WO2014206219A1 - 一种rna片段及其制备方法和用途 - Google Patents

一种rna片段及其制备方法和用途 Download PDF

Info

Publication number
WO2014206219A1
WO2014206219A1 PCT/CN2014/080069 CN2014080069W WO2014206219A1 WO 2014206219 A1 WO2014206219 A1 WO 2014206219A1 CN 2014080069 W CN2014080069 W CN 2014080069W WO 2014206219 A1 WO2014206219 A1 WO 2014206219A1
Authority
WO
WIPO (PCT)
Prior art keywords
fragment
triphosphate
rna
template
rna fragment
Prior art date
Application number
PCT/CN2014/080069
Other languages
English (en)
French (fr)
Inventor
彭长庚
温婷
Original Assignee
昆山彭济凯丰生物科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 昆山彭济凯丰生物科技有限公司 filed Critical 昆山彭济凯丰生物科技有限公司
Publication of WO2014206219A1 publication Critical patent/WO2014206219A1/zh

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q1/00Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
    • C12Q1/68Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving nucleic acids
    • C12Q1/6806Preparing nucleic acids for analysis, e.g. for polymerase chain reaction [PCR] assay
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/11DNA or RNA fragments; Modified forms thereof; Non-coding nucleic acids having a biological activity
    • C12N15/111General methods applicable to biologically active non-coding nucleic acids
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2310/00Structure or type of the nucleic acid
    • C12N2310/10Type of nucleic acid
    • C12N2310/14Type of nucleic acid interfering N.A.
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2330/00Production
    • C12N2330/50Biochemical production, i.e. in a transformed host cell

Definitions

  • the present invention relates to the field of medical biology, and in particular to the field of molecular biotechnology, and more particularly to a method for preparing an RNA fragment, an RNA fragment prepared by the method, and the use of the RNA fragment. Background technique
  • microRNAs small non-coding NAs, especially microRNAs (SNAs)
  • SNAs microRNAs
  • SNAs small non-coding NAs
  • technicians are very optimistic about using microRNAs as targets to develop diagnostic kits and Prospects for the development of small nucleic acid drugs
  • microRNAs are usually only 18-30 bases (Bartel, 2004), and different microRNA members of a family may differ by only 1-2 bases (www.mirbase.com)
  • hybridization methods are used to detect microRNAs.
  • the purity of the probe is high. If the probe has a base mutation, it will result in a false negative or false positive (Barad et al., 2004).
  • microRNA probes There are two methods for producing microRNA probes: one is to chemically synthesize an RNA strand complementary to a microRNA, and then a nucleotide with a DIG or other label is added to the RNA strand by a terminal transferase.
  • the second method is the chemical synthesis of DNA complementary to the micro RNA
  • an RNA nucleotide analog locked nucleic acid, LNA
  • LNA-modified DNA probes such as those manufactured by Exiqon
  • DIG or other markers are placed on one or both ends of the probe by end labeling.
  • the method of labeling the probes is to add a labeled base at one or both ends of the probe, which makes the sequence of the probe one or two more bases than the microRNA sequence to be detected. Will affect the specificity of the probe.
  • the probe carries at most two markers, the sensitivity of the assay is limited and it is not possible to detect microRNAs that are expressed at low abundance.
  • T7 RNA polymerase A method for preparing short RNA by in vitro transcription using T7 NA polymerase (T7 RNA polymerase) has been disclosed (Milligan et al., 1987). Specifically, the method uses the following three templates: (1) Chemically synthesized Complete double-stranded DNA, the coding strand of which is ligated from the DNA template of the T7 promoter and the RNA fragment; (2) The plasmid double-stranded DNA linearized by a linear vector fragment, a T7 promoter and an RNA fragment of interest The coding DNA is ligated; (3) chemically synthesized DNA linked by a double-stranded region and a single-stranded region, the double-stranded region is a fully double-stranded T7 promoter, and the single-stranded region is a DNA template of an RNA probe.
  • T7 NA polymerase T7 NA polymerase
  • RNA probes by this method has the following problems: (1) Chemically synthesized templates introduce and amplify mutations in DNA synthesis, thereby reducing the purity and specificity of the probe; The method of using plasmid double-stranded DNA as a template, while ensuring the complete correctness of the template, since the method uses a type 1 restriction enzyme, the linearized template is followed by a restriction enzyme in the sequence encoding the RNA. The residual sequence of the site allows the transcribed RNA to be several bases larger than the RNA fragment of interest, which also reduces the specificity of the probe. Summary of the invention
  • the present invention provides a method of preparing an RNA fragment, the method comprising: (1) obtaining a chemically synthesized double-stranded DNA, the chemically synthesized double-stranded DNA being paired by a coding strand and a template strand In the 5' to 3' direction from the coding strand, the restriction endonuclease site of the first endonuclease, the promoter, the coding DNA of the target RNA fragment, and the restriction endonuclease site of the second endonuclease are in turn (2) cloning the chemically synthesized double-stranded DNA fragment into a vector to obtain a plurality of cloned amplification plasmids, and separately performing DNA sequencing on the amplified
  • a transcription template fragment of an RNA fragment wherein the second endonuclease is capable of cleaving at the 5' end of the DNA template strand of the RNA fragment of interest, such that the 5' end of the template strand of the transcription template fragment is capable of 3' to the target RNA fragment End shape Blunt-ended double-stranded; (4) the template for transcription of said fragment in vitro transcription, transcript containing the target RNA to give fragments.
  • the invention provides an RNA fragment which is prepared according to the method described above.
  • the present invention provides the use of the RNA fragment as described above for the preparation of a nucleic acid drug, test kit or diagnostic kit.
  • the present invention greatly improves the complete correctness and uniformity of the preparation of RNA fragments in sequence and length, thereby improving the specificity and sensitivity of the RNA probe.
  • Figure 1 exemplarily shows the strategy for preparing RNA fragments of the present invention.
  • Figure 2 shows the electrophoresis results of the transcriptional template fragment T1 (lane 1), transcript R1 (lane 2), transcript R1-DB1 (lane 4), transcriptional template fragment T2 (lane 6), and transcript R2 (lane 7).
  • Lanes 3, 5 and 8 are molecular weight markers, respectively.
  • Figure 3 shows a 13.5-day coronal section specimen (A, B) derived from the same mouse embryo and a 11.5-day sagittal section specimen, and D simultaneously using the miR-96 RNA probe produced by the present invention (B, D) or miR-96 RNA probe produced by the present invention after 3 hours of hybridization of a probe for targeting miRNA-96 (miRCURYLNATM Detection probe, Cat. No. 38474-05) (A, C)
  • the detected signal (B, D) was significantly stronger than that of the probe targeting miRNA-96 from Exiqon (miRCURYLNATM Detection probe, Cat. No. 38474-05) (A, C).
  • Figure 4 shows a 13.5-day coronal section specimen (A, B) derived from the same mouse embryo and a 11.5-day sagittal section specimen (C, D simultaneously using the miR-96 RNA probe produced by the present invention ( A, C) or miR-96 RNA probe produced by the present invention is developed after hybridization of a probe targeting miRNA-96 (miRCURYLNATM Detection probe, Cat. No. 38474-05) (B, D) purchased from Exiqon The signal detected after 12 hours was very strong (A, C); in contrast, the probe (B, D) from Epixion's targeted miRNA-96 was still weakly detected during 72 hours of color development. This indicates that the miR-96 RNA probe produced by the present invention is more sensitive than the probe for targeting miRNA-96 (miRCURY LNATM Detection probe, Cat. No. 38474-05) purchased from Exiqon.
  • a probe targeting miRNA-96 miRCURYLNATM Detection probe, Cat.
  • FIG. 5 shows that the miR-96 RNA probe produced by the present invention detects the specific expression of miR-96 specifically after 12 hours of color development in the dorsal root ganglia of the sagittal section of mouse embryos at 11.5 days of embryonic development ( A); in contrast, the probe for the target miRNA-96 (miRCURY LNATM Detection probe, Cat. No. 38474-05) purchased from Exiqon is still very weak after 72 hours of color development, and has little difference from the background. (B).
  • A the probe for the target miRNA-96 (miRCURY LNATM Detection probe, Cat. No. 38474-05) purchased from Exiqon is still very weak after 72 hours of color development, and has little difference from the background.
  • FIG. 6 shows the dorsal root ganglia of the mouse embryonic coronal section at 13.5 days of embryonic development.
  • the miR-96 RNA probe produced by the invention detected a very strong and very specific signal of miR-96 after 12 hours of color development (A); instead, a probe targeting miRNA-96 from Exiqon Corporation (mi) CURYLNATM Detection probe, Cat. No. 38474-05)
  • A a probe targeting miRNA-96 from Exiqon Corporation
  • CURYLNATM Detection probe Cat. No. 38474-05
  • the present invention provides a method for preparing an RNA fragment, the method comprising: (1) obtaining chemically synthesized double-stranded DNA, wherein the chemically synthesized double-stranded DNA is paired by a coding strand and a template strand; In the 5' to 3' direction of the strand, the restriction endonuclease site of the first endonuclease, the promoter, the coding DNA of the target RNA fragment, and the restriction endonuclease site of the second endonuclease are sequentially linked; (2) The chemically synthesized double-stranded DNA fragment is cloned into a vector to obtain a plurality of cloned amplification plasmids, and the amplified plasmids of the plurality of clones are separately subjected to DNA sequencing; and a clone of the amplified plasmid capable of correctly encoding the target RNA fragment is selected as Template plasmid; (3) using a first
  • a transcription template fragment of an RNA fragment wherein the second endonuclease is capable of cleaving at the 5' end of the DNA template strand of the RNA fragment of interest such that the 5' end of the template strand of the transcription template fragment is capable of 3' to the target RNA fragment
  • the ends form a blunt-ended double strand;
  • the transcription template fragment is transcribed in vitro to obtain a transcription product containing the RNA fragment of interest.
  • the RNA fragment to be prepared is the RNA fragment of interest;
  • the length of the target RNA is not particularly required, and may be a length of a conventional RNA fragment as a probe and/or a nucleic acid drug, for example, 5-200 bp, preferably 8- 100 bp, more preferably 10-50 bp, particularly preferably 15-30 bp.
  • the base sequence of the target RNA is also not particularly required, and may be a base sequence of a conventional RNA fragment as a probe and/or a nucleic acid drug, such as the database miRBase (http://www.mirbase.org/), The base sequence of each miRNA described in mi 2Disease (http://www.mir2disease.org/) or their reverse complement.
  • the operation of chemically synthesizing double-stranded DNA can be carried out in a manner conventional in the art, for example, synthesis of single-stranded DNA of a template strand and single-stranded DNA of a coding strand by solid phase DNA synthesis.
  • the coding strand also known as the sense strand, refers to the single strand of DNA that is identical to the transcript (RNA) sequence (only replacing T with U).
  • the template strand also known as the antisense strand, refers to the single strand of DNA complementary to the coding strand.
  • “complementary” refers to the pairing of nucleotides or nucleotide analogs in a nucleic acid molecule according to the Watson-Crick pairing principle (A-T, A-U, C-G).
  • “Completely complementary” refers to a 100% complement of a base of a nucleotide or nucleotide analog in a nucleic acid molecule. "Exactly” means that the determined base sequence is 100% identical to the base sequence of interest.
  • the first endonuclease may be a type I endonuclease or type II endonuclease (EC 3.1.22.1) conventionally used in the art, such as various restrictions sold by NEB Corporation.
  • ⁇ ⁇ ⁇ ⁇ https://www.neb.com/products/restriction-endonucleases
  • Aatll AbaSI, Acc65I, Accl, Acil, Acll, Acul, Afel, Aflll, Afllll, Agel, Ahdl, Alel, Alul, Alwl, AlwNI, Apal, ApaLI, ApeKI, Apol, Ascl, Ascl, Asel, AsiSI, Aval, Avail, Avrll, BaeGI, Bael, BamHI, Banl, Banll, Bbsl, BbvCI, Bbvl, Bed, BceAI, Bcgl, BciVI
  • the specific selection of the Dicer is to avoid the presence of a first endonuclease cleavage site or a second endonuclease cleavage site in the coding DNA of the promoter and the RNA fragment of interest.
  • a first endonuclease cleavage site or a second endonuclease cleavage site in the coding DNA of the promoter and the RNA fragment of interest.
  • EcoRI is used as the restriction endonuclease site or the second endonuclease site of the first endonuclease.
  • the promoter refers to a specific DNA sequence capable of being recognized and bound by RNA polymerase and promoting RNA synthesis in the 5'-3' direction.
  • the promoter corresponding to the RNA polymerase can be selected according to different RNA polymerases.
  • a high fidelity (i.e., small mutation probability) RNA polymerase is used, such as T7 RNA polymerase, SP6 RNA polymerase or T3 RNA polymerase.
  • the promoter is a T7 promoter (TAATACGACTCACTATAGGG, SEQ ID NO: 5), a SP6 promoter (GATTTAGGTGACACTATAG, SEQ ID NO: 6) or a T3 promoter (AATTAACCCTCACTAAAGG, SEQ ID NO: 7).
  • the target RNA fragment can be various RNA fragments which need to be synthesized, such as RNA probes, RNA drugs, etc.
  • the target RNA fragment is an RNA probe targeting miRNA.
  • the RNA probe refers to an RNA fragment for RNA hybridization.
  • the obtained transcript can be directly used as a material containing a target RNA fragment, and preferably, the method further comprises purifying the RNA fragment from the transcript.
  • the operation of purifying the RNA fragment can be carried out according to a conventional method in the art, for example, nucleic acid gel electrophoresis and gelation recovery, or high pressure liquid chromatography purification.
  • the sequence of the coding strand is SEQ ID NO: 1 or SEQ ID NO: 3.
  • ribonucleoside triphosphate with a label modification refers to a group or compound that can be detected by spectroscopic, photochemical, biochemical, immunochemical, chemical or other means.
  • markers include but are not limited to
  • the marker can be incorporated at any position in the RNA resulting from the transcription, for example at the 5' end, the 3' end or in the middle.
  • the label-modified ribonucleoside triphosphate is ribose uracil triphosphate with digoxigenin modification, ribose uracil triphosphate modified by biotin, and ribose cytosine modified by biotin Phosphoric acid, biotin-modified ribose guanine triphosphate, fluorescein-modified ribose uracil triphosphate, fluorescein-modified ribose cytosine triphosphate, fluorescein-modified ribose guanine triphosphate, fluorescein-modified ribose adenine Phosphoric acid, tritiated ribose uracil triphosphate, 32 P-labeled ribose uracil triphosphate, 32 P-labeled ribose cytosine triphosphate or 32 P-labeled ribo-adenine triphosphate.
  • the label-modified ribonucleoside triphosphate is a ribouracil triphosphate with digoxigenin modification and digoxigenin modified with digoxin
  • the molar ratio of pyrimidine triphosphate to ribose uracil triphosphate without digoxin modification is from 1.5 to 4: 1, more preferably from 1.8 to 3: 1, still more preferably from 1.9 to 2.5: 1, most preferably 2 : 1.
  • the invention provides an RNA fragment, wherein the RNA fragment is prepared according to the method described above.
  • the present invention provides the use of the RNA fragment as described above for the preparation of a nucleic acid drug, test kit or diagnostic kit.
  • each molecular biological reagent is a commercially available product, and the operation of each molecular biology experiment can be performed according to a tool book (Molecular Cloning: A Laboratory Manual; Cold Spring Harbor Laboratory Press; 4th edition) and the use of each reagent. The instructions are carried out.
  • Example 1 Molecular Cloning: A Laboratory Manual; Cold Spring Harbor Laboratory Press; 4th edition
  • this example prepares a transcript in the following manner:
  • ACGTA SEQ ID NO: 2
  • single-stranded SSI is the coding strand
  • single-stranded SS2 is the template strand
  • single-stranded SS1 and single-stranded SS2 are subjected to denaturation annealing treatment to obtain chemically synthesized double-stranded DNA, which is named as double-stranded DS1;
  • the first endonuclease cleavage site ie, the SnaBI cleavage site, GGATCCG
  • the promoter ie, the T7 promoter, TAATACGACTCACTATAGGG, SEQ ID NO: 5
  • the DNA fragment of the NA fragment S port, AGCAAAAATGTGCTAGTGCCAAA, SEQ ID NO: 8
  • the restriction endonuclease site of the second endonuclease ie, the cleavage site of BtsCI, CGCATCC
  • the single-stranded SS3 is a coding strand
  • the single-stranded SS4 is a template strand
  • the single-stranded SS3 and the single-stranded SS4 are subjected to denaturation annealing treatment to obtain a chemically synthesized double-stranded DNA, which is named as double-stranded DS2;
  • the first endonuclease cleavage site ie BtsCI
  • Enzyme cleavage site GGATGCG
  • promoter ie SP6 promoter, GATTTAGGTGACACTATAG.
  • cleavage site ie, the cleavage site of BtsCI, CGCATCC was ligated in turn.
  • the double-stranded DS1 was cloned into the EcoRV cleavage site of the vector pUC57 to obtain a plurality of monoclonal plasmids pUC57-DS1.
  • the vector pUC57 was digested with EcoRV, but then the ligated pUC57 and DS1 were ligated with DNA ligase (T4 ligase, purchased from NEB, the same below) to obtain a ligation product; the ligation product was used to transform the competent state.
  • the cells (Escherichia coli DH5a strain) were selected for 4 monoclonal clones and amplified to obtain plasmid pUC57-DS1.
  • the double-stranded DS2 was cloned into the EcoRV cleavage site of pUC57 by the above method to obtain four monoclonal plasmids pUC57-DS2.
  • the four monoclonal plasmids pUC57-DSl were sequenced separately, and the sequencing results showed that one of the clones contained the inserted sequence and the coding DNA of the RNA fragment (ie, AGCAAAAATGTGCTAGTGCCAAA, SEQ ID NO: 8) was not completely identical, and thus could not be completely
  • the RNA fragment was correctly encoded; the remaining 3 clones contained an insertion sequence identical to the coding DNA of the RNA fragment (ie, AGCAAAAATGTGCTAGTGCCAAA, SEQ ID NO: 8), enabling complete correct encoding of the RNA fragment.
  • One of the pUC57-DSl plasmids capable of correctly encoding the RNA fragment was selected as a template plasmid and designated as template plasmid TP1.
  • RNA fragment is encoded; the remaining two clones contain an insert sequence that is identical to the coding DNA of the RNA fragment (ie, TCCATCATTACCCGGCAGTATTA, SEQ ID NO: 9) and is capable of correctly encoding the RNA fragment correctly.
  • template plasmid TP2 Any one of the pUC57-DS2 plasmids capable of correctly encoding the RNA fragment was selected as a template plasmid and designated as template plasmid TP2.
  • the template plasmid TP1 was digested with SnaBI and BtsCI, and then a small fragment (about 50 bp) in the digested product was isolated by electrophoresis, and the isolated small fragment was a transcription template capable of completely correctly encoding the RNA fragment. Fragment T1.
  • the template plasmid TP2 was digested with BtsCI, and then a small fragment (about 50 bp) in the digested product was isolated by electrophoresis, and the isolated small fragment was a transcription template fragment T2 capable of correctly encoding the RNA fragment.
  • the transcriptional template fragment T2 was transcribed in vitro using an in vitro transcription system to obtain the transcript R2.
  • the in vitro transcription system was performed using an in vitro transcription kit purchased from Promega, which contained 1 ⁇ transcription buffer, 10 mM DTT, 40 units of RNase inhibitor, 0.5 mM CTP, 0.5 mM ATP, 0.5 mM GTP, 0.4 mM UTP, 0.2 mM DIG-UTP (available from Roche Applied Science) and 40 units of SP6 RNA polymerase.
  • the in vitro transcription time was 4 h, the temperature was 37 °C, and the template dosage was 5 ng L. Comparative example 1
  • RNA product was prepared by the method of Example 1, except that the vector pUC57 was replaced with the vector pcDNA3.1 +;>, and the PCDNA3.1 +) plasmid was linearized with the Pmel enzyme to make the pcDNA3.1 (;+;) plasmid Only the 22 bp template sequence was ligated behind the self-contained T7 promoter, and the linearized plasmid was isolated by electrophoretic cleavage, and the isolated fragment was used as a transcription template fragment T1-DB 1. The in vitro transcription was then carried out by the method of Example 1 to obtain the transcript R1-DB 1. Comparative example 2
  • the transcript was prepared by the method of Example 1, except that the chemically synthesized double-stranded DS1 obtained by denaturation annealing of the single-stranded SS1 and the single-stranded SS2 was used as the transcription template fragment T1-DB2.
  • the in vitro transcription was then carried out by the method of Example 1 to obtain the transcript R1-DB2.
  • the transcription template fragment T1, the transcript R1, the transcript R1-DB1, the transcription template fragment T2 and the transcript R2 were electrophoresed with a 15% concentration of PAGE gel, and the electrophoresis results are shown in Fig. 2.
  • the results in Figure 2 show that most of the transcript R1 (lane 2) is the expected size (23 bp) and one base less than the expected size, and some RNA products larger than expected.
  • the results in Figure 2 also show that the linearized vector (transcription template fragment T1-DB1) as a template was not able to accurately transcribe short RNA, and no expected 22 bp RNA was observed (lane 4).
  • the transcript R2 (lane 7) also contains a precise size RNA probe, and the transcript is mainly RNA of the expected size (23 bp) and RNA one base (24 bp) larger than expected.
  • the transcript R1 and the transcript R2 were electrophoresed with a 15% concentration of PAGE gel, and the electrophoresis results were the same as those of lanes 2 and 7 in Fig. 2.
  • the gel at 23 bp was excised, and the RNA fragment was recovered from the excised gel to obtain the target of purifying the RNA fragment, and the probe 1 targeting miRNA-96 and the probe targeting miRNA-200c were respectively obtained. .
  • RNA fragments from the gel include: cutting the gel into small pieces, shaking it with 3 volumes of hydrazine, and centrifuging (600 x g, 1 mm), transferring the supernatant to a new centrifuge tube. Add 0.7 times the volume of isopropanol to precipitate the RNA, wash the RNA with 1mL of 70% ethanol, air-dry the RNA precipitate, add 10 ⁇ of nuclease-free water to dissolve the RNA precipitate, and dissolve the RNA. An aqueous solution of the probe. Comparative example 3
  • RNA fragment was purified by the method of Example 2 except that the transcript R1-DB2 was purified to obtain the probe 1-DB2. Test example 2
  • Sections of 8 ⁇ m thick 11.5 day old and 13.5 day old mouse embryos were prepared according to the method in the literature (Peng et al., 2012).
  • the probe targeting miRNA-96 prepared in Example 2 and the probe targeting miRNA-96 from Exiqon were separately used according to the methods in the above literature (miRCURY LNATM Detection probe, Cat. No. 38474-05)
  • the probes 1-DB2 prepared in Comparative Example 3 were hybridized and developed under the same conditions, and the results are shown in Figures 3-6, respectively.
  • Treating the slice The above-prepared slice was subjected to xylene dewaxing, rehydration, 4 mass% paraformaldehyde fixation, proteinase K digestion, 4 mass according to the method in the literature (Peng et al., 2012). % paraformaldehyde fixation and 2 times concentration of SSC hybridization buffer were washed; the treated sections were obtained.
  • Hybridization 100 ⁇ of hybridization buffer (purchased from Ambion, Cat. No. 8806G) was prepared for each specimen, plus 2 pmol of the miR-96 RNA probe produced by the present invention, or 2 pmol of purchased from Exiqon The company's probe targeting miRNA-96 (miRCURY LNATM Detection probe, Cat. No. 38474-05), or 2 pmol of the probe 1-DB2 prepared in Comparative Example 3, was mixed and used. Remove the coverslip on the tissue piece and add 100 ⁇ M with probe as described above. The hybridization buffer was covered with a new coverslip, placed back in the humidor, and placed in an incubator for overnight hybridization at 53 °C.
  • Antibody detection signal The washed sections were blocked with 500 ⁇ M of 10% fetal bovine serum (FBS) in PBS for 1 hour at room temperature; 400 ⁇ of 1:2000 (volume) diluted horseradish was added.
  • Oxidase (HRP) cross-linked anti-DIG antibody (Roche) incubated overnight at 4 °C; buffer 2 times in buffer I (O.lMTris, 0.1 MNaCl, pH 7.5), 200 mL each time, 15 times each time Minute; wash in 200 mL of buffer II (O.lMTris, 0.1 MNaCl, pH 9.5) for 15 minutes; add 400 ⁇ l ⁇ / ⁇ (Roche) substrate to the brain slice, color reaction at room temperature for 3 hours, and take a photo with a camera. Record the color development process (see Figure 3).
  • the probes produced by the present invention have a fast color development rate and specifically deeply stain the dorsal root ganglion region of nuR-96, which is consistent with the literature (Kloosterman et al., 2006).
  • the color development by hybridization of the miR-96 RNA probe produced by the present invention was terminated after 12 hours of color development reaction at room temperature, and the fragment was mounted.
  • the color development of hybridization with a probe (targeting miRNA-96 from Exiqon) (miRCURY LNATM Detection probe, Cat. No. 38474-05) was terminated after 72 hours and mounted.
  • the miR-96 RNA probe produced by the present invention detected the miR-96 signal very strongly after 12 hours of color development, and was very specific. (A in Figure 6); Conversely, Exiqon's probe targeting miRNA-96 (mi CURY LNATM Detection probe, Cat. No. 38474-05) detected nuR-96 signal after 72 hours of color development. Weak, indistinguishable from the background (B in Figure 6).
  • probe 1 targeting miRNA-96 prepared in Example 2 was lighter in relation to the probe 1-DB2 prepared in Comparative Example 3, demonstrating the RNA probe produced by the present invention (Probe 1) The specificity is higher than that of probe 1-DB2.
  • the probe of the target miRNA-96 of Exiqon Corporation was synchronously detected with the RNA probe produced by the present invention.
  • Sensitivity and specificity the results show that the sensitivity and specificity of the RNA probes produced by the present invention are much higher than those of the Exiqon miRNA-96 probe (miRCURY LNATM Detection probe, Cat. No. 38474-05), and are greatly shortened. The time of the color reaction.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Zoology (AREA)
  • Wood Science & Technology (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Health & Medical Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Biophysics (AREA)
  • Immunology (AREA)
  • Microbiology (AREA)
  • Molecular Biology (AREA)
  • Biotechnology (AREA)
  • Physics & Mathematics (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Biochemistry (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • General Engineering & Computer Science (AREA)
  • General Health & Medical Sciences (AREA)
  • Genetics & Genomics (AREA)
  • Measuring Or Testing Involving Enzymes Or Micro-Organisms (AREA)

Abstract

本发明公开了一种制备RNA片段的方法,该方法包括:(1)获得化学合成的双链DNA;(2)将所述化学合成的双链DNA片段克隆至载体中以得到多个克隆的扩增质粒,并分别对多个克隆的扩增质粒进行DNA测序;挑选能够完全正确编码目的RNA片段的扩增质粒的克隆作为模板质粒;(3)对模板质粒进行酶切,得到酶切产物,并从酶切产物中分离能够完全正确编码目的RNA片段的转录模板片段;(4)对所述转录模板片段进行体外转录,得到转录产物。本发明还提供了如上所述的方法制备得到的RNA片段及其用途。本发明大幅度地提高了制备的RNA片段在序列和长度上的完全正确性和均一度。

Description

一种 RNA片段及其制备方法和用途
技术领域
本发明涉及医药生物领域,具体地,涉及分子生物技术领域,更具体地, 涉及一种制备 RNA片段的方法、 该方法制备得到的 RNA片段以及该 RNA 片段的用途。 背景技术
最近十几年小的非编码 RNA ( small non-coding NAs ), 尤其是微 RNA (micro NA, S卩 miRNA) 的研究非常火热, 技术人员非常看好以微 RNA 作为靶点来研发诊断试剂盒和研发小核酸药物的前景 (Jackson and Levin, 2012; van ooij et al., 2012)。 由于微 RNA通常只有 18-30个碱基 (Bartel, 2004) , 而且一个家族的不同微 RNA 成员可能只有 1-2 个碱基的差异 (www.mirbase.com), 因此用杂交方法来检测微 RNA时, 对探针的纯度要求 高。 如果探针有碱基突变的话, 会导致检测结果为假阴性或假阳性 (Barad et al., 2004)。
现有的生产微 RNA探针的方法有两种: 一种是通过化学合成与微 RNA 互补的 RNA链, 然后通过末端转移酶把一个带 DIG或其它标记物的核苷酸 加在 RNA链的末端, 从而使探针被标记好, 以便于后续的检测, 这类探针 在早期发表的微 RNA文献中大量使用 (Chen, 2004) c 第二种方法是在化学合 成与微 RNA互补的 DNA探针时, 把 RNA核苷酸类似物锁核酸 (locked nucleic Acid, LNA)参入探针中,得到锁核酸修饰的 DNA探针(LNA-modified DNA probes, 如 Exiqon公司生产的产品), 然后再通过末端标记使探针的一 端或两端都带上 DIG或其它的标记物。 现在, 这种 LNA修饰的 DNA探针 被大量应用于检测微 RNA的研究中。 上述两种方法的缺点有三: 第一, RNA或 DNA的化学合成都是从核酸 的 3'向 5'端逐渐加上单个的碱基, 因为每次合成一个碱基时效率都达不到 100%( eese, 2005), 所以无论是化学合成的 RNA还是 DNA, 都有一定的错 误率, 且错误率随合成的核苷酸长度的增加而增加。 虽然合成后的纯化(常 用 HPLC或 PAGE纯化)能帮助富集预期目的大小的核苷酸, 但无法减少拥 有同样大小的序列突变的杂质核苷酸。 第二, 其标记探针的方法都是在探针 的一端或两端加上带标记的一个碱基,这使得探针的序列比要检测的微 RNA 序列多 1或 2个碱基, 这会影响探针的特异性。 第三, 因为探针最多只携带 两个标记物, 所以检测的灵敏度有限, 无法检测那些低丰度表达的微 RNA。
已经公开了用 T7 NA聚合酶(T7 RNA polymerase)以体外转录的方式 制备短 RNA的方法 (Milligan et al., 1987), 具体地, 该方法使用了如下 3种 模板: (1 ) 化学合成的完全双链 DNA, 其编码链由 T7启动子和 RNA片段 的 DNA模板连接而成; (2)酶切线性化的质粒双链 DNA, 其编码链由线性 载体片段、 T7启动子和目的 RNA片段的编码 DNA连接而成; (3 ) 化学合 成的由双链区和单链区连接而成的 DNA, 双链区为完全双链的 T7启动子, 单链区为 RNA探针的 DNA模板。 用该方法制备短 RNA探针, 会存在下列 问题: (1 ) 化学合成的模板会引入和扩增 DNA合成时的突变, 从而降低了 探针的纯度和特异性; (2 ) 以酶切线性化的质粒双链 DNA为模板的方法, 虽然保证了模板的完全正确性, 但由于该方法使用的是一型限制性内切酶, 所以线性化的模板在编码 RNA的序列后面衔接着酶切位点的残余序列, 使 得转录出来的 RNA比目的 RNA片段多几个碱基, 也降低了探针的特异性。 发明内容
本发明的目的是克服现有的 RNA探针的特异性较低和灵敏度较差的缺 陷, 提供一种特异性较高且灵敏度较好的 RNA片段及其制备方法。 为了实现上述目的, 一方面, 本发明提供了一种制备 RNA片段的方法, 该方法包括: (1 )获得化学合成的双链 DNA, 所述化学合成的双链 DNA由 编码链和模板链配对而成; 在从所述编码链的 5'至 3'方向上,第一内切酶的 酶切位点、启动子、 目的 RNA片段的编码 DNA和第二内切酶的酶切位点依 次连接; (2) 将所述化学合成的双链 DNA片段克隆至载体中以得到多个克 隆的扩增质粒, 并分别对多个克隆的扩增质粒进行 DNA测序; 挑选能够完 全正确编码目的 RNA片段的扩增质粒的克隆作为模板质粒; (3 ) 使用第一 内切酶和第二内切酶对模板质粒进行酶切, 得到酶切产物, 并从酶切产物中 分离能够完全正确编码目的 RNA片段的转录模板片段; 其中, 第二内切酶 能够在目的 RNA片段的 DNA模板链的 5'末端切开, 以使转录模板片段的 模板链的 5'末端能够与目的 RNA片段的 3'末端形成平末端的双链; (4) 对 所述转录模板片段进行体外转录, 得到含有目的 RNA片段的转录产物。
另一方面,本发明还提供了一种 RNA片段,该 RNA片段是根据如上所 述的方法制备得到的。
再一方面, 本发明还提供了如上所述的 RNA片段在制备核酸药物、 检 测试剂盒或诊断试剂盒中的用途。
通过上述技术方案, 本发明大幅度地提高了制备 RNA片段在序列和长 度上的完全正确性和均一度, 由此提高了 RNA探针的特异性和灵敏度。
本发明的其他特征和优点将在随后的具体实施方式部分予以详细说明。 附图说明
附图是用来提供对本发明的进一步理解, 并且构成说明书的一部分, 与 下面的具体实施方式一起用于解释本发明, 但并不构成对本发明的限制。 在 附图中:
图 1举例性地显示了本发明的制备 RNA片段的策略。 图 2显示了转录模板片段 Tl (泳道 1 )、 转录产物 R1 (泳道 2)、 转录 产物 R1-DB1 (泳道 4)、转录模板片段 T2 (泳道 6)和转录产物 R2 (泳道 7 ) 的电泳结果, 泳道 3、 5和 8分别为分子量标记。
图 3显示了来源于同一个小鼠胚胎的发育 13.5天的冠状切片标本 (A, B)和发育 11.5天的矢状切片标本 , D 同时用本发明生产的 miR-96 RNA 探针(B, D)或购自 Exiqon公司的靶向 miRNA-96的探针(miRCURYLNA™ Detection probe, 货号 38474-05 ) (A, C)杂交显色 3个小时后, 本发明生产 的 miR-96 RNA探针检测到的信号 (B, D) 明显强于购自 Exiqon公司的靶 向 miRNA-96的探针(miRCURYLNA™ Detection probe,货号 38474-05 ) (A, C)。
图 4显示了来源于同一个小鼠胚胎的发育 13.5天的冠状切片标本 (A, B)和发育 11.5天的矢状切片标本 (C, D 同时用本发明生产的 miR-96 RNA 探针(A, C)或购自 Exiqon公司的靶向 miRNA-96的探针(miRCURYLNA™ Detection probe, 货号 38474-05 ) (B, D)杂交后, 本发明生产的 miR-96 RNA 探针在显色 12个小时后检测到的信号非常强 (A, C); 相反, 购自 Exiqon 公司的靶向 miRNA-96的探针 (B, D)在显色 72个小时检测到的信号还是很 弱。 这说明本发明生产的 miR-96 RNA 探针比购自 Exiqon 公司的靶向 miRNA-96的探针(miRCURY LNA™ Detection probe, 货号 38474-05 )更加 灵敏。
图 5显示了在胚胎发育 11.5天的小鼠胚胎矢状切片的背根神经节中,本 发明生产的 miR-96 RNA探针在显色 12个小时后检测到 miR-96特异地高表 达(A);相反,购自 Exiqon公司的靶向 miRNA-96的探针(miRCURY LNA™ Detection probe, 货号 38474-05 )在显色 72个小时后检测到的信号还是很微 弱, 与背景差别不大 (B )。
图 6显示了在胚胎发育 13.5天的小鼠胚胎冠状切片的背根神经节中,本 发明生产的 miR-96 RNA探针在显色 12个小时后检测到 miR-96的信号非常 强、 而且非常特异 (A); 相反, 购自 Exiqon公司的靶向 miRNA-96的探针 (mi CURYLNA™ Detection probe, 货号 38474-05 )在显色 72个小时后检 测到 nuR-96的信号还是非常弱, 与背景难以区分 (B )。 具体实施方式
以下对本发明的具体实施方式进行详细说明。 应当理解的是, 此处所描 述的具体实施方式仅用于说明和解释本发明, 并不用于限制本发明。
本发明提供了一种制备 RNA片段的方法, 该方法包括: (1 ) 获得化学 合成的双链 DNA, 所述化学合成的双链 DNA由编码链和模板链配对而成; 在从所述编码链的 5'至 3'方向上, 第一内切酶的酶切位点、 启动子、 目的 RNA片段的编码 DNA和第二内切酶的酶切位点依次连接; (2)将所述化学 合成的双链 DNA片段克隆至载体中以得到多个克隆的扩增质粒, 并分别对 多个克隆的扩增质粒进行 DNA测序;挑选能够完全正确编码目的 RNA片段 的扩增质粒的克隆作为模板质粒; (3 )使用第一内切酶和第二内切酶对模板 质粒进行酶切, 得到酶切产物, 并从酶切产物中分离能够完全正确编码目的
RNA片段的转录模板片段;其中,第二内切酶能够在目的 RNA片段的 DNA 模板链的 5'末端切开,以使转录模板片段的模板链的 5'末端能够与目的 RNA 片段的 3'末端形成平末端的双链; (4) 对所述转录模板片段进行体外转录, 得到含有目的 RNA片段的转录产物。
其中, 需要制备的 RNA片段即为目的 RNA片段; 目的 RNA的长度没 有特别的要求, 可以为常规的作为探针和 /或核酸药物的 RNA片段的长度, 例如为 5-200bp, 优选为 8-100bp, 更优选为 10-50bp, 特别优选为 15-30bp。 目的 RNA的碱基序列也没有特别的要求, 可以为常规的作为探针和 /或核酸 药物的 RNA片段的碱基序列,如数据库 miRBase (http://www.mirbase.org/)、 mi 2Disease ( http://www.mir2disease.org/ ) 中所记载的各 miRNA 的碱基序 列或它们的反向互补序列。
其中, 化学合成双链 DNA的操作可以按照本领域常规的方式进行, 例 如使用固相 DNA合成法分别合成模板链的单链 DNA和编码链的单链 DNA。
其中, 编码链, 又称正义链, 是指与转录产物(RNA)序列相同 (仅仅 将 T替换为 U) 的那条 DNA单链。
其中, 模板链, 又称反义链, 是指与编码链互补的那条 DNA单链。 其中, "互补" 是指核酸分子中的核苷酸或核苷酸类似物的碱基按照 Watson-Crick配对原则 (A-T、 A-U、 C-G) 的配对。 "完全互补"是指核酸 分子中的核苷酸或核苷酸类似物的碱基 100%的互补。 "完全正确"是指测定 的碱基序列与目的碱基序列具有 100%的一致性。
根据本发明所述的方法, 其中, 第一内切酶可以为本领域常规使用的 I 型核酸内切酶或 II型核酸内切酶(EC 3.1.22.1 ), 例如 NEB公司出售的各种 限制性核酉変内切酉每 (https://www.neb.com/products/restriction-endonucleases ), 包括但不限于 Aatll, AbaSI, Acc65I, Accl, Acil, Acll, Acul, Afel, Aflll, Afllll, Agel, Ahdl, Alel, Alul, Alwl, AlwNI, Apal, ApaLI, ApeKI, Apol, Ascl, Ascl, Asel, AsiSI, Aval, Avail, Avrll, BaeGI, Bael, BamHI, Banl, Banll, Bbsl, BbvCI, Bbvl, Bed, BceAI, Bcgl, BciVI, Bell, BcoDI, Bfal, BfuAI, BfuCI, Bgll, Bglll, Blpl, BmgBI, Bmrl, Bmtl, Bpml, BpulOI, BpuEI, BsaAI, BsaBI, BsaHI, Bsal, BsaJI, BsaWI, BsaXI, BseRI, BseYI, Bsgl, BsiEI, BsiHKAI, BsiWI, Bsll, BsmAI BsmBI, BsmFI, Bsml, BsoBI, Bspl286I, BspCNI, BspDI, BspEI, BspHI, BspMI, BspQI, BsrBI, BsrDI, BsrFI, BsrGI, Bsrl, BssHII, BssKI, BssSI, BstAPI, BstBI, BstEII, BstNI, BstUI, BstXI, BstYI, BstZ17I, Bsu36I, Btgl, BtgZI, BtsCI, Btsl, BtsIMutl, Cac8I, Clal, CspCI, CviAII, CviKI-1, CviQI, Ddel, Dpnl, Dpnll, Dral, Dralll, Drdl, Eael, Eagl, Earl, Ecil, Eco53kI, EcoNI, EcoO109I, EcoP15I, EcoRI EcoRV, Fatl, Faul, Fnu4HI, Fokl, Fsel, FspEI, Fspl, Haell, Haelll, Hgal, Hhal, 二蚩 麵^ 蚩 菌
Figure imgf000009_0001
i¾f¾ Dsia '應 ί¾ψ ^' ^麵[¾ Dsia著 ¾»ψ z \ ^ ^ f5«
ί¾τ¾ 驟 ^麵 f¾ Dsia °跡一 ^ ^ i蚩 ^^ ^ f¾¾ ^
^篛¥^^1^¾^^'「1暴^^麵^ 二蚩 'Έ^ '(( 1~1^0)憂重¾ ^' ^麵 f¾麵 二蚩^ vMa ^mmi VM¾ g著 ^ υ¾·κ^^ ¾麵 ^麵^ 二蚩著 ¾»ψ L-ι m& mm VMO mi VM¾ f¾ g
ΪΙΙΨ^^^ '^ί^^^.ε f5 VMa ^mmi¥ VM¾ f5 g ¾¾|¥ '麵^
m m n ^麵^ 雨 i f¾ 鮮^翁 麵^ 二蚩
。: I9BUS ^^Z 'iuuix 'ριπχ ' qx Ίιποχ 'pqx
'IlliqU ^radsi 'i^dsx '1605*1 'Ktzdsx 'psx Ίπΐ '1ΐ·ί工 ^工 ' ^S '⑧ H_I S 'I S 'it^a s 'ims 'Idss ds 'pds BUS 'nras ' uis 'lY^S ' js S 'PJS oi 'IM¾S 'IVX9S 'M^S ' ^S 'MS 'I96™S 'IV£™S 'i^s 'n¾S 'II^S 'i^S 'ips¾ ' S¾ 'ntiAd 'pAd 'iisd 'ixdsd 'l Odsd 'lOdsd Ί^ά ΊΥΨά 'ΐΜη¾ 'πιπ^ 'puy 'I工 nid 'Fid 'FOS-Id 'idsd-Id 'ioqd 'I兩 d '1 'i d 'l ¾^d 'i^d 'ΙΗΪΑΟ ΙΜ
'i應 sa w 'i dsg iM 'iv^saiM 'iOAqa iM 'I^IV IM Ί* ' '1 'i
'IIIV9UI 'A IM 'IIFIM 'PqM 'ΛΙΜΟ§ 'FPM ' O ΊτοΜ ' ia q 'ia-isg qM s 'iuisg-q 'iOAqgqM Ί^Μ Ί^Μ ' ]^ 'ifds^ 'ids^ Ίΐν^Μ 'ii 'P
'Pm 'II I 'piajM '≠Ι ΊηΙ 'lDnI 'P環 。 '1。 ¾udi 'iud¾ 'js^
Figure imgf000009_0002
'188 ΐ^Η 'Π99ΐ^Η 'Ι 'IIcWH υΐΗ 'ΙΠΡυΐΗ 'ipuyn
690080/M0ZN3/X3d 6ΪΖ衝 ΟΖ OAV 切酶的具体选择,以避免在启动子和目的 RNA片段的编码 DNA中出现第一 内切酶的酶切位点或第二内切酶的酶切位点。 例如, 当目的 RNA片段的编 码 DNA中出现 EcoRI的酶切位点时, 要避免使用 EcoRI作为第一内切酶的 酶切位点或第二内切酶位点。
根据本发明所述的方法, 其中, 启动子是指能够被 RNA聚合酶识别和 结合并且在 5'-3'方向上促使 RNA合成的特异性 DNA序列。 可以根据不同 的 RNA聚合酶选择该 RNA聚合酶对应的启动子。优选使用高保真(即突变 几率小)的 RNA聚合酶,例如 T7 RNA聚合酶、 SP6 RNA聚合酶或 T3 RNA 聚 合 酶 。 优 选 情 况 下 , 所 述 启 动 子 为 T7 启 动 子 ( TAATACGACTCACTATAGGG, SEQ ID NO: 5 ) 、 SP6 启 动子 ( GATTTAGGTGACACTATAG, SEQ ID NO: 6 ) 或 T3 启 动子 ( AATTAACCCTCACTAAAGG, SEQ ID NO: 7 )。
根据本发明所述的方法, 其中, 目的 RNA片段可以为各种需要合成的 RNA片段, 例如 RNA探针、 RNA药物等, 优选情况下, 目的 RNA片段为 靶向 miRNA的 RNA探针。 其中, RNA探针是指用于 RNA杂交的 RNA片 段。
根据本发明所述的方法, 其中, 所得到的转录产物可以直接作为含有目 的 RNA片段的物料使用, 优选情况下, 该方法还包括, 从转录产物中纯化 RNA片段。
其中, 纯化 RNA片段的操作可以按照本领域常规的方法进行, 例如进 行核酸凝胶电泳和切胶回收, 或者高压液相色谱纯化。
根据本发明所述的方法, 其中, 优选情况下, 所述编码链的序列为 SEQ ID NO: 1或 SEQ ID NO: 3。
根据本发明所述的方法, 其中, 进行体外转录所用的核糖核苷三磷酸中 的至少一部分为带有标记修饰的核糖核苷三磷酸。 其中, "标记"是指能够通过光谱学、 光化学、 生物化学、 免疫化学、 化学或其他手段检测到的基团或化合物。 例如, 常用的标记包括但不限于
32P、 荧光染料、 生物素、 地高辛或半抗原。 标记可以在转录所得的 RNA中 的任意位置掺入, 例如在 5'末端、 3'末端或中间。
其中, 优选情况下, 所述带有标记修饰的核糖核苷三磷酸为带有地高辛 修饰的核糖尿嘧啶三磷酸、 生物素修饰的核糖尿嘧啶三磷酸、 生物素修饰的 核糖胞嘧啶三磷酸、 生物素修饰的核糖鸟嘌呤三磷酸、 荧光素修饰的核糖尿 嘧啶三磷酸、 荧光素修饰的核糖胞嘧啶三磷酸、 荧光素修饰的核糖鸟嘌呤三 磷酸、 荧光素修饰的核糖腺嘌呤三磷酸、 氚标记的核糖尿嘧啶三磷酸、 32P 标记的核糖尿嘧啶三磷酸、 32P标记的核糖胞嘧啶三磷酸或 32P标记的核糖腺 嘌呤三磷酸。
根据本发明所述的方法, 其中, 优选情况下, 所述带有标记修饰的核糖 核苷三磷酸为带有地高辛修饰的核糖尿嘧啶三磷酸, 且带有地高辛修饰的核 糖尿嘧啶三磷酸和不带有地高辛修饰的核糖尿嘧啶三磷酸的摩尔比为 1.5-4: 1, 更优选为 1.8-3: 1, 更进一步优选为 1.9-2.5: 1, 最优选为 2: 1。
另一方面, 本发明还提供了一种 RNA片段, 其中, 该 RNA片段是根据 如上所述的方法制备得到的。
再一方面, 本发明还提供了如上所述的 RNA片段在制备核酸药物、 检 测试剂盒或诊断试剂盒中的用途。
以下将通过实施例对本发明进行详细描述。 以下实施例中, 各分子生物 学试剂均为市售品, 各分子生物学实验的操作均可按工具书 (Molecular Cloning: A Laboratory Manual; Cold Spring Harbor Laboratory Press; 4th edition) 及各试剂的使用说明书进行。 实施例 1
参考图 1, 本实施例按照以下方式制备转录产物:
( 1 ) 委托上海铂宜生物科技有限公司化学合成以下 4条 DNA单链: 单链 SS1, Mi -96探针的正向序列 (SnaBI-r7-MiR96-BtsCF);
CATCC (SEQ ID NO: 1);
单链 SS2, MiR-96探针的反向互补序列 (BtsCI-MiR96-r7-^i^I) ;
ACGTA (SEQ ID NO: 2);
单链 SS3, MiR-200C探针的正向序列 (BtsCI-S ^-Mil^OOc- BtsCI);
CGCATCC (SEQ ID NO: 3);
单链 SS4,
Figure imgf000012_0001
CGCATCC (SEQ ID NO: 4)。
其中, 单链 SSI是编码链, 单链 SS2是模板链, 单链 SS1和单链 SS2经 过变性退火处理后即得到化学合成的双链 DNA, 命名为双链 DS1 ; 在 DS1的 编码链 (即单链 SS1 ) 的 5'至 3'方向上, 第一内切酶的酶切位点 (即 SnaBI 的酶切位点,GGATGCG)、启动子(即 T7启动子, TAATACGACTCACTATAGGG, SEQ ID NO: 5 ) 、 NA 片 段 的 编 码 DNA ( S口 , AGCAAAAATGTGCTAGTGCCAAA, SEQ ID NO: 8 )和第二内切酶的酶切 位点 (即 BtsCI的酶切位点, CGCATCC) 依次连接。
其中, 单链 SS3是编码链, 单链 SS4是模板链, 单链 SS3和单链 SS4经 过变性退火处理后即得到化学合成的双链 DNA, 命名为双链 DS2; 在 DS2的 编码链 (即单链 SS3 ) 的 5'至 3'方向上, 第一内切酶的酶切位点 (即 BtsCI 的酶切位点,GGATGCG)、启动子(即 SP6启动子, GATTTAGGTGACACTATAG. SEQ ID NO: 6 ) 、 NA 片 段 的 编 码 DNA ( IP , TCCATCATTACCCGGCAGTATTA, SEQ ID NO: 9 ) 和第二内切酶的酶切 位点 (即 BtsCI的酶切位点, CGCATCC) 依次连接。
(2 ) 将双链 DS1克隆到载体 pUC57的 EcoRV酶切位点处, 得到多个 单克隆的质粒 pUC57-DSl。 具体地, 将载体 pUC57用 EcoRV酶切开, 然而 后用 DNA连接酶(T4 ligase, 购自 NEB, 以下同)把切开的 pUC57和 DS1 进行核酸连接,得到连接产物;用连接产物转化感受态细胞(大肠杆菌 DH5a 菌株), 挑选 4个单克隆并扩增得到质粒 pUC57-DSl。
同上述方法将双链 DS2克隆到 pUC57的 EcoRV酶切位点处,得到 4个 单克隆的质粒 pUC57-DS2。
将 4个单克隆的质粒 pUC57-DSl分别进行测序,测序结果显示其中有 1 个克 隆含有的插入序列与 RNA 片段的编码 DNA ( 即 , AGCAAAAATGTGCTAGTGCCAAA, SEQ ID NO: 8 )不完全一致, 因而不 能完全正确编码 RNA片段;而剩余的 3个克隆含有的插入序列与 RNA片段 的编码 DNA (即, AGCAAAAATGTGCTAGTGCCAAA, SEQ ID NO: 8 ) 完全一致, 能够完全正确编码 RNA片段。 挑选任意 1个能够完全正确编码 RNA片段的 pUC57-DSl质粒作为模板质粒, 命名为模板质粒 TP1。
将 4个单克隆的 pUC57-DS2分别进行测序, 测序结果显示其中有 2个 克 隆含 有 的 插入序 列 与 RNA 片 段 的 编 码 DNA ( 即 , TCCATCATTACCCGGCAGTATTA, SEQ ID NO: 9 ) 不完全一致, 因而不 能完全正确编码 RNA片段;而剩余的 2个克隆含有的插入序列与 RNA片段 的编码 DNA (即, TCCATCATTACCCGGCAGTATTA, SEQ ID NO: 9 ) 完 全一致,能够完全正确编码 RNA片段。挑选任意 1个能够完全正确编码 RNA 片段的 pUC57-DS2质粒作为模板质粒, 命名为模板质粒 TP2。 ( 3 ) 使用 SnaBI和 BtsCI对模板质粒 TP1进行酶切, 然后通过电泳切 胶法分离酶切产物中的小片段 (约 50bp), 该分离的小片段即为能够完全正 确编码 RNA片段的转录模板片段 T1。
使用 BtsCI对模板质粒 TP2进行酶切,然后通过电泳切胶法分离酶切产 物中的小片段 (约 50bp), 该分离的小片段即为能够完全正确编码 RNA片 段的转录模板片段 T2。
( 4 )使用体外转录体系对转录模板片段 T1进行体外转录得到转录产物 Ri o体外转录体系采用购自 Promega公司的体外转录试剂盒进行,其中含有 l x转录缓冲液、 10mM的 DTT, 40单位的 RNA酶抑制剂、 0.5mM的 CTP、 0.5mM的 ATP、 0.5mM的 GTP、 0.4mM的 UTP、 0.2mM的 DIG-UTP (购自 Roche Applied Science公司)和 40单位的 T7 RNA聚合酶。 体外转录的时间 为 4h, 温度为 37 °C, 模板用量为 5ng L。
使用体外转录体系对转录模板片段 T2进行体外转录得到转录产物 R2。 体外转录体系采用购自 Promega公司的体外转录试剂盒进行, 其中含有 1 χ 转录缓冲液、 lOmM的 DTT, 40单位的 RNA酶抑制剂、 0.5mM的 CTP、0.5mM 的 ATP、 0.5mM的 GTP、 0.4mM的 UTP、 0.2mM的 DIG-UTP (购自 Roche Applied Science公司)和 40单位的 SP6 RNA聚合酶。体外转录的时间为 4h, 温度为 37 °C, 模板用量为 5ng L。 对比例 1
采用实施例 1的方法制备 RNA产物,不同的是将载体 pUC57替换为载 体 pcDNA3.1 +;>,并用 Pmel酶将 PCDNA3.1 +)质粒线性化以使 pcDNA3.1 (;+;) 质粒中自带的 T7启动子后面只连接 22bp的模板序列,然后通过电泳切胶法 分离线性化的质粒, 该分离的片段作为转录模板片段 T1-DB 1。 然后采用实 施例 1的方法进行体外转录得到转录产物 R1-DB 1。 对比例 2
采用实施例 1 的方法制备转录产物, 不同的是将单链 SS1 和单链 SS2 经过变性退火处理后得到的化学合成的双链 DS1 作为转录模板片段 T1-DB2。 然后采用实施例 1的方法进行体外转录得到转录产物 R1-DB2。 测试实施例 1
将转录模板片段 Tl、 转录产物 Rl、 转录产物 R1-DB1、 转录模板片段 T2和转录产物 R2用浓度为 15%的 PAGE胶进行电泳, 电泳结果见图 2。
图 2的结果显示转录产物 R1 (泳道 2 ) 中大部分是预期大小(23bp)和 比预期大小少一个碱基的产物, 另有一些比预期大小大的 RNA产物。 图 2 的结果还显示, 以线性化载体 (转录模板片段 T1-DB1 ) 为模板不能精确转 录短的 RNA, 未见预期的 22 bp的 RNA (泳道 4)。 转录产物 R2 (泳道 7 ) 中也含有精确大小的 RNA探针,且转录产物主要是预期大小(23bp)的 RNA 和比预期大小大一个碱基 (24bp) 的 RNA。 实施例 2
将转录产物 R1和转录产物 R2用浓度为 15%的 PAGE胶进行电泳, 电 泳结果与图 2中的泳道 2和泳道 7相同。 切下 23bp位置处的凝胶, 并且从 切下的凝胶中回收 RNA片段, 以达到纯化 RNA片段的目的,分别得到靶向 miRNA-96的探针 1和靶向 miRNA-200c的探针 2。
具体的从凝胶中回收 RNA片段的操作包括: 把胶切成小碎片, 用 3倍 体积的 Ι χΤΒΕ洗脱摇过夜, 离心 (600xg, lmm)后, 把上清液转移至新的 离心管内, 加相当于上清液 0.7倍体积的异丙醇沉淀 RNA, 用 ImL的 70% 的乙醇洗涤 RNA沉淀一次,风干 RNA沉淀,加 10 μΐ无核酸酶的水溶解 RNA 沉淀, 即得到溶解有 RNA探针的水溶液。 对比例 3
采用实施例 2的方法纯化 RNA片段, 不同的是对转录产物 R1-DB2进 行纯化, 得到探针 1-DB2。 测试实施例 2
按照文献 (Peng et al., 2012 ) 中的方法分别制备 8 μπι厚的 11.5日龄和 13.5日龄的小鼠胚胎的切片。并按照上述文献中的方法分别使用实施例 2中 制备得到的靶向 miRNA-96的探针 1、购自 Exiqon公司的靶向 miRNA-96的 探针 (miRCURY LNA™ Detection probe, 货号 38474-05 ) 和对比例 3中制 备得到的探针 1-DB2以相同的条件对切片进行杂交和显色,部分结果分别如 图 3-图 6所示。
具体地的杂交和显色的操作如下:
( 1 )处理切片: 将上述制得的切片按照文献(Peng et al., 2012 ) 中的方 法依次进行二甲苯脱蜡、 复水、 4质量%的多聚甲醛固定、 蛋白酶 K消化、 4质量%的多聚甲醛固定和 2倍浓度的 SSC杂交缓冲液洗涤; 得到处理好的 切片。
(2 )预杂交: 加 100 μΐ的杂交缓冲液 (购自 Ambion, 货号 8806G) 到 上述处理好的组织片上, 盖上盖玻片, 放置在一个含 50 体积%甲酰胺的 5 倍浓度的 SSC杂交缓冲液的保湿盒中, 把保湿盒放置在 53 °C的温箱内预杂 交 1个小时。
(3 )杂交: 为每张标本片准备 100 μΐ的杂交缓冲液(购自 Ambion, 货 号 8806G),其中加 2 pmol的本发明生产的 miR-96 RNA探针,或者加 2 pmol 的购自 Exiqon公司的靶向 miRNA-96的探针 (miRCURY LNA™ Detection probe,货号 38474-05 ),或者加 2 pmol的对比例 3中制备得到的探针 1-DB2, 混匀后备用。把组织片上的盖玻片移去,分别加上如上所述的含探针的 100 μΐ 的杂交缓冲液, 盖上一个新的盖玻片, 放回保湿盒中, 放至温箱中 53°C杂交 过夜。
(4) 洗涤: 将杂交后的切片用含有 50 体积%甲酰胺和 0.1 体积% Tween-20的 2倍浓度的 SSC杂交缓冲液于 57°C洗 4次, 每次 200 mL, 每次 15分钟;用含有 50体积%甲酰胺和 0.1体积% Tween-20的 0.2倍浓度的 SSC 杂交缓冲液于 57°C洗 4次, 每次 200mL, 每次 15分钟; PBS中洗 2次, 每 次 200mL, 每次 10分钟, 得到洗涤后的切片。
(5)抗体检测信号:在室温下用 500 μΐ的含 10体积%胎牛血清(FBS) 的 PBS封闭上述洗涤后的切片 1小时; 加 400 μΐ 的 1:2000 (体积) 稀释的 辣根过氧化物酶 (HRP) 交联的 anti-DIG抗体 (Roche), 4°C孵育过夜; 缓 冲液 I (O.lMTris, 0.1 MNaCl, pH7.5) 中洗涤 2次, 每次 200mL, 每次 15分钟; 200 mL的缓冲液 II (O.lMTris, 0.1 MNaCl, pH9.5) 中洗涤 15 分钟; 加 400 μ1ΝΒΤ/ΒαΡ (Roche)底物于脑片上, 室温显色反应 3小时后 用相机拍照, 记录显色进程 (见图 3)。
用本发明生产的探针显色速度快, 且特异地深染高表达 nuR-96的背根 神经节区, 与文献报道一致 (Kloostermanetal.,2006)。 室温显色反应 12小时 后终止用本发明生产的 miR-96 RNA探针杂交的显色,并封片。用购自 Exiqon 公司的靶向 miRNA-96 的探针 (miRCURY LNA™ Detection probe, 货号 38474-05) 杂交的显色在 72 小时后终止, 并封片。 用相机拍照记录染色的 结果, 显示本发明生产的 miR-96 RNA探针在显色 12个小时后检测到的信 号要明显强于购自 Exiqon公司的靶向 miRNA-96的探针( miRCURY LNATM Detection probe, 货号 38474-05)在显色 72个小时后检测到的信号 (见图 4)。
用 10倍光学显微镜拍照显示: 本发明生产的 miR-96 RNA探针在显色 12个小时后检测到 nuR-96特异地高表达在胚胎发育 11.5天的小鼠胚胎矢状 切片的背根神经节中 (图 5中的 A), 相反, Exiqon公司的靶向 miRNA-96 的探针 (miRCURY LNA™ Detection probe, 货号 38474-05 )在显色 72个小 时后在背根神经节中检测到的信号还是很微弱, 与背景差别不大(图 5中的 B)。
同样,在胚胎发育 13.5天的小鼠胚胎冠状切片的背根神经节中,本发明 生产的 miR-96 RNA探针在显色 12个小时后检测到 miR-96的信号非常强, 而且非常特异 (图 6中的 A); 相反, Exiqon公司的靶向 miRNA-96的探针 (mi CURY LNA™ Detection probe, 货号 38474-05 )在显色 72个小时后检 测到 nuR-96的信号还是非常弱, 与背景难以区分 (图 6中的 B )。
此外, 相对于对比例 3中制备得到的探针 1-DB2, 实施例 2中制备得到 的靶向 miRNA-96的探针 1的背景较浅, 证明本发明生产的 RNA探针 (探 针 1 ) 的特异性高于探针 1-DB2。
由此可以看出: 用来源于同一小鼠胚胎的标本, 同步检测 Exiqon公司 的靶向 miRNA-96的探针(miRCURY LNATM Detection probe,货号 38474-05 ) 与本发明生产的 RNA探针的灵敏度和特异性,结果显示,本发明生产的 RNA 探针灵敏度和特异性都远高于 Exiqon 公司的靶向 miRNA-96 的探针 (miRCURY LNA™ Detection probe, 货号 38474-05 ), 且大大缩短了显色反 应的时间。
以上详细描述了本发明的优选实施方式, 但是, 本发明并不限于上述实 施方式中的具体细节, 在本发明的技术构思范围内, 可以对本发明的技术方 案进行多种简单变型, 这些简单变型均属于本发明的保护范围。
另外需要说明的是, 在上述具体实施方式中所描述的各个具体技术特 征, 在不矛盾的情况下, 可以通过任何合适的方式进行组合, 为了避免不必 要的重复, 本发明对各种可能的组合方式不再另行说明。
此外, 本发明的各种不同的实施方式之间也可以进行任意组合, 只要其 不违背本发明的思想, 其同样应当视为本发明所公开的内容。

Claims

权利要求
1、 一种制备 RNA片段的方法, 该方法包括:
( 1 ) 获得化学合成的双链 DNA, 所述化学合成的双链 DNA由编码链 和模板链配对而成; 在从所述编码链的 5'至 3'方向上,第一内切酶的酶切位 点、启动子、目的 RNA片段的编码 DNA和第二内切酶的酶切位点依次连接;
(2)将所述化学合成的双链 DNA片段克隆至载体中以得到多个克隆的 扩增质粒, 并分别对多个克隆的扩增质粒进行 DNA测序; 挑选能够完全正 确编码目的 RNA片段的扩增质粒的克隆作为模板质粒;
(3 ) 使用第一内切酶和第二内切酶对模板质粒进行酶切, 得到酶切产 物,并从酶切产物中分离能够完全正确编码目的 RNA片段的转录模板片段; 其中, 第二内切酶能够在目的 RNA片段的 DNA模板链的 5'末端切开, 以使转录模板片段的模板链的 5'末端能够与目的 RNA片段的 3'末端形成平 末端的双链;
(4)对所述转录模板片段进行体外转录, 得到含有目的 RNA片段的转 录产物。
2、 根据权利要求 1所述的方法, 其中, 第一内切酶为 SnaBI或 BtsCI; 第二内切酶为 BtsCI; 所述启动子为 T7启动子、 SP6启动子或 T3启动子。
3、 根据权利要求 1所述的方法, 其中, 目的 RNA片段为靶向 miRNA 的 RNA探针。
4、 根据权利要求 1所述的方法, 其中, 该方法还包括, 从转录产物中 纯化 RNA片段。
5、 根据权利要求 1、 3 或 4所述的方法, 其中, 所述编码链的序列为 SEQ ID NO: 1或 SEQ ID NO: 3。
6、 根据权利要求 1所述的方法, 其中, 进行体外转录所用的核糖核苷 三磷酸中的至少一部分为带有标记修饰的核糖核苷三磷酸。
7、 根据权利要求 6所述的方法, 其中, 所述带有标记修饰的核糖核苷 三磷酸为带有地高辛修饰的核糖尿嘧啶三磷酸、生物素修饰的核糖尿嘧啶三 磷酸、 生物素修饰的核糖胞嘧啶三磷酸、 生物素修饰的核糖鸟嘌呤三磷酸、 荧光素修饰的核糖尿嘧啶三磷酸、 荧光素修饰的核糖胞嘧啶三磷酸、 荧光素 修饰的核糖鸟嘌呤三磷酸、 荧光素修饰的核糖腺嘌呤三磷酸、 氚标记的核糖 尿嘧啶三磷酸、 32P标记的核糖尿嘧啶三磷酸、 32P标记的核糖胞嘧啶三磷酸 或 32P标记的核糖腺嘌呤三磷酸。
8、 根据权利要求 7所述的方法, 其中, 所述带有标记修饰的核糖核苷 三磷酸为带有地高辛修饰的核糖尿嘧啶三磷酸, 且带有地高辛修饰的核糖尿 嘧啶三磷酸和不带有地高辛修饰的核糖尿嘧啶三磷酸的摩尔比为 1.5-4: 1。
9、 一种 RNA片段, 其特征在于, 该 RNA片段是根据权利要求 1-8中 任意一项所述的方法制备得到的。
10、 权利要求 9所述的 RNA片段在制备核酸药物、 检测试剂盒或诊断 试剂盒中的用途。
PCT/CN2014/080069 2013-06-27 2014-06-17 一种rna片段及其制备方法和用途 WO2014206219A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201310263324.XA CN104250645B (zh) 2013-06-27 2013-06-27 一种rna片段及其制备方法和用途
CN201310263324.X 2013-06-27

Publications (1)

Publication Number Publication Date
WO2014206219A1 true WO2014206219A1 (zh) 2014-12-31

Family

ID=52141030

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2014/080069 WO2014206219A1 (zh) 2013-06-27 2014-06-17 一种rna片段及其制备方法和用途

Country Status (3)

Country Link
CN (1) CN104250645B (zh)
HK (1) HK1204001A1 (zh)
WO (1) WO2014206219A1 (zh)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1398973A (zh) * 2002-08-30 2003-02-26 山东大学 靶向肝癌的乙肝病毒反义rna表达载体及其构建方法与用途
CN1405325A (zh) * 2001-06-04 2003-03-26 理化学研究所 Rna探针的制备方法、靶核酸的检测方法以及rna探针的制备试剂盒
CN1611606A (zh) * 2003-10-30 2005-05-04 封江南 单一载体编码多个发夹结构小干扰性rna表达系统及其构建方法
CN101892226A (zh) * 2010-03-11 2010-11-24 新乡医学院 一种抑制人脂肪细胞ACC基因表达的siRNA及其表达载体和应用

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102618664B (zh) * 2012-05-03 2014-01-01 武汉大学 一种miRNA检测探针和可视化检测miRNA的方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1405325A (zh) * 2001-06-04 2003-03-26 理化学研究所 Rna探针的制备方法、靶核酸的检测方法以及rna探针的制备试剂盒
CN1398973A (zh) * 2002-08-30 2003-02-26 山东大学 靶向肝癌的乙肝病毒反义rna表达载体及其构建方法与用途
CN1611606A (zh) * 2003-10-30 2005-05-04 封江南 单一载体编码多个发夹结构小干扰性rna表达系统及其构建方法
CN101892226A (zh) * 2010-03-11 2010-11-24 新乡医学院 一种抑制人脂肪细胞ACC基因表达的siRNA及其表达载体和应用

Also Published As

Publication number Publication date
HK1204001A1 (zh) 2015-11-06
CN104250645A (zh) 2014-12-31
CN104250645B (zh) 2017-05-03

Similar Documents

Publication Publication Date Title
KR102640255B1 (ko) 감소된 증폭 편향을 갖는 고속-대량 단일 세포 서열분석
CN105705515B (zh) 多种用于dna操作的转座酶适体
EP2235179B1 (en) Methods for creating and identifying functional rna interference elements
US10544451B2 (en) Vesicular linker and uses thereof in nucleic acid library construction and sequencing
WO2015021990A1 (en) Rna probing method and reagents
US11761037B1 (en) Probe and method of enriching target region applicable to high-throughput sequencing using the same
JP4644685B2 (ja) 塩基配列タグの調製方法
US20240026421A1 (en) Methods for capturing long polynucleotides for sequencing specific genomic regions
US11326160B2 (en) Method for making a cDNA library
CN110382710A (zh) 构建核酸分子拷贝的方法
WO2017215517A1 (zh) 测序文库构建中5'和3'接头连接副产物的去除方法
WO2021051665A1 (zh) 基因目标区域的富集方法及体系
CN106555011B (zh) 基因检测或基因分型的组合物及方法
CN111560651A (zh) 一种制备双链rna测序文库的方法
EP3615683B1 (en) Methods for linking polynucleotides
US8846350B2 (en) MicroRNA affinity assay and uses thereof
WO2014206219A1 (zh) 一种rna片段及其制备方法和用途
CN104694630B (zh) 用于多重连接扩增技术的探针制备方法
US20200283813A1 (en) Size selection of rna using poly(a) polymerase
WO2016176681A1 (en) Four-leaf clover qrt-pcr: an efficient and convenient method for selective quantification of mature trna
IT201900015914A1 (it) Procedimento per preparare un campione di rna per il sequenziamento e relativo kit
US20110269137A1 (en) Rapid and efficient assay to assess the sequence and size of 3' ends of polynucleotides
WO2023159999A1 (zh) 一种单细胞开放染色质和转录组共测序文库的构建方法
Moldovan et al. Variable patterns of retrotransposition in different HeLa strains provide mechanistic insights into SINE RNA mobilization processes
JP2023548857A (ja) ヘアピンオリゴヌクレオチド及びその使用

Legal Events

Date Code Title Description
DPE2 Request for preliminary examination filed before expiration of 19th month from priority date (pct application filed from 20040101)
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14818200

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14818200

Country of ref document: EP

Kind code of ref document: A1