WO2014208026A1 - Methanol generation device, method for generating methanol, and electrode for methanol generation - Google Patents

Methanol generation device, method for generating methanol, and electrode for methanol generation Download PDF

Info

Publication number
WO2014208026A1
WO2014208026A1 PCT/JP2014/003077 JP2014003077W WO2014208026A1 WO 2014208026 A1 WO2014208026 A1 WO 2014208026A1 JP 2014003077 W JP2014003077 W JP 2014003077W WO 2014208026 A1 WO2014208026 A1 WO 2014208026A1
Authority
WO
WIPO (PCT)
Prior art keywords
methanol
electrode
cathode electrode
tank
carbon dioxide
Prior art date
Application number
PCT/JP2014/003077
Other languages
French (fr)
Japanese (ja)
Inventor
寛 羽柴
出口 正洋
聡史 四橋
山田 由佳
Original Assignee
パナソニックIpマネジメント株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by パナソニックIpマネジメント株式会社 filed Critical パナソニックIpマネジメント株式会社
Priority to JP2014559592A priority Critical patent/JP5816803B2/en
Priority to US14/566,742 priority patent/US20150096898A1/en
Publication of WO2014208026A1 publication Critical patent/WO2014208026A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B15/00Operating or servicing cells
    • C25B15/02Process control or regulation
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B11/00Electrodes; Manufacture thereof not otherwise provided for
    • C25B11/04Electrodes; Manufacture thereof not otherwise provided for characterised by the material
    • C25B11/051Electrodes formed of electrocatalysts on a substrate or carrier
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B11/00Electrodes; Manufacture thereof not otherwise provided for
    • C25B11/04Electrodes; Manufacture thereof not otherwise provided for characterised by the material
    • C25B11/051Electrodes formed of electrocatalysts on a substrate or carrier
    • C25B11/073Electrodes formed of electrocatalysts on a substrate or carrier characterised by the electrocatalyst material
    • C25B11/075Electrodes formed of electrocatalysts on a substrate or carrier characterised by the electrocatalyst material consisting of a single catalytic element or catalytic compound
    • C25B11/081Electrodes formed of electrocatalysts on a substrate or carrier characterised by the electrocatalyst material consisting of a single catalytic element or catalytic compound the element being a noble metal
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B11/00Electrodes; Manufacture thereof not otherwise provided for
    • C25B11/04Electrodes; Manufacture thereof not otherwise provided for characterised by the material
    • C25B11/051Electrodes formed of electrocatalysts on a substrate or carrier
    • C25B11/073Electrodes formed of electrocatalysts on a substrate or carrier characterised by the electrocatalyst material
    • C25B11/091Electrodes formed of electrocatalysts on a substrate or carrier characterised by the electrocatalyst material consisting of at least one catalytic element and at least one catalytic compound; consisting of two or more catalytic elements or catalytic compounds
    • C25B11/097Electrodes formed of electrocatalysts on a substrate or carrier characterised by the electrocatalyst material consisting of at least one catalytic element and at least one catalytic compound; consisting of two or more catalytic elements or catalytic compounds comprising two or more noble metals or noble metal alloys
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B3/00Electrolytic production of organic compounds
    • C25B3/20Processes
    • C25B3/25Reduction
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B9/00Cells or assemblies of cells; Constructional parts of cells; Assemblies of constructional parts, e.g. electrode-diaphragm assemblies; Process-related cell features
    • C25B9/17Cells comprising dimensionally-stable non-movable electrodes; Assemblies of constructional parts thereof
    • C25B9/19Cells comprising dimensionally-stable non-movable electrodes; Assemblies of constructional parts thereof with diaphragms

Definitions

  • the present disclosure relates to a methanol generator, a method of generating methanol, and an electrode for methanol generation.
  • Patent Documents 1 to 4 and Non-Patent Document 1 disclose methods for reducing carbon dioxide.
  • Patent Document 1 and Patent Document 2 disclose a method of reducing carbon dioxide using a gas phase reaction at a high temperature.
  • Patent Document 3 discloses a method of electrochemically reducing carbon dioxide using a phthalocyanine-based metal complex.
  • Patent Document 4 and Non-Patent Document 1 disclose a method of electrochemically reducing carbon dioxide using metallic copper or copper halide.
  • Patent Document 1 In the methods disclosed in Patent Document 1 and Patent Document 2, there is a problem that a large amount of energy is consumed and carbon dioxide is secondarily generated.
  • Patent Document 3 has a problem that the reaction product is mainly carbon monoxide or formic acid, and alcohols cannot be produced.
  • An object of the present disclosure is to provide a novel methanol generating apparatus that generates methanol, a method for generating methanol, and an electrode for methanol generation.
  • a methanol generator is a methanol generator that generates methanol by reducing carbon dioxide, and a tank for containing an electrolytic solution containing carbon dioxide, and the tank in contact with the electrolytic solution.
  • Cu 1-x Au x (0 ⁇ x ⁇ 1) installed inside the tank
  • an external power supply for applying a voltage.
  • the methanol production apparatus can improve the production efficiency of methanol.
  • FIG. 6 is a graph showing the results of Examples 1 to 7, Comparative Example 1 and Comparative Example 2.
  • a methanol generator is a methanol generator that generates methanol by reducing carbon dioxide, and a tank for containing an electrolytic solution containing carbon dioxide; and the electrolytic solution
  • a cathode electrode having a region of Cu 1-x Au x (0 ⁇ x ⁇ 1), which is placed in contact with the electrolytic solution, and a metal or metal
  • An anode electrode having a compound region; and an external power source for applying a voltage so that the cathode electrode has a negative potential with respect to the potential of the anode electrode.
  • methanol can be obtained as a carbon dioxide reduction product.
  • the Cu 1-x Au x (0 ⁇ x ⁇ 1) may be a solid solution or an intermetallic compound of Cu and Au.
  • Cu and Au mixed at the atomic level promote the methanol formation reaction, and methanol can be obtained as a carbon dioxide reduction product.
  • the value of x may be 0.005 or more and 0.05 or less in the first aspect.
  • Cu and Au are mixed at an appropriate density, whereby the methanol production reaction is promoted and methanol can be obtained as a carbon dioxide reduction product.
  • the anode electrode may be carbon, platinum, gold, silver, copper, titanium, iridium oxide, or an alloy thereof.
  • the anode electrode in the tank is simple and suitable for the oxygen generation reaction on the anode electrode.
  • the electrolytic solution may be a potassium chloride aqueous solution or a sodium chloride aqueous solution.
  • the electrolytic solution accommodated in the tank is convenient and suitable as an electrolytic solution for producing methanol.
  • the methanol generator according to the sixth aspect of the present disclosure may be configured such that the absolute value of the voltage is 2.5 V or more in the first aspect.
  • methanol can be obtained as a carbon dioxide reduction product by accelerating the methanol production reaction by applying a potential sufficient for methanol production to the cathode electrode.
  • the methanol generator according to a seventh aspect of the present disclosure is the above first aspect, wherein the methanol generator is further installed in the tank so as to be in contact with the electrolytic solution, and has a region of Ag / AgCl.
  • the external power supply may have a potential of the cathode electrode of ⁇ 1.7 V or less with respect to the potential of the reference electrode.
  • the seventh aspect it is possible to promote methanol production reaction by applying a potential sufficient for methanol production to the cathode electrode, and obtain methanol as a carbon dioxide reduction product.
  • a methanol generator according to an eighth aspect of the present disclosure is the methanol generator according to the first aspect, wherein the methanol generator further includes a tank for accommodating the first electrolytic solution containing the carbon dioxide, You may provide the solid electrolyte membrane isolate
  • methanol produced on the cathode electrode can be prevented from diffusing to the anode electrode, and methanol oxidation reaction on the anode electrode can be prevented.
  • the first electrolytic solution is an aqueous potassium chloride solution or an aqueous sodium chloride solution
  • the second electrolytic solution is an aqueous potassium bicarbonate solution, an aqueous hydrogen carbonate solution. It is good also as sodium aqueous solution or potassium sulfate aqueous solution.
  • the first electrolytic solution is convenient and suitable as an electrolytic solution for generating methanol as the electrolytic solution accommodated in the cathode chamber.
  • the second electrolytic solution is suitable as an electrolytic solution that is contained in the anode tank and is simple and suitable for generating oxygen.
  • the method for producing methanol according to the tenth aspect of the present disclosure is a method for producing methanol using an apparatus for producing methanol, which has the following steps: Step of preparing a methanol production device having the following: (A) a tank, a cathode electrode, and an anode electrode, wherein the cathode electrode has a region of Cu 1-x Au x (0 ⁇ x ⁇ 1), and the anode electrode is a metal or a metal compound
  • the electrolytic solution is held in the tank, the cathode electrode is in contact with the electrolytic solution, the anode electrode is in contact with the electrolytic solution, and the electrolytic solution is the carbon dioxide.
  • Step (b) of producing methanol on the cathode electrode by applying a voltage so that the cathode electrode has a negative potential with respect to the potential of the anode electrode and reducing carbon dioxide contained in the electrolyte solution.
  • a novel method for producing methanol as a carbon dioxide reduction product is provided.
  • the methanol production apparatus in the step (b) of the tenth aspect, may be placed at room temperature and atmospheric pressure.
  • methanol is obtained as a carbon dioxide reduction product without being installed in a special environment.
  • a methanol generating electrode is a methanol generating electrode used in a methanol generating apparatus that generates methanol by reducing carbon dioxide, and includes Cu 1-x Au x (0 ⁇ x ⁇ You may have the area
  • a novel electrode that generates methanol as a carbon dioxide reduction product is provided.
  • FIG. 1A is a basic configuration diagram of a methanol generator 10 for generating methanol according to the present disclosure.
  • the methanol generator 10 includes a tank 11, a cathode electrode 12, an anode electrode 13, and an external power source 14. As shown in FIG. 1A, the methanol generator 10 may have a voltage measuring device 15 and a current measuring device 16 for monitoring the state of the carbon dioxide reduction reaction.
  • the electrolytic solution 17 is held inside the tank 11.
  • the electrolyte solution 17 is, for example, a potassium chloride aqueous solution, a sodium chloride aqueous solution, a sodium hydrogen carbonate aqueous solution, or a sodium sulfate aqueous solution having a predetermined concentration.
  • a potassium chloride aqueous solution a sodium chloride aqueous solution, a sodium hydrogen carbonate aqueous solution, or a sodium sulfate aqueous solution having a predetermined concentration.
  • an aqueous potassium chloride solution or an aqueous sodium chloride solution is preferred.
  • the concentration of the electrolytic solution 17 is preferably 0.05 mol / L or more and 5.0 mol / L or less.
  • the cathode electrode 12 has CuAu, which is an alloy of copper (hereinafter described as “Cu”) and gold (hereinafter described as “Au”), on the surface.
  • Cu an alloy of copper
  • Au gold
  • the composition formula of CuAu is Cu 1-x Au x (where 0 ⁇ x ⁇ 1).
  • CuAu is preferably in the form of a solid solution or a metal compound.
  • the solid solution means a solid phase in which the entire alloy is uniform as a result of the elements constituting the alloy being dissolved at the atomic level.
  • the intermetallic compound refers to a compound in which elements constituting the alloy are regularly arranged at the atomic level.
  • the composition ratio of Cu and Au constituting CuAu is expressed as Cu 1-x Au x
  • the value of x is preferably in the range of 0.001 to 0.10.
  • the value of x is preferably in the range of 0.005 to 0.05.
  • CuAu constituting the cathode electrode 12 may contain elements other than Cu and Au to the extent that the crystal structure of CuAu is not disturbed. Specifically, CuAu may contain impurities at a level normally included in the process of preparing CuAu by a vacuum melting method or an arc melt method. The crystal structure of CuAu can be evaluated, for example, by performing X-ray diffraction measurement.
  • the cathode electrode 12 may be comprised only by CuAu, the laminated structure with the base material for hold
  • the cathode electrode 12 may be formed, for example, by forming a thin film of CuAu on a base material such as glass or glassy carbon (registered trademark), or by supporting a large number of particulate CuAu on a conductive substrate.
  • the configuration of the cathode electrode 12 is not particularly limited as long as it is in the form of a cathode electrode having an action of reducing carbon dioxide and generating methanol.
  • the cathode electrode 12 is in contact with the electrolytic solution 17. More precisely, CuAu provided in the cathode electrode 12 contacts the electrolytic solution 17. As long as CuAu is in contact with the electrolytic solution 17, only a part of the cathode electrode 12 needs to be immersed in the electrolytic solution 17.
  • the anode electrode 13 has a conductive material.
  • the conductive substance is, for example, carbon, platinum, gold, silver, copper, titanium, iridium oxide, or an alloy thereof.
  • the material of the conductive substance is not particularly limited as long as the conductive substance is not decomposed by its own oxidation reaction.
  • the water oxidation reaction at the anode electrode 13 and the carbon dioxide reduction reaction at the cathode electrode 12 are separate and independent reaction systems, and the reaction occurring on the cathode electrode 12 side is not affected by the material of the anode electrode 13.
  • the anode electrode 13 is also in contact with the electrolytic solution 17. More precisely, the conductive material provided in the anode electrode 13 is in contact with the electrolytic solution 17. As long as the conductive substance is in contact with the electrolytic solution 17, only a part of the anode electrode 13 needs to be immersed in the electrolytic solution 17.
  • the methanol generator 10 may have a pipe 18 in the tank 11. Carbon dioxide is supplied to the electrolyte solution 17 through the pipe 18. One end of the tube 18 is immersed in the electrolytic solution 17.
  • the methanol generator 100 may be provided with a solid electrolyte membrane 19 inside the tank 11.
  • the solid electrolyte membrane 19 divides the electrolyte solution 17 into an anode-side electrolyte solution 17L and a cathode-side electrolyte solution 17R.
  • the solid electrolyte membrane 19 separates the tank 11 into a cathode tank for containing the electrolytic solution 17L and an anode tank for containing the electrolytic solution 17R.
  • the solid electrolyte membrane 19 prevents each electrolyte component from mixing. In addition, since the solid electrolyte membrane 19 passes protons, the electrolyte solution 17R on the cathode electrode side and the electrolyte solution 17L on the anode electrode side are electrically connected.
  • the solid electrolyte membrane 19 is, for example, a Nafion (registered trademark) membrane available from DuPont. The reason why the electrolyte solution 17 is divided by the solid electrolyte membrane 19 will be described later.
  • the methanol generator 200 may have a reference electrode 20 in the vicinity of the cathode electrode 12.
  • the reference electrode 20 is in contact with the electrolyte solution 17R on the cathode side.
  • the reference electrode 20 measures the potential of the cathode electrode 12 and is connected to the cathode electrode 12 via the voltage measuring device 15.
  • the reference electrode 20 is, for example, a silver / silver chloride electrode (hereinafter referred to as “Ag / AgCl electrode”).
  • Methanol generator can be placed at room temperature and atmospheric pressure.
  • the external power supply 14 applies a voltage to the cathode electrode 12 so as to be negative with respect to the potential of the anode electrode 13.
  • the value of the voltage applied by the external power source 14 has a threshold value necessary for obtaining a methanol production reaction. This threshold value varies depending on the distance between the cathode electrode 12 and the anode electrode 13, the type of material constituting the cathode electrode 12 or the anode electrode 13, the concentration of the electrolytic solution 17, and the like, but is preferably 2.5 V or more. .
  • the potential of the cathode electrode 12 with respect to the potential of the reference electrode 20 varies depending on the type of material constituting the reference electrode 20, but is preferably ⁇ 1.7 V or less.
  • reaction current flows through the cathode electrode 12.
  • the current measuring device 16 is incorporated, the amount of reaction current can be monitored.
  • Example 1 Preparation of cathode electrode A CuAu cathode electrode according to the present disclosure was prepared.
  • the composition of CuAu was confirmed using an X-ray diffractometer. As a result, the peak of Au in a single state was not observed, and it was confirmed that CuAu in which Au was dissolved in Cu was formed.
  • the methanol generator shown in FIG. 1C was manufactured using the cathode electrode as described above.
  • the configuration of the methanol generator is as follows.
  • Cathode electrode CuAu (composition formula: Cu 0.9833 Au 0.0167 )
  • Anode electrode Platinum Distance between electrodes: About 8cm
  • Reference electrode Ag / AgCl
  • Anode-side electrolyte potassium hydrogen carbonate aqueous solution having a concentration of 0.5 mol / L
  • Cathode-side electrolyte potassium chloride aqueous solution having a concentration of 0.5 mol / L
  • Solid electrolyte membrane Nafion membrane (manufactured by DuPont, Nafion 117) Carbon dioxide was supplied to the cathode side electrolyte solution by bubbling carbon dioxide gas through the tube for 30 minutes (carbon dioxide flow rate: 200 mL / min).
  • Example 1 the amount of methanol produced per 1000 seconds of electrolysis time was 3.1 ⁇ 10 ⁇ 7 mol / cm 2 .
  • the electrolysis time is equal to the time when voltage is applied to the cathode electrode from the external power source.
  • the Faraday efficiency refers to the ratio of the amount of charge used for reaction product generation to the total reaction charge amount.
  • (Faraday efficiency of methanol generation) (reaction charge used for methanol generation) Amount) / (total reaction charge amount) ⁇ 100 [%].
  • Example 1 An experiment similar to that in Example 1 was performed except that a Cu electrode not containing Au was used as the cathode electrode.
  • Example 1 As a result, as in Example 1, CO, HCOOH, CH 4 , C 2 H 4 , aldehydes and ethanol were detected. However, as shown in FIG. 2, no signal was obtained at the detection position corresponding to methanol production. That is, in Comparative Example 1, methanol was not generated.
  • Example 2 An experiment similar to that in Example 1 was performed except that an Au electrode not containing Cu was used as the cathode electrode.
  • Example 2 The same experiment as in Example 1 was performed except that a 0.5 mol / L sodium chloride aqueous solution was used as the cathode electrolyte.
  • Example 3 The same experiment as in Example 1 was performed except that an electrode in which CuAu fine particles having the same composition ratio as in Example 1 were supported on the glassy carbon (registered trademark) substrate surface was used as the cathode electrode.
  • Example 1 As a result, the obtained reaction product was almost the same as in Example 1, and it was confirmed that methanol was produced. In addition, when using an electrode in which a CuAu thin film having the same composition ratio as in Example 1 was laminated on glassy carbon, the same results as in Example 1 were obtained.
  • Example 4 The same experiment as in Example 1 was performed except that a CuAu electrode represented by the composition formula: Cu 0.995 Au 0.005 was used as the cathode electrode.
  • Example 5 The same experiment as in Example 1 was performed except that a CuAu electrode represented by the composition formula: Cu 0.95 Au 0.05 was used as the cathode electrode.
  • Example 6 The same experiment as in Example 1 was performed except that the potentiostat was controlled so that the potential of the cathode electrode with respect to the reference electrode was ⁇ 1.7 V.
  • Example 7 An experiment similar to that of Example 1 was performed, except that the potentiostat was controlled so that the potential of the cathode electrode with respect to the reference electrode was ⁇ 2.1V.
  • FIG. 3 shows a comparison of the amounts of methanol produced in Examples 1 to 7, Comparative Example 1 and Comparative Example 2.
  • the graph shown in FIG. 3 is a graph relatively showing the amount of methanol produced in each of the examples and comparative examples, with the amount of methanol produced in Example 1 being “100”.
  • the present disclosure provides a novel apparatus and method in which methanol is produced using carbon dioxide as a reduction product by using a cathode electrode having CuAu.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Automation & Control Theory (AREA)
  • Electrolytic Production Of Non-Metals, Compounds, Apparatuses Therefor (AREA)
  • Electrodes For Compound Or Non-Metal Manufacture (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)

Abstract

There is demand for a methanol generation device for generating methanol as a reduction product of carbon dioxide without being installed in a special environment. The methanol generation device (10) according to the present disclosure generates methanol by reducing carbon dioxide, wherein the methanol generation device (10) is provided with: a tank (11) for containing an electrolytic solution (17) containing carbon dioxide; a cathode electrode (12) installed in the tank (11) so as to be in contact with the electrolytic solution (17), the cathode electrode (12) having a Cu1-xAux region (where 0 < x < 1); an anode electrode (13) installed in the tank (11) so as to be in contact with the electrolytic solution (17), the anode electrode (13) having a metal or a metal compound region; and an external power supply (14) for applying a voltage so that the cathode electrode (12) has a negative potential relative to the potential of the anode electrode (13).

Description

メタノール生成装置、メタノールを生成する方法及びメタノール生成用電極Methanol generating apparatus, method for generating methanol, and electrode for methanol generation
 本開示は、メタノール生成装置、メタノールを生成する方法及びメタノール生成用電極に関する。 The present disclosure relates to a methanol generator, a method of generating methanol, and an electrode for methanol generation.
 特許文献1~4及び非特許文献1には、二酸化炭素を還元する方法が開示されている。 Patent Documents 1 to 4 and Non-Patent Document 1 disclose methods for reducing carbon dioxide.
 特許文献1及び特許文献2には、高温下における気相反応を用いて二酸化炭素を還元する方法が開示されている。 Patent Document 1 and Patent Document 2 disclose a method of reducing carbon dioxide using a gas phase reaction at a high temperature.
 特許文献3には、フタロシアニン系の金属錯体を用いて電気化学的に二酸化炭素を還元する方法が開示されている。 Patent Document 3 discloses a method of electrochemically reducing carbon dioxide using a phthalocyanine-based metal complex.
 特許文献4及び非特許文献1には、金属銅または銅ハロゲン化物を用いて電気化学的に二酸化炭素を還元する方法が開示されている。 Patent Document 4 and Non-Patent Document 1 disclose a method of electrochemically reducing carbon dioxide using metallic copper or copper halide.
特開2000-254508号公報JP 2000-254508 A 特開平1-313313号公報JP-A-1-313313 特開平1-205088号公報Japanese Patent Laid-Open No. 1-205088 特開2004-176129号公報JP 2004-176129 A
 特許文献1及び特許文献2に開示されている方法では、エネルギーを多量に消費し、二次的に二酸化炭素が発生するなどの課題があった。 In the methods disclosed in Patent Document 1 and Patent Document 2, there is a problem that a large amount of energy is consumed and carbon dioxide is secondarily generated.
 特許文献3に開示されている方法では、その反応生成物は一酸化炭素又は蟻酸が主であり、アルコール類の生成はできないといった課題があった。 The method disclosed in Patent Document 3 has a problem that the reaction product is mainly carbon monoxide or formic acid, and alcohols cannot be produced.
 特許文献4及び非特許文献1に開示されている方法では、メタノールの生成は認められなかった。 In the methods disclosed in Patent Document 4 and Non-Patent Document 1, generation of methanol was not observed.
 本開示の目的は、メタノールを生成する新規なメタノール生成装置、メタノールを生成する方法及びメタノール生成用電極を提供する。 An object of the present disclosure is to provide a novel methanol generating apparatus that generates methanol, a method for generating methanol, and an electrode for methanol generation.
 本開示に係るメタノール生成装置は、二酸化炭素を還元することによりメタノールを生成するメタノール生成装置であって、二酸化炭素を含有する電解液を収容するための槽と、前記電解液に接するように前記槽の内部に設置され、Cu1-xAu(0<x<1)
の領域を有するカソード電極と、前記電解液に接するように前記槽の内部に設置され、金属又は金属化合物の領域を有するアノード電極と、前記アノード電極の電位に対し前記カソード電極が負電位となるよう電圧を印加するための外部電源と、を備える。
A methanol generator according to the present disclosure is a methanol generator that generates methanol by reducing carbon dioxide, and a tank for containing an electrolytic solution containing carbon dioxide, and the tank in contact with the electrolytic solution. Cu 1-x Au x (0 <x <1) installed inside the tank
A cathode electrode having a region of the anode, an anode electrode having a metal or metal compound region disposed in contact with the electrolyte, and the cathode electrode having a negative potential with respect to the potential of the anode electrode And an external power supply for applying a voltage.
 本開示に係るメタノール生成装置は、メタノールの生成効率を向上させることができる。 The methanol production apparatus according to the present disclosure can improve the production efficiency of methanol.
本開示に係るメタノール生成装置を示す概略図である。It is the schematic which shows the methanol production | generation apparatus which concerns on this indication. 本開示に係るメタノール生成装置を示す概略図である。It is the schematic which shows the methanol production | generation apparatus which concerns on this indication. 本開示に係るメタノール生成装置を示す概略図である。It is the schematic which shows the methanol production | generation apparatus which concerns on this indication. 実施例1、比較例1及び比較例2の結果を示すグラフである。It is a graph which shows the result of Example 1, the comparative example 1, and the comparative example 2. FIG. 実施例1~7、比較例1及び比較例2の結果を示すグラフである。6 is a graph showing the results of Examples 1 to 7, Comparative Example 1 and Comparative Example 2.
 本開示の第1態様に係るメタノール生成装置は、二酸化炭素を還元することによりメタノールを生成するメタノール生成装置であって、二酸化炭素を含有する電解液を収容するための槽と、前記電解液に接するように前記槽の内部に設置され、Cu1-xAu(0<x<1)の領域を有するカソード電極と、前記電解液に接するように前記槽の内部に設置され、金属又は金属化合物の領域を有するアノード電極と、前記アノード電極の電位に対し前記カソード電極が負電位となるよう電圧を印加するための外部電源と、を備える。 A methanol generator according to a first aspect of the present disclosure is a methanol generator that generates methanol by reducing carbon dioxide, and a tank for containing an electrolytic solution containing carbon dioxide; and the electrolytic solution A cathode electrode having a region of Cu 1-x Au x (0 <x <1), which is placed in contact with the electrolytic solution, and a metal or metal An anode electrode having a compound region; and an external power source for applying a voltage so that the cathode electrode has a negative potential with respect to the potential of the anode electrode.
 上記第1態様によれば、二酸化炭素還元生成物としてメタノールを得ることができる。 According to the first aspect, methanol can be obtained as a carbon dioxide reduction product.
 本開示の第2態様に係るメタノール生成装置は、上記第1態様において、前記Cu1-xAu(0<x<1)がCuとAuとの固溶体又は金属間化合物としてもよい。 In the methanol generator according to the second aspect of the present disclosure, in the first aspect, the Cu 1-x Au x (0 <x <1) may be a solid solution or an intermetallic compound of Cu and Au.
 上記第2態様によれば、原子レベルで混ざり合ったCuとAuがメタノールの生成反応を促進させ、二酸化炭素還元生成物としてメタノールを得ることができる。 According to the second aspect, Cu and Au mixed at the atomic level promote the methanol formation reaction, and methanol can be obtained as a carbon dioxide reduction product.
 本開示の第3態様に係るメタノール生成装置は、上記第1態様において、前記xの値が0.005以上0.05以下としてもよい。 In the methanol generator according to the third aspect of the present disclosure, the value of x may be 0.005 or more and 0.05 or less in the first aspect.
 上記第3態様によれば、CuとAuが適切な密度で混ざり合うことで、メタノールの生成反応を促進させ、二酸化炭素還元生成物としてメタノールを得ることができる。 According to the third aspect, Cu and Au are mixed at an appropriate density, whereby the methanol production reaction is promoted and methanol can be obtained as a carbon dioxide reduction product.
 本開示の第4態様に係るメタノール生成装置は、上記第1態様において、前記アノード電極が炭素、白金、金、銀、銅、チタン、イリジウム酸化物、又はこれらの合金としてもよい。 In the methanol generator according to the fourth aspect of the present disclosure, in the first aspect, the anode electrode may be carbon, platinum, gold, silver, copper, titanium, iridium oxide, or an alloy thereof.
 上記第4態様によれば、槽内部に有するアノード電極として、簡便かつアノード電極上での酸素生成反応に好適である。 According to the fourth aspect, the anode electrode in the tank is simple and suitable for the oxygen generation reaction on the anode electrode.
 本開示の第5態様に係るメタノール生成装置は、上記第1態様において、前記電解液が塩化カリウム水溶液又は塩化ナトリウム水溶液としてもよい。 In the methanol generator according to the fifth aspect of the present disclosure, in the first aspect, the electrolytic solution may be a potassium chloride aqueous solution or a sodium chloride aqueous solution.
 上記第5態様によれば、槽内部に収容される電解液として、簡便かつメタノール生成用電解液として好適である。 According to the fifth aspect, the electrolytic solution accommodated in the tank is convenient and suitable as an electrolytic solution for producing methanol.
 本開示の第6態様に係るメタノール生成装置は、上記第1態様において、前記電圧の絶対値が2.5V以上としてもよい。 The methanol generator according to the sixth aspect of the present disclosure may be configured such that the absolute value of the voltage is 2.5 V or more in the first aspect.
 上記第6態様によれば、カソード電極に、メタノール生成に十分な電位を与えることでメタノールの生成反応を促進し、二酸化炭素還元生成物としてメタノールを得ることができる。 According to the sixth aspect, methanol can be obtained as a carbon dioxide reduction product by accelerating the methanol production reaction by applying a potential sufficient for methanol production to the cathode electrode.
 本開示の第7態様に係るメタノール生成装置は、上記第1態様において、前記メタノール生成装置は、さらに、前記電解液に接するように前記槽の内部に設置され、Ag/AgClの領域を有する参照電極と、を備え、前記外部電源が、前記参照電極の電位に対し前記カソード電極の電位が-1.7V以下としてもよい。 The methanol generator according to a seventh aspect of the present disclosure is the above first aspect, wherein the methanol generator is further installed in the tank so as to be in contact with the electrolytic solution, and has a region of Ag / AgCl. The external power supply may have a potential of the cathode electrode of −1.7 V or less with respect to the potential of the reference electrode.
 上記第7態様によれば、カソード電極に、メタノール生成に十分な電位を与えることでメタノールの生成反応を促進し、二酸化炭素還元生成物としてメタノールを得ることができる。 According to the seventh aspect, it is possible to promote methanol production reaction by applying a potential sufficient for methanol production to the cathode electrode, and obtain methanol as a carbon dioxide reduction product.
 本開示の第8態様に係るメタノール生成装置は、上記第1態様において、前記メタノール生成装置は、さらに、前記槽を、前記二酸化炭素を含有する第1電解液を収容するためのカソード槽と、第2電解液を収容するためのアノード槽とに分離する固体電解質膜と、を備えてもよい。 A methanol generator according to an eighth aspect of the present disclosure is the methanol generator according to the first aspect, wherein the methanol generator further includes a tank for accommodating the first electrolytic solution containing the carbon dioxide, You may provide the solid electrolyte membrane isolate | separated into the anode tank for accommodating a 2nd electrolyte solution.
 上記第8態様によれば、カソード電極上で生成したメタノールのアノード電極への拡散を防ぎ、アノード電極上でのメタノールの酸化反応を防ぐことができる。 According to the eighth aspect, methanol produced on the cathode electrode can be prevented from diffusing to the anode electrode, and methanol oxidation reaction on the anode electrode can be prevented.
 本開示の第9態様に係るメタノール生成装置は、上記第8態様において、前記第1電解液は、塩化カリウム水溶液又は塩化ナトリウム水溶液であり、前記第2電解液は、炭酸水素カリウム水溶液、炭酸水素ナトリウム水溶液又は硫酸カリウム水溶液としてもよい。 In the methanol generator according to the ninth aspect of the present disclosure, in the eighth aspect, the first electrolytic solution is an aqueous potassium chloride solution or an aqueous sodium chloride solution, and the second electrolytic solution is an aqueous potassium bicarbonate solution, an aqueous hydrogen carbonate solution. It is good also as sodium aqueous solution or potassium sulfate aqueous solution.
 上記第9態様によれば、第1電解液はカソード槽内部に収容される電解液として、簡便かつメタノール生成用電解液として好適である。また、第2電解液はアノード槽内部に収容される電解液として、簡便かつ酸素生成用電解液として好適である。 According to the ninth aspect, the first electrolytic solution is convenient and suitable as an electrolytic solution for generating methanol as the electrolytic solution accommodated in the cathode chamber. Further, the second electrolytic solution is suitable as an electrolytic solution that is contained in the anode tank and is simple and suitable for generating oxygen.
 本開示の第10態様に係るメタノールを生成する方法は、メタノールを生成するための装置を用いてメタノールを生成する方法であって、以下の工程を有する:以下を有するメタノール生成装置を用意する工程(a)、槽、カソード電極、および、アノード電極、ここで、前記カソード電極は、Cu1-xAu(0<x<1)の領域を有し、前記アノード電極は、金属又は金属化合物の領域を有し、前記槽の内部には、電解液が保持され、前記カソード電極は前記電解液に接しており、前記アノード電極は前記電解液に接しており、前記電解液は前記二酸化炭素を含有しており、および、前記アノード電極の電位に対し前記カソード電極が負電位となるよう電圧を印加し、前記電解液に含有されている二酸化炭素を還元することにより前記カソード電極上でメタノールを生成する工程(b)。 The method for producing methanol according to the tenth aspect of the present disclosure is a method for producing methanol using an apparatus for producing methanol, which has the following steps: Step of preparing a methanol production device having the following: (A) a tank, a cathode electrode, and an anode electrode, wherein the cathode electrode has a region of Cu 1-x Au x (0 <x <1), and the anode electrode is a metal or a metal compound The electrolytic solution is held in the tank, the cathode electrode is in contact with the electrolytic solution, the anode electrode is in contact with the electrolytic solution, and the electrolytic solution is the carbon dioxide. And by applying a voltage so that the cathode electrode has a negative potential with respect to the potential of the anode electrode and reducing carbon dioxide contained in the electrolyte solution, Step (b) of producing methanol on the cathode electrode.
 上記第10態様によれば、二酸化炭素還元生成物としてメタノールを生成する新規な方法を提供する。 According to the tenth aspect, a novel method for producing methanol as a carbon dioxide reduction product is provided.
 本開示の第11態様に係るメタノールを生成する方法は、上記第10態様の前記工程(b)において、前記メタノール生成装置が、室温かつ大気圧下におかれてもよい。 In the method for producing methanol according to the eleventh aspect of the present disclosure, in the step (b) of the tenth aspect, the methanol production apparatus may be placed at room temperature and atmospheric pressure.
 上記第11態様によれば、特殊な環境に設置することなく、二酸化炭素還元生成物としてメタノールが得られる。 According to the eleventh aspect, methanol is obtained as a carbon dioxide reduction product without being installed in a special environment.
 本開示の第12態様に係るメタノール生成用電極は、二酸化炭素を還元することによりメタノールを生成するメタノール生成装置に用いられるメタノール生成用電極であって、Cu1-xAu(0<x<1)の領域を有してもよい。 A methanol generating electrode according to a twelfth aspect of the present disclosure is a methanol generating electrode used in a methanol generating apparatus that generates methanol by reducing carbon dioxide, and includes Cu 1-x Au x (0 <x < You may have the area | region of 1).
 上記第12態様によれば、二酸化炭素還元生成物としてメタノールを生成する新規な電極を提供する。 According to the twelfth aspect, a novel electrode that generates methanol as a carbon dioxide reduction product is provided.
 以下、本開示の実施の形態に係るメタノール生成装置、メタノールを生成する方法について、図面を参照しながら説明する。 Hereinafter, a methanol generator and a method for generating methanol according to an embodiment of the present disclosure will be described with reference to the drawings.
 (実施の形態)
 (メタノールを生成するための装置)
 図1A~図1Cは、二酸化炭素を還元することによりメタノールを生成するメタノール生成装置の概略図である。
(Embodiment)
(Equipment for producing methanol)
1A to 1C are schematic views of a methanol generator that generates methanol by reducing carbon dioxide.
 図1Aは、本開示に係るメタノールを生成するためのメタノール生成装置10の基本構成図である。メタノール生成装置10は、槽11、カソード電極12、アノード電極13、および外部電源14を有する。メタノール生成装置10は、図1Aに示すように、二酸化炭素の還元反応の様子をモニタリングするための電圧測定装置15および電流測定装置16を有していても良い。 FIG. 1A is a basic configuration diagram of a methanol generator 10 for generating methanol according to the present disclosure. The methanol generator 10 includes a tank 11, a cathode electrode 12, an anode electrode 13, and an external power source 14. As shown in FIG. 1A, the methanol generator 10 may have a voltage measuring device 15 and a current measuring device 16 for monitoring the state of the carbon dioxide reduction reaction.
 電解液17は、槽11の内部に保持されている。電解液17は、一例として、所定の濃度を有する塩化カリウム水溶液、塩化ナトリウム水溶液、炭酸水素ナトリウム水溶液、又は硫酸ナトリウム水溶液などである。特に、塩化カリウム水溶液又は塩化ナトリウム水溶液が好ましい。また、電解液17の濃度は、0.05mol/L以上5.0mol/L以下が好適である。 The electrolytic solution 17 is held inside the tank 11. The electrolyte solution 17 is, for example, a potassium chloride aqueous solution, a sodium chloride aqueous solution, a sodium hydrogen carbonate aqueous solution, or a sodium sulfate aqueous solution having a predetermined concentration. In particular, an aqueous potassium chloride solution or an aqueous sodium chloride solution is preferred. The concentration of the electrolytic solution 17 is preferably 0.05 mol / L or more and 5.0 mol / L or less.
 カソード電極12は、銅(以下、「Cu」と記述する)と金(以下、「Au」と記述する)との合金であるCuAuを表面に有する。ここで、CuAuの組成式は、Cu1-xAu(ここで、0<x<1)である。 The cathode electrode 12 has CuAu, which is an alloy of copper (hereinafter described as “Cu”) and gold (hereinafter described as “Au”), on the surface. Here, the composition formula of CuAu is Cu 1-x Au x (where 0 <x <1).
 CuAuは、固溶体又は金属化合物の状態であることが好ましい。ここで、固溶体とは、合金を構成する元素が原子レベルで互いに溶解している結果、合金全体が均一の固相をいう。また、金属間化合物とは、合金を構成する元素が原子レベルで規則的に整列した化合物をいう。 CuAu is preferably in the form of a solid solution or a metal compound. Here, the solid solution means a solid phase in which the entire alloy is uniform as a result of the elements constituting the alloy being dissolved at the atomic level. Further, the intermetallic compound refers to a compound in which elements constituting the alloy are regularly arranged at the atomic level.
 固溶体のCuAuを作製する手法として、例えば、真空溶解法又はアークメルト法などが用いられる。CuAuを構成するCuとAuの組成比率は、Cu1-xAuと表記した場合、xの値が0.001以上0.10以下の範囲にあることが好ましい。とりわけ、xの値が0.005以上0.05以下の範囲にあることが好適である。 As a method for producing the solid solution CuAu, for example, a vacuum melting method or an arc melt method is used. When the composition ratio of Cu and Au constituting CuAu is expressed as Cu 1-x Au x , the value of x is preferably in the range of 0.001 to 0.10. In particular, the value of x is preferably in the range of 0.005 to 0.05.
 カソード電極12を構成しているCuAuには、CuAuの結晶構造を乱さない程度に、Cu及びAu以外の元素を含んでもよい。具体的には、CuAuは、真空溶解法又はアークメルト法などによりCuAuを作製する過程において通常含まれるレベルの不純物を含んでいてもよい。なお、CuAuの結晶構造は、例えばX線回折測定を行うことにより評価できる。 CuAu constituting the cathode electrode 12 may contain elements other than Cu and Au to the extent that the crystal structure of CuAu is not disturbed. Specifically, CuAu may contain impurities at a level normally included in the process of preparing CuAu by a vacuum melting method or an arc melt method. The crystal structure of CuAu can be evaluated, for example, by performing X-ray diffraction measurement.
 カソード電極12は、CuAuのみで構成されていても良いが、CuAuを保持するための基材との積層構造でも良い。カソード電極12は、例えば、ガラス又はグラッシーカ
ーボン(登録商標)などの基材の上にCuAuを薄膜状に形成したもの、又は、微粒子状のCuAuを導電性基板上に多数担持したものでも良い。カソード電極12は、二酸化炭素を還元し、メタノールを生成する作用を有するカソード電極の形態であれば、その構成は特に限定されない。
Although the cathode electrode 12 may be comprised only by CuAu, the laminated structure with the base material for hold | maintaining CuAu may be sufficient. The cathode electrode 12 may be formed, for example, by forming a thin film of CuAu on a base material such as glass or glassy carbon (registered trademark), or by supporting a large number of particulate CuAu on a conductive substrate. The configuration of the cathode electrode 12 is not particularly limited as long as it is in the form of a cathode electrode having an action of reducing carbon dioxide and generating methanol.
 カソード電極12は電解液17に接する。より正確には、カソード電極12に具備されるCuAuが電解液17に接する。CuAuが電解液17に接する限り、カソード電極12の一部のみが電解液17に浸漬されていればよい。 The cathode electrode 12 is in contact with the electrolytic solution 17. More precisely, CuAu provided in the cathode electrode 12 contacts the electrolytic solution 17. As long as CuAu is in contact with the electrolytic solution 17, only a part of the cathode electrode 12 needs to be immersed in the electrolytic solution 17.
 アノード電極13は導電性物質を有する。導電性物質は、例えば、炭素、白金、金、銀、銅、チタン、イリジウム酸化物、又はこれらの合金である。かかる導電性物質の材料は、かかる導電性物質が自身の酸化反応によって分解されない限り、特に限定されない。 The anode electrode 13 has a conductive material. The conductive substance is, for example, carbon, platinum, gold, silver, copper, titanium, iridium oxide, or an alloy thereof. The material of the conductive substance is not particularly limited as long as the conductive substance is not decomposed by its own oxidation reaction.
 アノード電極13における水の酸化反応と、カソード電極12における二酸化炭素の還元反応とは別個独立の反応系であり、アノード電極13の材料によってカソード電極12側で起こる反応が影響を受けることはない。 The water oxidation reaction at the anode electrode 13 and the carbon dioxide reduction reaction at the cathode electrode 12 are separate and independent reaction systems, and the reaction occurring on the cathode electrode 12 side is not affected by the material of the anode electrode 13.
 アノード電極13も電解液17に接する。より正確には、アノード電極13に具備される導電性物質が電解液17に接する。導電性物質が電解液17に接する限り、アノード電極13の一部のみが電解液17に浸漬されていればよい。 The anode electrode 13 is also in contact with the electrolytic solution 17. More precisely, the conductive material provided in the anode electrode 13 is in contact with the electrolytic solution 17. As long as the conductive substance is in contact with the electrolytic solution 17, only a part of the anode electrode 13 needs to be immersed in the electrolytic solution 17.
 図1Aに示すように、メタノール生成装置10は、槽11に管18を有してもよい。管18を通じて二酸化炭素が電解液17に供給される。管18の一端は、電解液17に浸漬される。 As shown in FIG. 1A, the methanol generator 10 may have a pipe 18 in the tank 11. Carbon dioxide is supplied to the electrolyte solution 17 through the pipe 18. One end of the tube 18 is immersed in the electrolytic solution 17.
 図1Bに示すように、メタノール生成装置100は、槽11の内部に固体電解質膜19を設けてもよい。これにより、固体電解質膜19は、電解液17をアノード側の電解液17Lとカソード側の電解液17Rとに分割する。換言すれば、固体電解質膜19は、槽11を、電解液17Lを収容するためのカソード槽と、電解液17Rを収容するためのアノード槽とに分離する。 As shown in FIG. 1B, the methanol generator 100 may be provided with a solid electrolyte membrane 19 inside the tank 11. As a result, the solid electrolyte membrane 19 divides the electrolyte solution 17 into an anode-side electrolyte solution 17L and a cathode-side electrolyte solution 17R. In other words, the solid electrolyte membrane 19 separates the tank 11 into a cathode tank for containing the electrolytic solution 17L and an anode tank for containing the electrolytic solution 17R.
 固体電解質膜19は、それぞれの電解液成分が混合することを防ぐ。また、固体電解質膜19は、プロトンを通過するため、カソード電極側の電解液17Rとアノード電極側の電解液17Lとを電気的に接続する。固体電解質膜19は、例えば、デュポン社から入手可能なナフィオン(登録商標)膜である。なお、固体電解質膜19によって電解液17を分割する理由は後述する。 The solid electrolyte membrane 19 prevents each electrolyte component from mixing. In addition, since the solid electrolyte membrane 19 passes protons, the electrolyte solution 17R on the cathode electrode side and the electrolyte solution 17L on the anode electrode side are electrically connected. The solid electrolyte membrane 19 is, for example, a Nafion (registered trademark) membrane available from DuPont. The reason why the electrolyte solution 17 is divided by the solid electrolyte membrane 19 will be described later.
 また図1Cに示すように、メタノール生成装置200は、カソード電極12の近傍に参照電極20を有していてもよい。参照電極20はカソード側の電解液17Rに接する。参照電極20は、カソード電極12の電位を測定するものであり、電圧測定装置15を介してカソード電極12に接続される。参照電極20は、例えば、銀/塩化銀電極(以下、「Ag/AgCl電極」と記述する)である。 Further, as shown in FIG. 1C, the methanol generator 200 may have a reference electrode 20 in the vicinity of the cathode electrode 12. The reference electrode 20 is in contact with the electrolyte solution 17R on the cathode side. The reference electrode 20 measures the potential of the cathode electrode 12 and is connected to the cathode electrode 12 via the voltage measuring device 15. The reference electrode 20 is, for example, a silver / silver chloride electrode (hereinafter referred to as “Ag / AgCl electrode”).
 (メタノールを生成する方法)
 上述されたメタノール生成装置を用いて、メタノールを生成する方法について説明する。
(Method of producing methanol)
A method for producing methanol using the above-described methanol production apparatus will be described.
 メタノール生成装置は室温かつ大気圧下に置かれ得る。 Methanol generator can be placed at room temperature and atmospheric pressure.
 外部電源14は、カソード電極12に、アノード電極13の電位に対して負電位となる
よう電圧を印加する。外部電源14が印加する電圧の値には、メタノール生成反応を得るために必要な閾値がある。この閾値は、カソード電極12とアノード電極13との距離、カソード電極12又はアノード電極13を構成する材料の種類、及び電解液17の濃度などにより変化するが、2.5V以上であることが好ましい。
The external power supply 14 applies a voltage to the cathode electrode 12 so as to be negative with respect to the potential of the anode electrode 13. The value of the voltage applied by the external power source 14 has a threshold value necessary for obtaining a methanol production reaction. This threshold value varies depending on the distance between the cathode electrode 12 and the anode electrode 13, the type of material constituting the cathode electrode 12 or the anode electrode 13, the concentration of the electrolytic solution 17, and the like, but is preferably 2.5 V or more. .
 アノード電極13に対してカソード電極12に印加された電圧の一部は、アノード電極13上での水の酸化反応に消費される。そのため、図1A及び図1Bに示すような構成の場合、カソード電極に実際に印加されている電圧を把握することは難しい。一方、図1Cに示すような構成の場合、カソード電極12に実際に印加されている電圧をより正確に求めることができる。参照電極20の電位に対しカソード電極12の電位は、参照電極20を構成する材料の種類などにより変化するが、-1.7V以下であることが好ましい。 A part of the voltage applied to the cathode electrode 12 with respect to the anode electrode 13 is consumed in the oxidation reaction of water on the anode electrode 13. For this reason, in the case of the configuration shown in FIGS. 1A and 1B, it is difficult to grasp the voltage actually applied to the cathode electrode. On the other hand, in the case of the configuration shown in FIG. 1C, the voltage actually applied to the cathode electrode 12 can be obtained more accurately. The potential of the cathode electrode 12 with respect to the potential of the reference electrode 20 varies depending on the type of material constituting the reference electrode 20, but is preferably −1.7 V or less.
 以上のように、カソード電極12に適切な電圧を印加することで、電解液17に含有される二酸化炭素がカソード電極12にて還元される。その結果、カソード電極12の表面では、メタノールが生成される。 As described above, carbon dioxide contained in the electrolytic solution 17 is reduced at the cathode electrode 12 by applying an appropriate voltage to the cathode electrode 12. As a result, methanol is generated on the surface of the cathode electrode 12.
 一方、アノード電極13では、水の酸化反応により酸素が生成されるが、電解液17中にメタノールが混在している場合、水以外にメタノールも酸化してしまう。すなわち、カソード電極12にて生成されたメタノールの一部は、アノード電極13に到達すると、アノード電極13にて酸化される。その結果、生成されたメタノールは二酸化炭素に戻ってしまう。この逆反応を抑制するためには、図1B及び図1Cに示すように、固体電解質膜19を用いて、カソード側とアノード側の電解液を分離することが好適である。 On the other hand, in the anode electrode 13, oxygen is generated by the oxidation reaction of water. However, when methanol is mixed in the electrolyte solution 17, methanol is also oxidized in addition to water. That is, part of the methanol produced at the cathode electrode 12 is oxidized at the anode electrode 13 when it reaches the anode electrode 13. As a result, the produced methanol returns to carbon dioxide. In order to suppress this reverse reaction, as shown in FIG. 1B and FIG. 1C, it is preferable to separate the electrolyte solution on the cathode side and the anode side using a solid electrolyte membrane 19.
 メタノール生成装置を用いたカソード電極12の表面での二酸化炭素の還元反応、及びアノード電極13の表面での水の酸化反応に対応して、カソード電極12には反応電流が流れる。図1A~図1Cに示すように、電流測定装置16を組み込んでおけば、その反応電流量をモニタリングすることが可能である。 Corresponding to the reduction reaction of carbon dioxide on the surface of the cathode electrode 12 using the methanol generator and the oxidation reaction of water on the surface of the anode electrode 13, a reaction current flows through the cathode electrode 12. As shown in FIGS. 1A to 1C, if the current measuring device 16 is incorporated, the amount of reaction current can be monitored.
 以下の実施例を参照して、本発明をより詳細に説明する。 The present invention will be described in more detail with reference to the following examples.
 (実施例1)
 (カソード電極の作製)
 本開示に係るCuAuのカソード電極を作製した。
(Example 1)
(Preparation of cathode electrode)
A CuAu cathode electrode according to the present disclosure was prepared.
 まず、真空溶解法を用いて、x=0.0167となるように、AuをCuに溶解させた。その後、溶解物を固化させることにより、CuAuを得た。得たCuAuを20mm角かつ厚み2mmに加工した後、表面を有機溶剤で洗浄処理した。 First, Au was dissolved in Cu so that x = 0.167 using a vacuum melting method. Then, CuAu was obtained by solidifying the dissolved material. After processing the obtained CuAu into a 20 mm square and a thickness of 2 mm, the surface was washed with an organic solvent.
 X線回折装置を用いてCuAuの組成確認を行なった。その結果、単体状態のAuのピークは観測されず、AuがCuに固溶したCuAuが形成されていることが確認された。 The composition of CuAu was confirmed using an X-ray diffractometer. As a result, the peak of Au in a single state was not observed, and it was confirmed that CuAu in which Au was dissolved in Cu was formed.
 その後、得られたCuAuをガラス板上に接着し、本開示に係るカソード電極を作製した。 Thereafter, the obtained CuAu was bonded onto a glass plate to produce a cathode electrode according to the present disclosure.
 (装置の組み立て)
 上記のようなカソード電極を用いて、図1Cに示したメタノール生成装置を製作した。メタノール生成装置の構成は、以下の通りである。
(Assembly of the device)
The methanol generator shown in FIG. 1C was manufactured using the cathode electrode as described above. The configuration of the methanol generator is as follows.
 カソード電極:CuAu(組成式:Cu0.9833Au0.0167
 アノード電極:白金
 電極間距離:約8cm
 参照電極:Ag/AgCl
 アノード側電解液:0.5mol/Lの濃度を有する炭酸水素カリウム水溶液
 カソード側電解液:0.5mol/Lの濃度を有する塩化カリウム水溶液
 固体電解質膜:ナフィオン膜(デュポン社製、ナフィオン117)
 カソード側電解液への二酸化炭素の供給は、管を通じて、二酸化炭素ガスを30分間バブリング処理(二酸化炭素流量:200mL/min)することにより行なわれた。
Cathode electrode: CuAu (composition formula: Cu 0.9833 Au 0.0167 )
Anode electrode: Platinum Distance between electrodes: About 8cm
Reference electrode: Ag / AgCl
Anode-side electrolyte: potassium hydrogen carbonate aqueous solution having a concentration of 0.5 mol / L Cathode-side electrolyte: potassium chloride aqueous solution having a concentration of 0.5 mol / L Solid electrolyte membrane: Nafion membrane (manufactured by DuPont, Nafion 117)
Carbon dioxide was supplied to the cathode side electrolyte solution by bubbling carbon dioxide gas through the tube for 30 minutes (carbon dioxide flow rate: 200 mL / min).
 (二酸化炭素の還元)
 カソード側電解液に二酸化炭素を溶解した後、槽を密閉した。その後、アノード電極の電位に対してカソード電極の電位が負となるよう、ポテンショスタットを用いて電圧を印加した。印加した電圧の値は、参照電極に対するカソード電極の電位が-1.9Vとなるようポテンショスタットにより制御された。
(Reduction of carbon dioxide)
After dissolving carbon dioxide in the cathode side electrolyte, the tank was sealed. Thereafter, a voltage was applied using a potentiostat so that the cathode electrode potential was negative with respect to the anode electrode potential. The value of the applied voltage was controlled by a potentiostat so that the potential of the cathode electrode with respect to the reference electrode was -1.9V.
 一定時間電圧を印加した後、槽内に生成した反応生成物の種類及び量は、ガスクロマトグラフィ及び液クロマトグラフィを用いて測定された。その結果、二酸化炭素の還元生成物として、一酸化炭素(CO)、蟻酸(HCOOH)、メタン(CH)、エチレン(C)、アルデヒド類及びエタノールが検出された。さらに、図2に示すように、ヘッドスペース型ガスクロマトグラフィ法による生成物分析において、メタノールの生成を示す検出位置(図中の矢印の位置)にピークが観測された。すなわち、カソード電極にCuAuを用いることにより、メタノールが生成されていることが確認された。 After applying a voltage for a certain period of time, the type and amount of reaction product produced in the tank were measured using gas chromatography and liquid chromatography. As a result, carbon monoxide (CO), formic acid (HCOOH), methane (CH 4 ), ethylene (C 2 H 4 ), aldehydes and ethanol were detected as reduction products of carbon dioxide. Furthermore, as shown in FIG. 2, in the product analysis by the head space type gas chromatography method, a peak was observed at the detection position (position of the arrow in the figure) indicating the production of methanol. That is, it was confirmed that methanol was produced by using CuAu for the cathode electrode.
 実施例1において、電解時間1000秒当たりのメタノールの生成量は、3.1×10-7mol/cmであった。なお、電解時間は、外部電源によりカソード電極に電圧が印加された時間と等しい。 In Example 1, the amount of methanol produced per 1000 seconds of electrolysis time was 3.1 × 10 −7 mol / cm 2 . The electrolysis time is equal to the time when voltage is applied to the cathode electrode from the external power source.
 実施例1によるメタノール生成のファラデー効率(生成効率)を計算した結果、1.42%となった。なお、ファラデー効率とは、全反応電荷量に対して、反応物生成に用いられた電荷量の割合を意味するものであり、(メタノール生成のファラデー効率)=(メタノール生成に用いられた反応電荷量)/(全反応電荷量)×100[%]で計算される。 As a result of calculating the Faraday efficiency (production efficiency) of methanol production according to Example 1, it was 1.42%. The Faraday efficiency refers to the ratio of the amount of charge used for reaction product generation to the total reaction charge amount. (Faraday efficiency of methanol generation) = (reaction charge used for methanol generation) Amount) / (total reaction charge amount) × 100 [%].
 (比較例1)
 カソード電極としてAuを含まないCu電極を用いた以外は、実施例1と同様の実験を行った。
(Comparative Example 1)
An experiment similar to that in Example 1 was performed except that a Cu electrode not containing Au was used as the cathode electrode.
 その結果、実施例1と同様、CO、HCOOH、CH、C、アルデヒド類及びエタノールが検出された。しかし、図2に示すように、メタノール生成に対応する検出位置にシグナルは得られなかった。つまり、比較例1では、メタノールは生成されなかった。 As a result, as in Example 1, CO, HCOOH, CH 4 , C 2 H 4 , aldehydes and ethanol were detected. However, as shown in FIG. 2, no signal was obtained at the detection position corresponding to methanol production. That is, in Comparative Example 1, methanol was not generated.
 (比較例2)
 カソード電極としてCuを含まないAu電極を用いた以外は、実施例1と同様の実験を行った。
(Comparative Example 2)
An experiment similar to that in Example 1 was performed except that an Au electrode not containing Cu was used as the cathode electrode.
 その結果、CO、HCOOHが検出された。しかし、図2に示すように、メタノール生成に対応する検出位置にシグナルは得られなかった。つまり、比較例2では、メタノールは生成されなかった。 As a result, CO and HCOOH were detected. However, as shown in FIG. 2, no signal was obtained at the detection position corresponding to methanol production. That is, in Comparative Example 2, methanol was not generated.
 以上のように、カソード電極として、CuAu電極、Cu単体電極又はAu単体電極を
用いた場合、図2に示すように、実施例1のみメタノールの生成が確認された。すなわち、CuとAuを合金化したCuAu電極をカソード電極に用いることにより、それぞれCu単体又はAu単体では発現し得なかった特異な効果が発現し、メタノールが生成したと言える。
As described above, when a CuAu electrode, a single Cu electrode, or a single Au electrode was used as the cathode electrode, as shown in FIG. That is, it can be said that by using a CuAu electrode obtained by alloying Cu and Au as a cathode electrode, a unique effect that could not be expressed by Cu alone or Au alone was developed, and methanol was produced.
 (実施例2)
 カソード側電解液として0.5mol/Lの塩化ナトリウム水溶液を用いた以外は、実施例1と同様の実験を行った。
(Example 2)
The same experiment as in Example 1 was performed except that a 0.5 mol / L sodium chloride aqueous solution was used as the cathode electrolyte.
 その結果、二酸化炭素の還元生成物としてメタノールが生成することが確認された。 As a result, it was confirmed that methanol was produced as a reduction product of carbon dioxide.
 (実施例3)
 カソード電極として、実施例1と同じの組成比のCuAuの微粒子を、グラッシーカーボン(登録商標)基材表面に担持した電極を用いた以外は、実施例1と同様の実験を行った。
(Example 3)
The same experiment as in Example 1 was performed except that an electrode in which CuAu fine particles having the same composition ratio as in Example 1 were supported on the glassy carbon (registered trademark) substrate surface was used as the cathode electrode.
 その結果、得られる反応生成物は実施例1とほぼ同じで、メタノールが生成することが確認された。また、実施例1と同じ組成比のCuAu薄膜を、グラッシーカーボン上に積層させた電極を用いた場合も、実施例1とほぼ同様の結果が得られた。 As a result, the obtained reaction product was almost the same as in Example 1, and it was confirmed that methanol was produced. In addition, when using an electrode in which a CuAu thin film having the same composition ratio as in Example 1 was laminated on glassy carbon, the same results as in Example 1 were obtained.
 (実施例4)
 カソード電極として組成式:Cu0.995Au0.005で表記されるCuAu電極を用いた以外は、実施例1と同様の実験を行った。
Example 4
The same experiment as in Example 1 was performed except that a CuAu electrode represented by the composition formula: Cu 0.995 Au 0.005 was used as the cathode electrode.
 その結果、二酸化炭素の還元生成物としてメタノールが生成することが確認された。 As a result, it was confirmed that methanol was produced as a reduction product of carbon dioxide.
 (実施例5)
 カソード電極として組成式:Cu0.95Au0.05で表記されるCuAu電極を用いた以外は、実施例1と同様の実験を行った。
(Example 5)
The same experiment as in Example 1 was performed except that a CuAu electrode represented by the composition formula: Cu 0.95 Au 0.05 was used as the cathode electrode.
 その結果、二酸化炭素の還元生成物としてメタノールが生成することが確認された。 As a result, it was confirmed that methanol was produced as a reduction product of carbon dioxide.
 (実施例6)
 参照電極に対するカソード電極の電位が-1.7Vとなるようポテンショスタットを制御した以外は、実施例1と同様の実験を行った。
(Example 6)
The same experiment as in Example 1 was performed except that the potentiostat was controlled so that the potential of the cathode electrode with respect to the reference electrode was −1.7 V.
 その結果、二酸化炭素の還元生成物としてメタノールが生成することが確認された。 As a result, it was confirmed that methanol was produced as a reduction product of carbon dioxide.
 (実施例7)
 参照電極に対するカソード電極の電位が-2.1Vとなるようポテンショスタットを制御した以外は、実施例1と同様の実験を行った。
(Example 7)
An experiment similar to that of Example 1 was performed, except that the potentiostat was controlled so that the potential of the cathode electrode with respect to the reference electrode was −2.1V.
 その結果、二酸化炭素の還元生成物としてメタノールが生成することが確認された。 As a result, it was confirmed that methanol was produced as a reduction product of carbon dioxide.
 図3に、実施例1~7、比較例1及び比較例2で得られたメタノール生成量を比較した図を示す。図3に示すグラフは、実施例1で生成されたメタノールの生成量を「100」とし、それぞれの実施例及び比較例で生成されたメタノールの生成量を相対的に示したグラフである。 FIG. 3 shows a comparison of the amounts of methanol produced in Examples 1 to 7, Comparative Example 1 and Comparative Example 2. The graph shown in FIG. 3 is a graph relatively showing the amount of methanol produced in each of the examples and comparative examples, with the amount of methanol produced in Example 1 being “100”.
 図3に示すように、実施例1~7ではメタノールの生成が確認され、比較例1及び比較
例2ではメタノールの生成が確認されなかった。
As shown in FIG. 3, the production of methanol was confirmed in Examples 1 to 7, and the production of methanol was not confirmed in Comparative Examples 1 and 2.
 以上のように、CuAuの領域を有するカソード電極を用いることにより、カソード電極上で二酸化炭素の還元生成物として、メタノールが効率的に生成されていることが確認された。 As described above, it was confirmed that methanol was efficiently generated as a reduction product of carbon dioxide on the cathode electrode by using the cathode electrode having a CuAu region.
 本開示は、CuAuを有するカソード電極を用いることにより、二酸化炭素を還元生成物としてメタノールが生成される新規な装置及び方法を提供する。 The present disclosure provides a novel apparatus and method in which methanol is produced using carbon dioxide as a reduction product by using a cathode electrode having CuAu.
 10,100,200  メタノール生成装置
 11  槽
 12  カソード電極
 13  アノード電極
 14  外部電源
 15  電圧測定装置
 16  電流測定装置
 17,17L,17R  電解液
 18  管
 19  固体電解質膜
 20  参照電極
10, 100, 200 Methanol generator 11 Tank 12 Cathode electrode 13 Anode electrode 14 External power supply 15 Voltage measuring device 16 Current measuring device 17, 17L, 17R Electrolyte 18 Tube 19 Solid electrolyte membrane 20 Reference electrode

Claims (12)

  1.  二酸化炭素を還元することによりメタノールを生成するメタノール生成装置であって、
     二酸化炭素を含有する電解液を収容するための槽と、
     前記電解液に接するように前記槽の内部に設置され、Cu1-xAu(0<x<1)の領域を有するカソード電極と、
     前記電解液に接するように前記槽の内部に設置され、金属又は金属化合物の領域を有するアノード電極と、
     前記アノード電極の電位に対し前記カソード電極が負電位となるよう電圧を印加するための外部電源と、
     を備えるメタノール生成装置。
    A methanol generator that generates methanol by reducing carbon dioxide,
    A tank for containing an electrolyte containing carbon dioxide;
    A cathode electrode disposed in the tank so as to be in contact with the electrolytic solution and having a region of Cu 1-x Au x (0 <x <1);
    An anode electrode installed in the tank so as to be in contact with the electrolytic solution, and having a metal or metal compound region;
    An external power source for applying a voltage so that the cathode electrode has a negative potential with respect to the potential of the anode electrode;
    A methanol generator comprising:
  2.  前記Cu1-xAuがCuとAuとの固溶体又は金属間化合物である、請求項1に記載のメタノール生成装置。 The methanol generator according to claim 1, wherein the Cu 1-x Au x is a solid solution or an intermetallic compound of Cu and Au.
  3.  前記xの値が0.005以上0.05以下である、請求項1に記載のメタノール生成装置。 The methanol generator according to claim 1, wherein the value of x is 0.005 or more and 0.05 or less.
  4.  前記アノード電極が炭素、白金、金、銀、銅、チタン、イリジウム酸化物、又はこれらの合金である、請求項1に記載のメタノール生成装置。 The methanol generator according to claim 1, wherein the anode electrode is carbon, platinum, gold, silver, copper, titanium, iridium oxide, or an alloy thereof.
  5.  前記電解液が塩化カリウム水溶液又は塩化ナトリウム水溶液である、請求項1に記載のメタノール生成装置。 The methanol generator according to claim 1, wherein the electrolytic solution is an aqueous potassium chloride solution or an aqueous sodium chloride solution.
  6.  前記電圧の絶対値が2.5V以上である、請求項1に記載のメタノール生成装置。 The methanol generator according to claim 1, wherein an absolute value of the voltage is 2.5 V or more.
  7.  前記メタノール生成装置は、さらに、
     前記電解液に接するように前記槽の内部に設置され、Ag/AgClの領域を有する参照電極と、を備え、
     前記外部電源が、前記参照電極の電位に対し前記カソード電極の電位が-1.7V以下である、請求項1に記載のメタノール生成装置。
    The methanol generator further comprises:
    A reference electrode installed in the tank so as to be in contact with the electrolytic solution and having a region of Ag / AgCl,
    2. The methanol generator according to claim 1, wherein the external power source has a potential of the cathode electrode of −1.7 V or less with respect to a potential of the reference electrode.
  8.  前記メタノール生成装置は、さらに、
     前記槽を、前記二酸化炭素を含有する第1電解液を収容するためのカソード槽と、第2電解液を収容するためのアノード槽とに分離する固体電解質膜と、
     を備える、請求項1に記載のメタノール生成装置。
    The methanol generator further comprises:
    A solid electrolyte membrane that separates the tank into a cathode tank for containing the first electrolyte containing carbon dioxide and an anode tank for containing the second electrolyte;
    The methanol production | generation apparatus of Claim 1 provided with these.
  9.  前記第1電解液は、塩化カリウム水溶液又は塩化ナトリム水溶液であり、
     前記第2電解液は、炭酸水素カリウム水溶液、炭酸水素ナトリウム水溶液又は硫酸カリウム水溶液である、
     請求項8に記載のメタノール生成装置。
    The first electrolytic solution is a potassium chloride aqueous solution or a sodium chloride aqueous solution,
    The second electrolytic solution is a potassium hydrogen carbonate aqueous solution, a sodium hydrogen carbonate aqueous solution, or a potassium sulfate aqueous solution.
    The methanol production | generation apparatus of Claim 8.
  10.  メタノールを生成するための装置を用いてメタノールを生成する方法であって、以下の工程を有する:
     以下を有するメタノール生成装置を用意する工程(a)、
     槽、
     カソード電極、および、
     アノード電極、ここで、
     前記カソード電極は、Cu1-xAu(0<x<1)の領域を有し、
     前記アノード電極は、金属又は金属化合物の領域を有し、
     前記槽の内部には、電解液が保持され、
     前記カソード電極は前記電解液に接しており、
     前記アノード電極は前記電解液に接しており、
     前記電解液は前記二酸化炭素を含有しており、および、
     前記アノード電極の電位に対し前記カソード電極が負電位となるよう電圧を印加し、前記電解液に含有されている二酸化炭素を還元することにより前記カソード電極上でメタノールを生成する工程(b)。
    A method for producing methanol using an apparatus for producing methanol comprising the following steps:
    A step (a) of preparing a methanol generator having:
    Tank,
    A cathode electrode, and
    Anode electrode, where
    The cathode electrode has a region of Cu 1-x Au x (0 <x <1),
    The anode electrode has a region of metal or metal compound,
    In the tank, an electrolyte is held,
    The cathode electrode is in contact with the electrolyte;
    The anode electrode is in contact with the electrolyte;
    The electrolyte contains the carbon dioxide, and
    A step (b) of generating methanol on the cathode electrode by applying a voltage so that the cathode electrode has a negative potential with respect to the potential of the anode electrode and reducing carbon dioxide contained in the electrolyte solution;
  11.  前記工程(b)において、前記メタノール生成装置が、室温かつ大気圧下におかれる、請求項10に記載のメタノールを生成する方法。 The method for producing methanol according to claim 10, wherein in the step (b), the methanol production apparatus is placed at room temperature and atmospheric pressure.
  12.  二酸化炭素を還元することによりメタノールを生成するメタノール生成装置に用いられるメタノール生成用電極であって、
     Cu1-xAu(0<x<1)の領域を有するメタノール生成用電極。
    An electrode for methanol production used in a methanol production device for producing methanol by reducing carbon dioxide,
    An electrode for methanol production having a region of Cu 1-x Au x (0 <x <1).
PCT/JP2014/003077 2013-06-28 2014-06-10 Methanol generation device, method for generating methanol, and electrode for methanol generation WO2014208026A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2014559592A JP5816803B2 (en) 2013-06-28 2014-06-10 Methanol generating apparatus, method for generating methanol, and electrode for methanol generation
US14/566,742 US20150096898A1 (en) 2013-06-28 2014-12-11 Methanol generation device, method for generating methanol, and electrode for generating methanol

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2013-135820 2013-06-28
JP2013135820 2013-06-28

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US14/566,742 Continuation US20150096898A1 (en) 2013-06-28 2014-12-11 Methanol generation device, method for generating methanol, and electrode for generating methanol

Publications (1)

Publication Number Publication Date
WO2014208026A1 true WO2014208026A1 (en) 2014-12-31

Family

ID=52141398

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/003077 WO2014208026A1 (en) 2013-06-28 2014-06-10 Methanol generation device, method for generating methanol, and electrode for methanol generation

Country Status (3)

Country Link
US (1) US20150096898A1 (en)
JP (1) JP5816803B2 (en)
WO (1) WO2014208026A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018031034A (en) * 2016-08-23 2018-03-01 古河電気工業株式会社 Electrode carrying metal-containing nanoparticles and carbon dioxide reduction apparatus
KR101839819B1 (en) 2016-12-13 2018-03-19 서강대학교산학협력단 Carbon dioxide reduction device

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003213472A (en) * 2002-01-16 2003-07-30 National Institute Of Advanced Industrial & Technology Electrode for electrochemical conversion of carbon dioxide into hydrocarbon gas
WO2008134871A1 (en) * 2007-05-04 2008-11-13 Principle Energy Solutions, Inc. Production of hydrocarbons from carbon and hydrogen sources
WO2009012154A2 (en) * 2007-07-13 2009-01-22 University Of Southern California Electrolysis of carbon dioxide in aqueous media to carbon monoxide and hydrogen for production of methanol
JP2010255018A (en) * 2009-04-21 2010-11-11 Toyota Central R&D Labs Inc Co2 electrolytic device and method of producing co2 electrolytic product
WO2013031062A1 (en) * 2011-08-31 2013-03-07 パナソニック株式会社 Method for reducing carbon dioxide

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003213472A (en) * 2002-01-16 2003-07-30 National Institute Of Advanced Industrial & Technology Electrode for electrochemical conversion of carbon dioxide into hydrocarbon gas
WO2008134871A1 (en) * 2007-05-04 2008-11-13 Principle Energy Solutions, Inc. Production of hydrocarbons from carbon and hydrogen sources
WO2009012154A2 (en) * 2007-07-13 2009-01-22 University Of Southern California Electrolysis of carbon dioxide in aqueous media to carbon monoxide and hydrogen for production of methanol
JP2010255018A (en) * 2009-04-21 2010-11-11 Toyota Central R&D Labs Inc Co2 electrolytic device and method of producing co2 electrolytic product
WO2013031062A1 (en) * 2011-08-31 2013-03-07 パナソニック株式会社 Method for reducing carbon dioxide

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
FALONG JIA ET AL.: "Enhanced selectivity for the electrochemical reduction of C02 to alcohols in aqueous solution with nanostructured Cu-Au alloy as catalyst", JOURNAL OF POWER SOURCES, vol. 252, 15 April 2014 (2014-04-15), pages 85 - 89, XP028670517, DOI: doi:10.1016/j.jpowsour.2013.12.002 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018031034A (en) * 2016-08-23 2018-03-01 古河電気工業株式会社 Electrode carrying metal-containing nanoparticles and carbon dioxide reduction apparatus
KR101839819B1 (en) 2016-12-13 2018-03-19 서강대학교산학협력단 Carbon dioxide reduction device

Also Published As

Publication number Publication date
US20150096898A1 (en) 2015-04-09
JP5816803B2 (en) 2015-11-18
JPWO2014208026A1 (en) 2017-02-23

Similar Documents

Publication Publication Date Title
JP5816802B2 (en) Methanol generating apparatus, method for generating methanol, and electrode for methanol generation
JP6024900B2 (en) How to reduce carbon dioxide
US20220056602A1 (en) Method for Converting Carbon Dioxide (CO2) into CO by an Electrolysis Reaction
JP5259889B1 (en) How to reduce carbon dioxide
KR101451630B1 (en) Method for reducing carbon dioxide and reductor of carbon dioxide using the same
KR102154198B1 (en) Method of preparing metal alloy catalysts, method of reducing carbon dioxide using metal alloy catalysts, and reduction system of carbon dioxide
JP6221067B2 (en) Formic acid production apparatus and method
JP2013129883A (en) Method for reducing carbon dioxide
JP6931769B2 (en) Electrolyzers and methods that electrochemically reduce carbon dioxide to produce ethylene
KR20140084640A (en) Method for reducing carbon dioxide and non-diaphragm reductor of carbon dioxide using the same
JP5816803B2 (en) Methanol generating apparatus, method for generating methanol, and electrode for methanol generation
JP4907748B2 (en) How to reduce carbon dioxide
KR102318719B1 (en) Current collector for reduction apparatus of carbon dioxide, reduction apparatus of carbon dioxide comprising the same, and reducing method of carbon dioxide using the same
JP4458362B2 (en) Arsenic detection electrode, sensor using the same, and arsenic concentration measurement method
JP4969702B2 (en) How to reduce carbon dioxide
JP4561994B2 (en) Hydrogen peroxide reduction electrode, sensor using the same, and method for measuring hydrogen peroxide concentration
JP2019218579A (en) Chemical reaction device, and solar energy utilization system using the same
KR20190107876A (en) Reduction system of carbon dioxide and method of reducing carbon dioxide using the same
dos Santos Andrade et al. Preliminary investigation of some commercial alloys for hydrogen evolution in alkaline water electrolysis
JP2022116956A (en) Electrode for reduction reaction
TW201905241A (en) Method for electrochemically producing decane
TW201900931A (en) Method for electrochemically producing decane
KR20190140028A (en) How to make germane electrochemically
JP2014192099A (en) Evaluation method of hydrogen oxidation activity of anode electrode catalyst using chronoamperometry method in alkaline fuel cell

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2014559592

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14817961

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14817961

Country of ref document: EP

Kind code of ref document: A1