JPH09176879A - Gaseous hydrogen production mechanism - Google Patents

Gaseous hydrogen production mechanism

Info

Publication number
JPH09176879A
JPH09176879A JP7334980A JP33498095A JPH09176879A JP H09176879 A JPH09176879 A JP H09176879A JP 7334980 A JP7334980 A JP 7334980A JP 33498095 A JP33498095 A JP 33498095A JP H09176879 A JPH09176879 A JP H09176879A
Authority
JP
Japan
Prior art keywords
metal
electrode
hydrogen gas
electrolyte
conductive material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP7334980A
Other languages
Japanese (ja)
Other versions
JP3052124B2 (en
Inventor
Tsuneo Matoba
恒夫 的場
Haruhisa Furuishi
治久 古石
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
HAKUKIN WARMERS CO Ltd
Original Assignee
HAKUKIN WARMERS CO Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by HAKUKIN WARMERS CO Ltd filed Critical HAKUKIN WARMERS CO Ltd
Priority to JP7334980A priority Critical patent/JP3052124B2/en
Publication of JPH09176879A publication Critical patent/JPH09176879A/en
Application granted granted Critical
Publication of JP3052124B2 publication Critical patent/JP3052124B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/36Hydrogen production from non-carbon containing sources, e.g. by water electrolysis

Landscapes

  • Electrodes For Compound Or Non-Metal Manufacture (AREA)
  • Electrolytic Production Of Non-Metals, Compounds, Apparatuses Therefor (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a self-exciting gaseous hydrogen production mechanism unnecessary for a supply of electricity from outside by disposing an electrode of a conductive material having a shape capable of moving an ion between a positive electrode and a negative electrode in an electrolyte. SOLUTION: The electrode 4 of the conductive material having the shape capable of moving the ion between a metal 2 becoming the positive electrode and a metal 3 becoming the negative electrode in the electrolyte 1 is installed. Then the electrode 4 of the conductive material is made in an electrically conductive state at a circuit formed between the metal 2 as the positive electrode and the metal 3 as the negative electrode. A common salt water, etc., near neutral are used as the electrolyte 1. Copper is used, for example, as the metal 2 becoming the positive electrode, and magnesium is used, for example, as the metal 3 becoming the negative electrode. A mesh-like nickel, etc., are used as the electrode 4 of the conductive material. An electrolytic diaphragm 5 such as hygroscopic cellophane is disposed between the metal 2 as the positive electrode and the electrode 4 of the conductive material. In this way, the production mechanism in which gaseous hydrogen and gaseous oxygen are generated in a ratio of about 2:1 is provided and the gaseous hydrogen usable as it is as a fuel gas.combustible gas is obtained.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】この発明は、外部からの電気
の供給が不要な自励式により水を電気分解して水素ガス
(及び酸素ガス)を製造する機構に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a mechanism for producing hydrogen gas (and oxygen gas) by electrolyzing water by a self-excited system which does not require the supply of electricity from the outside.

【0002】[0002]

【従来の技術】従来より、水素ガス及び酸素ガスを得る
ために電気分解による方法が知られている。これは水に
伝導性を与えるため酸・アルカリ・中性塩などを加え、
外部から直流電流を通電することにより、陰極から水素
ガス、陽極から酸素ガスを得るものである。しかし、外
部から電気を供給することなしに電気分解によって水素
ガスを得ることができれば非常に有用である。
2. Description of the Related Art Conventionally, a method by electrolysis is known to obtain hydrogen gas and oxygen gas. To add conductivity to water, add acid, alkali, neutral salt, etc.
By supplying a direct current from the outside, hydrogen gas is obtained from the cathode and oxygen gas is obtained from the anode. However, it would be very useful if hydrogen gas could be obtained by electrolysis without supplying electricity from the outside.

【0003】また、酸として塩酸、中性塩として食塩を
用いた場合、それぞれの発生ガスに塩素ガスの混入が多
量に認められる。そこで、より純度の高い水素ガス(及
び酸素ガス)を得るためにはアルカリ性の水溶液、具体
的には苛性ソーダ溶液が用いられる。しかし、有毒な塩
素ガスの発生やこの塩素ガスの発生を抑制するための苛
性ソーダ溶液等の使用は環境面に悪影響を与える場合が
あるという問題があった。
Further, when hydrochloric acid is used as the acid and sodium chloride is used as the neutral salt, a large amount of chlorine gas is recognized in each of the generated gases. Therefore, in order to obtain hydrogen gas (and oxygen gas) of higher purity, an alkaline aqueous solution, specifically, a caustic soda solution is used. However, there is a problem that the generation of toxic chlorine gas and the use of a caustic soda solution or the like for suppressing the generation of this chlorine gas may adversely affect the environment.

【0004】[0004]

【発明が解決しようとする課題】そこで、この発明は外
部からの電気の供給が不要な自励式の水素ガス製造機構
を提供しようとするものである。また、この発明は出来
るだけ環境に優しいものとして水素ガスを製造すること
ができる水素ガス製造機構を提供しようとするものであ
る。
Therefore, the present invention is intended to provide a self-excited hydrogen gas production mechanism which does not require the supply of electricity from the outside. Further, the present invention is intended to provide a hydrogen gas production mechanism capable of producing hydrogen gas as environmentally friendly as possible.

【0005】[0005]

【課題を解決するための手段】前記課題を解決するため
この発明では次のような技術的手段を講じている。
In order to solve the above-mentioned problems, the present invention employs the following technical means.

【0006】この発明の水素ガス製造機構は、電解質中
の正極となる金属と負極となる金属との間にイオンの移
動が可能な形状とした導電性物質の電極を配設すると共
に、前記正極となる金属と負極となる金属との間に形成
した回路に前記導電性物質電極を電気的な導通状態とす
ることを特徴とする。
According to the hydrogen gas production mechanism of the present invention, an electrode made of a conductive substance having a shape capable of moving ions is disposed between a metal serving as a positive electrode and a metal serving as a negative electrode in an electrolyte, The conductive material electrode is electrically connected to a circuit formed between the metal serving as the negative electrode and the metal serving as the negative electrode.

【0007】この発明は前記のような構成を採用したの
で、正極側からは酸素ガスが負極側からは水素ガスが生
成するのであるが、外部からの電気の供給が不要な自励
式であるという利点を有する。
Since the present invention employs the above-described structure, oxygen gas is generated from the positive electrode side and hydrogen gas is generated from the negative electrode side, but it is a self-excited type that does not require external supply of electricity. Have advantages.

【0008】ところで電解質として、中性に近いものを
用いたこととすることもできる。このように構成する
と、外部からの電気の供給が不要な自励式であるという
利点を有しつつ、出来るだけ環境に優しいものとして水
素ガスを製造することができることとなる。つまり地球
の環境などに優しいという利点がある。
By the way, it is possible to use a near neutral electrolyte. With this configuration, hydrogen gas can be produced as environmentally friendly as possible while having the advantage of being a self-excited type that does not require external electricity supply. In other words, it has the advantage of being friendly to the environment of the earth.

【0009】電解質として例えば食塩水又は/及び琥珀
酸又は/及びクエン酸を用いることができる。このよう
な食用にも供することができるものを使用すると、就中
環境に優しいものとすることができる。
As electrolyte, it is possible to use, for example, saline or / and succinic acid and / or citric acid. The use of such an edible product can be particularly environmentally friendly.

【0010】正極となる金属と導電性物質電極との間に
電解隔膜を有することとすると、水素ガスの発生量がよ
り多いものとなる。
If an electrolytic membrane is provided between the metal serving as the positive electrode and the conductive material electrode, the amount of hydrogen gas generated will be greater.

【0011】負極となる金属の材質として、例えばマグ
ネシウムなどを、正極となる金属としてニッケルやステ
ンレス、銅などを用いることができる。
As the material of the metal serving as the negative electrode, for example, magnesium can be used, and as the metal serving as the positive electrode, nickel, stainless steel, copper, or the like can be used.

【0012】導電性物質電極の材質として例えばステン
レス、ニッケルなどを用いることができる。この導電性
物質電極の材質の性質として化学作用を受けにくく且つ
導電性を有するものが好ましい。また導電性物質電極は
炭素等の非金属、又はマグネシウムよりイオン化傾向の
低い金属の単体若しくは合金を基材とすると共に、前記
基材の表面にこの基材よりもイオン化傾向の更に低い金
属を鍍金したものとすることもできる。
As the material of the conductive material electrode, for example, stainless steel, nickel or the like can be used. It is preferable that the material of the conductive material electrode is one that is resistant to chemical action and has conductivity. In addition, the conductive material electrode uses a non-metal such as carbon or a simple substance or alloy of a metal having a lower ionization tendency than magnesium as a base material, and a metal having a lower ionization tendency than the base material is plated on the surface of the base material. It can also be done.

【0013】さらにこの導電性物質電極の形状として網
状、フェルト状、スポンジ状、パンチング・メタル状、
或いはそれらの積層体、又は多孔体の如くイオンの透過
が容易な形状などを選択することができる。
Further, the shape of the conductive material electrode is a net shape, a felt shape, a sponge shape, a punching metal shape,
Alternatively, it is possible to select a shape such as a laminated body or a porous body that allows easy permeation of ions.

【0014】[0014]

【発明の実施の形態】以下、この発明の実施の形態を図
面を参照して説明する。
BEST MODE FOR CARRYING OUT THE INVENTION Embodiments of the present invention will be described below with reference to the drawings.

【0015】図1乃至3に示すように、この実施形態の
水素ガス製造機構は、電解質1中の正極となる金属2と
負極となる金属3との間にイオンの移動が可能な形状と
した導電性物質の電極4を配設している。そして、前記
正極となる金属2と負極となる金属3との間に形成した
回路に前記導電性物質電極4を電気的な導通状態として
いる。
As shown in FIGS. 1 to 3, the hydrogen gas production mechanism of this embodiment has a shape in which ions can move between the metal 2 serving as the positive electrode and the metal 3 serving as the negative electrode in the electrolyte 1. An electrode 4 made of a conductive material is provided. The conductive substance electrode 4 is electrically connected to the circuit formed between the positive electrode metal 2 and the negative electrode metal 3.

【0016】前記構成により正極側からは酸素ガスが、
負極側からは水素ガスが生成する。このものは外部から
の電気の供給が不要な自励式であるという利点を有す
る。
With the above structure, oxygen gas from the positive electrode side,
Hydrogen gas is generated from the negative electrode side. This has the advantage of being a self-excited type that does not require the supply of electricity from the outside.

【0017】この実施形態では電解質1として濃度3%
の食塩水を用いた。負極となる金属3の材質としてマグ
ネシウムを、正極となる金属2として銅を用いた。また
導電性物質電極4の材質として20メッシュの網状のニ
ッケルを用いた。さらに電解隔膜5として吸湿性セロハ
ン膜を用いた。
In this embodiment, the electrolyte 1 has a concentration of 3%.
Was used. Magnesium was used as the material of the metal 3 serving as the negative electrode, and copper was used as the metal 2 serving as the positive electrode. Further, 20 mesh mesh nickel was used as the material of the conductive material electrode 4. Further, a hygroscopic cellophane film was used as the electrolytic diaphragm 5.

【0018】またこのものは外部からの電気の供給が不
要な自励式であるという利点を有しつつ、電解質として
従来より中性に近いものを用いて水素ガスを製造するこ
とができるものとなっている。すなわち、この実施形態
の水素ガス製造機構によると電解質1として食塩水を用
いていると共に水素イオン濃度は中性であるので、地球
環境に非常に優しいものとなっている。
Further, this one has the advantage that it is a self-excited type that does not require the supply of electricity from the outside, and it becomes possible to produce hydrogen gas by using a more neutral electrolyte than before. ing. That is, according to the hydrogen gas production mechanism of this embodiment, since saline is used as the electrolyte 1 and the hydrogen ion concentration is neutral, it is very friendly to the global environment.

【0019】したがって電解質として海水を用いること
ができると共に海の中で安全に環境に優しく水素ガス
(及び酸素ガス)を製造することができるという利点が
ある。またスケールを大きなものとして実用的に水素ガ
スを製造することもできる。
Therefore, there is an advantage that sea water can be used as an electrolyte and that hydrogen gas (and oxygen gas) can be produced safely and environmentally friendly in the sea. It is also possible to practically produce hydrogen gas with a large scale.

【0020】なお正極となる金属2と負極となる金属3
などを筒状の形状に形成すると、構造的に発生したガス
の捕集が容易になるという利点がある。
Metal 2 serving as the positive electrode and metal 3 serving as the negative electrode
Forming such as a cylindrical shape has an advantage that the gas generated structurally can be easily collected.

【0021】[0021]

【実施例】次に、この発明の構成をより具体的に説明す
る。 (実施例1)図1に示すように、この実施例では正極と
なる金属2(銅)と導電性物質電極4(網状のニッケ
ル)との間に電解隔膜5(吸湿性セロハン膜)を配設し
ており、水素ガスの発生量が非常に多いものとなってい
る。
Next, the configuration of the present invention will be described more specifically. (Example 1) As shown in FIG. 1, in this example, an electrolytic diaphragm 5 (hygroscopic cellophane film) was arranged between a metal 2 (copper) serving as a positive electrode and a conductive substance electrode 4 (reticular nickel). It is installed, and the amount of hydrogen gas generated is very large.

【0022】図5に、製造したガスの総容量と経過時間
との関係のグラフを示す。なおグラフ中、水素ガスの発
生量は'Mg pole H2 screen side'の実線で、酸素ガスの
発生量は'Cu pole O2 membrene side'の実線で示す。 (実施例2)図2に示すように、この実施例では負極と
なる金属3(マグネシウム)と導電性物質電極4(網状
のニッケル)との間に電解隔膜5(吸湿性セロハン膜)
を配設しており、水素ガスと酸素ガスとがほぼ2:1の
割合で発生しており、そのままで燃焼ガス・可燃性ガス
として使用することができる。
FIG. 5 is a graph showing the relationship between the total volume of produced gas and the elapsed time. In the graph, the generation amount of hydrogen gas is indicated by a solid line of 'Mg pole H 2 screen side', and the generation amount of oxygen gas is indicated by a solid line of 'Cu pole O 2 membrene side'. (Embodiment 2) As shown in FIG. 2, in this embodiment, an electrolytic diaphragm 5 (hygroscopic cellophane film) is provided between a metal 3 (magnesium) serving as a negative electrode and a conductive material electrode 4 (reticular nickel).
The hydrogen gas and the oxygen gas are generated at a ratio of about 2: 1, and can be used as they are as a combustion gas / combustible gas.

【0023】図5に、製造したガスの総容量と経過時間
との関係のグラフを示す。なおグラフ中、水素ガスの発
生量は'Mg pole H2 membrene side'の一点鎖線で、酸素
ガスの発生量は'Cu pole O2 screen side'の破線で示
す。 (実施例3)図3に示すように、この実施例では電解隔
膜5を配設していないものとしている。図6に、製造し
たガスの総容量と経過時間との関係のグラフを示す。な
おグラフ中、水素ガスの発生量は'Mg pole H2'の実線
で、酸素ガスの発生量は'Cu pole O2 screen' の実線で
示す。 (比較例)図4に示すように、この比較例では導電性物
質電極4が電解質1中に配設されていない点が上記各実
施例と相違する。
FIG. 5 shows a graph of the relationship between the total volume of gas produced and the elapsed time. In the graph, the amount of hydrogen gas generated is shown by the one-dot chain line of'Mg pole H 2 membrene side ', and the amount of oxygen gas generated is shown by the broken line of'Cu pole O 2 screen side'. (Embodiment 3) As shown in FIG. 3, the electrolytic diaphragm 5 is not provided in this embodiment. FIG. 6 shows a graph of the relationship between the total volume of produced gas and the elapsed time. In the graph, the amount of hydrogen gas generated is shown by the solid line of'Mg pole H 2 'and the amount of oxygen gas is shown by the solid line of'Cu pole O 2 screen'. (Comparative Example) As shown in FIG. 4, this comparative example is different from the above-described examples in that the conductive material electrode 4 is not provided in the electrolyte 1.

【0024】図6に、製造したガスの総容量と経過時間
との関係のグラフを示す。なおグラフ中、水素ガスの発
生量は'Mg pole H2'の破線で、酸素ガスの発生量は'Cu
poleO2 screen' の破線で示す。
FIG. 6 is a graph showing the relationship between the total volume of gas produced and the elapsed time. Note in the graph, the amount of hydrogen gas in dashed 'Mg pole H 2', generation of oxygen gas' Cu
Shown by the dashed line on the poleO 2 screen '.

【0025】結果を評価すると図5及び6のグラフに示
されるように、各実施例のものは比較例のものと比較し
て水素ガスの発生量が多いものとなっている。
When the results are evaluated, as shown in the graphs of FIGS. 5 and 6, the amount of hydrogen gas generated in each example is larger than that in the comparative example.

【0026】また上記各実施例のものによると電解質と
して食塩水(他に琥珀酸やクエン酸などを使用すること
ができる)のような従来より中性に近いものを用いて水
素ガスを製造することができ、就中食用にも供すること
ができるものであるので、非常に地球の環境に優しいも
のであるという利点がある。
Further, according to each of the above-mentioned embodiments, hydrogen gas is produced by using an electrolyte such as saline (succinic acid, citric acid, etc. can be used) which is more neutral than before. Since it can be used as a food and can also be served as a mid-course meal, it has an advantage of being very environmentally friendly to the earth.

【0027】また、反応後に生成するものはにがりの元
である塩化マグネシウムや水酸化マグネシウム等の海の
ミネラル類と言われる環境に優しいものである。
Further, what is produced after the reaction is an environmentally friendly substance called sea minerals such as magnesium chloride and magnesium hydroxide which are the source of bittern.

【0028】すなわち、電解質として海水を用いること
ができると共に海の中で安全に環境に優しく水素ガスを
製造することができるという利点がある。さらにスケー
ルを大きなものとして海の中で実用的に水素ガスを製造
することもできる。
That is, there is an advantage that sea water can be used as an electrolyte and that hydrogen gas can be produced safely and environmentally in the sea. Furthermore, hydrogen gas can be practically produced in the sea with a large scale.

【0029】[0029]

【発明の効果】この発明は上述のような構成であり、次
の効果を有する。
The present invention is configured as described above and has the following effects.

【0030】外部からの電気の供給が不要な自励式であ
るという利点を有する水素ガス製造機構を提供すること
ができる。ここで電解質として中性に近いものを用いた
ことこととすると、出来るだけ環境に優しいものとして
水素ガスを製造することができる水素ガス製造機構を提
供することができる。
It is possible to provide a hydrogen gas production mechanism having the advantage of being a self-excited type that does not require the supply of electricity from the outside. If a near neutral electrolyte is used as the electrolyte, it is possible to provide a hydrogen gas production mechanism capable of producing hydrogen gas as environmentally friendly as possible.

【図面の簡単な説明】[Brief description of the drawings]

【図1】この発明の水素ガス製造機構の実施例1の説明
図。
FIG. 1 is an explanatory diagram of Embodiment 1 of the hydrogen gas production mechanism of the present invention.

【図2】この発明の水素ガス製造機構の実施例2の説明
図。
FIG. 2 is an explanatory diagram of Embodiment 2 of the hydrogen gas production mechanism of the present invention.

【図3】この発明の水素ガス製造機構の実施例3の説明
図。
FIG. 3 is an explanatory diagram of Embodiment 3 of the hydrogen gas production mechanism of the present invention.

【図4】従来の水素ガス製造機構の説明図。FIG. 4 is an explanatory view of a conventional hydrogen gas production mechanism.

【図5】実施例1と2で製造した各ガスの総容量と経過
時間との関係を示すグラフ。
FIG. 5 is a graph showing the relationship between the total volume of each gas produced in Examples 1 and 2 and the elapsed time.

【図6】実施例3と比較例とで製造した各ガスの総容量
と経過時間との関係を示すグラフ。
FIG. 6 is a graph showing the relationship between the total volume of each gas produced in Example 3 and the comparative example and the elapsed time.

【符号の説明】[Explanation of symbols]

1 電解質 2 正極となる金属 3 負極となる金属 4 導電性物質電極 5 電解隔膜 1 Electrolyte 2 Metal serving as a positive electrode 3 Metal serving as a negative electrode 4 Conductive substance electrode 5 Electrolytic diaphragm

Claims (6)

【特許請求の範囲】[Claims] 【請求項1】 電解質中の正極となる金属と負極となる
金属との間にイオンの移動が可能な形状とした導電性物
質の電極を配設すると共に、前記正極となる金属と負極
となる金属との間に形成した回路に前記導電性物質電極
を電気的な導通状態とすることを特徴とする水素ガス製
造機構。
1. An electrode made of a conductive substance having a shape capable of ion movement is disposed between a metal serving as a positive electrode and a metal serving as a negative electrode in an electrolyte, and serves as a metal serving as the positive electrode and a negative electrode. A hydrogen gas production mechanism, characterized in that the conductive material electrode is electrically connected to a circuit formed between the metal and the metal.
【請求項2】 電解質として中性に近いものを用いたこ
とを特徴とする請求項1記載の水素ガス製造機構。
2. The hydrogen gas production mechanism according to claim 1, wherein a near neutral electrolyte is used as the electrolyte.
【請求項3】 電解質として食塩水又は/及び琥珀酸又
は/及びクエン酸を用いた請求項2記載の水素ガス製造
機構。
3. The hydrogen gas production mechanism according to claim 2, wherein saline or / and succinic acid or / and citric acid is used as the electrolyte.
【請求項4】 電解質中の正極となる金属と導電性物質
電極との間に、電解隔膜を有する請求項1乃至3のいず
れかに記載の水素ガス製造機構。
4. The hydrogen gas production mechanism according to claim 1, further comprising an electrolytic diaphragm between the metal serving as the positive electrode in the electrolyte and the conductive material electrode.
【請求項5】 前記導電性物質電極は炭素等の非金属、
又はマグネシウムよりイオン化傾向の低い金属の単体若
しくは合金を基材とすると共に、前記基材の表面にこの
基材よりもイオン化傾向の更に低い金属を鍍金した請求
項1乃至4のいずれかに記載の水素ガス製造機構。
5. The conductive material electrode is a non-metal such as carbon,
Alternatively, a simple substance or an alloy of a metal having a lower ionization tendency than magnesium is used as a base material, and a metal having a lower ionization tendency than that of the base material is plated on the surface of the base material. Hydrogen gas production mechanism.
【請求項6】 前記導電性物質電極が、網状、フェルト
状、スポンジ状、パンチング・メタル状、或いはそれら
の積層体、又は多孔体の如くイオンの透過が容易な形状
とした請求項1乃至5のいずれかに記載の水素ガス製造
機構。
6. The conductive material electrode has a shape such as a net shape, a felt shape, a sponge shape, a punching metal shape, or a laminated body thereof, or a porous body that allows easy ion permeation. The hydrogen gas production mechanism according to any one of 1.
JP7334980A 1995-12-22 1995-12-22 Hydrogen gas production organization Expired - Fee Related JP3052124B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7334980A JP3052124B2 (en) 1995-12-22 1995-12-22 Hydrogen gas production organization

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7334980A JP3052124B2 (en) 1995-12-22 1995-12-22 Hydrogen gas production organization

Publications (2)

Publication Number Publication Date
JPH09176879A true JPH09176879A (en) 1997-07-08
JP3052124B2 JP3052124B2 (en) 2000-06-12

Family

ID=18283384

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7334980A Expired - Fee Related JP3052124B2 (en) 1995-12-22 1995-12-22 Hydrogen gas production organization

Country Status (1)

Country Link
JP (1) JP3052124B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008179893A (en) * 2007-01-23 2008-08-07 Samsung Electro-Mechanics Co Ltd Hydrogen-generating apparatus having porous electrode plate
KR100872576B1 (en) * 2007-07-02 2008-12-08 삼성전기주식회사 Hydrogen generating apparatus and fuel cell power generation system
US8268139B2 (en) 2008-04-30 2012-09-18 Hyundai Motor Company Hydrogen generation apparatus
US20130043126A1 (en) * 2010-03-19 2013-02-21 Taiko Pharmaceutical Co., Ltd. Electrolyzer apparatus
WO2017084589A1 (en) * 2015-11-18 2017-05-26 复旦大学 Method and device for producing hydrogen by electrolyzing water through two-step method based on three-electrode system

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101956206B (en) * 2010-09-27 2011-10-12 北京科技大学 Electrolytic device and technology for preparing hydrogen and oxygen through seawater electrolysis

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008179893A (en) * 2007-01-23 2008-08-07 Samsung Electro-Mechanics Co Ltd Hydrogen-generating apparatus having porous electrode plate
KR100872576B1 (en) * 2007-07-02 2008-12-08 삼성전기주식회사 Hydrogen generating apparatus and fuel cell power generation system
US8268139B2 (en) 2008-04-30 2012-09-18 Hyundai Motor Company Hydrogen generation apparatus
US20130043126A1 (en) * 2010-03-19 2013-02-21 Taiko Pharmaceutical Co., Ltd. Electrolyzer apparatus
KR20130037678A (en) * 2010-03-19 2013-04-16 다이꼬 야꾸힝 가부시끼가이샤 Electrolyzer
AU2011228059B2 (en) * 2010-03-19 2015-04-02 Taiko Pharmaceutical Co., Ltd. Electrolyzer
US9315911B2 (en) * 2010-03-19 2016-04-19 Taiko Pharmaceutical Co., Ltd. Electrolyzer apparatus
WO2017084589A1 (en) * 2015-11-18 2017-05-26 复旦大学 Method and device for producing hydrogen by electrolyzing water through two-step method based on three-electrode system

Also Published As

Publication number Publication date
JP3052124B2 (en) 2000-06-12

Similar Documents

Publication Publication Date Title
EP0636051B1 (en) Apparatus comprising a water ionizing electrode and process of use of said apparatus
KR940701466A (en) Apparatus and method for producing acid and base by electrolysis of salt solution
JP2648313B2 (en) Electrolysis method
FI79145C (en) Bipolar electrolysis device with gas diffusion cathode.
WO2020218371A1 (en) Electrode, solid electrolyte electrolysis device, and synthetic gas production method
JPH09176879A (en) Gaseous hydrogen production mechanism
JPS599868A (en) Electrically decomposing system
KR880001846A (en) Nickel alloy anode
RU98116147A (en) METHOD FOR PRODUCING HIGH PURITY OF LITHIUM HYDROXIDE FROM NATURAL BRANCHES
JP3115440B2 (en) Electrolysis method of alkali chloride aqueous solution
RU99127308A (en) ELECTROCHEMICAL PRODUCTION OF ALKALI METAL FROM AN AMALGAM OF ALKALI METAL
JO2116B1 (en) Electrolyser for the production of hallogen gases
JPS61250187A (en) Electrolysis of alkali metal chloride brine
KR840002913A (en) Electrode Membrane-Multi-layered Structure for Assembly and Electrolytic Method Using the Same
JP3052125B2 (en) Hydrogen and oxygen gas production mechanism
JP2005528528A5 (en)
JP2000064080A (en) Hydrogen generator
FI87936B (en) PRODUKTION AV KLORDIOXID I EN ELEKTROLYTISK CELL
JPH09176881A (en) Gaseous hydrogen production mechanism
CA2510371A1 (en) Hydrogen generation system
US4992148A (en) Process for the electrolytic manufacture of alkali metal sulphide
JP2014209421A (en) Magnesium battery
JP3291619B2 (en) Sodium hypochlorite solution generator
GB850345A (en) Electrolysis of alkali chloride solutions
JP2017141488A (en) Mesh-like conductor and method for producing the same

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees