WO2014206049A1 - 聚合物分散液晶膜及其制备方法和包含其的显示装置 - Google Patents

聚合物分散液晶膜及其制备方法和包含其的显示装置 Download PDF

Info

Publication number
WO2014206049A1
WO2014206049A1 PCT/CN2013/090546 CN2013090546W WO2014206049A1 WO 2014206049 A1 WO2014206049 A1 WO 2014206049A1 CN 2013090546 W CN2013090546 W CN 2013090546W WO 2014206049 A1 WO2014206049 A1 WO 2014206049A1
Authority
WO
WIPO (PCT)
Prior art keywords
liquid crystal
transparent conductive
conductive film
substrate
polymer
Prior art date
Application number
PCT/CN2013/090546
Other languages
English (en)
French (fr)
Inventor
鹿岛美纪
Original Assignee
京东方科技集团股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 京东方科技集团股份有限公司 filed Critical 京东方科技集团股份有限公司
Priority to US14/378,223 priority Critical patent/US9239486B2/en
Publication of WO2014206049A1 publication Critical patent/WO2014206049A1/zh

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1334Constructional arrangements; Manufacturing methods based on polymer dispersed liquid crystals, e.g. microencapsulated liquid crystals
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K19/00Liquid crystal materials
    • C09K19/04Liquid crystal materials characterised by the chemical structure of the liquid crystal components, e.g. by a specific unit
    • C09K19/06Non-steroidal liquid crystal compounds
    • C09K19/08Non-steroidal liquid crystal compounds containing at least two non-condensed rings
    • C09K19/10Non-steroidal liquid crystal compounds containing at least two non-condensed rings containing at least two benzene rings
    • C09K19/12Non-steroidal liquid crystal compounds containing at least two non-condensed rings containing at least two benzene rings at least two benzene rings directly linked, e.g. biphenyls
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K19/00Liquid crystal materials
    • C09K19/52Liquid crystal materials characterised by components which are not liquid crystals, e.g. additives with special physical aspect: solvents, solid particles
    • C09K19/54Additives having no specific mesophase characterised by their chemical composition
    • C09K19/542Macromolecular compounds
    • C09K19/544Macromolecular compounds as dispersing or encapsulating medium around the liquid crystal
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1337Surface-induced orientation of the liquid crystal molecules, e.g. by alignment layers
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K19/00Liquid crystal materials
    • C09K19/04Liquid crystal materials characterised by the chemical structure of the liquid crystal components, e.g. by a specific unit
    • C09K19/06Non-steroidal liquid crystal compounds
    • C09K19/08Non-steroidal liquid crystal compounds containing at least two non-condensed rings
    • C09K19/10Non-steroidal liquid crystal compounds containing at least two non-condensed rings containing at least two benzene rings
    • C09K19/12Non-steroidal liquid crystal compounds containing at least two non-condensed rings containing at least two benzene rings at least two benzene rings directly linked, e.g. biphenyls
    • C09K2019/121Compounds containing phenylene-1,4-diyl (-Ph-)
    • C09K2019/123Ph-Ph-Ph
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K19/00Liquid crystal materials
    • C09K19/04Liquid crystal materials characterised by the chemical structure of the liquid crystal components, e.g. by a specific unit
    • C09K19/06Non-steroidal liquid crystal compounds
    • C09K19/08Non-steroidal liquid crystal compounds containing at least two non-condensed rings
    • C09K19/10Non-steroidal liquid crystal compounds containing at least two non-condensed rings containing at least two benzene rings
    • C09K19/20Non-steroidal liquid crystal compounds containing at least two non-condensed rings containing at least two benzene rings linked by a chain containing carbon and oxygen atoms as chain links, e.g. esters or ethers
    • C09K19/2007Non-steroidal liquid crystal compounds containing at least two non-condensed rings containing at least two benzene rings linked by a chain containing carbon and oxygen atoms as chain links, e.g. esters or ethers the chain containing -COO- or -OCO- groups
    • C09K2019/2042Ph-Ph-COO-Ph

Definitions

  • Embodiments of the present invention relate to a polymer dispersed liquid crystal film, a method of preparing the same, and a display device including the same. Background technique
  • Polymer Dispersed Liquid Crystal is a method in which a low molecular liquid crystal is mixed with a low molecular prepolymer to polymerize a low molecular prepolymer under certain conditions to form a high molecular polymer. It is dispersed in a high molecular polymer, and a material having electrooptic response characteristics is obtained by using dielectric anisotropy of liquid crystal, and a polarizing plate is not required.
  • the optical properties of the PDLC film largely depend on the matching of the effective refractive index of the liquid crystal with the high molecular polymer.
  • the PDLC film in the prior art only includes the uniaxial column phase liquid crystal, the degree of scattering of the PDLC film is not ideal when the power is not energized, thereby reducing the contrast of the PDLC film and reducing the user experience.
  • embodiments of the present invention provide a polymer dispersed liquid crystal film having an improved PDLC film contrast ratio.
  • a polymer dispersed liquid crystal film comprising: a first substrate and a second substrate disposed opposite to each other, respectively disposed on opposite sides of the first substrate and the second substrate a first transparent conductive film and a second transparent conductive film, and a polymer dispersed liquid crystal layer between the first transparent conductive film and the second transparent conductive film, wherein the polymer dispersed liquid crystal layer comprises a uniform distribution Biaxial liquid crystal and high molecular polymer.
  • the biaxial liquid crystals are disorderly arranged, and the biaxial liquid crystal has a refractive index in a short axis direction and a refraction in a long axis direction Rate, the refractive index in the short-axis direction and the refractive index in the long-axis direction are not equal and do not match The refractive index of the high molecular polymer.
  • the biaxial liquid crystal is composed of a rod-like liquid crystal and a discotic liquid crystal, and the mass ratio of the rod-like liquid crystal to the discotic liquid crystal is between 1:1 and 5:3.
  • the mass ratio of the rod-like liquid crystal to the discotic liquid crystal may be 5:4.
  • the polymer dispersed liquid crystal film further includes a first alignment layer disposed on a side of the first transparent conductive film facing the biaxial liquid crystal layer, and/or disposed on the second transparent conductive layer The film faces the second alignment layer on one side of the biaxial liquid crystal layer.
  • a method of preparing a polymer dispersed liquid crystal film comprising:
  • first transparent conductive film and a second transparent conductive film Forming a first transparent conductive film and a second transparent conductive film on one side of the first substrate and one side of the second substrate;
  • the polymer dispersed liquid crystal layer includes a uniformly distributed biaxial liquid crystal and a high molecular polymer.
  • the polymer dispersed liquid crystal layer is formed between the first substrate and the second substrate such that the polymer dispersed liquid crystal layer is directly located on the first transparent conductive film and the second transparent Between the conductive films, wherein the polymer dispersed liquid crystal layer comprises a uniformly distributed biaxial liquid crystal and a high molecular polymer comprising:
  • a uniform mixture of a biaxial liquid crystal, a polymerizable monomer and a photoinitiator is dropped onto the first transparent conductive film or the second transparent conductive film;
  • first substrate and the second substrate into a box such that the uniform mixture is directly between the first transparent conductive film and the second transparent conductive film; and forming a high molecular polymer to form The polymer disperses a liquid crystal layer.
  • the polymer dispersed liquid crystal layer is formed between the first substrate and the second substrate such that the polymer dispersed liquid crystal layer is directly located on the first transparent conductive film and the second Between the transparent conductive films, wherein the polymer dispersed liquid crystal layer comprises a uniformly distributed biaxial liquid crystal and a high molecular polymer comprising: The first substrate and the second substrate are paired with the first transparent conductive film and the second transparent conductive film directly opposite each other;
  • a uniform mixture of a biaxial liquid crystal, a polymerizable monomer, and a photoinitiator is poured on the first substrate or the second substrate; and a high molecular polymer is formed to form the polymer dispersed liquid crystal layer.
  • the method before the forming a polymer dispersed liquid crystal layer between the first substrate and the second substrate, the method further comprises:
  • the method before the forming a polymer dispersed liquid crystal layer between the first substrate and the second substrate, the method further includes:
  • the rod-shaped liquid crystal is mixed with the discotic liquid crystal at a mass ratio of 1 : 1 to 5:3 to form a biaxial liquid ⁇
  • a display device comprising the polymer dispersed liquid crystal film as described above or produced according to the above method.
  • FIG. 1 is a schematic structural view of a polymer dispersed liquid crystal film according to an embodiment of the present invention
  • FIG. 2 is a schematic structural view of a polymer dispersed liquid crystal film according to an embodiment of the present invention
  • FIG. 3 is a polymer dispersion in an embodiment of the present invention
  • 3 is a schematic structural view of a polymer dispersed liquid crystal film according to an embodiment of the present invention
  • FIG. 5 is a flow chart 1 of a method for preparing a polymer dispersed liquid crystal film according to an embodiment of the present invention
  • FIG. 7 is a third flowchart of a method for preparing a polymer dispersed liquid crystal film according to an embodiment of the present invention. Description of the reference signs:
  • 1 a first substrate; 2 - a second substrate; 3 - a first transparent conductive film;
  • a polymer dispersed liquid crystal film including a first substrate 1 and a second substrate 2 disposed opposite to each other is disposed on the first substrate 1 a first transparent conductive film 3 and a second transparent conductive film 4 on a surface opposite to the second substrate 2 and a polymer dispersion between the first transparent conductive film 3 and the second transparent conductive film 4 Liquid crystal layer 5.
  • the polymer dispersed liquid crystal layer 5 includes a uniformly distributed biaxial liquid crystal 51 and a high molecular polymer 52. When no voltage is applied between the first transparent conductive film 3 and the second transparent conductive film 4, the biaxial liquid crystals 51 are arranged in disorder.
  • the biaxial liquid crystal 51 has a refractive index in a short axis direction and a refractive index in a long axis direction, and the refractive index in the short axis direction and the refractive index in the long axis direction are not equal and do not match the refractive index of the polymer. .
  • the biaxial liquid crystal 51 contained in the polymer dispersed liquid crystal layer is referred to as a biaxial column liquid crystal.
  • the biaxial liquid crystal 51 includes two mutually perpendicular pointing axes, which are referred to as a short axis 511 and a long axis 512, respectively.
  • the short axis 511 and the long axis 512 have a refractive index in the short axis direction and a refractive index n 2 in the long axis direction, respectively, and ⁇ .
  • the short-axis direction refractive index 1 ⁇ and the long-axis direction refractive index n 2 do not match the refractive index n p of the high molecular polymer, that is, ⁇ ⁇ n 2 ⁇ n p .
  • the biaxial liquid crystals 51 are arranged in an disorderly manner. Moreover, due to the short axis direction refractive index! And the refractive index n 2 in the long axis direction are not equal and do not match the refractive index n p of the high molecular polymer, compared with the polymer dispersed liquid crystal layer in the prior art, in the embodiment of the present invention
  • the polymer dispersed liquid crystal layer has a stronger ability to scatter light, has a lower light transmittance, improves the contrast of the polymer dispersed liquid crystal film, and improves the user experience.
  • the short axis 511 of the biaxial liquid crystal 51 Parallel to the direction of the electric field lines in the polymer dispersed liquid crystal layer 5, the long axis 512 of the biaxial liquid crystal 51 is randomly arranged perpendicular to the short axis, that is, perpendicular to the direction of the electric field lines.
  • the refractive index ⁇ of the biaxial liquid crystal 51 in the short-axis direction matches the refractive index n p of the high molecular polymer, that is, the refractive index n 2 ⁇ n p in the long-axis direction, that is, the polymer dispersed liquid crystal layer 5 remains
  • the incident light is scattered, and its transmittance is still low, translucent or opaque.
  • the minor axis 511 of the biaxial liquid crystal 51 is still parallel to the direction of the electric field lines in the polymer dispersed liquid crystal layer 5, the biaxial The long axis 512 of the liquid crystal 51 is perpendicular to the short axis 511 and both point in the same direction. As shown in FIG. 3, the long axis 512 of the biaxial liquid crystal 51 is directed to the left.
  • the refractive index ⁇ in the short axis direction is matched to the refractive index n p of the high molecular polymer, and the refractive index n 2 in the long axis direction is also matched to the refractive index n p of the high molecular polymer.
  • Polymer ⁇ The refractive index in the liquid crystal layer 5 is uniform, there is no obvious interface inside, the incident light does not scatter, and the polymer dispersed liquid crystal film can be penetrated, and the polymer dispersed liquid crystal film is transparent at this time.
  • the biaxial liquid crystal 51 is composed of a rod-shaped liquid crystal 513 and a discotic liquid crystal 514, and the mass ratio of the rod-shaped liquid crystal 513 and the discotic liquid crystal 514 is between 1:1 and 5:3, wherein the biaxial liquid crystal
  • the short axis 511 of 51 is the pointing axis of the rod-shaped liquid crystal 513
  • the long axis 512 of the biaxial liquid crystal 51 is the pointing axis of the disk-shaped liquid crystal 514.
  • a biaxial liquid crystal 51 having a short-axis direction refractive index ⁇ and a long-axis direction refractive index n 2 is obtained .
  • the rod-like liquid crystal 513 has a molecular form of a rod
  • the discotic liquid crystal 514 has a molecular form of a disk.
  • the mass ratio of the rod-shaped liquid crystal 513 to the discotic liquid crystal 514 is 1:1 to 5:3, for example, 5:4.
  • the effect of the electric field may also be within the biaxial liquid crystal 51.
  • the force between the rod-like liquid crystal 513 and the discotic liquid crystal 514 is broken, so that the rod-like liquid crystal 513 and the disc-shaped liquid crystal 514 cannot be continuously combined into a biaxial liquid crystal.
  • the pointing axis of the rod-like liquid crystal 513 is parallel to the direction of the electric field in the polymer dispersed liquid crystal layer 5, and the pointing axis 512 of the discotic liquid crystal is also parallel to the polymerization.
  • the liquid crystal layer 5 does not scatter inside, and the polymer dispersed liquid crystal film is transparent at this time.
  • the polymer dispersed liquid crystal film further includes a first alignment layer 6 disposed on a side of the first transparent conductive film 3 facing the polymer dispersed liquid crystal layer 5, wherein
  • the orientation direction of the first alignment layer 6 can be oriented according to the molecular characteristics of the biaxial liquid crystal 51 and the refractive index of the short axis direction and the refractive index n 2 of the long axis direction of the biaxial liquid crystal 51 to be obtained. Not limited.
  • a second alignment layer 7 is provided on one side of the layer.
  • first alignment layer 6 and the second alignment layer 7 may retain only one of them, as long as the short-axis direction refractive index ⁇ and the long-axis direction refractive index n 2 of the biaxial liquid crystal 51 can satisfy the requirements. Just fine.
  • the first alignment layer 6 and/or the second alignment layer 7 By providing the first alignment layer 6 and/or the second alignment layer 7, and by controlling the mass ratio of the rod-shaped liquid crystal 513 and the disc-shaped liquid crystal 514 of the biaxial liquid crystal 51, it is more advantageous to obtain the required double under the mutual cooperation of the two.
  • the short-axis refractive index ⁇ and the long-axis refractive index n 2 of the axial liquid crystal 51 are provided.
  • the second transparent conductive film 4 can be grounded, and the first transparent conductive film 3 can be made only by supplying a suitable potential to the first transparent conductive film 3 without controlling the potential of the second transparent conductive film 4. Having a suitable voltage between the second transparent conductive film 4 and an electric field suitable for the electric field strength is obtained, so that the arrangement form of the biaxial liquid crystal 51 is appropriately changed.
  • the high molecular polymer 52 may be a common polymer such as an epoxy resin or an acrylic resin.
  • the polymer-dispersed liquid crystal film of the embodiment of the present invention comprises a uniformly distributed biaxial liquid crystal and a high molecular polymer in its polymer dispersed liquid crystal layer.
  • the refractive index in the short-axis direction and the direction in the long-axis direction of the biaxial liquid crystal are not equal and do not match the refractive index of the polymer, and the ability to scatter light is stronger.
  • the lower light transmittance improves the contrast of the polymer dispersed liquid crystal film and improves the user experience.
  • the polymer dispersed liquid crystal film provided by the embodiments of the present invention can be used for liquid crystal display panels, optical modulators, heat sensitive and pressure sensitive devices, electronically controlled glass, light valves, projection displays, electronic books and the like.
  • a method for preparing a polymer dispersed liquid crystal film comprising:
  • Step S101 forming a first transparent conductive film and a second transparent conductive film on one side of the first substrate and one side of the second substrate;
  • Step S102 forming a polymer dispersed liquid crystal layer between the first substrate and the second substrate, so that the polymer dispersed liquid crystal layer is directly located on the first transparent conductive film and the second transparent conductive film.
  • the polymer dispersed liquid crystal layer comprises a uniformly distributed biaxial liquid crystal and a high molecular polymer
  • the first transparent conductive film and the second transparent conductive film may be formed by, for example, coating, deposition or sputtering.
  • step S102 can include:
  • Step S201 injecting a uniform mixture of a biaxial liquid crystal, a polymerizable monomer and a photoinitiator onto the first transparent conductive film or the second transparent conductive film;
  • Step S202 performing the pairing of the first substrate and the second substrate such that the first transparent conductive film and the second transparent conductive film are directly opposed, so that the uniform mixture is located Between the first and second transparent conductive films;
  • Step S203 performing ultraviolet light irradiation to polymerize the polymerizable monomer in the presence of the photoinitiator to form a high molecular polymer to form the polymer dispersed liquid crystal layer.
  • the mass fraction of the biaxial liquid crystal is preferably 80%, and the mass fraction of the polymerizable monomer is preferably 19% to 19.4. %, the mass fraction of the photoinitiator is preferably 0.6% to 1%, and wherein the polymerizable monomer may include a monomer such as an epoxy resin or an acrylic resin, and the photoinitiator may be selected from 1-hydroxycyclohexylphenyl group.
  • Anthrone (referred to as HCPK);
  • step S202 the first substrate and the second substrate are oppositely disposed such that the first transparent conductive film and the second transparent conductive film are directly opposed such that the first substrate and the first substrate Forming a polymer dispersed liquid crystal layer between the second substrates;
  • step S203 the opposing first transparent conductive film and the second transparent conductive film are advantageous for forming an electric field parallel to the electric field lines in the polymer dispersed liquid crystal film.
  • step S102 may include:
  • Step S301 the first substrate and the second substrate are paired, such that the first transparent conductive film and the second transparent conductive film are directly opposite each other;
  • Step S302 pouring a uniform mixture of the biaxial liquid crystal, the polymerizable monomer and the photoinitiator between the first substrate and the second substrate;
  • Step S303 performing ultraviolet light irradiation to polymerize the polymerizable monomer in the presence of the photoinitiator to form a high molecular polymer to form the polymer dispersed liquid crystal layer.
  • step S301 the first substrate and the second substrate are disposed opposite to each other such that the first transparent conductive film and the second transparent conductive film are directly opposed to each other, thereby facilitating formation of an electric field in the polymer dispersed liquid crystal film. a parallel electric field;
  • the mass fraction of the biaxial liquid crystal is preferably 80%, and the mass fraction of the polymerizable monomer is preferably 19% to 19.4. %, the mass fraction of the photoinitiator is preferably 0.6% to 1%, and wherein the polymerizable monomer is A monomer including an epoxy resin or an acrylic resin, and a photoinitiator may be selected from 1-hydroxycyclohexylphenyl fluorenone (abbreviated as HCPK).
  • HCPK 1-hydroxycyclohexylphenyl fluorenone
  • the biaxial liquid crystal in the biaxial liquid crystal layer may include a rod-shaped liquid crystal and a discotic liquid crystal.
  • the preparation method of the biaxial liquid crystal may specifically be: mixing a rod-like liquid crystal and a discotic liquid crystal at any ratio between a mass ratio of 1:1 to 5:3, for example, a rod shape at a mass ratio of 5:4.
  • the liquid crystal and the discotic liquid crystal are mixed and stirred to form a biaxial liquid crystal, and the biaxial liquid crystal is defoamed.
  • the method may further include:
  • the rod-shaped liquid crystal is mixed with the discotic liquid crystal at a mass ratio of 1 : 1 to 5:3 to form a biaxial liquid ⁇
  • the method may further include:
  • the orientation direction of the first alignment layer 6 can be oriented according to the molecular characteristics of the biaxial liquid crystal 51 and the short-axis direction refractive index ⁇ and the long-axis direction refractive index n 2 of the biaxial liquid crystal 51 to be obtained. There is no limit here.
  • the refractive index ⁇ in the short-axis direction and the refractive index n 2 in the long-axis direction of the biaxial liquid crystal 51 are not satisfactory, and the second transparent conductive film 4 may face the biaxial liquid crystal layer.
  • the second alignment layer 7 is provided on one side.
  • the preparation method of the polymer dispersed liquid crystal film provided by the embodiment of the invention has the advantages of simple operation and high yield. In the absence of an applied voltage, the polymer dispersed liquid crystal film produced has a high contrast ratio and improves the user experience.
  • a display device comprising a polymer dispersed liquid crystal film prepared according to the method of the present invention or according to the method of the present invention, the display device may For: LCD panel, electronic paper, OLED panel, mobile phone, tablet, TV, monitor, laptop, digital photo frame, navigator, etc. Any product or component with display function.
  • Example 1 is provided to further illustrate the invention. Those skilled in the art should understand that these examples are for illustrative purposes only and are not intended to limit the scope of the invention.
  • Example 1 is provided to further illustrate the invention. Those skilled in the art should understand that these examples are for illustrative purposes only and are not intended to limit the scope of the invention.
  • Example 1 is provided to further illustrate the invention. Those skilled in the art should understand that these examples are for illustrative purposes only and are not intended to limit the scope of the invention.
  • the size of the glass in the substrate was 180 mm X 140 mm X 0.5 mm, and the thickness of the ITO film (i.e., transparent conductive film) thereon was 400 ⁇ .
  • the first and second substrates of the cell and a homogeneous mixture therebetween were irradiated with ultraviolet light having a wavelength of 365 nm for 5 minutes at room temperature with a strength of 1.45 mW/cm 2 to cure the mixture to form a polymer dispersed liquid crystal layer.
  • ultraviolet light having a wavelength of 365 nm for 5 minutes at room temperature with a strength of 1.45 mW/cm 2 to cure the mixture to form a polymer dispersed liquid crystal layer.
  • a desired polymer dispersed liquid crystal film was obtained.
  • a PET film having a size of 500 mm x 300 mm x 0.1 mm was used as the first and second substrates.
  • An IZO film having a thickness of 500 ⁇ was coated thereon as the first and second transparent conductive films.
  • the biaxial liquid crystal was uniformly mixed with 3,5,5-tridecylhexyl acrylate and HCPK in a mass ratio of 80:19.5:0.5.
  • the first and second substrates are paired such that the first and second transparent conductive films are directly opposed to each other with a cell pitch of 10 ⁇ m.
  • 10 g of the homogeneous mixture was poured between the first and second transparent conductive films such that the homogeneous mixture was directly located between and filled with the first and second transparent conductive films.
  • the first and second substrates of the cell and a homogeneous mixture therebetween were irradiated with ultraviolet light having a wavelength of 365 nm for 5 minutes at room temperature with a strength of 1.45 mW/cm 2 to cure the mixture to form a polymer dispersed liquid crystal layer.
  • ultraviolet light having a wavelength of 365 nm for 5 minutes at room temperature with a strength of 1.45 mW/cm 2 to cure the mixture to form a polymer dispersed liquid crystal layer.
  • a desired polymer dispersed liquid crystal film was obtained.
  • Example 3 Commercially available ITO glass was used as the first and second substrates each having the first and second transparent conductive films.
  • the size of the glass in the substrate was 180 mm X 140 mm X 0.5 mm, and the thickness of the ITO film thereon was 400 angstroms.
  • a polyimide layer having a thickness of 600 nm was printed on the first transparent conductive film of the first substrate. This layer was polymerized at 230 ° C for 20 minutes to form an alignment layer.
  • the biaxial liquid crystal was uniformly mixed with 3,5,5-tridecylhexyl acrylate and HCPK in a mass ratio of 80: 19.5:0.5. 2 g of the homogeneous mixture was dropped on the second transparent conductive film of the second substrate. Subsequently, the first and second substrates are paired to a cell with a cell pitch of 10 ⁇ m. The homogeneous mixture is placed directly between and filled with the first and second transparent conductive films.
  • the first and second substrates of the cell and a homogeneous mixture therebetween were irradiated with ultraviolet light at a wavelength of 365 nm for 5 minutes at room temperature with a strength of 1.45 mW/cm 2 to cure the mixture to form a polymer dispersed liquid crystal layer.
  • a desired polymer dispersed liquid crystal film was obtained.
  • a conventional polymer-dispersed liquid crystal film of Comparative Example 1 was prepared in the same manner as in Example 1, except that only 4-cyano-4,-pentyl-terphenyl was used as a liquid crystal component.
  • a liquid crystal panel was produced using the polymer-dispersed liquid crystal films of Examples 1 to 3 and Comparative Example 1, respectively, and the transmittances in the scattering state and the transparent state were tested. The ratio of the scattering state transmittance to the transparent state transmittance is calculated and recorded as the contrast. The results are listed in Table 1 below. Contrast test results of liquid crystal panels comprising polymer dispersed liquid crystal films of the examples and comparative examples of the present invention
  • the contrast of the display made using the polymer-dispersed liquid crystal film of the embodiment of the present invention is >100; and the contrast of the display made using the conventional polymer-dispersed liquid crystal film is only about 70. Therefore, when the consumer uses the display device including the polymer-dispersed liquid crystal film of the embodiment of the present invention, a better use experience can be obtained.
  • the above is only a specific embodiment of the present invention, but the scope of the present invention is not limited thereto, and any person skilled in the art can easily think of changes or substitutions within the technical scope of the present invention. It should be covered by the scope of the present invention. Accordingly, the scope of the invention should be determined by the scope of the appended claims.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Nonlinear Science (AREA)
  • General Physics & Mathematics (AREA)
  • Organic Chemistry (AREA)
  • Mathematical Physics (AREA)
  • Materials Engineering (AREA)
  • Engineering & Computer Science (AREA)
  • Optics & Photonics (AREA)
  • Dispersion Chemistry (AREA)
  • Liquid Crystal (AREA)
  • Spectroscopy & Molecular Physics (AREA)

Abstract

一种聚合物分散液晶膜,包括相对设置的第一基板(1)和第二基板(2),分别设置在第一基板(1)和第二基板(2)相对的面上的第一透明导电薄膜(3)和第二透明导电薄膜(4)以及位于第一透明导电薄膜(3)和第二透明导电薄膜(4)之间的聚合物分散液晶层(5),其中聚合物分散液晶层(5)包括均匀分布的双轴液晶(51)和高分子聚合物(52),当第一透明导电薄膜(3)和第二透明导电薄膜(4)之间未加载电压时,双轴液晶(51)呈无序排列,双轴液晶(51)具有短轴方向折射率(n1)和长轴方向折射率(n2),并且短轴方向折射率(n1)和长轴方向折射率(n2)不相等且均不匹配于高分子聚合物的折射率(np)。还提供了一种聚合物分散液晶膜的制备方法和包含聚合物分散液晶膜的显示装置。

Description

聚合物分散液晶膜及其制备方法和包含其的显示装置 技术领域
本发明实施例涉及一种聚合物分散液晶膜及其制备方法和包含其的显示 装置。 背景技术
聚合物分散液晶( Polymer Dispersed Liquid Crystal, 简称 PDLC )是将低 分子液晶与低分子预聚物相混合, 在一定条件下使得低分子预聚物发生聚合 反应, 形成高分子聚合物, 则液晶均匀分散在高分子聚合物中, 再利用液晶 的介电各向异性获得具有电光响应特性的材料, 且不需要偏振板。 PDLC膜 的光学特性很大程度上依赖于液晶的有效折射率与高分子聚合物的匹配。
由于现有技术中的 PDLC膜内仅包括单轴向列相液晶, 使得 PDLC膜在 不通电的情况下, 对光的散射程度不理想, 从而降低了 PDLC膜的对比度, 降低了用户的使用体验。 发明内容
为解决上述技术问题, 本发明实施例提供了一种具有提高的 PDLC膜对 比度的聚合物分散液晶膜。
在本发明的一个实施方式中, 提供了一种聚合物分散液晶膜, 其包括相 对设置的第一基板和第二基板、 分别设置在在所述第一基板和所述第二基 板相对的面上的第一透明导电薄膜和第二透明导电薄膜以及位于所述第一 透明导电薄膜和所述第二透明导电薄膜之间的聚合物分散液晶层,其中所述 聚合物分散液晶层包括均匀分布的双轴液晶和高分子聚合物。
当所述第一透明导电薄膜和所述第二透明导电薄膜之间未加载电压时, 所述双轴液晶呈无序排列, 且所述双轴液晶具有短轴方向折射率和长轴方向 折射率, 所述短轴方向折射率和所述长轴方向折射率不相等且均不匹配于所 述高分子聚合物的折射率。
在一个方面, 所述双轴液晶由棒状液晶和盘状液晶构成, 所述棒状液晶 和所述盘状液晶的质量比为 1 : 1到 5:3之间。 例如, 所述棒状液晶与所述盘 状液晶的质量比可为 5:4。
在另一方面, 所述的聚合物分散液晶膜还包括设置在所述第一透明导电 薄膜面向所述双轴液晶层一侧的第一取向层, 和 /或设置在所述第二透明导 电薄膜面向所述双轴液晶层一侧的第二取向层。
在本发明的另一个实施方式中,提供了一种聚合物分散液晶膜的制备方 法, 包括:
在第一基板的一面和第二基板的一面分别形成第一透明导电薄膜和第 二透明导电薄膜; 和
在所述第一基板和所述第二基板之间设置聚合物分散液晶层, 使所述聚 合物分散液晶层直接位于所述第一透明导电薄膜和所述第二透明导电薄膜之 间, 其中所述聚合物分散液晶层包括均匀分布的双轴液晶和高分子聚合物。
在一个方面, 所述在所述第一基板和所述第二基板之间形成聚合物分散 液晶层, 使所述聚合物分散液晶层直接位于所述第一透明导电薄膜和所述第 二透明导电薄膜之间, 其中所述聚合物分散液晶层包括均匀分布的双轴液晶 和高分子聚合物包括:
将双轴液晶、 可聚合单体和光引发剂的均匀混合物滴注在所述第一透明 导电薄膜或所述第二透明导电薄膜上;
将所述第一基板和所述第二基板进行对盒, 使所述均匀混合物直接位于 所述第一透明导电薄膜和所述第二透明导电薄膜之间; 和 形成高分子聚合物, 从而形成所述聚合物分散液晶层。
在另一方面, 所述在所述第一基板和所述第二基板之间形成聚合物分散 液晶层, 使所述聚合物分散液晶层直接位于所述第一透明导电薄膜和所述第 二透明导电薄膜之间, 其中所述聚合物分散液晶层包括均匀分布的双轴液晶 和高分子聚合物包括: 将所述第一基板和所述第二基板进行对盒, 使所述第一透明导电薄膜和 所述第二透明导电薄膜彼此直接相对;
将双轴液晶、 可聚合单体和光引发剂的均匀混合物灌注在所述第一基板 或所述第二基板上; 和 形成高分子聚合物, 形成所述聚合物分散液晶层。
在又一方面,在所述在所述第一基板和所述第二基板之间形成聚合物分 散液晶层之前, 所述方法还包括:
在所述第一透明导电薄膜上沉积第一取向层,和 /或在所述第二透明导电 薄膜上沉积第二取向层。
在又一方面, 在所述在所述第一基板和所述第二基板之间形成聚合物分 散液晶层之前, 所述方法还包括:
按质量比为 1 : 1到 5:3的比例将棒状液晶与盘状液晶混合, 形成双轴液 曰
曰曰。
在本发明的又一个实施方式中, 提供了一种显示装置, 其包括如上所述 的或根据上述方法制成的聚合物分散液晶膜。 附图说明
为更清楚地说明本发明实施例或现有技术中的技术方案, 下面将对实施 例描述中所需要使用的附图作简单地介绍, 显而易见地, 下面描述中的附图 仅仅是本发明的一些实施例, 对于本领域普通技术人员来讲, 在不付出创造 性劳动的前提下, 还可以根据这些附图获得其他的附图。
图 1为本发明实施例中的聚合物分散液晶薄膜的结构示意图一; 图 2为本发明实施例中的聚合物分散液晶薄膜的结构示意图二; 图 3为本发明实施例中的聚合物分散液晶薄膜的结构示意图三; 图 4为本发明实施例中的聚合物分散液晶薄膜的结构示意图四; 图 5为本发明实施例中的聚合物分散液晶薄膜的制备方法流程图一; 图 6为本发明实施例中的聚合物分散液晶薄膜的制备方法流程图二; 图 7为本发明实施例中的聚合物分散液晶薄膜的制备方法流程图三。 附图标记说明:
1一第一基板; 2—第二基板; 3—第一透明导电薄膜;
4 第二透明导电薄膜; 5—聚合物分散液晶层; 51—双轴液晶;
511 短轴; 512 长轴; 513—棒状液晶;
514—盘状液晶; 52—高分子聚合物; 6 第一取向层;
7—第二取向层。 具体实施方式
下面将结合本发明实施例中的附图, 对本发明实施例中的技术方案进行 清楚、 完整地描述, 显然, 所描述的实施例是本发明一部分实施例, 而不是 全部的实施例。 基于本发明中的实施例, 本领域普通技术人员在没有做出创 造性劳动前提下所获得的所有其他实施例, 都属于本发明保护的范围。
如图 1所示, 在本发明的一个实施方式中, 提供了一种聚合物分散液晶 膜, 其包括相对设置的第一基板 1和第二基板 2、 分别设置在在所述第一基 板 1和所述第二基板 2相对的面上的第一透明导电薄膜 3和第二透明导电 薄膜 4以及位于所述第一透明导电薄膜 3和所述第二透明导电薄膜 4之间 的聚合物分散液晶层 5。 所述聚合物分散液晶层 5包括均匀分布的双轴液晶 51和高分子聚合物 52。当所述第一透明导电薄膜 3和所述第二透明导电薄膜 4之间未加载电压时, 所述双轴液晶 51呈无序排列。 所述双轴液晶 51具有 短轴方向折射率和长轴方向折射率, 所述短轴方向折射率和所述长轴方向折 射率不相等且均不匹配于所述高分子聚合物的折射率。
如图 1所示,包含在所述聚合物分散液晶层内的双轴液晶 51的全称为双 轴向列相液晶。 双轴液晶 51包括两根相互垂直的指向轴, 分别称为短轴 511 和长轴 512。 短轴 511和长轴 512分别具有短轴方向折射率 和长轴方向折 射率 n2, 并且!^ 。 同时, 所述短轴方向折射率 1^和所述长轴方向折射率 n2均不匹配于所述高分子聚合物的折射率 np, 即 ηι≠n2≠np
在无外加电压的情形下, 即当所述第一透明导电薄膜 3和所述第二透明 导电薄膜 4之间未加载电压时, 所述双轴液晶 51呈无序排列。 而且, 由于所 述短轴方向折射率!^和所述长轴方向折射率 n2不相等且均不匹配于所述高 分子聚合物的折射率 np, 与现有技术中的聚合物分散液晶层相比, 本发明实 施例中的聚合物分散液晶层对光的散射的能力更强,具有更低的光的透过率, 提高了聚合物分散液晶膜的对比度, 提高了用户的使用体验。
当在所述第一透明导电薄膜 3和所述第二透明导电薄膜 4之间加载电压 时, 在聚合物分散液晶层 5内形成电场线垂直于任一透明导电薄膜的电场。
如图 2所示, 当所述第一透明导电薄膜 3和所述第二透明导电薄膜 4之 间的电压小于预设值时, 例如小于 20伏特时, 所述双轴液晶 51的短轴 511 平行于所述聚合物分散液晶层 5内的电场线的方向,所述双轴液晶 51的长轴 512垂直于短轴, 即垂直于电场线的方向, 随意排布。
此时, 双轴液晶 51的短轴方向折射率 ηι匹配于高分子聚合物的折射率 np, 即^^^ 但长轴方向折射率 n2≠np, 即聚合物分散液晶层 5仍然对入射 光线进行散射, 其透过率仍然较低, 呈半透明状或不透明状。
继续增加所述第一透明导电薄膜 3和所述第二透明导电薄膜 4之间的电 压, 当所述第一透明导电薄膜 3和所述第二透明导电薄膜 4之间的电压大于 或等于预设值时, 例如大于或等于 20伏特时, 如图 3所示, 所述双轴液晶 51的短轴 511依然平行于所述聚合物分散液晶层 5内的电场线的方向,所述 双轴液晶 51的长轴 512垂直于短轴 511且都指向同一方向,以图 3所示为例, 双轴液晶 51的长轴 512都指向左边。
双轴液晶 51排列有序时, 短轴方向折射率 ηι匹配于高分子聚合物的折 射率 np, 长轴方向折射率 n2也匹配于高分子聚合物的折射率 np, 此时该聚合 物^:液晶层 5内的折射率一致, 其内部无明显介面, 入射光线不会发生散 射, 可穿透聚合物分散液晶薄膜, 该聚合物分散液晶薄膜此时呈透明状。
通常, 双轴液晶 51是由棒状液晶 513和盘状液晶 514构成的, 所述棒 状液晶 513和所述盘状液晶 514的质量比为 1 : 1到 5:3之间, 其中, 双轴液 晶 51的短轴 511为棒状液晶 513的指向轴, 双轴液晶 51的长轴 512为盘 状液晶 514的指向轴。 通过控制棒状液晶 513和盘状液晶 514的质量比, 以获得短轴方向折射率 ηι和长轴方向折射率 n2符合要求的双轴液晶 51。 其中, 棒状液晶 513 , 其分子形态为棒状; 盘状液晶 514, 其分子形态 为盘状。
在本发明实施例中, 所述棒状液晶 513与所述盘状液晶 514的质量比 为 1 : 1 ~ 5:3 , 例如, 5:4。
当所述第一透明导电薄膜 3和所述第二透明导电薄膜 4之间的电压大于 或等于预设值时, 除了图 3对应的情况, 电场的作用还有可能将双轴液晶 51 内的棒状液晶 513和盘状液晶 514之间的作用力破坏, 使得棒状液晶 513和 盘状液晶 514无法继续组合为双轴液晶。 如图 4所示, 在电场的作用下, 所 述棒状液晶 513的指向轴平行于所述聚合物分散液晶层 5内的电场方向, 所 述盘状液晶的指向轴 512也平行于所述聚合物分散液晶层 5内的电场方向, 使得盘状液晶折射率 n3和棒状液晶 n4的折射率与所述高分子聚合物的折射 率 np匹配, 从而使得入射光线可以透过聚合物分散液晶层 5, 而不会在其内 部发生散射, 此时聚合物分散液晶薄膜呈透明状。
示例性地, 如图 1所示, 所述的聚合物分散液晶膜还包括设置在所述第 一透明导电薄膜 3面向所述聚合物分散液晶层 5—侧的第一取向层 6 ,其中, 所述第一取向层 6的取向方向可根据双轴液晶 51的分子特性, 及所需要得 到的双轴液晶 51 的短轴方向折射率 和长轴方向折射率 n2来进行取向, 在此处不做限定。 若设置第一取向层 6后, 双轴液晶 51的短轴方向折射率 n!和长轴方向折射率 n2尚未满足要求, 还可以在所述第二透明导电薄膜 4 面向所述双轴液晶层一侧设置第二取向层 7。
需要说明的是, 上述第一取向层 6和第二取向层 7也可仅保留其中的 一层, 只要能使得双轴液晶 51 的短轴方向折射率 ηι和长轴方向折射率 n2 满足要求即可。
通过设置第一取向层 6和 /或第二取向层 7, 并通过控制双轴液晶 51的 棒状液晶 513和盘状液晶 514质量比, 在二者的相互配合下, 更有利于得 到需要的双轴液晶 51的短轴折射率 ηι和长轴折射率 n2
为了便于控制第一透明导电薄膜 3和第二透明导电薄膜 4之间的电压, 可将所述第二透明导电薄膜 4接地, 则仅通过向第一透明导电薄膜 3提供合 适的电位, 无需控制第二透明导电薄膜 4所接入的电位, 即可使得第一透明 导电薄膜 3和第二透明导电薄膜 4之间的具有适合的电压, 即可获得电场 强度适合的电场, 使得双轴液晶 51的排列形式发生合适的改变。
所述高分子聚合物 52可为环氧树脂或丙烯酸树脂等常用高分子。
本发明实施例的聚合物分散液晶膜在其聚合物分散液晶层包括均匀分 布的双轴液晶和高分子聚合物。 在无外加电压的情形下, 双轴液晶的短轴方 向折射率和长轴方向折射率不相等且均不匹配于所述高分子聚合物的折射 率, 对光的散射的能力更强, 具有更低的光的透过率, 提高了聚合物分散液 晶膜的对比度, 提高了用户的使用体验。
本发明实施例所提供的聚合物分散液晶膜可用于液晶显示面板、光学调 制器、 热敏及压敏器件、 电控玻璃、 光阀、 投影显示、 电子书等方面。
如图 5 所示, 在本发明的另一个实施方式中, 提供了一种聚合物分散 液晶膜的制备方法, 所述方法包括:
步骤 S101、在第一基板的一面和第二基板的一面分别形成第一透明导电 薄膜和第二透明导电薄膜; 和
步骤 S102、 在所述第一基板和所述第二基板之间形成聚合物分散液晶 层 , 使所述聚合物分散液晶层直接位于所述第一透明导电薄膜和所述第二透 明导电薄膜之间, 其中所述聚合物分散液晶层包括均匀分布的双轴液晶和高 分子聚合物,
其巾:
在步骤 S101 中, 可通过, 例如, 涂覆、 沉积或者溅射等方式来形成第 一透明导电薄膜和第二透明导电薄膜。
在一个方面, 如图 6所示, 步骤 S102可包括:
步骤 S201、将双轴液晶、可聚合单体和光引发剂的均匀混合物滴注在所 述第一透明导电薄膜或所述第二透明导电薄膜上;
步骤 S202、将所述第一基板和所述第二基板进行对盒,使得所述第一透 明导电薄膜和所述第二透明导电薄膜直接相对, 从而使所述均匀混合物位于 所述第一和第二透明导电薄膜之间; 和
步骤 S203、 进行紫外光照射, 以使得所述可聚合单体在所述光引发剂 存在下聚合形成高分子聚合物, 形成所述聚合物分散液晶层,
其巾:
在步骤 S201 中, 基于双轴液晶、 可聚合单体和光引发剂的总重, 所述 双轴液晶的质量份数优选为 80%, 所述可聚合单体质量份数为优选 19% ~ 19.4%, 所述光引发剂的质量份数优选为 0.6% ~ 1%, 并且其中可聚合单体可 包括环氧树脂或丙烯酸树脂等的单体, 光引发剂可选用 1-羟基环己基苯基曱 酮(简称为 HCPK );
在步骤 S202 中, 将所述第一基板和所述第二基板相对设置, 使得所述 第一透明导电薄膜和所述第二透明导电薄膜直接相对, 以使得在所述第一基 板和所述第二基板之间形成聚合物分散液晶层; 和
在步骤 S203 中, 相对的第一透明导电薄膜和第二透明导电薄膜有利于 在聚合物分散液晶膜内形成电场线平行的电场。
在另一方面, 如图 7所示, 步骤 S102可包括:
步骤 S301、将所述第一基板和所述第二基板进行对盒,使得所述第一透 明导电薄膜和所述第二透明导电薄膜直接相对;
步骤 S302、将双轴液晶、可聚合单体和光引发剂的均匀混合物灌注在所 述第一基板和所述第二基板之间; 和
步骤 S303、 进行紫外光照射, 以使得所述可聚合单体在所述光引发剂 存在下聚合形成高分子聚合物, 形成所述聚合物分散液晶层,
其巾:
在步骤 S301 中, 将所述第一基板和所述第二基板相对设置, 使得所述 第一透明导电薄膜和所述第二透明导电薄膜直接相对 , 有利于在聚合物分散 液晶膜内形成电场线平行的电场; 和
在步骤 S303 中, 基于双轴液晶、 可聚合单体和光引发剂的总重, 所述 双轴液晶的质量份数优选为 80%, 所述可聚合单体质量份数为优选 19% ~ 19.4%, 所述光引发剂的质量份数优选为 0.6% ~ 1%, 并且其中可聚合单体可 包括环氧树脂或丙烯酸树脂等的单体, 光引发剂可选用 1-羟基环己基苯基曱 酮(简称为 HCPK ) 。
所述双轴液晶层中的双轴液晶可包括棒状液晶和盘状液晶。 其中, 所 述双轴液晶的制备方法具体可以为: 将质量比为 1 : 1到 5:3之间任意比例的 棒状液晶和盘状液晶混合,例如以质量比为 5:4的比例将棒状液晶和盘状液 晶混合并搅拌均勾, 形成双轴液晶, 并对该双轴液晶进行脱泡处理。
在又一方面, 在步骤 S101之前, 所述方法还可包括:
按质量比为 1 : 1到 5:3的比例将棒状液晶与盘状液晶混合, 形成双轴液 曰
曰曰。
为了获得短轴方向折射率和长轴方向折射率都满足要求的双轴液晶, 在步骤 S102之前, 所述方法还可包括:
在所述第一透明导电薄膜上沉积第一取向层,和 /或在所述第二透明导电 薄膜上沉积第二取向层。
其中, 所述第一取向层 6的取向方向可根据双轴液晶 51的分子特性, 及所需要得到的双轴液晶 51 的短轴方向折射率 ηι和长轴方向折射率 n2来 进行取向, 在此处不做限定。 若设置第一取向层 6后, 双轴液晶 51的短轴 方向折射率 ηι和长轴方向折射率 n2尚未满足要求, 还可以在所述第二透明 导电薄膜 4面向所述双轴液晶层一侧设置第二取向层 7。
本发明实施例提供的聚合物分散液晶膜的制备方法具有操作简单和良 品率高的优点。 在无外加电压的情形下, 制造出来的聚合物分散液晶膜具有 较高的对比度, 提高了用户的使用体验。
在本发明的又一个实施方式中, 还提供了一种包含如本发明实施例所 述的或根据本发明实施例所述方法制成的聚合物分散液晶膜的显示装置, 所述显示装置可以为: 液晶面板、 电子纸、 OLED面板、 手机、 平板电脑、 电视机、 显示器、 笔记本电脑、 数码相框、 导航仪等任何具有显示功能的产 品或部件。
以下实施例提供用于进一步详细说明本发明。本领域技术人员应当理解, 这些实施例仅为了说明的目的, 并非意图限制发明的范围。 实施例 1
使用市售的 ITO玻璃作为分别带有第一和第二透明导电薄膜的第一和第 二基板。 所述基板中玻璃的尺寸为 180mm X 140mm X 0.5mm, 且其上的 ITO 膜 (即, 透明导电薄膜) 的厚度为 400埃。
将质量比为 5:4的 4-氛基 -4,-戊基对三联苯 (;棒状液晶)和 4,-对-正十二烷 基^^苯曱酰 关苯(盘状液晶)混合均匀。 所得混合物即为本实施例中 所用的双轴液晶, 其双折射率为 0.122。
将双轴液晶与 3,5,5-三曱基己基丙烯酸酯(可聚合单体)和 1-羟基环己 基苯基曱酮 (HCPK, 光引发剂) 以 80:19.5:0.5 的质量比混合均匀。 将 2 g 所述均匀混合物滴注在第一基板的第一透明导电薄膜上。 随后, 将第一和第 二基板对盒, 使盒间距为 10μιη。 使所滴注的均匀混合物直接位于并充满第 一和第二透明导电薄膜之间。 将对盒的第一和第二基板以及其间的均匀混合 物于室温以 365nm波长的紫外光照射 5分钟, 强度为 1.45mW/cm2, 使混合 物固化形成聚合物分散液晶层。 由此制得所需的聚合物分散液晶膜。
实施例 2
使用尺寸为 500mm x 300mm x 0.1mm的 PET膜作为第一和第二基板。 在其上涂覆厚度为 500埃的 IZO膜作为第一和第二透明导电薄膜。
将质量比为 5:4的 4-氰基 -4,-戊基对三联苯和 4,-对-正十二烷基氧基苯曱 酰^ 关苯混合均匀。 所得混合物即为本实施例中所用的双轴液晶, 其双折 射率为 0.122。
将双轴液晶与 3,5,5-三曱基己基丙烯酸酯和 HCPK以 80:19.5:0.5的质量 比混合均匀。 将第一和第二基板对盒, 使得第一和第二透明导电薄膜直接相 对, 盒间距为 10μιη。 将 10g所述均匀混合物灌注到第一和第二透明导电薄 膜之间, 使所述均匀混合物直接位于并充满第一和第二透明导电薄膜之间。 将对盒的第一和第二基板以及其间的均匀混合物于室温以 365nm波长的紫 外光照射 5分钟, 强度为 1.45mW/cm2, 使混合物固化形成聚合物分散液晶 层。 由此制得所需的聚合物分散液晶膜。
实施例 3 使用市售的 ITO玻璃作为分别带有第一和第二透明导电薄膜的第一和第 二基板。 所述基板中玻璃的尺寸为 180mm X 140mm X 0.5mm, 且其上的 ITO 膜的厚度为 400埃。
将质量比为 5:4的 4-氰基 -4,-戊基对三联苯和 4,-对-正十二烷基氧基苯曱 酰^ 关苯混合均匀。 所得混合物即为本实施例中所用的双轴液晶, 其双折 射率为 0.122。
在第一基板的第一透明导电薄膜上印刷厚度为 600nm的聚酰亚胺层。将 该层于 230°C下聚合 20分钟, 形成取向层。
将双轴液晶与 3,5,5-三曱基己基丙烯酸酯和 HCPK以 80: 19.5:0.5的质量 比混合均匀。将 2 g所述均匀混合物滴注在第二基板的第二透明导电薄膜上。 随后, 将第一和第二基板对盒, 使盒间距为 10μιη。 使所述均匀混合物直接 位于并充满第一和第二透明导电薄膜之间。 将对盒的第一和第二基板以及其 间的均匀混合物于室温以 365nm 波长的紫外光照射 5 分钟, 强度为 1.45mW/cm2, 使混合物固化形成聚合物分散液晶层。 由此制得所需的聚合物 分散液晶膜。
对比例 1
使用与实施例 1相同的方法制备对比例 1的传统聚合物分散液晶膜, 不 同之处在于仅使用 4-氰基 -4,-戊基对三联苯作为液晶成分。
实施例 4: 性能检测
分别使用实施例 1 ~ 3和对比例 1的聚合物分散液晶膜制造液晶面板,测 试其散射态和透明态的透过率。 计算散射态透过率与透明态透过率之比, 并 记录为对比度。 结果在下表 1中列出。 包含本发明实施例和对比例的聚合物分散液晶膜的液晶面板的对比度 测试结果
Figure imgf000014_0001
由以上结果可见, 使用本发明实施例的聚合物分散液晶膜制成的显示器 的对比度>100; 而使用传统聚合物分散液晶膜制成的显示器的对比度则仅为 70左右。 因此, 当消费者使用包含本发明实施例的聚合物分散液晶膜的显示 装置时, 能够得到更好的使用体验。 以上所述, 仅为本发明的具体实施例, 但本发明的保护范围并不局限于 此, 任何熟悉本技术领域的技术人员在本发明揭露的技术范围内, 可轻易想 到变化或替换, 都应涵盖在本发明的保护范围之内。 因此, 本发明的保护范 围应以所述权利要求的保护范围为准。

Claims

权利要求书
1、 一种聚合物分散液晶膜, 包括相对设置的第一基板和第二基板、 分 别设置在所述第一基板和所述第二基板相对的面上的第一透明导电薄膜和 第二透明导电薄膜以及位于所述第一透明导电薄膜和所述第二透明导电薄 膜之间的聚合物^:液晶层, 其中所述聚合物分散液晶层包括均匀分布的双 轴液晶和高分子聚合物,
当所述第一透明导电薄膜和所述第二透明导电薄膜之间未加载电压时, 所述双轴液晶呈无序排列, 并且所述双轴液晶具有短轴方向折射率和长轴方 向折射率, 所述短轴方向折射率和所述长轴方向折射率不相等且均不匹配于 所述高分子聚合物的折射率。
2、 根据权利要求 1 所述的聚合物分散液晶膜, 其中所述双轴液晶由棒 状液晶和盘状液晶构成,所述棒状液晶和所述盘状液晶的质量比为 1 : 1到 5:3 之间。
3、 根据权利要求 2所述的聚合物分散液晶膜, 其中所述棒状液晶与所 述盘状液晶的质量比为 5:4。
4、 根据权利要求 1 所述的聚合物分散液晶膜, 还包括设置在所述第一 透明导电薄膜面向所述双轴液晶层一侧的第一取向层, 和 /或设置在所述第 二透明导电薄膜面向所述双轴液晶层一侧的第二取向层。
5、 一种聚合物分散液晶膜的制备方法, 包括:
在第一基板的一面和第二基板的一面分别形成第一透明导电薄膜和第 二透明导电薄膜; 和
在所述第一基板和所述第二基板之间形成聚合物分散液晶层, 使所述聚 合物分散液晶层直接位于所述第一透明导电薄膜和所述第二透明导电薄膜之 间, 其中所述聚合物分散液晶层包括均勾分布的双轴液晶和高分子聚合物。
6、 根据权利要求 5所述的聚合物分散液晶膜的制备方法, 其中所述在 所述第一基板和所述第二基板之间形成聚合物分散液晶层, 使所述聚合物分 散液晶层直接位于所述第一透明导电薄膜和所述第二透明导电薄膜之间, 其 中所述聚合物^:液晶层包括均匀分布的双轴液晶和高分子聚合物包括: 将双轴液晶、 可聚合单体和光引发剂的均匀混合物滴注在所述第一透明 导电薄膜或所述第二透明导电薄膜上;
将所述第一基板和所述第二基板进行对盒, 使所述均匀混合物直接位于 所述第一透明导电薄膜和所述第二透明导电薄膜之间; 和 形成高分子聚合物, 从而形成所述聚合物分散液晶层。
7、 根据权利要求 5 所述的聚合物分散液晶膜的制备方法, 其中所述在 所述第一基板和所述第二基板之间形成聚合物分散液晶层, 使所述聚合物分 散液晶层直接位于所述第一透明导电薄膜和所述第二透明导电薄膜之间, 其 中所述聚合物^:液晶层包括均匀分布的双轴液晶和高分子聚合物包括: 将所述第一基板和所述第二基板进行对盒, 使所述第一透明导电薄膜和 所述第二透明导电薄膜彼此直接相对;
将双轴液晶、 可聚合单体和光引发剂的均匀混合物灌注在所述第一基板 和所述第二基板之间; 和 形成高分子聚合物, 从而形成所述聚合物分散液晶层。
8、 根据权利要求 5所述的聚合物分散液晶膜的制备方法, 其中在所述 在所述第一基板和所述第二基板之间形成聚合物分散液晶层之前, 还包括: 在所述第一透明导电薄膜上形成第一取向层,和 /或在所述第二透明导电 薄膜上形成第二取向层。
9、 根据权利要求 6或 7所述的聚合物分散液晶膜的制备方法, 其中在 所述在所述第一基板和所述第二基板之间形成聚合物分散液晶层之前, 还包 括:
按质量比为 1 : 1到 5:3的比例将棒状液晶与盘状液晶混合, 形成双轴液 曰
曰曰
10、 一种显示装置, 其包括如权利要求 1〜4任一项所述的或根据权利 要求 5〜 9中任一项所述方法制成的聚合物分散液晶膜。
PCT/CN2013/090546 2013-06-26 2013-12-26 聚合物分散液晶膜及其制备方法和包含其的显示装置 WO2014206049A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US14/378,223 US9239486B2 (en) 2013-06-26 2013-12-26 Polymer dispersed liquid crystal film, method of preparing the same, and display apparatus comprising the same

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201310257881.0 2013-06-26
CN201310257881.0A CN103323973B (zh) 2013-06-26 2013-06-26 聚合物分散液晶膜及其制备方法、显示装置

Publications (1)

Publication Number Publication Date
WO2014206049A1 true WO2014206049A1 (zh) 2014-12-31

Family

ID=49192812

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2013/090546 WO2014206049A1 (zh) 2013-06-26 2013-12-26 聚合物分散液晶膜及其制备方法和包含其的显示装置

Country Status (3)

Country Link
US (1) US9239486B2 (zh)
CN (1) CN103323973B (zh)
WO (1) WO2014206049A1 (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103323973B (zh) 2013-06-26 2015-12-02 京东方科技集团股份有限公司 聚合物分散液晶膜及其制备方法、显示装置
CN107300726A (zh) * 2017-07-17 2017-10-27 南方科技大学 一种全固态反射膜及其制备方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20030137624A1 (en) * 2002-01-21 2003-07-24 Seung-Gon Kang Reflective liquid crystal display and projection system including the same
CN101121887A (zh) * 2007-08-15 2008-02-13 江苏森然化工有限公司 一种聚合物分散液晶薄膜的制备方法
CN102464983A (zh) * 2010-11-12 2012-05-23 京东方科技集团股份有限公司 显示器、聚合物分散液晶膜及其制造方法和驱动方法
JP2012128001A (ja) * 2010-12-13 2012-07-05 Japan Display Central Co Ltd 液晶表示装置
CN103033985A (zh) * 2012-12-10 2013-04-10 京东方科技集团股份有限公司 一种液晶显示装置及其制备方法
CN103323973A (zh) * 2013-06-26 2013-09-25 京东方科技集团股份有限公司 聚合物分散液晶膜及其制备方法、显示装置

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20030137624A1 (en) * 2002-01-21 2003-07-24 Seung-Gon Kang Reflective liquid crystal display and projection system including the same
CN101121887A (zh) * 2007-08-15 2008-02-13 江苏森然化工有限公司 一种聚合物分散液晶薄膜的制备方法
CN102464983A (zh) * 2010-11-12 2012-05-23 京东方科技集团股份有限公司 显示器、聚合物分散液晶膜及其制造方法和驱动方法
JP2012128001A (ja) * 2010-12-13 2012-07-05 Japan Display Central Co Ltd 液晶表示装置
CN103033985A (zh) * 2012-12-10 2013-04-10 京东方科技集团股份有限公司 一种液晶显示装置及其制备方法
CN103323973A (zh) * 2013-06-26 2013-09-25 京东方科技集团股份有限公司 聚合物分散液晶膜及其制备方法、显示装置

Also Published As

Publication number Publication date
US9239486B2 (en) 2016-01-19
CN103323973A (zh) 2013-09-25
CN103323973B (zh) 2015-12-02
US20150338688A1 (en) 2015-11-26

Similar Documents

Publication Publication Date Title
TWI375074B (en) Polymer dispersed liquid crystal display and method of fabricating the same
TW201219932A (en) Liquid crystal display and method for preparation thereof
JP2018510383A (ja) 液晶素子
WO2012053479A1 (ja) 表示パネル、表示装置
JP2002277862A (ja) 液晶光変調器及びそれを用いた表示装置
KR20070057219A (ko) 표시 소자 및 표시 장치
Ahmad et al. Comparative study on the electrooptical properties of polymer‐dispersed liquid crystal films with different mixtures of monomers and liquid crystals
CN108504363A (zh) 一种低驱动电压聚合物分散液晶薄膜
WO2014127562A1 (zh) 液晶面板制作方法及液晶混合物、液晶面板
KR20170072270A (ko) 중합체를 함유하는 산란형 수직 배향 액정 장치
JPH09510300A (ja) 電気光学的カラーデバイス
WO2014206049A1 (zh) 聚合物分散液晶膜及其制备方法和包含其的显示装置
US20130169919A1 (en) Method for manufacturing a liquid crystal display
US9146415B2 (en) Apparatus and method for manufacturing encapsulated liquid crystals and liquid crystal display including the encapsulated liquid crystals
JP4220748B2 (ja) 液晶表示素子、液晶表示素子の製造方法および液晶表示装置
TWI510847B (zh) 液晶顯示裝置
CN106543346A (zh) 一种基于紫外光聚合的液晶薄膜的制备方法
CN112015018A (zh) 一种调光器件及其制备方法
WO2020186438A1 (zh) 一种多观察角度防窥膜及其制备方法
KR102041819B1 (ko) 통상 투명 액정 소자
KR101892563B1 (ko) 플라스틱 고분자 필름 기판을 이용한 고분자 분산 액정 렌즈
CN108164652A (zh) 一种聚合物分散液晶薄膜材料及制备方法
WO2014169586A1 (zh) 液晶复合材料、包含其的显示面板和显示装置及显示面板制造方法
JP3463981B2 (ja) 光学素子の作製法
JP2013152445A5 (zh)

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 14378223

Country of ref document: US

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13887823

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 02.06.2016)

122 Ep: pct application non-entry in european phase

Ref document number: 13887823

Country of ref document: EP

Kind code of ref document: A1