WO2014208269A1 - 超音波診断装置、方法、及び超音波プローブ - Google Patents

超音波診断装置、方法、及び超音波プローブ Download PDF

Info

Publication number
WO2014208269A1
WO2014208269A1 PCT/JP2014/064368 JP2014064368W WO2014208269A1 WO 2014208269 A1 WO2014208269 A1 WO 2014208269A1 JP 2014064368 W JP2014064368 W JP 2014064368W WO 2014208269 A1 WO2014208269 A1 WO 2014208269A1
Authority
WO
WIPO (PCT)
Prior art keywords
ultrasonic
correction
transmission
ultrasonic diagnostic
reflected
Prior art date
Application number
PCT/JP2014/064368
Other languages
English (en)
French (fr)
Inventor
今川 健吾
五十嵐 豊
徹 矢崎
Original Assignee
株式会社日立製作所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社日立製作所 filed Critical 株式会社日立製作所
Priority to US14/898,675 priority Critical patent/US10499885B2/en
Publication of WO2014208269A1 publication Critical patent/WO2014208269A1/ja

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B8/00Diagnosis using ultrasonic, sonic or infrasonic waves
    • A61B8/56Details of data transmission or power supply
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B8/00Diagnosis using ultrasonic, sonic or infrasonic waves
    • A61B8/08Detecting organic movements or changes, e.g. tumours, cysts, swellings
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B8/00Diagnosis using ultrasonic, sonic or infrasonic waves
    • A61B8/13Tomography
    • A61B8/14Echo-tomography
    • A61B8/145Echo-tomography characterised by scanning multiple planes
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B8/00Diagnosis using ultrasonic, sonic or infrasonic waves
    • A61B8/44Constructional features of the ultrasonic, sonic or infrasonic diagnostic device
    • A61B8/4483Constructional features of the ultrasonic, sonic or infrasonic diagnostic device characterised by features of the ultrasound transducer
    • A61B8/4488Constructional features of the ultrasonic, sonic or infrasonic diagnostic device characterised by features of the ultrasound transducer the transducer being a phased array
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B8/00Diagnosis using ultrasonic, sonic or infrasonic waves
    • A61B8/52Devices using data or image processing specially adapted for diagnosis using ultrasonic, sonic or infrasonic waves
    • A61B8/5207Devices using data or image processing specially adapted for diagnosis using ultrasonic, sonic or infrasonic waves involving processing of raw data to produce diagnostic data, e.g. for generating an image
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B8/00Diagnosis using ultrasonic, sonic or infrasonic waves
    • A61B8/58Testing, adjusting or calibrating the diagnostic device
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S15/00Systems using the reflection or reradiation of acoustic waves, e.g. sonar systems
    • G01S15/88Sonar systems specially adapted for specific applications
    • G01S15/89Sonar systems specially adapted for specific applications for mapping or imaging
    • G01S15/8906Short-range imaging systems; Acoustic microscope systems using pulse-echo techniques
    • G01S15/8909Short-range imaging systems; Acoustic microscope systems using pulse-echo techniques using a static transducer configuration
    • G01S15/8915Short-range imaging systems; Acoustic microscope systems using pulse-echo techniques using a static transducer configuration using a transducer array
    • G01S15/8927Short-range imaging systems; Acoustic microscope systems using pulse-echo techniques using a static transducer configuration using a transducer array using simultaneously or sequentially two or more subarrays or subapertures
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S15/00Systems using the reflection or reradiation of acoustic waves, e.g. sonar systems
    • G01S15/88Sonar systems specially adapted for specific applications
    • G01S15/89Sonar systems specially adapted for specific applications for mapping or imaging
    • G01S15/8906Short-range imaging systems; Acoustic microscope systems using pulse-echo techniques
    • G01S15/8959Short-range imaging systems; Acoustic microscope systems using pulse-echo techniques using coded signals for correlation purposes
    • G01S15/8963Short-range imaging systems; Acoustic microscope systems using pulse-echo techniques using coded signals for correlation purposes using pulse inversion
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/52Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S15/00
    • G01S7/52017Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S15/00 particularly adapted to short-range imaging
    • G01S7/52023Details of receivers
    • G01S7/52033Gain control of receivers
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B8/00Diagnosis using ultrasonic, sonic or infrasonic waves
    • A61B8/44Constructional features of the ultrasonic, sonic or infrasonic diagnostic device
    • A61B8/4483Constructional features of the ultrasonic, sonic or infrasonic diagnostic device characterised by features of the ultrasound transducer
    • A61B8/4494Constructional features of the ultrasonic, sonic or infrasonic diagnostic device characterised by features of the ultrasound transducer characterised by the arrangement of the transducer elements
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B8/00Diagnosis using ultrasonic, sonic or infrasonic waves
    • A61B8/46Ultrasonic, sonic or infrasonic diagnostic devices with special arrangements for interfacing with the operator or the patient
    • A61B8/461Displaying means of special interest
    • A61B8/465Displaying means of special interest adapted to display user selection data, e.g. icons or menus
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S15/00Systems using the reflection or reradiation of acoustic waves, e.g. sonar systems
    • G01S15/88Sonar systems specially adapted for specific applications
    • G01S15/89Sonar systems specially adapted for specific applications for mapping or imaging
    • G01S15/8906Short-range imaging systems; Acoustic microscope systems using pulse-echo techniques
    • G01S15/8909Short-range imaging systems; Acoustic microscope systems using pulse-echo techniques using a static transducer configuration
    • G01S15/8915Short-range imaging systems; Acoustic microscope systems using pulse-echo techniques using a static transducer configuration using a transducer array
    • G01S15/8925Short-range imaging systems; Acoustic microscope systems using pulse-echo techniques using a static transducer configuration using a transducer array the array being a two-dimensional transducer configuration, i.e. matrix or orthogonal linear arrays
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/52Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S15/00
    • G01S7/52017Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S15/00 particularly adapted to short-range imaging
    • G01S7/52023Details of receivers
    • G01S7/52036Details of receivers using analysis of echo signal for target characterisation
    • G01S7/52038Details of receivers using analysis of echo signal for target characterisation involving non-linear properties of the propagation medium or of the reflective target

Definitions

  • the present invention relates to an ultrasonic diagnostic apparatus, and more particularly to a technique for improving image quality of an ultrasonic diagnostic apparatus using a pulse inversion method.
  • the pulse inversion (PI) method is known as a method for improving the image quality of ultrasonic images.
  • This PI method is also called a phase inversion method.
  • the harmonic component of the reflected ultrasonic wave is a technique for ultrasonic imaging using the harmonic component (harmonic) by utilizing the property of being reflected with one polarity regardless of the polarity of the irradiated ultrasonic wave.
  • the first reflected waveform (including the first fundamental wave component and the first harmonic component) is received by irradiating the first transmitted waveform (positive electrode), and the first transmitted waveform is
  • the second reflected ultrasonic wave (including the second fundamental wave component and the second harmonic component) is received by irradiation of the second transmission waveform (negative electrode) with the polarity reversed (or 180 ° phase shift), and the first and
  • the PI method is based on the premise that the addition of the first transmission waveform (positive electrode) and the second transmission waveform (negative electrode) is zero for each frequency component including the fundamental wave and harmonic components. . If this assumption is broken, image quality may be deteriorated, and in some cases, artifacts (virtual images) may be generated. Transmission waveform addition is not zero).
  • Patent Document 1 that discloses a transmission circuit suitable for the PI method
  • Patent Document 2 that discloses a transducer configuration that efficiently receives harmonic components
  • Patent Document 3 As shown in Patent Document 3, various proposals have been made for maintaining positive / negative symmetry.
  • JP 2007-117668 A Japanese Patent Laid-Open No. 2002-248100 JP 2002-369817 A
  • the positive / negative waveform is asymmetric due to the difference in characteristics between the P-type and N-type transistors constituting the circuit.
  • the ultrasonic transducer which is the load of the transmission circuit, transmits ultrasonic waves according to the positive / negative transmission waveform from the transmission circuit, and the characteristic of the ultrasonic transducer itself is non-linear, so the asymmetry of the transmission waveform Cannot be compensated.
  • there is a problem that it is difficult to compensate for the asymmetry based on the transmission circuit characteristics and the nonlinearity of the vibrator by the calculation unit of the received signal.
  • An object of the present invention is to provide an ultrasonic diagnostic apparatus, method, and ultrasonic probe capable of solving the above-described problems and obtaining a high-quality ultrasonic image using a pulse inversion method.
  • a first transmission signal a transmission unit that transmits a second transmission signal obtained by inverting the polarity of the first transmission signal, and a first transmission from the transmission unit Corresponds to the first and second transmission signals based on the reflected ultrasound received by the ultrasound probe and the ultrasound probe that transmits the ultrasound and receives the reflected ultrasound based on the signal and the previous two transmitted signals
  • a receiving unit that receives the first and second received signals, and a memory that stores correction data for correcting the positive / negative asymmetry based on the addition result of the first received signal and the second received signal in the calibration mode.
  • the receiving unit Provided is an ultrasonic diagnostic apparatus that performs a correction operation using the addition result of a first reception signal and a second reception signal and correction data stored in a storage unit in a diagnosis mode.
  • the first transmission signal and the second transmission signal obtained by inverting the polarity of the first transmission signal are transmitted from the ultrasonic probe,
  • the reflected ultrasound of the ultrasound transmitted based on the second transmission signal is received by the ultrasound probe, and the first corresponding to the first and second transmission signals based on the received reflected ultrasound in the calibration mode.
  • the addition result of the second reception signal is held as correction data for correcting the positive / negative asymmetry, and the addition result of the first reception signal and the second reception signal in the diagnosis mode and the held correction data
  • a first transmission signal a transmission unit for transmitting a second transmission signal obtained by inverting the polarity of the first transmission signal, and first and second transmissions Based on the first transmission signal and the second transmission signal from the connector that can be connected to the reception unit that receives the first and second reception signals corresponding to the signal, the ultrasonic wave is transmitted, Correction data for correcting the positive / negative asymmetry based on the addition result of the first received signal and the second received signal based on the reflected ultrasound in the ultrasound probe array that receives the reflected ultrasound and the calibration mode
  • An ultrasonic probe configured to include a storage unit for storing the information is provided.
  • a configuration example of a transmission / reception circuit of a normal ultrasonic diagnostic apparatus capable of performing a pulse inversion (PI) method will be described with reference to FIG.
  • the control circuit 50 constituted by a central processing unit (CPU) or the like is sent to the transmission waveform control unit 40 according to the instruction.
  • a transmission reference signal that is the basis of the ultrasonic transmission signal for the ultrasonic transducer array 90 is output.
  • the transmission circuits 10-1 to 10-n output a transmission signal having a necessary voltage amplitude signal from the transmission reference signal.
  • the transmission signals are applied to the ultrasonic transducers 80-1 to 80-n of the ultrasonic transducer array 90 via the transmission lines 100-1 to 100-n, respectively. Then, an ultrasonic signal is irradiated to a living body or the like that is a subject through which an ultrasonic jelly (not shown) is interposed, and the reflected ultrasonic signal reflected from the living body is the ultrasonic vibration of the ultrasonic transducer array 90.
  • the slaves 80-1 to 80-n and the calculation unit 45 passes through the reception lines 110-1 to 110-n, the reception circuits 20-1 to 20-n, and the analog / digital converters 30-1 to 30-n. Is sent to the control circuit 50 after a predetermined calculation by the calculation unit 45, and, for example, an in-vivo ultrasonic image is displayed on the display unit 60.
  • the PI method described above particularly relates to the operation of the transmission waveform control unit 40 to the calculation unit 45 after the control circuit 50, and therefore, in various embodiments described below, the transmission waveform control unit 40 to the calculation unit 45.
  • the configuration operation up to here will be described.
  • the transmission waveform control unit 40, the calculation unit 45, and the like are illustrated in a simplified manner for explanation of the operation, and the number of functional blocks is not limited. The same applies to the embodiments described below.
  • two operation modes of a calibration mode and a diagnosis mode are described as the operation modes of the ultrasonic diagnostic apparatus.
  • This calibration mode refers to a predetermined reflection medium before diagnosis.
  • the diagnostic mode means an operation mode in which positive and negative ultrasonic waves based on the PI method are irradiated to acquire correction data for correcting positive and negative asymmetry.
  • the diagnostic mode means an operation mode in which an ultrasonic wave is irradiated onto a living body as a subject to acquire an ultrasonic image of the living body.
  • an ultrasonic image (video) using the PI method is acquired. This will be explained specifically for the case.
  • embodiments for carrying out the present invention will be described with reference to the drawings.
  • each Example demonstrates the structure and operation
  • the first embodiment relates to an embodiment of an ultrasonic diagnostic apparatus, a first transmission signal, a transmission unit that transmits a second transmission signal obtained by inverting the polarity of the first transmission signal, and a first unit from the transmission unit.
  • An ultrasonic probe that transmits ultrasonic waves based on one transmission signal and a second transmission signal and receives the reflected ultrasonic waves, and first and second transmissions based on reflected ultrasonic waves received by the ultrasonic probe
  • Correction data for correcting positive / negative asymmetry based on the addition result of the first reception signal and the second reception signal in the calibration mode, and a reception unit that receives the first and second reception signals corresponding to the signal
  • a storage unit for storing, and the reception unit is configured to perform a correction operation using the addition result of the first reception signal and the second reception signal in the diagnosis mode and the correction data stored in the storage unit.
  • the transmission signal (electrical signal) output from the transmission circuit that is the transmission unit, the ultrasonic transducer that is the ultrasonic probe (electrical-ultrasonic mutual conversion), and the respective characteristic changes due to the reception circuit that is the reception unit The positive and negative symmetries are corrected by a series of components including.
  • control circuit 50 controls the transmission waveform control unit 40, and transmits the transmission circuit to the transducers 80-1 to 80-n constituting the ultrasonic transducer array 90 from the transmission waveform control unit 40.
  • a transmission signal is applied via 10-1 to 10-n.
  • Transmission ultrasonic waves 200-1 to 200-n generated from the respective transducers 80-1 to 80-n of the ultrasonic transducer array 90 are ultrasonic jelly used between the probe 90 and the body surface used at the time of ultrasonic inspection.
  • the object to be irradiated is irradiated through a medium 95 such as.
  • the reflected ultrasonic waves 210-1 to 210-n reflected from the irradiation object are received by the respective transducers 80-1 to 80-n of the ultrasonic transducer array 90 through the medium 95 in the same manner.
  • Received received signals are input to the arithmetic unit 45 via the receiving circuits 20-1 to -20-n and analog-digital converters (ADC) 30-1 to 30-n.
  • the medium 95 is in a jelly-like or gel-like shape, and prevents scattering due to air generated in the gap between the probe 90 and the body surface.
  • FIG. 2 is a diagram illustrating an example of an internal circuit configuration of the arithmetic unit 45 in the receiving circuit system of the present embodiment.
  • the first and second received data (positive and negative) are stored in the received data buffers 41a and 41b, respectively, and added by the adder.
  • correction is performed using the correction value stored in the correction memory 46 in advance in the calibration mode.
  • the correction value in the correction memory 46 is gain-adjusted by the gain adjuster 44 according to depth information of the living body or the like in the diagnosis mode.
  • the change can be easily made by changing the digital processing units after the ADCs 30a-30n of the apparatus main body.
  • FIG. 3 shows a modified configuration example of the arithmetic unit 45 in the receiving circuit system described in the first embodiment.
  • the addition data from the adder 42 is Fourier-transformed by the FFT processing unit 47 and stored in the correction memory 46.
  • the diagnosis mode the correction data in the correction memory 46 is read out, and after being subjected to inverse Fourier transform by the inverse FFT processing unit 48, is sent to the correction arithmetic unit 43 via the interpolation calculation / gain adjuster 49 and corrected.
  • the correction of the received data in the present embodiment uses only the fast Fourier transform (FFT) and the inverse fast Fourier transform (inverse FFT) to store only the data of the frequency and its size.
  • FFT fast Fourier transform
  • inverse FFT inverse fast Fourier transform
  • the memory area can be reduced. That is, in the first embodiment, since the data is stored in the time direction, it is necessary to store a huge amount of data corresponding to the reception time and the ADC sampling frequency in the ADC 30, or data obtained by thinning a part thereof.
  • the memory area can be further reduced as compared with the configuration of the first embodiment.
  • the ultrasonic diagnostic apparatus of this embodiment is an embodiment having a configuration in which a correction memory for storing the correction data described above is installed on the ultrasonic probe side.
  • FIG. 4 shows a configuration example of the third embodiment.
  • the same reference numerals as those in FIG. 1 indicate the same constituent elements as those in the first embodiment, and the description thereof is omitted here.
  • the ultrasonic diagnostic apparatus 300 (main body) and the connector box (BOX) 53 are connected by connectors 51 and 52.
  • the ultrasonic transducer array 90 in the overall configuration of FIG. 1 is installed on the ultrasonic probe 56 side in this figure.
  • the connector BOX 53 is provided with a correction memory 54 for storing the correction data described above.
  • the ultrasonic reception signal and the correction data are sent to the calculation unit 45 of the ultrasonic diagnostic apparatus (main body) via the connectors 51 and 52, and the correction calculation and the like are performed as in the previous embodiment. The description is omitted here.
  • the connector BOX 53 and the ultrasonic probe 56 are connected via a cable 55, and these can be collectively referred to as an ultrasonic probe.
  • the configuration of the calculation unit 45 may use any of the configurations of the first and second embodiments described above.
  • the configuration of this embodiment even if a new ultrasonic probe is developed, it is not necessary to change the memory on the ultrasonic diagnostic apparatus main body side. As a result, it is possible to easily realize high image quality of the already delivered ultrasonic diagnostic apparatus.
  • components such as a microcomputer (field microcomputer) and an FPGA (field-programmable gate array) for recognizing the type of ultrasonic probe are generally arranged in the connector BOX, and are shared with the correction memory 54. Therefore, an ultrasonic probe with a correction memory can be provided at a low cost.
  • FIG. 7 is a diagram schematically showing a front view of the two-dimensional array probe of the present embodiment.
  • the probe of this embodiment is composed of a field set of units called a subarray composed of a plurality of (n ⁇ m) transducers.
  • a subarray composed of a plurality of (n ⁇ m) transducers.
  • the ultrasonic diagnostic apparatus has two operation modes, which are a calibration mode and a diagnosis mode, as which operation mode.
  • a calibration mode executed on the side where the ultrasonic diagnostic apparatus is manufactured or on the user side
  • the apparatus manufacturer acquires correction data according to the operation flow of the calibration mode at the time of shipping inspection of the ultrasonic diagnostic apparatus.
  • correction data can be acquired on the user side in accordance with this operation flow.
  • FIG. 5 is a diagram showing an example of an acquisition flow of correction data stored in the correction memory of each embodiment described above.
  • N 1 is set in a counter (not shown).
  • the transmission waveform control unit 40 in FIG. A transmission reference signal that is a source of the first ultrasonic transmission signal for one transducer 80-1 is output, and the first reference signal is transmitted to the first transducer 80-1 via the first transmission circuit 10-1.
  • One transmission waveform is applied (S1). At this time, control is performed so that the transmission waveform control unit 40 does not output the transmission reference signal to the second to n-th transmission circuits 10b-10n, or the second to n-th transmission circuits 10b-10n do not output signals. .
  • the living body or the like is not irradiated, and the transmission ultrasonic waves are reflected and attenuated by the medium 95 applied to the surface of the ultrasonic transducer array 90 as shown in FIG.
  • Received ultrasound is detected by the circuit system. That is, the first reflected ultrasonic wave (echo ultrasonic wave) 210-1 from the medium 95 is similarly received by the first ultrasonic transducer 80-1 (S2), and the line 110-1 of the first receiving circuit system is received. Then, it is input to the calculation unit 45 via the first receiving circuit 20-1, the first ADC 30-1, etc., and the reflected ultrasonic waves are detected (S3).
  • the first reflected ultrasonic signal is stored in the reception data buffer 41a in the calculation unit 45 (S4).
  • the transmission control unit 40 outputs a transmission reference signal that is the basis of the second ultrasonic transmission signal for the first transducer 80-1, and passes through the first transmission circuit 10a.
  • a second transmission waveform is generated and applied to the first ultrasonic transducer 80-1 of the ultrasonic transducer array 90, and the detection data is stored in the data buffer 41b (S5-S8).
  • the second transmission waveform is a waveform obtained by reversing the polarity of the first transmission waveform based on the PI method or by shifting the phase by 180 ° from the first transmission waveform.
  • N 2
  • the system of the second transmission circuit 10-2, the second vibrator 80-2, and the second reception circuit 20-2 is set.
  • N 3
  • the correction data flow in these calibration modes is an example.
  • the 34th transmission circuit 10-34 and the 33rd transducer 80-34 are simultaneously formed with the system of the second transmission circuit 10-2, the second transducer 80-2, and the second reception circuit 20-2.
  • two systems may be performed simultaneously with the thirty-third reception circuit 20-34.
  • the medium 95 for example, an ultrasonic jelly generally used in an inspection of a normal ultrasonic diagnostic apparatus is used.
  • correction data can be easily acquired on the user side, and correction is performed using the same ultrasonic jelly as that used in the diagnosis mode, so that correction errors can be reduced.
  • FIG. 6 shows an example of a diagnosis flow in the case where the ultrasonic diagnosis for the living body is executed using the correction data stored in the calibration mode described above in the ultrasonic diagnostic apparatus of the present embodiment.
  • STRAT diagnosis by the ultrasonic diagnostic apparatus
  • various inspection parameters are set by the control circuit 50.
  • This setting parameter is also used for gain correction by the gain adjuster 44 for the correction data acquired in the calibration mode described above from the correction memory 46 of the arithmetic unit 45 described above (S30).
  • the transmission waveform control unit 40 generates a first transmission reference signal waveform and applies the first transmission signal to the transducers 80-1 to 80-n via the transmission circuits 10-1 to 10-n. (S20). Then, a living body (not shown) is irradiated with the transmission ultrasonic waves 200-1 to 200-n having the first transmission waveform through the medium 95, and the reflected ultrasonic waves 210-1 to 210-n reflected from the living body are received. (S21).
  • the reflected ultrasonic waves 210-1 to 210-n of the first transmission waveform are detected (received) by the transducers 80-1 to 80-n of the ultrasonic transducer array 90 (S22), and the detection data is received by the receiving circuit 20 Are stored in the reception data buffer 41a via the -1 to 20-n and the ADCs 30-1 to 30-n (S23).
  • a second transmission reference signal waveform is generated by the transmission waveform control unit 40, and the second transmission signal is transmitted to the transducers 80-1 to 80-n via the transmission circuits 10-1 to 10-n. Is applied and the detected data is stored in the data buffer 41b (S24-S27).
  • the first and second transmission signals are transmission signals based on the PI method.
  • the stored detection data 41a and 41b are added by the adder 42 (S28), and a correction operation is performed on the addition result (S29).
  • This correction calculation means addition / subtraction or multiplication / division of the correction data calculated in S30 from the addition result of S28 (S29). This makes it possible to compensate for the positive / negative asymmetry with high accuracy in the signal transmission / reception system of the ultrasonic diagnostic apparatus (main body) and the ultrasonic array probe of this embodiment.
  • the gain correction of the correction data by the gain adjuster 44 shown in FIG. Is automatically calculated in the ultrasonic diagnostic apparatus by setting the inspection parameters, but by providing the user adjustment panel shown in FIG. 8, the user can check whether the correction data is applied / not applied, the depth of the in vivo organ, etc. It is possible to perform fine adjustment of the corresponding correction value. As a result, a more convenient ultrasonic diagnostic apparatus can be obtained.
  • FIG. 8 shows a configuration example of the user adjustment panel used when the user performs fine adjustment.
  • the user adjustment panel can be adjusted by checking a check box 61 corresponding to a deep portion indicating the depth of ultrasonic reflection of the subject.
  • a set of scales 58 and sliders 59 is provided corresponding to each deep part.
  • the user adjustment panel can be configured as hardware, or can be displayed on the display unit 60 as GUI (Graphical User Interface).
  • GUI Graphic User Interface
  • This configuration makes it possible to acquire highly accurate correction data that matches user settings.
  • highly accurate correction data can be acquired in response to changes in characteristics due to environmental changes such as temperature.
  • an ultrasonic image that the user determines to be suitable for diagnosis can be acquired by providing the applicability of correction values and adjusting means.
  • ultrasonic diagnostic apparatus According to the ultrasonic diagnostic apparatus of the present invention described in detail above, a series of systems used in normal diagnosis from transmission-vibrator (ultrasonic transmission) to transducer-reception (reflection ultrasonic detection) is positive / negative asymmetric. Therefore, it is possible to provide an ultrasonic diagnostic apparatus and an ultrasonic probe that can obtain high-quality ultrasonic images.
  • this invention is not limited to the above-mentioned Example, Various modifications are included.
  • the above-described embodiments have been described in detail for better understanding of the present invention, and are not necessarily limited to those having all the configurations described.
  • a part of the configuration of one embodiment can be replaced with the configuration of another embodiment, and the configuration of another embodiment can be added to the configuration of one embodiment.

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Surgery (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Veterinary Medicine (AREA)
  • Public Health (AREA)
  • Biophysics (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Pathology (AREA)
  • Radiology & Medical Imaging (AREA)
  • Biomedical Technology (AREA)
  • General Health & Medical Sciences (AREA)
  • Medical Informatics (AREA)
  • Molecular Biology (AREA)
  • Animal Behavior & Ethology (AREA)
  • Acoustics & Sound (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Vision & Pattern Recognition (AREA)
  • Gynecology & Obstetrics (AREA)
  • Ultra Sonic Daignosis Equipment (AREA)
  • Human Computer Interaction (AREA)

Abstract

 パルスインバージョン(PI)法における正負非対称性を補正し、高画質の超音波画像を得ることができる超音波診断装置を提供することにある。振幅調整用増幅器10や超音波振動子アレイ90を含む送信系回路の非対称性補正を行うため、キャリブレーションモードの際に得た補正データを補正メモリ46に記憶しておき、当該補正データを用いて、装置の診断モードにおいて、演算部45を含む受信系回路全体の正負非対称性を補正する。

Description

超音波診断装置、方法、及び超音波プローブ
 本発明は超音波診断装置に係り、特に、パルスインバージョン法を用いる超音波診断装置の高画質化技術に関する。
 超音波画像を高画質化する方法として、パルスインバージョン(PI)法が知られている。このPI法は、フェーズインバージョン法とも呼ばれ、生体内の臓器などに単一周波数の超音波を照射すると、反射超音波の基本波は照射超音波同じ周波数・同じ極性で反射するのに対し、反射超音波の高調波成分は照射超音波の極性に関わらず、片極性で反射する性質を利用して、高調波成分(ハーモニック)を用いて超音波画像化する技術である。より具体的には、第一の送信波形(正極)を照射により第一の反射超音波(第一の基本波成分と第一の高調波成分を含む)を受信し、第一の送信波形を極性反転(または180°位相シフト)した第二の送信波形(負極)照射により第二の反射超音波(第二の基本波成分と第二の高調波成分を含む)を受信し、第一および第二の反射超音波を受信加算すると、第一および第二の基本波成分は打ち消しあい、第一および第二の高調波成分は2倍になる。そのため、PI法では基本波や高調波成分をはじめとする各周波数成分で、第一の送信波形(正極)と、第二の送信波形(負極)との加算が零となることが前提である。この前提が崩れると、画質劣化を招いたり、場合によってはアーチファクト(虚像)発生の原因となるが、実際の装置構成における送受信回路系では、種々の要因により正負非対称性(第一および第二の送信波形の加算が零でない)が発生する。
 そのため、例えば、PI法に好適な送信回路を開示する特許文献1、高調波成分を効率よく受信する振動子構成を開示する特許文献2、更にはフィルタリング方法を活用した受信信号の処理法を開示した特許文献3に示すように、これまで正負対称性を維持するための種々の提案がなされている。
特開2007-117668号公報 特開2002-248100号公報 特開2002-369817号公報
 通常、超音波を送信するために振動子を駆動する送信回路では、回路を構成するP型、N型トランジスタの特性差により、正極/負極波形が非対称となる。また、部品や素子ばらつきを考慮すると、超音波診断装置、超音波プローブ内の複数の送信回路各々の正極/負極対称性を補償することが困難である。また、送信回路の負荷である超音波振動子は、送信回路からの正極/負極送信波形に応じた超音波を送信し、また超音波振動子自身の特性が非線形のため、送信波形の非対称性は補償できない。更に、このような、送信回路特性や振動子の非線形性に基づく非対称性を、受信信号の演算部で補償するのが困難であるという課題がある。
 本発明の目的は、上記の課題を解決し、パルスインバージョン法を用い、高画質の超音波画像を得ることができる超音波診断装置、方法、及び超音波プローブを提供することにある。
 上記の目的を達成するため、本発明においては、第一の送信信号と、前記第一の送信信号を極性反転した第二の送信信号を送信する送信部と、送信部からの第一の送信信号と前二の送信信号に基づき、超音波を送信してその反射超音波を受信する超音波プローブと、超音波プローブが受信した反射超音波に基づく、第一、第二の送信信号に対応する第一、第二の受信信号を受信する受信部と、キャリブレーションモードにおける、第一の受信信号と第二の受信信号の加算結果に基づく、正負非対称性を補正する補正データを記憶する記憶部とを備え、受信部は、
診断モードにおける、第一の受信信号と第二の受信信号の加算結果と、記憶部に記憶された補正データを用いて補正演算を行う超音波診断装置を提供する。
 また、上記の目的を達成するため、本発明においては、第一の送信信号と、第一の送信信号を極性反転した第二の送信信号を超音波プローブから送信し、第一の送信信号と第二の送信信号に基づき送信された超音波の反射超音波を超音波プローブで受信し、キャリブレーションモードにおける、受信した反射超音波に基づく、第一、第二の送信信号に対応する第一、第二の受信信号の加算結果を、正負非対称性を補正する補正データとして保持しておき、診断モードにおける、第一の受信信号と第二の受信信号の加算結果と、保持された補正データを用いて補正演算を行う超音波診断方法を提供する。
 更に、上記の目的を達成するため、本発明においては、第一の送信信号と、第一の送信信号を極性反転した第二の送信信号を送信する送信部と、第一、第二の送信信号に対応する第一、第二の受信信号を受信する受信部とに接続可能なコネクタと、送信部からの第一の送信信号と第二の送信信号に基づき、超音波を送信し、その反射超音波を受信する超音波探触子アレイと、キャリブレーションモードにおける、反射超音波に基づく、第一の受信信号と第二の受信信号の加算結果に基づく、正負非対称性を補正する補正データを記憶する記憶部とを備える構成の超音波プローブを提供する。
 本発明により、パルスインバージョン(PI)法における超音波画像の高画質化を図ることができる。
第一の実施例に係る、超音波送受信回路の構成例を示す図である。 第一の実施例に係る、演算部の一構成を示す図である。 第二の実施例に係る、演算部の一構成を示す図である。 第三の実施例に係る、超音波診断装置と超音波プローブの一構成を示す図である。 各実施例に係る、超音波診断装置の動作の一例を示すフローチャート図である。 各実施例に係る、超音波診断装置の動作の一例を示すフローチャート図である。 第4の実施例に係る、2次元(2D)アレイプローブにおける振動子の一構成例を示す図である。 各実施例に係る、ユーザ調整パネルの一例を示す図である。 通常の超音波診断装置の送受信回路の一構成例を示す図である。
 本発明が係る各種の実施例を説明する前に、パルスインバージョン(PI)法を実施可能な通常の超音波診断装置の送受信回路の一構成例を、図9を用いて説明する。同図において、ユーザ制御部70等を介して制御回路50に診断指示等が出されると、その指示に従い、中央処理部(CPU)等で構成される制御回路50は、送信波形制御部40に対して、超音波振動子アレイ90に対する超音波送信信号のもととなる送信基準信号を出力する。送信回路10-1~10-nは、送信基準信号から、必要な電圧振幅信号の送信信号を出力する。送信信号は、送信ライン100-1~100-nを経由して、超音波振動子アレイ90の超音波振動子80-1~80-nにそれぞれ印加される。そして、図示を省略した超音波用ゼリーを介在させた被検体である生体等に超音波信号が照射され、生体等から反射した反射超音波信号は、同じく超音波振動子アレイ90の超音波振動子80-1~80-nで受信され、受信ライン110-1~110-n、受信回路20-1~20-n、アナログデジタル変換器30-1~30-nを経由して演算部45に送られ、演算部45で所定の演算後、制御回路50に送られ、表示部60に、例えば生体内の超音波画像等が表示される。
 上述したPI法は、特に上記の制御回路50以降の送信波形制御部40から演算部45の動作に関係するため、以下で説明する各種の実施例においては、送信波形制御部40から演算部45までの構成動作を説明することとする。ここで、送信波形制御部40、演算部45などは、その動作説明のために簡易化して図示しており、機能ブロック数を限定するものではない。以下に説明する実施例も同様である。なお、本明細書において、超音波診断装置の動作モードとして、キャリブレーションモードと、診断モードの二つの動作モードを記載しているが、このキャリブレーションモードとは、診断以前に、所定の反射媒体にPI法にもとづく正負の超音波を照射し、正負非対称性を補正する補正データを取得する動作モードを意味する。また、診断モードは、超音波を被検体である生体に照射して、生体の超音波画像を獲得する動作モードを意味し、本発明ではPI法を用いた超音波画像(映像)を獲得する場合に特化して説明する。以下、本発明を実施するための形態を、図面に従い説明する。なお、各実施例はその構成と動作を説明し、具体的なキャリブレーションモードと診断モードにおける補正法については、実施例4の後半に纏めて記載する。
 第一の実施例は、超音波診断装置の実施例に係り、第一の送信信号と、第一の送信信号を極性反転した第二の送信信号を送信する送信部と、送信部からの第一の送信信号と第二の送信信号に基づき、超音波を送信し、その反射超音波を受信する超音波プローブと、超音波プローブが受信した反射超音波に基づく、第一、第二の送信信号に対応する第一、第二の受信信号を受信する受信部と、キャリブレーションモードにおける、第一の受信信号と第二の受信信号の加算結果に基づく、正負非対称性を補正する補正データを記憶する記憶部とを備え、受信部は、診断モードにおける、第一の受信信号と第二の受信信号の加算結果と、記憶部に記憶された補正データを用いて補正演算を行う構成の超音波診断装置である。
 この構成により、送信部である送信回路出力の送信信号(電気信号)と、超音波プローブである超音波振動子(電気-超音波相互変換)、および受信部である受信回路による各々の特性変化を含めた、一連の構成部で、正負対称性を補正する。
 図1の構成において、制御回路50は、送信波形制御部40を制御し、送信波形制御部40からの超音波振動子アレイ90を構成する振動子80-1~80-nに対し、送信回路10-1~10-nを介して送信信号を印加する。
 超音波振動子アレイ90の各振動子80-1~80-nから発生した送信超音波200-1~200-nは、超音波検査時に使用するプローブ90と体表間に用いる超音波用ゼリーなどの媒体95を介して、照射対象物に照射する。照射対象物から反射した反射超音波210-1~210-nを、同じく媒体95を介して、超音波振動子アレイ90の各振動子80-1~80-nで受信する。受信された受信信号は、受信回路20-1~-20-nとアナログデジタルコンバータ(ADC)30-1~30-nを介して、演算部45に入力される。ここで媒体95は、ゼリー状やゲル状のもので、プローブ90と体表との隙間にできる空気による散乱を防ぐものである。
 図2には、本実施例の受信回路系における演算部45の内部回路構成の一例を示す図である。第一および第二の受信データ(正極、負極)はそれぞれ受信データバッファ41a,41bに蓄積され、加算器42で加算される。診断モードでは、予めキャリブレーションモードで補正メモリ46に記憶された補正値を用いて補正される。なお、補正メモリ46の補正値は診断モードにおける生体等の深情報などに応じてゲイン調整器44でゲイン調整される。本実施例の構成においては、装置本体のADC30a-30n以降のデジタル処理部の変更で対応可能あり、変更は容易である。
 本実施例は、上述した実施例1の超音波診断装置の演算部45とは異なる構成の演算部を備える実施例である。図3は、実施例1で説明した受信回路系における演算部45の変形構成例を示している。同図において、図2の構成との差異のみ説明する。本構成におけるキャリブレーションモードでは、加算器42からの加算データを、FFT処理部47でフーリエ変換して、補正メモリ46に記憶する。診断モードでは、補正メモリ46中の補正データが読みだされ、逆FFT処理部48で、逆フーリエ変換後、補間演算・ゲイン調整器49経由で、補正演算器43に送られ補正する。
 本実施例における受信データの補正は、高速フーリエ変換(FFT)、高速フーリエ逆変換(逆FFT)を利用することにより、周波数とその大きさのみのデータを記憶することになるので、実施例1の構成に比較し、メモリ領域が小さくてすむという効果がある。すなわち、実施例1では、時間方向のデータ格納なため、受信時間とADC30におけるADCサンプリング周波数に応じた数の膨大なデータ、または一部を間引きしたデータを格納する必要があるのに対し、本実施例の構成の場合、周波数とその大きさのみのデータとなるので、実施例1の構成と比較して、よりメモリ領域を小さくすることができる。
 本実施例の超音波診断装置は、上述した補正データを記憶する補正メモリを超音波プローブ側に設置した構成の実施例である。
 図4に実施例3の一構成例を示す。同図において、図1と同一番号は、実施例1のものと同じ構成要素を示すので、ここでは説明を省略する。超音波診断装置300(本体)とコネクタボックス(BOX)53は、コネクタ51、52で接続される。図1の全体構成における超音波振動子アレイ90が、本図の超音波プローブ56側に設置される。
 コネクタBOX53には、上述した補正データを記憶する補正メモリ54が設置されている。そして、コネクタ51、52を介して、超音波受信信号と補正データが超音波診断装置(本体)の演算部45に送られ、補正演算等が行われることは、先の実施例と同様であり、ここでは説明を省略する。なお、このコネクタBOX53と超音波プローブ56はケーブル55を介して接続されており、これらを纏めて超音波プローブと呼ぶこともできる。なお、本実施例の構成にあっては、演算部45の構成は、上述した実施例1、2のいずれの構成を用いても良い。
 本実施例の構成によれば、新規な超音波プローブが開発されても、超音波診断装置本体側のメモリ追加変更が不要となる。その結果、既納入の超音波診断装置の高画質化を容易に実現できる。この種の装置では一般に、超音波プローブの種類認識のためのマイクロコンピュータ(マイコン)やFPGA(field-programmable gate array)などの部品がコネクタBOX内に配置されており、補正メモリ54と共用化することができるので、安価に補正メモリ付きの超音波プローブを提供できる。
 本実施例は、超音波診断装置の2次元アレイプローブの一実施例である。図7は、本実施例の2次元アレイプローブの正面図を模式的に示す図である。図7に示すように、本実施例のプローブは、複数の(n×m)振動子から構成されるサブアレイと呼ばれる単位の野集合で構成される。このように(n×m)振動子が2次元アレイ状に配置されるプローブの場合、一般に2次元アレイ振動子と直近にIC化した回路を接続する構成から、振動子数より少ない補正データで対称性を補償することができる。これは、2次元アレイの場合、振動子数分のIC化した回路が必要となるが、IC化した場合、隣接回路とのばらつきを小さくすることができるため、例えばキャリブレーションモードではn×mのサブアレイのうち、四方と中心部の回路のみなどに限定、または複数サブアレイを一つ置きなど間引いたキャリブレーションモードを行うことができるためである。なお、間引いた分は、隣接振動子で得た補正データを共用化するなどの処理を行うことで、全ての振動子に対して等価的に補正することができる。
 続いて、各実施例で説明した超音波診断装置における、正負非対称性の補正方法について説明する。上述の通り、各実施例に係る超音波診断装置は、どの動作モードとして、キャリブレーションモードと診断モードの二つの動作モードがある。まず、図5を用いて、超音波診断装置を製造する側、あるいはユーザ側で実行するキャリブレーションモードの動作フローを説明する。装置メーカは、超音波診断装置の出荷検査時にこのキャリブレーションモードの動作フローに従い補正データを取得する。あるいはユーザ側でこの動作フローに従い補正データを取得することができる。
 図5は、上述した各実施例の補正メモリに記憶される補正データの取得フローの一例を示す図である。以下、特記しないが、カッコ内で示す符号は図5を、その他の符号で示すものは代表的に図1と図3を参照するものとする。制御回路50の制御により、図5に示すように、取得フローがスタート(START)すると、図示を省略したカウンタにN=1がセットされ、まず、図1の送信波形制御部40対して、第一の振動子80-1に対する第一の超音波送信信号のもととなる送信基準信号を出力して、第一送信回路10-1を介して、第一の振動子80-1への第一の送信波形が印加される(S1)。このとき、第二から第nの送信回路10b-10nへは、送信波形制御部40から送信基準信号を出力しない、または第二から第nの送信回路10b-10nは信号出力しないように制御する。
 図5のキャリブレーションモードにおいては、生体等には照射せず、図1に示したように、超音波振動子アレイ90の表面に塗られた媒体95で送信超音波を反射・減衰され、受信回路系で受信超音波を検出する。すなわち、媒体95からの第一の反射超音波(エコー超音波)210-1は同じく第一の超音波振動子80-1で受信され(S2)、第一の受信回路系のライン110-1、第一の受信回路20-1、第一のADC30-1等を経由して演算部45に入力され、反射超音波が検出される(S3)。この第一の反射超音波信号は、演算部45中の受信データバッファ41aに保存される(S4)。
 次に、同様にして、送信制御部40で第一の振動子80-1に対する第二の超音波送信信号のもととなる送信基準信号を出力して、第一送信回路10aを介して、第二の送信波形が生成され超音波振動子アレイ90の第一の超音波振動子80-1に印加され、検出データがデータバッファ41bに保存される(S5-S8)。そして、保存された検出データを加算器42で加算し(S9)、N=1に対する第一の加算結果を補正メモリ46に保存する(S10)。そして、Nが振動子アレイの振動子数、例えば64個の振動子一列で構成する一次元アレイの場合、N=64に達するまで、同様の動作を繰り返して(S1~S10)、キャリブレーションモードを終了する(S11、S12)ここで第二の送信波形は、PI法にもとづき第一の送信波形の極性反転、または第一の送信波形より位相を180°シフトさせた波形である。なお、N=2の場合、第二の送信回路10-2、第二の振動子80-2、第二の受信回路20-2の系を、N=3の場合、第3送信回路10-3、第3の振動子80-3、第3の受信回路20-2の系を動作して補正データを取得するように動作する。これは、振動子を複数動作させた場合に生じる隣接振動子からの影響を除外するためである。これらのキャリブレーションモードによる補正データフローは一例であり、例えば64個の振動子一列で構成する一次元アレイの場合、N=1の場合は第一の送信回路10-1、第一の振動子80-1、第一の受信回路20-1の系と同時に、第33の送信回路10-33、第33の振動子80-33、第33の受信回路20-33の系、N=2の場合は第二の送信回路10-2、第二の振動子80-2、第二の受信回路20-2の系と同時に、第34の送信回路10-34、第33の振動子80-34、第33の受信回路20-34の系と2系統同時に行ってもよい。振動子が隣接してない場合には、他振動子からの影響を受けにくい現象を用いて、離れた複数系統を同時に行うことでキャリブレーションモードにおける補正データ取得時間を短縮させることができる。
 以上説明したキャリブレーションモードの動作フローの実行により、送信回路出力の送信信号波(電気信号)と振動子(電気-超音波変換)、及び受信回路による特性変化を含めた、一連の送受信回路系で正負非対称性を補正する補正データを取得することができる。また、図5の動作フローによりユーザ側で補正データを取得する場合、ユーザの送信超音波パワーや、周波数などの設定変更に併せた高精度の補正データの取得が可能となる。更に、ユーザが装置使用時に補正するため、温度などの環境の変化による特性変化にも対応して、高精度な補正データを取得することができる。また、媒体95は、例えば、通常の超音波診断装置の検査で一般に用いる超音波ゼリーを用いる。これによりユーザ側での補正データ取得が容易に行え、更には診断モードに用いるものと同じ超音波ゼリーを用いて補正するため、補正誤差を低減できるという効果がある。
 図6は、本実施例の超音波診断装置において、上述したキャリブレーションモードで保存した補正データを用いて、生体に対する超音波診断を実行する場合の、診断フローの一例を示した。以下、特記しないが、カッコ内で示す符号は図6を、その他の符号で示すものは、代表的に図1と図2を参照るものとする。超音波診断装置による診断が開始(STRAT)されると、制御回路50により、各種の検査パラメータ設定がなされる。この設定パラメータは、先に説明した演算部45の補正メモリ46から、上述したキャリブレーションモードで取得した補正データに対する、ゲイン調整器44によるゲイン補正にも使用される(S30)。
 送信波形制御部40で、第一の送信基準信号波形が生成され、送信回路10-1~10-nを介して、振動子80-1~80-nに第一の送信信号が印加される(S20)。そして、第一の送信波形による送信超音波200-1~200-nにより媒体95を介し図示しない生体などに照射され、生体などから反射した反射超音波210-1~210-nの受信が行われる(S21)。第一の送信波形による反射超音波210-1~210-nを、超音波振動子アレイ90の振動子80-1~80-nが検出(受信)し(S22)、検出データを受信回路20-1~20-n、ADC30-1~30-nを介して、受信データバッファ41aに保存する(S23)。同様にして、送信波形制御部40で、第二の送信基準信号波形が生成され、送信回路10-1~10-nを介して、振動子80-1~80-nに第二の送信信号が印加され、検出データがデータバッファ41bに保存される(S24-S27)。ここで、第一、第二の送信信号は、PI法に基づく送信信号である。そして、保存された検出データ41a、41bを加算器42で加算し(S28)、加算結果に対して補正演算が行われる(S29)。この補正演算は、S28の加算結果から、S30でゲイン補正計算された補正データを加減算や乗除算するなどのことを意味する(S29)。
これにより、本実施例の超音波診断装置(本体)と超音波アレイプローブの信号送受信系における、正負非対称性を高精度に補償することが可能となる。
 なお、図5に示した動作フローにより、製造メーカの製品出荷検査時などに代表的な条件で補正データを取得した場合、図2に示したゲイン調整器44による補正データのゲイン補正は、ユーザの検査パラメータ設定により超音波診断装置内で自動計算するが、図8に示すユーザ調整パネルを具備することにより、ユーザが補正データの適用/非適用のチェック、生体内臓器などの深さなどに対応する補正値の微調整を行うことを可能とすることができる。これにより、より使い勝手の良い超音波診断装置を得ることができる。
 図8に、ユーザが微調整する際に用いるユーザ調整パネルの一構成例を示した。同図に明らかなように、ユーザ調整パネルには、被検体の超音波反射の深さを示す深部に対応するチェックボックス61をチェックすることによって、調整可能となる。各深部に対応して、目盛58とスライダー59のセットが設置されている。これにより、ユーザは生体の深さなどに応じた所定の補正度を適宜微調整することができる。なお、このユーザ調整パネルはハードウェアとして構成することもできるし、また、表示部60にGUI(Graphical User Interface)として表示することもできる。これにより、超音波診断装置のユーザが診断に適した超音波画像を選択できる。
 この構成により、ユーザ設定に合わせた高精度な補正データを取得できる。また、ユーザが、装置使用時に補正可能なため、温度などの環境の変化による特性変化にも対応して、高精度な補正データを取得することができる。更に、ユーザ側で補正データを取得した場合でも、補正値の適用可否と調整手段を具備することにより、ユーザが診断に好適と判断する超音波画像を取得できる。
 以上詳述した本発明の超音波診断装置によれば、送信-振動子(超音波送信)から振動子-受信(反射超音波検出)までの、通常の診断で用いる一連の系で、正負非対称性を補正することが可能となり、高画質の超音波画像を得ることができる超音波診断装置、超音波プローブを提供することができる。
 なお、本発明は上記した実施例に限定されるものではなく、様々な変形例が含まれる。例えば、上記した実施例は本発明のより良い理解のために詳細に説明したのであり、必ずしも説明の全ての構成を備えるものに限定されものではない。また、ある実施例の構成の一部を他の実施例の構成に置き換えることが可能であり、また、ある実施例の構成に他の実施例の構成を加えることが可能である。また、各実施例の構成の一部について、他の構成の追加・削除・置換をすることが可能である。
 更に、上述した各構成、機能、処理部等は、それらの一部又は全部を実現するプログラムなどを作成する例を動作フローを用いて説明したが、それらの一部又は全部を例えば集積回路で設計する等によりハードウェアで実現しても良いことは言うまでもない。
10、10a-10n 送信回路
20-20n 受信回路
30a-30n アナログデジタルコンバータ(ADC)
40 送信波形制御部
45 演算部
42 加算器
43 補正演算器
44 ゲイン調整器
45 演算部
46、54 補正メモリ
47 高速フーリエ変換器(FFT)
48 逆FFT
49 補間演算・ゲイン調整器
50 制御回路
51、52 コネクタ(CN)
53 コネクタボックス(BOX)
55 ケーブル
56 超音波プローブ
57 サブアレイ
58 目盛
59 スライダー
60 表示部
61 チェックボックス
70 ユーザ制御部
80 超音波振動子
90 超音波振動子アレイ
100、100a-100n 送信ライン
110、110a-110n 受信ライン

Claims (14)

  1. 第一の送信信号と、前記第一の送信信号を極性反転した第二の送信信号を送信する送信部と、
    前記送信部からの前記第一の送信信号と前記第二の送信信号に基づき、超音波を送信し、その反射超音波を受信する超音波プローブと、
    前記超音波プローブが受信した前記反射超音波に基づく、前記第一、第二の送信信号に対応する第一、第二の受信信号を受信する受信部と、
    キャリブレーションモードにおける、前記第一の受信信号と前記第二の受信信号の加算結果に基づく、正負非対称性を補正する補正データを記憶する記憶部とを備え、
    前記受信部は、
    診断モードにおける、前記第一の受信信号と前記第二の受信信号の加算結果と、前記記憶部に記憶された前記補正データを用いて補正演算を行う、
    ことを特徴とする超音波診断装置。
  2. 請求項1に記載の超音波診断装置であって、
    前記記憶部は、前記加算結果をフーリエ変換後のデータを記憶し、前記受信部は、前記記憶部から読み出されたデータを逆フーリエ変換したデータを前記補正演算に用いる、
    ことを特徴とする超音波診断装置。
  3. 請求項1に記載の超音波診断装置であって、
    前記超音波プローブに、前記記憶部を設置する、
    ことを特徴とする超音波診断装置。
  4. 請求項1に記載の超音波診断装置であって、
    前記超音波プローブは、二次元超音波探触子アレイで構成される、
    ことを特徴とする超音波診断装置。
  5. 請求項1に記載の超音波診断装置であって、
    前記反射超音波の深さに応じて、前記補正データによる補正度を調整可能なユーザ調整パネルを更に備える、
    ことを特徴とする超音波診断装置。
  6. 請求項1に記載の超音波診断装置であって、
    前記反射超音波の深さに応じて、前記補正データによる補正度を調整可能なグラフィカルユーザインタフェース(GUI)を表示可能な表示部を更に備える、
    ことを特徴とする超音波診断装置。
  7. 請求項1に記載の超音波診断装置であって、
    前記キャリブレーションモードにおいて、前記超音波プローブが受信する前記反射超音波は、前記超音波プローブに塗られた補正用媒体で反射された超音波である、
    ことを特徴とする超音波診断装置。
  8. 第一の送信信号と、前記第一の送信信号を極性反転した第二の送信信号を超音波プローブから送信し、
    前記第一の送信信号と前記第二の送信信号に基づき送信された超音波の反射超音波を前記超音波プローブで受信し、
    キャリブレーションモードにおける、受信した前記反射超音波に基づく、前記第一、第二の送信信号に対応する第一、第二の受信信号の加算結果を、正負非対称性を補正する補正データとして保持しておき、
    診断モードにおける、前記第一の受信信号と前記第二の受信信号の加算結果と、保持された前記補正データを用いて補正演算を行う、
    ことを特徴とする超音波診断方法。
  9. 請求項8に記載の超音波診断方法であって、
    前記加算結果をフーリエ変換後のデータを保持し、保持された当該データを逆フーリエ変換したデータを前記補正演算に用いる、
    ことを特徴とする超音波診断方法。
  10. 請求項8に記載の超音波診断方法であって、
    前記反射超音波の深さに応じて、前記補正データによる補正度を調整する、
    ことを特徴とする超音波診断方法。
  11. 請求項8に記載の超音波診断方法であって、
    前記キャリブレーションモードにおいて、前記超音波プローブが受信する前記反射超音波は、前記超音波プローブに塗られた補正用媒体で反射された超音波である、
    ことを特徴とする超音波診断方法。
  12. 第一の送信信号と、前記第一の送信信号を極性反転した第二の送信信号を送信する送信部と、前記第一、第二の送信信号に対応する第一、第二の受信信号を受信する受信部とに接続可能なコネクタと、
    前記送信部からの前記第一の送信信号と前記第二の送信信号に基づき、超音波を送信し、その反射超音波を受信する超音波探触子アレイと、
    キャリブレーションモードにおける、前記反射超音波に基づく、前記第一の受信信号と前記第二の受信信号の加算結果に基づく、正負非対称性を補正する補正データを記憶する記憶部とを備える、
    ことを特徴とする超音波プローブ。
  13. 請求項12に記載の超音波プローブであって、
    前記超音波探触子アレイを、二次元アレイで構成した、
    ことを特徴とする超音波プローブ。
  14. 請求項12に記載の超音波プローブであって、
    前記キャリブレーションモードにおいて、受信する前記反射超音波は、前記超音波探触子アレイに塗られた補正用媒体で反射された超音波である、
    ことを特徴とする超音波プローブ。
PCT/JP2014/064368 2013-06-25 2014-05-30 超音波診断装置、方法、及び超音波プローブ WO2014208269A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US14/898,675 US10499885B2 (en) 2013-06-25 2014-05-30 Ultrasound system and method, and ultrasound probe

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2013-132455 2013-06-25
JP2013132455A JP6040106B2 (ja) 2013-06-25 2013-06-25 超音波診断装置、方法、及び超音波プローブ

Publications (1)

Publication Number Publication Date
WO2014208269A1 true WO2014208269A1 (ja) 2014-12-31

Family

ID=52141620

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/064368 WO2014208269A1 (ja) 2013-06-25 2014-05-30 超音波診断装置、方法、及び超音波プローブ

Country Status (3)

Country Link
US (1) US10499885B2 (ja)
JP (1) JP6040106B2 (ja)
WO (1) WO2014208269A1 (ja)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6251030B2 (ja) * 2013-12-18 2017-12-20 東芝メディカルシステムズ株式会社 超音波プローブおよび超音波診断装置
JP6750987B2 (ja) * 2015-09-25 2020-09-02 キヤノンメディカルシステムズ株式会社 超音波診断装置及び超音波プローブ
US11109844B2 (en) * 2015-09-25 2021-09-07 Canon Medical Systems Corporation Ultrasound diagnosis apparatus and ultrasound probe
JP7302163B2 (ja) * 2018-11-22 2023-07-04 コニカミノルタ株式会社 超音波診断装置および超音波画像生成方法
JP7453366B2 (ja) 2020-05-28 2024-03-19 オリンパス株式会社 超音波信号処理装置、超音波信号処理装置の作動方法、及び超音波信号処理装置の作動プログラム

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006217944A (ja) * 2005-02-08 2006-08-24 Aloka Co Ltd 超音波診断装置
JP2011136224A (ja) * 2011-04-11 2011-07-14 Toshiba Corp 超音波診断装置及び超音波エコー信号処理方法

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20040015079A1 (en) * 1999-06-22 2004-01-22 Teratech Corporation Ultrasound probe with integrated electronics
US6443900B2 (en) 2000-03-15 2002-09-03 Olympus Optical Co., Ltd. Ultrasonic wave transducer system and ultrasonic wave transducer
JP4602574B2 (ja) 2001-02-23 2010-12-22 オリンパス株式会社 超音波トランスデューサとこれを用いた超音波トランスデューサシステム
JP4690537B2 (ja) 2000-11-30 2011-06-01 株式会社東芝 超音波診断装置
JP5247958B2 (ja) 2001-06-13 2013-07-24 株式会社東芝 超音波診断装置及び超音波エコー信号処理方法
US20050148874A1 (en) * 2003-12-19 2005-07-07 Brock-Fisher George A. Ultrasonic imaging aberration correction with microbeamforming
JP2007117668A (ja) 2005-10-31 2007-05-17 Toshiba Corp 超音波プローブおよび超音波診断装置
US20130338501A1 (en) * 2012-06-13 2013-12-19 Seno Medical Instruments, Inc. System and method for storing data associated with the operation of a dual modality optoacoustic/ultrasound system
EP2494925A1 (en) * 2011-03-03 2012-09-05 Koninklijke Philips Electronics N.V. Calculating the speed of ultrasound in at least two tissue types

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006217944A (ja) * 2005-02-08 2006-08-24 Aloka Co Ltd 超音波診断装置
JP2011136224A (ja) * 2011-04-11 2011-07-14 Toshiba Corp 超音波診断装置及び超音波エコー信号処理方法

Also Published As

Publication number Publication date
US20160120516A1 (en) 2016-05-05
JP6040106B2 (ja) 2016-12-07
JP2015006234A (ja) 2015-01-15
US10499885B2 (en) 2019-12-10

Similar Documents

Publication Publication Date Title
WO2014208269A1 (ja) 超音波診断装置、方法、及び超音波プローブ
US9585637B2 (en) Ultrasound diagnostic apparatus and ultrasound image producing method
JP5702326B2 (ja) 超音波プローブおよびそれを備える超音波診断装置
JP2017509416A5 (ja)
US20130072798A1 (en) Object information acquiring apparatus and control method thereof
US20120259218A1 (en) Subject information obtaining apparatus, method for obtaining subject information, and computer-readable storage medium
JP6000678B2 (ja) 被検体情報取得装置および被検体情報取得方法
JP5663552B2 (ja) 超音波検査装置、超音波検査装置の信号処理方法およびプログラム
JP5281107B2 (ja) 超音波診断装置および超音波画像生成方法
US11331080B2 (en) Ultrasound diagnostic apparatus that generates an ultrasound image using a harmonic imaging method and method of controlling ultrasound diagnostic apparatus that generates an ultrasound image using a harmonic imaging
JP2012161569A (ja) 超音波診断装置および超音波画像生成方法
JP5869411B2 (ja) 超音波診断装置および超音波画像生成方法
JP5836197B2 (ja) 超音波診断装置およびデータ処理方法
JP2012161448A (ja) 超音波診断装置
JP2009268807A (ja) 超音波診断装置
WO2014192466A1 (ja) 超音波診断装置、超音波診断装置の音線信号生成方法、及び超音波診断装置の音線信号生成プログラム
JP2015019862A (ja) 被検体情報取得装置、被検体情報取得方法、及びプログラム
JP5917388B2 (ja) 超音波検査装置、超音波検査装置の信号処理方法およびプログラム
JP5450488B2 (ja) 超音波診断装置および超音波画像生成方法
JP2012161554A (ja) 超音波診断装置および超音波画像生成方法
JP2012161560A (ja) 超音波診断装置および超音波画像生成方法
JP2018108143A (ja) 超音波測定装置および超音波測定装置の制御方法
JP2014124231A (ja) 超音波検査装置、超音波検査装置の信号処理方法およびプログラム
JP2012196309A (ja) 超音波診断装置および超音波画像生成方法
JP2015006286A (ja) 被検体情報取得装置、被検体情報取得装置の作動方法、およびプログラム

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14817144

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 14898675

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14817144

Country of ref document: EP

Kind code of ref document: A1