WO2014207987A1 - Light-emitting element and method for manufacturing light-emitting element - Google Patents

Light-emitting element and method for manufacturing light-emitting element Download PDF

Info

Publication number
WO2014207987A1
WO2014207987A1 PCT/JP2014/002574 JP2014002574W WO2014207987A1 WO 2014207987 A1 WO2014207987 A1 WO 2014207987A1 JP 2014002574 W JP2014002574 W JP 2014002574W WO 2014207987 A1 WO2014207987 A1 WO 2014207987A1
Authority
WO
WIPO (PCT)
Prior art keywords
light emitting
layer
light
quaternary
emitting element
Prior art date
Application number
PCT/JP2014/002574
Other languages
French (fr)
Japanese (ja)
Inventor
実 川原
鈴木 金吾
Original Assignee
信越半導体株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 信越半導体株式会社 filed Critical 信越半導体株式会社
Priority to CN201480033929.2A priority Critical patent/CN105283970B/en
Publication of WO2014207987A1 publication Critical patent/WO2014207987A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/02Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies
    • H01L33/20Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies with a particular shape, e.g. curved or truncated substrate
    • H01L33/22Roughened surfaces, e.g. at the interface between epitaxial layers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/005Processes
    • H01L33/0093Wafer bonding; Removal of the growth substrate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/02Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies
    • H01L33/26Materials of the light emitting region
    • H01L33/30Materials of the light emitting region containing only elements of Group III and Group V of the Periodic Table

Definitions

  • the present invention relates to a light emitting element having a quaternary light emitting layer and window layers above and below, and a method for manufacturing the light emitting element.
  • a quaternary light emitting layer and a light extraction window layer are grown on a GaAs substrate as a growth substrate in a MOVPE reactor.
  • a light emitting device of a type in which a thicker window layer is grown on the window layer in the reactor and then formed into chips is improved by increasing the thickness of the window layer.
  • the material of the window layer is selected to be transparent to the light emitted from the quaternary light emitting layer.
  • this type of light-emitting element light emitted from the light-emitting layer is extracted from the upper and lower window layers, so that higher luminance can be achieved.
  • the surface of the GaP window layer is roughened by performing wet etching with an etching solution containing iodine, acetic acid, hydrofluoric acid, and nitric acid using GaP as the window layer.
  • the GaP window layer is etched as described above, but the quaternary light emitting layer is not etched. Therefore, the side surface of the quaternary light emitting layer is outside the side surface of the window layer.
  • the side surface of the light emitting element is formed in a convex shape. In this state, when the light emitting element is sealed with resin to manufacture the light emitting device, the chemical solution that has entered the light emitting device through the lead frame easily erodes the light emitting layer that protrudes to the outside.
  • the portion disappeared by the erosion of the luminescent layer becomes a cavity, and the chemical solution becomes more easily penetrated, and the reaction amount increases at an accelerated rate. As a result, the light emitting element is likely to be broken and unlit. Even when the lamp is not turned off, if the light emitting layer protrudes to the outside, there is a problem in that the light emission output and Vf fluctuate.
  • the present invention has been made in view of the above-described problems, and provides a high-luminance light-emitting element that can reduce the problem of being destroyed and become unlit, and that can suppress fluctuations in light output and Vf, and a method for manufacturing the same. With the goal.
  • a quaternary luminescent layer a first window layer formed on one main surface side of the quaternary luminescent layer, and the other of the quaternary luminescent layer.
  • a light emitting device having a second window layer formed on the main surface side of the light emitting device, wherein a side surface of the quaternary light emitting layer is recessed inside the light emitting device from a side surface of the first and second window layers.
  • Such a light-emitting element can suppress fluctuations in light emission output and Vf and chemical solution from contacting the light-emitting layer, and as a result, a high-intensity light-emitting element that can reduce the problem of being destroyed and not being lit.
  • the side surfaces of the first and second window layers are roughened. With such a light emitting element, the luminance becomes higher and the present invention is particularly effective.
  • the side surface of the quaternary light emitting layer is recessed inwardly within a range of 2 ⁇ m or less than the side surfaces of the first and second window layers.
  • the quaternary light emitting layer may be made of AlGaInP, and the first and second window layers may be made of GaP. Such a light emitting device is of high quality.
  • the step of forming the first window layer on one main surface side of the quaternary light emitting layer, and the formation of the second window layer on the other main surface side of the quaternary light emitting layer comprising: forming a side surface of the quaternary light-emitting layer so as to be recessed inside the light-emitting element from the side surfaces of the first and second window layers.
  • a method for manufacturing a light emitting device is provided.
  • the side surface of the quaternary light emitting layer can be formed to be recessed inwardly within a range of 2 ⁇ m or less from the side surfaces of the first and second window layers. If it does in this way, when sealing with resin at the time of light-emitting device manufacture, the light emitting element which can reduce the malfunction of the sealing by a recessed part can be manufactured.
  • AlGaInP can be used for the quaternary light emitting layer, and GaP can be used for the first and second window layers. In this way, a high quality light emitting device can be manufactured.
  • the side surface of the quaternary light emitting layer is brought into the inner side. It can be formed to be recessed. In this way, the concave portion on the side surface of the quaternary light emitting layer can be easily formed at low cost.
  • the side surface of the quaternary light emitting layer is formed so as to be recessed inside the light emitting element from the side surfaces of the first and second window layers, the light emission output and the variation in Vf and the chemical solution contact the light emitting layer. As a result, it is possible to obtain a high-luminance light-emitting element that can reduce a problem that the lamp is broken and becomes unlit.
  • FIG. 3 is a diagram schematically illustrating a light emitting device substrate from which a GaAs substrate and a GaAs buffer layer are removed in the manufacturing process of the method for manufacturing a light emitting device of the present invention. It is the figure which showed the outline of the light emitting element substrate in which the GaP transparent substrate layer was formed in the manufacture process of the manufacturing method of the light emitting element of this invention.
  • the light-emitting element 10 of the present invention includes a second window layer 21, an n-type connection layer 13, a quaternary light-emitting layer 17, a p-type connection layer 18, and a first window layer 19. Yes.
  • the first window layer 19 is formed on the main surface side above the quaternary light emitting layer 17 via the p-type connection layer 18, and the second window layer 21 is on the main surface side below the quaternary light emitting layer 17.
  • the quaternary light emitting layer 17 includes an n-type cladding layer 14, an active layer 15, and a p-type cladding layer 16.
  • Each layer of the quaternary light emitting layer 17 can be made of, for example, AlGaInP, and the first window layer 19, the second window layer 21, the n-type connection layer 13, and the p-type connection layer 18 are made of, for example, GaP. It can be made up of.
  • the electrode 24 is formed on the main surface above the first window layer 19 so as to cover the bonding alloyed layer 24a, and the bonding wire 28 is connected to the electrode 24.
  • An electrode 25 is formed on the main surface below the second window layer 21 so as to cover the bonding alloyed layer 25a.
  • the light emitting device 10 of the present invention is a light emitting device with extremely high brightness because light emitted from the quaternary light emitting layer 17 is extracted from the upper and lower window layers 19 and 21.
  • the side surfaces of the first window layer 19 and the second window layer 21 and the exposed main surface can be roughened as shown in FIG. This roughening can be performed, for example, by etching as described later.
  • the side surface of the quaternary light-emitting layer 17 is recessed inside the light-emitting element from both side surfaces of the first window layer 19 and the second window layer 21. That is, when both side surfaces of the first window layer 19 and the second window layer 21 are defined as reference surfaces, both side surfaces of the quaternary light emitting layer 17 are recessed inward from the corresponding reference surfaces.
  • both side surfaces of the first window layer 19 and the second window layer 21 are defined as reference surfaces
  • both side surfaces of the quaternary light emitting layer 17 are recessed inward from the corresponding reference surfaces.
  • the amount by which the quaternary light-emitting layer 17 is recessed is not particularly limited, but can be, for example, in a range of 2 ⁇ m or less from the side surfaces of the first and second window layers. By making it within this range, when manufacturing the light emitting device by sealing the light emitting element of the present invention with a resin, it is possible to reduce sealing defects such as a resin unfilled portion in the recess.
  • the lower limit of the dent amount can be set to 1 ⁇ m, for example. If the dent amount is at least 1 ⁇ m, the destruction of the quaternary light emitting layer 17 can be surely reduced.
  • an n-type GaAs single crystal substrate 11 is prepared as a growth substrate (step 1 in FIG. 2). Thereafter, as shown in FIG. 3, an n-type GaAs buffer layer 12 is epitaxially grown to a thickness of, for example, 0.5 ⁇ m on the main surface of the n-type GaAs single crystal substrate 11 (step 2 in FIG. 2). An n-type connection layer 13 is epitaxially grown on the buffer layer 12.
  • the quaternary light-emitting layer 17 is made of n-type cladding layer 14 and active layer 15 each made of (Al x Ga 1-x ) y In 1-y P (where 0 ⁇ x ⁇ 1, 0 ⁇ y ⁇ 1).
  • the p-type cladding layer 16 is formed (step 2 in FIG. 2). Specifically, first, for example, an n-type cladding layer 14 having a thickness of 1 ⁇ m (the n-type dopant is Si) is epitaxially grown as a first conductivity type cladding layer.
  • an active layer 15 (non-doped) having a thickness of 0.6 ⁇ m is epitaxially grown, and then, for example, a p-type cladding layer 16 having a thickness of 1 ⁇ m (p-type dopant is Mg: C from an organometallic molecule is also used as a p-type dopant).
  • the second conductivity type cladding layer is epitaxially grown in this order.
  • each dopant concentration of the p-type cladding layer 16 and the n-type cladding layer 14 can be set to, for example, 1 ⁇ 10 17 / cm 3 or more and 2 ⁇ 10 18 / cm 3 or less.
  • the quaternary light emitting layer 17 has a double hetero structure in which an AlGaInP active layer is sandwiched between an n-type AlGaInP clad layer and a p-type AlGaInP clad layer having a larger band gap, for example,
  • a high-luminance element can be realized in a wide wavelength range from green to red.
  • the p-type connection layer 18 is epitaxially grown on the p-type cladding layer 16 (step 3 in FIG. 2).
  • the epitaxial growth of each of the above layers can be performed by a known MOVPE method.
  • the following can be used as the source gas that becomes the source of each component of Al, Ga, In, and P.
  • Al source gas trimethylaluminum (TMAl), triethylaluminum (TEAl), etc.
  • Ga source gas trimethylgallium (TMGa), triethylgallium (TEGa), etc.
  • P source gas trimethyl phosphorus (TMP), triethyl phosphorus (TEP), phosphine (PH 3 ) and the like.
  • the first window layer 19 made of p-type GaP is vapor-phase grown by HVPE as a light extraction layer (step 4 in FIG. 2).
  • the thickness of the first window layer 19 to be vapor grown is set to 10 ⁇ m or more.
  • the group III element Ga is heated and held at a predetermined temperature in the container, and hydrogen chloride is introduced onto the Ga to obtain the following formula (1): GaCl is generated by the above reaction, and is supplied onto the substrate together with H 2 gas which is a carrier gas.
  • H 2 gas which is a carrier gas.
  • the temperature in the container is set to, for example, 640 ° C. or more and 860 ° C. or less.
  • GaCl is excellent in reactivity with PH 3, and the window layer can be efficiently grown by the reaction of the following formula (2).
  • the light emitting element substrate 20 shown in FIG. 3 is obtained through the above steps.
  • the n-type GaAs substrate 11 and the n-type GaAs buffer layer 12 are chemically treated using an etching solution such as a mixed solution of ammonia and hydrogen peroxide. It removes by etching (process 5 of FIG. 2).
  • an etching solution such as a mixed solution of ammonia and hydrogen peroxide. It removes by etching (process 5 of FIG. 2).
  • a separately prepared n-type GaP single crystal substrate is bonded to form a second window layer 21 to form a light emitting element substrate 20 ′ (step 6 in FIG. 2).
  • the second window layer 21 can also be formed by epitaxial growth by the HVPE method.
  • the main surface above the first window layer 19 (the surface on the side opposite to the p-type connection layer 18) and the second are formed by sputtering or vacuum evaporation.
  • a metal layer for forming a bonded alloying layer is formed on the main surface below the window layer 21 (the surface opposite to the n-type connecting layer 13), and further heat treatment for alloying (so-called sintering treatment) is performed.
  • the bonded alloyed layers 24a and 25a are obtained.
  • the electrode 24 and the electrode 25 are formed so that these joining alloying layers may be covered, respectively (process 7 of FIG. 2).
  • the composition of the roughening etching solution can be a known composition comprising acetic acid, hydrofluoric acid, nitric acid, iodine, and water.
  • composition ratios are acetic acid (CH 3 COOH conversion): 37.4 mass% to 94.8 mass%, hydrofluoric acid (HF conversion): 0.4 mass% to 14.8 mass%, nitric acid (HNO 3 conversion): 1.3 mass% or more and 14.7 mass% or less, iodine (I2 conversion): contained in the range of 0.12 mass% or more and 0.84 mass% or less, and the water content is 2. It can be 4 mass% or more and 45 mass% or less.
  • Step 9 in FIG. 2 the reason why the dicing direction is the ⁇ 100> direction is that cracks and chips along the edge of the chip region are less likely to occur.
  • a processing damage layer having a relatively high crystal defect density is formed on the side surface exposed by dicing.
  • a sulfuric acid-hydrogen peroxide aqueous solution can be used, and for example, the mass blending ratio of sulfuric acid: hydrogen peroxide: water can be 3: 1: 1.
  • the liquid temperature is adjusted to 40 ° C. or higher and 60 ° C. or lower, and etching for about 6 minutes may be required.
  • the first and second window layers can be roughened on the side surface of the light-emitting element chip from which the processing damage layer has been removed, and the quaternary light-emitting layer 17 is placed on the inner side from the side surfaces of the first and second window layers.
  • the side surfaces of the first window layer 19 (the main surface may also be roughened at this time) and the side surfaces of the second window layer 21 are made different by contacting an etching solution that can be both recessed.
  • the side surface of the quaternary light-emitting layer 17 is etched and concaved simultaneously with isotropic etching to roughen the surface (step 11 in FIG. 2).
  • the composition of the etching solution used at this time about 10% by mass of hydrochloric acid can be added to the above-mentioned roughening etching solution composed of a mixture of acetic acid, hydrofluoric acid, nitric acid, iodine and water.
  • iodine, acetic acid, hydrofluoric acid, and nitric acid contribute to the roughening of the side and main surfaces of the GaP window layers 19 and 21, and hydrochloric acid contributes to the etching of the quaternary light emitting layer 17 made of AlGaInP.
  • the amount of indentation of the quaternary light emitting layer 17 is not particularly limited as described above.
  • the amount can be within a range of 2 ⁇ m or less from the side surfaces of the first and second window layers. . Since this dent amount has a linear relationship with the etching time, the dent amount can be adjusted by the etching time.
  • step 11 the roughening of the window layer and the etching of the quaternary light emitting layer can be performed simultaneously.
  • the roughening of the window layer and the etching of the quaternary light emitting layer are performed separately. You can also.
  • quaternary emission is performed with an etching solution composed of 34.8% by mass of acetic acid, 58.8% by mass of sulfuric acid, 0.7% by mass of hydrochloric acid, 0.6% by mass of hydrogen peroxide, and 5.2% by mass of water.
  • etching solution composed of 34.8% by mass of acetic acid, 58.8% by mass of sulfuric acid, 0.7% by mass of hydrochloric acid, 0.6% by mass of hydrogen peroxide, and 5.2% by mass of water.
  • a known roughening etchant comprising iodine, acetic acid, hydrofluoric acid, nitric acid, and water.
  • Each light emitting element chip that has been subjected to the surface roughening treatment as described above is bonded to the metal stage via the Ag paste layer on the lower main surface side, and the bonding wire 28 is connected to the light extraction side electrode 24. If a mold part (not shown) made of epoxy resin is formed, a final light emitting element is completed.
  • a light emitting device having a quaternary light emitting layer recessed inward was prepared.
  • the window layer was roughened using an etching solution comprising 71.7% by mass of acetic acid, 5% by mass of hydrofluoric acid, 5% by mass of nitric acid, 0.3% by mass of iodine, 8% by mass of water, and 10% by mass of hydrochloric acid. Planarization and etching of the quaternary light emitting layer were performed. At this time, etching was performed while changing the etching time, and the amount of dents was evaluated.
  • the light emitting device was manufactured by adjusting the etching time, and 50 light emitting devices each having a dent amount of 1.0 ⁇ m and 1.5 ⁇ m were prepared.
  • the side surface of the quaternary light emitting layer is formed by performing etching without adding hydrochloric acid to the roughening treatment of the window layer. Fifty light emitting elements that protrude 1.0 ⁇ m outside the side surface of the window layer and 50 light emitting elements that protrude 1.5 ⁇ m outside were prepared.
  • the 50 light-emitting elements prepared in the above example, comparative example 1 and comparative example 2 were each mounted on a bullet-type lamp having a diameter of 5 mm, and after initial measurement, an environmental exposure test was performed. In order to sufficiently permeate the flux and moisture, it was immersed in the flux for 1 hour, and then a reflow test was performed. After the reflow test, a temperature cycle test of ⁇ 50 ° C. to 80 ° C. was performed for 48 hours, and the ratio of the lamp whose luminance and Vf fluctuated by 10% or more was evaluated. Thereafter, an energization test was conducted at 20 mA for 100 hours.
  • Table 1 summarizes the number of lamps that were not lit after the energization test and the number of lamps that did not turn off but had luminance and Vf characteristics varying by 10% or more.
  • “+” means a bulge
  • “ ⁇ ” means a dent.
  • the ratio of non-lighting was the highest in the light emitting element of Comparative Example 1, and four of the light emitting elements with protruding amounts of 1.0 ⁇ m and 1.5 ⁇ m were unlighted. On the other hand, two of the light emitting elements of Comparative Example 2 were unlit.
  • the cause of the non-lighting is that when the quaternary light emitting layer is not recessed inward, the chemical solution that has entered the lamp contacts the quaternary light emitting layer and the contact portion becomes a cavity, so that the chemical solution is more likely to accumulate. This is considered to be because the reaction proceeds at an accelerated rate.
  • the ratio of the lamp in which the characteristic has changed exceeds 40% regardless of the protruding amount. This is presumably because when the light emitting layer protrudes to the outside, the contact with the resin is improved, so that stress transmission to the light emitting layer due to thermal contraction of the resin that occurs when a temperature cycle is applied is promoted.
  • the ratio of the lamp whose characteristics were changed was suppressed to 2% or less regardless of the dent amount.
  • the light-emitting element of the present invention can also suppress changes in luminance and Vf due to temperature changes.
  • the present invention is not limited to the above embodiment.
  • the above-described embodiment is an exemplification, and the present invention has any configuration that has substantially the same configuration as the technical idea described in the claims of the present invention and that exhibits the same effects. Are included in the technical scope.

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Led Devices (AREA)

Abstract

 The present invention is a light-emitting element having a quaternary light-emitting layer, a first window layer formed on one main-surface side of the quaternary light-emitting layer, and a second window layer formed on the other main-surface side of the quaternary light-emitting layer, wherein the light-emitting element is characterized in that the side surfaces of the quaternary light-emitting layer are further indented toward the inside of the light-emitting element than are the side surfaces of the first and second window layers. This makes it possible to obtain and manufacture a high-brightness light-emitting element in which it is possible to reduce faults where the light-emitting element becomes destroyed and unlit and to suppress variations in light emission output and Vf.

Description

発光素子及び発光素子の製造方法Light emitting device and method for manufacturing light emitting device
 本発明は、4元発光層とその上下に窓層を有する発光素子及びその発光素子の製造方法に関する。 The present invention relates to a light emitting element having a quaternary light emitting layer and window layers above and below, and a method for manufacturing the light emitting element.
 超高輝度型赤色発光素子を製造する場合、MOVPEのリアクター内にて成長用基板であるGaAs基板の上に4元発光層、光取り出し用の窓層を成長させ、基板を取り出した後、HVPEのリアクター内にて窓層の上に更に厚い窓層を成長させた後にチップ化するタイプの発光素子がある。このタイプの発光素子では、窓層を厚くすることによって発光素子の側面からの光の取り出し効率を向上している。ここで、窓層の材料は4元発光層から放出する光に対し透明なものが選択される。 When manufacturing an ultra-bright red light emitting device, a quaternary light emitting layer and a light extraction window layer are grown on a GaAs substrate as a growth substrate in a MOVPE reactor. There is a light emitting device of a type in which a thicker window layer is grown on the window layer in the reactor and then formed into chips. In this type of light-emitting element, the extraction efficiency of light from the side surface of the light-emitting element is improved by increasing the thickness of the window layer. Here, the material of the window layer is selected to be transparent to the light emitted from the quaternary light emitting layer.
 ところで、4元発光層から基板側へ放出された光は、GaAs基板により吸収されてしまう。そこで、基板側へ放出される光を取り出して光の取り出し効率をさらに向上するために、GaAs基板を湿式エッチングにより除去したエピタキシャルウェーハに光に対して透明な窓層を成長させたタイプの発光素子もある。このタイプの発光素子では、発光層から放出した光を上下の窓層から取り出すので、更なる高輝度化を図ることができる。 Incidentally, light emitted from the quaternary light emitting layer to the substrate side is absorbed by the GaAs substrate. Therefore, in order to further improve the light extraction efficiency by extracting light emitted to the substrate side, a light emitting element of a type in which a window layer transparent to light is grown on an epitaxial wafer from which a GaAs substrate has been removed by wet etching. There is also. In this type of light-emitting element, light emitted from the light-emitting layer is extracted from the upper and lower window layers, so that higher luminance can be achieved.
 これら窓層に用いられる材料は通常屈折率が空気と異なるため、スネルの法則に従うと、発光層からの光を全て窓層から取り出すことができず、ある割合で発光素子内で失われてしまうことになる。この光の損失により発光素子の輝度が低下し、発光効率が低下する大きな要因となっている。これに対し、窓層の表面をエッチングで粗面化することで、光の取り出し効率を向上できることが知られている(例えば、特許文献1参照)。 Since the materials used for these window layers usually have a refractive index different from that of air, all the light from the light-emitting layer cannot be extracted from the window layer according to Snell's law and is lost in a certain proportion in the light-emitting element. It will be. This loss of light reduces the luminance of the light emitting element, which is a major factor in reducing the light emission efficiency. On the other hand, it is known that the light extraction efficiency can be improved by roughening the surface of the window layer by etching (see, for example, Patent Document 1).
 特許文献1では、窓層をGaPとして、ヨウ素、酢酸、フッ酸、硝酸を含有したエッチング液でウェットエッチングを行うことでGaP窓層の表面を粗面化している。 In Patent Document 1, the surface of the GaP window layer is roughened by performing wet etching with an etching solution containing iodine, acetic acid, hydrofluoric acid, and nitric acid using GaP as the window layer.
特開2005-317663号公報JP 2005-317663 A
 しかしながら、特許文献1に開示されたエッチング液によるエッチングでは、上記のようにGaP窓層はエッチングされるものの、4元発光層はエッチングされないため、4元発光層の側面が窓層の側面より外側に出っ張ってしまい、発光素子の側面が凸状に形成される。この状態で発光素子が樹脂で封止されて発光装置が作製されると、リードフレームを伝って発光装置内に浸入した薬液が外側に出っ張った発光層を侵食しやすくなる。 However, in the etching with the etching solution disclosed in Patent Document 1, the GaP window layer is etched as described above, but the quaternary light emitting layer is not etched. Therefore, the side surface of the quaternary light emitting layer is outside the side surface of the window layer. The side surface of the light emitting element is formed in a convex shape. In this state, when the light emitting element is sealed with resin to manufacture the light emitting device, the chemical solution that has entered the light emitting device through the lead frame easily erodes the light emitting layer that protrudes to the outside.
 一旦、発光層の浸食が起こると、発光層の浸食により消失した箇所は空洞になり、更に薬液が浸入しやすくなってしまい、反応量が加速的に大きくなる。これにより発光素子が破壊されて不灯となる不具合が発生しやすくなる。不灯とならない場合でも、発光層が外側に出っ張っていると、発光出力やVfの変動が生じるという問題もある。 Once the erosion of the luminescent layer occurs, the portion disappeared by the erosion of the luminescent layer becomes a cavity, and the chemical solution becomes more easily penetrated, and the reaction amount increases at an accelerated rate. As a result, the light emitting element is likely to be broken and unlit. Even when the lamp is not turned off, if the light emitting layer protrudes to the outside, there is a problem in that the light emission output and Vf fluctuate.
 本発明は前述のような問題に鑑みてなされたもので、破壊されて不灯となる不具合を低減でき、発光出力やVfの変動を抑制できる高輝度な発光素子及びその製造方法を提供することを目的とする。 The present invention has been made in view of the above-described problems, and provides a high-luminance light-emitting element that can reduce the problem of being destroyed and become unlit, and that can suppress fluctuations in light output and Vf, and a method for manufacturing the same. With the goal.
 上記目的を達成するために、本発明によれば、4元発光層と、該4元発光層の片方の主表面側に形成された第1の窓層と、前記4元発光層のもう一方の主表面側に形成された第2の窓層を有する発光素子であって、前記4元発光層の側面が、前記第1及び第2の窓層の側面よりも前記発光素子の内側に凹んだものであることを特徴とする発光素子が提供される。 In order to achieve the above object, according to the present invention, a quaternary luminescent layer, a first window layer formed on one main surface side of the quaternary luminescent layer, and the other of the quaternary luminescent layer. A light emitting device having a second window layer formed on the main surface side of the light emitting device, wherein a side surface of the quaternary light emitting layer is recessed inside the light emitting device from a side surface of the first and second window layers. There is provided a light emitting element characterized in that
 このような発光素子であれば、発光出力やVfの変動及び薬液が発光層に接触することを抑制でき、その結果、破壊されて不灯となる不具合を低減できる高輝度な発光素子となる。 Such a light-emitting element can suppress fluctuations in light emission output and Vf and chemical solution from contacting the light-emitting layer, and as a result, a high-intensity light-emitting element that can reduce the problem of being destroyed and not being lit.
 このとき、前記第1及び第2の窓層の側面が粗面化されたものであることが好ましい。
 このような発光素子であれば、より高輝度なものとなるとともに、本発明が特に有効に作用する。
At this time, it is preferable that the side surfaces of the first and second window layers are roughened.
With such a light emitting element, the luminance becomes higher and the present invention is particularly effective.
 また、前記4元発光層の側面は、前記第1及び第2の窓層の側面よりも2μm以下の範囲で内側に凹んだものであることが好ましい。
 このような発光素子であれば、発光装置製造時に樹脂により封止される際に、凹部による封止の不具合を低減できるものとなる。
Moreover, it is preferable that the side surface of the quaternary light emitting layer is recessed inwardly within a range of 2 μm or less than the side surfaces of the first and second window layers.
With such a light-emitting element, when sealing with a resin at the time of manufacturing a light-emitting device, it is possible to reduce the sealing defects caused by the recesses.
 また、前記4元発光層はAlGaInPよりなり、前記第1及び第2の窓層はGaPよりなるものとすることができる。
 このような発光素子であれば、高品質なものとなる。
The quaternary light emitting layer may be made of AlGaInP, and the first and second window layers may be made of GaP.
Such a light emitting device is of high quality.
 また、本発明によれば、4元発光層の片方の主表面側に第1の窓層を形成する工程と、前記4元発光層のもう一方の主表面側に第2の窓層を形成する工程を有する発光素子の製造方法であって、前記4元発光層の側面を、前記第1及び第2の窓層の側面よりも前記発光素子の内側に凹むように形成する工程を有することを特徴とする発光素子の製造方法が提供される。 Further, according to the present invention, the step of forming the first window layer on one main surface side of the quaternary light emitting layer, and the formation of the second window layer on the other main surface side of the quaternary light emitting layer. A method of manufacturing a light-emitting element, comprising: forming a side surface of the quaternary light-emitting layer so as to be recessed inside the light-emitting element from the side surfaces of the first and second window layers. A method for manufacturing a light emitting device is provided.
 このような製造方法であれば、発光出力やVfの変動及び薬液が発光層に接触することを抑制でき、その結果、破壊されて不灯となる不具合を低減できる高輝度な発光素子を製造できる。 With such a manufacturing method, it is possible to suppress the fluctuation of the light emission output and Vf and the chemical solution from coming into contact with the light emitting layer, and as a result, it is possible to manufacture a high-luminance light emitting element that can reduce the problem of being broken and unlighted. .
 このとき、前記第1及び第2の窓層の側面を粗面化する工程を有することが好ましい。
 このようにすれば、より高輝度な発光素子を製造できるとともに、本発明が特に有効に作用する。
At this time, it is preferable to have a step of roughening the side surfaces of the first and second window layers.
In this way, a light-emitting element with higher luminance can be manufactured, and the present invention works particularly effectively.
 また、前記4元発光層の側面を、前記第1及び第2の窓層の側面よりも2μm以下の範囲で内側に凹むように形成することができる。
 このようにすれば、発光装置製造時に樹脂により封止される際に、凹部による封止の不具合を低減できる発光素子を製造できる。
In addition, the side surface of the quaternary light emitting layer can be formed to be recessed inwardly within a range of 2 μm or less from the side surfaces of the first and second window layers.
If it does in this way, when sealing with resin at the time of light-emitting device manufacture, the light emitting element which can reduce the malfunction of the sealing by a recessed part can be manufactured.
 また、前記4元発光層にAlGaInPを用い、前記第1及び第2の窓層にGaPを用いることができる。
 このようにすれば、高品質な発光素子を製造できる。
Further, AlGaInP can be used for the quaternary light emitting layer, and GaP can be used for the first and second window layers.
In this way, a high quality light emitting device can be manufactured.
 また、前記4元発光層の側面を、ヨウ素、酢酸、フッ酸、硝酸、及び塩酸を含有したエッチング液を用いてエッチングすることにより、前記第1及び第2の窓層の側面よりも内側に凹むように形成することができる。
 このようにすれば、4元発光層の側面における凹部を、低コストで簡単に形成できる。
Further, by etching the side surface of the quaternary light emitting layer with an etching solution containing iodine, acetic acid, hydrofluoric acid, nitric acid, and hydrochloric acid, the side surface of the first and second window layers is brought into the inner side. It can be formed to be recessed.
In this way, the concave portion on the side surface of the quaternary light emitting layer can be easily formed at low cost.
 本発明では、4元発光層の側面を第1及び第2の窓層の側面よりも発光素子の内側に凹むように形成するので、発光出力やVfの変動及び薬液が発光層に接触することを抑制でき、その結果、破壊されて不灯となる不具合を低減できる高輝度な発光素子を得ることができる。 In the present invention, since the side surface of the quaternary light emitting layer is formed so as to be recessed inside the light emitting element from the side surfaces of the first and second window layers, the light emission output and the variation in Vf and the chemical solution contact the light emitting layer. As a result, it is possible to obtain a high-luminance light-emitting element that can reduce a problem that the lamp is broken and becomes unlit.
本発明の発光素子の一例を示した概略図である。It is the schematic which showed an example of the light emitting element of this invention. 本発明の発光素子の製造方法の一例を示した工程フローである。It is the process flow which showed an example of the manufacturing method of the light emitting element of this invention. 本発明の発光素子の製造方法の製造過程におけるGaAs基板上にエピタキシャル層を形成したものの概略を示した図である。It is the figure which showed the outline of what formed the epitaxial layer on the GaAs substrate in the manufacture process of the manufacturing method of the light emitting element of this invention. 本発明の発光素子の製造方法の製造過程において、GaAs基板及びGaAsバッファ層が除去された発光素子基板の概略を示した図である。FIG. 3 is a diagram schematically illustrating a light emitting device substrate from which a GaAs substrate and a GaAs buffer layer are removed in the manufacturing process of the method for manufacturing a light emitting device of the present invention. 本発明の発光素子の製造方法の製造過程において、GaP透明基板層が形成された発光素子基板の概略を示した図である。It is the figure which showed the outline of the light emitting element substrate in which the GaP transparent substrate layer was formed in the manufacture process of the manufacturing method of the light emitting element of this invention.
 以下、本発明について実施の形態を説明するが、本発明はこれに限定されるものではない。 Hereinafter, embodiments of the present invention will be described, but the present invention is not limited thereto.
 まず、本発明の発光素子について図1を参照して説明する。
 図1に示すように、本発明の発光素子10は、第2の窓層21、n型接続層13、4元発光層17、p型接続層18、第1の窓層19を有している。
 第1の窓層19は、4元発光層17の上方の主表面側にp型接続層18を介して形成され、第2の窓層21は、4元発光層17の下方の主表面側にn型接続層13を介して形成されている。
First, the light-emitting element of the present invention will be described with reference to FIG.
As shown in FIG. 1, the light-emitting element 10 of the present invention includes a second window layer 21, an n-type connection layer 13, a quaternary light-emitting layer 17, a p-type connection layer 18, and a first window layer 19. Yes.
The first window layer 19 is formed on the main surface side above the quaternary light emitting layer 17 via the p-type connection layer 18, and the second window layer 21 is on the main surface side below the quaternary light emitting layer 17. Are formed via an n-type connection layer 13.
 4元発光層17は、n型クラッド層14、活性層15、p型クラッド層16で構成される。これら4元発光層17の各層は、例えばAlGaInPよりなるものとすることができ、第1の窓層19、第2の窓層21、n型接続層13、p型接続層18は、例えばGaPよりなるものとすることができる。 The quaternary light emitting layer 17 includes an n-type cladding layer 14, an active layer 15, and a p-type cladding layer 16. Each layer of the quaternary light emitting layer 17 can be made of, for example, AlGaInP, and the first window layer 19, the second window layer 21, the n-type connection layer 13, and the p-type connection layer 18 are made of, for example, GaP. It can be made up of.
 第1の窓層19の上方の主表面には、接合合金化層24aを覆うように電極24が形成され、電極24にボンディングワイヤ28が接続されている。第2の窓層21の下方の主表面には、接合合金化層25aを覆うように電極25が形成されている。 The electrode 24 is formed on the main surface above the first window layer 19 so as to cover the bonding alloyed layer 24a, and the bonding wire 28 is connected to the electrode 24. An electrode 25 is formed on the main surface below the second window layer 21 so as to cover the bonding alloyed layer 25a.
 下記のように、本発明の発光素子10は4元発光層17から放出した光を上下の窓層19、21から取り出すので、非常に高輝度な発光素子である。
 更に輝度を向上するために、図1に示すように、第1の窓層19及び第2の窓層21の側面と露出した主表面を粗面化することもできる。この粗面化は、例えば後述するようにエッチングにより行うことができる。
As described below, the light emitting device 10 of the present invention is a light emitting device with extremely high brightness because light emitted from the quaternary light emitting layer 17 is extracted from the upper and lower window layers 19 and 21.
In order to further improve the luminance, the side surfaces of the first window layer 19 and the second window layer 21 and the exposed main surface can be roughened as shown in FIG. This roughening can be performed, for example, by etching as described later.
 さらに、本発明の発光素子10は、4元発光層17の側面が、第1の窓層19及び第2の窓層21の両側面よりも発光素子の内側に凹んでいる。すなわち、第1の窓層19及び第2の窓層21の両側面を基準面として定義したとき、4元発光層17の両側面がそれぞれに対応する基準面より内側に凹んでいる。
 このように内側に凹んでいる4元発光層17であれば、その発光出力やVfの変動を抑制できるし、本発明の発光素子を用いて発光装置を作製すれば、リードフレームを伝って発光装置の内部に浸入した薬液が4元発光層17に接触することを効果的に抑制できる。その結果、4元発光層17が薬液による浸食によって破壊されて不灯となる不具合を低減できる。
Furthermore, in the light-emitting element 10 of the present invention, the side surface of the quaternary light-emitting layer 17 is recessed inside the light-emitting element from both side surfaces of the first window layer 19 and the second window layer 21. That is, when both side surfaces of the first window layer 19 and the second window layer 21 are defined as reference surfaces, both side surfaces of the quaternary light emitting layer 17 are recessed inward from the corresponding reference surfaces.
Thus, if the quaternary light emitting layer 17 is recessed inside, the light emission output and the fluctuation of Vf can be suppressed, and if a light emitting device is manufactured using the light emitting element of the present invention, light is emitted through the lead frame. It is possible to effectively suppress the chemical liquid that has entered the inside of the apparatus from coming into contact with the quaternary light emitting layer 17. As a result, it is possible to reduce the inconvenience that the quaternary light-emitting layer 17 is destroyed due to erosion by the chemical solution and becomes unlit.
 4元発光層17が内側に凹む量については、特に限定されないが、例えば、第1及び第2の窓層の側面よりも2μm以下の範囲内とすることができる。この範囲内とすることにより、本発明の発光素子を樹脂により封止して発光装置を製造する際に、凹部に樹脂の未充填部ができるなどの封止の不具合を低減できる。凹み量の下限は、例えば1μmとすることができる。凹み量が少なくとも1μmあれば、上記した4元発光層17の破壊を確実に低減することができる。 The amount by which the quaternary light-emitting layer 17 is recessed is not particularly limited, but can be, for example, in a range of 2 μm or less from the side surfaces of the first and second window layers. By making it within this range, when manufacturing the light emitting device by sealing the light emitting element of the present invention with a resin, it is possible to reduce sealing defects such as a resin unfilled portion in the recess. The lower limit of the dent amount can be set to 1 μm, for example. If the dent amount is at least 1 μm, the destruction of the quaternary light emitting layer 17 can be surely reduced.
 次に、本発明の発光素子の製造方法について図2―図5を参照して説明する。
 まず、成長用基板として、n型GaAs単結晶基板11を用意する(図2の工程1)。
 その後、図3に示すように、そのn型GaAs単結晶基板11の主表面に、n型GaAsバッファ層12を例えば厚さ0.5μmでエピタキシャル成長させ(図2の工程2)、そのn型GaAsバッファ層12上にn型接続層13をエピタキシャル成長させる。
Next, a method for manufacturing a light emitting device of the present invention will be described with reference to FIGS.
First, an n-type GaAs single crystal substrate 11 is prepared as a growth substrate (step 1 in FIG. 2).
Thereafter, as shown in FIG. 3, an n-type GaAs buffer layer 12 is epitaxially grown to a thickness of, for example, 0.5 μm on the main surface of the n-type GaAs single crystal substrate 11 (step 2 in FIG. 2). An n-type connection layer 13 is epitaxially grown on the buffer layer 12.
 その後、4元発光層17を、各々(AlGa1-xIn1-yP(ただし、0≦x≦1,0≦y≦1)よりなるn型クラッド層14、活性層15、p型クラッド層16から形成する(図2の工程2)。具体的には、まず、例えば厚さ1μmのn型クラッド層14(n型ドーパントはSi)を第一導電型クラッド層としてエピタキシャル成長させる。次に、例えば厚さ0.6μmの活性層15(ノンドープ)をエピタキシャル成長させ、その後、例えば厚さ1μmのp型クラッド層16(p型ドーパントはMg:有機金属分子からのCもp型ドーパントとして寄与しうる)を第二導電型クラッド層としてこの順序にてエピタキシャル成長させる。
 ここで、p型クラッド層16とn型クラッド層14との各ドーパント濃度は、例えば1×1017/cm以上、2×1018/cm以下とすることができる。
Thereafter, the quaternary light-emitting layer 17 is made of n-type cladding layer 14 and active layer 15 each made of (Al x Ga 1-x ) y In 1-y P (where 0 ≦ x ≦ 1, 0 ≦ y ≦ 1). The p-type cladding layer 16 is formed (step 2 in FIG. 2). Specifically, first, for example, an n-type cladding layer 14 having a thickness of 1 μm (the n-type dopant is Si) is epitaxially grown as a first conductivity type cladding layer. Next, for example, an active layer 15 (non-doped) having a thickness of 0.6 μm is epitaxially grown, and then, for example, a p-type cladding layer 16 having a thickness of 1 μm (p-type dopant is Mg: C from an organometallic molecule is also used as a p-type dopant). The second conductivity type cladding layer is epitaxially grown in this order.
Here, each dopant concentration of the p-type cladding layer 16 and the n-type cladding layer 14 can be set to, for example, 1 × 10 17 / cm 3 or more and 2 × 10 18 / cm 3 or less.
 このように、4元発光層17が、AlGaInP活性層をそれよりもバンドギャップの大きいn型AlGaInPクラッド層とp型AlGaInPクラッド層とによりサンドイッチ状に挟んだダブルへテロ構造を有することにより、例えば緑色から赤色までの広い波長域において高輝度の素子を実現できる。 Thus, the quaternary light emitting layer 17 has a double hetero structure in which an AlGaInP active layer is sandwiched between an n-type AlGaInP clad layer and a p-type AlGaInP clad layer having a larger band gap, for example, A high-luminance element can be realized in a wide wavelength range from green to red.
 その後、p型クラッド層16上にp型接続層18をエピタキシャル成長させる(図2の工程3)。
 上記各層のエピタキシャル成長は、公知のMOVPE法により行うことができる。
 Al、Ga、In、Pの各成分源となる原料ガスとしては以下のようなものを使用することができる。
 Al源ガス:トリメチルアルミニウム(TMAl)、トリエチルアルミニウム(TEAl)など、
 Ga源ガス:トリメチルガリウム(TMGa)、トリエチルガリウム(TEGa)など、
 In源ガス:トリメチルインジウム(TMIn)、トリエチルインジウム(TEIn)など、
 P源ガス:トリメチルリン(TMP)、トリエチルリン(TEP)、ホスフィン(PH)などが挙げられる。
Thereafter, the p-type connection layer 18 is epitaxially grown on the p-type cladding layer 16 (step 3 in FIG. 2).
The epitaxial growth of each of the above layers can be performed by a known MOVPE method.
The following can be used as the source gas that becomes the source of each component of Al, Ga, In, and P.
Al source gas: trimethylaluminum (TMAl), triethylaluminum (TEAl), etc.
Ga source gas: trimethylgallium (TMGa), triethylgallium (TEGa), etc.
In source gas: trimethylindium (TMIn), triethylindium (TEIn), etc.
P source gas: trimethyl phosphorus (TMP), triethyl phosphorus (TEP), phosphine (PH 3 ) and the like.
 その後、光取り出し層として、p型GaPよりなる第1の窓層19を、HVPE法により気相成長させる(図2の工程4)。この時、光取り出し効率を高めるために、気相成長させる第1の窓層19の厚さが10μm以上となるようにする。このように第1の窓層19の厚さを増加することでその側面の面積を増加し、さらに側面を粗面化することで、発光素子の光取り出し効率を大幅に高めることができる。 Thereafter, the first window layer 19 made of p-type GaP is vapor-phase grown by HVPE as a light extraction layer (step 4 in FIG. 2). At this time, in order to increase the light extraction efficiency, the thickness of the first window layer 19 to be vapor grown is set to 10 μm or more. By increasing the thickness of the first window layer 19 in this way, the area of the side surface is increased, and by further roughening the side surface, the light extraction efficiency of the light-emitting element can be significantly increased.
 上記のHVPE法は、具体的には、容器内にてIII族元素であるGaを所定の温度に加熱して保持しながら、そのGa上に塩化水素を導入することにより、下記(1)式の反応によりGaClを生成させ、キャリアガスであるHガスとともに基板上に供給する。
  Ga(液体)+HCl(気体) → GaCl(気体)+1/2H  …(1)
 このとき容器内の温度を、例えば640℃以上、860℃以下に設定する。
Specifically, in the above HVPE method, the group III element Ga is heated and held at a predetermined temperature in the container, and hydrogen chloride is introduced onto the Ga to obtain the following formula (1): GaCl is generated by the above reaction, and is supplied onto the substrate together with H 2 gas which is a carrier gas.
Ga (liquid) + HCl (gas) → GaCl (gas) + 1 / 2H 2 (1)
At this time, the temperature in the container is set to, for example, 640 ° C. or more and 860 ° C. or less.
 V族元素であるPは、PHをキャリアガスであるHとともに基板上に供給する。
 さらに、p型ドーパントであるZnを、DMZn(ジメチルZn)の形で供給する。GaClはPHとの反応性に優れ、下記(2)式の反応により、効率よく窓層を成長させることができる。
  GaCl(気体)+PH(気体)
    → GaP(固体)+HCl(気体)+H(気体)  …(2)
 以上の工程を経て、図3に示す発光素子基板20が得られる。
P which is a group V element supplies PH 3 onto the substrate together with H 2 which is a carrier gas.
Further, Zn which is a p-type dopant is supplied in the form of DMZn (dimethyl Zn). GaCl is excellent in reactivity with PH 3, and the window layer can be efficiently grown by the reaction of the following formula (2).
GaCl (gas) + PH 3 (gas)
→ GaP (solid) + HCl (gas) + H 2 (gas) (2)
The light emitting element substrate 20 shown in FIG. 3 is obtained through the above steps.
 第1の窓層19の成長が終了したら、図4に示すように、n型GaAs基板11及びn型GaAsバッファ層12を、例えばアンモニアと過酸化水素の混合液などのエッチング液を用いて化学エッチングすることにより除去する(図2の工程5)。 When the growth of the first window layer 19 is completed, as shown in FIG. 4, the n-type GaAs substrate 11 and the n-type GaAs buffer layer 12 are chemically treated using an etching solution such as a mixed solution of ammonia and hydrogen peroxide. It removes by etching (process 5 of FIG. 2).
 その後、図5に示すように、n型GaAs基板11およびn型GaAsバッファ層12が除去された4元発光層17の下方の主表面側(n型接続層13の下方の主表面)に、別途用意されたn型GaP単結晶基板を貼り合わせて第2の窓層21を形成し、発光素子基板20’とする(図2の工程6)。ここで、この第2の窓層21の形成は、HVPE法によるエピタキシャル成長によって形成することもできる。 Thereafter, as shown in FIG. 5, on the main surface side below the quaternary light emitting layer 17 from which the n-type GaAs substrate 11 and the n-type GaAs buffer layer 12 have been removed (the main surface below the n-type connection layer 13), A separately prepared n-type GaP single crystal substrate is bonded to form a second window layer 21 to form a light emitting element substrate 20 ′ (step 6 in FIG. 2). Here, the second window layer 21 can also be formed by epitaxial growth by the HVPE method.
 以上の工程が終了すれば、図1に示すように、スパッタリングや真空蒸着法により、第1の窓層19の上方の主表面(p型接続層18とは反対側の表面)及び第2の窓層21の下方の主表面(n型接続層13とは反対側の表面)に、接合合金化層形成用の金属層をそれぞれ形成し、さらに合金化の熱処理(いわゆるシンター処理)を行うことにより、接合合金化層24a、25aとする。また、これら接合合金化層をそれぞれ覆うように、電極24及び電極25を形成する(図2の工程7)。 When the above steps are completed, as shown in FIG. 1, the main surface above the first window layer 19 (the surface on the side opposite to the p-type connection layer 18) and the second are formed by sputtering or vacuum evaporation. A metal layer for forming a bonded alloying layer is formed on the main surface below the window layer 21 (the surface opposite to the n-type connecting layer 13), and further heat treatment for alloying (so-called sintering treatment) is performed. Thus, the bonded alloyed layers 24a and 25a are obtained. Moreover, the electrode 24 and the electrode 25 are formed so that these joining alloying layers may be covered, respectively (process 7 of FIG. 2).
 続いて、第1の窓層19の上方の主表面に、粗面化用エッチング液を用いて異方性エッチングを施し、この主表面を粗面化する(図2の工程8)。この粗面化用エッチング液の組成は、酢酸、弗酸、硝酸、ヨウ素、及び水からなる公知の組成とすることができる。例えばこれらの組成比を酢酸(CHCOOH換算):37.4質量%以上94.8質量%以下、弗酸(HF換算):0.4質量%以上14.8質量%以下、硝酸(HNO換算):1.3質量%以上14.7質量%以下、ヨウ素(I2換算):0.12質量%以上0.84質量%以下の範囲で含有し、かつ、水の含有量が2.4質量%以上45質量%以下とすることができる。 Subsequently, the main surface above the first window layer 19 is subjected to anisotropic etching using a roughening etchant to roughen the main surface (step 8 in FIG. 2). The composition of the roughening etching solution can be a known composition comprising acetic acid, hydrofluoric acid, nitric acid, iodine, and water. For example, these composition ratios are acetic acid (CH 3 COOH conversion): 37.4 mass% to 94.8 mass%, hydrofluoric acid (HF conversion): 0.4 mass% to 14.8 mass%, nitric acid (HNO 3 conversion): 1.3 mass% or more and 14.7 mass% or less, iodine (I2 conversion): contained in the range of 0.12 mass% or more and 0.84 mass% or less, and the water content is 2. It can be 4 mass% or more and 45 mass% or less.
 次に、2つの<100>方向に沿って、発光素子用基板20’の上方の主表面側からダイシング刃により溝を形成するようにして個々のチップ領域にダイシングして、発光素子チップとする(図2の工程9)。ここで、ダイシングの向きを<100>方向としているのは、チップ領域のエッジに沿った割れや欠けが生じ難くなるためである。
 このダイシング時には、結晶欠陥密度の比較的高い加工ダメージ層がダイシングによって露出した側面部に形成される。この加工ダメージ層に含まれる多数の結晶欠陥は、発光通電時において電流リークや輝度の劣化となるため、加工ダメージ層をダメージ層除去用エッチング液を用いた化学エッチングにより除去することが望ましい(図2の工程10)。
Next, dicing into individual chip regions is performed by forming a groove with a dicing blade along the two <100> directions from the main surface side above the light emitting element substrate 20 'to obtain a light emitting element chip. (Step 9 in FIG. 2). Here, the reason why the dicing direction is the <100> direction is that cracks and chips along the edge of the chip region are less likely to occur.
At the time of dicing, a processing damage layer having a relatively high crystal defect density is formed on the side surface exposed by dicing. A large number of crystal defects contained in this processing damage layer cause current leakage and luminance degradation during light-emission energization, so it is desirable to remove the processing damage layer by chemical etching using a damage layer removing etchant (see FIG. Step 10 of 2).
 このダメージ層除去用エッチング液としては、例えば、硫酸-過酸化水素水溶液を使用することができ、例えば硫酸:過酸化水素:水の質量配合比率を3:1:1とすることができる。この場合、液温は40℃以上、60℃以下に調整され、6分程度のエッチングを必要とするものとすることができる。 As the damage layer removing etching solution, for example, a sulfuric acid-hydrogen peroxide aqueous solution can be used, and for example, the mass blending ratio of sulfuric acid: hydrogen peroxide: water can be 3: 1: 1. In this case, the liquid temperature is adjusted to 40 ° C. or higher and 60 ° C. or lower, and etching for about 6 minutes may be required.
 その後、加工ダメージ層を除去した発光素子チップの側面に、第1及び第2の窓層の粗面化が可能で、かつ4元発光層17を第1及び第2の窓層の側面より内側に凹ませることの両方が可能なエッチング液を接触させることで、第1の窓層19の側面(このとき、主表面も粗面化しても良い)及び第2の窓層21の側面を異方性エッチングして粗面化させると同時に、4元発光層17の側面をエッチングして凹ませる(図2の工程11)。このとき用いるエッチング液の組成としては、前述した酢酸、弗酸、硝酸、ヨウ素及び水の混合液からなる粗面化用エッチング液に10質量%程度の塩酸を加えたものとすることができる。この場合、ヨウ素、酢酸、フッ酸、及び硝酸はGaP窓層19、21の側面・主表面の粗面化に寄与し、塩酸はAlGaInPからなる4元発光層17のエッチングに寄与する。 Thereafter, the first and second window layers can be roughened on the side surface of the light-emitting element chip from which the processing damage layer has been removed, and the quaternary light-emitting layer 17 is placed on the inner side from the side surfaces of the first and second window layers. The side surfaces of the first window layer 19 (the main surface may also be roughened at this time) and the side surfaces of the second window layer 21 are made different by contacting an etching solution that can be both recessed. The side surface of the quaternary light-emitting layer 17 is etched and concaved simultaneously with isotropic etching to roughen the surface (step 11 in FIG. 2). As the composition of the etching solution used at this time, about 10% by mass of hydrochloric acid can be added to the above-mentioned roughening etching solution composed of a mixture of acetic acid, hydrofluoric acid, nitric acid, iodine and water. In this case, iodine, acetic acid, hydrofluoric acid, and nitric acid contribute to the roughening of the side and main surfaces of the GaP window layers 19 and 21, and hydrochloric acid contributes to the etching of the quaternary light emitting layer 17 made of AlGaInP.
 このとき、4元発光層17を内側に凹ませる量については、上記したように特に限定されないが、例えば、第1及び第2の窓層の側面よりも2μm以下の範囲内とすることができる。この凹み量は、エッチング時間と線形関係にあるので、エッチング時間により凹み量を調整することができる。 At this time, the amount of indentation of the quaternary light emitting layer 17 is not particularly limited as described above. For example, the amount can be within a range of 2 μm or less from the side surfaces of the first and second window layers. . Since this dent amount has a linear relationship with the etching time, the dent amount can be adjusted by the etching time.
 工程11では、上記のように、窓層の粗面化と4元発光層のエッチングを同時に行うことができるが、例えば、窓層の粗面化と4元発光層のエッチングを別々に行うこともできる。この場合、例えば、酢酸34.8質量%、硫酸58.8質量%、塩酸0.7質量%、過酸化水素0.6質量%、及び水5.2質量%からなるエッチング液で4元発光層をエッチングした後、ヨウ素、酢酸、フッ酸、硝酸、及び水からなる公知の粗面化用エッチング液でエッチングすることができる。 In step 11, as described above, the roughening of the window layer and the etching of the quaternary light emitting layer can be performed simultaneously. For example, the roughening of the window layer and the etching of the quaternary light emitting layer are performed separately. You can also. In this case, for example, quaternary emission is performed with an etching solution composed of 34.8% by mass of acetic acid, 58.8% by mass of sulfuric acid, 0.7% by mass of hydrochloric acid, 0.6% by mass of hydrogen peroxide, and 5.2% by mass of water. After etching the layer, it can be etched with a known roughening etchant comprising iodine, acetic acid, hydrofluoric acid, nitric acid, and water.
 上記のようにして面粗し処理が終了した各発光素子チップは、下方の主表面側をAgペースト層を介して金属ステージに接着し、光取出側電極24にボンディングワイヤ28を接続し、さらにエポキシ樹脂からなる図示しないモールド部を形成すれば、最終的な発光素子が完成する。 Each light emitting element chip that has been subjected to the surface roughening treatment as described above is bonded to the metal stage via the Ag paste layer on the lower main surface side, and the bonding wire 28 is connected to the light extraction side electrode 24. If a mold part (not shown) made of epoxy resin is formed, a final light emitting element is completed.
 以下、本発明の実施例及び比較例を示して本発明をより具体的に説明するが、本発明はこれらに限定されるものではない。 Hereinafter, the present invention will be described more specifically with reference to Examples and Comparative Examples of the present invention, but the present invention is not limited to these.
(実施例)
 本発明の発光素子の製造方法に従って、4元発光層が内側に凹んだ発光素子を用意した。上記工程11において、酢酸71.7質量%、フッ酸5質量%、硝酸5質量%、沃素0.3質量%、水8質量%、塩酸10質量%からなるエッチング液を用いて窓層の粗面化と4元発光層のエッチングを行った。
 このときエッチング時間を変更してエッチングを行い、凹み量を評価したところ、エッチング時間を調整することにより所望の凹み量が得られることが分かった。そこで、エッチング時間を調整して発光素子を製造し、凹み量が1.0μmの発光素子と1.5μmの発光素子をそれぞれ50個用意した。
(Example)
According to the method for manufacturing a light emitting device of the present invention, a light emitting device having a quaternary light emitting layer recessed inward was prepared. In step 11, the window layer was roughened using an etching solution comprising 71.7% by mass of acetic acid, 5% by mass of hydrofluoric acid, 5% by mass of nitric acid, 0.3% by mass of iodine, 8% by mass of water, and 10% by mass of hydrochloric acid. Planarization and etching of the quaternary light emitting layer were performed.
At this time, etching was performed while changing the etching time, and the amount of dents was evaluated. It was found that the desired amount of dents was obtained by adjusting the etching time. Therefore, the light emitting device was manufactured by adjusting the etching time, and 50 light emitting devices each having a dent amount of 1.0 μm and 1.5 μm were prepared.
(比較例1)
 本発明の4元発光層の側面を内側に形成する工程を有さない従来の製造方法に従って、窓層の粗面化処理を塩酸を入れないエッチングを行うことにより、4元発光層の側面が窓層の側面よりも1.0μm外側に出っ張った発光素子と1.5μm外側に出っ張った発光素子をそれぞれ50個用意した。
(Comparative Example 1)
According to the conventional manufacturing method which does not have the step of forming the side surface of the quaternary light emitting layer on the inside of the present invention, the side surface of the quaternary light emitting layer is formed by performing etching without adding hydrochloric acid to the roughening treatment of the window layer. Fifty light emitting elements that protrude 1.0 μm outside the side surface of the window layer and 50 light emitting elements that protrude 1.5 μm outside were prepared.
(比較例2)
 4元発光層の側面と第1及び第2の窓層の側面が同一線上になるようにエッチングした以外、実施例と同様にして発光素子を50個用意した。
(Comparative Example 2)
Fifty light emitting elements were prepared in the same manner as in the example except that the side surface of the quaternary light emitting layer and the side surfaces of the first and second window layers were aligned.
 上記実施例、比較例1、比較例2で用意したそれぞれ50個の発光素子を直径5mmの砲弾型ランプに搭載し、初期測定を行った後、環境暴露試験を行った。フラックスと水分を十分浸透させるため、フラックス中に1時間浸漬し、その後リフロー試験を行った。リフロー試験後に、-50度~80度の温度サイクル試験を48時間行い、輝度とVfが10%以上変動するランプの割合を評価した。その後、20mAで100時間の通電試験を行った。 The 50 light-emitting elements prepared in the above example, comparative example 1 and comparative example 2 were each mounted on a bullet-type lamp having a diameter of 5 mm, and after initial measurement, an environmental exposure test was performed. In order to sufficiently permeate the flux and moisture, it was immersed in the flux for 1 hour, and then a reflow test was performed. After the reflow test, a temperature cycle test of −50 ° C. to 80 ° C. was performed for 48 hours, and the ratio of the lamp whose luminance and Vf fluctuated by 10% or more was evaluated. Thereafter, an energization test was conducted at 20 mA for 100 hours.
 表1は、通電試験後に不灯になっていたランプ数、及び不灯にはならなかったが輝度とVfの特性が10%以上変動していたものの数をまとめた結果である。ここで、表1の凹量又は凸量において、「+」は出っ張り、「―」は凹みを意味する。
 表1に示すように、不灯になった割合は、比較例1の発光素子が一番高く、出っ張り量1.0μmと1.5μmの発光素子共に4個が不灯になった。一方、比較例2の発光素子では2個が不灯になった。
 不灯になった原因は、4元発光層が内側に凹んでいない場合、ランプの内部に浸入した薬液が4元発光層に接触してその接触箇所が空洞となるので、さらに薬液がたまりやすくなり、加速度的に反応が進んでしまうためであると考えられる。
Table 1 summarizes the number of lamps that were not lit after the energization test and the number of lamps that did not turn off but had luminance and Vf characteristics varying by 10% or more. Here, in the concave amount or convex amount in Table 1, “+” means a bulge, and “−” means a dent.
As shown in Table 1, the ratio of non-lighting was the highest in the light emitting element of Comparative Example 1, and four of the light emitting elements with protruding amounts of 1.0 μm and 1.5 μm were unlighted. On the other hand, two of the light emitting elements of Comparative Example 2 were unlit.
The cause of the non-lighting is that when the quaternary light emitting layer is not recessed inward, the chemical solution that has entered the lamp contacts the quaternary light emitting layer and the contact portion becomes a cavity, so that the chemical solution is more likely to accumulate. This is considered to be because the reaction proceeds at an accelerated rate.
 これに対し、実施例の発光素子では、不灯になったものはなかった。これは、4元発光層の側面における凹状部分に樹脂が入り込んでパッケージングされるため、薬液が接触しづらくなるためだと考えられる。
 以上の結果から、実施例の発光素子はランプの不灯という致命的な不具合を回避できることが確認できた。
On the other hand, none of the light-emitting elements of the examples were turned off. This is thought to be because it is difficult for the chemical solution to come into contact because the resin enters the concave portion on the side surface of the quaternary light emitting layer and is packaged.
From the above results, it was confirmed that the light emitting device of the example can avoid a fatal problem of lamp non-lighting.
 次に、表1の温度サイクル試験による特性変化の結果を見ると、比較例1の発光素子では、出っ張り量がどちらの場合でも、特性変化したランプの割合が40%を超えている。これは、発光層が外側に出っ張っていると樹脂との接触がよくなるので、温度サイクルを与えたときに起こる樹脂の熱収縮による発光層への応力伝達が促進されるためだと考えられる。
 これに対し、実施例の発光素子では、凹み量がどちらの場合でも、特性変化したランプの割合が2%以下に抑えられていることが分かった。このように、本発明の発光素子は温度変化による輝度とVfの変化も抑制できる。
Next, when the result of the characteristic change by the temperature cycle test of Table 1 is seen, in the light emitting element of the comparative example 1, the ratio of the lamp in which the characteristic has changed exceeds 40% regardless of the protruding amount. This is presumably because when the light emitting layer protrudes to the outside, the contact with the resin is improved, so that stress transmission to the light emitting layer due to thermal contraction of the resin that occurs when a temperature cycle is applied is promoted.
On the other hand, in the light emitting device of the example, it was found that the ratio of the lamp whose characteristics were changed was suppressed to 2% or less regardless of the dent amount. Thus, the light-emitting element of the present invention can also suppress changes in luminance and Vf due to temperature changes.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
 なお、本発明は、上記実施形態に限定されるものではない。上記実施形態は例示であり、本発明の特許請求の範囲に記載された技術的思想と実質的に同一な構成を有し、同様な作用効果を奏するものは、いかなるものであっても本発明の技術的範囲に包含される。 Note that the present invention is not limited to the above embodiment. The above-described embodiment is an exemplification, and the present invention has any configuration that has substantially the same configuration as the technical idea described in the claims of the present invention and that exhibits the same effects. Are included in the technical scope.

Claims (9)

  1.  4元発光層と、該4元発光層の片方の主表面側に形成された第1の窓層と、前記4元発光層のもう一方の主表面側に形成された第2の窓層を有する発光素子であって、
     前記4元発光層の側面が、前記第1及び第2の窓層の側面よりも前記発光素子の内側に凹んだものであることを特徴とする発光素子。
    A quaternary light emitting layer; a first window layer formed on one main surface side of the quaternary light emitting layer; and a second window layer formed on the other main surface side of the quaternary light emitting layer. A light emitting device comprising:
    The light emitting device, wherein a side surface of the quaternary light emitting layer is recessed inward of the light emitting device with respect to side surfaces of the first and second window layers.
  2.  前記第1及び第2の窓層の側面が粗面化されたものであることを特徴とする請求項1に記載の発光素子。 The light emitting device according to claim 1, wherein the side surfaces of the first and second window layers are roughened.
  3.  前記4元発光層の側面は、前記第1及び第2の窓層の側面よりも2μm以下の範囲で内側に凹んだものであることを特徴とする請求項1又は請求項2に記載の発光素子。 3. The light emitting device according to claim 1, wherein a side surface of the quaternary light emitting layer is recessed inwardly in a range of 2 μm or less than a side surface of the first and second window layers. element.
  4.  前記4元発光層はAlGaInPよりなり、前記第1及び第2の窓層はGaPよりなるものであることを特徴とする請求項1乃至請求項3のいずれか1項に記載の発光素子。 4. The light emitting device according to claim 1, wherein the quaternary light emitting layer is made of AlGaInP, and the first and second window layers are made of GaP. 5.
  5.  4元発光層の片方の主表面側に第1の窓層を形成する工程と、前記4元発光層のもう一方の主表面側に第2の窓層を形成する工程を有する発光素子の製造方法であって、
     前記4元発光層の側面を、前記第1及び第2の窓層の側面よりも前記発光素子の内側に凹むように形成する工程を有することを特徴とする発光素子の製造方法。
    Production of a light emitting device comprising a step of forming a first window layer on one main surface side of the quaternary light emitting layer and a step of forming a second window layer on the other main surface side of the quaternary light emitting layer. A method,
    A method for manufacturing a light-emitting element, comprising: forming a side surface of the quaternary light-emitting layer so as to be recessed inside the light-emitting element from the side surfaces of the first and second window layers.
  6.  前記第1及び第2の窓層の側面を粗面化する工程を有することを特徴とする請求項5に記載の発光素子の製造方法。 6. The method for manufacturing a light-emitting element according to claim 5, further comprising a step of roughening side surfaces of the first and second window layers.
  7.  前記4元発光層の側面を、前記第1及び第2の窓層の側面よりも2μm以下の範囲で内側に凹むように形成することを特徴とする請求項5又は請求項6に記載の発光素子の製造方法。 7. The light emitting device according to claim 5, wherein a side surface of the quaternary light emitting layer is formed to be recessed inwardly within a range of 2 μm or less from the side surfaces of the first and second window layers. Device manufacturing method.
  8.  前記4元発光層にAlGaInPを用い、前記第1及び第2の窓層にGaPを用いることを特徴とする請求項5乃至請求項7のいずれか1項に記載の発光素子の製造方法。 The method for manufacturing a light-emitting element according to claim 5, wherein AlGaInP is used for the quaternary light-emitting layer, and GaP is used for the first and second window layers.
  9.  前記4元発光層の側面を、ヨウ素、酢酸、フッ酸、硝酸、及び塩酸を含有したエッチング液を用いてエッチングすることにより、前記第1及び第2の窓層の側面よりも内側に凹むように形成することを特徴とする請求項5乃至請求項8のいずれか1項に記載の発光素子の製造方法。 The side surface of the quaternary light emitting layer is etched with an etchant containing iodine, acetic acid, hydrofluoric acid, nitric acid, and hydrochloric acid so as to be recessed inwardly than the side surfaces of the first and second window layers. The method for manufacturing a light-emitting element according to claim 5, wherein the light-emitting element is formed.
PCT/JP2014/002574 2013-06-26 2014-05-16 Light-emitting element and method for manufacturing light-emitting element WO2014207987A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201480033929.2A CN105283970B (en) 2013-06-26 2014-05-16 The manufacturing method of light-emitting component and light-emitting component

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2013-134171 2013-06-26
JP2013134171A JP6131737B2 (en) 2013-06-26 2013-06-26 Light emitting device and method for manufacturing light emitting device

Publications (1)

Publication Number Publication Date
WO2014207987A1 true WO2014207987A1 (en) 2014-12-31

Family

ID=52141363

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/002574 WO2014207987A1 (en) 2013-06-26 2014-05-16 Light-emitting element and method for manufacturing light-emitting element

Country Status (4)

Country Link
JP (1) JP6131737B2 (en)
CN (1) CN105283970B (en)
TW (1) TWI568025B (en)
WO (1) WO2014207987A1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0851233A (en) * 1994-08-08 1996-02-20 Showa Denko Kk Light emitting diode
JPH08213649A (en) * 1995-02-01 1996-08-20 Sanken Electric Co Ltd Semiconductor light emitting element
JP2000299494A (en) * 1999-04-15 2000-10-24 Rohm Co Ltd Manufacture of semiconductor light emitting element
JP2010258039A (en) * 2009-04-21 2010-11-11 Shin Etsu Handotai Co Ltd Method of manufacturing light emitting element, and light emitting element
JP2012253226A (en) * 2011-06-03 2012-12-20 Hayashi Junyaku Kogyo Kk Etchant composition and etching method

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101241957A (en) * 2007-02-08 2008-08-13 大连路美芯片科技有限公司 Making method for four-element LED
CN101859855A (en) * 2010-05-14 2010-10-13 厦门市三安光电科技有限公司 Quaternary upright lighting diode with double roughened surfaces and preparation method thereof
CN103682003A (en) * 2012-08-31 2014-03-26 山东华光光电子有限公司 AlGaInP LED (Light-Emitting Diode) chip for processing window layer sidewall slope with wet method

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0851233A (en) * 1994-08-08 1996-02-20 Showa Denko Kk Light emitting diode
JPH08213649A (en) * 1995-02-01 1996-08-20 Sanken Electric Co Ltd Semiconductor light emitting element
JP2000299494A (en) * 1999-04-15 2000-10-24 Rohm Co Ltd Manufacture of semiconductor light emitting element
JP2010258039A (en) * 2009-04-21 2010-11-11 Shin Etsu Handotai Co Ltd Method of manufacturing light emitting element, and light emitting element
JP2012253226A (en) * 2011-06-03 2012-12-20 Hayashi Junyaku Kogyo Kk Etchant composition and etching method

Also Published As

Publication number Publication date
JP6131737B2 (en) 2017-05-24
TWI568025B (en) 2017-01-21
CN105283970B (en) 2018-06-19
JP2015012028A (en) 2015-01-19
CN105283970A (en) 2016-01-27
TW201511335A (en) 2015-03-16

Similar Documents

Publication Publication Date Title
TWI405350B (en) Light emitting element and manufacturing method thereof
EP2006921B1 (en) Method for producing a GaN based light emitting diode
KR100668351B1 (en) Nitride-based light emitting device and method of manufacturing the same
US7687376B2 (en) Method of manufacturing vertical gallium nitride-based light emitting diode
JP2006339294A (en) Manufacturing method for light-emitting element
CN102569541B (en) Manufacturing method of semiconductor luminous chip
EP2985793A1 (en) Semiconductor light emitting element and method for manufacturing same
JP2007324551A (en) Light emitting element and manufacturing method thereof
US8309381B2 (en) Group III nitride semiconductor light-emitting device and production method therefor
JP5287467B2 (en) Method for manufacturing light emitting device
JP4341623B2 (en) Light emitting device and manufacturing method thereof
JP6131737B2 (en) Light emitting device and method for manufacturing light emitting device
JP2010199344A (en) Method for manufacturing light emitting element
JPWO2009017017A1 (en) High brightness light emitting diode and method for manufacturing the same
JP5251185B2 (en) Compound semiconductor substrate, light emitting device using the same, and method of manufacturing compound semiconductor substrate
JP2004260109A (en) Method of manufacturing light-emitting element, composite translucent substrate, and light-emitting element
JP6008661B2 (en) GaN crystal and method for manufacturing semiconductor device
TWI596797B (en) Gallium nitride-based crystal and semiconductor device manufacturing method, and light-emitting device and method of manufacturing the light-emitting device
JP2894779B2 (en) Semiconductor light emitting device and method of manufacturing the same
JP5338748B2 (en) Compound semiconductor substrate manufacturing method and compound semiconductor substrate
JP2008227539A (en) Method of manufacturing light emitting element
JP2005150646A (en) Light-emitting element and its manufacturing method
JP2011100835A (en) Method for manufacturing light-emitting element
JP2007184645A (en) Manufacturing method of semiconductor light emitting element

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201480033929.2

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14817609

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14817609

Country of ref document: EP

Kind code of ref document: A1