WO2014206213A1 - 一种太阳能电池及其制作方法 - Google Patents

一种太阳能电池及其制作方法 Download PDF

Info

Publication number
WO2014206213A1
WO2014206213A1 PCT/CN2014/080039 CN2014080039W WO2014206213A1 WO 2014206213 A1 WO2014206213 A1 WO 2014206213A1 CN 2014080039 W CN2014080039 W CN 2014080039W WO 2014206213 A1 WO2014206213 A1 WO 2014206213A1
Authority
WO
WIPO (PCT)
Prior art keywords
back field
semiconductor substrate
aluminum
grid
passivation layer
Prior art date
Application number
PCT/CN2014/080039
Other languages
English (en)
French (fr)
Inventor
徐卓
王建明
张雷
史金超
李高非
胡志岩
熊景峰
Original Assignee
英利集团有限公司
英利能源(中国)有限公司
保定嘉盛光电科技有限公司
河北流云新能源科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 英利集团有限公司, 英利能源(中国)有限公司, 保定嘉盛光电科技有限公司, 河北流云新能源科技有限公司 filed Critical 英利集团有限公司
Publication of WO2014206213A1 publication Critical patent/WO2014206213A1/zh

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/18Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof
    • H01L31/1804Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof comprising only elements of Group IV of the Periodic Table
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/02Details
    • H01L31/0216Coatings
    • H01L31/02161Coatings for devices characterised by at least one potential jump barrier or surface barrier
    • H01L31/02167Coatings for devices characterised by at least one potential jump barrier or surface barrier for solar cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/02Details
    • H01L31/0224Electrodes
    • H01L31/022408Electrodes for devices characterised by at least one potential jump barrier or surface barrier
    • H01L31/022425Electrodes for devices characterised by at least one potential jump barrier or surface barrier for solar cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/06Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by potential barriers
    • H01L31/068Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by potential barriers the potential barriers being only of the PN homojunction type, e.g. bulk silicon PN homojunction solar cells or thin film polycrystalline silicon PN homojunction solar cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/547Monocrystalline silicon PV cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Definitions

  • the present invention claims the priority of the Chinese patent application filed on June 26, 2013, the Chinese Patent Application No. 201310260199.7, entitled “A Solar Cell and Its Manufacturing Method", which The entire contents are incorporated herein by reference.
  • TECHNICAL FIELD The present invention relates to the field of solar cells, and more particularly to a solar cell and a method of fabricating the same. Background technique
  • Solar power generation technology is an important field in the development of new energy. With the continuous development of market demand and technological advancement, solar cells with low cost and high energy conversion efficiency are urgently needed. From the perspective of low-cost solar cells, in order to reduce the cost of solar cells, the thickness of the silicon wafer is gradually reduced. When the diffusion length of minority carriers is greater than the thickness of the silicon wafer, the effect of the recombination rate of the upper and lower surfaces of the cell on the efficiency is It is more important that the process of greatly reducing the surface recombination rate is called surface passivation in solar cell production, and since the aluminum back field can effectively reduce the recombination rate of the back surface of the battery and improve the conversion efficiency, the aluminum back field is a commercial crystalline silicon. The main back surface passivation structure commonly used in solar cells.
  • the present invention provides a solar cell and a method of fabricating the same, which have high energy conversion efficiency.
  • the embodiment of the present invention provides the following technical solutions:
  • a method of fabricating a solar cell comprising: providing a semiconductor substrate; forming an aluminum back field and a passivation layer on a back surface of the semiconductor substrate, wherein the aluminum back field comprises a grating aluminum back field and at least one The grid-shaped aluminum back field is perpendicular to the main back field, and the passivation layer is located in a gap between the grid-shaped aluminum back field and the main back field.
  • the semiconductor substrate comprises a P-type semiconductor substrate.
  • the width of each grid aluminum back field is 30 ⁇ ! ⁇ ⁇ , including endpoint values.
  • the distance between adjacent grid-like aluminum back fields is from 1 mm to 30 mm, including the endpoint value.
  • the passivation layer comprises a two-layer structure of an aluminum oxide layer and a silicon nitride layer, and the aluminum oxide layer is located between the silicon nitride layer and a back surface of the semiconductor substrate.
  • the process of forming an aluminum back field and a passivation layer on the back surface of the semiconductor substrate comprises: screen printing a grid-like aluminum back field and at least one of the grid-shaped aluminum back on a back surface of the semiconductor substrate a vertical back field of the field; shielding the aluminum back field, forming a passivation layer in the gap between the grating aluminum back field and the main back field.
  • the process of forming an aluminum back field and a passivation layer on the back surface of the semiconductor substrate comprises: forming a passivation layer on a back surface of the semiconductor substrate, and the passivation layer completely covers the semiconductor substrate a back surface; laser etching the passivation layer, forming a recess in the passivation layer, the distribution of the groove corresponding to a position of the aluminum back field, and the depth of the groove is equal to The thickness of the passivation layer; an aluminum back field is printed in the recess of the passivation layer.
  • a solar cell formed according to the above fabrication method comprising: a semiconductor substrate; an aluminum back field and a passivation layer on a back surface of the semiconductor substrate, wherein the aluminum back field comprises a grid-like aluminum back field and at least A main back field perpendicular to the grid-like aluminum back field, the passivation layer being located in a gap between the grid-like aluminum back field and the main back field.
  • the passivation layer comprises a two-layer structure of an aluminum oxide layer and a silicon nitride layer, and the aluminum oxide layer is located between the silicon nitride layer and a back surface of the semiconductor substrate.
  • the embodiment of the invention has the following advantages:
  • the aluminum back field of the solar cell provided by the invention is a hollow aluminum back field, comprising a grid-shaped aluminum back field and at least one main back field perpendicular to the grid-shaped aluminum back field, and the hollow aluminum back field reduces the aluminum back field
  • the contact area with the back surface of the semiconductor substrate reduces the surface recombination of the aluminum back field and the back surface of the semiconductor substrate, thereby improving the energy conversion efficiency of the solar cell, and the aluminum back field having a smaller area can also attenuate the aluminum back field.
  • the absorption of long-wave solar energy improves the internal reflection of the back field of the solar cell and further improves the energy conversion efficiency of the solar cell.
  • FIG. 1 is a flow chart of a method for fabricating a solar cell according to the present invention.
  • FIG. 2 to FIG. 1 is a flow chart of a method for fabricating a solar cell according to the present invention.
  • FIG. 6 are schematic diagrams showing steps of a method for fabricating a solar cell according to the present invention.
  • FIGS. 7 to 9 are further provided by the present invention.
  • FIG. 10 is a cross-sectional view of a solar cell according to the present invention.
  • FIG. 11 is a perspective view of an aluminum back field of a solar cell according to the present invention, which is parallel to the solar cell. A cross-sectional view of the back surface. detailed description
  • the capacity conversion efficiency of existing crystalline silicon solar cells is limited.
  • the inventors have found that the back field of the existing solar cell is an all-aluminum back field, and the all-aluminum back field forms an aluminum-silicon alloy on the back surface of the solar cell by sintering, thereby achieving electrical contact between the aluminum back field and the solar cell.
  • the aluminum-silicon alloy has great limitations in reducing the composite and back reflection effects on the back surface of the solar cell, the all-aluminum back field limits the further improvement of the efficiency of the solar cell.
  • the use of all-aluminum contact on the back side of the solar cell greatly increases the surface recombination of the back surface of the solar cell, affects the open circuit voltage of the battery, and reduces the energy conversion efficiency of the solar cell. .
  • the inventors further studied the selective emitter technology and the selective back field technique, in which the selective emitter technique improves the surface recombination by reducing the surface recombination at the emitter and improving the gold half contact resistance with the electrode.
  • the open circuit voltage and fill factor of the battery which in turn increases conversion efficiency
  • the selective back field technique applies selective emitter technology to the back surface of the solar cell to form a selective back field.
  • the inventors combined the above-mentioned fabrication process and found that the selective back field technology combined with the back passivation technology can make the solar cell have a good performance back field and improve The energy conversion efficiency of solar cells.
  • the present invention discloses a solar cell and a method of fabricating the same, comprising: providing a semiconductor substrate; forming an aluminum back field and a passivation layer on a back surface of the semiconductor substrate, wherein the aluminum back field comprises A grid-shaped aluminum back field and at least one main back field perpendicular to the grid-like aluminum back field, the passivation layer being located in a gap between the grid-like aluminum back field and the main back field.
  • the present invention also discloses a solar cell formed according to the above manufacturing method, comprising: a semiconductor substrate; an aluminum back field and a passivation layer on a back surface of the semiconductor substrate, wherein the aluminum back field
  • the utility model comprises a grid-shaped aluminum back field and at least one main back field perpendicular to the grid-shaped aluminum back field, the passivation layer being located in a gap between the grid-shaped aluminum back field and the main back field.
  • the hollow aluminum back field of the solar cell comprises a grid-shaped aluminum back field and at least one main back field perpendicular to the grid-like aluminum back field, the aluminum back field reducing the back of the aluminum back field and the semiconductor substrate
  • the contact area of the surface weakens the surface of the aluminum back field and the surface of the back surface of the semiconductor substrate to improve the energy conversion efficiency of the solar cell, and the aluminum back field with a smaller area can also reduce the absorption of the long-wave solar energy by the aluminum back field.
  • a passivation layer is formed between the gate aluminum back field of the aluminum back field and the main back field, and the passivation layer not only has a good passivation effect on the solar cell, but also serves as a good medium.
  • the material provides a certain protection to the back surface of the solar cell, thereby improving the quality of the solar cell.
  • Embodiment 1 provides a method for fabricating a solar cell. As shown in FIG. 1 , the following steps 101 to 104 are included.
  • Step 101 Providing a semiconductor substrate.
  • the semiconductor substrate may be a P-type semiconductor substrate, and the type of the P-type semiconductor substrate includes a P-type single crystal silicon substrate, a P-type polycrystalline silicon substrate, or the like.
  • Step 102 Forming a PN junction on one surface of the semiconductor substrate, and forming a surface of the PN junction as a front surface of the semiconductor substrate.
  • a PN junction 202 is formed on one surface of the semiconductor substrate 201, and a surface of the surface of the PN junction 202 is formed as a front surface of the semiconductor substrate 201.
  • the semiconductor substrate 201 is a P-type semiconductor substrate
  • a PN junction is formed on the surface of the semiconductor substrate 201 to perform phosphorus diffusion.
  • the principle of forming a PN junction in the semiconductor substrate 201 by phosphorus diffusion is as follows: POC13 is decomposed into phosphorus pentachloride and phosphorus pentoxide at a high temperature (greater than 600 ° C), and the resulting phosphorus pentoxide is diffused at a diffusion temperature. Silicon reacts to form silicon dioxide and phosphorus atoms, and diffuses on the surface of the P-type semiconductor substrate to form an N-type phosphorus source to form a PN junction.
  • the method further includes: removing the surface of the semiconductor substrate 201 on which the PN junction is formed, and forming a PN
  • the junction semiconductor substrate 201 is edge etched.
  • phosphorus pentoxide produced by the decomposition of POC13 is deposited on the surface of the semiconductor substrate and forms silicon dioxide and phosphorus atoms with silicon atoms.
  • This layer of silicon dioxide containing phosphorus atoms is called stellite glass, phosphorus.
  • the existence of the silicon glass layer will affect the contact between the metal electrode and the semiconductor during the electrode printing process, and reduce the conversion efficiency of the battery.
  • the phosphorous silicon glass layer has multiple layers of metal ion impurities, which will reduce the lifetime of the minority carrier, and can be removed by introducing an HF cleaning process. Scaly glass. The principle of removing the daunting silicon glass is:
  • step 102 since a PN junction is formed on the surface of the semiconductor substrate 201, it is formed by diffusion of phosphorus, and diffusion of phosphorus In the process, phosphorus atoms are diffused on all surfaces of the semiconductor substrate 201, and a PN junction is formed on all surfaces of the semiconductor substrate 201, and even if it is back-to-back diffusion, it is inevitably spread on the side surface of the semiconductor substrate. phosphorus.
  • the photoelectrons collected by the PN junction located on the front surface of the semiconductor substrate flow along the edge where the phosphorus diffuses to the back of the PN junction. And Causes a short circuit in the solar cell. In this step, the excess PN junction can be removed to ensure the quality of the solar cell.
  • an anti-reflection layer 203 is formed on the front surface of the semiconductor substrate 201 on which the PN junction is formed to increase the transmission of incident light on the front surface of the semiconductor substrate.
  • the anti-reflective layer is a silicon nitride layer, and the silicon nitride layer may be formed on the front surface of the semiconductor substrate 201 using a PECVD apparatus.
  • Step 104 forming an aluminum back field and a passivation layer on a back surface of the semiconductor substrate, wherein the aluminum back field comprises a grid aluminum back field and at least one main aluminum back perpendicular to the grid aluminum back field The passivation layer is located in a gap between the grating aluminum back field and the main aluminum back field.
  • an aluminum back field 204 and a passivation layer 205 are formed on a back surface of the semiconductor substrate, wherein the aluminum back field 204 includes a grid-like aluminum back field 206 and at least one and the grid The aluminum back field 206 is perpendicular to the main back field 207, and the passivation layer 205 is located in the gap between the grid aluminum back field 206 and the main back field 207.
  • the present invention does not limit the number of the primary back field.
  • the embodiment of the present invention is described by taking an aluminum back field including three main back fields as an example.
  • the passivation layer may be selected from a single layer of alumina, a laminated alumina, a laminated silicon nitride, an amorphous silicon, a silicon oxide, an amorphous silicon oxide, a Ti02, and the like. .
  • the passivation layer 205 may be a two-layer structure of an aluminum oxide layer 2051 and a silicon nitride layer 2052, and the aluminum oxide layer 2051 is located in the nitrogen.
  • the silicon layer 2052 is between the back surface of the semiconductor substrate 201.
  • the solar cell and the manufacturing method thereof provided by the present invention will be described by taking the double layer structure of the passivation layer 205 as the aluminum oxide layer 2051 and the silicon nitride layer 2052 as an example.
  • a method of forming an aluminum back field 204 and a blunt layer 205 on a back surface of the semiconductor substrate includes:
  • a passivation layer 205 is formed on the back surface of the semiconductor substrate, and the passivation layer 205 completely covers the back surface of the semiconductor substrate; as shown in FIG. 5, the passivation layer 205 is laser etched.
  • a recess 208 is formed in the passivation layer 205, the distribution of the recess 208 corresponding to the position of the grid-like aluminum back field 206 and the main back field 207 in the aluminum back field, and the depth of the recess 208 Equal to the passivation layer 205 Thickness;
  • a grid-like aluminum back field and a main back-field aluminum back field 204 are printed in the recess 208 of the passivation layer 205.
  • the method for manufacturing a net printed aluminum back field includes:
  • Step 1 As shown in FIG. 7, an aluminum back field 204 is screen printed on the back surface of the semiconductor substrate, the aluminum back field 204 including a grid-like aluminum back field 206 and at least one perpendicular to the grid-like aluminum back field 206
  • the main back field 207, the grid aluminum back field 206 and the main back field 207 perpendicular to the grid aluminum back field 206 are shown in FIG. 8, that is, the grid aluminum back field 206 and the main
  • the back field 207 is located on the same plane, and the fabrication of the aluminum back field including the grid-shaped aluminum back field 206 and the main back field 207 can be achieved by a single screen printing process.
  • Step 2 As shown in FIG. 9, the aluminum back field 204 is shielded, and a passivation layer 205 is formed in the gap between the gate aluminum back field and the main back field constituting the aluminum back field 204.
  • the method for fabricating the aluminum back field by the screen printing process can not only eliminate the damage of the laser substrate to the semiconductor substrate, but also ensure the quality of the semiconductor substrate, and the manufacturing method is formed in the aluminum back field and the passivation layer.
  • the grid aluminum back field and the main back field are formed in a single screen printing process, and the manufacturing process is single, and the manufacturing method of the solar cell is completed, thereby reducing the manufacturing cost of the solar cell, and at the same time, the blunt The layer fills the gap between the grid-like aluminum back field and the main back field, which provides good passivation on the back surface of the semiconductor substrate.
  • the width D1 of each grid aluminum back field can be 30 ⁇ ! ⁇ ⁇ , including the endpoint value; and the distance D2 between adjacent grid-like aluminum backfields can be lmm ⁇ 30mm, including the endpoint value.
  • the hollow aluminum back field of the solar cell comprises a grid-shaped aluminum back field and at least one main back field perpendicular to the grating aluminum back field, and the hollow aluminum back field reduces the aluminum back field and the semiconductor substrate
  • the contact area of the back surface weakens the surface of the aluminum back field and the surface of the back surface of the semiconductor substrate to improve the energy conversion efficiency of the solar cell
  • the grid-shaped aluminum back field with a smaller area can also attenuate the aluminum back field to the long-wave solar energy.
  • the absorption improves the internal reflection of the back field of the solar cell and further improves the energy conversion efficiency of the solar cell.
  • a passivation layer is formed between the aluminum back fields, and the passivation layer not only can have a good passivation effect on the back surface of the solar cell, but also can be used as a good dielectric material.
  • the back surface of the solar cell provides a certain protection to improve the quality of the solar cell.
  • the present embodiment provides a solar cell.
  • the solar cell is formed according to the manufacturing method of the first embodiment.
  • the solar cell includes: a semiconductor substrate 1001 formed with a PN junction 1002; An anti-reflection layer 1003 on the front surface of the semiconductor substrate; an aluminum back field 1004 and a passivation layer 1005 on the back surface of the semiconductor substrate 1001, wherein the aluminum back field 1004, as shown in FIG.
  • a grid-like aluminum back field 1006 and at least one main back field 1007 perpendicular to the grid-like aluminum back field 1006 are included, the passivation layer 1005 being located within the gap between the grid-like aluminum back field 1006 and the main back field 1007.
  • the passivation layer 1005 may be a two-layer structure of an aluminum oxide layer 1051 and a silicon nitride layer 1052, and the aluminum oxide layer 1051 is located in the silicon nitride layer 1052 and the Between the back surfaces of the semiconductor substrate 1001.
  • the aluminum back field of the solar cell provided by the embodiment is a hollow aluminum back field, and includes a grid-shaped aluminum back field and at least one hollow aluminum back field of the main back field perpendicular to the grid-shaped aluminum back field, the hollow aluminum back
  • the field reduces the contact area between the aluminum back field and the back surface of the semiconductor substrate, and the hollow back field of the hollow shape has a small area, which can reduce the back field pair while reducing the back field and the back surface of the semiconductor substrate.
  • the absorption of long-wave solar energy provides energy conversion efficiency of solar cells from two aspects.
  • a passivation layer is formed in a gap between the gate aluminum back field and the main back field in the aluminum back field, and the passivation layer serves as a surface passivation function and also serves as a good
  • the dielectric material protects the surface of the solar cell, thereby improving the quality of the solar cell.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Hardware Design (AREA)
  • Power Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Electromagnetism (AREA)
  • General Physics & Mathematics (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Photovoltaic Devices (AREA)

Abstract

一种太阳能电池及其制作方法,所述方法包括:提供半导体衬底(201);在所述半导体衬底(201)的背表面形成铝背场(204)和钝化层(205),其中,所述铝背场(204)包括栅状铝背场(206)和至少一个与所述栅状铝背场(206)垂直的主背场(207),所述钝化层(205)位于所述栅状铝背场(206)和主背场(207)的间隙内。该太阳能电池的制作方法形成的太阳能电池的铝背场(204)为镂空铝背场,包括栅状铝背场(206)和至少一个与所述栅状铝背场(206)垂直的主背场(207),所述镂空铝背场(204)可以降低铝背场(204)与半导体衬底(201)背表面的接触面积,提高太阳能电池的能量转换效率。此外,所述栅状铝背场(206)和主背场(207)的间隙内形成的钝化层(205)对太阳能电池起到一定的保护作用,改善了太阳能电池的质量。

Description

一种太阳能电池及其制作方法 本申请要求于 2013 年 6 月 26 日提交中国专利局、 申请号为 201310260199.7、 发明名称为 "一种太阳能电池及其制作方法" 的中国专利 申请的优先权, 其全部内容通过引用结合在本申请中。 技术领域 本发明属于太阳能电池领域, 尤其涉及一种太阳能电池及其制作方法。 背景技术
太阳能发电技术是新能源发展的一个重要领域,随着市场需求的不断发展 和技术的进步, 迫切需求低成本高能量转化效率的太阳能电池。从低成本的太 阳能电池的角度出发, 为了降低太阳能电池成本, 硅片的厚度逐渐减薄, 当少 数载流子的扩散长度大于硅片厚度时,电池片上下表面的复合速率对效率的影 响就显得更加重要,大幅度降低表面复合速率的工艺在太阳电池生产中称为表 面钝化, 而由于铝背场能够有效降低电池背表面复合速率, 提高转换效率, 故 铝背场是商品化晶体硅太阳电池普遍采用的主要背表面钝化结构。
常规的晶硅太阳能电池的背表面使用全铝背场,但是使用全铝背场的太阳 能电池的能量转换效率有限。 发明内容
有鉴于此,本发明提供一种太阳能电池及其制作方法,此种太阳能电池的 能量转换效率较高。
为实现上述目的, 本发明实施例提供了如下技术方案:
一种太阳能电池的制作方法, 包括: 提供半导体衬底; 在所述半导体衬底 的背表面形成铝背场和钝化层,其中, 所述铝背场包括栅状铝背场和至少一个 与所述栅状铝背场垂直的主背场,所述钝化层位于所述栅状铝背场和主背场的 间隙内。
可选地, 所述半导体衬底包括 P型半导体衬底。 可选地, 每条栅状铝背场的宽度为 30μη!〜 ΙΟΟΟμπι, 包括端点值。 可选地, 相邻的栅状铝背场之间的距离为 lmm〜30mm, 包括端点值。 可选地, 所述钝化层包括氧化铝层和氮化硅层的双层结构,且所述氧化铝 层位于所述氮化硅层和所述半导体衬底的背表面之间。
可选地,在所述半导体衬底的背表面形成铝背场和钝化层的过程包括: 在 半导体衬底的背表面丝网印刷栅状铝背场和至少一个与所述栅状铝背场垂直 的主背场;遮挡所述铝背场,在所述栅状铝背场和主背场的间隙内形成钝化层。
可选地,在所述半导体衬底的背表面形成铝背场和钝化层的过程包括: 在 半导体衬底的背表面形成钝化层,且所述钝化层完全覆盖所述半导体衬底的背 表面; 激光刻蚀所述钝化层, 在所述钝化层内形成凹槽, 所述凹槽的分布与所 述铝背场的位置对应,且所述凹槽的深度等于所述钝化层的厚度; 在所述钝化 层的凹槽内印刷铝背场。
一种根据上述制作方法形成的太阳能电池, 包括: 半导体衬底; 位于所述 半导体衬底的背表面的铝背场和钝化层,其中, 所述铝背场包括栅状铝背场和 至少一个与所述栅状铝背场垂直的主背场,所述钝化层位于所述栅状铝背场和 主背场的间隙内。
可选地, 所述钝化层包括氧化铝层和氮化硅层的双层结构,且所述氧化铝 层位于所述氮化硅层和所述半导体衬底的背表面之间。
与现有技术相比, 本发明实施例具有以下优点:
本发明提供的太阳能电池的铝背场为镂空铝背场,包括栅状铝背场和至少 一个与所述栅状铝背场垂直的主背场,此种镂空铝背场会降低铝背场与半导体 衬底的背表面的接触面积, 减弱铝背场与半导体衬底背表面的表面复合,提高 太阳能电池的能量转化效率,同时此种具有较小面积的铝背场还可以减弱铝背 场对长波太阳能的吸收, 改善太阳能电池背场的内反射,进一步提高太阳能电 池的能量转换效率。 此外, 在所述铝背场之间还形成有钝化层, 所述钝化层不 仅对太阳能电池起到良好的钝化效果,还可以作为良好的介质材料,对太阳能 电池背表面起到一定的保护作用, 从而改善太阳能电池的质量。 附图说明 为了更清楚地说明本发明实施例或现有技术中的技术方案,下面将对实施 例或现有技术描述中所需要使用的附图作筒单地介绍,显而易见地, 下面描述 中的附图仅仅是本发明的一些实施例,对于本领域普通技术人员来讲,在不付 出创造性劳动的前提下, 还可以根据这些附图获得其他的附图。 图 1为本发明提供的一种太阳能电池制作方法的流程图; 图 2至图 6为本发明提供的一种太阳能电池制作方法的各步骤的示意图; 图 7至图 9为本发明提供的另一种太阳能电池制作方法的各步骤的示意 图; 图 10为本发明提供的一种太阳能电池的剖面图; 图 11为本发明提供的一种太阳能电池的铝背场沿平行于所述太阳能电池 的背表面方面的截面图。 具体实施方式
正如背景技术中所言, 现有的晶硅太阳能电池的能力转换效率有限。 发明人研究发现,现有的太阳能电池的背场为全铝背场,全铝背场通过烧 结在太阳能电池的背表面形成铝硅合金, 实现铝背场与太阳能电池的电接触。 但是由于铝硅合金在太阳能电池的背表面减少复合和背反射效果方面有很大 的局限性, 故全铝背场会限制太阳能电池效率的进一步提高。 此外, 由于铝硅 合金区本身即高复合区,故在太阳能电池背面使用全铝接触,极大的增加了太 阳能电池背表面的表面复合,影响电池的开路电压, 降低了太阳能电池的能量 转换效率。
发明人进一步研究发现了选择性发射极技术和选择性背场技术, 其中,选 择性发射极技术通过在发射极形成局部重掺杂实现减小表面复合和改善与电 极的金半接触电阻来提高电池的开路电压和填充因子,进而提升转化效率, 而 选择性背场技术则是将选择性发射极技术应用于太阳能电池的背表面,以形成 选择性背场。 基于上述的分析, 发明人结合上述制作工艺, 发现将选择性背场 技术与背钝化技术结合使用, 可以使太阳能电池具有性能良好的背场, 并提高 太阳能电池的能量转换效率的。
基于上述原因, 本发明公开了一种太阳能电池及其制作方法, 包括: 提供 半导体衬底; 在所述半导体衬底的背表面形成铝背场和钝化层, 其中, 所述铝 背场包括栅状铝背场和至少一个与所述栅状铝背场垂直的主背场,所述钝化层 位于所述栅状铝背场和主背场的间隙内。对应的,本发明还公开了一种根据上 述制作方法形成的太阳能电池, 包括: 半导体衬底; 位于所述半导体衬底的背 表面的铝背场和钝化层, 其中, 所述铝背场包括栅状铝背场和至少一个与所述 栅状铝背场垂直的主背场 , 所述钝化层位于所述栅状铝背场和主背场的间隙 内。
本发明提供的太阳能电池的镂空铝背场包括栅状铝背场和至少一个与所 述栅状铝背场垂直的主背场,此种铝背场会降低铝背场与半导体衬底的背表面 的接触面积, 减弱铝背场与半导体衬底背表面的表面复合,提高太阳能电池的 能量转化效率,同时此种具有较小面积的铝背场还可以减弱铝背场对长波太阳 能的吸收, 改善太阳能电池背场的内反射,进一步提高太阳能电池的能量转换 效率。 此外, 在所述铝背场的栅状铝背场和主背场之间还形成有钝化层, 所述 钝化层不仅对太阳能电池起到良好的钝化效果, 还可以作为良好的介质材料, 对太阳能电池背表面起到一定的保护作用, 从而改善太阳能电池的质量。
为使本发明的上述目的、特征和优点能够更加明显易懂, 下面结合附图对 本发明的实施方式做详细的说明。
在下面的描述中阐述了很多细节以便于充分理解本发明 ,但是本发明还可 以采用其他不同于在此描述的其它方式来实施,本领域技术人员可以在不违背 本发明内涵的情况下做类似推广, 因此本发明不受下面公开的实施例的限制。
其次, 本发明结合示意图进行详细描述, 在详述本发明实施例时, 为便于 说明,表示器件形状的平面图会不依一般比例作局部放大, 而且所述示意图只 是示例,其在此不应限制本发明保护的范围。此外,在实际制作中应包含长度、 宽度及深度的三维空间尺寸。
下面结合实施例和附图对本发明提供的太阳能电池及其制作方法进行描 述。
实施例一 本实施例提供了一种太阳能电池的制作方法,如图 1所示, 包括以下步骤 101至步骤 104。
步骤 101 : 提供半导体衬底。
所述半导体衬底可以为 P型半导体衬底,所述 P型半导体衬底的种类包括 P型单晶硅衬底、 P型多晶硅衬底等。
步骤 102: 在所述半导体衬底的一个表面形成 PN结, 并将形成有 PN结 的表面的作为半导体衬底的正表面。
如图 2所示, 在所述半导体衬底 201的一个表面形成 PN结 202, 并将形 成有 PN结 202的表面的作为半导体衬底 201的正表面。当所述半导体衬底 201 为 P型半导体衬底时,在所述半导体衬底 201的表面形成 PN结可以进行磷扩 散。采用磷扩散在半导体衬底 201内形成 PN结的原理为: POC13在高温下(大 于 600°C )分解成五氯化二磷和五氧化二磷, 生成的五氧化二磷在扩散温度下 与硅反应,生成二氧化硅和磷原子,在 P型半导体衬底的表面扩散形成一层 N 型磷源, 形成 PN结
需要说明的是, 在所述半导体衬底 201的一个表面形成 PN结的过程中 , 还包括: 去除所述形成有 PN结的半导体衬底 201表面的磷硅玻璃, 并对所述 形成有 PN结的半导体衬底 201进行边缘刻蚀。
在磷扩散过程中, POC13分解产生的五氧化二磷沉积在半导体衬底表面, 并与硅原子生成二氧化硅和磷原子,这层含有磷原子的二氧化硅层称为硅鱗玻 璃, 磷硅玻璃层的存在会在电极印刷过程中, 影响金属电极和半导体的接触, 降低电池的转换效率, 同时磷硅玻璃层还有多层金属离子杂质,会降低少子寿 命, 可以引入 HF清洗工艺去除鱗硅玻璃。 去除碑硅玻璃的原理为:
Si02 + 6HF = H2 [SiF6 ] + 2H20 在步骤 102的实施过程中, 由于在所述半导体衬底 201表面形成 PN结是 釆用磷扩散的方式形成的, 而在磷扩散的过程中,会在半导体衬底 201的所有 表面都扩散上磷原子, 在半导体衬底 201的所有表面形成 PN结, 即使釆用背 对背扩散的方式,也难免会在半导体衬底的侧表面扩散上磷。若不将半导体衬 底除正表面的 PN结去掉, 在太阳能电池工作的过程中, 位于半导体衬底正表 面的 PN结收集到的光电子会沿着边缘扩散有磷的区域流到 PN结的背面, 而 造成太阳能电池短路。 在此步骤中, 可以去除多余的 PN结, 保证太阳能电池 的质量。
如图 3所示, 在所述形成有 PN结的半导体衬底 201的正表面形成减反射 层 203,以增加入射光在半导体衬底正表面的透射。在本发明的一个实施例中, 所述减反射层为氮化硅层, 所述氮化硅层可采用 PECVD设备在所述半导体衬 底 201的正表面形成。
步骤 104: 在所述半导体衬底的背表面形成铝背场和钝化层, 其中, 所述 铝背场包括栅状铝背场和至少一个与所述栅状铝背场垂直的主铝背场,所述钝 化层位于所述栅状铝背场和主铝背场的间隙内。
参考图 4至图 8, 在所述半导体衬底的背表面形成铝背场 204和钝化层 205 , 其中, 所述铝背场 204包括栅状铝背场 206和至少一个与所述栅状铝背 场 206垂直的主背场 207, 所述钝化层 205位于所述栅状铝背场 206和主背场 207的间隙内。
需要说明的是,本发明对于所述主背场的个数不作限定,但是为了便于描 述, 本发明实施例以包括三个主背场的铝背场为例进行说明。
在本发明的一个实施例, 所述钝化层可选用单层氧化铝, 叠层氧化铝, 叠 层氮化硅, 非晶硅, 氧化硅, 非晶氧化硅, Ti02 等材料及其叠层。 在本发明 的一个实施例中, 如图 6和图 8所示, 钝化层 205可以为氧化铝层 2051和氮 化硅层 2052的双层结构, 且所述氧化铝层 2051位于所述氮化硅层 2052和所 述半导体衬底 201的背表面之间。 为了便于描述, 本发明实施例以钝化层 205 为氧化铝层 2051和氮化硅层 2052的双层结构为例对本发明提供的太阳能电池 及其制作方法进行说明。
在本发明的一个实施例中, 在所述半导体衬底的背表面形成铝背场 204 和钝 层 205的方法包括:
如图 4所示, 在半导体衬底的背表面形成钝化层 205, 且钝化层 205完全 覆盖所述半导体衬底的背表面; 如图 5所示, 激光刻蚀所述钝化层 205 , 在钝 化层 205内形成凹槽 208, 所述凹槽 208的分布与所述铝背场内的栅状铝背场 206和主背场 207的位置对应, 且所述凹槽 208的深度等于所述钝化层 205的 厚度; 如图 6所示,在所述钝化层 205的凹槽 208内印刷包括栅状铝背场和主 背场铝背场 204。
此种方法可以实现在半导体衬底的背表面形成缕空铝背场,但是考虑到激 光开槽可能对半导体衬底造成的损伤,在本发明的另一个实施例中提出了另一 种采用丝网印刷铝背场的制作方法, 包括:
步骤 1 : 如图 7所示, 在半导体衬底的背表面丝网印刷铝背场 204, 所述 铝背场 204包括栅状铝背场 206和至少一个与所述栅状铝背场 206垂直的主背 场 207, 所述栅状铝背场 206和与所述栅状铝背场 206垂直的主背场 207的图 形如图 8所示,也即所述栅状铝背场 206和主背场 207位于同一个平面, 釆用 一次丝网印刷工艺即可以实现包括所述栅状铝背场 206和主背场 207的铝背场 的制作。
步骤 2: 如图 9所示, 遮挡所述铝背场 204, 在构成所述铝背场 204的栅 状铝背场和主背场的间隙内形成钝化层 205。
此种釆用丝网印刷工艺形成铝背场的制作方法不仅可以消除激光开槽对 半导体衬底的伤害,保证半导体衬底的质量, 而且此种制作方法在形成铝背场 和钝化层的过程中, 形成所述栅状铝背场和主背场只需一步丝网印刷工艺, 制 作工艺筒单, 筒化了太阳能电池的制作方法, 降低了太阳能电池的制作成本, 同时, 所述钝化层填充了栅状铝背场和主背场之间的间隙,在半导体衬底的背 表面起到了很好的钝化作用。
在本发明的一个实施例, 如图 5和图 7所示, 每条栅状铝背场的宽度 D1 可以为 30μη!〜 ΙΟΟΟμιη, 包括端点值; 而相邻的栅状铝背场之间的距离 D2可 以为 lmm〜30mm, 包括端点值。
本发明提供的太阳能电池的镂空铝背场包括栅状铝背场和至少一个与所 述栅状铝背场垂直的主背场,此种镂空铝背场会降低铝背场与半导体衬底的背 表面的接触面积, 减弱铝背场与半导体衬底背表面的表面复合,提高太阳能电 池的能量转化效率,同时此种具有较小面积的栅状铝背场还可以减弱铝背场对 长波太阳能的吸收, 改善太阳能电池背场的内反射,进一步提高太阳能电池的 能量转换效率。 此外, 在所述铝背场之间还形成有钝化层, 所述钝化层不仅能 在太阳能电池的背表面起到良好的钝化效果,还可以作为良好的介质材料,对 太阳能电池背表面起到一定的保护作用, 从而改善太阳能电池的质量。
实施例二
本实施例提供了一种太阳能电池,此种太阳能电池是根据实施例一所述的 制作方法形成的, 如图 10所示, 所述太阳能电池包括: 形成有 PN结 1002的 半导体衬底 1001 ; 位于所述半导体衬底的正表面的减反射层 1003; 位于所述 半导体衬底 1001背表面的铝背场 1004和钝化层 1005,其中,所述铝背场 1004, 如图 11所示, 包括栅状铝背场 1006和至少一个与所述栅状铝背场 1006垂直 的主背场 1007, 所述钝化层 1005位于所述栅状铝背场 1006和主背场 1007的 间隙内。
在本发明的一个实施例中,所述钝化层 1005可以为氧化铝层 1051和氮化 硅层 1052的双层结构, 且所述氧化铝层 1051位于所述氮化硅层 1052和所述 半导体衬底 1001的背表面之间。
本实施例提供的太阳能电池的铝背场为镂空铝背场,包括栅状铝背场和至 少一个与所述栅状铝背场垂直的主背场的镂空铝背场,所述镂空铝背场降低了 铝背场与半导体衬底背表面的接触面积,而且此种镂空形状的铝背场具有的较 小面积,可以在降低背场与半导体衬底背表面复合的同时, 减弱背场对长波太 阳能的吸收, 从而从两方面提供太阳能电池的能量转换效率。 此外, 在所述铝 背场内的栅状铝背场和主背场之间的间隙内还形成有钝化层,所述钝化层在起 到表面钝化作用的同时,还作为良好的介质材料保护太阳能电池的被表面,从 而改善了太阳能电池的质量。 以上所述实施例,仅是本发明的较佳实施例而已, 并非对本发明作任何形 式上的限制。
虽然本发明已以较佳实施例披露如上, 然而并非用以限定本发明。任何熟 悉本领域的技术人员,在不脱离本发明技术方案范围情况下,都可利用上述揭 示的方法和技术内容对本发明技术方案做出许多可能的变动和修饰,或修改为 等同变化的等效实施例。 因此, 凡是未脱离本发明技术方案的内容, 依据本发 本发明技术方案保护的范围内。

Claims

权 利 要 求
1、 一种太阳能电池的制作方法, 其特征在于, 包括:
提供半导体衬底;
在所述半导体衬底的背表面形成铝背场和钝化层, 其中, 所述铝背场包括 栅状铝背场和至少一个与所述栅状铝背场垂直的主背场,所述钝化层位于所述 栅状铝背场和主背场的间隙内。
2、 根据权利要求 1所述的制作方法, 其特征在于, 所述半导体衬底包括 P型半导体衬底。
3、 根据权利要求 1所述的制作方法, 其特征在于, 每条栅状铝背场的宽 度为 30μιη〜1000μηι, 包括端点值。
4、 根据权利要求 1所述的制作方法, 其特征在于, 相邻的栅状铝背场之 间的 巨离为 lmm〜30mm, 包括端点值。
5、 根据权利要求 1所述的制作方法, 其特征在于, 所述钝化层包括氧化 铝层和氮化硅层的双层结构,且所述氧化铝层位于所述氮化硅层和所述半导体 衬底的背表面之间。
6、 根据权利要求 1所述的制作方法, 其特征在于, 在所述半导体衬底的 背表面形成铝背场和钝化层的过程包括:
在半导体衬底的背表面丝网印刷栅状铝背场和和至少一个与所述栅状铝 背场垂直的主背场;
遮挡所述铝背场 , 在所述栅状铝背场和主背场的间隙内形成钝化层。
7、 根据权利要求 1所述的制作方法, 其特征在于, 在所述半导体衬底的 背表面形成铝背场和钝化层的过程包括:
在半导体衬底的背表面形成钝化层,且所述钝化层完全覆盖所述半导体衬 底的背表面;
激光刻蚀所述钝化层,在所述钝化层内形成凹槽, 所述凹槽的分布与所述 铝背场的位置对应, 且所述凹槽的深度等于所述钝化层的厚度;
在所述钝化层的凹槽内印刷铝背场。
8、 一种太阳能电池, 其特征在于, 包括: 半导体衬底; 位于所述半导体 衬底的背表面的铝背场和钝化层, 其中, 所述铝背场包括栅状铝背场和至少一 个与所述栅状铝背场垂直的主背场,所述钝化层位于所述栅状铝背场和主背场 的间隙内。
9、 根据权利要求 8所述的太阳能电池, 其特征在于, 所述钝化层包括氧 化铝层和氮化硅层的双层结构,且所述氧化铝层位于所述氮化硅层和所述半导 体衬底的背表面之间。
PCT/CN2014/080039 2013-06-26 2014-06-17 一种太阳能电池及其制作方法 WO2014206213A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN2013102601997A CN103346210A (zh) 2013-06-26 2013-06-26 一种太阳能电池及其制作方法
CN201310260199.7 2013-06-26

Publications (1)

Publication Number Publication Date
WO2014206213A1 true WO2014206213A1 (zh) 2014-12-31

Family

ID=49280995

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2014/080039 WO2014206213A1 (zh) 2013-06-26 2014-06-17 一种太阳能电池及其制作方法

Country Status (2)

Country Link
CN (1) CN103346210A (zh)
WO (1) WO2014206213A1 (zh)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103346210A (zh) * 2013-06-26 2013-10-09 英利集团有限公司 一种太阳能电池及其制作方法
CN103560168A (zh) * 2013-10-23 2014-02-05 中电电气(扬州)光伏有限公司 Perc太阳能电池的制备工艺
FR3059463B1 (fr) * 2016-11-30 2018-12-07 Commissariat A L'energie Atomique Et Aux Energies Alternatives Structure et procede de passivation.
CN106784164B (zh) * 2017-01-22 2018-05-18 通威太阳能(成都)有限公司 一种背面镀膜处理的太阳能电池制备工艺
CN107516683A (zh) * 2017-08-04 2017-12-26 张家港协鑫集成科技有限公司 太阳能电池背面局部金属接触方法及电池制造方法
CN112701168A (zh) * 2021-02-03 2021-04-23 安徽东昇新能源有限公司 一种perc太阳能电池及其制备方法

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101826573A (zh) * 2009-12-25 2010-09-08 欧贝黎新能源科技股份有限公司 一种半导体副栅极一金属主栅极晶体硅太阳电池制备方法
CN101916795A (zh) * 2010-07-05 2010-12-15 晶澳太阳能有限公司 一种晶体硅太阳电池背面钝化的方法
CN102800745A (zh) * 2012-07-04 2012-11-28 天威新能源控股有限公司 一种背面钝化双面太阳电池的生产方法
CN202948936U (zh) * 2012-08-14 2013-05-22 西安黄河光伏科技股份有限公司 一种无铝背场的背钝化太阳能晶硅电池
CN103346210A (zh) * 2013-06-26 2013-10-09 英利集团有限公司 一种太阳能电池及其制作方法
CN103618009A (zh) * 2013-10-18 2014-03-05 浙江晶科能源有限公司 一种丝网印刷背钝化电池及其制备方法
CN103618033A (zh) * 2013-12-05 2014-03-05 欧贝黎新能源科技股份有限公司 一种背钝化太阳电池的丝网印刷生产制备法

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
ES2354400T3 (es) * 2007-05-07 2011-03-14 Georgia Tech Research Corporation Formación de un contacto posterior de alta calidad con un campo en la superficie posterior local serigrafiada.
DE102008017312B4 (de) * 2008-04-04 2012-11-22 Universität Stuttgart Verfahren zur Herstellung einer Solarzelle
CN101882650B (zh) * 2010-06-29 2012-01-18 常州大学 带有电荷埋层的太阳电池的制备方法
CN102496661A (zh) * 2011-12-31 2012-06-13 中电电气(南京)光伏有限公司 一种制备背电场区域接触晶体硅太阳电池的方法

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101826573A (zh) * 2009-12-25 2010-09-08 欧贝黎新能源科技股份有限公司 一种半导体副栅极一金属主栅极晶体硅太阳电池制备方法
CN101916795A (zh) * 2010-07-05 2010-12-15 晶澳太阳能有限公司 一种晶体硅太阳电池背面钝化的方法
CN102800745A (zh) * 2012-07-04 2012-11-28 天威新能源控股有限公司 一种背面钝化双面太阳电池的生产方法
CN202948936U (zh) * 2012-08-14 2013-05-22 西安黄河光伏科技股份有限公司 一种无铝背场的背钝化太阳能晶硅电池
CN103346210A (zh) * 2013-06-26 2013-10-09 英利集团有限公司 一种太阳能电池及其制作方法
CN103618009A (zh) * 2013-10-18 2014-03-05 浙江晶科能源有限公司 一种丝网印刷背钝化电池及其制备方法
CN103618033A (zh) * 2013-12-05 2014-03-05 欧贝黎新能源科技股份有限公司 一种背钝化太阳电池的丝网印刷生产制备法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
CHEN, DAMING ET AL.: "Key theory and technology of back-passivated crystal silicon solar cell", PROCEEDINGS OF THE 11TH CHINA SOLAR PHOTOVOLTAIC CONFERENCE AND EXHIBITION, WEI, 31 October 2010 (2010-10-31), NANJING, pages 316 - 317 *

Also Published As

Publication number Publication date
CN103346210A (zh) 2013-10-09

Similar Documents

Publication Publication Date Title
TWI489641B (zh) 太陽能電池及其製作方法
WO2014206213A1 (zh) 一种太阳能电池及其制作方法
JP5220197B2 (ja) 太陽電池セルおよびその製造方法
JP6482692B2 (ja) 太陽電池素子
JP5737204B2 (ja) 太陽電池及びその製造方法
TW201515252A (zh) 太陽能電池之製造方法
US20120094421A1 (en) Method of manufacturing solar cell
JP2024509329A (ja) 選択的接触領域埋込型太陽電池及びその裏面接触構造
WO2011074280A1 (ja) 光起電力装置およびその製造方法
WO2014206211A1 (zh) 背钝化太阳能电池及其制作方法
JP2024511224A (ja) 選択的接触領域埋込型太陽電池及びその裏面接触構造
WO2014206214A1 (zh) Ibc太阳能电池的制作方法及ibc太阳能电池
JP2013115258A (ja) 光電変換素子および光電変換素子の製造方法
TWI427808B (zh) Production method of back electrode solar cell
JP2014154656A (ja) 結晶シリコン型太陽電池、およびその製造方法
TW201304152A (zh) 光起電力裝置與其製造方法、光起電力模組
CN112670355A (zh) 双面太阳能电池及其生产方法
JP2003273382A (ja) 太陽電池素子
TWI492400B (zh) 太陽能電池及其製造方法與太陽能電池模組
TWM477673U (zh) 具改良背結構之太陽能電池
JP2013115256A (ja) 光電変換素子および光電変換素子の製造方法
JP2013161818A (ja) 太陽電池の製造方法
TWI678814B (zh) 太陽能電池及其製作方法
TWI518928B (zh) 太陽能電池及其製造方法
TWI455335B (zh) 背接觸式太陽能電池及其製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14817734

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14817734

Country of ref document: EP

Kind code of ref document: A1