下面对本实施例进行详细说明:
本实施例中, 干扰特性参数至少可以包括传输模式、 秩 RANK以及 PMI, 配置的过程具体为:
对传输模式进行配置包括: 配置干扰特性参数的传输模式或传输方案, 以 及接受或不接受干扰小区的特性 License的约束;
对 RANK和 PMI进行配置包括: 根据配置的传输模式, 配置与其对应的 RANK和 PMI分别为一个特定值或分别为预置取值范围。
可以理解的是, 在实际应用中, 干扰特性参数除了可以包括传输模式、 秩 RANK以及 PMI之外, 还可以包含其他的参数, 例如资源利用率以及 MCS, 本实施例中, 对资源利用率以及 MCS配置的过程具体为: 对资源利用率进行配置包括: 配置干扰小区的资源块 RB利用率和发射功 率利用率, 以控制当干扰小区所调度的真实用户设备 UE的 RB利用率或发射 功率利用率低于预置门限时, 进行模拟负载调度, 当干扰小区所调度的真实 UE的 RB利用率和发射功率利用率高于预置门限时, 模拟负载不生效;
对 MCS进行配置包括: 配置 MCS为一个特定值或预置取值范围。
可以理解的是, 在实际应用中, 干扰特性参数除了可以包括传输模式、 秩 RANK以及 PMI之外, 还可以包含其他的参数, 例如当存在多组干扰特性参 数, 干扰特性参数还可以包括: 时域和 /或频域轮询粒度, 对时域和 /或频域轮 询粒度配置的过程具体为:
分别配置每组干扰特性参数的时域轮询粒度和 /或频域轮询粒度, 为一个 特定值或预置取值范围; 时域轮询粒度的预置取值范围为 1ms到无限大, 频 域轮询粒度的预置取值范围为 1~100 RB。
本实施例中, 产生模拟干扰的装置可以基于不同的传输模式, 根据 RRC 层配置的 RANK和 /或 PMI, 产生模拟干扰。
当存在多组干扰特性参数时,产生模拟干扰的装置可以基于不同的传输模 式, 根据 RRC层配置的 RANK和 /或 PMI, 产生模拟干扰, 并且根据配置的 时域和 /或频选轮询粒度, 在多组干扰特性参数之间进行轮询, 使得多组干扰 特性参数产生的模拟干扰在时域和 /或频域上轮询。
需要说明的是,如果一个模拟用户设备可寻址的 RB不能达到设定的模拟 负载水平, 则还可以将干扰特性参数复制到一个或多个模拟用户设备, 并通过 这些模拟用户设备将模拟负载加载到干扰小区,以达到预设的模拟负载资源利 用率。
此外, 如果干扰小区开启了 ICIC功能, 则产生模拟干扰的装置可以将干 扰特性参数复制到一个或多个模拟用户设备,并通过这些模拟用户设备将模拟 负载加载到中心频带和边缘频带, 以达到预设模拟的模拟负载资源利用率。
为便于更好的实施本发明实施例提供的产生模拟干扰的方法,本发明实施 例还提供一种基于上述产生模拟干扰的方法的装置。其中名词的含义与上述方 法中相同, 具体实现细节可以参考方法实施例中的说明。 请参考图 3, 图 3为本发明实施例提供的一种产生模拟干扰的装置的结构 示意图, 所述装置应用于上述实施例的产生模拟干扰的方法, 其中, 所述装置 包括:
参数配置模块 301, 用于对设定的一个或多个模拟负载模板分别进行干扰 特性参数配置,一个模拟负载模板用于模拟一个或一类具有相同干扰特性的干 扰;
也就是说,每个模拟负载模板对应一类干扰用户设备, 可以由一个或多个 干扰用户设备组成, 但是具有相同的干扰特性。
模拟干扰产生模块 302, 用于利用所述模拟负载模板上配置的干扰特性参 数, 产生模拟干扰, 若设定了多个模拟负载模板, 使得所述多个模拟负载模板 模拟产生的干扰在时域和 /或频域上轮询。
本发明实施例中, 所述干扰特性参数包括所述模拟负载模板的传输模式、 资源利用率、 秩 RANK、 预编码矩阵指示 PMI、 和调制与编码方案 MCS、 时 域或频域轮询粒度;则所述参数配置模块 301用于对所述模拟负载模板的传输 模式、 资源利用率、 RANK、 PMI、 MCS、 时域或频域轮询粒度分别进行配置。
本发明实施例提供一种产生模拟干扰的装置, 可以应用在多输入多输出 MIMO的传输方式,用于获得与真实用户设备的干扰特性一致的模拟干扰; 可 以理解的是,所述装置同样可以应用于单输入单输出(SISO, SISO Single Input Single Out )、 单输入多输出 (SIMO, SIMO Single Input Multiple Out )、 多输入 单输出 (MISO, MISO Multiple Input Single Out ), 此处不作具体限定。
由上述可知, 本发明实施例提供的产生模拟干扰的装置,通过干扰特性参 数配置和模拟干扰产生的过程进行实现,且每个干扰源是单独配置的, 因此可 以获得与真实用户设备的干扰特性一致的模拟干扰,从而更客观地反映不同场 景下的系统性能, 节省测试投入和成本, 并提高测试效率。
优选地, 本发明实施例中, 所述参数配置模块 301具体用于对模拟负载模 板的传输模式进行配置、对模拟负载模板的资源利用率进行配置、对模拟负载 模板的 RANK和 PMI进行配置、 对模拟负载模板的 MCS进行配置以及对时 域或频域轮询粒度进行配置; 其中, 所述对模拟负载模板的传输模式进行配置包括: 配置模拟负载模板 的传输模式或传输方案, 以及接受或不接受干扰小区的特性 License的约束; 配置的传输模式只影响物理下行共享信道 PDSCH的数据传输, 但不影响 小区专用参考信号 CRS导频的发射, 也不影响导频发射功率、 Pa和 Pb等参 数的取值, 从而模拟负载和小区干扰协调 ICIC可以共存; 其中, 所述干扰小 区的特性 License可以包括 MIMO/BF, 还可以包括有源天线系统 AAS, 频选 调度, ICIC, 功率等级等其他特性。
所述对模拟负载模板的资源利用率进行配置包括:配置干扰小区的资源块 RB利用率和发射功率利用率, 以控制当所述干扰小区所调度的真实用户设备 UE的 RB利用率或发射功率利用率低于预置门限时, 进行模拟负载调度, 当 干扰小区所调度的真实 UE的 RB利用率和发射功率利用率高于预置门限时, 模拟负载不生效;
所述对模拟负载模板的 RANK和 PMI进行配置包括: 根据配置的所述传 输模式, 配置与其对应的 RANK和 PMI分别为一个特定值或分别为预置取值 范围; 其中, 具体取值范围可参考上述实施例中的表 1 ;
所述对模拟负载模板的 MCS 进行配置包括: 配置模拟负载模板的 MCS 为一个特定值或预设取值范围, 即为 0至 28的一个子集合;
所述对时域或频域轮询粒度进行配置包括: 若设定了多个模拟负载模板, 分别配置模拟负载模板的时域轮询粒度或频域轮询粒度,为一个特定值或预置 取值范围; 所述时域轮询粒度的预置取值范围为 1ms到无限大, 所述频域轮 询粒度的预置取值范围为 1~100 RB。
在该实施方式中, 所述模拟干扰产生模块 302具体用于: 基于不同的传输 模式, 根据媒体接入控制层 MAC或无线资源控制 RRC协议层配置的 RANK 和 /或 PMI和 /或 MCS, 产生模拟干扰; 在设定了多个模拟负载模板的情况下, 还根据配置的时域或频选轮询粒度, 在多个模拟负载模板之间进行轮询。
可以理解的是, 参考表 1, 在 LTE协议定义的各传输模式下, 根据配置的 干扰特性参数, 对模拟干扰产生的形式可以是:
以基于 TM1、 TM2和 TM3的传输模式下, 所述 PMI标记为 N.A, 所述 N.A表示为不配置或配置不生效, 无论无线资源控制协议 RRC协议层(简称 L3 )是否配置以及如何配置 PMI, 物理层 (简称 L1 )和介质访问控制 MAC 层(简称 L2 )根据协议 36.211来生成预编码矩阵和物理下行共享信道 PDSCH 信号; 其中可理解的是, Ll、 L2和 L3属于 eNodeB的架构内容, 此处不作具 体解释。
以基于 TM7的传输模式下, 所述 PMI标记为 N.A, 即代表无论 L3如何 配置 PMI, L2和 L1根据釆用的波束赋形技术来生成波束赋形矩阵和 PDSCH 信号。
以基于 TM8或 TM9的传输模式下,可以配置也可以不配置 PMI,如果配 置 PMI, 则才艮据 36.211和 36.213定义的码本来生成预编码矩阵和 PDSCH信 号; 如果不配置 PMI, 则根据釆用的波束赋形技术来生成波束赋形矩阵和 PDSCH信号。
在该实施方式下,所述模拟干扰产生模块 302用于产生模拟干扰过程可以 具体为:
可结合参考表 1, 首先, 模拟负载模板的 RANK 配置为接受或不接受
MIMO和 BF的 License控制, 也不接受码本子集功能限制。 设定 1T 4T表示 eNodeB的天线端口数, 对于 TM1、 TM2和 TM3的传输模式, L3输入的 PMI 无意义(即 PMI为不配置或配置不生效), L2根据协议 36.211来生成预编码 矩阵; 对于 2T闭环 TM4或 TM5或 TM6模式, L2调度的 PMI根据 RANK和 L3输入的 PMI进行上下限幅处理, 保证 RANK1的 PMI在 0~3, RANK2的 PMI在 1~2, 所述 RANK1和 RANK2表示空间独立数据流的数目。 对于 1T, L2根据传输模式 TM1以及设定的 MCS进行模拟加扰; 对于 2Τ或者 4Τ, 若 传输模式为 ΤΜ1, 则根据 ΤΜ2以及设定的 MCS进行模拟加扰; 对于 ΤΜ7, L3输入的 ΡΜΙ无意义, L2和 L1根据釆用的波束赋形技术来生成波束赋形矩 阵。 对于 ΤΜ8或 ΤΜ9, 若 L3配置了 ΡΜΙ, 则根据 36.211和 36.213定义的码 本来生成预编码矩阵; 如果没有配置 ΡΜΙ, 则根据釆用的波束赋形技术来生成 波束赋形矩阵。
进一步优选地, 所述装置还可以包括参数复制模块, 所述参数复制模块用 于将所述模拟负载模板的干扰特性参数配置复制到一个或多个模拟用户设备, 并通过所述模拟用户设备将模拟负载加载到干扰小区,以达到预设模拟负载资 源利用率。
由于在某一个 TTI内, 根据某一种资源分配方式( LTE协议 36.213定义 了三种资源分配方式 0、 1、 2 )进行每个模拟负载用户的 RB资源分配, 从而 可能一个模拟用户设备可寻址的 RB不能达到设定的模拟负载水平。 为此, 需 要将配置的每一个模拟负载模板 (相当于模拟负载用户设备 )的干扰特性参数 配置复制到一个或多个模拟用户设备(例如, 最多 8个用户设备), 并通过这 些模拟用户设备加扰来实现达到设定的模拟负载资源利用率。
更进一步地, 所述参数复制模块还可以用于在基于干扰小区开启 ICIC功 能的方式下,将所述模拟负载模板的干扰特性参数配置复制到一个或多个模拟 用户设备, 并通过所述模拟用户设备将模拟负载加载到中心频带和边缘频带, 以达到预设模拟负载资源利用率。
如果干扰小区开启 ICIC功能, 则干扰小区的中心用户和边缘用户具有不 一样的功控参数(Pa和 Pb ) 配置。 此时, 仍然将配置的每一个模拟负载模板 的参数配置复制到一个或多个模拟用户设备(例如, 最多 16个用户设备), 并 通过这些模拟用户设备加扰在中心频带和边缘频带分别实现达到设定的模拟 负载资源利用率。
优选地, 所述模拟干扰产生模块 302还用于若所述无线资源控制 RRC协 议层只配置所述干扰特性参数中的部分干扰特性参数,则对于未配置的干扰特 性参数, 则按照缺省值或缺省方式来进行模拟加扰; 若所述 RRC协议层只配 置所述干扰特性参数中的部分干扰特性参数且为一个预设取值范围,则按照在 该预设取值范围内随机选取或轮询选取的方式来进行模拟加扰。 例如, 若 RANK未配置, 则可以按照缺省 RANK1来模拟加扰; 若 MCS未配置, 则可 以按照缺省的 MCS来模拟加扰, 或者随机选择 MCS来模拟加扰, 或者釆用 MCS在某个范围内轮询的方式来模拟加扰。
可以理解的是, 本发明实施例可以釆用伪随机噪声或特定的源信号, 结合 L3配置的传输模式、 RANK、 PMI、 MCS等干扰特性参数, 参考协议 36.211, 经过下行物理信道处理流程生产 PDSCH信号, 并映射到 eNodeB天线上进行 发射。
需要说明的是, 所述产生模拟干扰的装置可以为 eNodeB , 即在 eNodeB 侧根据配置的干扰特性参数生成模拟干扰; 也可以釆用一个单独的装置(如信 号发生器)来生成模拟干扰。
所属领域的技术人员可以清楚地了解到, 为描述的方便和简洁, 上述描述 的产生模拟干扰的装置和装置中的单元模块的具体工作过程,可以参考前述产 生模拟干扰方法实施例中的对应过程, 在此不再赘述。
由上述可知, 本发明实施例提供的产生模拟干扰的装置,通过干扰特性参 数配置和模拟干扰产生的过程进行实现,且每个干扰源是单独配置的, 配置干 扰源的干扰特性参数(如包括干扰源的数量、 每个干扰源的传输模式、 PMI、 RANK, MCS、 发射功率、 时域或频域轮询粒度等)。 其后根据设定的干扰特 性参数生成模拟干扰数据在空口发送。可以获得与真实用户设备的干扰特性一 致的模拟干扰,从而更客观地反映不同场景下的系统性能, 节省测试投入和成 本, 并提高测试效率。 本发明技术方案中, 由模拟干扰产生的干扰效果与釆用 真实 UE的干扰效果相当, 从而更好的评估 /演示特定技术(如 MIMO、 AAS ) 在多小区场景下的性能。 与釆用真实 UE干扰相比, 具有一定的灵活性, 同时 大幅度节约物料和人力成本。
请参考图 4, 图 4为本发明实施例提供的产生模拟干扰的装置的另一结构 示意图, 其中, 所述产生模拟干扰的装置包括: 输入装置 401、 输出装置 402 和处理器 403, 所述处理器 403执行以下步骤:
设定一个或多个模拟负载模板,对所述模拟负载模板分别进行干扰特性参 数配置, 一个模拟负载模板用于模拟一个或一类具有相同干扰特性的干扰; 利用所述模拟负载模板上配置的干扰特性参数,产生模拟干扰, 若设定了 多个模拟负载模板, 使得多个所述模拟负载模板模拟产生的干扰在时域和 /或 频域上轮询。
所述干扰特性参数包括所述模拟负载模板的传输模式、 资源利用率、 秩 RANK, 预编码矩阵指示 PMI、 调制与编码方案 MCS、 时域或频域轮询粒度, 则所述处理器 403对模拟负载模板进行干扰特性参数配置包括:对所述模拟负 载模板的传输模式、 资源利用率、 RANK、 PMI 、 MCS、 时域或频域轮询粒 度分别进行配置;
进一步地, 所述处理器 403用于: 对模拟负载模板的传输模式进行配置包 括: 配置模拟负载模板的传输模式或传输方案, 以及接受或不接受干扰小区的 特性 License的约束; 对模拟负载模板的资源利用率进行配置包括: 配置干扰 小区的资源块 RB利用率和发射功率利用率, 以控制当所述干扰小区所调度的 真实用户设备 UE的 RB利用率或发射功率利用率低于预置门限时, 进行模拟 负载调度, 当干扰小区所调度的真实 UE的 RB利用率和发射功率利用率高于 预置门限时, 模拟负载不生效; 对模拟负载模板的 RANK和 PMI进行配置包 括: 根据配置的所述传输模式, 配置与其对应的 RANK和 PMI分别为一个特 定值或分别为预置取值范围; 对模拟负载模板的 MCS进行配置包括: 配置模 拟负载模板的 MCS为一个特定值或预置取值范围; 对时域或频域轮询粒度进 行配置包括: 若设定了多个模拟负载模板, 分别配置模拟负载模板的时域轮询 粒度或频域轮询粒度, 为一个特定值或预置取值范围; 所述时域轮询粒度的预 置取值范围为 1ms到无限大,所述频域轮询粒度的预置取值范围为 1~100 RB。
更进一步地, 所述处理器 403用于: 利用所述模拟负载模板上配置的干扰 特性参数, 产生模拟干扰包括: 基于不同的传输模式, 根据媒体接入控制层 MAC或无线资源控制 RRC协议层配置的 RANK和 /或 PMI和 /或 MCS, 产生 模拟干扰, 并根据配置的时域或频选轮询粒度, 在多个模拟负载模板之间进行 轮询。
优选地,所述处理器 403还可以用于将所述模拟负载模板的干扰特性参数 配置复制到一个或多个模拟用户设备,并通过所述模拟用户设备将模拟负载加 载到干扰小区, 以达到预设的模拟负载资源利用率。
优选地, 所述处理器 403还可以用于在基于干扰小区开启 ICIC功能的方 式下,将所述模拟负载模板的干扰特性参数配置复制到一个或多个模拟用户设 备, 并通过所述模拟用户设备将模拟负载加载到中心频带和边缘频带, 以达到 预设模拟的模拟负载资源利用率。 进一步优选地, 所述处理器 403还可以用于:
若所述无线资源控制 RRC协议层只配置所述干扰特性参数中的部分干扰 特性参数, 则对于未配置的干扰特性参数,按照缺省值或缺省方式来进行模拟 力口扰;
若所述 RRC协议层只配置所述干扰特性参数中的部分干扰特性参数且为 一个预设取值范围,则按照在该预设取值范围内随机选取或轮询选取的方式来 进行模拟加扰。
所属领域的技术人员可以清楚地了解到, 为描述的方便和简洁, 上述描述 的产生模拟干扰的装置和装置中处理器 403的具体工作过程,可以参考前述产 生模拟干扰方法实施例中的对应过程, 在此不再赘述。
由上述可知, 本发明实施例提供的产生模拟干扰的装置,通过干扰特性参 数配置和模拟干扰产生的过程进行实现,且每个干扰源是单独配置的, 配置干 扰源的干扰特性参数(如包括干扰源的数量、 每个干扰源的传输模式、 PMI、 RANK, MCS、 发射功率、 时域或频域轮询粒度等)。 其后根据设定的干扰特 性参数生成模拟干扰数据在空口发送。可以获得与真实用户设备的干扰特性一 致的模拟干扰,从而更客观地反映不同场景下的系统性能, 节省测试投入和成 本, 并提高测试效率。 本发明技术方案中, 由模拟干扰产生的干扰效果与釆用 真实 UE的干扰效果相当, 从而更好的评估 /演示特定技术(如 MIMO、 AAS ) 在多小区场景下的性能。 与釆用真实 UE干扰相比, 具有一定的灵活性, 同时 大幅度节约物料和人力成本。
下面对本发明实施例中另一种产生模拟干扰的装置进行描述, 本实施例 中, 产生模拟干扰的装置包括:
参数配置模块, 用于配置干扰特性参数, 该干扰特性参数用于模拟一个或 一类具有相同干扰特性的干扰, 该干扰特性参数包括传输模式、 秩 RANK 以 及预编码矩阵指示 PMI;
模拟干扰产生模块, 用于利用该干扰特性参数, 产生模拟干扰。
本实施例中, 参数配置模块具体用于对传输模式、 秩 RANK以及 PMI进 行配置。 参数配置模块对传输模式进行配置具体为: 配置传输模式或传输方案, 以 及接受或不接受干扰小区的特性 License的约束;
参数配置模块对 RANK和 PMI进行配置具体为: 根据配置的传输模式, 配置与其对应的 RANK和 PMI分别为一个特定值或分别为预置取值范围。
可以理解的是, 在实际应用中, 干扰特性参数除了可以包括传输模式、 秩
RANK以及 PMI之外, 还可以包含其他的参数, 例如资源利用率以及 MCS, 本实施例中, 参数配置模块对资源利用率进行配置具体为: 配置干扰小区的资 源块 RB利用率和发射功率利用率, 以控制当干扰小区所调度的真实用户设备 UE的 RB利用率或发射功率利用率低于预置门限时, 进行模拟负载调度, 当 干扰小区所调度的真实 UE的 RB利用率和发射功率利用率高于预置门限时, 模拟负载不生效;
参数配置模块对 MCS进行配置具体为: 配置 MCS为一个特定值或预置 取值范围。
可以理解的是, 在实际应用中, 干扰特性参数除了可以包括传输模式、 秩 RANK以及 PMI之外, 还可以包含其他的参数, 例如当存在多组干扰特性参 数, 干扰特性参数还可以包括: 时域和 /或频域轮询粒度, 本实施例中, 参数 配置模块对时域和 /或频域轮询粒度进行配置具体为: 分别配置每组干扰特性 参数的时域轮询粒度和 /或频域轮询粒度, 为一个特定值或预置取值范围; 时 域轮询粒度的预置取值范围为 1ms到无限大, 频域轮询粒度的预置取值范围 为 1~100 RB。
本实施例中的模拟干扰产生模块具体用于: 基于不同的传输模式, 根据 RRC层配置的 RANK和 /或 PMI, 产生模拟干扰。
若存在多组干扰特性参数, 则本实施例中的模拟干扰产生模块具体用于: 基于不同的传输模式, 根据 RRC层配置的 RANK和 /或 PMI, 产生模拟干扰, 并根据配置的时域和 /或频选轮询粒度, 在多组干扰特性参数之间进行轮询, 使得多组干扰特性参数产生的模拟干扰在时域和 /或频域上轮询。
本实施例中, 该产生模拟干扰的装置还可以进一步包括: 参数复制模块, 用于将干扰特性参数复制到一个或多个模拟用户设备,并通过模拟用户设备将 模拟负载加载到干扰小区, 以达到预设的模拟负载资源利用率;
或,
在基于干扰小区开启 ICIC功能的方式下, 将干扰特性参数复制到一个或 多个模拟用户设备,并通过模拟用户设备将模拟负载加载到中心频带和边缘频 带, 以达到预设模拟的模拟负载资源利用率。
所属领域的技术人员可以清楚地了解到, 为描述的方便和简洁, 上述描述 的系统,装置和单元的具体工作过程,可以参考前述方法实施例中的对应过程, 在此不再赘述。
在本申请所提供的几个实施例中, 应该理解到, 所揭露的系统, 装置和方 法, 可以通过其它的模式实现。 例如, 以上所描述的装置实施例仅仅是示意性 的, 例如, 所述单元的划分, 仅仅为一种逻辑功能划分, 实际实现时可以有另 外的划分模式, 例如多个单元或组件可以结合或者可以集成到另一个系统, 或 一些特征可以忽略, 或不执行。 另一点, 所显示或讨论的相互之间的耦合或直 接辆合或通信连接可以是通过一些接口, 装置或单元的间接辆合或通信连接, 可以是电性, 机械或其它的形式。 单元显示的部件可以是或者也可以不是物理单元, 即可以位于一个地方, 或者 也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或者全部 单元来实现本实施例方案的目的。
另外, 在本发明各个实施例中的各功能单元可以集成在一个处理单元中, 也可以是各个单元单独物理存在,也可以两个或两个以上单元集成在一个单元 中。上述集成的单元既可以釆用硬件的形式实现,也可以釆用软件功能单元的 形式实现。
所述集成的单元如果以软件功能单元的形式实现并作为独立的产品销售 或使用时, 可以存储在一个计算机可读取存储介质中。 基于这样的理解, 本发 明的技术方案本质上或者说对现有技术做出贡献的部分或者该技术方案的全 部或部分可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储 介质中, 包括若干指令用以使得一台计算机设备(可以是个人计算机,服务器, 或者网络设备等)执行本发明各个实施例所述方法的全部或部分步骤。 而前述 的存储介质包括: U盘、 移动硬盘、 只读存储器(ROM, Read-Only Memory ), 随机存取存储器(RAM, Random Access Memory ), 磁碟或者光盘等各种可以 存储程序代码的介质。
以上对本发明所提供的一种产生模拟干扰的方法及装置进行了详细介绍, 对于本领域的一般技术人员,依据本发明实施例的思想, 在具体实施模式及应 用范围上均会有改变之处, 综上所述, 本说明书内容不应理解为对本发明的限 制。

Claims

权 利 要 求
1、 一种产生模拟干扰的方法, 其特征在于, 包括:
配置干扰特性参数配置,所述干扰特性参数用于模拟一个或一类具有相同 干扰特性的干扰, 所述干扰特性参数包括传输模式、 秩 RANK以及预编码矩 阵指示 PMI;
利用所述干扰特性参数, 产生模拟干扰。
2、 根据权利要求 1所述的方法, 其特征在于, 所述配置干扰特性参数包 括:
对所述传输模式、 秩 RANK以及 PMI进行配置。
3、 根据权利要求 2所述的方法, 其特征在于,
对传输模式进行配置包括: 配置传输模式或传输方案, 以及接受或不接受 干扰小区的特性 License的约束;
对 RANK和 PMI进行配置包括: 根据配置的所述传输模式, 配置与其对 应的 RANK和 PMI分别为一个特定值或分别为预置取值范围。
4、 根据权利要求 2至 3中任一项所述的方法, 其特征在于, 所述干扰特 性参数还包括: 资源利用率以及调制与编码方案 MCS;
所述配置干扰特性参数还包括: 对所述资源利用率以及 MCS进行配置。
5、 根据权利要求 4所述的方法, 其特征在于,
所述对资源利用率进行配置包括: 配置干扰小区的资源块 RB利用率和发 射功率利用率, 以控制当所述干扰小区所调度的真实用户设备 UE的 RB利用 率或发射功率利用率低于预置门限时, 进行模拟负载调度, 当干扰小区所调度 的真实 UE的 RB利用率和发射功率利用率高于预置门限时,模拟负载不生效; 所述对 MCS进行配置包括: 配置所述 MCS为一个特定值或预置取值范 围。
6、 根据权利要求 2至 3中任一项所述的方法, 其特征在于, 若存在多组 干扰特性参数, 所述干扰特性参数还包括: 时域和 /或频域轮询粒度;
所述配置干扰特性参数还包括: 对所述时域和 /或频域轮询粒度进行配置。
7、 根据权利要求 6所述的方法, 其特征在于, 所述对所述时域和 /或频域 轮询粒度进行配置包括: 分别配置每组干扰特性参数的时域轮询粒度和 /或频域轮询粒度, 为一个 特定值或预置取值范围; 所述时域轮询粒度的预置取值范围为 lms到无限大, 所述频域轮询粒度的预置取值范围为 1~100 RB。
8、 根据权利要求 1至 3任一项所述的方法, 其特征在于, 所述利用干扰 特性参数, 产生模拟干扰包括:
基于不同的传输模式, 根据 RRC层配置的 RANK和 /或 PMI, 产生模拟 干扰。
9、 根据权利要求 6或 7所述的方法, 其特征在于, 所述利用所述干扰特 性参数, 产生模拟干扰包括:
基于不同的传输模式, 根据 RRC层配置的 RANK和 /或 PMI, 产生模拟 干扰, 并根据配置的时域和 /或频选轮询粒度, 在多组干扰特性参数之间进行 轮询, 使得多组干扰特性参数产生的模拟干扰在时域和 /或频域上轮询。
10、 根据权利要求 1至 3任一项所述的方法, 其特征在于, 所述方法还包 括:
将所述干扰特性参数复制到一个或多个模拟用户设备,并通过所述模拟用 户设备将模拟负载加载到干扰小区, 以达到预设的模拟负载资源利用率;
或,
在基于干扰小区开启 ICIC功能的方式下, 将所述干扰特性参数复制到一 个或多个模拟用户设备,并通过所述模拟用户设备将模拟负载加载到中心频带 和边缘频带, 以达到预设模拟的模拟负载资源利用率。
11、 一种产生模拟干扰的装置, 其特征在于, 包括:
参数配置模块, 用于配置干扰特性参数, 所述干扰特性参数用于模拟一个 或一类具有相同干扰特性的干扰,所述干扰特性参数包括传输模式、秩 RANK 以及预编码矩阵指示 PMI;
模拟干扰产生模块, 用于利用所述干扰特性参数, 产生模拟干扰。
12、 根据权利要求 11所述的装置, 其特征在于, 所述参数配置模块具体 用于对所述传输模式、 秩 RANK以及 PMI进行配置。
13、 根据权利要求 12所述的装置, 其特征在于, 所述参数配置模块对传 输模式进行配置具体为: 配置传输模式或传输方案, 以及接受或不接受干扰小 区的特 ')·生 License的约束;
所述参数配置模块对 RANK和 PMI进行配置具体为: 根据配置的所述传 输模式, 配置与其对应的 RANK和 PMI分别为一个特定值或分别为预置取值 范围。
14、 根据权利要求 12至 13中任一项所述的装置, 其特征在于, 所述干扰 特性参数还包括: 资源利用率以及调制与编码方案 MCS;
所述参数配置模块还用于对所述资源利用率以及调制与 MCS进行配置。
15、 根据权利要求 14所述的装置, 其特征在于, 所述参数配置模块对所 述资源利用率进行配置具体为: 配置干扰小区的资源块 RB利用率和发射功率 利用率, 以控制当所述干扰小区所调度的真实用户设备 UE的 RB利用率或发 射功率利用率低于预置门限时, 进行模拟负载调度, 当干扰小区所调度的真实
UE的 RB利用率和发射功率利用率高于预置门限时, 模拟负载不生效;
所述参数配置模块对 MCS进行配置具体为: 配置所述 MCS为一个特定 值或预置取值范围。
16、 根据权利要求 12至 13中任一项所述的装置, 其特征在于, 若存在多 组干扰特性参数, 所述干扰特性参数还包括: 时域和 /或频域轮询粒度;
所述参数配置模块还用于对所述时域和 /或频域轮询粒度进行配置。
17、 根据权利要求 16所述的装置, 其特征在于, 所述参数配置模块对所 述时域和 /或频域轮询粒度进行配置具体为: 分别配置每组干扰特性参数的时 域轮询粒度和 /或频域轮询粒度, 为一个特定值或预置取值范围; 所述时域轮 询粒度的预置取值范围为 1ms到无限大, 所述频域轮询粒度的预置取值范围 为 1~100 RB。
18、 根据权利要求 11至 13任一项所述的装置, 其特征在于, 所述模拟干 扰产生模块具体用于:
基于不同的传输模式, 根据 RRC层配置的 RANK和 /或 PMI, 产生模拟 干扰。
19、 根据权利要求 16或 17所述的装置, 其特征在于, 所述模拟干扰产生 模块具体用于:
基于不同的传输模式, 根据 RRC层配置的 RANK和 /或 PMI, 产生模拟 干扰, 并根据配置的时域和 /或频选轮询粒度, 在多组干扰特性参数之间进行 轮询, 使得多组干扰特性参数产生的模拟干扰在时域和 /或频域上轮询。
20、 根据权利要求 11至 13任一项所述的装置, 其特征在于, 所述装置还 包括:
参数复制模块, 用于将所述干扰特性参数复制到一个或多个模拟用户设 备, 并通过所述模拟用户设备将模拟负载加载到干扰小区, 以达到预设的模拟 负载资源利用率;
或,
在基于干扰小区开启 ICIC功能的方式下, 将所述干扰特性参数复制到一 个或多个模拟用户设备,并通过所述模拟用户设备将模拟负载加载到中心频带 和边缘频带, 以达到预设的模拟负载资源利用率。
PCT/CN2014/081645 2013-07-05 2014-07-04 一种产生模拟干扰的方法及装置 WO2015000432A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
KR1020167001160A KR101814026B1 (ko) 2013-07-05 2014-07-04 시뮬레이트된 간섭을 생성하는 방법 및 장치
EP14819404.6A EP2999147B1 (en) 2013-07-05 2014-07-04 Method and device for generating simulated interference

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201310283161.1A CN103368670B (zh) 2013-07-05 2013-07-05 一种产生模拟干扰的方法及装置
CN201310283161.1 2013-07-05

Publications (1)

Publication Number Publication Date
WO2015000432A1 true WO2015000432A1 (zh) 2015-01-08

Family

ID=49369294

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2014/081645 WO2015000432A1 (zh) 2013-07-05 2014-07-04 一种产生模拟干扰的方法及装置

Country Status (4)

Country Link
EP (1) EP2999147B1 (zh)
KR (1) KR101814026B1 (zh)
CN (1) CN103368670B (zh)
WO (1) WO2015000432A1 (zh)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103368670B (zh) * 2013-07-05 2016-06-15 上海华为技术有限公司 一种产生模拟干扰的方法及装置
CN105337662B (zh) * 2015-11-30 2017-10-31 上海斐讯数据通信技术有限公司 光纤节点的测试系统及方法
WO2019049212A1 (ja) * 2017-09-05 2019-03-14 株式会社Nttドコモ 送信装置、受信装置及び通信方法
CN112445698A (zh) * 2019-09-04 2021-03-05 中国移动通信有限公司研究院 虚拟服务节点性能测试方法、装置和计算机可读存储介质
CN112532330A (zh) * 2019-09-18 2021-03-19 中兴通讯股份有限公司 干扰模拟系统、方法及装置、干扰测试系统、方法及装置
US20220400447A1 (en) * 2021-06-09 2022-12-15 Rakuten Mobile, Inc. Cell sector transmission system

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102255689A (zh) * 2011-07-08 2011-11-23 中兴通讯股份有限公司 一种信道状态信息的处理方法、装置及系统
CN102742175A (zh) * 2012-02-27 2012-10-17 华为技术有限公司 一种mimo模式配置方法及通信设备
CN103125083A (zh) * 2010-09-29 2013-05-29 三星电子株式会社 在多用户多输入多输出(mu-mimo)通信系统中用于反馈的方法和装置
CN103188827A (zh) * 2011-12-29 2013-07-03 夏普株式会社 多基站合作中的信道状态信息反馈方法和用户设备
CN103368670A (zh) * 2013-07-05 2013-10-23 上海华为技术有限公司 一种产生模拟干扰的方法及装置

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8086187B1 (en) * 2007-09-11 2011-12-27 Raytheon Company Developing and analyzing a communication system
CN101349740B (zh) * 2008-07-29 2011-09-07 北京航空航天大学 通用卫星导航信号干扰源及其信号产生方法
CN102445616B (zh) * 2011-10-21 2013-10-09 中国北方车辆研究所 一种车载直流电源模拟干扰实验方法
CN102916752A (zh) * 2012-05-07 2013-02-06 中国人民解放军国防科学技术大学 一种复杂干扰的自动化生成方法及装置
CN102946292A (zh) * 2012-11-27 2013-02-27 合肥正弦波无线技术有限公司 一种多频段快速扫频干扰源及其信号产生方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103125083A (zh) * 2010-09-29 2013-05-29 三星电子株式会社 在多用户多输入多输出(mu-mimo)通信系统中用于反馈的方法和装置
CN102255689A (zh) * 2011-07-08 2011-11-23 中兴通讯股份有限公司 一种信道状态信息的处理方法、装置及系统
CN103188827A (zh) * 2011-12-29 2013-07-03 夏普株式会社 多基站合作中的信道状态信息反馈方法和用户设备
CN102742175A (zh) * 2012-02-27 2012-10-17 华为技术有限公司 一种mimo模式配置方法及通信设备
CN103368670A (zh) * 2013-07-05 2013-10-23 上海华为技术有限公司 一种产生模拟干扰的方法及装置

Also Published As

Publication number Publication date
EP2999147B1 (en) 2017-04-26
CN103368670A (zh) 2013-10-23
EP2999147A1 (en) 2016-03-23
CN103368670B (zh) 2016-06-15
EP2999147A4 (en) 2016-05-18
KR101814026B1 (ko) 2018-01-02
KR20160019557A (ko) 2016-02-19

Similar Documents

Publication Publication Date Title
CN108476049B (zh) 用于信道状态信息参考信号(csi-rs)的方法和装置
WO2018202216A1 (zh) 信道状态信息的反馈、接收方法及装置、设备、存储介质
JP2022520818A (ja) ネットワーク内のコードブック及び非コードブックベースul送信のsrs構成及び指示
CN105122869B (zh) 在无线通信系统中针对部分波束成形报告信道状态信息的方法和设备
KR102177804B1 (ko) 다중입력 다중출력 시스템에서 스케줄링 방법 및 장치
WO2015000432A1 (zh) 一种产生模拟干扰的方法及装置
KR101835331B1 (ko) 무선 통신 시스템에서 자원 특정 전송 모드 결정 방법 및 이를 위한 장치
CN106559807B (zh) 一种数据传输方法以及相关设备
CA3078839A1 (en) System and method for control signaling via csi-rs
CN110945793A (zh) 用于无线通信系统中的参考信号的信道状态信息
US10567045B2 (en) Method for transmitting feedback information for DM-RS based open-loop downlink transmission in wireless communication system, and apparatus therefor
WO2012155523A1 (zh) 非周期的信道状态信息的处理方法、装置及系统
KR20200004860A (ko) 다중-사용자 다중-입력 다중-출력에 대한 간섭 측정들 및 채널 상태 정보 피드백
JP2015536110A (ja) 無線通信システムにおいてチャネル状態情報をフィードバックする方法およびそのための装置
CN110612694B (zh) 用于mimo通信的预编码器资源组分配方法
JP2014515213A (ja) 協調マルチポイント送信のためのチャネルフィードバック
CN103581090B (zh) 导频信号发送方法和装置
WO2013127339A1 (zh) 一种下行传输方法及装置
Mondal et al. Performance of downlink comp in LTE under practical constraints
JP2022506409A (ja) Pdschダイバーシティをシグナリングするためのシステム及び方法
Cui et al. Capacity analysis and optimal power allocation for coordinated transmission in MIMO-OFDM systems
Guo et al. Adaptive SU/MU-MIMO scheduling for LTE-A downlink cellular networks
WO2020164723A1 (en) Apparatuses and methods for multi-user transmissions
Zirwas et al. Key solutions for a massive MIMO FDD system
Han et al. Full duplex assisted interference suppression for underlay device-to-device communications

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14819404

Country of ref document: EP

Kind code of ref document: A1

REEP Request for entry into the european phase

Ref document number: 2014819404

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2014819404

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20167001160

Country of ref document: KR

Kind code of ref document: A