WO2014207795A1 - 三相4線式電力量計 - Google Patents

三相4線式電力量計 Download PDF

Info

Publication number
WO2014207795A1
WO2014207795A1 PCT/JP2013/067189 JP2013067189W WO2014207795A1 WO 2014207795 A1 WO2014207795 A1 WO 2014207795A1 JP 2013067189 W JP2013067189 W JP 2013067189W WO 2014207795 A1 WO2014207795 A1 WO 2014207795A1
Authority
WO
WIPO (PCT)
Prior art keywords
phase
current
phase current
distribution line
tampering
Prior art date
Application number
PCT/JP2013/067189
Other languages
English (en)
French (fr)
Inventor
寛幸 占部
憲一 高田
Original Assignee
三菱電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱電機株式会社 filed Critical 三菱電機株式会社
Priority to JP2013548657A priority Critical patent/JP5469284B1/ja
Priority to PCT/JP2013/067189 priority patent/WO2014207795A1/ja
Priority to TW102127585A priority patent/TWI489116B/zh
Publication of WO2014207795A1 publication Critical patent/WO2014207795A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R22/00Arrangements for measuring time integral of electric power or current, e.g. electricity meters
    • G01R22/06Arrangements for measuring time integral of electric power or current, e.g. electricity meters by electronic methods
    • G01R22/061Details of electronic electricity meters
    • G01R22/066Arrangements for avoiding or indicating fraudulent use

Definitions

  • the present invention relates to a three-phase four-wire watt-hour meter that measures the amount of electric power and the like, and particularly relates to one having a tampering detection function.
  • a smart meter that is a watt-hour meter having a communication function and a load switching function will be described as an example.
  • the smart meter is installed by a power supplier such as an electric power company in an electric power consumer (such as a home or a factory), and measures and measures the amount of electric power such as the amount of electric power used and electric current.
  • a power supplier such as an electric power company in an electric power consumer (such as a home or a factory)
  • measures and measures the amount of electric power such as the amount of electric power used and electric current.
  • bypass tampering which is one of the tampering methods
  • conventional smart meters measure the current on the upstream and downstream sides of the distribution lines connected to the smart meter, and detect tampering based on a one-dimensional difference.
  • bypass tampering which is one of the tampering methods
  • conventional smart meters measure the current on the upstream and downstream sides of the distribution lines connected to the smart meter, and detect tampering based on a one-dimensional difference.
  • bypass tampering can be detected by the difference in current between the upstream and downstream sides of the distribution line, but in the case of a three-phase four-wire circuit, there is a phase difference between the phases, One-dimensional calculation in the technology cannot be performed, and phase detection is required. However, when performing phase detection, there is a problem that the processing of the arithmetic software becomes complicated.
  • an object of the present invention is to provide a three-phase four-wire watt-hour meter having a bypass tampering detection function without performing phase detection.
  • the present invention relates to a three-phase four-wire watt-hour meter that measures the amount of power used, and R-phase current Ir, S-phase current Is, and T-phase current flowing through an R-phase distribution line, an S-phase distribution line, a T-phase distribution line, and a neutral line.
  • a current detector that measures the It and N-phase currents In, and the R-phase current detected by the current detector, assuming that the phase difference between the RS phase, the ST phase, and the TR phase is 120 °.
  • Bypass tampering detection means for determining that bypass tampering has occurred when the absolute value of the difference between the absolute value of the S-phase current and the T-phase current and the absolute value of the N-phase current exceeds a predetermined threshold value It is equipped with.
  • the present invention is a three-phase four-wire watt-hour meter that measures the amount of power used, and R-phase current Ir, S-phase current Is, T, flowing through an R-phase distribution line, an S-phase distribution line, a T-phase distribution line, and a neutral line.
  • a current detection unit for measuring the phase current It and the N-phase current In, the R-phase current Ir, the S-phase current Is, the T-phase current It, and the N-phase current In, which are measured by the current detection unit and before the bypass tampering determination.
  • each of the phase currents of the R-phase distribution line, the S-phase distribution line, and the T-phase distribution line is the first.
  • a bypass tampering detection means is provided that determines that bypass tampering has occurred when the N-phase current change of the neutral line is smaller than the second predetermined threshold.
  • the present invention relates to a three-phase four-wire watt-hour meter that measures the amount of power used, R-phase current Ir flowing through the R-phase distribution line, S-phase distribution line, T-phase distribution line, and neutral line, S-phase current Is, T A current detection unit for measuring the phase current It and the N-phase current In, the R-phase current Ir, the S-phase current Is, the T-phase current It, and the N-phase current In, which are measured by the current detection unit and before the bypass tampering determination.
  • Each storage unit stores the R phase current, the S phase current, and the T phase current detected by the current detection unit, assuming that the phase difference between the RS phase, the ST phase, and the TR phase is 120 °.
  • S phase distribution Bypass tampering occurs when the N-phase current change of the neutral wire is smaller than the third predetermined threshold when the phase current of either the wire or the T-phase distribution line is larger than the second predetermined threshold.
  • the three-phase four-wire watt-hour meter According to the three-phase four-wire watt-hour meter according to the present invention, it is possible to provide a three-phase four-wire watt-hour meter having a detection function of bypass tampering without performing phase detection.
  • FIG. 1 is a diagram for explaining the principle of detection of bypass tampering of the three-phase four-wire smart meter according to the first embodiment, in which (a) shows a normal state without bypass tampering, and (b) shows a bypass tamper. Indicates the ring time.
  • FIG. 2 is a block diagram showing an internal circuit configuration of the three-phase four-wire smart meter in the first embodiment.
  • Embodiment 1 will be described with reference to FIGS.
  • the three-phase four-wire smart meter of Embodiment 1 functions as an original smart meter, that is, power supply to installed consumers (homes, factories, etc.), measurement / measurement of power consumption, and load measurement.
  • it also has a tampering detection function, and the detected tampering information can be transmitted to the data concentrator by the communication function, and can be transmitted from the data concentrator to the host device. It has become.
  • FIG. 2 is a block diagram showing an internal circuit configuration of the three-phase four-wire smart meter in the first embodiment.
  • Reference numeral 10 denotes a three-phase four-wire smart meter.
  • the current detection unit 1 includes a current transformer, a shunt resistor, and the like, detects an R-phase current Ir, an S-phase current Is, a T-phase current It, and an N-phase current In. It converts into a signal and outputs it to the calculation control part 5 inside a meter.
  • the current detection unit 1 detects the vector amount (instantaneous value) of each phase and outputs it to the calculation control unit 5.
  • the voltage detection unit 3 includes a voltage transformer, a voltage dividing resistor, and the like, and includes an R phase voltage Vr-n, an S phase voltage Vs-n, and a T phase voltage Vt-n based on the N phase (that is, between RN). Voltage, SN voltage, and TN voltage) are detected, converted into low-level electrical signals that are directly proportional to the voltages, and output to the arithmetic control unit 5 inside the meter. The voltage detection unit 3 detects the vector amount (instantaneous value) of each phase and outputs it to the calculation control unit 5.
  • the calculation control unit 5 performs calculations such as a customer's cumulative power consumption and time zone cumulative power consumption for each time zone, tampering detection (detection by bypass tampering detection means), and the like.
  • the accumulated power consumption of the consumer can be obtained by ⁇ [[[Vr ⁇ n] ⁇ [Ir] + [Vs ⁇ n] ⁇ [Is] + [Vt ⁇ n] ⁇ [It]] ⁇ t].
  • [Vr ⁇ n], [Vs ⁇ n], [Vt ⁇ n], [Ir], [Is], and [It] are instantaneous values of the electric quantity, and t is time.
  • the smart meter 10 has an opening / closing unit 2 that opens and closes an electric circuit to a load by a signal from the arithmetic control unit 5.
  • the smart meter 10 further includes a storage unit 7, a display unit 6, and a communication unit 4.
  • the storage unit 7 has a FIFO table (first in, first out table), and the R phase current Ir, the S phase current Is, the T phase current It, and the N phase current In are set to 100 msec by a signal from the arithmetic control unit 5. It is memorized for about four times.
  • the storage unit 7 also stores various events such as tampering information and measurement information such as the accumulated power consumption of the customer.
  • the display unit 6 displays a measured value such as the accumulated power consumption of the consumer, tampering information, and the like on the display.
  • the communication unit 4 is connected to, for example, an R-phase distribution line, an S-phase distribution line, a T-phase distribution line, and an N-phase distribution line for power line carrier communication, and communicates with the calculation control unit 5 to display the accumulated power consumption and tampering information. And receives a signal (instruction) from the host device.
  • FIG. 3 is a flowchart illustrating a bypass tampering detection procedure by the three-phase four-wire smart meter according to the first embodiment. Since the phase difference between the phases of the three-phase four-wire circuit (between RS, ST, and TR) is normally 120 °, the phase difference between the phases is not detected without performing phase detection. Is determined as 120 °, and it is determined whether or not the absolute value of the difference between the absolute value of the R-phase current, the vector of the S-phase current and the T-phase current and the N-phase current absolute value is greater than a predetermined threshold D1 (step S11). ). The predetermined threshold D1 is set to, for example, about several percent of the normal use phase current.
  • the tampering display LED or LCD (liquid Crystal Display) of the display unit 6 is turned on. Further, the communication unit 4 notifies the host device of the occurrence of an event (tampering) (step S13).
  • the tampering current Irb during the R-phase bypass can be calculated from the formulas I and II as follows.
  • phase detection is not performed, and the phase difference between phases (R-S, ST, and TR) is regarded as 120 °, and the R-phase current, S-phase current, and T-phase current are calculated. It is obtained from the absolute value of the difference between the absolute value of the vector composition and the N-phase current absolute value.
  • the tampering integrated power amount can be calculated from ⁇ [[Vr ⁇ n] ⁇ [Irb] ⁇ t] (step S14), and the customer of the power supplier It can be used as a reference value for a shortage claim against
  • [Vr-n] is the instantaneous value of the voltage Vr-n of the R-phase distribution line based on the N phase
  • [Irb] is the instantaneous value of Irb
  • t is the tampering occurrence time.
  • tampering can be detected without performing phase detection, and the detected information can be notified to the host by the communication function of the smart meter.
  • the location and phase of the smart meter where tampering occurred can be ascertained from the top, and the time for on-site confirmation work can be reduced.
  • the load can be shut off by the smart meter opening / closing function by a command from the host or by setting the smart meter.
  • FIG. FIG. 4 is a flowchart showing a tampering detection procedure by the three-phase four-wire smart meter according to the second embodiment.
  • the change of each phase current when tampering occurs will be described with reference to FIG. From Formula I, the current In flowing in the N phase depends on the current flowing in the R phase, S phase, and T phase. Therefore, when normal (a), for example, the current Ir flowing in the R phase changes, In also changes. . However, the shunt due to tampering (b) occurs only at the tampering location, and the current flowing through the distribution line does not change, so In does not change.
  • the R phase current Ir, the S phase current Is, the T phase current It, and the N phase current In measured by the current detection unit 1 and before tampering determination are stored in the storage unit 7, respectively.
  • the phase current of any of the R-phase distribution line, the S-phase distribution line, and the T-phase distribution line is greater than a predetermined threshold value E2 before and after the time when the bypass tampering in the phase current measured by the current detection unit 1 is determined. If there is a change (step S21) and the change in the N-phase current flowing through the neutral line at that time is smaller than the predetermined threshold F2 (step S22), it is determined that bypass tampering has occurred.
  • the predetermined thresholds E2 and F2 are set to about several percent of the normal use phase current, for example.
  • Phase currents Ira, Isa, Ita, Ina flowing inside the meter are measured by the current detector 1 with phase currents that are vector quantities flowing in the R phase, S phase, T phase, and N phase after tampering determination (during determination). And input to the arithmetic control unit 5.
  • step S21 it is determined in step S22 whether or not
  • the tampering indicator LED or LCD (liquid Crystal Display) of the display unit 6 is turned on. Further, an event (tampering) occurrence is notified to the host device by the communication unit 4 (step 24).
  • step S22 if
  • FIG. 5 is a flowchart showing a tampering detection procedure by the three-phase four-wire smart meter according to the third embodiment.
  • Embodiment 1 Merit Since the R-phase, S-phase, and T-phase currents are vector-synthesized, it is possible to cope with current changes due to load fluctuations that occur in each phase. Disadvantages Since the phase difference between the phases is 120 °, if the phase difference differs depending on the load connected to each phase, there is a difference between the vector composite value in step S11 of FIG. 3 and the vector composite value of the actual load current.
  • Embodiment 2 Advantages Since the current for each phase is monitored, tampering can be monitored without depending on the phase difference between the phases. Disadvantages Since the N-phase current change at the time of the current change in each of the R-phase, S-phase, and T-phase is monitored, each of the R-phase, S-phase, and T-phase can be used in an environment where a current change occurs due to load fluctuation. A phase current change and an N-phase current change occur at the same time, and there is a possibility that tampering is erroneously detected despite the normal connection.
  • the combination of the first embodiment and the second embodiment covers the disadvantages of the first embodiment and the second embodiment, and improves the tampering detection accuracy. be able to.
  • the phase difference between each phase is regarded as 120 ° without performing phase detection, and the difference between the absolute value of the vector composition of the R phase current, S phase current, and T phase current and the absolute value of the N phase current.
  • the predetermined threshold D3 is set to, for example, about several percent of the normal use phase current. That is,
  • the repetition period is, for example, about 100 msec.
  • step S32 When the formula IV is established, in step S32,
  • the repetition period is, for example, about 100 msec.
  • phase currents Ir, Is, It, and In which are vector amounts flowing in the R phase, S phase, T phase, and N phase before tampering determination, are measured by the current detection unit 1 and pass through the arithmetic control unit 5.
  • the storage unit 7 stores the period of about 4 times 100 msec.
  • phase currents Ira, Isa, Ita, Ina flowing inside the meter are measured by the current detector 1 with the phase currents that are vector quantities flowing in the R phase, S phase, T phase, and N phase after tampering determination (during determination). And input to the arithmetic control unit 5.
  • step S32 If the above expression is established in any of the R phase, S phase, and T phase (step S32), it is determined in step S33 whether or not
  • the tampering indicator LED or LCD (liquid Crystal Display) of the display unit 6 is turned on. Further, an event (tampering) occurrence is notified to the host device by the communication unit 4 (step 35).
  • the tampering current Irb during the R-phase bypass can be calculated as follows.
  • phase detection is not performed, and each phase (between RS, ST, and TR) is not detected.
  • the phase difference is regarded as 120 °, and is obtained from the difference between the absolute value of the N-phase current absolute value and the vector synthesis of the R-phase current, S-phase current, and T-phase current.
  • the tampering integrated power amount can be calculated by ⁇ [[Vr ⁇ n] ⁇ [Irb] ⁇ t] (step S36), and the power supplier's consumer It can be used as a reference value for a shortage claim against
  • [Vr-n] is the instantaneous value of the voltage Vr-n of the R-phase distribution line based on the N phase
  • [Irb] is the instantaneous value of Irb
  • t is the tampering occurrence time.
  • step S22 When
  • the present invention is useful for an electric power supply system, and is particularly suitable for a smart meter used in an electric power supply system in an environment where there are many tampering cases.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Remote Monitoring And Control Of Power-Distribution Networks (AREA)

Abstract

 三相4線式電力量計であって、R相配電線,S相配電線,T相配電線,中性線を流れるR相電流Ir,S相電流Is,T相電流It,N相電流Inをそれぞれ計測する電流検出部を備えると共に、R-S相間、S-T相間、T-R相間の位相差をそれぞれ120°とみなし、R相電流,S相電流及びT相電流をベクトル合成したものの絶対値とN相電流絶対値との差の絶対値が所定閾値を超えたとき、バイパスタンパリングが発生したと判定するバイパスタンパリング検出手段を備えた。

Description

三相4線式電力量計
 本発明は、電力量などを計量する三相4線式電力量計に関し、特に、タンパリング(tampering)検出機能を有するものに係わる。
 電力量計では、通信機能と負荷の開閉機能を備えた電力量計であるスマートメーターを例に説明する。スマートメーターは、電力会社などの電力供給者が、電力需要家(家庭や工場など)に設置し、使用された電力量や電流などの電気量を計量、計測するものである。設置後にスマートメーターに不正配線を実施することで、使用した電力量をごまかし、請求される電力料金を少なくする盗電(タンパリング)がなされることがある。タンパリング方法のひとつであるバイパスタンパリングに対し、従来のスマートメーターは、スマートメーターに接続された配電線の上流側と下流側の電流を計測し、1次元的な差分によってタンパリングを検知していた(例えば、特許文献1参照)。
特開2010-203926号公報
 単相回路の場合、配電線の上流側と下流側の電流の差分によりバイパスタンパリングの検出は可能であるが、三相4線式回路の場合は、各相間に位相差があるため、先行技術にある1次元での計算はできず、位相検出が必要になる。しかし、位相検出を行う場合、演算ソフトウェアの処理が複雑になってしまうという問題点があった。
 本発明は、上記問題点に鑑み、位相検出を行わないで、バイパスタンパリングの検出機能を有する三相4線式電力量計を提供することを目的とするものである。
 本発明は、使用電力量を計測する三相4線式電力量計において、R相配電線,S相配電線,T相配電線,中性線を流れるR相電流Ir,S相電流Is,T相電流It,N相電流Inをそれぞれ計測する電流検出部、及び、R-S相間,S-T相間,T-R相間の位相差をそれぞれ120°とみなし、前記電流検出部で検出したR相電流,S相電流とT相電流をベクトル合成したものの絶対値とN相電流の絶対値との差の絶対値が所定閾値を超えたとき、バイパスタンパリングが発生したと判定するバイパスタンパリング検出手段を備えたものである。
 また、本発明は、使用電力量を計測する三相4線式電力量計において、R相配電線,S相配電線,T相配電線,中性線を流れるR相電流Ir,S相電流Is,T相電流It,N相電流Inをそれぞれ計測する電流検出部、前記電流検出部で計測され、バイパスタンパリング判定前のR相電流Ir,S相電流Is,T相電流It,N相電流Inをそれぞれ記憶する記憶部、及び、前記電流検出部で計測される相電流におけるバイパスタンパリングを判定する時点の前後において、R相配電線,S相配電線,T相配電線のいずれかの相電流に第1所定閾値より大きい変化があったときの、中性線のN相電流変化が第2所定閾値より小さい場合に、バイパスタンパリングが発生したと判定するバイパスタンパリング検出手段を備えたものである。
 さらに、本発明は、使用電力量を計測する三相4線式電力量計において、R相配電線,S相配電線,T相配電線,中性線を流れるR相電流Ir,S相電流Is,T相電流It,N相電流Inをそれぞれ計測する電流検出部、前記電流検出部で計測され、バイパスタンパリング判定前のR相電流Ir,S相電流Is,T相電流It,N相電流Inをそれぞれ記憶する記憶部、及び、R-S相間,S-T相間,T-R相間の位相差をそれぞれ120°とみなし、前記電流検出部で検出したR相電流,S相電流とT相電流をベクトル合成したものの絶対値とN相電流の絶対値との差の絶対値が第1所定閾値を超えたとき、かつ、前記電流検出部で計測される相電流におけるバイパスタンパリングを判定する時点の前後において、R相配電線,S相配電線,T相配電線のいずれかの相電流に第2所定閾値より大きい変化があったときの、中性線のN相電流変化が第3所定閾値より小さい場合に、バイパスタンパリングが発生したと判定するバイパスタンパリング検出手段を備えたものである。
 本発明に係わる三相4線式電力量計によれば、位相検出を行わないで、バイパスタンパリングの検出機能を有する三相4線式電力量計を提供することができる。
 本発明の前記以外の目的,特徴,観点及び効果は、図面を参照する以下の本発明の詳細な説明から、さらに明らかになるであろう。
本発明の実施の形態1における三相4線式スマートメーターのバイパスタンパリングの検出原理を説明する図である。 本発明の実施の形態1における三相4線式スマートメーターの内部回路構成を示すブロック図である。 本発明の実施の形態1の三相4線式スマートメーターによるバイパスタンパリング検出手順を示すフローチャートである。 本発明の実施の形態2の三相4線式スマートメーターによるバイパスタンパリング検出手順を示すフローチャートである。 本発明の実施の形態3の三相4線式スマートメーターによるバイパスタンパリング検出手順を示すフローチャートである。
実施の形態1.
 三相4線式電力量計では、通信機能と負荷の開閉機能を備えた電力量計である三相4線式スマートメーターを例に説明する。図1は実施の形態1における三相4線式スマートメーターのバイパスタンパリングの検出原理を説明する図で、その(a)はバイパスタンパリングがない正常時を示し、その(b)はバイパスタンパリング時を示す。図2は実施の形態1における三相4線式スマートメーターの内部回路構成を示すブロック図である。図1において、電流Ir,Is,It,Inは、電源(Y結線)とスマートメーターとを接続するR相配電線,S相配電線,T相配電線,中性線(中性配電線)をそれぞれ流れるベクトル量であるR相電流,S相電流,T相電流,N相電流である。スマートメーターにおける1S,2S,3S,0Sは、電源側配電線,中性線にそれぞれ接続される端子、1L,2L,3L,0Lは負荷側配電線,中性線にそれぞれ接続される端子である。Ir,Is,It,Inにおいて、Δtは電流変化が発生した時間帯である。なお、以下で、タンパリングは、バイパスタンパリングを示すものとする。
 タンパリング時の検出原理について、図1を参照しながら説明する。三相4線式回路において、図1に示す矢印の向きを電流の正方向とすると、正常時(a)の各相の電流のベクトル和は、次のとおりになる。
  Ir+Is+It=In  ----- I式
 一方、R相にタンパリングが発生した時を例に説明する。タンパリングが発生すると、R相に流れる電流Irは、バイパス箇所で三相4線式スマートメーター内部に流れ、計測される電流Ira(ベクトル量)とスマートメーター外部(バイパス部分)に流れる電流Irb(ベクトル量)に分流するため、次のとおりになる。
  Ir=Ira+Irb   ----- II式
II式より三相4線式スマートメーター内部に流れる電流Iraは、正常時に比べIrb分減少するため、三相4線式スマートメーターで計測される電力量も小さくなり、需要家(家庭や工場など)の支払う電気料金が不正に軽減される。
 実施の形態1について、図2、図3を参照しながら説明する。実施の形態1の三相4線式スマートメーターは、本来のスマートメーターとしての機能、すなわち、設置された需要家(家庭や工場など)への電力供給や消費電力量の計量・計測及び負荷の開閉、通信機能などに加え、さらに、タンパリング検出機能を有しており、検出したタンパリング情報を通信機能によりデータコンセントレータ(data concentrator)へ送信し、データコンセントレータからさらに上位装置へ送信が可能となっている。
 図2は、実施の形態1における三相4線式スマートメーターの内部回路構成を示すブロック図である。10は三相4線式スマートメーターである。電流検出部1は、電流トランスやシャント抵抗器等により構成され、R相電流Ir,S相電流Is,T相電流It,N相電流Inをそれぞれ検出し、その電流に正比例した低レベルの電気信号に変換しメータ内部の演算制御部5に出力する。電流検出部1では、各相のベクトル量(瞬時値)を検出し、演算制御部5に出力している。電圧検出部3は電圧トランスや分圧抵抗器等により構成され、N相を基準としたR相電圧Vr-n,S相電圧Vs-n,T相電圧Vt-n、(つまりR-N間電圧,S-N間電圧,T-N間電圧)をそれぞれ検出し、その電圧に正比例した低レベルの電気信号に変換しメータ内部の演算制御部5に出力する。電圧検出部3では、各相のベクトル量(瞬時値)を検出し、演算制御部5に出力している。
 演算制御部5では、需要家の積算使用電力量や各時間帯毎の時間帯積算使用電力量等の演算、タンパリングの検出(バイパスタンパリング検出手段による検出)などを行う。需要家の積算使用電力量は、Σ[[[Vr-n]×[Ir]+[Vs-n]×[Is]+[Vt-n]×[It]]×t]で求められる。但し、[Vr-n],[Vs-n],[Vt-n],[Ir],[Is],[It]は、その電気量の瞬時値、tは時間である。
 スマートメーター10は、演算制御部5からの信号により負荷への電路の開閉を行う開閉部2を有している。開閉部2により、テナントが入退去したとき、負荷への電路を閉鎖開放する。また、電力需要家に不正があったときに、負荷への電路を開放する。スマートメーター10は、さらに、記憶部7,表示部6と通信部4を有している。記憶部7は、FIFOテーブル(first in, first out table)を有し、演算制御部5からの信号により、R相電流Ir,S相電流Is,T相電流It,N相電流Inを100msecの4倍程度の期間記憶している。記憶部7はタンパリング情報等の各種イベントや需要家の積算使用電力量等の計測情報なども記憶する。表示部6は需要家の積算使用電力量等の計測値,タンパリング情報などをディスプレイに表示する。通信部4は、例えば、電力線搬送通信のためR相配電線,S相配電線,T相配電線,N相配電線と接続され、演算制御部5と交信し、積算使用電力量やタンパリング情報を上位装置に連絡すると共に、上位装置からの信号(指示)を受ける。
 図1に記載のとおり、タンパリング時(b)にスマートメーター内部を流れる電流、例えばR相バイパス時をIraとすると、正常時(a)及びタンパリング時(b)のスマートメーター内部に流れる各相電流の関係は、次の式で表される。
  正常時     ・・・ Ir+Is+It-In=0・・ I’式
  タンパリング時 ・・・ Ira+Is+It-In≠0・ III式
I’式とIII式の違いにより、タンパリングの検知は、各相電流の位相を検出し、ベクトル合成することで、タンパリングの検出は可能だが、位相検出を行う場合、演算ソフトウェアの処理が複雑になる問題がある。そのため、実施の形態1のスマートメーターでは、位相検出を行わないでタンパリングの検出を行う。
 図3は、実施の形態1の三相4線式スマートメーターによるバイパスタンパリング検出手順を示すフローチャートである。三相4線式回路の各相間(R-S間、S-T間、T-R間)の位相差は通常120°であることから、位相検出は行わないで、前記各相間の位相差を120°とみなし、R相電流,S相電流とT相電流をベクトル合成したものの絶対値とN相電流絶対値との差の絶対値が所定閾値D1より大きいか否か判定する(ステップS11)。なお、所定閾値D1は、例えば、通常使用時相電流の数%程度に設定する。
すなわち、
  ||Ir+Is+It|-|In||>D1  ----- IV式
であるか否か判定する。IV式が成立しないときは、スタートに戻り、繰り返し、ステップS11を実行し判定する。繰り返し周期は、例えは、100m sec程度である。IV式が成立すると、タンパリングが発生したと判定する(ステップS12)。
 そして、タンパリングが発生したと判定すると、表示部6のタンパリング表示器LEDやLCD(liquid Crystal Display)を点灯する。さらに、通信部4により上位装置へイベント(タンパリング)発生を連絡する(ステップS13)。
 また、I式、II式により、次のとおり、例えばR相バイパス時のタンパリング電流Irbを算出することができる。
|Irb|=||Ira+Is+It|-|In|| ----- V式
 但し、Iraはバイパスタンパリング時の電流検出部1によるR相配電線の計測電流、|Ira+Is+It|はIra,IsとItをベクトル合成したものの絶対値、|In|はN相電流の絶対値である。
 このときも、位相検出は行わないで、各相間(R-S間、S-T間、T-R間)の位相差を120°とみなし、R相電流,S相電流,T相電流をベクトル合成したものの絶対値とN相電流絶対値との差の絶対値より求めている。V式によりタンパリング電流Irbが算出できるため、Σ[[Vr-n]×[Irb]×t]により、タンパリング積算電力量を算出することができ(ステップS14)、電力供給者の需要家に対する不足金請求などの参考値として使用することができる。但し、[Vr-n]はN相を基準としたR相配電線の電圧Vr-nの瞬時値、[Irb]はIrbの瞬時値、tはタンパリングの発生時間である。
 以上のように、位相検出を行わなくてもタンパリングの検出ができ、検出した情報をスマートメーターの通信機能により上位へ通知することができる。また、タンパリングが発生したスマートメーターの場所と相を上位で把握することができ、現地確認作業時間を軽減することができる。さらに、上位からの命令または、スマートメーターの設定で、スマートメーターの開閉機能により負荷の遮断が可能である。
実施の形態2.
 図4は実施の形態2の三相4線式スマートメーターによるタンパリング検出手順を示すフローチャートである。タンパリング発生時の各相電流の変化については、図1を参照しながら説明する。I式より、N相に流れる電流Inは、R相,S相,T相に流れる電流に依存しているため、正常時(a)、例えばR相に流れる電流Irが変化するとInも変化する。しかし、タンパリング時(b)による分流は、タンパリング箇所で発生するのみであり、配電線に流れる電流は変化しないため、Inは変化しない。
 そのため、実施の形態2では、電流検出部1で計測され、タンパリング判定前のR相電流Ir,S相電流Is,T相電流It,N相電流Inを記憶部7にそれぞれ記憶している。図4のとおり、電流検出部1で計測される相電流におけるバイパスタンパリングを判定する時点の前後において、R相配電線,S相配電線,T相配電線のいずれかの相電流に所定閾値E2より大きい変化があり(ステップS21)、かつ、その時に中性線に流れるN相電流の変化が所定閾値F2より小さい場合(ステップS22)、バイパスタンパリングが発生したと判定する。所定の閾値E2,F2は、例えば、通常使用時相電流の数%程度に設定する。
 詳しく説明すると、図4において、
     |Ir|-|Ira|>E2,
     |Is|-|Isa|>E2,or
     |It|-|Ita|>E2      ----- VI式
R相,S相,T相のいずれかで前記式が成立しなければ、スタートに戻り、ステップS21を繰り返し行う。繰り返し周期は、例えば100msec程度である。なお、タンパリング判定前のR相,S相,T相,N相に流れるベクトル量である相電流Ir,Is,It,Inは、電流検出部1で測定され、演算制御部5を経由して記憶部7に100msecの4倍程度の期間記憶されている。タンパリング判定後(判定時)のR相,S相,T相,N相に流れるベクトル量である相電流で、メーター内部に流れる相電流Ira, Isa,Ita,Inaは電流検出部1で測定され、演算制御部5に入力される。
 R相,S相,T相のいずれかで前記式が成立すれば(ステップS21)、ステップS22で
||Ina|-|In||<F2        ----- VII式
であるか否か判定し、成立すれば、タンパリングが発生したと判定する(ステップS23)。
 タンパリングが発生したと判定すると、表示部6のタンパリング表示器LEDやLCD(liquid Crystal Display)を点灯する。さらに、通信部4により上位装置へイベント(タンパリング)発生を連絡する(ステップ24)。
 なお、ステップS22で、||Ina|-|In||<F2が成立しないときは、スタートに戻り、ステップS21を繰り返し行う。
実施の形態3.
 図5は実施の形態3の三相4線式スマートメーターによるタンパリング検出手順を示すフローチャートである。実施の形態1及び実施の形態2では、次のとおり、それぞれにメリットとデメリットがある。
  実施の形態1:
  メリット  R相,S相,T相の各相電流をベクトル合成しているため、各相で発生する負荷変動による電流変化にも対応できる。
  デメリット 各相間の位相差を120°としているため、各相に接続されている負荷により位相差が異なる場合、図3のステップS11でのベクトル合成値と実際の負荷電流のベクトル合成値に差が発生し、正常接続時にも関わらずタンパリングを誤検出する可能性がある。
  実施の形態2:
  メリット  各相毎の電流を監視するため、各相間の位相差に依存せず、タンパリングの監視が可能である。
  デメリット R相,S相,T相の各相の電流変化時のN相電流変化を監視しているため、負荷変動による電流変化が発生する環境下では、R相,S相,T相の各相の電流変化とN相の電流変化が同時に発生し、正常接続時にも関わらずタンパリングを誤検出する可能性がある。
 そこで、図5の検出手順のとおり、実施の形態1と実施の形態2を組合せて使用することにより、実施の形態1及び実施の形態2でのデメリットをカバーし、タンパリングの検出精度を高めることができる。
 図5において、位相検出は行わないで、各相間の位相差を120°とみなし、R相電流,S相電流,T相電流をベクトル合成したものの絶対値とN相電流の絶対値との差の絶対値が所定の閾値D3より大きいか否か判定する(ステップS31)。所定の閾値D3は、例えば、通常使用時相電流の数%程度に設定する。
すなわち、
  ||Ir+Is+It|-|In||>D3  ----- IV式
であるか否か判定する。IV式が成立しないときは、スタートに戻り、繰り返し、ステップS31を実行し判定する。繰り返し周期は、例えは、100m sec程度である。
 IV式が成立すると、ステップS32で、
     |Ir|-|Ira|>E3,
     |Is|-|Isa|>E3,or
     |It|-|Ita|>E3      ----- VI式
R相,S相,T相のいずれかで前記式が成立しなければ、スタートに戻り、ステップS31から繰り返し行う。繰り返し周期は、例えば100m sec程度である。なお、タンパリング判定前のR相,S相,T相,N相に流れるベクトル量である相電流Ir,Is,It,Inは、電流検出部1で測定され、演算制御部5を経由して記憶部7に100msecの4倍程度の期間記憶されている。タンパリング判定後(判定時)のR相,S相,T相,N相に流れるベクトル量である相電流で、メータ内部に流れる相電流Ira, Isa,Ita,Inaは電流検出部1で測定され、演算制御部5に入力される。
 R相,S相,T相のいずれかで前記式が成立すれば(ステップS32)、ステップS33で
||Ina|-|In||<F3        ----- VII式
であるか否か判定し、成立すれば、タンパリングが発生したと判定する(ステップS34)。
 タンパリングが発生したと判定すると、表示部6のタンパリング表示器LEDやLCD(liquid Crystal Display)を点灯する。さらに、通信部4により上位装置へイベント(タンパリング)発生を連絡する(ステップ35)。
 また、V式より、次のとおり、例えばR相バイパス時のタンパリング電流Irbを算出することができる。
|Irb|=||Ira+Is+It|-|In|| ----- V式
このときも、位相検出は行わないで、各相間(R-S間、S-T間、T-R間)の位相差を120°とみなし、N相電流絶対値とR相電流,S相電流,T相電流をベクトル合成したものの絶対値との差より求めている。V式によりタンパリング電流Irbが算出できるため、Σ[[Vr-n]×[Irb]×t]により、タンパリング積算電力量を算出することができ(ステップS36)、電力供給者の需要家に対する不足金請求などの参考値として使用することができる。但し、[Vr-n]はN相を基準としたR相配電線の電圧Vr-nの瞬時値、[Irb]はIrbの瞬時値、tはタンパリングの発生時間である。
 なお、ステップS22で、||Ina|-|In||<F3が成立しないときは、スタートに戻り、ステップS31を繰り返し行う。
 なお、本発明は、その発明の範囲内において、各実施の形態を自由に組み合わせたり、各実施の形態を適宜、変形、省略することが可能である。
 以上のように、本発明は、電力供給システムに有用であり、特に、タンパリング事例の多い環境下の電力供給システムで使用するスマートメーターに適している。

Claims (5)

  1.  使用電力量を計測する三相4線式電力量計において、
    R相配電線,S相配電線,T相配電線,中性線を流れるR相電流Ir,S相電流Is,T相電流It,N相電流Inをそれぞれ計測する電流検出部、及び、
    R-S相間,S-T相間,T-R相間の位相差をそれぞれ120°とみなし、前記電流検出部で検出したR相電流,S相電流とT相電流をベクトル合成したものの絶対値とN相電流の絶対値との差の絶対値が所定閾値を超えたとき、バイパスタンパリングが発生したと判定するバイパスタンパリング検出手段を備えたことを特徴とする三相4線式電力量計。
  2.  N相を基準とした各相電圧を計測する電圧検出部、及び、
    バイパスタンパリングが発生した相配電線をR相配電線としたとき、
    バイパスタンパリング電流Irbを、
    |Irb|=||Ira+Is+It|-|In||
    但し、Iraはバイパスタンパリング時の前記電流検出部によるR相配電線の計測電流、|Ira+Is+It|はIra,IsとItをベクトル合成したものの絶対値、|In|はN相電流の絶対値、
    で求め、
       [Irb]×[Vr-n]×t
       但し、[Irb]はIrbの瞬時値、[Vr-n]はN相を基準としたR相電圧Vr-nの瞬時値、tはバイパスタンパリングの発生時間、
    でバイパスタンパリングされた積算電力量を算出する手段を、さらに備えた請求項1記載の三相4線式電力量計。
  3.  使用電力量を計測する三相4線式電力量計において、
    R相配電線,S相配電線,T相配電線,中性線を流れるR相電流Ir,S相電流Is,T相電流It,N相電流Inをそれぞれ計測する電流検出部、
    前記電流検出部で計測され、バイパスタンパリング判定前のR相電流Ir,S相電流Is,T相電流It,N相電流Inをそれぞれ記憶する記憶部、及び、
    前記電流検出部で計測される相電流におけるバイパスタンパリングを判定する時点の前後において、R相配電線,S相配電線,T相配電線のいずれかの相電流に第1所定閾値より大きい変化があったときの、中性線のN相電流変化が第2所定閾値より小さい場合に、バイパスタンパリングが発生したと判定するバイパスタンパリング検出手段を備えたことを特徴とする三相4線式電力量計。
  4.  使用電力量を計測する三相4線式電力量計において、
    R相配電線,S相配電線,T相配電線,中性線を流れるR相電流Ir,S相電流Is,T相電流It,N相電流Inをそれぞれ計測する電流検出部、
    前記電流検出部で計測され、バイパスタンパリング判定前のR相電流Ir,S相電流Is,T相電流It,N相電流Inをそれぞれ記憶する記憶部、及び、
    R-S相間,S-T相間,T-R相間の位相差をそれぞれ120°とみなし、前記電流検出部で検出したR相電流,S相電流とT相電流をベクトル合成したものの絶対値とN相電流の絶対値との差の絶対値が第1所定閾値を超えたとき、かつ、
    前記電流検出部で計測される相電流におけるバイパスタンパリングを判定する時点の前後において、R相配電線,S相配電線,T相配電線のいずれかの相電流に第2所定閾値より大きい変化があったときの、中性線のN相電流変化が第3所定閾値より小さい場合に、バイパスタンパリングが発生したと判定するバイパスタンパリング検出手段を備えたことを特徴とする三相4線式電力量計。
  5.  電力量計は通信機能と負荷の開閉機能を備えたスマートメーターである請求項1~請求項4のいずれか1項に記載の三相4線式電力量計。
PCT/JP2013/067189 2013-06-24 2013-06-24 三相4線式電力量計 WO2014207795A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2013548657A JP5469284B1 (ja) 2013-06-24 2013-06-24 三相4線式電力量計
PCT/JP2013/067189 WO2014207795A1 (ja) 2013-06-24 2013-06-24 三相4線式電力量計
TW102127585A TWI489116B (zh) 2013-06-24 2013-08-01 三相四線式電量計

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2013/067189 WO2014207795A1 (ja) 2013-06-24 2013-06-24 三相4線式電力量計

Publications (1)

Publication Number Publication Date
WO2014207795A1 true WO2014207795A1 (ja) 2014-12-31

Family

ID=50749744

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/067189 WO2014207795A1 (ja) 2013-06-24 2013-06-24 三相4線式電力量計

Country Status (3)

Country Link
JP (1) JP5469284B1 (ja)
TW (1) TWI489116B (ja)
WO (1) WO2014207795A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106771445A (zh) * 2016-11-10 2017-05-31 国网山东省电力公司昌邑市供电公司 防窃电装置

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7034374B2 (ja) * 2019-03-13 2022-03-11 三菱電機株式会社 接点部異常監視装置および接点部異常監視装置を用いる回路遮断器
CN112162136A (zh) * 2020-09-14 2021-01-01 佰聆数据股份有限公司 应用于配电网融合终端的防窃电方法及系统
CN113848381B (zh) * 2021-09-23 2023-07-18 石家庄科林电气股份有限公司 一种电流旁路事件的判定装置及方法
CN118330311B (zh) * 2024-06-13 2024-09-06 中国电力科学研究院有限公司 一种三相多功能标准谐波电能表及三相谐波电能测量方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004340767A (ja) * 2003-05-16 2004-12-02 Hitachi Ltd 盗電を防止する電力売買方法と電力売買システム
JP2006284382A (ja) * 2005-03-31 2006-10-19 Toshiba Corp 電子式電力量計
JP2012058233A (ja) * 2010-09-03 2012-03-22 Ls Industrial Systems Co Ltd 電気エネルギー管理システム

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19958369A1 (de) * 1999-12-03 2001-06-13 Siemens Metering Ag Zug Phasenausfall-Überwachung
TWI278637B (en) * 2005-08-03 2007-04-11 Univ Nat Kaohsiung Applied Sci Three-phase four-line active type power load
CN101413982B (zh) * 2007-10-18 2011-07-20 深圳长城开发科技股份有限公司 电流回路短路检测方法及装置
US7772829B2 (en) * 2008-04-21 2010-08-10 Elster Electricity, Llc Power meter and method for measuring power consumption

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004340767A (ja) * 2003-05-16 2004-12-02 Hitachi Ltd 盗電を防止する電力売買方法と電力売買システム
JP2006284382A (ja) * 2005-03-31 2006-10-19 Toshiba Corp 電子式電力量計
JP2012058233A (ja) * 2010-09-03 2012-03-22 Ls Industrial Systems Co Ltd 電気エネルギー管理システム

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106771445A (zh) * 2016-11-10 2017-05-31 国网山东省电力公司昌邑市供电公司 防窃电装置

Also Published As

Publication number Publication date
TWI489116B (zh) 2015-06-21
JPWO2014207795A1 (ja) 2017-02-23
JP5469284B1 (ja) 2014-04-16
TW201500741A (zh) 2015-01-01

Similar Documents

Publication Publication Date Title
JP5469284B1 (ja) 三相4線式電力量計
TWI464416B (zh) 用於檢測供電動交通工具用之充電站之能源量的裝置與方法
AU2002310615B2 (en) Measuring devices
KR101079848B1 (ko) 계기용변성기 오차 보정 계량장치 및 계량방법
TW201112559A (en) Device and method for providing a quantity of energy in said supply device for a consumer
AU2010100428A4 (en) Method and Apparatus for Power Supply Fault Detection
KR100947342B1 (ko) 디지탈 전력량계의 오결선 감지방법
US20240103053A1 (en) Position Sensing Modules and Related Devices and Methods
Somefun et al. Smart prepaid energy metering system to detect energy theft with facility for real time monitoring
Ngamchuen et al. Smart anti-tampering algorithm design for single phase smart meter applied to AMI systems
US7541800B2 (en) Methods and systems for detecting DC influence in a current sensor
JP4751636B2 (ja) 電子式電力量計
WO2006125336A1 (en) An electricity meter
US10401400B2 (en) Load-side sense with floating ground reference
KR20200002226A (ko) 전력량계의 상 오차 검출장치 및 그 방법
US9817419B2 (en) Method for determining an individual power consumption
Maitra Smart Energy meter using Power Factor Meter and Instrument Transformer
Sawyer et al. DESIGN AND IMPLEMENTATION OF GSM-BASED ENERGY THEFT DETECTION IN A SINGLE-PHASE SMART METER
JP4690680B2 (ja) 電力量計
JP7411927B2 (ja) 判定システム、判定方法及びプログラム
KR20150121333A (ko) 전자식 전력량계 및 그 계량 방법
RU2212673C2 (ru) Способ измерения электрической энергии в двухпроводных сетях с защитой от хищений и устройство для его осуществления
JP7248382B2 (ja) 電子式電力量計
JP2017163811A (ja) 異常判定方法、異常判定システム、プログラム、遮断システム、及び分電盤
TW442662B (en) Method and apparatus of detecting and preventing electricity stealing for three-phase three-wire dual devices with attached CT meter

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2013548657

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13887630

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13887630

Country of ref document: EP

Kind code of ref document: A1