JP2022116956A - Electrode for reduction reaction - Google Patents

Electrode for reduction reaction Download PDF

Info

Publication number
JP2022116956A
JP2022116956A JP2021013389A JP2021013389A JP2022116956A JP 2022116956 A JP2022116956 A JP 2022116956A JP 2021013389 A JP2021013389 A JP 2021013389A JP 2021013389 A JP2021013389 A JP 2021013389A JP 2022116956 A JP2022116956 A JP 2022116956A
Authority
JP
Japan
Prior art keywords
electrode
reduction reaction
reduction
carbon dioxide
electrode body
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2021013389A
Other languages
Japanese (ja)
Other versions
JP7327422B2 (en
Inventor
健男 荒井
Takeo Arai
直柔 坂本
Naoya Sakamoto
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Central R&D Labs Inc
Original Assignee
Toyota Central R&D Labs Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Central R&D Labs Inc filed Critical Toyota Central R&D Labs Inc
Priority to JP2021013389A priority Critical patent/JP7327422B2/en
Publication of JP2022116956A publication Critical patent/JP2022116956A/en
Application granted granted Critical
Publication of JP7327422B2 publication Critical patent/JP7327422B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

To provide an electrode for reduction reaction capable of improving the selectivity of the synthesis of a multielectron reductant in a reduction reaction of carbon dioxide.SOLUTION: An electrode for a reduction reaction according to the present invention is used in a reduction reaction of carbon dioxide and comprises an electrode body containing an electrode catalyst and a non-conductive hydrophobic organic substance disposed on the electrode body to modify it.SELECTED DRAWING: None

Description

本発明は、還元反応用電極に関する。 TECHNICAL FIELD The present invention relates to a reduction reaction electrode.

大気中の二酸化炭素(CO)濃度の上昇による地球温暖化やエネルギー資源、炭素資源の枯渇といった問題の解決に向けて、二酸化炭素等の炭素化合物の還元反応に用いられる還元反応用電極の研究が世界中で行われている。 To solve problems such as global warming and depletion of energy resources and carbon resources due to the increase in atmospheric carbon dioxide (CO 2 ) concentration, research on reduction reaction electrodes used for reduction reactions of carbon compounds such as carbon dioxide is taking place around the world.

例えば、特許文献1には、導電性部材と、前記導電性部材の表面に、吸着剤とを有し、前記吸着剤が、導電性及び細孔を有し、二酸化炭素を吸着可能な多孔性基材と、前記細孔内に、二酸化炭素を還元可能な中心金属を有する金属錯体とを有する、二酸化炭素還元用電極が開示されている。 For example, Patent Document 1 discloses a conductive member and an adsorbent on the surface of the conductive member, the adsorbent having conductivity and pores and having a porous structure capable of adsorbing carbon dioxide. A carbon dioxide reduction electrode is disclosed which has a substrate and a metal complex having a central metal capable of reducing carbon dioxide in the pores.

また、特許文献2には、二酸化炭素を還元可能な金属含有部材と、前記金属含有部材の表面に、二酸化炭素を吸着可能な吸着剤と、を有する二酸化炭素還元用電極が開示されている。 Further, Patent Document 2 discloses a carbon dioxide reduction electrode having a metal-containing member capable of reducing carbon dioxide and an adsorbent capable of adsorbing carbon dioxide on the surface of the metal-containing member.

また、特許文献3には、シランカップリング剤によって修飾された電極を備える還元反応用電極が開示されている。 Further, Patent Document 3 discloses a reduction reaction electrode including an electrode modified with a silane coupling agent.

また、非特許文献1には、金属電極による二酸化炭素還元技術が開示されている。 In addition, Non-Patent Document 1 discloses a carbon dioxide reduction technique using a metal electrode.

また、非特許文献2には、親水性高分子によって修飾された銅金属電極が開示されている。 Non-Patent Document 2 discloses a copper metal electrode modified with a hydrophilic polymer.

また、非特許文献3には、PTFEフィルター上に成膜した銅電極表面にグラファイトや炭素ナノ粒子を積層した還元反応用電極が開示されている。 Non-Patent Document 3 discloses a reduction reaction electrode in which graphite or carbon nanoparticles are laminated on the surface of a copper electrode formed on a PTFE filter.

特開2017-125234号公報JP 2017-125234 A 特開2017-78190号公報JP 2017-78190 A 特開2017-101285号公報JP 2017-101285 A

堀善夫,「鋼電極による炭酸ガスの電解還元」,Electrochemistry,1990,11,p996-1002Yoshio Hori, "Electrolytic Reduction of Carbon Dioxide by Steel Electrode", Electrochemistry, 1990, 11, p996-1002 Aya K.Buckley et al.,J.Am.Chem.Soc.,2019,141,p7355-7364,「Electrocatalysis at Organic-Metal Interfaces:Identification of Structure-Reactivity Relationships for CO2 Reduction at Modified Cu Surfaces」Aya K. Buckley et al. , J. Am. Chem. Soc. , 2019, 141, p7355-7364, "Electrocatalysis at Organic-Metal Interfaces: Identification of Structure-Reactivity Relationships for CO2 Reduction at Modified Cu Surfaces" Dinh,C.-T et al.,Science 2018,360,783-787.「CO2 electroreduction to ethylene via hydroxide-mediated copper catalysis at an abrupt interface」Dinh, C.; -T et al. , Science 2018, 360, 783-787. "CO2 electroreduction to ethylene via hydroxide-mediated copper catalysis at an abrupt interface"

ところで、二酸化炭素の還元反応においては、エネルギー資源的に2電子還元物より有用な2電子を超える多電子還元物を効率的に生成することが可能な還元反応用電極が望まれている。なお、二酸化炭素の2電子還元により生成する2電子還元物は、例えば、CO、HCOOH等である。また、二酸化炭素の2電子を超える多電子還元により生成する多電子還元物は、例えば、CH(8電子還元物)、C(12電子還元物)、COH(12電子還元物)等である。 By the way, in the reduction reaction of carbon dioxide, there is a demand for a reduction reaction electrode capable of efficiently producing a multi-electron reduced product with more than two electrons, which is more useful than a two-electron reduced product in terms of energy resources. The two-electron reduction products produced by the two-electron reduction of carbon dioxide are, for example, CO, HCOOH, and the like. Further, multi-electron reduction products generated by multi-electron reduction of carbon dioxide with more than two electrons include, for example, CH 4 (8-electron reduction product), C 2 H 4 (12-electron reduction product), C 2 H 5 OH (12 electron reduced product) and the like.

そこで、本発明の目的は、二酸化炭素の還元反応において、多電子還元物合成の選択性を向上させることが可能な還元反応用電極を提供することにある。 SUMMARY OF THE INVENTION Accordingly, an object of the present invention is to provide a reduction reaction electrode capable of improving the selectivity of synthesis of a multi-electron reduced product in a carbon dioxide reduction reaction.

本発明は、二酸化炭素の還元反応に用いられる還元反応用電極であって、電極触媒を含む電極体と、前記電極体上に修飾された非導電性の疎水性有機物とを備えることを特徴とする。 The present invention is a reduction reaction electrode used for a reduction reaction of carbon dioxide, characterized by comprising an electrode body containing an electrode catalyst and a non-conductive hydrophobic organic material modified on the electrode body. do.

また、前記還元反応用電極において、前記電極触媒は、銅系触媒を含むことが好ましい。 Moreover, in the reduction reaction electrode, the electrode catalyst preferably contains a copper-based catalyst.

また、前記還元反応用電極において、前記銅系触媒は、金属銅であることが好ましい。 Moreover, in the reduction reaction electrode, the copper-based catalyst is preferably metallic copper.

また、前記還元反応用電極において、前記非導電性の疎水性有機物は、トリフェニルホスフィンを含むことが好ましい。 Moreover, in the reduction reaction electrode, the non-conductive hydrophobic organic substance preferably contains triphenylphosphine.

また、前記還元反応用電極において、前記非導電性の疎水性有機物は、トリフェニルホスフィン粒子の凝集体であることが好ましい。 Moreover, in the reduction reaction electrode, the non-conductive hydrophobic organic substance is preferably an aggregate of triphenylphosphine particles.

本発明によれば、二酸化炭素の還元反応において、多電子還元物合成の選択性を向上させることが可能となる。 According to the present invention, it is possible to improve the selectivity of synthesizing a multi-electron reduced product in the reduction reaction of carbon dioxide.

本実施形態に係る還元反応用電極の一例を示す概略構成図である。1 is a schematic configuration diagram showing an example of a reduction reaction electrode according to an embodiment; FIG. 本実施形態に係る還元反応用電極を備える二酸化炭素還元装置の一例を示す概略構成図である。1 is a schematic configuration diagram showing an example of a carbon dioxide reduction device provided with a reduction reaction electrode according to the present embodiment; FIG. 本実施形態に係る還元反応用電極を備える二酸化炭素還元装置の他の一例を示す概略構成図である。FIG. 2 is a schematic configuration diagram showing another example of a carbon dioxide reduction device provided with a reduction reaction electrode according to the present embodiment; 実施例1のCO還元反応試験により生成した生成物の電流効率の経時変化を示す図である。FIG. 2 is a graph showing changes over time in the current efficiency of the product produced by the CO 2 reduction reaction test of Example 1; 比較例のCO還元反応試験により生成した生成物の電流効率の経時変化を示す図である。FIG. 10 is a diagram showing changes over time in current efficiency of products produced by a CO 2 reduction reaction test of a comparative example. 実施例2のCO還元反応試験により生成した生成物の電流効率の経時変化を示す図である。FIG. 10 is a graph showing changes over time in the current efficiency of the product produced by the CO 2 reduction reaction test of Example 2; 実施例1~2及び比較例のCO還元反応におけるカソード電流の経時変化を示す図である。FIG. 2 is a graph showing changes over time in cathodic current in CO 2 reduction reactions of Examples 1 and 2 and Comparative Example. CO還元反応を説明するための実施例1の還元反応用電極Cの模式断面図である。1 is a schematic cross-sectional view of a reduction reaction electrode C of Example 1 for explaining a CO 2 reduction reaction. FIG.

以下に、本実施形態に係る還元反応用電極の一例について説明する。 An example of the reduction reaction electrode according to this embodiment will be described below.

[還元反応用電極]
図1は、本実施形態に係る還元反応用電極の一例を示す概略構成図である。図1に示す還元反応用電極1は、電極体10と、電極体10の表面を修飾する修飾層12と、を有する。なお、図1に示す還元反応用電極1では、導線16が、接点部材14により、電極体10に接続されている。
[Electrode for reduction reaction]
FIG. 1 is a schematic configuration diagram showing an example of a reduction reaction electrode according to this embodiment. The reduction reaction electrode 1 shown in FIG. 1 has an electrode body 10 and a modification layer 12 that modifies the surface of the electrode body 10 . In addition, in the reduction reaction electrode 1 shown in FIG.

電極体10は、二酸化炭素を還元するために用いられる電極触媒を有する。電極触媒は、例えば、銀(Ag)、金(Au)、銅(Cu)、亜鉛(Zn)、インジウム(In)、カドミウム(Cd)、スズ(Sn)、パラジウム(Pd)、鉛(Pd)、鉄(Fe)、タンタル(Ta)等の金属元素を含む。これらの中では、例えば、二酸化炭素の還元反応における多電子還元物合成の選択性を向上させる点で、銅元素を含む銅系触媒が好ましい。銅系触媒としては、金属銅、銅と他の金属との合金、銅を中心金属とした銅錯体(例えば、テトラフェニルポルフィリンCu錯体)等が挙げられる。これらの中では、金属銅が好ましい。また、電極体10は、例えば、カーボン材料を含む基材上に電極触媒を担持した構成等でもよい。カーボン材料は、例えば、カーボンナノチューブ、グラフェン、カーボンブラック、カーボンクロス、カーボンペーパー、グラッシーカーボン、グラファイト等が挙げられる。また、二酸化炭素の還元電位より負側に伝導体下端の電位を有するP型半導体を含んでいてもよい。P型半導体としては、例えば、珪素(Si)、酸化銅(CuO)、亜鉛ドープ酸化鉄(Fe)等の酸化物、インジウムリン(InP)、ガリウムリン(GaP)、インジウムガリウムリン(InGaP)等のリン化合物、窒化ガリウム(GaN)、C等の窒素化合物、CIGS、CZTSSe等のセレン化合物等が挙げられる。 Electrode body 10 has an electrode catalyst that is used to reduce carbon dioxide. Electrocatalysts include, for example, silver (Ag), gold (Au), copper (Cu), zinc (Zn), indium (In), cadmium (Cd), tin (Sn), palladium (Pd), lead (Pd) , iron (Fe), and tantalum (Ta). Among these, for example, a copper-based catalyst containing a copper element is preferable in terms of improving the selectivity of synthesizing a multi-electron reduced product in the reduction reaction of carbon dioxide. Examples of copper-based catalysts include metallic copper, alloys of copper and other metals, copper complexes with copper as the central metal (eg, tetraphenylporphyrin Cu complexes), and the like. Among these, metallic copper is preferred. Further, the electrode body 10 may have a structure in which an electrode catalyst is supported on a substrate containing a carbon material, for example. Carbon materials include, for example, carbon nanotubes, graphene, carbon black, carbon cloth, carbon paper, glassy carbon, and graphite. In addition, it may contain a P-type semiconductor having a conductor bottom potential on the negative side of the reduction potential of carbon dioxide. Examples of P-type semiconductors include oxides such as silicon (Si), copper oxide (Cu 2 O), zinc-doped iron oxide (Fe 2 O 3 ), indium phosphide (InP), gallium phosphide (GaP), and indium gallium. Phosphorus compounds such as phosphorus (InGaP), nitrogen compounds such as gallium nitride ( GaN) and C3N4 , selenium compounds such as CIGS and CZTSSe, and the like.

修飾層12は、非導電性の疎水性有機物を含む。疎水性有機物とは、水に難溶または不溶である有機物であり、20℃の純水100gに対する溶解度が1g未満の有機物である。また、非導電性とは、20℃における体積抵抗率が1013Ωcm以上を意味する。以下、非導電性の疎水性有機物を単に疎水性有機物と称する。 Modification layer 12 includes a non-conductive hydrophobic organic material. A hydrophobic organic substance is an organic substance that is sparingly soluble or insoluble in water, and that has a solubility of less than 1 g in 100 g of pure water at 20°C. In addition, non-conductivity means a volume resistivity of 10 13 Ωcm or more at 20°C. Hereinafter, non-conductive hydrophobic organic substances are simply referred to as hydrophobic organic substances.

疎水性有機物としては、例えば、トリメチルホスフィン、トリエチルホスフィン、トリ-n-プロピルホスフィン、トリイソプロピルホスフィン、トリ-n-ブチルホスフィン、トリ-tert.-ブチルホスフィン、トリ-n-ペンチルホスフィン、トリシクロペンチルホスフィン、トリ-n-ヘキシルホスフィン、トリシクロヘキシルホスフィン、トリ-n-ヘプチルホスフィン、トリ-n-オクチルホスフィン、トリフェニルホスフィン、トリス(2-メトキシフェニル)ホスフィン、トリス(4-メトキシフェニル)ホスフィン、トリス(2,6-ジメトキシフェニル)ホスフィン、トリス(2-フリル)ホスフィン、トリス(4-ジメチルアミノフェニル)ホスフィン、トリ-p-トリルホスフィン、トリス-(4-フルオロフェニル)ホスフィン、トリス[3,5-ビス(トリフルオロメチル)フェニル]ホスフィン、トリス(ペンタフルオロフェニル)ホスフィン、ビス(ジフェニルホスフィノ)メタン、1,2-ビス(ジフェニルホスフィノ)エタン、1,3-ビス(ジフェニルホスフィノ)プロパン、1,4-ビス(ジフェニルホスフィノ)ブタン、1,5-ビス(ジフェニルホスフィノ)ペンタン、ビス(ジシクロヘキシルホスフィノフェニル)エーテル、1,1’-ビス(ジシクロヘキシルホスフィノ)フェロセン、1,3-ビス(ジイソプロピルホスフィノ)プロパン、1,4-ビス(ジイソプロピルホスフィノ)ブタン、1,3-ビス(ジシクロヘキシルホスフィノ)プロパン、1,4-ビス(ジシクロヘキシルホスフィノ)ブタン、1,2-ビス(ジフェニルホスフィノ)ベンゼン、2,2’-ビス(ジフェニルホスフィノ)ビフェニル、4,6-ビス(ジフェニルホスフィノ)フェノキサジン、ビス(ジメチルホスフィノ)メタン、1,2-ビス(ジメチルホスフィノ)エタン、1,3-ビス(ジメチルホスフィノ)プロパン、1,4-ビス(ジメチルホスフィノ)ブタン、1,5-ビス(ジメチルホスフィノ)ペンタン、1,6-ビス(ジメチルホスフィノ)ヘキサン、1,2’-ビス(ジメチルホスフィノ)ベンゼン、2,2’-ビス(ジメチルホスフィノ)ビフェニル等の有機リン化合物が挙げられる。その他には、例えば、ポリスチレン(PS)、ポリメチルメタクリレート(PMMA)、ポリカーボネート(PC)、ポリプロピレン(PP)、ポリエチレンテレフタレート(PET)、ポリエチレン(PE)、ポリフッ化ビニリデン(PVDF)、ポリメチルペンテン(PMP)、ポリ乳酸(PLA)、環状オレフィンコポリマー(COC)及び環状オレフィンポリマー(COP)等の高分子が挙げられる。これらの中では、例えば、二酸化炭素の還元反応における多電子還元物合成のうち、C2化合物合成の選択性を向上させる点で、トリフェニルホスフィンが好ましい。 Hydrophobic organic substances include, for example, trimethylphosphine, triethylphosphine, tri-n-propylphosphine, triisopropylphosphine, tri-n-butylphosphine, tri-tert. -butylphosphine, tri-n-pentylphosphine, tricyclopentylphosphine, tri-n-hexylphosphine, tricyclohexylphosphine, tri-n-heptylphosphine, tri-n-octylphosphine, triphenylphosphine, tris(2-methoxyphenyl ) phosphine, tris(4-methoxyphenyl)phosphine, tris(2,6-dimethoxyphenyl)phosphine, tris(2-furyl)phosphine, tris(4-dimethylaminophenyl)phosphine, tri-p-tolylphosphine, tris- (4-fluorophenyl)phosphine, tris[3,5-bis(trifluoromethyl)phenyl]phosphine, tris(pentafluorophenyl)phosphine, bis(diphenylphosphino)methane, 1,2-bis(diphenylphosphino) Ethane, 1,3-bis(diphenylphosphino)propane, 1,4-bis(diphenylphosphino)butane, 1,5-bis(diphenylphosphino)pentane, bis(dicyclohexylphosphinophenyl) ether, 1,1 '-Bis(dicyclohexylphosphino)ferrocene, 1,3-bis(diisopropylphosphino)propane, 1,4-bis(diisopropylphosphino)butane, 1,3-bis(dicyclohexylphosphino)propane, 1,4- Bis(dicyclohexylphosphino)butane, 1,2-bis(diphenylphosphino)benzene, 2,2′-bis(diphenylphosphino)biphenyl, 4,6-bis(diphenylphosphino)phenoxazine, bis(dimethylphosphino) phino)methane, 1,2-bis(dimethylphosphino)ethane, 1,3-bis(dimethylphosphino)propane, 1,4-bis(dimethylphosphino)butane, 1,5-bis(dimethylphosphino) Organophosphorus compounds such as pentane, 1,6-bis(dimethylphosphino)hexane, 1,2'-bis(dimethylphosphino)benzene, and 2,2'-bis(dimethylphosphino)biphenyl can be mentioned. In addition, for example, polystyrene (PS), polymethyl methacrylate (PMMA), polycarbonate (PC), polypropylene (PP), polyethylene terephthalate (PET), polyethylene (PE), polyvinylidene fluoride (PVDF), polymethylpentene ( PMP), polylactic acid (PLA), cyclic olefin copolymers (COC) and cyclic olefin polymers (COP). Among these, for example, triphenylphosphine is preferable from the viewpoint of improving the selectivity of C2 compound synthesis among multi-electron reductant synthesis in the reduction reaction of carbon dioxide.

修飾層12は、例えば、疎水性有機物を有機溶媒に溶解させた溶液を電極体10に塗布したり、電極体10を当該溶液に浸漬したりすることにより形成される。このような方法により、例えば、電極体10上に修飾された疎水性有機物が凝集した領域(島)と電極体10が露出した領域(海)とを有する海島構造の還元反応用電極が得られる。有機溶媒は、疎水性有機物が溶解するものであればよく、例えば、テトラヒドロフラン、アセトン、2-プロパノール、エタノール、アセトニトリル等が挙げられる。 The modification layer 12 is formed, for example, by coating the electrode body 10 with a solution in which a hydrophobic organic substance is dissolved in an organic solvent, or by immersing the electrode body 10 in the solution. By such a method, for example, a reduction reaction electrode having a sea-island structure having a region (island) where the modified hydrophobic organic substance aggregates on the electrode body 10 and a region (sea) where the electrode body 10 is exposed can be obtained. . Any organic solvent can be used as long as it dissolves hydrophobic organic substances, and examples thereof include tetrahydrofuran, acetone, 2-propanol, ethanol, and acetonitrile.

また、修飾層12は、例えば、純水、超純水等の水の上に、疎水性有機物を有機溶媒に溶解させた溶液を展開した液体を電極体10に塗布したり、電極体10を当該液体に浸漬させたりすることにより形成してもよい。水の上に、疎水性有機物を有機溶媒に溶解させた溶液を展開した液体を調製することにより、疎水性有機物が自己組織化するため、当該液体を電極体10に塗布したり浸漬させたりすることにより、電極体10上に、疎水性有機物の粒子(例えば数μm程度の粒径)が凝集した凝集体を形成することができる。すなわち、電極体10上に疎水性有機物粒子の凝集体が分散した還元反応用電極が得られる。水の上に、疎水性有機物を有機溶媒に溶解させた溶液を展開した液体は、調製後直ちに使用してもよいし、数時間~数日放置した後に使用してもよい。また、水中に、疎水性有機物を有機溶媒に溶解させた溶液を展開した懸濁液を、濾過膜によりろ過して、ろ過膜上のろ過物として得られる疎水性有機物粒子の凝集体を、電極体10に塗布してもよい。 The modification layer 12 is formed by coating the electrode body 10 with a liquid obtained by developing a solution of a hydrophobic organic substance dissolved in an organic solvent on water such as pure water or ultrapure water, or applying the liquid to the electrode body 10 . It may be formed by immersing it in the liquid. By preparing a liquid in which a solution in which a hydrophobic organic substance is dissolved in an organic solvent is developed on water, the hydrophobic organic substance self-assembles, so that the electrode body 10 is coated with or immersed in the liquid. As a result, agglomerates of hydrophobic organic particles (for example, particle diameters of several μm) can be formed on the electrode body 10 . In other words, a reduction reaction electrode in which aggregates of hydrophobic organic particles are dispersed on the electrode body 10 is obtained. A liquid obtained by developing a solution of a hydrophobic organic substance dissolved in an organic solvent on water may be used immediately after preparation, or may be used after being left for several hours to several days. Further, a suspension obtained by developing a solution in which a hydrophobic organic substance is dissolved in an organic solvent in water is filtered through a filtration membrane, and aggregates of hydrophobic organic particles obtained as a filtrate on the filtration membrane are applied to an electrode. It may be applied to body 10 .

なお、二酸化炭素の還元反応性等の点で、上記のような海島構造や疎水性有機物粒子の凝集体が分散している方がよい。 From the viewpoint of reduction reactivity of carbon dioxide, it is preferable that the above-described sea-island structure and aggregates of hydrophobic organic particles are dispersed.

接点部材14は、導線16を電極体10に接続できる部材であればよく、特に限定されないが、例えば、銅テープ、インジウム、カーボンテープ、鉛、スズ、タンタル等が挙げられる。 The contact member 14 is not particularly limited as long as it can connect the conductor 16 to the electrode body 10, and examples thereof include copper tape, indium, carbon tape, lead, tin, and tantalum.

導線16は、通電可能な部材であればよく、特に限定されないが、例えば、銅線、アルミニウム線等が挙げられる。 The conducting wire 16 is not particularly limited as long as it is an electrically conductive member, and examples thereof include a copper wire and an aluminum wire.

還元反応用電極1に電圧が印加されると、電極体10に生じた電子が、二酸化炭素の還元反応に利用される。二酸化炭素の還元反応により、例えば、CO、HCOOH等の2電子還元物、CH(8電子還元物)、C(12電子還元物)、COH(12電子還元物)等の2電子を超える多電子還元物が生成される。ここで、本実施形態では、電極体10上に修飾された疎水性有機物により、二酸化炭素の還元で生じる反応中間体の拡散が抑制され、反応中間体を電極体10周辺に停滞させることができるため、反応中間体は、多電子還元物まで還元され易くなると考えられる。したがって、本実施形態の還元反応用電極1は、電極体上に疎水性有機物を修飾していない還元反応用電極に比べて、多電子還元物合成の選択性を向上させることができる。 When a voltage is applied to the reduction reaction electrode 1, electrons generated in the electrode body 10 are used for the reduction reaction of carbon dioxide. By the reduction reaction of carbon dioxide, for example, two-electron reduced products such as CO and HCOOH, CH 4 (8-electron reduced product), C 2 H 4 (12-electron reduced product), C 2 H 5 OH (12-electron reduced product) A multi-electron reduction product with more than two electrons such as is generated. Here, in the present embodiment, the hydrophobic organic material modified on the electrode body 10 suppresses the diffusion of the reaction intermediates generated by the reduction of carbon dioxide, and the reaction intermediates can be stagnant around the electrode body 10. Therefore, it is considered that the reaction intermediate is easily reduced to a multi-electron reduction product. Therefore, the reduction reaction electrode 1 of the present embodiment can improve the selectivity of multi-electron reduction product synthesis compared to a reduction reaction electrode in which the electrode body is not modified with a hydrophobic organic substance.

また、本実施形態の還元反応用電極1によれば、電極体10上に修飾された疎水性有機物により、電極体10の表面への水分子やプロトンの接触が抑えられる。その結果、本実施形態の還元反応用電極1は、電極体上に疎水性有機物を修飾していない還元反応用電極に比べて、副反応である水素生成反応を抑えることも可能である。 Further, according to the reduction reaction electrode 1 of the present embodiment, the hydrophobic organic substance modified on the electrode body 10 suppresses contact of water molecules and protons with the surface of the electrode body 10 . As a result, the reduction reaction electrode 1 of the present embodiment can suppress the hydrogen generation reaction, which is a side reaction, compared to a reduction reaction electrode in which the electrode body is not modified with a hydrophobic organic substance.

本実施形態の還元反応用電極1では、二酸化炭素の還元反応における多電子還元物合成のうち、C2化合物合成の選択性を向上させる点、副反応である水素生成反応を抑える点等で、電極体10上に、トリフェニルホスフィン等の粒子の凝集体を修飾させることが好ましい。 In the reduction reaction electrode 1 of the present embodiment, the electrode Preferably, the body 10 is modified with aggregates of particles such as triphenylphosphine.

還元反応用電極1において、疎水性有機物によって修飾された電極体10の水接触角は、副反応による水素の生成割合を抑えること、二酸化炭素の還元反応による還元物の生成割合を向上させること等の点で、89度以上であることが好ましく、95度以上であることがより好ましい。 In the reduction reaction electrode 1, the water contact angle of the electrode body 10 modified with a hydrophobic organic substance is such that it suppresses the production rate of hydrogen due to side reactions, increases the production rate of reduced products due to the reduction reaction of carbon dioxide, and the like. , the angle is preferably 89 degrees or more, and more preferably 95 degrees or more.

水接触角は、接触角計を用いて、水滴0.5μLを試料表面(疎水性高分子によって修飾された電極体表面)に滴下し、滴下直後の水滴の形状を撮影して、得られた画像から、θ/2法を用いて測定することにより求められる。ここで、例えば、カーボンクロス、カーボンペーパー等の基材に電極触媒を担持した多孔性の電極体の場合、疎水性有機物によって修飾された多孔性の電極体表面に水滴を滴下しても、水滴が内部に浸透して水接触角を測定できない。この場合、平滑な基板(例えば、ガラス基板)の上に、同様の条件で電極触媒を担持し、さらに電極触媒上に、同様の条件で疎水性有機物を修飾したものを試料として、当該試料で測定された水接触角を、疎水性有機物によって修飾された電極体表面の水接触角とする。 The water contact angle was obtained by dropping 0.5 μL of water droplets onto the sample surface (electrode surface modified with a hydrophobic polymer) using a contact angle meter, and photographing the shape of the water droplets immediately after dropping. It is obtained by measuring from the image using the θ/2 method. Here, for example, in the case of a porous electrode body in which an electrode catalyst is supported on a base material such as carbon cloth or carbon paper, even if water droplets are dropped on the surface of the porous electrode body modified with a hydrophobic organic substance, the water droplets permeates inside and the water contact angle cannot be measured. In this case, an electrode catalyst is supported on a smooth substrate (for example, a glass substrate) under the same conditions, and a hydrophobic organic substance is modified on the electrode catalyst under the same conditions as a sample. Let the measured water contact angle be the water contact angle of the electrode body surface modified with the hydrophobic organic substance.

「炭素化合物還元装置」
図2は、本実施形態に係る還元反応用電極を備える二酸化炭素還元装置の一例を示す概略構成図である。図2に示す二酸化炭素還元装置3は、既述の還元反応用電極である第1電極(陰極)1と、第1電極1と電気的に接続され、酸化反応を生起する酸化反応用電極としての第2電極(陽極)20と、陰極室電解質溶液30及び陽極室電解質溶液32を含む電解質溶液と、を有する。
"Carbon compound reduction device"
FIG. 2 is a schematic configuration diagram showing an example of a carbon dioxide reduction device provided with a reduction reaction electrode according to this embodiment. The carbon dioxide reduction device 3 shown in FIG. 2 includes a first electrode (cathode) 1 which is the electrode for reduction reaction described above, and an electrode for oxidation reaction which is electrically connected to the first electrode 1 and which causes an oxidation reaction. and an electrolyte solution including a cathode compartment electrolyte solution 30 and an anode compartment electrolyte solution 32 .

図2に示す二酸化炭素還元装置3では、例えば、収容容器26内が隔膜28により陰極室22と陽極室24とに分離され、陰極室22には、陰極室電解質溶液30が収容され、陽極室24には、陽極室電解質溶液32が収容されている。そして、既述の還元反応用電極である第1電極1が、陰極室電解質溶液30に浸漬され、第2電極20が陽極室電解質溶液32に浸漬されている。二酸化炭素還元反応を行う際には、陰極室電解質溶液30に二酸化炭素(CO)が供給され、陰極室電解質溶液30内に二酸化炭素を含有させる。 In the carbon dioxide reduction apparatus 3 shown in FIG. 2, for example, the inside of the container 26 is separated into the cathode chamber 22 and the anode chamber 24 by the diaphragm 28, and the cathode chamber 22 contains the cathode chamber electrolyte solution 30, and the anode chamber 24 contains an anode compartment electrolyte solution 32 . The first electrode 1, which is an electrode for reduction reaction, is immersed in the cathode chamber electrolyte solution 30, and the second electrode 20 is immersed in the anode chamber electrolyte solution 32. As shown in FIG. When performing the carbon dioxide reduction reaction, carbon dioxide (CO 2 ) is supplied to the cathode chamber electrolyte solution 30 so that the cathode chamber electrolyte solution 30 contains carbon dioxide.

図3は、本実施形態に係る還元反応用電極を備える二酸化炭素還元装置の他の一例を示す概略構成図である。図3に示す二酸化炭素還元装置4において、図2に示す二酸化炭素還元装置3と同様の構成については同一の符号を付している。図3に示す二酸化炭素還元装置4では、陰極室22に参照極48が設置されている。また、既述の還元反応用電極である第1電極(陰極)1は、陰極室22側の収容容器26の側壁に嵌め込まれている。但し、第1電極1において、疎水性有機物が修飾された表面は、収容容器26の側壁から露出して、陰極室電解質溶液30と接触している。第2電極20は陽極室24側の収容容器26の側壁に嵌め込まれており、第2電極20の一主面は収容容器26の側壁から露出して、陽極室電解質溶液32と接触している。不図示であるが、第1電極1が嵌め込まれている収容容器26の側壁には、二酸化炭素(CO)を外部から第1電極1に供給するための貫通流路が複数設けられている。すなわち、二酸化炭素還元反応を行う際には、二酸化炭素が収容容器26の外部から収容容器26の側壁に設けられた貫通流路を介して第1電極1に供給され、第1電極1内を拡散して、陰極室22内の陰極室電解質溶液30に吹き込まれる。 FIG. 3 is a schematic configuration diagram showing another example of a carbon dioxide reduction apparatus provided with a reduction reaction electrode according to this embodiment. In the carbon dioxide reduction device 4 shown in FIG. 3, the same components as those of the carbon dioxide reduction device 3 shown in FIG. 2 are denoted by the same reference numerals. A reference electrode 48 is installed in the cathode chamber 22 in the carbon dioxide reduction device 4 shown in FIG. Further, the first electrode (cathode) 1, which is the electrode for the reduction reaction described above, is fitted in the side wall of the container 26 on the cathode chamber 22 side. However, in the first electrode 1 , the surface modified with the hydrophobic organic substance is exposed from the side wall of the container 26 and is in contact with the cathode chamber electrolyte solution 30 . The second electrode 20 is fitted in the side wall of the container 26 on the anode chamber 24 side, and one main surface of the second electrode 20 is exposed from the side wall of the container 26 and is in contact with the anode chamber electrolyte solution 32 . . Although not shown, a plurality of through channels for supplying carbon dioxide (CO 2 ) from the outside to the first electrode 1 are provided in the side wall of the container 26 in which the first electrode 1 is fitted. . That is, when performing the carbon dioxide reduction reaction, carbon dioxide is supplied from the outside of the container 26 to the first electrode 1 through the through channel provided on the side wall of the container 26, and flows through the first electrode 1. It diffuses and blows into the cathode compartment electrolyte solution 30 in the cathode compartment 22 .

本実施形態の二酸化炭素還元装置(3,4)では、第1電極1と第2電極20との間を電気的に接続し、適切なバイアス電圧を印加した状態とすることで、第2電極20においては、酸化反応が生起されるとともに、電位が得られる。第1電極1においては、酸化反応を生起する電極から電位を得ることによって、二酸化炭素の還元反応が進行する。 In the carbon dioxide reduction device (3, 4) of the present embodiment, the first electrode 1 and the second electrode 20 are electrically connected, and by applying an appropriate bias voltage, the second electrode At 20, an oxidation reaction takes place and a potential is obtained. At the first electrode 1, the reduction reaction of carbon dioxide proceeds by obtaining a potential from the electrode that causes the oxidation reaction.

バイアス電圧を印加する手段は、特に限定されるものではなく、化学的電池(一次電池、二次電池等を含む)、定電圧源、太陽電池等が挙げられる。 Means for applying a bias voltage are not particularly limited, and examples thereof include chemical batteries (including primary batteries, secondary batteries, etc.), constant voltage sources, solar batteries, and the like.

バイアス電圧を印加する手段として太陽電池セルを用いることにより、図2や図3に示す二酸化炭素還元装置(3,4)と、第1電極1及び第2電極20に供給される電力を生成する太陽電池セルと、を備える人工光合成装置とすることができる。本実施形態に係る人工光合成装置は、二酸化炭素還元装置(3,4)の第1電極1と第2電極20が太陽電池を介して接続され、太陽光をエネルギー源として駆動される。 Electric power supplied to the carbon dioxide reduction device (3, 4) and the first electrode 1 and the second electrode 20 shown in FIGS. and a photovoltaic cell. In the artificial photosynthesis apparatus according to this embodiment, the first electrode 1 and the second electrode 20 of the carbon dioxide reduction apparatus (3, 4) are connected via a solar cell and driven using sunlight as an energy source.

陰極室電解質溶液30は、陰極室用電解質を含む。陰極室用電解質としては、塩化カリウム(KCl)、炭酸水素カリウム(KHCO)、硫酸カリウム(KSO)、炭酸カリウム(KCO)、四ホウ酸カリウム(K)、リン酸水素二カリウム(KHPO)、リン酸二水素カリウム(KHPO)等が挙げられ、電極表面近傍をより塩基性にするほど副反応のH生成を抑制できる等の点から、塩化カリウム(KCl)、炭酸水素カリウム(KHCO)等が好ましい。 Cathode compartment electrolyte solution 30 includes a cathode compartment electrolyte. Potassium chloride (KCl), potassium hydrogen carbonate (KHCO 3 ), potassium sulfate (K 2 SO 4 ), potassium carbonate (K 2 CO 3 ), potassium tetraborate (K 2 B 4 O 7 ), dipotassium hydrogen phosphate ( K 2 HPO 4 ), potassium dihydrogen phosphate (KH 2 PO 4 ), and the like. From the point of view, potassium chloride (KCl), potassium hydrogen carbonate (KHCO 3 ), and the like are preferable.

陽極室電解質溶液32は、隔膜として陽イオン交換膜を用いる場合には、純水、水蒸気等でよい。陽極室電解質溶液32は、陽極室用電解質を含んでよい。陽極室用電解質としては、炭酸水素ナトリウム(NaHCO)、炭酸水素カリウム(KHCO)、炭酸カリウム(KCO)、硫酸カリウム(KSO)、四ホウ酸カリウム(K)、リン酸水素二カリウム(KHPO)、リン酸二水素カリウム(KHPO)、水酸化カリウム(KOH)等が挙げられ、電極表面近傍をより塩基性にするほど水の酸化反応によるO生成が進行しやすくなる等の点から、炭酸水素カリウム(KHCO)、四ホウ酸カリウム(K)、水酸化カリウム(KOH)等が好ましい。 The anode chamber electrolyte solution 32 may be pure water, water vapor, or the like when a cation exchange membrane is used as the diaphragm. The anode compartment electrolyte solution 32 may include an anode compartment electrolyte. Electrolytes for the anode chamber include sodium hydrogen carbonate (NaHCO 3 ), potassium hydrogen carbonate (KHCO 3 ), potassium carbonate (K 2 CO 3 ), potassium sulfate (K 2 SO 4 ), potassium tetraborate (K 2 B 4 O 7 ), dipotassium hydrogen phosphate (K 2 HPO 4 ), potassium dihydrogen phosphate (KH 2 PO 4 ), and potassium hydroxide (KOH). Potassium hydrogen carbonate (KHCO 3 ), potassium tetraborate (K 2 B 4 O 7 ), potassium hydroxide (KOH), and the like are preferable because O 2 generation due to the oxidation reaction of is facilitated.

陰極室電解質溶液30、陽極室電解質溶液32の溶媒としては、水でよい。 As a solvent for the cathode chamber electrolyte solution 30 and the anode chamber electrolyte solution 32, water may be used.

陰極室電解質溶液30の電解質の濃度は、例えば、0.01mol/L~8mol/Lの範囲であり、0.1mol/L~3.0mol/Lの範囲であることが好ましい。 The electrolyte concentration of the cathode chamber electrolyte solution 30 is, for example, in the range of 0.01 mol/L to 8 mol/L, preferably in the range of 0.1 mol/L to 3.0 mol/L.

陽極室電解質溶液32の電解質の濃度は、例えば、0.01mol/L~8mol/Lの範囲であり、0.1mol/L~3.0mol/Lの範囲であることが好ましい。 The electrolyte concentration of the anode chamber electrolyte solution 32 is, for example, in the range of 0.01 mol/L to 8 mol/L, preferably in the range of 0.1 mol/L to 3.0 mol/L.

第2電極20は、酸化反応によって物質を酸化するために利用される電極である。第2電極20としては、白金、金、カーボン、水銀、フッ素含有酸化錫(FTO)、錫ドープ酸化インジウム(ITO)、半導体の基板上に酸化イリジウム(IrOx:x=1~2)又はコバルト化合物を修飾させた電極、ニッケル又はニッケルと鉄を含有する複合材料等を用いることができる。半導体の基板は、酸化タングステン(WO)、バナジン酸ビスマス(BiVO)、酸化鉄(Fe)、シリコン(Si)、酸窒化タンタル(TaON)等が挙げられる。 The second electrode 20 is an electrode that is used to oxidize substances through an oxidation reaction. As the second electrode 20, platinum, gold, carbon, mercury, fluorine-containing tin oxide (FTO), tin-doped indium oxide (ITO), iridium oxide (IrOx: x=1 to 2) or a cobalt compound on a semiconductor substrate. A modified electrode, a composite material containing nickel or nickel and iron, or the like can be used. Semiconductor substrates include tungsten oxide (WO 3 ), bismuth vanadate (BiVO 4 ), iron oxide (Fe 2 O 3 ), silicon (Si), tantalum oxynitride (TaON), and the like.

隔膜28としては、例えば、プロトン交換膜(陽イオン交換膜)、陰イオン交換膜、バイポーラーメンブレン、多孔性ガラス膜等が挙げられ、陰イオン交換膜等を好適に用いることができる。第1電極1(還元反応用電極)での炭素化合物の還元反応を効率的に進行させる等の点で、隔膜28を設けることが好ましいが、隔膜28を設けなくてもよい。 Examples of the diaphragm 28 include proton exchange membranes (cation exchange membranes), anion exchange membranes, bipolar membranes, porous glass membranes and the like, and anion exchange membranes and the like can be preferably used. Although it is preferable to provide the diaphragm 28 in terms of efficient progress of the reduction reaction of the carbon compound at the first electrode 1 (reduction reaction electrode), the diaphragm 28 may not be provided.

収容容器26としては、例えば、金属製、プラスチック製、ガラス製等の密閉容器、およびガスを流通する機構を有する反応容器等を用いることができる。 As the storage container 26, for example, a closed container made of metal, plastic, glass, or the like, a reaction container having a mechanism for circulating gas, or the like can be used.

図2に示す二酸化炭素還元装置3は、還元反応用電極及び酸化反応用電極を用いた二電極式であるが、これに限定されず、参照極を組み合わせた三電極式でもよい。参照極は、図3に示す二酸化炭素還元装置4と同様に、例えば、陰極室22側に設置される。 The carbon dioxide reduction device 3 shown in FIG. 2 is of a two-electrode type using a reduction reaction electrode and an oxidation reaction electrode, but is not limited to this, and may be of a three-electrode type combining a reference electrode. The reference electrode is installed, for example, on the cathode chamber 22 side, similarly to the carbon dioxide reduction device 4 shown in FIG.

以下、実施例により本発明をさらに説明するが、本発明はこれらの実施例に限定されるものではない。 EXAMPLES The present invention will be further described below with reference to Examples, but the present invention is not limited to these Examples.

<還元反応用電極A>
撥水処理済みカーボンペーパー(ケミックス社製、TGP-H-060-H)上に銅を成膜して、電極体を作製した。この電極体を還元反応用電極Aとした。カーボンペーパー上への銅の成膜には、RFマグネトロンスパッタリング法を用いた。具体的には、可動マスク機構付スパッタリング装置(キャノントッキ、SPK-404L)内で、アルゴン(Ar)ガス流量50sccm、圧力0.5Paの条件において、出力電力200Wで銅ターゲットを放電し、カーボンペーパー上に約100nmの膜厚で成膜した。
<Electrode A for reduction reaction>
A film of copper was formed on a water-repellent carbon paper (TGP-H-060-H manufactured by Chemics Co., Ltd.) to prepare an electrode body. This electrode body was used as electrode A for reduction reaction. An RF magnetron sputtering method was used to deposit copper on the carbon paper. Specifically, in a sputtering apparatus with a movable mask mechanism (Canon Tokki SPK-404L), under the conditions of an argon (Ar) gas flow rate of 50 sccm and a pressure of 0.5 Pa, a copper target is discharged at an output power of 200 W, and carbon paper A film having a thickness of about 100 nm was formed thereon.

<還元反応用電極B>
アセトン50mlにトリフェニルホスフィン(PPh)1mmolを溶解した溶液1ml中に上記還元反応用電極A(電極体)を浸漬して、減圧乾燥することにより、電極体上にPPhを修飾した還元反応用電極Bを作製した。
<Reduction reaction electrode B>
The reduction reaction electrode A (electrode body) was immersed in 1 ml of a solution in which 1 mmol of triphenylphosphine ( PPh 3 ) was dissolved in 50 ml of acetone, and dried under reduced pressure. Electrode B was produced.

<還元反応用電極C>
アセトニトリル10mlにトリフェニルホスフィン(PPh)0.033mmol溶解した溶液を超純水(Milli-Q)20ml中に投入して、白色懸濁液に変化した溶液をメンブランフィルター(PTFE、孔径0.45μm)を用いて吸引ろ過した。吸引ろ過後、メンブランフィルター上のPPh粒子から構成されたろ過物を回収した。回収したPPh粒子を、上記還元反応用電極A(電極体)に塗布した後、乾燥することにより、電極体上にPPh粒子の凝集体を修飾した還元反応用電極Cを作製した。
<Electrode C for reduction reaction>
A solution of 0.033 mmol of triphenylphosphine (PPh 3 ) dissolved in 10 ml of acetonitrile was put into 20 ml of ultrapure water (Milli-Q), and the solution changed to a white suspension was passed through a membrane filter (PTFE, pore size 0.45 μm). ) was used to perform suction filtration. After suction filtration, the filtrate composed of PPh3 particles on the membrane filter was collected. The collected PPh 3 particles were applied to the reduction reaction electrode A (electrode body) and then dried to prepare a reduction reaction electrode C in which the electrode body was modified with aggregates of PPh 3 particles.

<CO還元反応試験>
(実施例1)
図3に示す二酸化炭素還元装置を用いて、CO還元反応試験を行った。実施例1では、作用極である第1電極1として還元反応用電極C、対極である第2電極20として白金箔(ニラコ社製、PT-353212、φ20mm×0.02mm、99.98%)、参照極48としてAg/AgCl電極(イーシーフロンティア社製、RE-14)を用いた。隔膜28には陰イオン交換膜(アストム社製、ASE)を用いた。収容容器26は、隔膜28により陰極室22と陽極室24に分離され、陰極室22内の陰極室電解質溶液30及び陽極室24内の陽極室電解質溶液32として、0.5mol/Lの炭酸水素カリウム水溶液を用いた。
< CO2 reduction reaction test>
(Example 1)
A CO2 reduction reaction test was performed using the carbon dioxide reduction apparatus shown in FIG. In Example 1, the reduction reaction electrode C was used as the first electrode 1, which is the working electrode, and platinum foil (PT-353212, manufactured by Nilaco Corporation, φ20 mm × 0.02 mm, 99.98%) was used as the second electrode 20, which was the counter electrode. , an Ag/AgCl electrode (manufactured by EC Frontier, RE-14) was used as the reference electrode 48 . An anion exchange membrane (manufactured by Astom, ASE) was used as the diaphragm 28 . The storage container 26 is separated into a cathode chamber 22 and an anode chamber 24 by a diaphragm 28, and 0.5 mol/L hydrogen carbonate is used as a cathode chamber electrolyte solution 30 in the cathode chamber 22 and an anode chamber electrolyte solution 32 in the anode chamber 24. A potassium aqueous solution was used.

第1電極1、第2電極20及び参照極48を電気化学測定システム(Bio-Logic Science Instruments、SP-150)に接続し、COガス(99.995%)を10ml/minの流量で、外部から収容容器26の側壁に設けられた貫通流路、第1電極1を通して、陰極室22内の陰極室電解質溶液30に供給しながら、第1電極1に、-2.0V vsAg/AgClの電圧を2時間印加することにより、CO還元反応試験を行った。CO還元反応試験に伴う生成物の同定及び定量にはオンラインガスクロマトグラフ(SRI Instruments Multiple Gsa Analyzer ♯5)を使用した。カラムには、MOLECULAR SIEVE、SAとHAYESEP-Dを用い、検出器は熱伝導度型検出器(TCD)並びに水素炎イオン化検出器(FID)を使用した。 The first electrode 1, the second electrode 20 and the reference electrode 48 are connected to an electrochemical measurement system (Bio-Logic Science Instruments, SP-150), CO 2 gas (99.995%) at a flow rate of 10 ml / min, While supplying the cathode chamber electrolyte solution 30 in the cathode chamber 22 from the outside through the through channel provided on the side wall of the container 26 and the first electrode 1, the first electrode 1 is supplied with −2.0 V vs Ag/AgCl. A CO2 reduction reaction test was performed by applying voltage for 2 hours. An on-line gas chromatograph (SRI Instruments Multiple Gsa Analyzer #5) was used for product identification and quantification associated with the CO2 reduction reaction test. MOLECULAR SIEVE, SA and HAYESEP-D were used as columns, and thermal conductivity detectors (TCD) and flame ionization detectors (FID) were used as detectors.

(実施例2)
第1電極1として、還元反応用電極Cに代えて還元反応用電極Bを用いたこと、第1電極1に、-2.0V vsAg/AgClの電圧を3時間印加したこと以外は、実施例1と同様に測定を行った。
(Example 2)
Except that the reduction reaction electrode B was used as the first electrode 1 instead of the reduction reaction electrode C, and that a voltage of −2.0 V vs Ag/AgCl was applied to the first electrode 1 for 3 hours. Measurement was performed in the same manner as in 1.

(比較例)
第1電極1として、還元反応用電極Cに代えて還元反応用電極Aを用いたこと以外は、実施例1と同様に測定を行った。
(Comparative example)
Measurement was performed in the same manner as in Example 1, except that the reduction reaction electrode A was used as the first electrode 1 instead of the reduction reaction electrode C.

図4に、実施例1のCO還元反応試験により生成した生成物の電流効率の経時変化を示し、図5に、比較例のCO還元反応試験により生成した生成物の電流効率の経時変化を示し、図6に、実施例2のCO還元反応試験により生成した生成物の電流効率の経時変化を示す。また、表1に、実施例1~2及び比較例のCO還元反応試験終了時における生成物の電流効率を示す。なお、図4~6の電流効率は20分毎の測定における瞬間値を示しており、表1における電流効率は、測定時間(2時間又は3時間)における全体値(平均値)を示している。 FIG. 4 shows the time course of the current efficiency of the product produced by the CO2 reduction reaction test of Example 1, and FIG. 5 shows the time course of the current efficiency of the product produced by the CO2 reduction reaction test of the comparative example. , and FIG. 6 shows the time course of the current efficiency of the product produced by the CO 2 reduction reaction test of Example 2. Table 1 also shows the current efficiency of the product at the end of the CO 2 reduction reaction test of Examples 1 and 2 and Comparative Example. The current efficiencies in FIGS. 4 to 6 show instantaneous values in measurements every 20 minutes, and the current efficiencies in Table 1 show the overall values (average values) over the measurement time (2 hours or 3 hours). .

Figure 2022116956000001
Figure 2022116956000001

表1に示すように、実施例1は、C2化合物であり、COの12電子還元物であるCならびにCOHの電流効率はそれぞれ29.5%、10.2%であった。また、COの8電子還元物であるCHの電流効率は14.1%であった。一方、COの2電子還元物であるCO及びHCOOHの電流効率はいずれも5.6%であり、また、副生成物であるHの電流効率は31.0%であった。 As shown in Table 1, in Example 1 , the current efficiencies of C2H4 and C2H5OH , which are C2 compounds and are 12-electron reduction products of CO2 , are 29.5% and 10.2%, respectively. Met. Also, the current efficiency of CH4, which is an 8 -electron reduction product of CO2 , was 14.1%. On the other hand, the current efficiencies of CO and HCOOH, two -electron reduction products of CO2 , were both 5.6%, and the current efficiency of H2, a by-product, was 31.0%.

また、表1に示すように、比較例は、C2化合物であり、COの12電子還元物であるCならびにCOHの電流効率はそれぞれ10.1%、3.2%であった。一方、COの2電子還元物であるCO及びHCOOHの電流効率はそれぞれ、8.0%、9.2%であり、また、副生成物であるHの電流効率は48.7%であった。 In addition, as shown in Table 1, the comparative example is a C2 compound, and the current efficiencies of C2H4 and C2H5OH , which are 12 -electron reduction products of CO2 , are 10.1% and 3.2%, respectively. %Met. On the other hand, the current efficiencies of CO and HCOOH, which are two -electron reduction products of CO2, are 8.0% and 9.2%, respectively, and the current efficiency of H2, a by - product, is 48.7%. there were.

これらの結果から、電極体上にPPh粒子の凝集体を修飾した還元反応用電極を用いた実施例1は、カーボンペーパー上に銅を成膜した電極体を還元反応用電極として用いた比較例より、多電子還元物合成の選択性が向上したと言える。より具体的には、多電子還元物合成のうちC2化合物合成の選択性が向上したと言える。また、実施例1は、比較例より、副生成物であるHの生成反応が抑制された。 From these results, Example 1 using a reduction reaction electrode in which aggregates of PPh 3 particles were modified on the electrode body was compared with an electrode body in which a copper film was formed on carbon paper as a reduction reaction electrode. From the examples, it can be said that the selectivity of the multi-electron reductant synthesis was improved. More specifically, it can be said that the selectivity of the C2 compound synthesis among the multi-electron reduction product syntheses was improved. In addition, in Example 1, the production reaction of H 2 as a by-product was suppressed more than in Comparative Example.

また、表1に示すように、実施例2は、C2化合物であり、COの12電子還元物であるCならびにCOHの電流効率はそれぞれ11.5%、3.8%であった。また、COの8電子還元物であるCHの電流効率は20.5%であった。一方、副生成物であるHの電流効率は42.9%であった。 Further, as shown in Table 1, in Example 2 , the current efficiencies of C2H4 and C2H5OH , which are C2 compounds and are 12-electron reduction products of CO2 , are 11.5% and 3.5 %, respectively. was 8%. Also, the current efficiency of CH4, which is an 8 -electron reduction product of CO2 , was 20.5%. On the other hand, the current efficiency of H2, a by-product, was 42.9%.

この結果から、電極体にPPhを含む溶液を浸漬して、電極体上にPPhを修飾した還元反応用電極を用いた実施例2は、カーボンペーパー上に銅を成膜した電極体を還元反応用電極として用いた比較例より、多電子還元物合成の選択性が向上したと言える。また、実施例2は、比較例より、副生成物であるHの生成反応が抑制された。実施例1と実施例2を比較すると、電極体上にPPh粒子の凝集体を修飾した還元反応用電極を用いた実施例1の方が、電極体にPPhを含む溶液を浸漬して、電極体上にPPhを修飾した還元反応用電極Bを用いた実施例2より、Hの生成反応が抑制され、多電子還元物合成のうちC2化合物合成の選択性が向上した。 From these results, Example 2, in which the electrode body was immersed in a solution containing PPh 3 and the electrode body for reduction reaction was modified with PPh 3 on the electrode body, was an electrode body in which a copper film was formed on carbon paper. It can be said that the selectivity in synthesizing a multi-electron reduced product was improved as compared with the comparative example used as a reduction reaction electrode. Moreover, in Example 2, the production reaction of H 2 as a by-product was suppressed more than in Comparative Example. Comparing Example 1 and Example 2, Example 1 using a reduction reaction electrode in which an aggregate of PPh3 particles was modified on the electrode body was immersed in a solution containing PPh3. , the production reaction of H 2 was suppressed and the selectivity for synthesizing a C2 compound among multi-electron reductant syntheses was improved, as compared with Example 2 using a reduction reaction electrode B in which PPh 3 was modified on the electrode body.

図7に、実施例1~2及び比較例のCO還元反応におけるカソード電流の経時変化を示す。また、表2に、実施例1~2及び比較例のCO還元反応における生成物の単位時間当たりの生成量(μmol/h)を示す。 FIG. 7 shows changes over time in cathodic current in the CO 2 reduction reactions of Examples 1 and 2 and Comparative Example. In addition, Table 2 shows the amount of products produced per unit time (μmol/h) in the CO 2 reduction reaction of Examples 1 and 2 and Comparative Example.

Figure 2022116956000002
Figure 2022116956000002

図7に示すように、比較例は、実施例2より、カソード電流値が高い。そのため、比較例は、実施例2より、多電子還元物の電流効率は低いが、表2に示すように、多電子還元物の単位時間当たりの生成量は増加している。一方、実施例1のカソード電流値は、実施例2と同程度であるが、多電子還元物の単位時間当たりの生成量、具体的にはC2化合物の生成量は比較例より高く、H生成量は比較例より低い。これらの結果は、電極体上に修飾されるPPhの修飾形態も、多電子還元物合成の選択性に影響を及ぼすことを示唆している。 As shown in FIG. 7, the comparative example has a higher cathode current value than the second example. Therefore, in Comparative Example, the current efficiency of the multi-electron reduced product is lower than that of Example 2, but as shown in Table 2, the amount of the multi-electron reduced product produced per unit time is increased. On the other hand, the cathodic current value of Example 1 is about the same as that of Example 2, but the amount of multi-electron reduction product produced per unit time, specifically the amount of C2 compound produced, is higher than that of Comparative Example. The production amount is lower than the comparative example. These results suggest that the modified forms of PPh3 that are modified on the electrode body also affect the selectivity of multi-electron reductant synthesis.

図8は、CO還元反応を説明するための実施例1の還元反応用電極Cの模式断面図である。なお、図8の実施例1の還元反応用電極Cにおける破線枠は当該部分の拡大図で示している。図8に示すように、実施例1の還元反応用電極Cでは、電極体10の表面に修飾されたPPh粒子の凝集体12aにより、電解質溶液中のプロトン等が電極体10の表面に拡散することが阻害されるため、H生成反応が抑制される。また、電極体10の表面に修飾されたPPh粒子の凝集体12aにより、CO還元物の反応中間体の拡散が抑制され、電極体10の周辺に停滞するため、反応中間体が、多電子還元物まで(特に、C2化合物まで)還元され易くなると考えられる。なお、比較例の還元反応用電極Aでは、電解質溶液中のプロトンが、障害なく電極体に移動するため、H生成反応が促進される。また、電極体の表面で生成したCO還元物は、電極体周辺に停滞せず、電極体から離れてしまうため、多電子還元生成物まで還元され難い。 FIG. 8 is a schematic cross-sectional view of the reduction reaction electrode C of Example 1 for explaining the CO 2 reduction reaction. In addition, the broken-line frame in the reduction reaction electrode C of Example 1 of FIG. 8 is shown by the enlarged view of the said part. As shown in FIG. 8, in the reduction reaction electrode C of Example 1, protons and the like in the electrolyte solution diffuse to the surface of the electrode body 10 due to the aggregates 12a of the PPh3 particles modified on the surface of the electrode body 10. is inhibited, the H2 production reaction is suppressed. In addition, the aggregate 12a of the PPh3 particles modified on the surface of the electrode body 10 suppresses the diffusion of the reaction intermediates of the CO 2 reduced product, and the reaction intermediates stay around the electrode body 10. It is thought that the electron reduction product (particularly, the C2 compound) is easily reduced. In addition, in the reduction reaction electrode A of the comparative example, the protons in the electrolyte solution move to the electrode body without hindrance, so that the H 2 production reaction is promoted. In addition, since the CO 2 reduction product generated on the surface of the electrode body does not stay around the electrode body and separates from the electrode body, it is difficult to be reduced to the multi-electron reduction product.

1 還元反応用電極、3,4 二酸化炭素還元装置、10 電極体、12 修飾層、12a PPh粒子の凝集体、14 接点部材、16 導線、22 陰極室、24 陽極室、26 収容容器、28 隔膜、30 陰極室電解質溶液、32 陽極室電解質溶液、48 参照極。
1 reduction reaction electrode 3,4 carbon dioxide reduction device 10 electrode body 12 modification layer 12a aggregate of PPh 3 particles 14 contact member 16 conducting wire 22 cathode chamber 24 anode chamber 26 container 28 Diaphragm, 30 cathodic chamber electrolyte solution, 32 anodic chamber electrolyte solution, 48 reference electrode.

Claims (5)

二酸化炭素の還元反応に用いられる還元反応用電極であって、
電極触媒を含む電極体と、前記電極体上に修飾された非導電性の疎水性有機物とを備えることを特徴とする還元反応用電極。
A reduction reaction electrode used for a reduction reaction of carbon dioxide,
A reduction reaction electrode comprising: an electrode body containing an electrode catalyst; and a non-conductive hydrophobic organic substance modified on the electrode body.
前記電極触媒は、銅系触媒を含むことを特徴とする請求項1に記載の還元反応用電極。 2. The reduction reaction electrode according to claim 1, wherein the electrode catalyst contains a copper-based catalyst. 前記銅系触媒は、金属銅であることを特徴とする請求項2に記載の還元反応用電極。 3. The reduction reaction electrode according to claim 2, wherein the copper-based catalyst is metallic copper. 前記非導電性の疎水性有機物は、トリフェニルホスフィンを含むことを特徴とする請求項1~3のいずれか1項に記載の還元反応用電極。 4. The reduction reaction electrode according to claim 1, wherein the non-conductive hydrophobic organic substance contains triphenylphosphine. 前記非導電性の疎水性有機物は、トリフェニルホスフィン粒子の凝集体であることを特徴とする請求項1~3のいずれか1項に記載の還元反応用電極。
4. The reduction reaction electrode according to claim 1, wherein the non-conductive hydrophobic organic substance is an aggregate of triphenylphosphine particles.
JP2021013389A 2021-01-29 2021-01-29 Electrode for reduction reaction Active JP7327422B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2021013389A JP7327422B2 (en) 2021-01-29 2021-01-29 Electrode for reduction reaction

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2021013389A JP7327422B2 (en) 2021-01-29 2021-01-29 Electrode for reduction reaction

Publications (2)

Publication Number Publication Date
JP2022116956A true JP2022116956A (en) 2022-08-10
JP7327422B2 JP7327422B2 (en) 2023-08-16

Family

ID=82749707

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2021013389A Active JP7327422B2 (en) 2021-01-29 2021-01-29 Electrode for reduction reaction

Country Status (1)

Country Link
JP (1) JP7327422B2 (en)

Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01205088A (en) * 1988-02-10 1989-08-17 Tanaka Kikinzoku Kogyo Kk Method for electrolytically reducing carbon dioxide
JPH03151337A (en) * 1989-11-06 1991-06-27 Mitsui Toatsu Chem Inc Production of alcohol
JPH06145103A (en) * 1992-11-10 1994-05-24 Daicel Chem Ind Ltd Production of carbonic diester
JP2006028415A (en) * 2004-07-20 2006-02-02 Jsr Corp Sulfonated polymer and solid polyelectrolyte
JP2017078190A (en) * 2015-10-19 2017-04-27 富士通株式会社 Electrode for carbon dioxide reduction, container, and carbon dioxide reduction device
JP2017101285A (en) * 2015-12-02 2017-06-08 株式会社豊田中央研究所 Electrode for reduction reaction and reaction device prepared therewith
JP2017125234A (en) * 2016-01-13 2017-07-20 富士通株式会社 Electrode for carbon dioxide reduction, container, and carbon dioxide reduction device
JP2018119181A (en) * 2017-01-25 2018-08-02 株式会社東芝 Reduction catalyst, chemical reaction device using the same, reduction method, and system of producing reduced substance
WO2018155473A1 (en) * 2017-02-27 2018-08-30 株式会社クラレ Method for manufacturing catalyst liquid
JP2020041223A (en) * 2017-01-25 2020-03-19 株式会社東芝 Reduction catalyst, chemical reaction device using the same, reduction method, and system of producing reduced substance
JP2020132965A (en) * 2019-02-21 2020-08-31 株式会社東芝 Electrode catalyst layer for carbon dioxide electrolysis cell, and electrolysis cell and electrolysis device having same
JP2021007919A (en) * 2019-07-01 2021-01-28 株式会社豊田中央研究所 Carbon dioxide reduction catalyst, carbon dioxide reduction electrode, carbon dioxide reduction device, and artificial photosynthesis device

Patent Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01205088A (en) * 1988-02-10 1989-08-17 Tanaka Kikinzoku Kogyo Kk Method for electrolytically reducing carbon dioxide
JPH03151337A (en) * 1989-11-06 1991-06-27 Mitsui Toatsu Chem Inc Production of alcohol
JPH06145103A (en) * 1992-11-10 1994-05-24 Daicel Chem Ind Ltd Production of carbonic diester
JP2006028415A (en) * 2004-07-20 2006-02-02 Jsr Corp Sulfonated polymer and solid polyelectrolyte
JP2017078190A (en) * 2015-10-19 2017-04-27 富士通株式会社 Electrode for carbon dioxide reduction, container, and carbon dioxide reduction device
JP2017101285A (en) * 2015-12-02 2017-06-08 株式会社豊田中央研究所 Electrode for reduction reaction and reaction device prepared therewith
JP2017125234A (en) * 2016-01-13 2017-07-20 富士通株式会社 Electrode for carbon dioxide reduction, container, and carbon dioxide reduction device
JP2018119181A (en) * 2017-01-25 2018-08-02 株式会社東芝 Reduction catalyst, chemical reaction device using the same, reduction method, and system of producing reduced substance
JP2020041223A (en) * 2017-01-25 2020-03-19 株式会社東芝 Reduction catalyst, chemical reaction device using the same, reduction method, and system of producing reduced substance
WO2018155473A1 (en) * 2017-02-27 2018-08-30 株式会社クラレ Method for manufacturing catalyst liquid
JP2020132965A (en) * 2019-02-21 2020-08-31 株式会社東芝 Electrode catalyst layer for carbon dioxide electrolysis cell, and electrolysis cell and electrolysis device having same
JP2021007919A (en) * 2019-07-01 2021-01-28 株式会社豊田中央研究所 Carbon dioxide reduction catalyst, carbon dioxide reduction electrode, carbon dioxide reduction device, and artificial photosynthesis device

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
BUCKLEY, A. K., ET AL.: ""Electrocatalysis at Organic-Metal Interfaces:Identification of Structure-Reactivity Relationships f", J.AM.CHEM.SOC., vol. 141, no. 18, JPN6023007952, 31 March 2019 (2019-03-31), pages 7355 - 7364, XP093052275, ISSN: 0005000932, DOI: 10.1021/jacs.8b13655 *

Also Published As

Publication number Publication date
JP7327422B2 (en) 2023-08-16

Similar Documents

Publication Publication Date Title
JP6622237B2 (en) Carbon dioxide electrolyzer
JP6672193B2 (en) Carbon dioxide electrolysis cell and electrolyzer
JP6396990B2 (en) Electrochemical synthesis of ammonia in alkaline media
EP2898120B1 (en) Devices and processes for the electrolytic reduction of carbon dioxide and carbon dioxide sensor
US10344388B2 (en) CO2 reduction catalyst, CO2 reduction electrode, CO2 reduction reaction apparatus, and process for producing CO2 reduction catalyst
US10975480B2 (en) Electrocatalytic process for carbon dioxide conversion
JP2022515169A (en) A method of converting carbon dioxide (CO2) into CO by an electrolytic reaction
US20240003017A1 (en) Electrochemical cells and electrochemical methods
EP0390157B1 (en) Electrolysis cell and method of use
KR20180020763A (en) Electrochemical reduction apparatus of carbon dioxide and/or carbon monoxide and electrochemical reduction method of carbon dioxide and/or carbon monoxide using the apparatus
JP2019157251A (en) Electrolysis cell and electrolysis device of carbon dioxide
Park et al. Direct fabrication of gas diffusion cathode by pulse electrodeposition for proton exchange membrane water electrolysis
JP5470833B2 (en) Method for producing hydrogen peroxide
JP6649307B2 (en) Electrochemical reactor
Hasnat et al. Lean Cu-immobilized Pt and Pd films/–H+ conducting membrane assemblies: relative electrocatalytic nitrate reduction activities
WO2018037774A1 (en) Cathode, electrolysis cell for producing organic hydride, and organic hydride production method
Zhao et al. Regulation of three-dimensional hydrophobic state of copper dendrite adjusts the distribution of liquid products from electrochemical reduction of CO2
JP6221067B2 (en) Formic acid production apparatus and method
JP7327422B2 (en) Electrode for reduction reaction
JP2015224392A (en) Oxygen-consuming electrode and method for its production
Park et al. Heterostructured nanocatalysts to boost the hydrogen evolution reaction in neutral electrolyte
KR102318719B1 (en) Current collector for reduction apparatus of carbon dioxide, reduction apparatus of carbon dioxide comprising the same, and reducing method of carbon dioxide using the same
US20220127736A1 (en) Electrolyser for CO2 Reduction into Hydrocarbons
JP7380233B2 (en) carbon dioxide reduction catalyst
WO2024024709A1 (en) Cathode electrode, composite of cathode electrode and substrate, electrolytic reduction device comprising cathode electrode, and method for producing composite of cathode electrode and substrate

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20220323

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20230214

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20230228

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20230417

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20230704

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20230717

R150 Certificate of patent or registration of utility model

Ref document number: 7327422

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150