JP2003213472A - Electrode for electrochemical conversion of carbon dioxide into hydrocarbon gas - Google Patents

Electrode for electrochemical conversion of carbon dioxide into hydrocarbon gas

Info

Publication number
JP2003213472A
JP2003213472A JP2002007655A JP2002007655A JP2003213472A JP 2003213472 A JP2003213472 A JP 2003213472A JP 2002007655 A JP2002007655 A JP 2002007655A JP 2002007655 A JP2002007655 A JP 2002007655A JP 2003213472 A JP2003213472 A JP 2003213472A
Authority
JP
Japan
Prior art keywords
electrode
methane
carbon dioxide
ethylene
current efficiency
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2002007655A
Other languages
Japanese (ja)
Inventor
Masahiro Komatsu
将博 小松
Yoshiyuki Tabata
美幸 田畑
Yoshiyuki Kawanami
美幸 川波
Fudeko Tanaka
筆子 田中
Makoto Aihara
眞 合原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute of Advanced Industrial Science and Technology AIST
Original Assignee
National Institute of Advanced Industrial Science and Technology AIST
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by National Institute of Advanced Industrial Science and Technology AIST filed Critical National Institute of Advanced Industrial Science and Technology AIST
Priority to JP2002007655A priority Critical patent/JP2003213472A/en
Publication of JP2003213472A publication Critical patent/JP2003213472A/en
Pending legal-status Critical Current

Links

Landscapes

  • Electrodes For Compound Or Non-Metal Manufacture (AREA)
  • Electrolytic Production Of Non-Metals, Compounds, Apparatuses Therefor (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To use a Cu-Sn-P alloy as a working electrode for producing, with high current efficiency, hydrocarbon gases relatively insoluble in aqueous solution, such as methane and ethylene, as substitutes for petroleum in electrochemical reduction of carbon dioxides. <P>SOLUTION: For the purpose of producing hydrocarbon gases relatively insoluble in aqueous solution, such as methane and ethylene, with high current efficiency in the electrochemical reduction of carbon dioxides, it is necessary to allow the adsorption of CO to occur simultaneously with the generation of hydrogen by water electrolysis on an electrode used. In order to solve this problem, copper is alloyed with heteroatoms to change the surface energy of the electrode and control the CO adsorption and the hydrogen generation by water electrolysis. <P>COPYRIGHT: (C)2003,JPO

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は二酸化炭素の電気化
学的固定化に関するものである。
TECHNICAL FIELD The present invention relates to electrochemical immobilization of carbon dioxide.

【0002】[0002]

【従来の技術】従来、電解還元による二酸化炭素の変換
で炭化水素ガスを製造するためには、純度の良い銅を電
極としていた。しかも、メタンとエチレンそれぞれの電
流生成率の和は63.1%で、また、電解液から分離が
容易な二酸化炭素の電解還元によるガス類の全生成電流
効率は67%が限度であった。また、この時の水素の生
成を含めた時は82%で、その他は蟻酸やエタノ−ルな
ど水に溶けるものであった。
2. Description of the Related Art Conventionally, in order to produce a hydrocarbon gas by converting carbon dioxide by electrolytic reduction, copper of good purity has been used as an electrode. Moreover, the sum of the current generation rates of methane and ethylene was 63.1%, and the total current generation efficiency of gases by electrolytic reduction of carbon dioxide, which was easy to separate from the electrolytic solution, was 67%. In addition, the production of hydrogen at this time was 82%, and the others were soluble in water such as formic acid and ethanol.

【0003】[0003]

【発明が解決しようとする課題】銅電極により二酸化炭
素を電解還元して炭化水素に変換する時は、二酸化炭素
の還元中間生成物として一酸化炭素(CO)が生成し、銅
電極上に吸着する。その吸着量が重要であり、従って、
その量を制御することが必要である。そのためには、銅
と異種金属と合金化してCOの吸着を多くする必要があ
った。
When carbon dioxide is electrolytically reduced by a copper electrode to be converted into hydrocarbon, carbon monoxide (CO) is produced as a reduction intermediate product of carbon dioxide and is adsorbed on the copper electrode. To do. The amount of adsorption is important and therefore
It is necessary to control that amount. For that purpose, it was necessary to alloy with copper and a dissimilar metal to increase the adsorption of CO.

【0004】[0004]

【課題を解決するための手段】COの吸着量を多くする
ためにはCOと金属表面エネルギ−の関係が重要であ
る。そのために、銅と異種原子とを合金化することによ
り、COと金属電極間の吸着問題を解決をしようとし
た。
The relationship between CO and metal surface energy is important in order to increase the amount of CO adsorbed. Therefore, an attempt was made to solve the adsorption problem between CO and the metal electrode by alloying copper and a heteroatom.

【0005】[0005]

【発明の実施の形態】二酸化炭素の電解還元により、炭
化水素に変換するためには水素が必要である。この場
合、COが銅電極に吸着する電位と、水の電解による水素
発生電位が近いことが望ましい。また、COが電極に吸着
する量と、水素が発生する量のバランスが必要であると
言える。これらの関係を最適化することが二酸化炭素を
炭化水素ガス類へ固定化するためには重要である。
DETAILED DESCRIPTION OF THE INVENTION Hydrogen is required to convert carbon dioxide into hydrocarbons by electrolytic reduction of carbon dioxide. In this case, it is desirable that the potential at which CO is adsorbed on the copper electrode is close to the hydrogen generation potential due to the electrolysis of water. It can also be said that a balance between the amount of CO adsorbed on the electrode and the amount of hydrogen generated is necessary. Optimizing these relationships is important for immobilizing carbon dioxide to hydrocarbon gases.

【0006】[0006]

【実施例】次に、実施例により本発明をさらに詳細に説
明するが、本発明はこれらの例によってなんら限定され
るものではない。
The present invention will be described in more detail by way of examples, which should not be construed as limiting the invention thereto.

【0007】実施例1 パルス電解を適用し、0.1MKHCOを電解質とし
てCu/Sn/P(リン青銅)においてカソ−ド電位
(Ec)=−2100mVvs.Ag/AgClで、ア
ノ−ド電位(Ea)を変えてメタン、エチレン等のガス
類の生成電流効率を測定した。その結果を図1に示す。
図1からわかるようにEa=−900mVvs.Ag/
AgClにおいてこの両者の最大値、68.7%を示し
た。この時、メタンの電流生成効率は61.6%、エチ
レンの電流生成効率は7.1%であった。この場合、ア
ノ−ド電位が−500mVから−900mVまであれば
従来の値、メタンとエチレンの生成効率の和63.1%
より高い値を示している。
Example 1 Pulsed electrolysis was applied, and cathode potential (Ec) =-2100 mV vs. Cu / Sn / P (phosphor bronze) using 0.1 MKHCO 3 as an electrolyte. The anodic potential (Ea) was changed with Ag / AgCl, and the production current efficiency of gases such as methane and ethylene was measured. The result is shown in FIG.
As can be seen from FIG. 1, Ea = −900 mV vs. Ag /
In AgCl, the maximum value of both was 68.7%. At this time, the current generation efficiency of methane was 61.6% and the current generation efficiency of ethylene was 7.1%. In this case, if the anode potential is from -500 mV to -900 mV, the conventional value, the sum of methane and ethylene production efficiency is 63.1%.
It shows a higher value.

【0008】実施例2 パルス電解を適用し、0.1MKHCOを電解質とし
てCu/Sn/P(リン青銅)を使用してカソ−ド電位
(Ec)=−2100mVvs.Ag/AgClで、ア
ノ−ド電位(Ea)を変えてメタン、エチレンと共に、
水素、一酸化炭素を測定した。このように、メタン、エ
チレンとCOの全生成電流効率は75%以上になった。従
来は上記3種ガス類の生成電流効率は67%であり、ま
た、水素を含むガス類の全生成電流効率は95%以上に
なった。その他は蟻酸やエタノ−ルなど水に可溶なもの
が得られる。このことは、ガス類は容易に電解液より分
離が可能であるため、電解液を長時間取り替えることな
く使用することが出来る。
Example 2 Pulse electrolysis was applied, using 0.1 MKHCO 3 as an electrolyte and Cu / Sn / P (phosphor bronze) as the cathode potential (Ec) =-2100 mVvs. By changing the anode potential (Ea) with Ag / AgCl, together with methane and ethylene,
Hydrogen and carbon monoxide were measured. In this way, the total efficiency of methane, ethylene and CO generated current was 75% or more. Conventionally, the production current efficiency of the above-mentioned three kinds of gases was 67%, and the total production current efficiency of gases containing hydrogen was 95% or more. Others, such as formic acid and ethanol, are soluble in water. This means that the gases can be easily separated from the electrolytic solution, so that the electrolytic solution can be used for a long time without replacement.

【0009】実施例3 同じく、パルス電解を適用し、0.1MKHCOにお
いて3種のCuの濃度の異なるCu/Ag、およびCu
/Ni、Cu/Zn、Cu/Beにおいてカソ−ド電位
(Ec)を−1650mVvs.Ag/AgClから−
2200mVvs.Ag/AgClまで,アノ−ド電位
(Ea)を−50mVから−700mVvs.Ag/A
gClまで変えてメタン、エチレン等の炭化水素の生成
効率を測定した。それぞれの合金においてメタン及びエ
チレンの最大生成電流効率を銅の含有率に対するプロッ
ト図を図2に示す。しかし、メタン、エチレンの最大生
成効率電位は異なるため、同一電位ではメタンとエチレ
ンの生成電流効率の和はこの図でのメタンとエチレの和
より小さくなるので、Cu/Sn/Pの図1での値であ
る68.7%より当然小さくなる。
Example 3 Similarly, pulse electrolysis was applied to Cu / Ag and Cu having different concentrations of three kinds of Cu in 0.1 MKHCO 3 .
/ Ni, Cu / Zn, Cu / Be, the cathode potential (Ec) is -1650 mV vs. From Ag / AgCl-
2200 mV vs. The anodic potential (Ea) from -50 mV to -700 mV vs. Ag / AgCl. Ag / A
The production efficiency of hydrocarbons such as methane and ethylene was measured while changing to gCl. FIG. 2 shows a plot diagram of the maximum production current efficiency of methane and ethylene with respect to the copper content in each alloy. However, since the maximum production efficiency potentials of methane and ethylene are different, the sum of the production current efficiencies of methane and ethylene is smaller than the sum of methane and ethyl in this figure at the same potential. It is naturally smaller than the value of 68.7%.

【0010】[0010]

【発明の効果】二酸化炭素を高電流効率で炭化水素を固
定化することにより地球温暖化防止に貢献するとともに
石油代替物を提供する。文献によると、銅電極を使用し
た場合のメタンとエチレンの生成電流効率は63.1で
あり、本発明のCu/Sn/P電極を使用した時よりか
なり小さい。これら以外の生成物の中には水に可溶な成
分であるエタノ−ルや蟻酸がある。これらは電解時間と
共に増加し、ひいてはこれらのものが電極反応を受けた
り、電解液の抵抗の増加を引き起こし、炭化水素ガスの
電流効率を下がるため、電解液を頻繁に取り変える必要
である。これらのことを考えると、水に不溶性の物質を
多く製造する必要があり、本発明の効果は大きい。
Industrial Applicability The present invention contributes to the prevention of global warming by fixing carbon dioxide to carbon dioxide with high current efficiency, and provides a petroleum substitute. According to the literature, the production current efficiency of methane and ethylene when the copper electrode is used is 63.1, which is considerably smaller than when the Cu / Sn / P electrode of the present invention is used. Among the products other than these, there are water-soluble components such as ethanol and formic acid. These increase with electrolysis time, and as a result, they undergo an electrode reaction or cause an increase in the resistance of the electrolytic solution, which lowers the current efficiency of the hydrocarbon gas, so that it is necessary to replace the electrolytic solution frequently. Considering these matters, it is necessary to produce a large amount of water-insoluble substances, and the effect of the present invention is great.

【図面の簡単な説明】[Brief description of drawings]

【図1】 Cu/Sn/P電極でのカソ−ド電位−21
00mV.Ag/AgClでのメタン及びエチレン、一
酸化炭素、水素の生成電流効率とアノ−ド電位との関係
をしめすグラフ
FIG. 1 Cathode potential-21 at Cu / Sn / P electrode
00 mV. Graph showing the relationship between the anodic potential and the generation current efficiency of methane, ethylene, carbon monoxide and hydrogen in Ag / AgCl.

【図2】 各種銅合金中での銅含有率とメタン及びエチ
レンの生成電流効率との関係を示すグラフ
FIG. 2 is a graph showing the relationship between the copper content rate in various copper alloys and the production current efficiency of methane and ethylene.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 川波 美幸 福岡市東区香住ケ丘1−1−1 福岡女子 大学内 (72)発明者 田中 筆子 福岡市東区香住ケ丘1−1−1 福岡女子 大学内 (72)発明者 合原 眞 福岡市東区香住ケ丘1−1−1 福岡女子 大学内 Fターム(参考) 4K011 AA68 DA10 4K021 AA09 AC02 BA17 BB03 DA13   ─────────────────────────────────────────────────── ─── Continued front page    (72) Inventor Miyuki Kawanami             1-1-1 Kazumigaoka, Higashi-ku, Fukuoka City Fukuoka Women             Inside the university (72) Inventor, Brush Tanaka             1-1-1 Kazumigaoka, Higashi-ku, Fukuoka City Fukuoka Women             Inside the university (72) Inventor Makoto Aihara             1-1-1 Kazumigaoka, Higashi-ku, Fukuoka City Fukuoka Women             Inside the university F-term (reference) 4K011 AA68 DA10                 4K021 AA09 AC02 BA17 BB03 DA13

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】全炭化水素ガス固定化電極。1. An all-hydrocarbon gas-immobilized electrode. 【請求項2】請求項1を含む生成電流効率とCOの生成
電流効率が75%以上である二酸化炭素変換用電極。
2. A carbon dioxide conversion electrode having a production current efficiency including claim 1 and a CO production current efficiency of 75% or more.
JP2002007655A 2002-01-16 2002-01-16 Electrode for electrochemical conversion of carbon dioxide into hydrocarbon gas Pending JP2003213472A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002007655A JP2003213472A (en) 2002-01-16 2002-01-16 Electrode for electrochemical conversion of carbon dioxide into hydrocarbon gas

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002007655A JP2003213472A (en) 2002-01-16 2002-01-16 Electrode for electrochemical conversion of carbon dioxide into hydrocarbon gas

Publications (1)

Publication Number Publication Date
JP2003213472A true JP2003213472A (en) 2003-07-30

Family

ID=27646117

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002007655A Pending JP2003213472A (en) 2002-01-16 2002-01-16 Electrode for electrochemical conversion of carbon dioxide into hydrocarbon gas

Country Status (1)

Country Link
JP (1) JP2003213472A (en)

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012077200A1 (en) * 2010-12-08 2012-06-14 トヨタ自動車株式会社 Mixed gas generation device
JP2012112001A (en) * 2010-11-25 2012-06-14 Furukawa Electric Co Ltd:The Electrolytic cell, electrolytic apparatus, and method for producing hydrocarbon
WO2012144014A1 (en) * 2011-04-19 2012-10-26 トヨタ自動車株式会社 Mixed gas production device
WO2013157097A1 (en) * 2012-04-18 2013-10-24 トヨタ自動車株式会社 Source gas manufacturing method, fuel manufacturing method, and device therefor
WO2014208019A1 (en) * 2013-06-28 2014-12-31 パナソニックIpマネジメント株式会社 Methanol production apparatus, methanol production method, and electrode for use in methanol production
WO2014208026A1 (en) * 2013-06-28 2014-12-31 パナソニックIpマネジメント株式会社 Methanol generation device, method for generating methanol, and electrode for methanol generation
WO2019065258A1 (en) 2017-09-27 2019-04-04 積水化学工業株式会社 Carbon dioxide reduction device, and porous electrode
WO2019182164A1 (en) 2018-03-22 2019-09-26 Sekisui Chemical Co., Ltd. Carbon dioxide reduction apparatus and method of producing organic compound
CN112301368A (en) * 2020-10-10 2021-02-02 华东理工大学 Hydrophobic carbon-coated copper microsphere and preparation method and application thereof
JP2021521328A (en) * 2018-04-17 2021-08-26 レプソル,エス.エー. Photovoltaic-electrochemical (PV-EC) system
JP2022513860A (en) * 2018-12-18 2022-02-09 オプス-12 インコーポレイテッド Electrolytic cell and how to use
US11390955B2 (en) 2019-08-07 2022-07-19 Sekisui Chemical Co., Ltd. Electrochemical cell, electrochemical system, and method of producing carbonate compound
US11434575B2 (en) 2015-09-14 2022-09-06 Kabushiki Kaisha Toshiba Reduction electrode and manufacturing method thereof, and electrolytic device

Cited By (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012112001A (en) * 2010-11-25 2012-06-14 Furukawa Electric Co Ltd:The Electrolytic cell, electrolytic apparatus, and method for producing hydrocarbon
CN103249871A (en) * 2010-12-08 2013-08-14 丰田自动车株式会社 Mixed gas generation device
JPWO2012077200A1 (en) * 2010-12-08 2014-05-19 トヨタ自動車株式会社 Mixed gas generator
JP5569593B2 (en) * 2010-12-08 2014-08-13 トヨタ自動車株式会社 Mixed gas generator
WO2012077200A1 (en) * 2010-12-08 2012-06-14 トヨタ自動車株式会社 Mixed gas generation device
WO2012144014A1 (en) * 2011-04-19 2012-10-26 トヨタ自動車株式会社 Mixed gas production device
JPWO2013157097A1 (en) * 2012-04-18 2015-12-21 トヨタ自動車株式会社 Raw material gas production method, fuel production method, and apparatus therefor
WO2013157097A1 (en) * 2012-04-18 2013-10-24 トヨタ自動車株式会社 Source gas manufacturing method, fuel manufacturing method, and device therefor
JPWO2014208026A1 (en) * 2013-06-28 2017-02-23 パナソニックIpマネジメント株式会社 Methanol generating apparatus, method for generating methanol, and electrode for methanol generation
JP5816803B2 (en) * 2013-06-28 2015-11-18 パナソニックIpマネジメント株式会社 Methanol generating apparatus, method for generating methanol, and electrode for methanol generation
JP5816802B2 (en) * 2013-06-28 2015-11-18 パナソニックIpマネジメント株式会社 Methanol generating apparatus, method for generating methanol, and electrode for methanol generation
WO2014208026A1 (en) * 2013-06-28 2014-12-31 パナソニックIpマネジメント株式会社 Methanol generation device, method for generating methanol, and electrode for methanol generation
WO2014208019A1 (en) * 2013-06-28 2014-12-31 パナソニックIpマネジメント株式会社 Methanol production apparatus, methanol production method, and electrode for use in methanol production
JPWO2014208019A1 (en) * 2013-06-28 2017-02-23 パナソニックIpマネジメント株式会社 Methanol generating apparatus, method for generating methanol, and electrode for methanol generation
US11434575B2 (en) 2015-09-14 2022-09-06 Kabushiki Kaisha Toshiba Reduction electrode and manufacturing method thereof, and electrolytic device
WO2019065258A1 (en) 2017-09-27 2019-04-04 積水化学工業株式会社 Carbon dioxide reduction device, and porous electrode
US11788195B2 (en) 2017-09-27 2023-10-17 Sekisui Chemical Co., Ltd. Carbon dioxide reduction device, and porous electrode
WO2019182164A1 (en) 2018-03-22 2019-09-26 Sekisui Chemical Co., Ltd. Carbon dioxide reduction apparatus and method of producing organic compound
US11105006B2 (en) 2018-03-22 2021-08-31 Sekisui Chemical Co., Ltd. Carbon dioxide reduction apparatus and method of producing organic compound
JP2021521328A (en) * 2018-04-17 2021-08-26 レプソル,エス.エー. Photovoltaic-electrochemical (PV-EC) system
JP7295882B2 (en) 2018-04-17 2023-06-21 サンルジーズ,エス.エル. Photovoltaic-Electrochemical (PV-EC) system
JP2022513860A (en) * 2018-12-18 2022-02-09 オプス-12 インコーポレイテッド Electrolytic cell and how to use
US11888191B2 (en) 2018-12-18 2024-01-30 Twelve Benefit Corporation Electrolyzer and method of use
US11390955B2 (en) 2019-08-07 2022-07-19 Sekisui Chemical Co., Ltd. Electrochemical cell, electrochemical system, and method of producing carbonate compound
CN112301368A (en) * 2020-10-10 2021-02-02 华东理工大学 Hydrophobic carbon-coated copper microsphere and preparation method and application thereof

Similar Documents

Publication Publication Date Title
Yu et al. Seawater electrolyte-based metal–air batteries: from strategies to applications
JP2003213472A (en) Electrode for electrochemical conversion of carbon dioxide into hydrocarbon gas
Rosalbino et al. Hydrogen evolution reaction on Ni RE (RE= rare earth) crystalline alloys
EA200702573A1 (en) ELECTRODE
Santos et al. Nickel and nickel-cerium alloy anodes for direct borohydride fuel cells
MX2007002355A (en) Pd-containing coating for low chlorine overvoltage.
EA200700276A1 (en) INSTALLATION FOR ELECTROLYTIC PREPARATION OF METAL POWDER
CA2408951A1 (en) Mediated hydrohalic acid electrolysis
HUP0401498A2 (en) Electrolysis cell, especially for electrochemical production of chlorine
WO2006020078A3 (en) System and method for producing copper powder by electrowinning using the ferrous/ferric anode reaction
JPH03111586A (en) Electrolytic bath for reduction of carbon dioxide
WO2003071005A3 (en) Carbon containing cu-ni-fe anodes for electrolysis of alumina
WO2003056065A3 (en) Electrode for conducting electrolysis in acid media
KR101100578B1 (en) Method for producing hydrogen by using different metals
WO2007106197A3 (en) Improved alloy and anode for use in the electrowinning of metals
WO2005028708A3 (en) Method for the electrolysis of an aqueous solution of hydrogen chloride or chloralkali
EA200900165A1 (en) METHOD OF OBTAINING METAL POWDER
CN109092288A (en) A kind of preparation and application of Carbon dioxide electrochemical reduction leypewter catalyst
AR034247A1 (en) A PROCESS FOR THE ELECTRODEPOSITION OF COPPER FROM A SOLUTION IN AN ELECTROLYTIC CELL, AN ELECTROLYTIC CELL, AN ELECTRODE TO USE IN THE ELECTROLYTIC CELL, AND A METHOD TO PRODUCE THE ELECTRODE
Liu et al. Mechanism of corrosion and sedimentation of nickel electrodes for alkaline water electrolysis
JPH0841671A (en) Electrolytical reduction of disulfide compound
RU2007132164A (en) HIGH-PERFORMANCE ANODE COATING FOR PRODUCING HYPOCHLORITE
JP6200475B2 (en) System and method for electrochemical reduction of carbon dioxide
CN105585081A (en) Device for generating hydrogen-rich water through electrolysis
JPH09176879A (en) Gaseous hydrogen production mechanism

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20040915

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040921

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20050215