WO2014205854A1 - 终端协作通信的方法、装置和系统 - Google Patents

终端协作通信的方法、装置和系统 Download PDF

Info

Publication number
WO2014205854A1
WO2014205854A1 PCT/CN2013/078522 CN2013078522W WO2014205854A1 WO 2014205854 A1 WO2014205854 A1 WO 2014205854A1 CN 2013078522 W CN2013078522 W CN 2013078522W WO 2014205854 A1 WO2014205854 A1 WO 2014205854A1
Authority
WO
WIPO (PCT)
Prior art keywords
channel
terminal
reference signal
base station
configuration information
Prior art date
Application number
PCT/CN2013/078522
Other languages
English (en)
French (fr)
Inventor
张磊
毕晓艳
刘永
陈大庚
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to PCT/CN2013/078522 priority Critical patent/WO2014205854A1/zh
Priority to CN201380075556.0A priority patent/CN105122877B/zh
Publication of WO2014205854A1 publication Critical patent/WO2014205854A1/zh

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W28/00Network traffic management; Network resource management
    • H04W28/16Central resource management; Negotiation of resources or communication parameters, e.g. negotiating bandwidth or QoS [Quality of Service]
    • H04W28/18Negotiating wireless communication parameters

Definitions

  • Embodiments of the present invention relate to communication technologies, and in particular, to a method, device, and system for terminal cooperative communication. Background technique
  • the cooperative communication is realized by sharing the antennas between the terminals and constructing a virtual antenna array.
  • the target terminal having communication requirements in the terminal for cooperative communication is called a benefit terminal, and the terminal implementing the cooperation function is called a support terminal of the benefit terminal.
  • the base station sends a signal S to UE0, UE0 is the benefit terminal, UE1 is used to cooperate with UE0, that is, UE1 is a supporting terminal of UE0.
  • UE1 and UE0 can Receiving the signal S transmitted from the base station, the UE1 sends the received signal to the UE0, and the UE0 combines the signal received by itself and the signal sent by the UE1 by a technique such as maximum ratio combining to implement joint reception to obtain a final received signal.
  • the base station transmits signals according to the beam direction of the benefit terminal itself fed back by the benefit terminal, that is, only the signal strength received by the benefit terminal is strong, and the signal strength received by the support terminal is very weak.
  • Embodiments of the present invention provide a method, apparatus, and system for terminal cooperative communication to improve the gain of a final received signal of a benefit terminal.
  • a first aspect of the embodiments of the present invention provides a method for cooperative communication of a terminal, including: receiving, by a second terminal, channel parameters of at least one first channel sent by at least one first terminal, where the first terminal is the second terminal Support terminal
  • the second terminal according to the channel parameter of the at least one first channel and the second terminal Obtaining, by the channel parameter of the second channel, the equivalent channel characteristic information of the combined channel formed by the at least one first channel and the second channel, where the first channel is a channel between the base station and the first terminal, and the second The channel is a channel between the base station and the second terminal;
  • Transmitting the equivalent channel feature information to the base station so that the base station determines downlink transmission configuration information according to the equivalent channel feature information, and sends the signal to the second terminal according to the downlink transmission configuration information.
  • the channel parameters of the first channel include:
  • the channel parameters of the second channel include: a second channel estimation value
  • the second terminal acquires, according to the at least one first channel estimation value and the second channel estimation value, the equivalent channel characteristic information of the combined channel of the at least one first channel and the second channel.
  • the channel parameters of the first channel further include:
  • the channel parameters of the second channel further include:
  • the channel parameters of the first channel further includes:
  • the channel parameters of the second channel further include:
  • the channel parameter of the first channel further includes:
  • the channel parameters of the second channel further include:
  • the second terminal according to the at least one first channel estimation value, the first interference and the first noise power, and the second channel estimation value, the second interference, and the second noise power And acquiring, by the at least one channel, equivalent channel characteristic information of the combined channel of the first channel and the second channel.
  • a combination of a vector pointing to the beam direction, a channel quality indicator, and a RANK is a combination of a vector pointing to the beam direction, a channel quality indicator, and a RANK.
  • the downlink sending configuration information includes:
  • a seventh possible implementation before the second terminal receives the channel parameter of the first channel sent by the first terminal, Also includes: The second terminal receives a channel estimation reference signal sent by the base station;
  • the second terminal acquires channel parameters of the second channel of the second terminal according to the channel estimation reference signal.
  • a second aspect of the embodiments of the present invention provides a method for cooperative communication of a terminal, including: acquiring, by a first terminal, a channel parameter of a first channel;
  • the acquiring, by the first terminal, the channel parameters of the first channel includes:
  • the first terminal acquires a channel parameter of the first channel of the first terminal according to the channel estimation reference signal.
  • a third aspect of the embodiments of the present invention provides a method for cooperative communication of a terminal, where a base station receives, by a second terminal, equivalent channel characteristic information of a combined channel composed of at least one first channel and a second channel, where the first channel is a channel between the base station and the first terminal, the second channel is a channel between the base station and the second terminal, and the equivalent channel feature information is that the second terminal is configured according to at least one of the at least one first terminal Obtained by the channel parameter of the channel and the channel parameter of the second channel of the second terminal, where the first terminal is a supporting terminal of the second terminal; and the base station determines a downlink sending configuration according to the equivalent channel characteristic information.
  • Information The signal sent by the base station to the second terminal according to the downlink transmission configuration information.
  • a combination of a vector pointing to the beam direction, a channel quality indicator, and a RANK is a combination of a vector pointing to the beam direction, a channel quality indicator, and a RANK.
  • the downlink sending configuration information includes: The vector pointing to the beam direction, the modulation and coding scheme, and the number of transmitted data streams.
  • the receiving, by the second terminal, the at least one first channel and Before the equivalent channel characteristic information of the combined channel composed of the second channel the method further includes:
  • the base station transmits a channel estimation reference signal to the first terminal and the second terminal.
  • a fourth aspect of the embodiments of the present invention provides a method for cooperative communication of a terminal, where: the base station receives at least one first pilot frequency reference signal sent by the at least one first terminal, and a second pilot reference signal sent by the second terminal, where The at least one first pilot reference signal sent by the at least one first terminal is sent according to configuration information of a second pilot reference signal with the second terminal, where the first terminal is the second terminal Support terminal
  • the downlink sending configuration information includes:
  • Beam direction, modulation and coding mode, and number of transmitted data streams Beam direction, modulation and coding mode, and number of transmitted data streams.
  • the base station receives the at least one first pilot frequency reference signal and the second terminal that are sent by the at least one first terminal Before sending the second pilot reference signal, it also includes:
  • the base station transmits a channel estimation reference signal to the first terminal and the second terminal.
  • a fifth aspect of the embodiments of the present invention provides a method for cooperative communication of a terminal, including: sending, by a second terminal, configuration information of a second pilot reference signal of the second terminal to a first terminal, so that the first terminal is configured according to the second terminal
  • the configuration information of the second pilot reference signal is sent to the base station, where the first terminal is a supporting terminal of the second terminal;
  • the method further includes: the second terminal receiving a channel estimation reference signal sent by a base station; Obtaining, by the second terminal, a linear combination of a second channel estimation value, a second interference, and a second noise power of the second channel between the second terminal and the base station according to the channel estimation reference signal;
  • a sixth aspect of the embodiments of the present invention provides a terminal cooperative communication method, including: receiving, by a first terminal, configuration information of a second pilot reference signal that is sent by a second terminal, where the second terminal is a beneficial terminal of the first terminal;
  • the method before the first terminal sends the first pilot reference signal to the base station according to the configuration information of the second pilot reference signal, the method further includes:
  • Transmitting, by the terminal, the first pilot reference signal to the base station according to the configuration information of the second pilot reference signal includes:
  • Determining, by the first terminal, a second channel estimation value of the second channel, a linear combination of the second interference and the second noise power, and a first channel estimation value, a first interference, and a first noise power of the first channel Linear combination determines the transmit power of the first pilot reference signal;
  • a seventh aspect of the embodiments of the present invention provides a device for cooperative communication of a terminal, including: a receiving module, configured to receive channel parameters of at least one first channel sent by at least one first terminal, where the first terminal is a second terminal Support terminal
  • a processing module configured to acquire, according to the channel parameter of the at least one first channel and the channel parameter of the second channel of the second terminal, the equivalent channel characteristic information of the combined channel formed by the at least one first channel and the second channel, where
  • the first channel is a channel between the base station and the first terminal
  • the second channel is a channel between the base station and the second terminal
  • a sending module configured to send the equivalent channel feature information to the base station, so that the base station determines downlink sending configuration information according to the equivalent channel feature information, and sends the downlink sending configuration information to the second according to the downlink sending configuration information.
  • the signal of the terminal configured to send the equivalent channel feature information to the base station, so that the base station determines downlink sending configuration information according to the equivalent channel feature information, and sends the downlink sending configuration information to the second according to the downlink sending configuration information.
  • the channel parameter of the first channel includes:
  • the channel parameters of the second channel include: a second channel estimation value
  • the processing module is configured to acquire, according to the at least one first channel estimation value and the second channel estimation value, the equivalent channel characteristic information of the combined channel of the at least one first channel and the second channel.
  • the channel parameters of the first channel further include:
  • the channel parameters of the second channel further include:
  • the processing module is configured to acquire, according to the at least one first channel estimation value and the first interference, and the second channel estimation value and the second interference, at least one of a first channel and a second channel.
  • the equivalent channel characteristic information of the combined channel is configured to acquire, according to the at least one first channel estimation value and the first interference, and the second channel estimation value and the second interference, at least one of a first channel and a second channel.
  • the channel parameters of the first channel further includes:
  • the channel parameters of the second channel further include:
  • the processing module is configured to acquire at least one first channel and second according to the at least one first channel estimation value and the first noise power, and the second channel estimation value and the second noise power The equivalent channel characteristic information of the combined channel of the channel.
  • the channel parameter of the first channel further includes:
  • the channel parameters of the second channel further include:
  • the processing module is specifically configured to use, according to the at least one first channel estimation value, the first interference and the first noise power, and the second channel estimation value, the second interference, and the second The noise power obtains the equivalent channel characteristic information of the combined channel of the at least one first channel and the second channel.
  • a combination of a vector pointing to the beam direction, a channel quality indicator, and a RANK is a combination of a vector pointing to the beam direction, a channel quality indicator, and a RANK.
  • the downlink sending configuration information includes:
  • the receiving module is further configured to receive a channel estimation reference signal that is sent by the base station;
  • the processing module is further configured to acquire, according to the channel estimation reference signal, a channel parameter of a second channel of the second terminal.
  • An eighth aspect of the embodiments of the present invention provides a device for cooperative communication of a terminal, including: a processing module, configured to acquire channel parameters of a first channel;
  • a sending module configured to send a channel parameter of the first channel to the second terminal, so that the second terminal is configured according to a channel parameter of the first channel and a channel parameter of a second channel of the second terminal Obtaining equivalent channel characteristic information of the combined channel composed of the first channel and the second channel;
  • the second terminal is a benefit terminal of the first terminal, the first channel is a channel between the base station and the first terminal, and the second channel is a channel between the base station and the second terminal.
  • the processing module is specifically configured to receive a channel estimation reference signal that is sent by the base station, and obtain the first channel of the first terminal according to the channel estimation reference signal. Channel parameters.
  • the ninth aspect of the embodiments of the present invention provides an apparatus for cooperative communication of a terminal, including: a receiving module, configured to receive, by using a second terminal, an equivalent channel characteristic information of a combined channel composed of at least one first channel and a second channel, where The first channel is a channel between the base station and the first terminal, the second channel is a channel between the base station and the second terminal, and the equivalent channel characteristic information is that the second terminal is according to the at least one first terminal. Obtained by the channel parameter of the at least one first channel and the channel parameter of the second channel of the second terminal, where the first terminal is a supporting terminal of the second terminal;
  • a determining module configured to determine downlink sending configuration information according to the equivalent channel feature information
  • a sending module configured to send, according to the downlink sending configuration information, a signal sent by the second terminal.
  • the equivalent channel feature information includes:
  • a combination of a vector pointing to the beam direction, a channel quality indicator, and a RANK is a combination of a vector pointing to the beam direction, a channel quality indicator, and a RANK.
  • the downlink sending configuration information includes:
  • the sending module is further configured to receive at least the second terminal sends Before the equivalent channel characteristic information of the combined channel composed of the first channel and the second channel, the channel estimation reference signal is sent to the first terminal and the second terminal.
  • a tenth aspect of the embodiments of the present invention provides a device for cooperative communication of a terminal, including: a receiving module, configured to receive at least one first pilot frequency reference signal sent by at least one first terminal, and a second pilot reference sent by a second terminal a signal, wherein the at least one first end The at least one first pilot reference signal sent by the terminal is sent according to the configuration information of the second pilot reference signal of the second terminal, where the first terminal is a supporting terminal of the second terminal; And determining, according to the at least one first pilot reference signal and the second pilot reference signal, downlink transmission configuration information;
  • a sending module configured to send, according to the downlink sending configuration information, a signal sent by the second terminal.
  • the downlink sending configuration information includes:
  • the sending module is further configured to send a channel estimation reference signal to the first terminal and the second terminal.
  • An eleventh embodiment of the present invention provides an apparatus for cooperative communication of a terminal, including: a first sending module, configured to send, to a first terminal, configuration information of a second pilot reference signal of a second terminal, to enable the The second terminal sends a first pilot reference signal to the base station according to the configuration information of the second pilot reference signal, where the first terminal is the end of the second terminal
  • a second sending module configured to send the second pilot reference signal to the base station, to enable the base station to determine, according to the first pilot reference signal and the second pilot reference signal, The downlink transmission configuration information of the signal of the second terminal.
  • the device further includes: a receiving module and an acquiring module;
  • the receiving module is configured to receive a channel estimation reference signal sent by the base station;
  • the acquiring module is configured to acquire, according to the channel estimation reference signal, a linear combination of a second channel estimation value, a second interference, and a second noise power of a second channel between the second terminal and the base station;
  • the first sending module is further configured to send, to the first terminal, a linear combination of the second channel estimation value, the second interference, and the second noise power of the second channel, so that the first terminal is configured according to the A linear combination of a second channel estimate of the second channel, a linear combination of the second interference and the second noise power, and a first channel estimate of the first channel, the first interference, and the first noise power determines the first The transmit power of the pilot reference signal.
  • a device for cooperative communication of a terminal, comprising: a receiving module, configured to receive configuration information of a second pilot reference signal sent by a second terminal, where the second terminal is a first terminal Beneficiary terminal;
  • a sending module configured to send, according to the configuration information of the second pilot reference signal, a first pilot reference signal to the base station, so that the base station is configured according to the first pilot reference signal and the second pilot reference signal Determining downlink transmission configuration information for a signal transmitted to the second terminal.
  • the receiving module is further configured to send, by the receiving base station, before the first pilot reference signal is sent to the base station according to the configuration information of the second pilot reference signal a channel estimation reference signal; acquiring, according to the channel estimation reference signal, a linear combination of a first channel estimation value, a first interference, and a first noise power of a first channel between the first terminal and the base station; a linear combination of a second channel estimation value, a second interference, and a second noise power of the second channel between the second terminal and the base station that are sent by the second terminal;
  • the sending module is specifically configured to: according to the second channel estimation value of the second channel, a linear combination of the second interference and the second noise power, and the first channel estimation value, the first interference, and the first channel of the first channel
  • a linear combination of noise power determines a transmit power of the first pilot reference signal; and transmits a first pilot reference signal to the base station according to the configuration information of the second pilot reference signal and the transmit power.
  • a thirteenth aspect of the present invention provides a terminal cooperative communication system, comprising: the device for cooperative communication of the terminal according to the seventh aspect, and the device for cooperative communication of the terminal according to the eighth aspect.
  • a fourteenth aspect of the embodiments of the present invention provides a terminal cooperative communication system, comprising: the apparatus for terminal cooperative communication according to the eleventh aspect, and the apparatus for terminal cooperative communication according to the twelfth aspect.
  • the method, device, and system for terminal cooperative communication provided by the embodiment of the present invention, by receiving at least one channel parameter of at least one first channel sent by the first terminal, where the first terminal is a supporting terminal of the second terminal, according to at least one Obtaining, by the channel parameter of the first channel and the channel parameter of the second channel of the second terminal, the equivalent channel characteristic information of the combined channel formed by the at least one first channel and the second channel, where the first channel is between the base station and the first terminal Channel, the second channel is a channel between the base station and the second terminal; transmitting the equivalent channel characteristic information to the base station, so that the base station root Determining downlink transmission configuration information according to the equivalent channel characteristic information, and transmitting the signal to the second terminal according to the downlink transmission configuration information.
  • the base station determines, according to the equivalent channel feature information,
  • the downlink transmission configuration information transmission signal increases the overall gain of the signal received by the at least one first terminal and the second terminal, and the second terminal is the benefit terminal, thereby improving the final receiving signal of the benefit terminal.
  • FIG. 1 is a schematic flowchart of Embodiment 1 of a method for cooperative communication of a terminal according to the present invention
  • FIG. 2 is a schematic flowchart of Embodiment 2 of a method for cooperative communication of a terminal according to the present invention
  • 4 is a schematic flowchart of Embodiment 4 of a method for terminal cooperative communication according to the present invention
  • FIG. 5 is a schematic flowchart of Embodiment 5 of a method for terminal cooperative communication according to the present invention
  • FIG. 6 is a flowchart of Embodiment 6 of a method for terminal cooperative communication according to the present invention
  • FIG. 7 is a schematic flowchart of Embodiment 7 of a method for cooperative communication of a terminal according to the present invention
  • FIG. 1 is a schematic flowchart of Embodiment 1 of a method for cooperative communication of a terminal according to the present invention
  • FIG. 2 is a schematic flowchart of Embodiment 2 of a method for cooperative communication of a terminal according
  • FIG. 8 is a schematic flowchart of Embodiment 8 of a method for cooperative communication of a terminal according to the present invention
  • FIG. 10 is a schematic structural diagram of Embodiment 2 of a device for cooperative communication of a terminal according to the present invention
  • FIG. 11 is a schematic structural diagram of Embodiment 3 of a device for cooperative communication of a terminal according to the present invention
  • FIG. 13 is a schematic structural diagram of Embodiment 5 of a device for terminal cooperative communication according to the present invention
  • FIG. 14 is a terminal apparatus cooperative communication structural diagram according to a sixth embodiment of the invention
  • FIG. 15 means cooperative communication terminal structural diagram of Embodiment 7 of the present invention.
  • the gain of the final received signal obtained by the benefit terminal is maximized.
  • the downlink parameter configuration of the base station is determined by comprehensively considering the channel parameter information of each supporting terminal of the benefit terminal and the benefit terminal. The information is sent according to the better downlink transmission configuration information, thereby improving the gain of the final received signal of the benefit terminal.
  • Embodiment 1 is a schematic flowchart of Embodiment 1 of a method for cooperative communication of a terminal according to the present invention.
  • the method in this embodiment is applied to a Frequency Division Duplexing (FDD) system.
  • FDD Frequency Division Duplexing
  • FIG. 1 the method in this embodiment is shown in FIG. Includes:
  • the second terminal receives the channel parameter of the at least one first channel sent by the at least one first terminal.
  • the second terminal is a target terminal having a communication requirement, that is, a benefit terminal
  • the first terminal is a terminal that cooperatively communicates with the second terminal, that is, the first terminal is a supporting terminal of the second terminal, and the number of the first terminal may be one. It can also be multiple, and the specific number is determined according to the requirements in the actual application.
  • Each of the first terminals may obtain a channel parameter of the first channel between the first terminal and the base station according to the channel estimation reference signal, where the channel parameter of the first channel may include the first a channel estimation value; or comprising a first channel estimation value and a first interference; or comprising a first channel estimation value and a first noise power; or comprising a first channel estimation value, a first interference, and a first noise power.
  • Each first terminal sends the channel parameter of the first channel acquired by itself to the second terminal, and the second terminal receives the channel parameter of the first channel sent by each first terminal.
  • the second terminal acquires, according to the channel parameter of the at least one first channel and the channel parameter of the second channel of the second terminal, the equivalent channel characteristic information of the combined channel formed by the at least one first channel and the second channel.
  • the first channel is a channel between the base station and the first terminal
  • the second channel is a base station and a The channel between the two terminals.
  • the channel parameter of the second channel acquired by the second terminal may also obtain the channel parameter of the second channel between the second terminal and the base station according to the channel estimation reference signal by receiving the channel estimation reference signal sent by the base station;
  • the channel parameter of the channel may include a second channel estimation value; or include the first channel estimation value and the first interference; or include the first channel estimation value and the first noise power; or include the first channel estimation value, the first interference, and the first A noise power.
  • the second terminal may be configured according to the at least one first channel estimation value and the second channel estimation value. And acquiring, by the at least one channel, equivalent channel characteristic information of the combined channel of the first channel and the second channel.
  • the channel parameter of the first channel includes a first channel estimation value and a first interference
  • the channel parameter of the second channel may include the second channel estimation value and the second interference
  • the second terminal estimates according to the at least one first channel The value and the first interference, and the second channel estimate and the second interference, obtain equivalent channel characteristic information of the combined channel of the at least one first channel and the second channel.
  • the channel parameter of the first channel includes a first channel estimation value and a first noise power
  • the second terminal may be according to at least one A channel estimation value and a first noise power, and a second channel estimation value and a second noise power, obtain the equivalent channel characteristic information of the combined channel of the at least one first channel and the second channel.
  • the channel parameter of the first channel includes a first channel estimation value, a first interference, and a first noise power
  • the channel parameter of the second channel may include the second channel estimation value, the second interference, and the first noise power
  • the second terminal may acquire the composition of the at least one first channel and the second channel according to the at least one first channel estimation value, the first interference and the first noise power, and the second channel estimation value, the second interference, and the second noise power. Equivalent channel characteristic information of the combined channel.
  • the equivalent channel characteristic information includes: a combination of a codebook, a channel quality indicator and an array (RANK); or a combination of a vector pointing to the beam direction, a channel quality indicator, and a RANK.
  • the channel parameter of the first channel includes a first channel estimation value; the channel parameter of the second channel includes a second channel estimation value, and the beam direction is acquired in the following manner, and the assumption is that the first channel between the base station and the first terminal
  • the estimated value is a second channel estimate between the base station and the second terminal
  • the equivalent channel of the combined channel composed of the first channel and the second channel is [H. , H, ⁇ represents the beam direction, then ⁇ 1 is ⁇ . , ⁇ [ ⁇ ] corresponds to the feature vector of the largest eigenvalue, where
  • [ ⁇ indicates plural, indicating transposition.
  • the channel parameter of the first channel includes the first channel estimation value and the first noise power
  • the channel parameters of the second channel include: the second channel estimation value and the first noise power as an example, and the beam direction is obtained as follows: It is a first channel estimation value between the base station and the first terminal, and is a second channel estimation value between the base station and the second terminal, P. Representing the first noise power, indicating that the equivalent channel of the combined channel composed of one channel and the second channel is
  • a feature vector corresponding to the feature value where [ ⁇ denotes a complex number and represents a transpose.
  • the foregoing is only an example.
  • the method for calculating an equivalent channel according to the channel parameters of the first channel and the specific parameters included in the channel parameters of the second channel may be used.
  • the present invention does not limit this, and comprehensively considers multiple parameters.
  • the equivalent channel characteristic information is more accurate than the equivalent channel characteristic information obtained only by considering the channel estimation value. Based on this, the base station can determine the better downlink transmission configuration information, thereby further improving the second terminal (beneficial terminal). The gain of the received signal.
  • the second terminal sends the equivalent channel feature information to the base station, so that the base station determines the downlink sending configuration information according to the equivalent channel feature information, and sends the signal to the second terminal according to the downlink sending configuration information.
  • the downlink transmission configuration information may include: a vector pointing to a beam direction, a modulation and coding scheme, and a number of transmission data streams.
  • the base station may determine, according to the combination of the codebook, the channel quality indicator, and the array RANK, a vector, a modulation and coding mode, and a number of transmitted data streams in the direction of the beam direction in the downlink transmission configuration information.
  • the base station may also determine a vector, a modulation and coding mode, and a number of transmitted data streams in the downlink transmission configuration information according to a combination of a vector indicating a beam direction, a channel quality indicator, and a RANK.
  • the method for cooperative communication of a terminal provided by the embodiment of the present invention, by receiving at least one channel parameter of at least one first channel sent by the first terminal, where the first terminal is a supporting terminal of the second terminal, according to the at least one first channel Obtaining, by the channel parameter and the channel parameter of the second channel of the second terminal, the equivalent channel characteristic information of the combined channel formed by the at least one first channel and the second channel, where the first channel is a channel between the base station and the first terminal, The second channel is a channel between the base station and the second terminal; the equivalent channel characteristic information is sent to the base station, so that the base station is configured according to The equivalent channel characteristic information determines downlink transmission configuration information, and transmits the signal to the second terminal according to the downlink transmission configuration information.
  • the base station determines, according to the equivalent channel feature information,
  • the downlink transmission configuration information transmission signal increases the overall gain of the signal received by the at least one first terminal and the second terminal, and the second terminal is the benefit terminal, thereby improving the gain of the final received signal of the benefit terminal.
  • the channel parameter of the first channel and the channel parameter of the second channel may include not only the channel estimation value but also the interference and/or the noise power
  • the equivalent channel characteristic information obtained by comprehensively considering the plurality of parameters is compared. It is more accurate to consider only the channel estimation information obtained by considering the channel estimation value. Based on this, the base station can determine the better downlink transmission configuration information, thereby further improving the gain of the final received signal of the benefit terminal, thereby improving the overall performance gain of the system.
  • Embodiment 2 is a schematic flowchart of Embodiment 2 of a method for cooperative communication of a terminal according to the present invention.
  • the method in this embodiment is applied to an FDD system. As shown in FIG. 2, the method in this embodiment includes:
  • S201 The first terminal acquires a channel parameter of the first channel.
  • the channel estimation reference signal sent by the base station is received, and the channel parameter of the first channel of the first channel is obtained according to the channel estimation reference signal.
  • S202 The first terminal sends the channel parameter of the first channel to the second terminal, so that the second terminal acquires the first channel and the second channel according to the channel parameter of the first channel and the channel parameter of the second channel of the second terminal. Equivalent channel characteristic information of the combined channel.
  • the second terminal is a benefit terminal of the first terminal
  • the first channel is a channel between the base station and the first terminal
  • the second channel is a channel between the base station and the second terminal.
  • Embodiment 3 is a schematic flowchart of Embodiment 3 of a method for cooperative communication of a terminal according to the present invention.
  • the method in this embodiment is applied to an FDD system. As shown in FIG. 3, the method in this embodiment includes:
  • the base station receives the equivalent channel characteristic information of the combined channel formed by the at least one first channel and the second channel that are sent by the second terminal.
  • the first channel is a channel between the base station and the first terminal
  • the second channel is a channel between the base station and the second terminal.
  • the first terminal is a supporting terminal of the second terminal
  • the equivalent channel characteristic information includes: a codebook, a combination of a channel quality indicator and an array RANK; or a combination of a vector pointing to a beam direction, a channel quality indicator, and a RANK.
  • the characteristic information of the equivalent channel of the combined channel formed by the at least one first channel and the second channel sent by the second terminal is the channel parameter of the second terminal according to the at least one first channel of the at least one first terminal and the second terminal Obtaining the channel parameters of the second channel, therefore, the first terminal and the second terminal also need to acquire respective channel parameters, when the first terminal and the second terminal acquire the respective channel parameters by receiving the channel estimation reference signal sent by the base station Before the step, the base station further includes transmitting a channel estimation reference signal to the first terminal and the second terminal.
  • the base station determines downlink transmission configuration information according to the equivalent channel feature information.
  • the downlink transmission configuration information includes: a vector that points to a beam direction, a modulation and coding manner, and a number of sent data streams;
  • the base station may determine, according to the combination of the codebook, the channel quality indicator, and the array RANK, a vector, a modulation and coding mode, and a number of transmitted data streams in the direction of the beam direction in the downlink transmission configuration information.
  • the base station may also determine the vector, the modulation and coding mode, and the number of transmitted data streams in the downlink transmission configuration information according to the vector of the direction of the beam, the channel quality indicator, and the combination of the RANK.
  • S303 The signal sent by the base station to the second terminal according to the downlink transmission configuration information.
  • the base station determines the downlink transmission configuration information according to the equivalent channel feature information by receiving the equivalent channel feature information of the combined channel formed by the at least one first channel and the second channel that is sent by the second terminal, according to the downlink transmission configuration.
  • the information is sent to the signal of the second terminal, because the equivalent channel feature information is obtained by the second terminal according to the channel parameter of the at least one first channel and the channel parameter of the second channel of the second terminal that are sent by the at least one first terminal, Therefore, the downlink transmission configuration information transmission signal determined by the base station according to the equivalent channel characteristic information may increase the overall gain of the signal received by the at least one first terminal and the second terminal, where the second terminal is a benefit terminal, and the first terminal is The second terminal supports the terminal, thereby increasing the gain of the final received signal of the benefit terminal, thereby increasing the overall performance gain of the system.
  • Embodiment 4 is a schematic flowchart of Embodiment 4 of a method for cooperative communication of a terminal according to the present invention.
  • the method in this embodiment is applied to an FDD system.
  • the method in this embodiment includes: S401: The base station sends a channel estimation reference signal to the first terminal and the second terminal.
  • the second terminal is a benefit terminal
  • the first terminal is a beneficial terminal of the second terminal
  • the first terminal may be one or more.
  • the base station sends a channel estimation reference signal to the first terminal and the second terminal, so that each first terminal can estimate a channel parameter of the first channel between the base station and each first terminal according to the channel estimation reference signal, and the second terminal
  • the channel parameter of the second channel between the base station and the second terminal can be estimated from the channel estimation reference signal.
  • the first terminal and the second terminal respectively acquire a channel parameter of the first channel and a channel parameter of the second channel according to the channel estimation reference signal.
  • Each first terminal acquires a channel parameter of the first channel according to the channel estimation reference signal
  • the second terminal acquires a channel parameter of the second channel according to the channel estimation reference signal.
  • the channel parameter of the first channel may include a first channel estimation value; or include a first channel estimation value and a first interference; or include a first channel estimation value and a first noise power; or include a first channel estimation value, An interference and first noise power.
  • the channel parameter of the second channel may include the second channel estimation value; or include the first channel estimation value and the first interference; or include the first channel estimation value and the first noise power; or include the first channel estimation value, the first interference And the first noise power.
  • S403 The first terminal sends the channel parameter of the first channel to the second terminal.
  • Each first terminal sends the acquired channel parameter of the first channel to the second terminal.
  • the second terminal acquires equivalent channel characteristic information of the combined channel composed of the first channel and the second channel according to the channel parameter of the first channel and the channel parameter of the second channel of the second terminal.
  • the equivalent channel characteristic information includes: a codebook, a combination of a channel quality indicator and an array RANK; or a combination of a vector pointing to a beam direction, a channel quality indicator, and a RANK.
  • S405 The second terminal sends the foregoing equivalent channel feature information to the base station.
  • the base station determines downlink transmission configuration information according to the equivalent channel characteristic information, and sends a signal according to the downlink transmission configuration information.
  • the downlink transmission configuration information may include: a vector pointing to a beam direction, a modulation and coding scheme, and a number of transmission data streams.
  • the base station may determine, according to the combination of the codebook, the channel quality indicator, and the array RANK, a vector, a modulation and coding mode, and a number of transmitted data streams in the direction of the beam direction in the downlink transmission configuration information.
  • the base station may also determine a vector, a modulation and coding mode, and a direction of the beam direction in the downlink transmission configuration information according to a vector of the direction of the beam, a channel quality indicator, and a combination of RANKs. The number of streams sent.
  • each terminal of the cooperative communication After receiving the signal sent by the base station according to the downlink configuration information, each terminal of the cooperative communication performs a combining process on the received signal according to different receivers.
  • the first terminal is UE0, that is, the supporting terminal.
  • the first terminal is the received noise
  • / u is the interference between the terminals of the second terminal
  • N u is the noise received by the second terminal
  • the first terminal transmits the received signal to the second terminal
  • the second The signal obtained by the terminal Y
  • the second terminal combines the received signals,
  • the method of processing is related to the receiver.
  • the most widely used receivers are MRC receivers and IRC receivers.
  • the receiver is an MRC receiver
  • the second terminal is combined and processed the most.
  • the channel parameter of the first channel sent by the first terminal is received to obtain the ⁇ of the first terminal. .
  • UE1 transmits the channel parameters of the first channel to UE1 through UE0.
  • the reference signal is estimated for the channel
  • the channel parameter of the first channel is sent to the second terminal by the first terminal, and the second terminal is configured according to the channel parameter of the first channel and the second channel of the second terminal
  • the channel parameter obtains the equivalent channel characteristic information of the combined channel composed of the first channel and the second channel
  • the second terminal sends the equivalent feature information to the base station
  • the base station determines the downlink sending configuration information according to the equivalent feature information, and according to the foregoing
  • the downlink configuration information is sent to the signal of the second terminal.
  • the equivalent channel characteristic information is a channel parameter of the at least one first channel sent by the second terminal according to the at least one first terminal and a second channel of the second terminal itself
  • the channel parameter is obtained, and therefore, the downlink transmission configuration information transmission signal determined by the base station according to the equivalent channel characteristic information causes the overall gain of the signal received by the at least one first terminal and the second terminal to increase, wherein the second terminal is benefited The terminal, thereby, increases the gain of the final received signal of the benefiting terminal.
  • the channel parameter of the first channel and the channel parameter of the second channel may include not only the channel estimation value but also the interference and/or the noise power
  • the equivalent channel characteristic information obtained by comprehensively considering the plurality of parameters is compared. It is more accurate to consider only the channel estimation information obtained by considering the channel estimation value. Based on this, the base station can determine the better downlink transmission configuration information, thereby further improving the gain of the final received signal of the benefit terminal, thereby improving the overall performance gain of the system.
  • FIG. 5 is a schematic flowchart of Embodiment 5 of a method for cooperative communication of a terminal according to the present invention.
  • the method in this embodiment is applied to a TimeDivision Duplexing (TDD) system.
  • TDD TimeDivision Duplexing
  • the method in this embodiment includes :
  • the base station receives at least one first pilot reference signal sent by the at least one first terminal and a second pilot reference signal sent by the second terminal.
  • the second terminal is a benefit terminal
  • the first terminal is a support terminal of the second terminal
  • the first pilot reference signal sent by each first terminal is sent according to the configuration information of the second pilot reference signal of the second terminal.
  • the configuration information of the second pilot signal includes information such as a backoff time.
  • the base station determines downlink transmission configuration information according to the at least one first pilot reference signal and the second pilot reference signal.
  • the downlink transmission configuration information includes a vector pointing to a beam direction, a modulation and coding mode, and a number of transmission data streams.
  • the determining, by the base station, the downlink transmission configuration information according to the at least one first pilot reference signal and the second pilot reference signal is determined by using the reciprocity of the uplink channel and the downlink channel in the TDD system, that is, The parameters of the channel estimate the parameters of the downlink channel.
  • S503 The signal sent by the base station to the second terminal according to the downlink transmission configuration information.
  • the base station is based on the at least one first pilot reference signal and the second pilot
  • the downlink transmission configuration determined by the reference signal increases the overall gain of the signal received by the at least one first terminal and the second terminal, where the second terminal is a benefit terminal, and the first terminal is a The supporting terminal of the second terminal, thereby increasing the gain of the final received signal of the benefiting terminal, thereby improving the overall performance gain of the system.
  • the method further includes: the base station transmitting the channel estimation reference signal to the first terminal and the second terminal, so that the first terminal acquires the first interference between the first terminal and the base station according to the channel estimation reference signal.
  • the first noise power the second terminal acquires the second interference and the second noise power between the second terminal and the base station according to the channel estimation reference signal.
  • the second terminal sends the second interference and the second noise power to the first terminal, so that the first terminal adjusts according to the second interference of the second terminal, the second noise power, the first interference of the first terminal, and the first noise power.
  • FIG. 6 is a schematic flowchart of Embodiment 6 of a method for cooperative communication of a terminal according to the present invention.
  • the method in this embodiment is applied to a TDD system. As shown in FIG. 6, the method in this embodiment includes:
  • S601 The second terminal sends configuration information of the second pilot reference signal of the second terminal to the first terminal.
  • the second terminal is a benefit terminal, and the first terminal is a support terminal of the second terminal.
  • the second terminal sends the configuration information of the second pilot reference signal to the first terminal, so that the first terminal can send the first pilot reference to the base station by using the configuration information of the second pilot reference signal of the second terminal.
  • the signal such that, for the base station, receiving the first pilot reference signal sent by the first terminal is considered to be sent by the second terminal.
  • the second terminal sends a second pilot reference signal to the base station.
  • the second terminal sends the configuration information of the second pilot reference signal of the second terminal to the first terminal, so that the first terminal can send the first pilot reference signal to the base station according to the configuration information, thereby
  • the base station can utilize the reciprocity of the uplink signal and the downlink signal of the TDD system, determine the downlink transmission configuration information according to the first pilot reference signal and the second pilot reference signal, and send the signal according to the downlink transmission configuration information, because the base station is according to the first
  • the downlink transmission configuration determined by the pilot reference signal and the second pilot reference signal, according to the downlink transmission configuration information transmission signal causes an overall gain of the signal received by the first terminal and the second terminal to increase, where the first terminal refers to Supporting the terminal, the second terminal is a value benefit terminal, thereby improving the gain of the final received signal of the benefit terminal, thereby improving the overall performance gain of the system.
  • the method further includes: receiving, by the second terminal, a channel estimation reference signal sent by the base station, acquiring, according to the channel estimation reference signal, a second channel estimation value of the second channel between the second terminal and the base station, a linear combination of the second interference and the second noise power, and transmitting a linear combination of the second channel estimate, the second interference, and the second noise power to the first terminal, so that the first terminal is according to the second channel of the second channel
  • the linear combination of the estimated value, the second interference, and the second noise power with the first channel estimate of the first channel, the first interference, and the first noise power adjusts the transmit power of the first pilot reference signal, that is, Transmitting, by the first terminal, the first pilot reference signal to the base station according to the configuration information of the second pilot reference signal and the second channel estimation value of the second channel, the linear combination of the second interference and the second noise power, and the first channel
  • the first channel estimate of the first terminal, the first interference, and the linear combination of the first noise power are adjusted by the transmit power transmitted.
  • the downlink transmission configuration information determined by the base station according to the first pilot reference signal and the second pilot reference signal is further optimized. Therefore, sending the signal according to the downlink transmission configuration information causes the at least one first terminal and the second terminal to receive The overall gain of the signal is further increased, thereby further increasing the gain of the final received signal of the benefit terminal, thereby further increasing the overall performance gain of the system.
  • FIG. 7 is a schematic flowchart of Embodiment 7 of a method for cooperative communication of a terminal according to the present invention.
  • the method in this embodiment is applied to a TDD system. As shown in FIG. 7, the method in this embodiment includes:
  • S701 The first terminal receives configuration information of the second pilot reference signal sent by the second terminal.
  • S702 The first terminal sends a first pilot reference signal to the base station according to the configuration information of the second pilot reference signal, so that the base station determines, according to the first pilot reference signal and the second pilot reference signal, that the information is sent to the The downlink transmission configuration information of the signal of the second terminal.
  • the first terminal receives the configuration information of the second pilot reference signal sent by the second terminal, and sends the first pilot reference signal to the base station according to the configuration information, because the first terminal is based on the second pilot reference.
  • the first pilot reference signal sent by the configuration information of the signal.
  • the received first pilot reference signal is still sent by the second terminal, so that the base station can utilize the uplink signal and the downlink signal of the TDD system.
  • Reciprocity determining downlink transmission configuration information according to the first pilot reference signal and the second pilot reference signal, and transmitting the signal according to the downlink transmission configuration information, because the base station is based on the first pilot reference signal and the second pilot reference
  • the signal-determined downlink transmission configuration causes the overall gain of the signal received by the first terminal and the second terminal to be increased, wherein the second terminal is a benefit terminal, and the first terminal is a second terminal Supporting the terminal, thereby increasing the gain of the final received signal of the benefit terminal, thereby improving the system The overall performance gain.
  • the method further includes: receiving, by the first terminal, a channel estimation reference signal sent by the base station; acquiring, by the channel estimation reference signal, the first channel of the first terminal of the first channel between the first terminal and the base station; a linear combination of the estimated value, the first interference, and the first noise power; receiving a linear combination of the second channel estimate, the second interference, and the second noise power of the second channel between the second terminal and the base station transmitted by the second terminal And determining, by the first terminal, a linear combination of the second channel estimation value of the second channel, the second interference and the second noise power, and the first channel estimation value of the first channel, the first interference, and the first noise power Determining a transmit power of the first pilot reference signal; transmitting a first pilot reference signal to the base station according to the configuration information of the second pilot reference signal and the transmit power.
  • the first terminal transmits the first pilot reference signal to the base station according to the configuration information of the second pilot reference signal and the linear combination of the second channel estimation value, the second interference and the second noise power, and the first channel.
  • a linear combination of a channel estimate, a first interference, and a first noise power is transmitted by adjusting the transmit power.
  • the downlink transmission configuration information determined by the base station according to the first pilot reference signal and the second pilot reference signal is further optimized. Therefore, sending the signal according to the downlink transmission configuration information causes the at least one first terminal and the second terminal to receive The overall gain of the signal is further increased, thereby further increasing the gain of the final received signal of the benefit terminal, thereby further increasing the overall performance gain of the system.
  • Embodiment 8 is a schematic flowchart of Embodiment 8 of a method for cooperative communication of a terminal according to the present invention.
  • the method in this embodiment is applied to a TDD system. As shown in FIG. 8, the method in this embodiment includes:
  • S801 The base station sends a channel estimation reference signal to the at least one first terminal and the second terminal.
  • the second terminal acquires a linear combination of the second channel estimation value, the second interference, and the second noise power of the second channel between the second terminal and the base station according to the channel estimation reference signal.
  • S802 and S803 do not limit the execution order.
  • S804 A linear combination of the second channel estimation value, the second interference, and the second noise power of the second channel between the second terminal and the base station sent by the second terminal to each first terminal.
  • Each first terminal determines the first pilot according to a linear combination of the second channel estimation value, the linear combination of the second interference and the second noise power, and the first channel estimation value of the first channel, the first interference, and the first noise power The transmit power of the reference signal.
  • S805 The second terminal sends configuration information of the second pilot reference signal of the second terminal to each first terminal.
  • the second terminal is a beneficial terminal
  • the first terminal is a supporting terminal of the second terminal
  • the first terminal may have one or more.
  • S806 The second terminal sends a second pilot reference signal to the base station.
  • Each first terminal sends a first pilot reference signal to the base station according to the configuration information of the second pilot reference signal and the determined transmit power.
  • the base station determines downlink transmission configuration information according to the received at least one first pilot reference signal sent by the at least one first terminal and the second pilot reference signal sent by the second terminal.
  • S809 The signal sent by the base station to the second terminal according to the downlink transmission configuration information.
  • the first terminal After receiving the signal sent by the base station according to the downlink configuration information, the first terminal sends the channel parameter of the first channel estimated by the channel estimation reference signal sent by the base station to the second terminal, according to different receivers.
  • the second terminal performs the merging process on the received signal in a different manner, and the specific processing method is the same as the processing method in the embodiment shown in FIG. 4, and details are not described herein again.
  • the second terminal sends configuration information of the second pilot reference signal of the second terminal to each first terminal, so that each first terminal sends the configuration information to the base station according to the configuration information of the second pilot reference signal.
  • a pilot reference signal Determining, by the base station, the downlink according to the received at least one pilot frequency reference signal sent by the at least one first terminal and the second pilot reference signal sent by the second terminal The configuration information is sent, and the base station sends a signal according to the downlink transmission configuration information. Since the base station is configured according to the at least one first pilot reference signal and the second pilot reference signal, the downlink transmission configuration information is sent according to the downlink transmission configuration information, so that the at least one first terminal and the second terminal receive the total signal. The gain is increased, wherein the second terminal is a benefit terminal, and the first terminal is a support terminal of the second terminal, thereby improving the gain of the final received signal of the benefit terminal, thereby improving the overall performance gain of the system.
  • the information interaction between the first terminal and the second terminal in the foregoing embodiments of the present invention may be implemented by a short-range communication technology, for example, wireless fidelity (abbreviation: wifi) technology, Bluetooth. And high-frequency communication and the like can provide a reliable transmission mode for information interaction between the first terminal and the second terminal.
  • a short-range communication technology for example, wireless fidelity (abbreviation: wifi) technology, Bluetooth.
  • high-frequency communication and the like can provide a reliable transmission mode for information interaction between the first terminal and the second terminal.
  • first terminal and the second terminal in the foregoing various embodiments of the present invention may be terminals having communication requirements, and therefore, may be applied to a single-user multi-device scenario. That is, when a user has multiple devices, when one of the devices has communication requirements, the other devices can be used as support terminals for devices having communication requirements.
  • FIG. 9 is a schematic structural diagram of Embodiment 1 of a device for cooperative communication of a terminal according to the present invention.
  • the device in this embodiment includes a receiving module 91, a processing module 92, and a sending module 93, where the receiving module 91 is configured to receive at least a channel parameter of the at least one first channel sent by the first terminal, where the first terminal is a supporting terminal of the second terminal; the processing module 92 is configured to: according to the channel parameter of the at least one first channel and the second channel of the second terminal a channel parameter, obtaining, by the at least one channel, equivalent channel characteristic information of the first channel and the second channel, where the first channel is a channel between the base station and the first terminal, and the second channel is between the base station and the second terminal.
  • the transmitting module 93 is configured to send the equivalent channel feature information to the base station, so that the base station determines the downlink sending configuration information according to the equivalent channel characteristic information, and sends the signal to the second terminal according to the downlink sending configuration information.
  • the channel parameter of the first channel includes: a first channel estimation value; the channel parameter of the second channel includes: a second channel estimation value; the processing module 92 is specifically configured to use the at least one first channel estimation value and the The two channel estimation value obtains the equivalent channel characteristic information of the combined channel of the at least one first channel and the second channel.
  • the channel parameter of the first channel further includes: a first interference; the channel parameter of the second channel further includes: a second interference; the processing module 92 is specifically configured to use the at least one first The channel estimation value and the first interference, and the second channel estimation value and the second interference, acquire the equivalent channel characteristic information of the combined channel of the at least one first channel and the second channel.
  • the channel parameter of the first channel further includes: a first noise power; the channel parameter of the second channel further includes: a second noise power; the processing module 92 is specifically configured to use the at least one first channel estimation value and the A noise power, and the second channel estimate and the second noise power, obtain the equivalent channel characteristic information of the combined channel of the at least one first channel and the second channel.
  • the channel parameter of the first channel further includes: a first interference and a first noise power
  • the channel parameter of the second channel further includes: a second interference and a second noise power
  • the processing module 92 is specifically configured to a first channel estimation value, a first interference and a first noise power, and a second channel estimation value, a second interference, and a second noise power, obtaining an equivalent of a combined channel of at least one of the first channel and the second channel Channel characteristic information.
  • the equivalent channel characteristic information includes: a combination of a codebook, a channel quality indicator, and an array RANK; or a combination of a vector pointing to a beam direction, a channel quality indicator, and a RANK.
  • the downlink transmission configuration information includes: a vector pointing to a beam direction, a modulation coding mode, and a number of transmission data streams.
  • the receiving module 91 is further configured to receive a channel estimation reference signal sent by the base station; and the processing module 92 is further configured to acquire, according to the channel estimation reference signal, a channel parameter of the second channel of the second terminal.
  • the device in this embodiment can be used to implement the technical solution of the method embodiment shown in FIG. 1 , and the implementation principle and technical effects thereof are not described herein.
  • FIG. 10 is a schematic structural diagram of Embodiment 2 of a device for cooperative communication of a terminal according to the present invention.
  • the device in this embodiment includes a processing module 1001 and a sending module 1002, where the processing module 1001 is configured to acquire a channel of a first channel.
  • the transmitting module 1002 is configured to send a channel parameter of the first channel to the second terminal, so that the second terminal acquires the first channel and the second according to the channel parameter of the first channel and the channel parameter of the second channel of the second terminal.
  • the processing module 1001 is specifically configured to receive a channel estimation reference signal sent by the base station, and acquire a channel parameter of the first channel of the first terminal according to the channel estimation reference signal. Number.
  • the device in this embodiment can be used to implement the technical solution of the method embodiment shown in FIG. 2, which implements the principles and technical effects, and is not described herein again.
  • FIG. 11 is a schematic structural diagram of Embodiment 3 of a device for cooperative communication of a terminal according to the present invention.
  • the device in this embodiment includes: a receiving module 1101, a determining module 1102, and a sending module 1103, where the receiving module 1101 is configured to receive The equivalent channel characteristic information of the combined channel formed by the at least one first channel and the second channel sent by the second terminal, the first channel is a channel between the base station and the first terminal, and the second channel is between the base station and the second terminal The channel, the equivalent channel feature information is obtained by the second terminal according to the channel parameter of the at least one first channel of the at least one first terminal and the channel parameter of the second channel of the second terminal itself, wherein the first terminal is the second
  • the determining module 1102 is configured to determine downlink sending configuration information according to the equivalent channel feature information
  • the sending module 1103 is configured to send the signal to the second terminal according to the downlink sending configuration information.
  • the equivalent channel characteristic information includes: a combination of a codebook, a channel quality indicator, and an array RANK; or a combination of a vector pointing to a beam direction, a channel quality indicator, and a RANK.
  • the downlink transmission configuration information includes: a vector pointing to a beam direction, a modulation coding mode, and a number of transmission data streams.
  • the sending module 1103 is further configured to: before receiving the equivalent channel feature information of the combined channel of the at least one first channel and the second channel that is sent by the second terminal, send the channel estimation to the first terminal and the second terminal. Reference signal.
  • the device in this embodiment can be used to implement the technical solution of the method embodiment shown in FIG. 3, and the implementation principle and technical effects thereof are not described herein.
  • the device in this embodiment includes a receiving module 1201, a determining module 1202, and a sending module 1203, where the receiving module 1201 is configured to receive at least At least one first pilot frequency reference signal sent by the first terminal and the second pilot reference signal sent by the second terminal, wherein the at least one first pilot reference signal sent by the at least one first terminal is based on the second terminal And transmitting, by the configuration information of the second pilot reference signal, the first terminal is a supporting terminal of the second terminal; the determining module 1202 is configured to determine, according to the at least one first pilot reference signal and the second pilot reference signal, The downlink transmission configuration information is used; the sending module 1203 is configured to send the signal to the second terminal according to the downlink transmission configuration information.
  • the downlink transmission configuration information includes: a vector pointing to a beam direction, a modulation coding mode, and a number of transmission data streams.
  • the sending module 1203 is further configured to send a channel estimation reference signal to the first terminal and the second terminal.
  • the device in this embodiment can be used to implement the technical solution of the method embodiment shown in FIG. 5, and the implementation principle and technical effects thereof are not described herein.
  • FIG. 13 is a schematic structural diagram of Embodiment 5 of a device for cooperative communication of a terminal according to the present invention.
  • the device in this embodiment includes: a first sending module 1301 and a second sending module 1302, where the first sending module 1301 is used.
  • the second sending module 1302 is configured to send a second pilot reference signal to the base station, so that the base station determines, according to the first pilot reference signal and the second pilot reference signal, for sending to the The downlink transmission configuration information of the signal of the second terminal.
  • the device in this embodiment can be used to implement the technical solution of the method embodiment shown in FIG. 6 , and the implementation principle and technical effects thereof are not described herein.
  • FIG. 14 is a schematic structural diagram of Embodiment 5 of a device for cooperative communication of a terminal according to the present invention. As shown in FIG. 14, FIG. 14 is based on the embodiment shown in FIG. 13, and further includes: a receiving module 1303 and an obtaining module 1304.
  • the receiving module 1303 is configured to receive a channel estimation reference signal sent by the base station, where the acquiring module 1304 is configured to acquire, according to the channel estimation reference signal, a second channel estimation value, a second interference sum of the second channel between the second terminal and the base station.
  • the first sending module is further configured to: send, to the first terminal, a linear combination of the second channel estimation value, the second interference, and the second noise power of the second channel, so that the first terminal is configured according to A linear combination of a second channel estimate of the second channel, a linear combination of the second interference and the second noise power, and a first channel estimate of the first channel, the first interference, and the first noise power determines a first pilot reference signal Transmit power.
  • the device in this embodiment includes a receiving module 1501 and a sending module 1502, where the receiving module The 1501 is configured to receive the configuration information of the second pilot reference signal sent by the second terminal, where the second terminal is the benefit terminal of the first terminal, and the sending module 1502 is configured to send the first information to the base station according to the configuration information of the second pilot reference signal.
  • the pilot reference signal is configured to enable the base station to determine downlink transmission configuration information for the signal transmitted to the second terminal according to the first pilot reference signal and the second pilot reference signal.
  • the receiving module 1501 is further configured to: before receiving the first pilot reference signal to the base station according to the configuration information of the second pilot reference signal, receive the channel estimation reference signal sent by the base station; acquire the first according to the channel estimation reference signal. a first channel estimation value of the first channel between the terminal and the base station, a linear combination of the first interference and the first noise power; receiving a second channel estimation of the second channel between the second terminal and the base station transmitted by the second terminal a linear combination of values, second interference, and second noise power;
  • the sending module 1502 is specifically configured to perform linear combination according to the second channel estimation value of the second channel, the linear combination of the second interference and the second noise power, and the first channel estimation value of the first channel, the first interference, and the first noise power. Determining a transmit power of the first pilot reference signal; transmitting a first pilot reference signal to the base station according to the configuration information of the second pilot reference signal and the transmit power.
  • the device in this embodiment can be used to implement the technical solution of the method embodiment shown in FIG. 7 , and the implementation principle and technical effects thereof are not described herein.
  • the present invention also provides an apparatus for a terminal cooperative communication system including the terminal cooperative communication of the embodiment shown in Fig. 9 and a terminal cooperative communication device of the embodiment shown in Fig. 10.
  • the present invention also provides an apparatus for terminal cooperative communication system including terminal cooperative communication of the embodiment shown in Fig. 13 and a terminal cooperative communication apparatus of the embodiment shown in Fig. 15.
  • the foregoing program may be stored in a computer readable storage medium, and the program is executed when executed.
  • the foregoing steps include the steps of the foregoing method embodiments; and the foregoing storage medium includes: a medium that can store program codes, such as a ROM, a RAM, a magnetic disk, or an optical disk.

Landscapes

  • Engineering & Computer Science (AREA)
  • Quality & Reliability (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本发明实施例提供一种终端协作通信的方法、装置和系统,由于第二终端根据至少一个第一终端发送的至少一个第一信道的信道参数和第二终端的第二信道的信道参数获取的等效信道特征信息,因此,基站根据等效信道特征信息确定的下行发送配置信息发送给第二终端的信号,会使得至少一个第一终端与第二终端接收到信号的总体增益增加,其中,第一终端是第二终端的支撑终端,第二终端是受益终端,从而,提高受益终端的最终接收信号的增益。

Description

终端协作通信的方法、 装置和系统
技术领域
本发明实施例涉及通信技术, 尤其涉及一种终端协作通信的方法、 装 置和系统。 背景技术
随着通信技术的飞速发展, 为了提高系统的容量和频谱利用率, 一种 常用的方式是通过协作通信来实现。
协作通信是通过终端之间共享天线, 构造虚拟的天线阵列来实现的, 将进行协作通信的终端中具有通信需求的目标终端称为受益终端, 实现协 作功能的终端称为受益终端的支撑终端。 举例来说, 基站要向 UE0 发送 一个信号 S, UE0即为受益终端, UE1用来与 UE0协作通信, 即 UE1为 UE0 的一个支撑终端, 由于无线信号空间传输的广播特性, UE1 和 UE0 都能够接收到来自基站发送的信号 S, UE1将接收到的信号发送给 UE0, UE0通过最大比合并等技术对自身接收到的信号和 UE1发送的信号进行 合并处理, 实现联合接收, 获得最终接收信号。 然而, 在此过程中, 基站 是依据受益终端反馈的受益终端自身的波束方向发送信号的, 也就是只有 受益终端接收的信号强度较强, 支撑终端接收到的信号强度都非常弱。
采用现有技术的方法进行协作通信时, 受益终端的最终接收信号的增 ϋ不! ¾ 发明内容
本发明实施例提供一种终端协作通信的方法、 装置和系统, 以提高受 益终端的最终接收信号的增益。
本发明实施例第一方面提供一种终端协作通信的方法, 包括: 第二终端接收至少一个第一终端发送的至少一个第一信道的信道参 数, 其中所述第一终端是所述第二终端的支撑终端;
所述第二终端根据所述至少一个第一信道的信道参数和第二终端的 第二信道的信道参数, 获取至少一个第一信道和第二信道组成的合信道的 等效信道特征信息, 所述第一信道是基站与所述第一终端之间的信道, 所 述第二信道是基站与所述第二终端之间的信道;
将所述等效信道特征信息发送给基站, 以使所述基站根据所述等效信 道特征信息确定下行发送配置信息, 并根据所述下行发送配置信息发送给 所述第二终端的信号。
结合第一方面, 在第一种可能的实现方式中, 所述第一信道的信道参 数包括:
第一信道估计值;
所述第二信道的信道参数包括: 第二信道估计值;
所述第二终端根据所述至少一个第一信道的信道参数和第二终端的 第二信道的信道参数, 获取至少一个第一信道和第二信道组成的合信道的 等效信道特征信息, 包括:
所述第二终端根据所述至少一个第一信道估计值和所述第二信道估 计值, 获取至少一个第一信道和第二信道的组成的合信道的等效信道特征 信息。
结合第一种可能的实现方式, 在第二种可能的实现方式中, 所述第一 信道的信道参数还包括:
第一干扰;
所述第二信道的信道参数还包括:
第二干扰;
所述第二终端根据所述至少一个第一信道的信道参数和第二终端的 第二信道的信道参数, 获取至少一个第一信道和第二信道组成的合信道的 等效信道特征信息, 包括:
所述第二终端根据所述至少一个第一信道估计值和所述第一干扰, 以 及所述第二信道估计值和所述第二干扰, 获取至少一个第一信道和第二信 道的组成的合信道的等效信道特征信息。
结合第一种可能的实现方式, 在第三种可能的实现方式中, 所述第一 信道的信道参数还包括:
第一噪声功率; 所述第二信道的信道参数还包括:
第二噪声功率;
所述第二终端根据所述至少一个第一信道的信道参数和第二终端的 第二信道的信道参数, 获取至少一个第一信道和第二信道组成的合信道的 等效信道特征信息, 包括:
所述第二终端根据所述至少一个第一信道估计值和所述第一噪声功 率, 以及所述第二信道估计值和所述第二噪声功率, 获取至少一个第一信 道和第二信道的组成的合信道的等效信道特征信息。
结合第一种可能的实现方式, 在第四种可能的实现方式中, 所述第一 信道的信道参数还包括:
第一干扰和第一噪声功率;
所述第二信道的信道参数还包括:
第二干扰和第二噪声功率;
所述第二终端根据所述至少一个第一信道的信道参数和第二终端的 第二信道的信道参数, 获取至少一个第一信道和第二信道组成的合信道的 等效信道特征信息, 包括:
所述第二终端根据所述至少一个第一信道估计值、所述第一干扰和所 述第一噪声功率, 以及所述第二信道估计值、 所述第二干扰和所述第二噪 声功率, 获取至少一个第一信道和第二信道的组成的合信道的等效信道特 征信息。
结合第一方面或第一方面的第一种至第四种可能的实现方式, 在第五 种可能的实现方式中, 所述等效信道特征信息包括:
码本、 信道质量指示和阵列 RANK的组合; 或
指向波束方向的向量、 信道质量指示和 RANK的组合。
结合第一方面或第一方面的第一种至第五种可能的实现方式, 在第六 种可能的实现方式中, 所述下行发送配置信息包括:
指向波束方向的向量、 调制编码方式以及发送数据流数。
结合第一方面或第一方面的第一种至第六种可能的实现方式, 在第七 种可能的实现方式中, 所述第二终端接收第一终端发送的第一信道的信道 参数之前, 还包括: 所述第二终端接收基站发送的信道估计参考信号;
所述第二终端根据所述信道估计参考信号, 获取所述第二终端的第二 信道的信道参数。
本发明实施例第二方面提供一种终端协作通信的方法, 包括: 第一终 端获取第一信道的信道参数;
所述第一终端向所述第二终端发送所述第一信道的信道参数, 以使所 述第二终端根据所述第一信道的信道参数和所述第二终端的第二信道的 信道参数, 获取第一信道和第二信道组成的合信道的等效信道特征信息; 其中, 所述第二终端是所述第一终端的受益终端, 所述第一信道是基 站与所述第一终端之间的信道, 所述第二信道是基站与所述第二终端之间 的信道。
结合第一方面, 在第一种可能的实现方式中, 所述第一终端获取第一 信道的信道参数包括:
所述第一终端接收基站发送的信道估计参考信号;
所述第一终端根据所述信道估计参考信号, 获取所述第一终端的第一 信道的信道参数。
本发明实施例第三方面, 提供一种终端协作通信的方法, 基站接收第 二终端发送的至少一个第一信道和第二信道组成的合信道的等效信道特 征信息, 所述第一信道是基站与第一终端之间的信道, 所述第二信道是基 站与所述第二终端之间的信道, 所述等效信道特征信息是第二终端根据至 少一个第一终端的至少一个第一信道的信道参数和第二终端的第二信道 的信道参数获取的, 其中, 所述第一终端是所述第二终端的支撑终端; 所述基站根据所述等效信道特征信息确定下行发送配置信息; 所述基站根据所述下行发送配置信息发送给所述第二终端的信号。 结合第三方面, 在第一种可能的实现方式中, 所述等效信道特征信息 包括:
码本、 信道质量指示和阵列 RANK的组合; 或
指向波束方向的向量、 信道质量指示和 RANK的组合。
结合第一种可能的实现方式, 在第二种可能的实现方式中, 所述下行 发送配置信息包括: 指向波束方向的向量、 调制编码方式以及发送数据流数。 结合第三方面或第三方面的第一种可能的实现方式或第二种可能的 实现方式中, 在第三种可能的实现方式中, 所述接收第二终端发送的至少 一个第一信道和第二信道组成的合信道的等效信道特征信息之前, 还包 括:
所述基站向第一终端与第二终端发送信道估计参考信号。
本发明实施例第四方面提供一种终端协作通信的方法, 包括: 基站接 收至少一个第一终端发送的至少一个第一导频频参考信号和第二终端发 送的第二导频参考信号, 其中, 所述至少一个第一终端发送的至少一个第 一导频参考信号是根据与所述第二终端的第二导频参考信号的配置信息 发送的, 所述第一终端是所述第二终端的支撑终端;
所述基站根据所述至少一个第一导频参考信号和所述第二导频参考 信号, 确定下行发送配置信息;
所述基站根据所述下行发送配置信息发送给所述第二终端的信号。 结合第四方面, 在第一种可能的实现方式中, 所述下行发送配置信息 包括:
波束方向、 调制编码方式和发送数据流数。
结合第四方面或第四方面的第一种可能的实现方式, 在第二种可能的 实现方式中, 所述基站接收至少一个第一终端发送的至少一个第一导频频 参考信号和第二终端发送的第二导频参考信号之前, 还包括:
所述基站向第一终端与第二终端发送信道估计参考信号。
本发明实施例第五方面提供一种终端协作通信的方法, 包括: 第二终 端向第一终端发送所述第二终端的第二导频参考信号的配置信息, 以使所 述第一终端根据所述第二导频参考信号的配置信息向基站发送第一导频 参考信号, 其中, 所述第一终端是所述第二终端的支撑终端;
所述第二终端向基站发送所述第二导频参考信号, 以使所述基站根据 所述第一导频参考信号和所述第二导频参考信号, 确定用于发送给所述第 二终端的信号的下行发送配置信息。
结合第五方面, 在第一种可能的实现方式中, 所述方法还包括: 所述第二终端接收基站发送的信道估计参考信号; 所述第二终端根据所述信道估计参考信号获取所述第二终端与所述 基站之间的第二信道的第二信道估计值、第二干扰和第二噪声功率的线性 组合;
所述第二终端将所述第二信道的第二信道估计值、第二干扰和第二噪 声功率的线性组合发送给所述第一终端, 以使所述第一终端根据所述第二 信道的第二信道估计值、第二干扰和第二噪声功率的线性组合和所述第一 信道的第一信道估计值、第一干扰和第一噪声功率的线性组合确定所述第 一导频参考信号的发送功率。
本发明实施例第六方面提供一种终端协作通信的方法, 包括: 第一终端接收第二终端发送的第二导频参考信号的配置信息, 所述第 二终端是第一终端的受益终端;
所述第一终端根据所述第二导频参考信号的配置信息向基站发送第 一导频参考信号, 以使所述基站根据所述第一导频参考信号和所述第二导 频参考信号, 确定用于发送给所述第二终端的信号的下行发送配置信息。
结合第六方面, 在第一种可能的实现方式中, 所述第一终端根据所述 第二导频参考信号的配置信息向基站发送第一导频参考信号之前, 还包 括:
第一终端接收基站发送的信道估计参考信号;
所述第一终端根据所述信道估计参考信号获取所述第一终端与所述 基站之间的第一信道的第一信道估计值、第一干扰和第一噪声功率的线性 组合;
所述第一终端接收所述第二终端发送的所述第二终端与所述基站之 间的第二信道的第二信道估计值、 第二干扰和第二噪声功率的线性组合; 所述第一终端根据所述第二导频参考信号的配置信息向基站发送第 一导频参考信号包括:
所述第一终端根据所述第二信道的第二信道估计值、第二干扰和第二 噪声功率的线性组合和所述第一信道的第一信道估计值、第一干扰和第一 噪声功率的线性组合确定所述第一导频参考信号的发送功率;
所述第一终端根据所述第二导频参考信号的配置信息和所述发送功 率向基站发送第一导频参考信号。 本发明实施例第七方面提供一种终端协作通信的装置, 包括: 接收模块, 用于接收至少一个第一终端发送的至少一个第一信道的信 道参数, 其中所述第一终端是第二终端的支撑终端;
处理模块, 用于根据所述至少一个第一信道的信道参数和第二终端的 第二信道的信道参数, 获取至少一个第一信道和第二信道组成的合信道的 等效信道特征信息, 所述第一信道是基站与所述第一终端之间的信道, 所 述第二信道是基站与所述第二终端之间的信道;
发送模块, 用于将所述等效信道特征信息发送给基站, 以使所述基站 根据所述等效信道特征信息确定下行发送配置信息, 并根据所述下行发送 配置信息发送给所述第二终端的信号。
结合第七方面, 在第一种可能的实现方式中, 所述第一信道的信道参 数包括:
第一信道估计值;
所述第二信道的信道参数包括: 第二信道估计值;
所述处理模块具体用于根据所述至少一个第一信道估计值和所述第 二信道估计值, 获取至少一个第一信道和第二信道的组成的合信道的等效 信道特征信息。
结合第一种可能的实现方式, 在第二种可能的实现方式中, 所述第一 信道的信道参数还包括:
第一干扰;
所述第二信道的信道参数还包括:
第二干扰;
所述处理模块具体用于根据所述至少一个第一信道估计值和所述第 一干扰, 以及所述第二信道估计值和所述第二干扰, 获取至少一个第一信 道和第二信道的组成的合信道的等效信道特征信息。
结合第一种可能的实现方式, 在第三种可能的实现方式中, 所述第一 信道的信道参数还包括:
第一噪声功率;
所述第二信道的信道参数还包括:
第二噪声功率; 所述处理模块具体用于根据所述至少一个第一信道估计值和所述第 一噪声功率, 以及所述第二信道估计值和所述第二噪声功率, 获取至少一 个第一信道和第二信道的组成的合信道的等效信道特征信息。
结合第一种可能的实现方式, 在第四种可能的实现方式中, 所述第一 信道的信道参数还包括:
第一干扰和第一噪声功率;
所述第二信道的信道参数还包括:
第二干扰和第二噪声功率;
所述处理模块具体用于根据所述至少一个第一信道估计值、所述第一 干扰和所述第一噪声功率, 以及所述第二信道估计值、 所述第二干扰和所 述第二噪声功率, 获取至少一个第一信道和第二信道的组成的合信道的等 效信道特征信息。
结合第七方面或第七方面的第一种至第四种可能的实现方式, 在第五 种可能的实现方式中, 所述等效信道特征信息包括:
码本、 信道质量指示和阵列 RANK的组合; 或
指向波束方向的向量、 信道质量指示和 RANK的组合。
结合第七方面或第七方面的第一种至第五种可能的实现方式, 在第六 种可能的实现方式中, 所述下行发送配置信息包括:
指向波束方向的向量、 调制编码方式以及发送数据流数。
结合第七方面或第七方面的第一种至第六种可能的实现方式, 在第七 种可能的实现方式中, 所述接收模块还用于接收基站发送的信道估计参考 信号;
所述处理模块, 还用于根据所述信道估计参考信号, 获取第二终端的 第二信道的信道参数。
本发明实施例第八方面提供一种终端协作通信的装置, 包括: 处理模块, 用于获取第一信道的信道参数;
发送模块, 用于向所述第二终端发送所述第一信道的信道参数, 以使 所述第二终端根据所述第一信道的信道参数和所述第二终端的第二信道 的信道参数, 获取第一信道和第二信道组成的合信道的等效信道特征信 息; 其中, 所述第二终端是第一终端的受益终端, 所述第一信道是基站与 所述第一终端之间的信道, 所述第二信道是基站与所述第二终端之间的信 道。
结合第八方面, 在第一种可能的实现方式中, 所述处理模块具体用于 接收基站发送的信道估计参考信号, 并根据所述信道估计参考信号, 获取 所述第一终端的第一信道的信道参数。
本发明实施例第九方面提供一种终端协作通信的装置, 包括: 接收模 块, 用于接收第二终端发送的至少一个第一信道和第二信道组成的合信道 的等效信道特征信息, 所述第一信道是基站与第一终端之间的信道, 所述 第二信道是基站与所述第二终端之间的信道, 所述等效信道特征信息是第 二终端根据至少一个第一终端的所述至少一个第一信道的信道参数和第 二终端自身的第二信道的信道参数获取的, 其中, 所述第一终端是所述第 二终端的支撑终端;
确定模块, 用于根据所述等效信道特征信息确定下行发送配置信息; 发送模块, 用于根据所述下行发送配置信息发送给所述第二终端的信 号。
结合第九方面, 在第一种可能的实现方式中, 所述等效信道特征信息 包括:
码本、 信道质量指示和阵列 RANK的组合; 或
指向波束方向的向量、 信道质量指示和 RANK的组合。
结合第一种可能的实现方式, 在第二种可能的实现方式中, 所述下行 发送配置信息包括:
指向波束方向的向量、 调制编码方式以及发送数据流数。
结合第九方面, 或第九方面的第一种可能的实现方式或第二种可能的 实现方式, 在第三种可能的实现方式中, 所述发送模块还用于接收第二终 端发送的至少一个第一信道和第二信道组成的合信道的等效信道特征信 息之前, 向第一终端与第二终端发送信道估计参考信号。
本发明实施例第十方面提供一种终端协作通信的装置, 包括: 接收模块, 用于接收至少一个第一终端发送的至少一个第一导频频参 考信号和第二终端发送的第二导频参考信号, 其中, 所述至少一个第一终 端发送的至少一个第一导频参考信号是根据与所述第二终端的第二导频 参考信号的配置信息发送的, 所述第一终端是所述第二终端的支撑终端; 确定模块, 用于根据所述至少一个第一导频参考信号和所述第二导频 参考信号, 确定下行发送配置信息;
发送模块, 用于根据所述下行发送配置信息发送给所述第二终端的信 号。
结合第十方面, 在第一种可能的实现方式中, 所述下行发送配置信息 包括:
指向波束方向的向量、 调制编码方式和发送数据流数。
结合第十方面或第十方面的第一种可能的实现方式, 在第二种可能的 实现方式中, 所述发送模块, 还用于向第一终端与第二终端发送信道估计 参考信号。
本发明实施例第十一方面提供一种终端协作通信的装置, 包括: 第一发送模块, 用于向第一终端发送第二终端的第二导频参考信号的 配置信息, 以使所述第二终端根据所述第二导频参考信号的配置信息向基 站发送第一导频参考信号, 其中, 所述第一终端是所述第二终端的支撑终
¾ ;
第二发送模块, 用于向基站发送所述第二导频参考信号, 以使所述基 站根据所述第一导频参考信号和所述第二导频参考信号, 确定用于发送给 所述第二终端的信号的下行发送配置信息。
结合第十一方面, 在第一种可能的实现方式中, 所述装置还包括: 接 收模块和获取模块;
所述接收模块用于接收基站发送的信道估计参考信号;
所述获取模块用于根据所述信道估计参考信号获取所述第二终端与 所述基站之间的第二信道的第二信道估计值、第二干扰和第二噪声功率的 线性组合;所述第一发送模块,还用于将所述第二信道的第二信道估计值、 第二干扰和第二噪声功率的线性组合发送给所述第一终端, 以使所述第一 终端根据所述第二信道的第二信道估计值、 第二干扰和第二噪声功率的线 性组合和所述第一信道的第一信道估计值、 第一干扰和第一噪声功率的线 性组合确定所述第一导频参考信号的发送功率。 本发明实施例第十二方面提供一种终端协作通信的装置, 包括: 接收 模块, 用于接收第二终端发送的第二导频参考信号的配置信息, 所述第二 终端是第一终端的受益终端;
发送模块, 用于根据所述第二导频参考信号的配置信息向基站发送第 一导频参考信号, 以使所述基站根据所述第一导频参考信号和所述第二导 频参考信号, 确定用于发送给所述第二终端的信号的下行发送配置信息。
结合第十二方面, 在第一种可能的实现方式中, 所述接收模块, 还用 于根据所述第二导频参考信号的配置信息向基站发送第一导频参考信号 之前, 接收基站发送的信道估计参考信号; 根据所述信道估计参考信号获 取所述第一终端与所述基站之间的第一信道的第一信道估计值、第一干扰 和第一噪声功率的线性组合; 接收所述第二终端发送的所述第二终端与所 述基站之间的第二信道的第二信道估计值、 第二干扰和第二噪声功率的线 性组合;
所述发送模块, 具体用于根据所述第二信道的第二信道估计值、 第二 干扰和第二噪声功率的线性组合和所述第一信道的第一信道估计值、 第一 干扰和第一噪声功率的线性组合确定所述第一导频参考信号的发送功率; 根据所述第二导频参考信号的配置信息和所述发送功率向基站发送第一 导频参考信号。
本发明实施例第十三方面提供一种终端协作通信系统, 包括: 如第七方面所述的终端协作通信的装置和如第八方面所述的终端协 作通信的装置。
本发明实施例第十四方面提供一种终端协作通信系统, 包括: 如第十一方面所述的终端协作通信的装置和如第十二方面所述的终 端协作通信的装置。
本发明实施例提供的终端协作通信的方法、 装置和系统, 通过接收至 少一个第一终端发送的至少一个第一信道的信道参数, 其中, 第一终端是 第二终端的支撑终端, 根据至少一个第一信道的信道参数和第二终端的第 二信道的信道参数, 获取至少一个第一信道和第二信道组成的合信道的等 效信道特征信息, 第一信道是基站与第一终端之间的信道, 第二信道是基 站与第二终端之间的信道; 将等效信道特征信息发送给基站, 以使基站根 据等效信道特征信息确定下行发送配置信息, 并根据下行发送配置信息发 送给所述第二终端的信号。 由于等效信道特征信息是第二终端根据至少一 个第一终端发送的至少一个第一信道的信道参数和第二终端的第二信道 的信道参数获取的, 因此, 基站根据等效信道特征信息确定的下行发送配 置信息发送信号, 会使得至少一个第一终端与第二终端接收到信号的总体 增益增加, 第二终端是受益终端, 从而, 提高受益终端的最终接收信号的 皿。 附图说明
为了更清楚地说明本发明实施例或现有技术中的技术方案, 下面将对 实施例或现有技术描述中所需要使用的附图作一简单地介绍, 显而易见 地, 下面描述中的附图是本发明的一些实施例, 对于本领域普通技术人员 来讲, 在不付出创造性劳动性的前提下, 还可以根据这些附图获得其他的 附图。
图 1为本发明终端协作通信的方法实施例一的流程示意图; 图 2为本发明终端协作通信的方法实施例二的流程示意图; 图 3为本发明终端协作通信的方法实施例三的流程示意图; 图 4为本发明终端协作通信的方法实施例四的流程示意图; 图 5为本发明终端协作通信的方法实施例五的流程示意图; 图 6为本发明终端协作通信的方法实施例六的流程示意图; 图 7为本发明终端协作通信的方法实施例七的流程示意图; 图 8为本发明终端协作通信的方法实施例八的流程示意图; 图 9为本发明终端协作通信的装置实施例一的结构示意图; 图 10为本发明终端协作通信的装置实施例二的结构示意图; 图 11为本发明终端协作通信的装置实施例三的结构示意图; 图 12为本发明终端协作通信的装置实施例四的结构示意图; 图 13为本发明终端协作通信的装置实施例五的结构示意图; 图 14为本发明终端协作通信的装置实施例六的结构示意图; 图 15为本发明终端协作通信的装置实施例七的结构示意图。 具体实施方式 为使本发明实施例的目的、 技术方案和优点更加清楚, 下面将结合本 发明实施例中的附图, 对本发明实施例中的技术方案进行清楚、 完整地描 述, 显然,所描述的实施例是本发明一部分实施例, 而不是全部的实施例。 基于本发明中的实施例, 本领域普通技术人员在没有作出创造性劳动前提 下所获得的所有其他实施例, 都属于本发明保护的范围。
为了提高终端协作通信的效果, 使得受益终端获取的最终接收信号的 增益最大化, 本发明实施例通过综合考虑受益终端和受益终端的各支撑终 端的信道参数信息, 确定基站更优的下行发送配置信息, 根据更优的下行 发送配置信息发送信息, 从而提高受益终端的最终接收信号的增益。
下面以几个具体的实施例对本发明的技术方案进行详细描述。
图 1为本发明终端协作通信的方法实施例一的流程示意图, 本实施例 的方法应用于频分双工 (FrequencyDivisionDuplexing , 以下简称: FDD ) 系统中, 如图 1所示, 本实施例的方法包括:
S101 : 第二终端接收至少一个第一终端发送的至少一个第一信道的信 道参数。
第二终端是具有通信需求的目标终端, 即受益终端, 第一终端是与第 二终端协作通信的终端, 即第一终端是第二终端的支撑终端, 第一终端的 个数可以是一个, 也可以是多个, 具体个数根据实际应用中的需求确定。
每个第一终端可以通过接收基站发送的信道估计参考信号, 根据信道 估计参考信号, 获取第一终端与基站之间的第一信道的信道参数, 其中, 第一信道的信道参数可以包含第一信道估计值; 或者包含第一信道估计值 和第一干扰; 或者包含第一信道估计值和第一噪声功率; 或者包含第一信 道估计值、 第一干扰和第一噪声功率。
每个第一终端都将自己获取的第一信道的信道参数发送给第二终端, 第二终端接收每个第一终端发送的第一信道的信道参数。
S102 : 第二终端根据至少一个第一信道的信道参数和第二终端的第二 信道的信道参数, 获取至少一个第一信道和第二信道组成的合信道的等效 信道特征信息。
其中, 第一信道是基站与第一终端之间的信道, 第二信道是基站与第 二终端之间的信道。第二终端获取的第二信道的信道参数的也可以通过接 收基站发送的信道估计参考信号, 根据信道估计参考信号, 获取第二终端 与基站之间的第二信道的信道参数; 其中, 第二信道的信道参数可以包含 第二信道估计值; 或者包含第一信道估计值和第一干扰; 或者包含第一信 道估计值和第一噪声功率; 或者包含第一信道估计值、 第一干扰和第一噪 声功率。
可选地, 当第一信道的信道参数包括第一信道估计值; 第二信道的信 道参数包括第二信道估计值时, 第二终端可以根据至少一个第一信道估计 值和第二信道估计值, 获取至少一个第一信道和第二信道的组成的合信道 的等效信道特征信息。
可选地, 第一信道的信道参数包括第一信道估计值和第一干扰; 第二 信道的信道参数可以包括第二信道估计值和第二干扰时, 第二终端根据至 少一个第一信道估计值和第一干扰, 以及第二信道估计值和所述第二干 扰, 获取至少一个第一信道和第二信道的组成的合信道的等效信道特征信 息。
可选地, 第一信道的信道参数包括第一信道估计值和第一噪声功率; 第二信道的信道参数包括: 第二信道估计值和第一噪声功率时, 第二终端 可以根据至少一个第一信道估计值和第一噪声功率, 以及第二信道估计值 和第二噪声功率, 获取至少一个第一信道和第二信道的组成的合信道的等 效信道特征信息。
可选地, 第一信道的信道参数包括第一信道估计值、 第一干扰和第一 噪声功率; 第二信道的信道参数可以包括第二信道估计值、 第二干扰和第 一噪声功率时, 第二终端可以根据至少一个第一信道估计值、 第一干扰和 第一噪声功率, 以及第二信道估计值、 第二干扰和第二噪声功率, 获取至 少一个第一信道和第二信道的组成的合信道的等效信道特征信息。
等效信道特征信息包括: 码本、 信道质量指示和阵列 (RANK) 的组 合; 或者指向波束方向的向量、 信道质量指示和 RANK的组合。
以第一信道的信道参数包括第一信道估计值; 第二信道的信道参数包 括第二信道估计值为例, 采用如下方式获取波束方向, 假设 1¾是基站与 第一终端之间的第一信道估计值, 是基站与第二终端之间的第二信道估 计值, 则第一信道与第二信道组成的合信道的等效信道为 [H。, H , ¥工表 示波束方向,则¥1为^。,^ [ ^] 的最大特征值对应的特征向量,其中,
[ Γ表示复数, 表示转置。
再以第一信道的信道参数包括第一信道估计值和第一噪声功率; 第二 信道的信道参数包括: 第二信道估计值和第一噪声功率为例, 采用如下方 式获取波束方向, 假设 1¾是基站与第一终端之间的第一信道估计值, 是基站与第二终端之间的第二信道估计值, P。表示第一噪声功率, 表示 一信道与第二信道组成的合信道的等效信道为
Figure imgf000016_0001
特征值对应的特征向量, 其中, [ Γ表示复数, 表示转置。
上面仅为举例说明, 当然还可以根据第一信道的信道参数和第二信道 的信道参数中包含的具体参数计算等效信道的方式, 本发明对此不做限 制, 通过综合考虑多个参数获得的等效信道特征信息, 比只考虑信道估计 值获得的等效信道特征信息更加准确, 基于此, 能够使基站确定更优的下 行发送配置信息, 从而能够进一步提高第二终端 (受益终端) 最终接收信 号的增益。
S103 : 第二终端将等效信道特征信息发送给基站, 以使基站根据等效 信道特征信息确定下行发送配置信息, 并根据下行发送配置信息发送给第 二终端的信号。
下行发送配置信息可以包括: 指向波束方向的向量、 调制编码方式以 及发送数据流数。
基站可以根据码本、信道质量指示和阵列 RANK的组合确定下行发送 配置信息中的指向波束方向的向量、 调制编码方式以及发送数据流数。
基站也可以根据指向波束方向的向量、 信道质量指示和 RANK 的组 合, 确定下行发送配置信息中的指向波束方向的向量、 调制编码方式以及 发送数据流数。 本发明实施例提供的终端协作通信的方法, 通过接收至少 一个第一终端发送的至少一个第一信道的信道参数, 其中, 第一终端是第 二终端的支撑终端, 根据至少一个第一信道的信道参数和第二终端的第二 信道的信道参数, 获取至少一个第一信道和第二信道组成的合信道的等效 信道特征信息, 第一信道是基站与第一终端之间的信道, 第二信道是基站 与第二终端之间的信道; 将等效信道特征信息发送给基站, 以使基站根据 等效信道特征信息确定下行发送配置信息, 并根据下行发送配置信息发送 给所述第二终端的信号。 由于等效信道特征信息是第二终端根据至少一个 第一终端发送的至少一个第一信道的信道参数和第二终端的第二信道的 信道参数获取的, 因此, 基站根据等效信道特征信息确定的下行发送配置 信息发送信号, 会使得至少一个第一终端与第二终端接收到信号的总体增 益增加, 第二终端是受益终端, 从而, 提高受益终端的最终接收信号的增 益。 并且, 由于第一信道的信道参数和第二信道的信道参数中可能不仅仅 只包含信道估计值,还包括干扰和 /或噪声功率,通过综合考虑多个参数获 得的等效信道特征信息, 比只考虑信道估计值获得的等效信道特征信息更 加准确, 基于此, 能够使基站确定更优的下行发送配置信息, 从而能够进 一步提高受益终端最终接收信号的增益, 进而提高系统的总体性能增益。
图 2为本发明终端协作通信的方法实施例二的流程示意图, 本实施例 的方法应用于 FDD系统中, 如图 2所示, 本实施例的方法包括:
S201 : 第一终端获取第一信道的信道参数。
具体地, 可以通过接收基站发送的信道估计参考信号, 根据信道估计 参考信号, 获取自身的第一信道的信道参数。
S202 : 第一终端向第二终端发送第一信道的信道参数, 以使第二终端 根据第一信道的信道参数和第二终端的第二信道的信道参数, 获取第一信 道和第二信道组成的合信道的等效信道特征信息。
本实施例中, 第二终端是第一终端的受益终端, 第一信道是基站与第 一终端之间的信道, 第二信道是基站与所述第二终端之间的信道。 通过将 获取的第一信道的信道参数发送给第二终端 (受益终端) , 以使第二终端 根据第一信道的信道参数以及第二终端的第二信道的信道参数获取第一 信道和第二信道组成的合信道的等效信道特征信息, 从而使得基站能够根 据该等效信道特征信息确定较优的下行发送配置信息, 从而, 提高受益终 端的最终接收信号的增益, 进而提高系统的总体性能增益。
图 3为本发明终端协作通信的方法实施例三的流程示意图, 本实施例 的方法应用于 FDD系统中, 如图 3所示, 本实施例的方法包括:
S301 : 基站接收第二终端发送的至少一个第一信道和第二信道组成的 合信道的等效信道特征信息。 其中, 第一信道是基站与第一终端之间的信道, 第二信道是基站与所 述第二终端之间的信道。 第一终端是第二终端的支撑终端, 等效信道特征 信息包括: 码本、 信道质量指示和阵列 RANK的组合; 或者指向波束方向 的向量、 信道质量指示和 RANK的组合。
第二终端发送的至少一个第一信道和第二信道组成的合信道的等效 信道的特征信息, 是第二终端根据至少一个第一终端的至少一个第一信道 的信道参数和第二终端的第二信道的信道参数获取的, 因此, 第一终端和 第二终端还需获取各自的信道参数, 当第一终端和第二终端通过接收基站 发送的信道估计参考信号, 获取各自的信道参数时, 在此步骤之前, 基站 还包括向第一终端与第二终端发送信道估计参考信号。
S302: 基站根据等效信道特征信息确定下行发送配置信息。
其中, 下行发送配置信息包括: 指向波束方向的向量、 调制编码方式 以及发送数据流数;
基站可以根据码本、信道质量指示和阵列 RANK的组合确定下行发送 配置信息中的指向波束方向的向量、 调制编码方式以及发送数据流数。
基站也可以根据指向波束方向的向量、 信道质量指示和 RANK 的组 合, 确定下行发送配置信息中的指向波束方向的向量、 调制编码方式以及 发送数据流数。
S303 : 基站根据下行发送配置信息发送给第二终端的信号。
本实施例中, 基站通过接收第二终端发送的至少一个第一信道和第二 信道组成的合信道的等效信道特征信息, 根据上述等效信道特征信息确定 下行发送配置信息, 根据下行发送配置信息发送给第二终端的信号, 由于 等效信道特征信息是第二终端根据至少一个第一终端发送的至少一个第 一信道的信道参数和第二终端自身的第二信道的信道参数获取的, 因此, 基站根据等效信道特征信息确定的下行发送配置信息发送信号, 会使得至 少一个第一终端与第二终端接收到信号的总体增益增加, 其中, 第二终端 是受益终端, 第一终端是第二终端的支撑终端, 从而, 提高受益终端的最 终接收信号的增益, 进而提高系统的总体性能增益。
图 4为本发明终端协作通信的方法实施例四的流程示意图, 本实施例 的方法应用于 FDD系统中, 如图 4所示, 本实施例的方法包括: S401 : 基站向第一终端与第二终端发送信道估计参考信号。
其中, 第二终端是受益终端, 第一终端是第二终端的受益终端, 第一 终端可以为一个也可以为多个。基站向第一终端与第二终端发送信道估计 参考信号, 以使每个第一终端能够根据信道估计参考信号估计出基站与每 个第一终端之间的第一信道的信道参数, 第二终端能够根据信道估计参考 信号估计出基站与第二终端之间的第二信道的信道参数。
S402 : 第一终端和第二终端分别根据信道估计参考信号获取第一信道 的信道参数和第二信道的信道参数。
每个第一终端根据信道估计参考信号获取第一信道的信道参数, 第二 终端根据信道估计参考信号获取第二信道的信道参数。
其中, 第一信道的信道参数可以包含第一信道估计值; 或者包含第一 信道估计值和第一干扰; 或者包含第一信道估计值和第一噪声功率; 或者 包含第一信道估计值、 第一干扰和第一噪声功率。
第二信道的信道参数可以包含第二信道估计值; 或者包含第一信道估 计值和第一干扰; 或者包含第一信道估计值和第一噪声功率; 或者包含第 一信道估计值、 第一干扰和第一噪声功率。
S403 : 第一终端将第一信道的信道参数发送给第二终端。
每个第一终端都将获取的第一信道的信道参数发送给第二终端。 S404 : 第二终端根据第一信道的信道参数和第二终端的第二信道的信 道参数获取第一信道和第二信道组成的合信道的等效信道特征信息。
其中, 等效信道特征信息包括: 码本、信道质量指示和阵列 RANK的 组合; 或者指向波束方向的向量、 信道质量指示和 RANK的组合。
S405 : 第二终端将上述等效信道特征信息发送给基站。
S406 : 基站根据上述等效信道特征信息确定下行发送配置信息, 并根 据上述下行发送配置信息发送信号。
下行发送配置信息可以包括: 指向波束方向的向量、 调制编码方式以 及发送数据流数。
基站可以根据码本、信道质量指示和阵列 RANK的组合确定下行发送 配置信息中的指向波束方向的向量、 调制编码方式以及发送数据流数。
基站也可以根据指向波束方向的向量、 信道质量指示和 RANK 的组 合, 确定下行发送配置信息中的指向波束方向的向量、 调制编码方式以及 发送数据流数。协作通信的各终端接收到基站根据下行配置信息发送的信 号之后, 根据接收机的不同, 采用不同的方法对接收到的信号进行合并处 理, 具体来说, 第一终端是 UE0, 即支撑终端, 第二终端是 UE1 , 即受益 终端, 第一终端接收到基站发送的信号为 y。= H。 + /。。 + N。。, 第二终端接 收到基站发送信号为 ΐ = ·^ + /11 + Λ^, 其中, S为基站发送的信号, Η。是 基站与第一终端之间的第一信道估计值, 是基站与第二终端之间的第二 信道估计值, /。。是终端之间对第一终端的干扰, N。。是第一终端接收到的 噪声, /u是终端之间对第二终端的干扰, Nu是第二终端接收到的噪声, 第 一终端将接收到的信号发送给第二终端, 则第二终端获取到的信号 Y= 第二终端对接收到的信号进行合并处理, 合
Figure imgf000020_0003
并处理的方法与接收机有关, 其中, 使用最为广泛的接收机是 MRC接收 机和 IRC接收机, 当接收机为 MRC接收机时, 第二终端合并处理后的最
Hn
终信号 v v MRC 1 ^¾中, WMRC― []Η表示共轭转置, 其中第二终端通
H、
过的接收第一终端发送的第一信道的信道参数获知第一终端的 Η。。
当接收机为 IRC时,第二终端合并处理后的最红信号 ,其中, w = 其中, 表示噪声功率, I表示单位矩阵, R '表;
H 干扰信号的相关矩阵, 贝 iJ R, = E E )表示 的数学期望, 其中,
Figure imgf000020_0001
、 分别表示第一终端获取的第一信道的信道参数中的第一干扰和第二 终端获取的第二信道的信道参数中的第二干扰。 UE1 通过 UE0将第一信 道的信道参数发送给 UE1获知 。。 其中, 为信道估计参考信号的
Figure imgf000020_0004
Figure imgf000020_0002
本发明实施例提供的终端协作通信的方法和装置, 通过第一终端将第 一信道的信道参数发送给第二终端, 第二终端根据第一信道的信道参数和 第二终端的第二信道的信道参数获取第一信道和第二信道组成的合信道 的等效信道特征信息, 第二终端将上述等效特征信息发送给基站, 基站根 据上述等效特征信息确定下行发送配置信息, 并根据上述下行配置信息发 送给第二终端的信号。 由于等效信道特征信息是第二终端根据至少一个第 一终端发送的至少一个第一信道的信道参数和第二终端自身的第二信道 的信道参数获取的, 因此, 基站根据等效信道特征信息确定的下行发送配 置信息发送信号, 会使得至少一个第一终端与第二终端接收到信号的总体 增益增加, 其中, 第二终端是受益终端, 从而, 提高受益终端的最终接收 信号的增益。 并且, 由于第一信道的信道参数和第二信道的信道参数中可 能不仅仅只包含信道估计值,还包括干扰和 /或噪声功率,通过综合考虑多 个参数获得的等效信道特征信息, 比只考虑信道估计值获得的等效信道特 征信息更加准确, 基于此, 能够使基站确定更优的下行发送配置信息, 从 而能够进一步提高受益终端最终接收信号的增益, 进而提高系统的总体性 能增益。
图 5为本发明终端协作通信的方法实施例五的流程示意图, 本实施例 的方法应用于时分双工 (TimeDivisionDuplexing, 以下简称: TDD) 系统 中, 如图 5所示, 本实施例的方法包括:
S501 : 基站接收至少一个第一终端发送的至少一个第一导频参考信号 和第二终端发送的第二导频参考信号。
其中, 第二终端是受益终端, 第一终端是第二终端的支撑终端, 每个 第一终端发送的第一导频参考信号都是根据第二终端的第二导频参考信 号的配置信息发送的, 第二导频信号的配置信息包括退避时间等信息, 当 第一终端根据第二终端的第二导频参考信号的配置信息向基站发送第一 导频参考信号时, 对于基站而言, 基站认为该第一导频参考信号依然是第 二终端发送的。 也就是基站认为接收到的至少一个第一导频参考信号和第 二导频参考信号都是第二终端发送的。
S502: 基站根据至少一个第一导频参考信号和第二导频参考信号, 确 定下行发送配置信息。
其中, 下行发送配置信息包括指向波束方向的向量、 调制编码方式和 发送数据流数。基站之所以能够根据至少一个第一导频参考信号和第二导 频参考信号, 确定下行发送配置信息, 是利用了 TDD系统中, 上行信道 和下行信道的互易性确定的, 即可以通过上行信道的参数估计下行信道的 参数。
S503 : 基站根据下行发送配置信息发送给第二终端的信号。
本实施例中, 由于基站是根据至少一个第一导频参考信号和第二导频 参考信号确定的下行发送配置, 根据该下行发送配置信息发送信号, 会使 得至少一个第一终端与第二终端接收到信号的总体增益增加, 其中, 第二 终端是受益终端, 第一终端是第二终端的支撑终端, 从而, 提高受益终端 的最终接收信号的增益, 进而提高系统的总体性能增益。
在上述实施例中, 进一步地, 还可以包括: 基站向第一终端与第二终 端发送信道估计参考信号, 以使第一终端根据信道估计参考信号获取第一 终端与基站之间的第一干扰、 第一噪声功率, 第二终端根据信道估计参考 信号获取第二终端与基站之间的第二干扰、 第二噪声功率。 第二终端将第 二干扰和第二噪声功率发送给第一终端, 以使第一终端根据第二终端的第 二干扰、 第二噪声功率与第一终端的第一干扰、 第一噪声功率调整发送第 一导频参考信号的发送功率, 也就是, 第一终端向基站发送第一导频参考 信号时根据第二导频参考信号的配置信息以及根据第二干扰、 第二噪声功 率调整的发送功率发送的。基站根据这样的第一导频参考信号和第二导频 参考信号确定的下行发送配置信息更加优化, 因而, 根据该下行发送配置 信息发送信号, 会使得至少一个第一终端与第二终端接收到信号的总体增 益进一步增加, 从而, 进一步提高受益终端的最终接收信号的增益, 进而 进一步提高系统的总体性能增益。 图 6为本发明终端协作通信的方法实施 例六的流程示意图, 本实施例的方法应用于 TDD系统中, 如图 6所示, 本实施例的方法包括:
S601 : 第二终端向第一终端发送第二终端的第二导频参考信号的配置 信息。
其中, 第二终端是受益终端, 第一终端是第二终端的支撑终端。 第二终端将自己的第二导频参考信号的配置信息发送给第一终端, 以 使第一终端能够采用与第二终端的第二导频参考信号的配置信息向基站 发送第一导频参考信号, 这样, 对于基站而言, 接收到第一终端发送的第 一导频参考信号会认为是第二终端发送的。
S602 : 第二终端向基站发送第二导频参考信号。
基站利用 TDD系统中上行信道与下行信道的互易性, 根据第一导频 参考信号和第二导频参考信号, 确定用于发送给所述第二终端的信号的下 行发送配置信息, 以根据下行发送配置信息发送给第二终端的信号。 本实施例中, 通过第二终端向第一终端发送第二终端的第二导频参考 信号的配置信息, 以使第一终端能够根据上述配置信息向基站发送第一导 频参考信号, 从而使得基站能够利用 TDD系统上行信号与下行信号的互 易性, 根据第一导频参考信号和第二导频参考信号确定下行发送配置信 息, 并根据下行发送配置信息发送信号, 由于基站是根据第一导频参考信 号和第二导频参考信号确定的下行发送配置, 根据该下行发送配置信息发 送信号, 会使得第一终端与第二终端接收到信号的总体增益增加, 其中, 第一终端是指支撑终端, 第二终端是值受益终端, 从而, 提高受益终端的 最终接收信号的增益, 进而提高系统的总体性能增益。
在上述实施例中, 进一步地, 还可以包括: 第二终端接收基站发送的 信道估计参考信号, 根据上述信道估计参考信号获取第二终端与基站之间 的第二信道的第二信道估计值、 第二干扰和第二噪声功率的线性组合, 并 将第二信道估计值、 第二干扰和第二噪声功率的线性组合发送给第一终 端, 以使第一终端根据第二信道的第二信道估计值、 第二干扰和第二噪声 功率的线性组合与第一信道的第一信道估计值、第一干扰和第一噪声功率 的线性组合调整发送第一导频参考信号的发送功率, 也就是, 第一终端向 基站发送第一导频参考信号是根据第二导频参考信号的配置信息以及第 二信道的第二信道估计值、第二干扰和第二噪声功率的线性组合与第一信 道的第一终端的第一信道估计值、 第一干扰和第一噪声功率的线性组合调 整的发送功率发送的。 基站根据这样的第一导频参考信号和第二导频参考 信号确定的下行发送配置信息更加优化, 因而, 根据该下行发送配置信息 发送信号, 会使得至少一个第一终端与第二终端接收到信号的总体增益进 一步增加, 从而, 进一步提高受益终端的最终接收信号的增益, 进而进一 步提高系统的总体性能增益。
图 7为本发明终端协作通信的方法实施例七的流程示意图, 本实施例 的方法应用于 TDD系统中, 如图 7所示, 本实施例的方法包括:
S701 : 第一终端接收第二终端发送的第二导频参考信号的配置信息。 S702 : 第一终端根据第二导频参考信号的配置信息向基站发送第一导 频参考信号, 以使基站根据第一导频参考信号和第二导频参考信号, 确定 用于发送给所述第二终端的信号的下行发送配置信息。 本实施例中, 通过第一终端接收第二终端发送的第二导频参考信号的 配置信息, 根据上述配置信息向基站发送第一导频参考信号, 由于第一终 端是根据第二导频参考信号的配置信息发送的第一导频参考信号, 因此, 对于基站而言, 认为接收到的第一导频参考信号依然是第二终端发送的, 从而使得基站能够利用 TDD系统上行信号与下行信号的互易性, 根据第 一导频参考信号和第二导频参考信号确定下行发送配置信息, 并根据下行 发送配置信息发送信号, 由于基站是根据第一导频参考信号和第二导频参 考信号确定的下行发送配置, 根据该下行发送配置信息发送信号, 会使得 第一终端与第二终端接收到信号的总体增益增加, 其中, 第二终端是受益 终端, 第一终端是第二终端的支撑终端, 从而, 提高受益终端的最终接收 信号的增益, 进而提高系统的总体性能增益。
在上述实施例中, 进一步地, 还可以包括: 第一终端接收基站发送的 信道估计参考信号; 根据信道估计参考信号获取第一终端与基站之间的第 一信道的第一终端的第一信道估计值、第一干扰和第一噪声功率的线性组 合; 接收第二终端发送的第二终端与基站之间的第二信道的第二信道估计 值、 第二干扰和第二噪声功率的线性组合, 第一终端根据第二信道的第二 信道估计值、第二干扰和第二噪声功率的线性组合和所述第一信道的第一 信道估计值、第一干扰和第一噪声功率的线性组合确定所述第一导频参考 信号的发送功率; 根据所述第二导频参考信号的配置信息和所述发送功率 向基站发送第一导频参考信号。 也就是, 第一终端向基站发送第一导频参 考信号是根据第二导频参考信号的配置信息以及第二信道估计值、第二干 扰和第二噪声功率的线性组合与第一信道的第一信道估计值、 第一干扰和 第一噪声功率的线性组合调整的发送功率发送的。基站根据这样的第一导 频参考信号和第二导频参考信号确定的下行发送配置信息更加优化, 因 而, 根据该下行发送配置信息发送信号, 会使得至少一个第一终端与第二 终端接收到信号的总体增益进一步增加, 从而, 进一步提高受益终端的最 终接收信号的增益, 进而进一步提高系统的总体性能增益。
图 8为本发明终端协作通信的方法实施例八的流程示意图, 本实施例 的方法应用于 TDD系统中, 如图 8所示, 本实施例的方法包括:
S801 : 基站向至少一个第一终端与第二终端发送信道估计参考信号。 S802 : 每个第一终端根据所述信道估计参考信号获取第一终端与基站 之间的第一信道的第一信道估计值、 第一干扰和第一噪声功率的线性组 合。
S803 : 第二终端根据信道估计参考信号获取第二终端与基站之间的第 二信道的第二信道估计值、 第二干扰和第二噪声功率的线性组合。
其中, S802与 S803没有限定执行顺序。
S804 : 第二终端向每个第一终端发送的第二终端与基站之间的第二信 道的第二信道估计值、 第二干扰和第二噪声功率的线性组合。
每个第一终端根据第二信道估计值、第二干扰和第二噪声功率的线性 组合和第一信道的第一信道估计值、 第一干扰和第一噪声功率的线性组合 确定第一导频参考信号的发送功率。
S805 : 第二终端向每个第一终端发送第二终端的第二导频参考信号的 配置信息。
其中, 第二终端是受益终端, 第一终端是第二终端的支撑终端, 第一 终端可以有一个也可以有多个。
S806 : 第二终端向基站发送第二导频参考信号。
S807 : 每个第一终端根据第二导频参考信号的配置信息和确定的发送 功率向基站发送第一导频参考信号。
S808 : 基站根据接收的至少一个第一终端发送的至少一个第一导频参 考信号和第二终端发送的第二导频参考信号, 确定下行发送配置信息。
S809 : 基站根据下行发送配置信息发送给第二终端的信号。
协作通信的各终端接收到基站根据下行配置信息发送的信号之后, 第 一终端将通过基站发送的信道估计参考信号估计出来的第一信道的信道 参数发送给第二终端, 根据接收机的不同, 第二终端采用不同的方法对接 收到的信号进行合并处理, 具体处理方法与图 4所示实施例中的处理方法 相同, 在此不再赘述。
本实施例中, 第二终端向每个第一终端发送第二终端的第二导频参考 信号的配置信息, 以使每个第一终端根据第二导频参考信号的配置信息向 基站发送第一导频参考信号。基站根据接收的至少一个第一终端发送的至 少一个导频频参考信号和第二终端发送的第二导频参考信号, 确定下行发 送配置信息, 并基站根据下行发送配置信息发送信号。 由于基站是根据至 少一个第一导频参考信号和第二导频参考信号确定的下行发送配置, 根据 该下行发送配置信息发送信号, 会使得至少一个第一终端与第二终端接收 到信号的总体增益增加, 其中, 第二终端是受益终端, 第一终端是第二终 端的支撑终端, 从而, 提高受益终端的最终接收信号的增益, 进而提高系 统的总体性能增益。
值得说明的是, 本发明的上述各实施例中第一终端与第二终端之间的 信息交互可以通过近距离通信技术完成, 例如, 无线电保真度 (wireless fidelity, 简称: wifi ) 技术、 蓝牙和高频通信等都可以为第一终端与第二 终端之间的信息交互提供可靠的传输方式。
值得说明的是, 本发明的上述各个实施例中的第一终端和第二终端, 均可以是具有通信需求的终端, 因此, 可应用于单用户多设备场景中。 也 就是, 一个用户具有多个设备时, 当其中有一设备个具有通信需求时, 其 他设备都可以用来作为具有通信需求的设备的支撑终端。
图 9为本发明终端协作通信的装置实施例一的结构示意图, 如图 9所 示, 本实施例的装置包括接收模块 91、处理模块 92和发送模块 93, 其中, 接收模块 91 用于接收至少一个第一终端发送的至少一个第一信道的信道 参数, 其中第一终端是第二终端的支撑终端; 处理模块 92用于根据至少 一个第一信道的信道参数和第二终端的第二信道的信道参数, 获取至少一 个第一信道和第二信道组成的合信道的等效信道特征信息, 第一信道是基 站与第一终端之间的信道, 第二信道是基站与第二终端之间的信道; 发送 模块 93用于将等效信道特征信息发送给基站, 以使基站根据等效信道特 征信息确定下行发送配置信息, 并根据下行发送配置信息发送给第二终端 的信号。
在上述实施例中, 第一信道的信道参数包括: 第一信道估计值; 第二 信道的信道参数包括: 第二信道估计值; 处理模块 92具体用于根据至少 一个第一信道估计值和第二信道估计值, 获取至少一个第一信道和第二信 道的组成的合信道的等效信道特征信息。
在上述实施例中, 第一信道的信道参数还包括: 第一干扰; 第二信道 的信道参数还包括: 第二干扰; 处理模块 92具体用于根据至少一个第一 信道估计值和第一干扰, 以及第二信道估计值和第二干扰, 获取至少一个 第一信道和第二信道的组成的合信道的等效信道特征信息。
在上述实施例中, 第一信道的信道参数还包括: 第一噪声功率; 第二 信道的信道参数还包括: 第二噪声功率; 处理模块 92具体用于根据至少 一个第一信道估计值和第一噪声功率, 以及第二信道估计值和第二噪声功 率, 获取至少一个第一信道和第二信道的组成的合信道的等效信道特征信 息。
在上述实施例中, 第一信道的信道参数还包括: 第一干扰和第一噪声 功率; 第二信道的信道参数还包括: 第二干扰和第二噪声功率; 处理模块 92具体用于根据至少一个第一信道估计值、第一干扰和第一噪声功率, 以 及第二信道估计值、 第二干扰和第二噪声功率, 获取至少一个第一信道和 第二信道的组成的合信道的等效信道特征信息。
在上述实施例中, 等效信道特征信息包括: 码本、 信道质量指示和阵 列 RANK的组合; 或指向波束方向的向量、 信道质量指示和 RANK的组 合。
在上述实施例中, 下行发送配置信息包括: 指向波束方向的向量、 调 制编码方式以及发送数据流数。 在上述实施例中, 接收模块 91 还用于接 收基站发送的信道估计参考信号; 处理模块 92还用于根据信道估计参考 信号, 获取第二终端的第二信道的信道参数。
本实施例的装置可用于执行图 1所示方法实施例的技术方案, 其实现 原理和技术效果类此, 此处不再赘述。
图 10为本发明终端协作通信的装置实施例二的结构示意图, 如图 10 所示, 本实施例的装置包括处理模块 1001和发送模块 1002, 其中, 处理 模块 1001用于获取第一信道的信道参数; 发送模块 1002用于向第二终端 发送第一信道的信道参数, 以使第二终端根据第一信道的信道参数和第二 终端的第二信道的信道参数, 获取第一信道和第二信道组成的合信道的等 效信道特征信息; 其中, 第二终端是第一终端的受益终端, 第一信道是基 站与第一终端之间的信道, 第二信道是基站与第二终端之间的信道。
在上述实施例中, 处理模块 1001 具体用于接收基站发送的信道估计 参考信号, 并根据信道估计参考信号, 获取第一终端的第一信道的信道参 数。
本实施例的装置可用于执行图 2所示方法实施例的技术方案, 其实现 原理和技术效果类此, 此处不再赘述。
图 11为本发明终端协作通信的装置实施例三的结构示意图, 如图 11 所示, 本实施例的装置包括: 接收模块 1101、 确定模块 1102和发送模块 1103, 其中, 接收模块 1101 用于接收第二终端发送的至少一个第一信道 和第二信道组成的合信道的等效信道特征信息, 第一信道是基站与第一终 端之间的信道, 第二信道是基站与第二终端之间的信道, 等效信道特征信 息是第二终端根据至少一个第一终端的至少一个第一信道的信道参数和 第二终端自身的第二信道的信道参数获取的, 其中, 第一终端是第二终端 的支撑终端; 确定模块 1102用于根据等效信道特征信息确定下行发送配 置信息; 发送模块 1103用于根据下行发送配置信息发送给第二终端的信 号。
在上述实施例中, 等效信道特征信息包括: 码本、 信道质量指示和阵 列 RANK的组合; 或指向波束方向的向量、 信道质量指示和 RANK的组 合。 在上述实施例中, 下行发送配置信息包括: 指向波束方向的向量、 调 制编码方式以及发送数据流数。
在上述实施例中, 发送模块 1103还用于接收第二终端发送的至少一 个第一信道和第二信道组成的合信道的等效信道特征信息之前, 向第一终 端与第二终端发送信道估计参考信号。
本实施例的装置可用于执行图 3所示方法实施例的技术方案, 其实现 原理和技术效果类此, 此处不再赘述。
图 12为本发明终端协作通信的装置实施例四的结构示意图, 如图 12 所示, 本实施例的装置包括接收模块 1201、 确定模块 1202 和发送模块 1203, 其中, 接收模块 1201 用于接收至少一个第一终端发送的至少一个 第一导频频参考信号和第二终端发送的第二导频参考信号, 其中, 至少一 个第一终端发送的至少一个第一导频参考信号是根据与第二终端的第二 导频参考信号的配置信息发送的, 第一终端是第二终端的支撑终端; 确定 模块 1202用于根据至少一个第一导频参考信号和第二导频参考信号, 确 定下行发送配置信息; 发送模块 1203 用于根据下行发送配置信息发送给 第二终端的信号。
在上述实施例中, 下行发送配置信息包括: 指向波束方向的向量、 调 制编码方式和发送数据流数。
在上述实施例中, 发送模块 1203还用于向第一终端与第二终端发送 信道估计参考信号。
本实施例的装置可用于执行图 5所示方法实施例的技术方案, 其实现 原理和技术效果类此, 此处不再赘述。
图 13为本发明终端协作通信的装置实施例五的结构示意图, 如图 13 所示, 本实施例的装置包括: 第一发送模块 1301和第二发送模块 1302, 其中, 第一发送模块 1301 用于向第一终端发送第二终端的第二导频参考 信号的配置信息, 以使第二终端根据第二导频参考信号的配置信息向基站 发送第一导频参考信号, 其中, 第一终端是第二终端的支撑终端; 第二发 送模块 1302用于向基站发送第二导频参考信号, 以使基站根据第一导频 参考信号和第二导频参考信号, 确定用于发送给所述第二终端的信号的下 行发送配置信息。
本实施例的装置可用于执行图 6所示方法实施例的技术方案, 其实现 原理和技术效果类此, 此处不再赘述。
图 14为本发明终端协作通信的装置实施例五的结构示意图, 如图 14 所示, 图 14是在图 13所示实施例的基础上, 进一步地, 还包括: 接收模 块 1303和获取模块 1304; 其中, 接收模块 1303用于接收基站发送的信道 估计参考信号; 获取模块 1304用于根据信道估计参考信号获取第二终端 与基站之间的第二信道的第二信道估计值、 第二干扰和第二噪声功率的线 性组合; 第一发送模块, 还用于将第二信道的第二信道估计值、 第二干扰 和第二噪声功率的线性组合发送给第一终端, 以使第一终端根据第二信道 的第二信道估计值、第二干扰和第二噪声功率的线性组合和第一信道的第 一信道估计值、第一干扰和第一噪声功率的线性组合确定第一导频参考信 号的发送功率。
图 15为本发明终端协作通信的装置实施例七的结构示意图, 如图 15所 示, 本实施例的装置包括接收模块 1501和发送模块 1502, 其中, 接收模块 1501用于接收第二终端发送的第二导频参考信号的配置信息, 第二终端是第 一终端的受益终端;发送模块 1502用于根据第二导频参考信号的配置信息向 基站发送第一导频参考信号, 以使基站根据第一导频参考信号和第二导频参 考信号, 确定用于发送给第二终端的信号的下行发送配置信息。
在上述实施例中, 接收模块 1501还用于根据第二导频参考信号的配 置信息向基站发送第一导频参考信号之前, 接收基站发送的信道估计参考 信号; 根据信道估计参考信号获取第一终端与基站之间的第一信道的第一 信道估计值、 第一干扰和第一噪声功率的线性组合; 接收第二终端发送的 第二终端与基站之间的第二信道的第二信道估计值、第二干扰和第二噪声 功率的线性组合;
发送模块 1502具体用于根据第二信道的第二信道估计值、 第二干扰 和第二噪声功率的线性组合和第一信道的第一信道估计值、 第一干扰和第 一噪声功率的线性组合确定第一导频参考信号的发送功率; 根据第二导频 参考信号的配置信息和发送功率向基站发送第一导频参考信号。
本实施例的装置可用于执行图 7所示方法实施例的技术方案, 其实现 原理和技术效果类此, 此处不再赘述。
本发明还提供一种终端协作通信系统包括图 9所示实施例的终端协作 通信的装置和图 10所示实施例的终端协作通信的装置。
本发明还提供一种终端协作通信系统包括图 13 所示实施例的终端协 作通信的装置和图 15所示实施例的终端协作通信的装置。
本领域普通技术人员可以理解:实现上述方法实施例的全部或部分步骤可 以通过程序指令相关的硬件来完成,前述的程序可以存储于一计算机可读取存 储介质中, 该程序在执行时, 执行包括上述方法实施例的步骤; 而前述的存储 介质包括: ROM、 RAM, 磁碟或者光盘等各种可以存储程序代码的介质。
最后应说明的是: 以上各实施例仅用以说明本发明的技术方案, 而非对 其限制; 尽管参照前述各实施例对本发明进行了详细的说明, 本领域的普通 技术人员应当理解:其依然可以对前述各实施例所记载的技术方案进行修改, 或者对其中部分或者全部技术特征进行等同替换; 而这些修改或者替换, 并 不使相应技术方案的本质脱离本发明各实施例技术方案的范围。

Claims

权 利 要 求 书
1、 一种终端协作通信的方法, 其特征在于, 包括:
第二终端接收至少一个第一终端发送的至少一个第一信道的信道参 数, 其中所述第一终端是所述第二终端的支撑终端;
所述第二终端根据所述至少一个第一信道的信道参数和第二终端的 第二信道的信道参数, 获取至少一个第一信道和第二信道组成的合信道的 等效信道特征信息, 所述第一信道是基站与所述第一终端之间的信道, 所 述第二信道是基站与所述第二终端之间的信道;
将所述等效信道特征信息发送给基站, 以使所述基站根据所述等效信 道特征信息确定下行发送配置信息, 并根据所述下行发送配置信息发送给 所述第二终端的信号。
2、 根据权利要求 1所述的方法, 其特征在于, 所述第一信道的信道 参数包括:
第一信道估计值;
所述第二信道的信道参数包括: 第二信道估计值;
所述第二终端根据所述至少一个第一信道的信道参数和第二终端的 第二信道的信道参数, 获取至少一个第一信道和第二信道组成的合信道的 等效信道特征信息, 包括:
所述第二终端根据所述至少一个第一信道估计值和所述第二信道估 计值, 获取至少一个第一信道和第二信道的组成的合信道的等效信道特征 信息。
3、 根据权利要求 2所述的方法, 其特征在于, 所述第一信道的信道 参数还包括:
第一干扰;
所述第二信道的信道参数还包括:
第二干扰;
所述第二终端根据所述至少一个第一信道的信道参数和第二终端的 第二信道的信道参数, 获取至少一个第一信道和第二信道组成的合信道的 等效信道特征信息, 包括:
所述第二终端根据所述至少一个第一信道估计值和所述第一干扰, 以 及所述第二信道估计值和所述第二干扰, 获取至少一个第一信道和第二信 道的组成的合信道的等效信道特征信息。
4、 根据权利要求 2所述的方法, 其特征在于, 所述第一信道的信道 参数还包括:
第一噪声功率;
所述第二信道的信道参数还包括:
第二噪声功率;
所述第二终端根据所述至少一个第一信道的信道参数和第二终端的 第二信道的信道参数, 获取至少一个第一信道和第二信道组成的合信道的 等效信道特征信息, 包括:
所述第二终端根据所述至少一个第一信道估计值和所述第一噪声功 率, 以及所述第二信道估计值和所述第二噪声功率, 获取至少一个第一信 道和第二信道的组成的合信道的等效信道特征信息。
5、 根据权利要求 2所述的方法, 其特征在于, 所述第一信道的信道 参数还包括:
第一干扰和第一噪声功率;
所述第二信道的信道参数还包括:
第二干扰和第二噪声功率;
所述第二终端根据所述至少一个第一信道的信道参数和第二终端的 第二信道的信道参数, 获取至少一个第一信道和第二信道组成的合信道的 等效信道特征信息, 包括:
所述第二终端根据所述至少一个第一信道估计值、所述第一干扰和所 述第一噪声功率, 以及所述第二信道估计值、 所述第二干扰和所述第二噪 声功率, 获取至少一个第一信道和第二信道的组成的合信道的等效信道特 征信息。
6、 根据权利要求 1-5任一项所述的方法, 其特征在于, 所述等效信道 特征信息包括:
码本、 信道质量指示和阵列 RANK的组合; 或
指向波束方向的向量、 信道质量指示和 RANK的组合。
7、 根据权利要求 1-6任一项所述的方法, 其特征在于, 所述下行发送 配置信息包括:
指向波束方向的向量、 调制编码方式以及发送数据流数。
8、 根据权利要求 1-7任一项所述的方法, 其特征在于, 所述第二终端 接收第一终端发送的第一信道的信道参数之前, 还包括:
所述第二终端接收基站发送的信道估计参考信号;
所述第二终端根据所述信道估计参考信号, 获取所述第二终端的第二 信道的信道参数。
9、 一种终端协作通信的方法, 其特征在于, 包括:
第一终端获取第一信道的信道参数;
所述第一终端向所述第二终端发送所述第一信道的信道参数, 以使所 述第二终端根据所述第一信道的信道参数和所述第二终端的第二信道的 信道参数, 获取第一信道和第二信道组成的合信道的等效信道特征信息; 其中, 所述第二终端是所述第一终端的受益终端, 所述第一信道是基 站与所述第一终端之间的信道, 所述第二信道是基站与所述第二终端之间 的信道。
10、 根据权利要求 9所述的方法, 其特征在于, 所述第一终端获取第 一信道的信道参数包括:
所述第一终端接收基站发送的信道估计参考信号;
所述第一终端根据所述信道估计参考信号, 获取所述第一终端的第一 信道的信道参数。
11、 一种终端协作通信的方法, 其特征在于, 包括:
基站接收第二终端发送的至少一个第一信道和第二信道组成的合信 道的等效信道特征信息, 所述第一信道是基站与第一终端之间的信道, 所 述第二信道是基站与所述第二终端之间的信道, 所述等效信道特征信息是 第二终端根据至少一个第一终端的至少一个第一信道的信道参数和第二 终端的第二信道的信道参数获取的, 其中, 所述第一终端是所述第二终端 的支撑终端;
所述基站根据所述等效信道特征信息确定下行发送配置信息; 所述基站根据所述下行发送配置信息发送给所述第二终端的信号。
12、 根据权利要求 11所述的方法, 其特征在于, 所述等效信道特征 信息包括:
码本、 信道质量指示和阵列 RANK的组合; 或
指向波束方向的向量、 信道质量指示和 RANK的组合。
13、 根据权利要求 12所述的方法, 其特征在于, 所述下行发送配置 信息包括:
指向波束方向的向量、 调制编码方式以及发送数据流数。
14、 根据权利要求 11-13任一项所述的方法, 其特征在于, 所述接收 第二终端发送的至少一个第一信道和第二信道组成的合信道的等效信道 特征信息之前, 还包括:
所述基站向第一终端与第二终端发送信道估计参考信号。
15、 一种终端协作通信的方法, 其特征在于, 包括:
基站接收至少一个第一终端发送的至少一个第一导频频参考信号和 第二终端发送的第二导频参考信号, 其中, 所述至少一个第一终端发送的 至少一个第一导频参考信号是根据与所述第二终端的第二导频参考信号 的配置信息发送的, 所述第一终端是所述第二终端的支撑终端;
所述基站根据所述至少一个第一导频参考信号和所述第二导频参考 信号, 确定下行发送配置信息;
所述基站根据所述下行发送配置信息发送给所述第二终端的信号。
16、 根据权利要求 15所述的方法, 其特征在于, 所述下行发送配置 信息包括:
波束方向、 调制编码方式和发送数据流数。
17、 根据权利要求 15或 16所述的方法, 其特征在于, 所述基站接收 至少一个第一终端发送的至少一个第一导频频参考信号和第二终端发送 的第二导频参考信号之前, 还包括:
所述基站向第一终端与第二终端发送信道估计参考信号。
18、 一种终端协作通信的方法, 其特征在于, 包括:
第二终端向第一终端发送所述第二终端的第二导频参考信号的配置 信息, 以使所述第一终端根据所述第二导频参考信号的配置信息向基站发 送第一导频参考信号, 其中, 所述第一终端是所述第二终端的支撑终端; 所述第二终端向基站发送所述第二导频参考信号, 以使所述基站根据 所述第一导频参考信号和所述第二导频参考信号, 确定用于发送给所述第 二终端的信号的下行发送配置信息。
19、 根据权利要求 18所述的方法, 其特征在于, 还包括,
所述第二终端接收基站发送的信道估计参考信号;
所述第二终端根据所述信道估计参考信号获取所述第二终端与所述 基站之间的第二信道的第二信道估计值、第二干扰和第二噪声功率的线性 组合;
所述第二终端将所述第二信道的第二信道估计值、第二干扰和第二噪 声功率的线性组合发送给所述第一终端, 以使所述第一终端根据所述第二 信道的第二信道估计值、第二干扰和第二噪声功率的线性组合和所述第一 信道的第一信道估计值、第一干扰和第一噪声功率的线性组合确定所述第 一导频参考信号的发送功率。
20、 一种终端协作通信的方法, 其特征在于, 包括:
第一终端接收第二终端发送的第二导频参考信号的配置信息, 所述第 二终端是第一终端的受益终端;
所述第一终端根据所述第二导频参考信号的配置信息向基站发送第 一导频参考信号, 以使所述基站根据所述第一导频参考信号和所述第二导 频参考信号, 确定用于发送给所述第二终端的信号的下行发送配置信息。
21、 根据权利要求 20所述的方法, 其特征在于, 所述第一终端根据 所述第二导频参考信号的配置信息向基站发送第一导频参考信号之前, 还 包括:
第一终端接收基站发送的信道估计参考信号;
所述第一终端根据所述信道估计参考信号获取所述第一终端与所述 基站之间的第一信道的第一信道估计值、第一干扰和第一噪声功率的线性 组合;
所述第一终端接收所述第二终端发送的所述第二终端与所述基站之 间的第二信道的第二信道估计值、 第二干扰和第二噪声功率的线性组合; 所述第一终端根据所述第二导频参考信号的配置信息向基站发送第 一导频参考信号包括:
所述第一终端根据所述第二信道的第二信道估计值、第二干扰和第二 噪声功率的线性组合和所述第一信道的第一信道估计值、第一干扰和第一 噪声功率的线性组合确定所述第一导频参考信号的发送功率;
所述第一终端根据所述第二导频参考信号的配置信息和所述发送功 率向基站发送第一导频参考信号。
22、 一种终端协作通信的装置, 其特征在于, 包括:
接收模块, 用于接收至少一个第一终端发送的至少一个第一信道的信 道参数, 其中所述第一终端是第二终端的支撑终端;
处理模块, 用于根据所述至少一个第一信道的信道参数和第二终端的 第二信道的信道参数, 获取至少一个第一信道和第二信道组成的合信道的 等效信道特征信息, 所述第一信道是基站与所述第一终端之间的信道, 所 述第二信道是基站与所述第二终端之间的信道;
发送模块, 用于将所述等效信道特征信息发送给基站, 以使所述基站 根据所述等效信道特征信息确定下行发送配置信息, 并根据所述下行发送 配置信息发送给所述第二终端的信号。
23、 根据权利要求 22所述的装置, 其特征在于, 所述第一信道的信 道参数包括:
第一信道估计值;
所述第二信道的信道参数包括: 第二信道估计值;
所述处理模块具体用于根据所述至少一个第一信道估计值和所述第 二信道估计值, 获取至少一个第一信道和第二信道的组成的合信道的等效 信道特征信息。
24、 根据权利要求 23所述的装置, 其特征在于, 所述第一信道的信 道参数还包括:
第一干扰;
所述第二信道的信道参数还包括:
第二干扰;
所述处理模块具体用于根据所述至少一个第一信道估计值和所述第 一干扰, 以及所述第二信道估计值和所述第二干扰, 获取至少一个第一信 道和第二信道的组成的合信道的等效信道特征信息。
25、 根据权利要求 23所述的装置, 其特征在于, 所述第一信道的信 道参数还包括:
第一噪声功率;
所述第二信道的信道参数还包括:
第二噪声功率;
所述处理模块具体用于根据所述至少一个第一信道估计值和所述第 一噪声功率, 以及所述第二信道估计值和所述第二噪声功率, 获取至少一 个第一信道和第二信道的组成的合信道的等效信道特征信息。
26、 根据权利要求 23所述的装置, 其特征在于, 所述第一信道的信 道参数还包括:
第一干扰和第一噪声功率;
所述第二信道的信道参数还包括:
第二干扰和第二噪声功率;
所述处理模块具体用于根据所述至少一个第一信道估计值、所述第一 干扰和所述第一噪声功率, 以及所述第二信道估计值、 所述第二干扰和所 述第二噪声功率, 获取至少一个第一信道和第二信道的组成的合信道的等 效信道特征信息。
27、 根据权利要求 22-26任一项所述的装置, 其特征在于, 所述等效 信道特征信息包括:
码本、 信道质量指示和阵列 RANK的组合; 或
指向波束方向的向量、 信道质量指示和 RANK的组合。
28、 根据权利要求 22-27任一项所述的装置, 其特征在于, 所述下行 发送配置信息包括:
指向波束方向的向量、 调制编码方式以及发送数据流数。
29、 根据权利要求 22-28任一项所述的装置, 其特征在于, 所述接收 模块还用于接收基站发送的信道估计参考信号;
所述处理模块, 还用于根据所述信道估计参考信号, 获取第二终端的 第二信道的信道参数。
30、 一种终端协作通信的装置, 其特征在于, 包括:
处理模块, 用于获取第一信道的信道参数;
发送模块, 用于向所述第二终端发送所述第一信道的信道参数, 以使 所述第二终端根据所述第一信道的信道参数和所述第二终端的第二信道 的信道参数, 获取第一信道和第二信道组成的合信道的等效信道特征信 息;
其中, 所述第二终端是第一终端的受益终端, 所述第一信道是基站与 所述第一终端之间的信道, 所述第二信道是基站与所述第二终端之间的信 道。
31、 根据权利要求 30所述的装置, 其特征在于, 所述处理模块具体 用于接收基站发送的信道估计参考信号, 并根据所述信道估计参考信号, 获取所述第一终端的第一信道的信道参数。
32、 一种终端协作通信的装置, 其特征在于, 包括:
接收模块, 用于接收第二终端发送的至少一个第一信道和第二信道组 成的合信道的等效信道特征信息, 所述第一信道是基站与第一终端之间的 信道, 所述第二信道是基站与所述第二终端之间的信道, 所述等效信道特 征信息是第二终端根据至少一个第一终端的所述至少一个第一信道的信 道参数和第二终端自身的第二信道的信道参数获取的, 其中, 所述第一终 端是所述第二终端的支撑终端;
确定模块, 用于根据所述等效信道特征信息确定下行发送配置信息; 发送模块, 用于根据所述下行发送配置信息发送给所述第二终端的信 号。
33、 根据权利要求 32所述的装置, 其特征在于, 所述等效信道特征 信息包括:
码本、 信道质量指示和阵列 RANK的组合; 或
指向波束方向的向量、 信道质量指示和 RANK的组合。
34、 根据权利要求 33所述的装置, 其特征在于, 所述下行发送配置 信息包括:
指向波束方向的向量、 调制编码方式以及发送数据流数。
35、 根据权利要求 32-34任一项所述的装置, 其特征在于, 所述发送 模块还用于接收第二终端发送的至少一个第一信道和第二信道组成的合 信道的等效信道特征信息之前, 向第一终端与第二终端发送信道估计参考 信号。
36、 一种终端协作通信的装置, 其特征在于, 包括:
接收模块, 用于接收至少一个第一终端发送的至少一个第一导频频参 考信号和第二终端发送的第二导频参考信号, 其中, 所述至少一个第一终 端发送的至少一个第一导频参考信号是根据与所述第二终端的第二导频 参考信号的配置信息发送的, 所述第一终端是所述第二终端的支撑终端; 确定模块, 用于根据所述至少一个第一导频参考信号和所述第二导频 参考信号, 确定下行发送配置信息;
发送模块, 用于根据所述下行发送配置信息发送给所述第二终端的信 号。
37、 根据权利要求 36所述的装置, 其特征在于, 所述下行发送配置 信息包括:
指向波束方向的向量、 调制编码方式和发送数据流数。
38、根据权利要求 36或 37所述的装置, 其特征在于, 所述发送模块, 还用于向第一终端与第二终端发送信道估计参考信号。
39、 一种终端协作通信的装置, 其特征在于, 包括:
第一发送模块, 用于向第一终端发送第二终端的第二导频参考信号的 配置信息, 以使所述第二终端根据所述第二导频参考信号的配置信息向基 站发送第一导频参考信号, 其中, 所述第一终端是所述第二终端的支撑终
¾ ;
第二发送模块, 用于向基站发送所述第二导频参考信号, 以使所述基 站根据所述第一导频参考信号和所述第二导频参考信号, 确定用于发送给 所述第二终端的信号的下行发送配置信息。
40、 根据权利要求 39所述的装置, 其特征在于, 还包括: 接收模块 和获取模块;
所述接收模块用于接收基站发送的信道估计参考信号;
所述获取模块用于根据所述信道估计参考信号获取所述第二终端与 所述基站之间的第二信道的第二信道估计值、第二干扰和第二噪声功率的 线性组合;所述第一发送模块,还用于将所述第二信道的第二信道估计值、 第二干扰和第二噪声功率的线性组合发送给所述第一终端, 以使所述第一 终端根据所述第二信道的第二信道估计值、 第二干扰和第二噪声功率的线 性组合和所述第一信道的第一信道估计值、 第一干扰和第一噪声功率的线 性组合确定所述第一导频参考信号的发送功率。
41、 一种终端协作通信的装置, 其特征在于, 包括:
接收模块, 用于接收第二终端发送的第二导频参考信号的配置信息, 所述第二终端是第一终端的受益终端;
发送模块, 用于根据所述第二导频参考信号的配置信息向基站发送第 一导频参考信号, 以使所述基站根据所述第一导频参考信号和所述第二导 频参考信号, 确定用于发送给所述第二终端的信号的下行发送配置信息。
42、 根据权利要求 41所述的装置, 其特征在于, 所述接收模块, 还 用于根据所述第二导频参考信号的配置信息向基站发送第一导频参考信 号之前, 接收基站发送的信道估计参考信号; 根据所述信道估计参考信号 获取所述第一终端与所述基站之间的第一信道的第一信道估计值、第一干 扰和第一噪声功率的线性组合; 接收所述第二终端发送的所述第二终端与 所述基站之间的第二信道的第二信道估计值、第二干扰和第二噪声功率的 线性组合;
所述发送模块, 具体用于根据所述第二信道的第二信道估计值、 第二 干扰和第二噪声功率的线性组合和所述第一信道的第一信道估计值、 第一 干扰和第一噪声功率的线性组合确定所述第一导频参考信号的发送功率; 根据所述第二导频参考信号的配置信息和所述发送功率向基站发送第一 导频参考信号。
43、 一种终端协作通信系统, 其特征在于, 包括:
如权利要求 22-29任一所述的终端协作通信的装置和如权利要求 30-31任一所述的终端协作通信的装置。
44、 一种终端协作通信系统, 其特征在于, 包括:
如权利要求 39-40所述的终端协作通信的装置和如权利要求 41-42所 述的终端协作通信的装置。
PCT/CN2013/078522 2013-06-29 2013-06-29 终端协作通信的方法、装置和系统 WO2014205854A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/CN2013/078522 WO2014205854A1 (zh) 2013-06-29 2013-06-29 终端协作通信的方法、装置和系统
CN201380075556.0A CN105122877B (zh) 2013-06-29 2013-06-29 终端协作通信的方法、装置和系统

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2013/078522 WO2014205854A1 (zh) 2013-06-29 2013-06-29 终端协作通信的方法、装置和系统

Publications (1)

Publication Number Publication Date
WO2014205854A1 true WO2014205854A1 (zh) 2014-12-31

Family

ID=52140914

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2013/078522 WO2014205854A1 (zh) 2013-06-29 2013-06-29 终端协作通信的方法、装置和系统

Country Status (2)

Country Link
CN (1) CN105122877B (zh)
WO (1) WO2014205854A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115174317A (zh) * 2021-04-06 2022-10-11 索尼集团公司 用于无线通信的电子设备、无线通信方法以及存储介质

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101170351A (zh) * 2006-10-23 2008-04-30 株式会社Ntt都科摩 一种数据传输方法
CN101951645A (zh) * 2010-09-03 2011-01-19 北京航空航天大学 一种蜂窝中继网络中的下行自适应传输方法
CN101977391A (zh) * 2010-10-15 2011-02-16 北京邮电大学 认知无线网中多终端协作通信方法
CN102025458A (zh) * 2010-12-08 2011-04-20 中兴通讯股份有限公司 多输入多输出中继系统的协作传输方法、节点及系统
CN102185643A (zh) * 2011-05-18 2011-09-14 西安电子科技大学 协作通信多分辨率自适应波束成形方法

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103067132B (zh) * 2012-12-28 2015-09-23 华为技术有限公司 信道探测方法、通信方法、终端及系统

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101170351A (zh) * 2006-10-23 2008-04-30 株式会社Ntt都科摩 一种数据传输方法
CN101951645A (zh) * 2010-09-03 2011-01-19 北京航空航天大学 一种蜂窝中继网络中的下行自适应传输方法
CN101977391A (zh) * 2010-10-15 2011-02-16 北京邮电大学 认知无线网中多终端协作通信方法
CN102025458A (zh) * 2010-12-08 2011-04-20 中兴通讯股份有限公司 多输入多输出中继系统的协作传输方法、节点及系统
CN102185643A (zh) * 2011-05-18 2011-09-14 西安电子科技大学 协作通信多分辨率自适应波束成形方法

Also Published As

Publication number Publication date
CN105122877A (zh) 2015-12-02
CN105122877B (zh) 2020-04-14

Similar Documents

Publication Publication Date Title
JP7453263B2 (ja) mmWAVE無線ネットワークのシングルユーザハイブリッドMIMOのためのシステムおよび方法
US11949477B2 (en) Adaptation of MIMO mode in mmW WLAN systems
US8619641B2 (en) Single-user beamforming method and apparatus suitable for frequency division duplex system
US9059878B2 (en) Codebook feedback method for per-user elevation beamforming
US8532212B2 (en) Wireless communication system, wireless communication device, wireless communication method and computer program
WO2017050295A1 (zh) 一种多天线信道测量方法和装置
EP2568676B1 (en) Pre-coding method, pre-decoding method, transmitter and mobile terminal based on interference alignment
US20130176979A1 (en) Radio communication control method, radio communication system, radio base station, and mobile terminal
WO2015014321A1 (zh) 配置csi过程的方法和基站以及csi反馈方法和用户设备
WO2015180178A1 (zh) 一种报告信道状态信息csi的方法、装置和基站天线
US20160036504A1 (en) Scaling wireless full duplex in multi-cell networks with spatial interference alignment
WO2011137829A1 (zh) 干扰对齐方法和设备及多信道通信系统
WO2013139139A1 (zh) 一种下行信道质量信息获取方法和装置
WO2012055276A1 (zh) 业务数据下发方法和装置
WO2013147554A1 (en) Method and apparatus for transmitting and receiving signals in multi-cellular network
WO2013185732A2 (zh) 一种协作多点数据传输方法及基站
WO2016015282A1 (zh) 数据传输的方法和装置
WO2012129937A1 (zh) 一种多基站多用户下行传输的分布式预处理方法和系统
WO2016112709A1 (zh) 相干联合传输jt的实现方法和装置
WO2015165070A1 (zh) 信道测量方法、信道测量装置、用户设备及系统
WO2022267853A1 (zh) 通道相位校正的方法和相关装置
WO2018023735A1 (zh) 一种终端、基站和获得信道信息的方法
WO2014205854A1 (zh) 终端协作通信的方法、装置和系统
WO2011038585A1 (zh) 优化通信系统的预编码器的方法、基站和终端
WO2018228214A1 (zh) 信道状态信息的传输方法、接入网设备和终端设备

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13888414

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13888414

Country of ref document: EP

Kind code of ref document: A1