WO2016112709A1 - 相干联合传输jt的实现方法和装置 - Google Patents

相干联合传输jt的实现方法和装置 Download PDF

Info

Publication number
WO2016112709A1
WO2016112709A1 PCT/CN2015/090168 CN2015090168W WO2016112709A1 WO 2016112709 A1 WO2016112709 A1 WO 2016112709A1 CN 2015090168 W CN2015090168 W CN 2015090168W WO 2016112709 A1 WO2016112709 A1 WO 2016112709A1
Authority
WO
WIPO (PCT)
Prior art keywords
cell
serving cell
coordinated
csi
coherent
Prior art date
Application number
PCT/CN2015/090168
Other languages
English (en)
French (fr)
Inventor
张婷
李玉洁
Original Assignee
中兴通讯股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中兴通讯股份有限公司 filed Critical 中兴通讯股份有限公司
Publication of WO2016112709A1 publication Critical patent/WO2016112709A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received

Definitions

  • This document relates to, but is not limited to, the field of wireless communications, and more particularly to an implementation method and apparatus for coherent JT.
  • Coordinated Multiple Points Transmission/Reception refers to multiple cells separated geographically, cooperatively participate in data transmission of one terminal or jointly receive data transmitted by one terminal to reduce interference between base stations and improve the cell. Edge performance, meeting cell edge spectrum efficiency. Multiple cells may belong to the same evolved Node B (eNB), or may belong to different eNBs. The former only needs to exchange CoMP processing related service data and control information between each cell in the base station, which is easy. Implementation, while the latter requires interaction between the base stations.
  • eNB evolved Node B
  • the CS/CB avoids interference by assigning different time/frequency resources to two terminals that are geographically close, or by controlling beam steering when performing beamforming weight vector calculation for two terminals scheduled to the same resource. To control each other's interference.
  • JP Jiont Processing
  • the CS/CB avoids interference by assigning different time/frequency resources to two terminals that are geographically close, or by controlling beam steering when performing beamforming weight vector calculation for two terminals scheduled to the same resource. To control each other's interference.
  • JP technique a plurality of cells simultaneously transmit data to a terminal.
  • the gain comes from two aspects: First, the signals transmitted by the cells participating in the cooperation are useful signals, and the total interference level received by the terminal is reduced; second, the cell signals participating in the cooperation are superimposed on each other, and the signals received by the terminal are improved. Power level.
  • SINR Signal to Interference plus Noise Ratio
  • the distance between antennas of different cells is generally larger, much larger than half wavelength, and it is possible for JP to obtain diversity gain.
  • JP is further divided into joint transmission Jiopt Transmission, JT () technology and Dynamic Cell Selection (DCS) technology.
  • JT technology is divided into non-coherent JT and coherent JT.
  • non-coherent JT each cell adopts its own independent precoding scheme, and the combining is implemented at the receiving end.
  • the non-coherent JT can obtain the diversity gain and improve the receiving power of the receiving end.
  • the system is simple.
  • the channel state information (CSI) of the zone adjusts the phase of the transmission signal of each cell according to the channel information, so that each channel can be in-phase merged at the receiving end, and the coherent JT can obtain a single-cell precoding gain, Multi-cell power gain, multi-cell array gain, and multi-cell diversity gain.
  • the coherent JT scheme is the best performance in CoMP technology, and it is also the transmission technology with the most complex system configuration, the most feedback and interaction information, and the most sensitive to delay.
  • phase correction + precoding ensures the coherence of the received signal by multiplying the data transmitted by each cell by a phase factor.
  • the phase factor can be directly fed back by the terminal, and the base station can also calculate and acquire according to the channel information.
  • Global precoding is based on channel state information between all co-cells and terminals, each cell uses a portion of the precoding matrix as its precoding, and the same data is independently transmitted from the cooperating cells.
  • the phase correction is performed based on the wireless channel between the two cells and the terminal, and the phase difference between the received signals received by the terminal has a certain error, which affects the effect of combining in-phase.
  • the embodiment of the invention provides a method and a device for implementing coherent JT, which aims to solve the technical problem that the coherent JT in-phase merge effect is not good.
  • a method for implementing coherent joint transmission JT includes the following steps:
  • the obtained precoding weights are respectively weighted to different channel state information reference signal ports
  • the phase difference between the serving cell and the coordinated cell is obtained according to the received data on the reference signal port of the different channel state information, and is fed back to the base station side.
  • the step of acquiring the precoding weights of the serving cell and the coordinated cell that are fed back last time includes:
  • the first set of channel state information reference symbols CSI-RS configured on the base station side, The first set of CSI-RS received data Y1 performs channel estimation, and obtains a precoding weight W1 used by the serving cell;
  • a second set of CSI-RSs configured on the base station side is received by the terminal side, channel estimation is performed on the received data Y2 of the second set of CSI-RSs, and the precoding weight W2 used by the coordinated cell is obtained.
  • the step of weighting the acquired precoding weights to different channel state information reference signal ports respectively includes:
  • the base station side weights the acquired precoding weight W1 of the serving cell and the precoding weight W2 of the coordinated cell to different channel state information reference signal ports of the third set of CSI-RSs, respectively.
  • the obtaining the phase difference between the serving cell and the coordinated cell according to the received data on the reference signal port of the different channel state information, and feeding back to the base station side includes:
  • the terminal side performs channel estimation on the third set of CSI-RS data Y3 according to the third set of CSI-RSs weighted to the different channel state information reference signal ports, and acquires the phase difference between the serving cell and the coordinated cell.
  • the obtaining the phase difference between the serving cell and the coordinated cell according to the received data on the reference channel port of the different channel state information, and the step of feeding back to the base station side further includes:
  • Phase correction is performed on the serving cell and the coordinated cell according to a phase difference between the serving cell and the coordinated cell.
  • the step of performing phase correction on the serving cell and the coordinated cell according to the phase difference between the serving cell and the coordinated cell includes:
  • An embodiment of the present invention further provides an apparatus for implementing a coherent joint transmission JT, where the apparatus for implementing the coherent JT includes:
  • the weight obtaining module is configured to obtain a precoding weight of the serving cell and the coordinated cell that are fed back at the previous moment;
  • a weighting module configured to weight the obtained precoding weights to different channel state information reference signal ports
  • the phase acquisition module is configured to obtain the phase difference between the serving cell and the coordinated cell according to the received data on the reference signal port of the different channel state information, and feed back to the base station side.
  • the weight obtaining module includes:
  • the serving cell acquiring unit is configured to receive, by the terminal side, the first set of channel state information reference symbols CSI-RS configured by the base station side, perform channel estimation on the received data Y1 of the first set of CSI-RS, and acquire precoding rights used by the serving cell.
  • the coordinated cell acquiring unit is configured to receive a second set of CSI-RSs configured by the base station side by the terminal side, perform channel estimation on the received data Y2 of the second set of CSI-RSs, and acquire a precoding weight W2 used by the coordinated cell.
  • the weighting module is configured to, by the base station side, weight the precoding weight W1 of the serving cell and the precoding weight W2 of the coordinated cell to different channel state information reference signals of the third set of CSI-RS, respectively. On the port.
  • the phase acquiring module is configured to perform channel estimation on the data Y3 of the third set of CSI-RSs by using, by the terminal side, a third set of CSI-RSs that are weighted to different channel state information reference signal ports, Obtain the phase difference between the serving cell and the coordinated cell.
  • the apparatus for implementing the coherent JT further includes:
  • the correction module is configured to perform phase correction on the serving cell and the coordinated cell according to a phase difference between the serving cell and the coordinated cell.
  • the modification module includes:
  • the serving cell weighting unit is configured to weight the data and the DMRS sent by the serving cell according to the pre-coding weight W1 of the serving cell that is fed back;
  • the cooperative cell weighting and phase correction unit is configured to weight the data and the DMRS sent by the coordinated cell according to the precoding weight W2 of the coordinated coordinated cell; according to the phase difference between the serving cell and the coordinated cell, The coordinated cell performs phase correction.
  • the embodiment of the present invention further provides a computer storage medium, where the computer storage medium stores computer executable instructions, and the computer executable instructions are used to execute the foregoing method.
  • the method for implementing the coherent JT obtained by the embodiment of the present invention obtains the precoding weights of the serving cell and the coordinated cell that are fed back at the previous moment; respectively, weights them to different channel state information reference signal ports to obtain the serving cell and the coordinated cell.
  • the phase difference between them The embodiment of the invention solves the current situation that the in-phase combining effect caused by the phase difference estimation in the coherent JT is not good, and effectively improves the system performance.
  • FIG. 1 is a schematic flow chart of a method for implementing a coherent JT according to a first embodiment of the present invention
  • FIG. 2 is a schematic flowchart of the steps of obtaining the precoding weights used by the serving cell and the coordinated cell that are fed back at the previous moment in FIG. 1;
  • FIG. 3 is a schematic flow chart of a method for implementing a coherent JT according to a second embodiment of the present invention
  • FIG. 4 is a schematic flow chart of a method for implementing a coherent JT according to a third embodiment of the present invention.
  • FIG. 5 is a schematic flowchart of a method for implementing a coherent JT according to a fourth embodiment of the present invention.
  • FIG. 6 is a schematic flowchart of a step of performing phase correction on the serving cell and the coordinated cell according to the phase difference between the serving cell and the coordinated cell in FIG. 5;
  • FIG. 7 is a schematic diagram of functional modules of a coherent JT implementation apparatus according to a first embodiment of the present invention.
  • FIG. 8 is a schematic diagram of functional modules of the weight obtaining module of FIG. 7;
  • FIG. 9 is a schematic diagram of functional modules of a coherent JT implementation apparatus according to a second embodiment of the present invention.
  • FIG. 10 is a schematic diagram of functional modules of the correction module illustrated in FIG. 9.
  • FIG. 1 is a schematic flowchart of a method for implementing a coherent JT according to a first embodiment of the present invention.
  • the method for implementing the coherent JT includes The following steps:
  • Step S100 Obtain a precoding weight used by the serving cell and the coordinated cell that are fed back at the previous moment.
  • the implementation unit of the coherent JT obtains the precoding weights of the serving cell and the coordinated cell that are fed back at the previous moment, and the precoding weights are obtained by acquiring the channel state information reference symbols of the first set of channels (Channel State) Data of the Information Reference Signal (CSI-RS), wherein the base station side may be an eNB, and the terminal side receives the data of the first set of CSI-RSs configured on the base station side, and performs channel estimation on the received data Y1 of the first set of CSI-RSs.
  • CSI-RS Channel State Information Reference Signal
  • the channel H1 between the serving cell and the terminal acquires the precoding weight W1 used by the serving cell; the terminal side receives the data of the second set of CSI-RSs configured by the base station side, and performs channel estimation on the received data Y2 of the second set of CSI-RSs. A channel H2 between the coordinated cell and the terminal is obtained, and the precoding weight W2 used by the coordinated cell is obtained.
  • Step S200 Weight the acquired precoding weights to different channel state information reference signal ports.
  • the implementation unit of the coherent JT weights the acquired precoding weights to different channel state information reference signal ports respectively, for example, configures the data of the third set of CSI-RSs of the two ports, and feeds the serving cell and the coordination at the previous moment.
  • the precoding weights of the cells are respectively weighted to different channel state information reference signal ports, for example, the precoding weights fed back by the serving cell are weighted on the first port of the third set of CSI-RS data, and the coordinated cells are used.
  • the precoding weights are weighted on the second port of the data of the third set of CSI-RSs.
  • Step S300 Acquire a phase difference between the serving cell and the coordinated cell according to the received data on the reference signal port of the different channel state information, and feed back to the base station side.
  • the implementation device of the coherent JT receives the data of the third set of CSI-RSs by the terminal side according to the received data respectively weighted to the different channel state information reference signal ports, and performs channel estimation on the received data Y3 of the third set of CSI-RSs. [H 1 ⁇ W 1 (n-1)H 2 ⁇ W 2 (n-1)].
  • H1 represents the channel between the serving cell and the terminal
  • H2 represents the channel between the coordinated cell and the terminal
  • W 1 (n-1) represents the precoding weight of the serving cell fed back at the previous time
  • W 2 (n-1) Indicates the precoding weight of the coordinated cell fed back at the previous moment
  • n represents the current time
  • H 1 ⁇ W 1 (n-1) represents the channel estimation value between the serving cell and the terminal
  • H 2 ⁇ W 2 (n-1) Indicates the channel estimation value between the coordinated cell and the terminal.
  • the phase difference between the serving cell and the coordinated cell is obtained according to the channel estimation value between the serving cell and the terminal, and the channel estimation value between the coordinated cell and the terminal.
  • the implementation method of the coherent JT provided by the embodiment solves the current situation that the in-phase combining effect caused by the phase difference estimation in the coherent JT is not good, and effectively improves the system performance.
  • FIG. 2 is a schematic diagram of a refinement process of step S100 in FIG. 1.
  • the step S100 includes:
  • Step S110 The terminal side receives the first set of CSI-RSs configured by the base station side, performs channel estimation on the received data Y1 of the first set of CSI-RSs, and acquires a precoding weight W1 used by the serving cell.
  • the implementation unit of the coherent JT receives the first set of CSI-RSs configured on the base station side, performs channel estimation on the received data Y1 of the first set of CSI-RSs to obtain H1, and obtains a precoding weight W1 used by the serving cell.
  • the following is an example of taking eight antennas on the base station side (eNB) and two antennas on the terminal side as an example:
  • the eNB configures the first set of CSI-RS data of the eight ports
  • the terminal receives the first set of CSI-RS received data configured by the eNB
  • the first set of CSI-RS data received by the terminal side One CSI-RS data is expressed as:
  • H 1, l denotes a channel between the terminal and the serving cell, dimension 2 * 8;
  • CSIRS 1, l l-th data represents a first set of eight CSI-RS port dimension 8*1;
  • l is a positive integer and 1 ⁇ l ⁇ L, and L represents the length of the first set of CSI-RS.
  • Step S120 The terminal side receives the second set of CSI-RSs configured by the base station side, performs channel estimation on the received data Y2 of the second set of CSI-RSs, and acquires the precoding weight W2 used by the coordinated cell.
  • the implementation unit of the coherent JT receives the second set of CSI-RSs configured on the base station side, performs channel estimation on the received data Y2 of the second set of CSI-RSs to obtain H2, and acquires the precoding weight W2 used by the coordinated cell.
  • the following is an example of taking eight antennas on the base station side (eNB) and two antennas on the terminal side as an example:
  • the eNB configures a second set of CSI-RS data of the eight ports, the terminal receives the second set of CSI-RS received data configured by the eNB, and the second set of CSI-RS received by the terminal side receives the data.
  • the first CSI-RS data is expressed as:
  • H 2,l represents a channel between the coordinated cell and the terminal, and the dimension is 2*8;
  • CSIRS 2,l represents the first data of the second set of eight-port CSI-RS, and the dimension is 8*1;
  • l is a positive integer and 1 ⁇ l ⁇ L, and L represents the length of the second set of CSI-RS.
  • FIG. 3 is a schematic flowchart of a method for implementing a coherent JT according to a second embodiment of the present invention.
  • the steps of step S200 include:
  • Step S200A The base station side weights the acquired precoding weight W1 of the serving cell and the precoding weight W2 of the coordinated cell to different channel state information reference signal ports of the third set of CSI-RS.
  • the implementation unit of the coherent JT is respectively weighted by the base station end to the precoding weights of the serving cell and the coordinated cell fed back at the previous moment to the different channel state information reference signal ports of the third set of CSI-RS, for example, the pre-use of the serving cell Encoding weights are weighted to the first port of the data of the third set of CSI-RSs, and are simultaneously transmitted by eight antennas on the base station side; weighting the precoding weights used by the coordinated cell to the data of the third set of CSI-RSs On the second port, the same is also transmitted through the eight antennas on the base station side.
  • FIG. 4 is a schematic flowchart of a method for implementing a coherent JT according to a third embodiment of the present invention.
  • the steps of step S300 include:
  • Step S300A The terminal side performs channel estimation on the received data Y3 of the third set of CSI-RS according to the third set of CSI-RSs weighted to the different channel state information reference signal ports, and obtains the service.
  • the implementation device of the coherent JT is configured by the terminal side to perform channel estimation on the received data Y3 of the third set of CSI-RS according to the third set of CSI-RSs weighted to the different channel state information reference signal ports [H 1 ⁇ W 1 ( N-1) H 2 ⁇ W 2 (n-1)].
  • H1 represents the channel between the serving cell and the terminal
  • H2 represents the channel between the coordinated cell and the terminal
  • W 1 (n-1) represents the precoding weight of the serving cell fed back at the previous time
  • W 2 (n-1) Indicates the precoding weight of the coordinated cell fed back at the previous moment
  • n represents the current time
  • H 1 ⁇ W 1 (n-1) represents the channel estimation value between the serving cell and the terminal
  • H 2 ⁇ W 2 (n-1) Indicates the channel estimation value between the coordinated cell and the terminal.
  • the phase difference between the serving cell and the coordinated cell is obtained according to the channel estimation value between the serving cell and the terminal, and the channel estimation value between the coordinated cell and the terminal.
  • the eight antennas on the base station side are also taken as an example.
  • the precoding weights used by the serving cell are weighted to the first port of the third set of CSI-RS data, and the precoding weights used by the coordinated cell are weighted to On the second port of the third set of CSI-RS data, the first CSI-RS data in the third set of CSI-RS data received by the terminal side is represented as:
  • W 1,l (n-1) represents the precoding weight of the serving cell fed back at the previous moment, and the dimension is 8*1
  • W 2,l (n-1) represents the pre-communication of the coordinated cell at the previous moment.
  • Encoding weight the dimension is 8*1;
  • Indicates the first data of the second port of the third set of two-port CSI-RS, the dimension is 1*1;
  • n represents the current time;
  • l is a positive integer and 1 ⁇ l ⁇ L.
  • FIG. 5 is a schematic flowchart of a method for implementing a coherent JT according to a fourth embodiment of the present invention.
  • the step S300 further includes:
  • Step S400 Perform phase correction on the serving cell and the coordinated cell according to a phase difference between the serving cell and the coordinated cell.
  • the implementation unit of the coherent JT performs phase correction on the coordinated cell according to a phase difference between the serving cell and the coordinated cell. Therefore, the current situation of inhomogeneous combination caused by inaccurate phase difference estimation in coherent JT is solved, and the system performance is effectively improved.
  • FIG. 6 is a schematic diagram of a refinement process of step S400 in FIG. 5.
  • the step S400 includes:
  • Step S410 Weight the data sent by the serving cell and the demodulation reference signal DMRS according to the precoding weight W1 of the feedback serving cell.
  • the implementation unit of the coherent JT performs weighting on the data sent by the serving cell according to the pre-coding weight W1 of the feedback serving cell, and the terminal side receives the weighted data sent by the serving cell, where the serving cell received by the terminal side sends
  • the weighted data is:
  • H 1 represents a channel between the serving cell and the terminal; D represents data transmitted by the serving cell, and W 1 (n-1) represents a precoding weight of the serving cell fed back at the previous time.
  • the implementing unit of the coherent JT performs weighting on the DMRS sent by the serving cell according to the precoding weight W1 of the serving cell: wherein the DMRS sent by the serving cell received by the terminal side is:
  • Y 1 DMRS H 1 ⁇ W 1 (n-1) ⁇ DMRS (5)
  • H1 represents a channel between the serving cell and the terminal;
  • DMRS represents DMRS data transmitted by the serving cell;
  • W 1 (n-1) represents a precoding weight of the serving cell fed back at the previous time.
  • Step S420 Perform weighting on data and DMRS sent by the coordinated cell according to the precoding weight W2 of the coordinated coordinated cell, and perform the coordinated cell according to a phase difference between the serving cell and the coordinated cell. Phase correction.
  • the implementation unit of the coherent JT performs weighting on the data sent by the coordinated cell according to the precoding weight W2 of the feedback coordinated cell, and the terminal side receives the weighted data sent by the coordinated cell, where the coordinated cell received by the terminal side is sent.
  • the weighted data is:
  • H 2 represents a channel between the coordinated cell and the terminal; D represents data transmitted by the coordinated cell, and W 2 (n-1) represents a precoding weight of the coordinated cell fed back at the previous time, ⁇ Indicates the phase difference between the serving cell and the coordinated cell.
  • the implementation unit of the coherent JT performs weighting on the DMRS sent by the coordinated cell according to the precoding weight W2 of the feedback coordinated cell: where the DMRS sent by the coordinated cell received by the terminal side is:
  • Y 2 DMRS H 2 ⁇ e j ⁇ ⁇ W 2 (n-1) ⁇ DMRS (7)
  • H 2 represents a channel between the coordinated cell and the terminal;
  • DMRS represents DMRS data transmitted by the coordinated cell;
  • W 2 (n-1) represents a precoding weight of the coordinated cell fed back at the previous time,
  • represents the phase difference between the serving cell and the coordinated cell.
  • the implementation unit of the coherent JT performs phase correction on the coordinated cell according to the obtained phase difference between the serving cell and the coordinated cell.
  • the embodiment of the present invention further provides a computer storage medium, where the computer storage medium stores computer executable instructions, and the computer executable instructions are used to execute the foregoing method.
  • FIG. 7 is a schematic diagram of a functional module of a coherent JT implementation apparatus according to a first embodiment of the present invention.
  • the apparatus for implementing a coherent JT is provided as follows:
  • the weight obtaining module 10 is configured to obtain a precoding weight of the serving cell and the coordinated cell that are fed back at the previous moment;
  • the weighting module 20 is configured to weight the acquired precoding weights to different channel state information reference signal ports respectively;
  • the phase obtaining module 30 is configured to obtain the phase difference between the serving cell and the coordinated cell according to the received data on the reference signal port of the different channel state information, and feed back to the base station side.
  • the weight obtaining module 10 of the implementation device of the coherent JT obtains the precoding weights of the serving cell and the coordinated cell that are fed back at the previous time, and the precoding weights are obtained by acquiring the first set of channel CSI-RSs on the base station side.
  • the base station side may be an eNB
  • the terminal side receives a base station side
  • the first set of CSI-RS data is configured to perform channel estimation on the first set of CSI-RS received data Y1 to obtain a channel H1 between the serving cell and the terminal, and obtain a precoding weight W1 used by the serving cell; the terminal side receiving base station
  • the second set of CSI-RS data configured on the side performs channel estimation on the received data Y2 of the second set of CSI-RSs to obtain a channel H2 between the coordinated cell and the terminal, and acquires a precoding weight W2 used by the coordinated cell.
  • the weighting module 20 of the implementation device of the coherent JT respectively weights the acquired precoding weights to different channel state information reference signal ports, for example, configures the data of the third set of CSI-RSs of the two ports, and feeds back the previous time.
  • the precoding weights of the serving cell and the coordinated cell are respectively weighted to different channel state information reference signal ports, for example, the precoding weights used by the serving cell are weighted on the first port of the third set of CSI-RS data,
  • the precoding weights used by the cooperating cell are weighted on the second port of the data of the third set of CSI-RSs.
  • the phase acquisition module 30 of the implementation device of the coherent JT receives the data of the third set of CSI-RSs by the terminal side and the received data of the third set of CSI-RSs according to the received data respectively weighted to the different channel state information reference signal ports.
  • Y3 performs channel estimation to obtain [H 1 ⁇ W 1 (n-1)H 2 ⁇ W 2 (n-1)].
  • H1 represents the channel between the serving cell and the terminal
  • H2 represents the channel between the coordinated cell and the terminal
  • W 1 (n-1) represents the precoding weight of the serving cell fed back at the previous time
  • W 2 (n-1) Indicates the precoding weight of the coordinated cell fed back at the previous moment
  • n represents the current time
  • H 1 ⁇ W 1 (n-1) represents the channel estimation value between the serving cell and the terminal
  • H 2 ⁇ W 2 (n-1) Indicates the channel estimation value between the coordinated cell and the terminal.
  • the phase difference between the serving cell and the coordinated cell is obtained according to the channel estimation value between the serving cell and the terminal, and the channel estimation value between the coordinated cell and the terminal.
  • the implementation device of the coherent JT provided in this embodiment solves the current situation that the in-phase combining effect caused by the phase difference estimation in the coherent JT is not good, and effectively improves the system performance.
  • FIG. 8 is a schematic diagram of a function module of a weight obtaining module, where the weight obtaining module 10 includes:
  • the serving cell acquiring unit 11 is configured to receive, by the terminal side, a first set of channel state information reference symbols CSI-RS configured on the base station side, perform channel estimation on the received data Y1 of the first set of CSI-RSs, and obtain precoding used by the serving cell.
  • the coordinated cell acquiring unit 12 is configured to receive, by the terminal side, a second set of CSI-RSs configured by the base station side, perform channel estimation on the received data Y2 of the second set of CSI-RSs, and acquire a precoding weight W2 used by the coordinated cell.
  • the serving cell acquiring unit 11 of the implementation unit of the coherent JT receives the data of the first set of CSI-RSs configured by the base station side, performs channel estimation on the received data of the first set of CSI-RSs to obtain H1, and obtains the precoding weights used by the serving cell. W1.
  • the base station side eNB
  • the eNB configures the first set of CSI-RS data of the eight ports, and the terminal receives the eNB configuration.
  • a set of CSI-RS data, wherein the first CSI-RS data of the first set of CSI-RS data received by the terminal side is represented as:
  • H 1, l denotes a channel between the terminal and the serving cell, dimension 2 * 8;
  • CSIRS 1, l l-th data represents a first set of eight CSI-RS port dimension 8*1;
  • l is a positive integer and 1 ⁇ l ⁇ L, and L represents the length of the first set of CSI-RS.
  • the coordinated cell acquiring unit 12 of the implementation unit of the coherent JT receives the data of the second set of CSI-RSs configured by the base station side, performs channel estimation on the received data of the second set of CSI-RSs to obtain H2, and obtains the precoding weights used by the coordinated cell. W2.
  • the base station side eNB
  • the terminal side takes two antennas as an example.
  • the eNB configures a second set of CSI-RS data of eight ports, and the terminal receives the eNB configuration.
  • the second set of CSI-RS data received by the terminal side is represented by the second set of CSI-RS data of the received CSI-RS data:
  • H 2,l represents a channel between the coordinated cell and the terminal, and the dimension is 2*8;
  • CSIRS 2,l represents the first data of the second set of eight-port CSI-RS, and the dimension is 8*1;
  • l is a positive integer and 1 ⁇ l ⁇ L, and L represents the length of the second set of CSI-RS.
  • the weighting module 20 is further configured to weight the precoding weight W1 of the obtained serving cell and the precoding weight W2 of the coordinated cell to the channel state information of the third set of CSI-RSs respectively by the base station side. Reference signal port.
  • the weighting module 20 of the implementation device of the coherent JT is respectively weighted by the base station end to the precoding weights of the serving cell and the coordinated cell fed back at the previous time to different channel state information reference signal ports of the third set of CSI-RS, for example, the service
  • the precoding weights used by the cell are weighted to the first port of the third set of CSI-RS data, and are simultaneously transmitted by the eight antennas on the base station side; the precoding weights used by the coordinated cell are weighted to the third set of CSIs.
  • On the second port of the data of the -RS the same is also transmitted through the eight antennas on the base station side.
  • the phase obtaining module 30 is further configured to perform, by the terminal side, the received data Y3 of the third set of CSI-RS according to the third set of CSI-RSs that are weighted to different channel state information reference signal ports.
  • Channel estimation obtaining the phase difference between the serving cell and the coordinated cell.
  • the phase acquisition module 30 of the implementation unit of the coherent JT performs channel estimation on the received data Y3 of the third set of CSI-RSs according to the received data Y3 of the third set of CSI-RSs weighted to the different channel state information reference signal ports.
  • H 1 ⁇ W 1 (n-1) H 2 ⁇ W 2 (n-1)].
  • H1 represents the channel between the serving cell and the terminal
  • H2 represents the channel between the coordinated cell and the terminal
  • W 1 (n-1) represents the precoding weight of the serving cell fed back at the previous time
  • W 2 (n-1) Indicates the precoding weight of the coordinated cell fed back at the previous moment
  • n represents the current time
  • H 1 ⁇ W 1 (n-1) represents the channel estimation value between the serving cell and the terminal
  • H 2 ⁇ W 2 (n-1) Indicates the channel estimation value between the coordinated cell and the terminal.
  • the phase difference between the serving cell and the coordinated cell is obtained according to the channel estimation value between the serving cell and the terminal, and the channel estimation value between the coordinated cell and the terminal.
  • the eight antennas on the base station side are also taken as an example.
  • the precoding weights used by the serving cell are weighted to the first port of the third set of CSI-RS data, and the precoding weights used by the coordinated cell are weighted to On the second port of the third set of CSI-RS data, the first CSI-RS data in the third set of CSI-RS data received by the terminal side is represented as:
  • W 1,l (n-1) represents the precoding weight of the serving cell fed back at the previous moment, and the dimension is 8*1
  • W 2,l (n-1) represents the pre-communication of the coordinated cell at the previous moment.
  • Encoding weight the dimension is 8*1;
  • Indicates the first data of the second port of the third set of two-port CSI-RS, the dimension is 1*1;
  • n represents the current time;
  • l is a positive integer and 1 ⁇ l ⁇ L.
  • FIG. 9 is a functional block diagram of a device for implementing a coherent JT according to a second embodiment of the present invention. It is intended that, according to the first embodiment, the apparatus for implementing the coherent JT provided by the second embodiment further includes:
  • the correction module 40 is configured to perform phase correction on the serving cell and the coordinated cell according to a phase difference between the serving cell and the coordinated cell.
  • the correction module 40 of the implementation unit of the coherent JT performs phase correction on the data and the DMRS transmitted by the coordinated cell according to the phase difference between the serving cell and the coordinated cell. Therefore, the current situation of inhomogeneous combination caused by inaccurate phase difference estimation in coherent JT is solved, and the system performance is effectively improved.
  • FIG. 10 is a schematic diagram of functional modules of the modification module. Based on the second embodiment, the correction module 40 includes:
  • the serving cell weighting unit 41 is configured to weight the data and the DMRS sent by the serving cell according to the fed precoding weight W1 of the serving cell;
  • the coordinated cell weighting and phase correcting unit 42 is configured to weight the data and the DMRS sent by the coordinated cell according to the fed precoding weight W2 of the coordinated coordinated cell; according to the phase between the serving cell and the coordinated cell Poor, phase correction is performed on the coordinated cell.
  • the serving cell weighting unit 41 of the implementation unit of the coherent JT performs weighting on the data sent by the serving cell according to the precoding weight W1 of the feedback serving cell, and the terminal side receives the weighted data sent by the serving cell, where the terminal The weighted data sent by the serving cell received by the side is:
  • H 1 represents a channel between the serving cell and the terminal; D represents data transmitted by the serving cell, and W 1 (n-1) represents a precoding weight of the serving cell fed back at the previous time.
  • the serving cell weighting unit 41 of the implementation unit of the coherent JT performs weighting on the DMRS sent by the serving cell according to the precoding weight W1 of the feedback serving cell: wherein the DMRS sent by the serving cell received by the terminal side is:
  • Y 1 DMRS H 1 ⁇ W 1 (n-1) ⁇ DMRS (5)
  • H 1 represents a channel between the serving cell and the terminal;
  • DMRS represents DMRS data transmitted by the serving cell;
  • W 1 (n-1) represents a precoding weight of the serving cell fed back at the previous moment.
  • the coordinated cell weighting and phase correcting unit 42 of the coherent JT implementation device weights the data transmitted by the coordinated cell according to the fed precoding weight W2 of the coordinated coordinated cell, and the terminal side receives the weighted data sent by the coordinated cell.
  • the weighted data sent by the coordinated cell received by the terminal side is:
  • H 2 represents a channel between the coordinated cell and the terminal; D represents data transmitted by the coordinated cell, and W 2 (n-1) represents a precoding weight of the coordinated cell fed back at the previous time, ⁇ Indicates the phase difference between the serving cell and the coordinated cell.
  • the coordinated cell weighting and phase correcting unit 42 of the implementation unit of the coherent JT performs weighting on the DMRS sent by the coordinated cell according to the precoding weight W2 of the feedback coordinated cell: where the DMRS sent by the coordinated cell received by the terminal side for:
  • Y 2 DMRS H 2 ⁇ e j ⁇ ⁇ W 2 (n-1) ⁇ DMRS (7)
  • H 2 represents a channel between the coordinated cell and the terminal;
  • DMRS represents DMRS data transmitted by the coordinated cell;
  • W 2 (n-1) represents a precoding weight of the coordinated cell fed back at the previous time,
  • represents the phase difference between the serving cell and the coordinated cell.
  • all or part of the steps of the above embodiments may also be implemented by using an integrated circuit. These steps may be separately fabricated into individual integrated circuit modules, or multiple modules or steps may be fabricated into a single integrated circuit module. achieve.
  • the devices/function modules/functional units in the above embodiments may be implemented by a general-purpose computing device, which may be centralized on a single computing device or distributed over a network of multiple computing devices.
  • each device/function module/functional unit in the above embodiment When each device/function module/functional unit in the above embodiment is implemented in the form of a software function module and sold or used as a stand-alone product, it can be stored in a computer readable storage medium.
  • the above mentioned computer readable storage medium may be a read only memory, a magnetic disk or an optical disk or the like.
  • the above technical solution solves the problem that the in-phase combining effect caused by the phase difference estimation in the coherent JT is not good, and effectively improves the system performance.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)
  • Radio Transmission System (AREA)

Abstract

一种相干JT的实现方法和装置,其中,所述方法包括:通过获取上一时刻反馈的服务小区和协同小区的预编码权值;分别加权到不同的信道状态信息参考信号端口上以获取服务小区和协同小区之间的相位差。上述技术方案解决了相干JT中相位差估计不准所引起的同相合并效果不佳的现状,有效提升了系统系能。

Description

相干联合传输JT的实现方法和装置 技术领域
本文涉及但不限于无线通信领域,尤其涉及相干JT的实现方法和装置。
背景技术
多点协作传输(Coordinated Multiple Points Transmission/Reception,CoMP),是指地理位置上分离的多个小区,协同参与一个终端的数据传输或者联合接收一个终端发送的数据以降低基站间的干扰,提升小区边缘性能,满足小区边缘频谱效率。多个小区可以归属于同一个演进型基站(evolved Node B,eNB),也可以归属于不同的eNB,前者只需要本基站内部每个小区间交互CoMP处理相关的业务数据和控制信息,较易于实现,而后者则需要在基站间交互这些信息。
下行CoMP技术主要有两类:联合调度/协同波束赋形(Coordinated scheduling/beamforming,CS/CB)和联合处理(Jiont Processing,JP)。CS/CB通过给地理位置接近的两个终端分配不同的时间/频率资源来避开干扰,或者对于调度到相同资源上的两个终端,在进行波束赋形加权向量计算时,通过控制波束指向来控制彼此的干扰。JP技术中,多个小区同时向终端传输数据。其增益来自两个方面:其一,参与协作的小区发送的信号都是有用信号,终端受到的总干扰水平降低了;其二,参与协作的小区信号相互叠加,提高了终端接收到的信号的功率水平。两者综合的效果是,终端的SINR(Signal to Interference plus Noise Ratio,接收信干噪比)提高。此外,不同小区的天线间一般距离比较大,远大于半波长,JP还有可能获得分集增益。
根据数据信息是否同时由多个小区传输,JP又分为联合传输Jiont Transmission,JT()技术和动态小区选择(Dynamic Cell Selection,DCS)技术。JT技术分为非相干JT和相干JT两种,非相干JT中,每个小区采用各自独立的预编码方案,在接收端实现合并,非相干JT可以获得分集增益,提高接收端的接收功率,实现系统简单。相干JT实现时需要获得所有协同小 区的信道状态信息(Channel State Information,CSI),根据这些信道信息调整每个小区传输信号的相位,这样在接收端对每路信号就可以达到同相合并,相干JT可以获得单小区预编码增益、多小区功率增益、多小区阵列增益和多小区分集增益。相干JT方案是CoMP技术中性能最好,同时也是系统构成最复杂,反馈和交互信息最多,对延迟最敏感的一种传输技术。
相干JT的实现方式有两种:相位纠正+预编码、全局预编码。相位纠正+预编码方案通过给每个小区传输的数据乘以一个相位因子来保证接收信号的相干性,相位因子可以由终端直接反馈,基站端也可以根据信道信息计算获取。全局预编码基于所有协同小区与终端之间的信道状态信息,每一个小区使用预编码矩阵的一部分作为它的预编码,相同的数据从协同小区各自独立发送。
相关技术中相位纠正是基于两个小区与终端之间的无线信道进行的,与终端收到的接收信号间的相位差有一定的误差,影响同相合并的效果。
发明内容
以下是对本文详细描述的主题的概述。本概述并非是为了限制权利要求的保护范围。
本发明实施例提供一种相干JT的实现方法和装置,旨在解决相干JT同相合并效果不佳的技术问题。
本发明实施例提供的一种相干联合传输JT的实现方法,所述相干JT的实现方法包括以下步骤:
获取上一时刻反馈的服务小区和协同小区的预编码权值;
将获取的预编码权值分别加权到不同的信道状态信息参考信号端口上;
根据不同信道状态信息参考信号端口上的接收数据,获取服务小区和协同小区的相位差,反馈给基站侧。
可选地,所述获取上一时刻反馈的服务小区和协同小区的预编码权值的步骤包括:
由终端侧接收基站侧配置的第一套信道状态信息参考符号CSI-RS,对 第一套CSI-RS的接收数据Y1进行信道估计,获取服务小区使用的预编码权值W1;
由终端侧接收基站侧配置的第二套CSI-RS,对第二套CSI-RS的接收数据Y2进行信道估计,获取协同小区使用的预编码权值W2。
可选地,所述将获取的预编码权值分别加权到不同的信道状态信息参考信号端口上的步骤包括:
基站侧将获取的服务小区的预编码权值W1和协同小区的预编码权值W2分别加权到第三套CSI-RS不同的信道状态信息参考信号端口上。
可选地,所述根据不同信道状态信息参考信号端口上的接收数据,获取服务小区和协同小区的相位差,反馈给基站侧的步骤包括:
由终端侧根据加权到不同的信道状态信息参考信号端口上的第三套CSI-RS,对第三套CSI-RS的数据Y3进行信道估计,获取服务小区和协同小区的相位差。
可选地,所述根据不同信道状态信息参考信号端口上的接收数据,获取服务小区和协同小区的相位差,反馈给基站侧的步骤之后还包括:
根据服务小区和协同小区之间的相位差,对所述服务小区和协同小区进行相位修正。
可选地,所述根据服务小区和协同小区之间的相位差,对所述服务小区和协同小区进行相位修正的步骤包括:
根据反馈的服务小区的预编码权值W1,对所述服务小区发送的数据和解调参考信号DMRS进行加权;
根据反馈的协同小区的预编码权值W2,对所述协同小区发送的数据和DMRS进行加权;根据反馈的服务小区和协同小区之间的相位差,对所述协同小区进行相位修正。
本发明实施例进一步提供一种相干联合传输JT的实现装置,所述相干JT的实现装置包括:
权值获取模块,设置为获取上一时刻反馈的服务小区和协同小区的预编码权值;
加权模块,设置为将获取的预编码权值分别加权到不同的信道状态信息参考信号端口上;
相位获取模块,设置为根据不同信道状态信息参考信号端口上的接收数据,获取服务小区和协同小区的相位差,反馈给基站侧。
可选地,所述权值获取模块包括:
服务小区获取单元,设置为通过终端侧接收基站侧配置的第一套信道状态信息参考符号CSI-RS,对第一套CSI-RS的接收数据Y1进行信道估计,获取服务小区使用的预编码权值W1;
协同小区获取单元,设置为通过终端侧接收基站侧配置的第二套CSI-RS,对第二套CSI-RS的接收数据Y2进行信道估计,获取协同小区使用的预编码权值W2。
可选地,所述加权模块是设置为通过基站侧将获取的服务小区的预编码权值W1和协同小区的预编码权值W2分别加权到第三套CSI-RS不同的信道状态信息参考信号端口上。
可选地,所述相位获取模块,是设置为通过终端侧根据加权到不同的信道状态信息参考信号端口上的第三套CSI-RS,对第三套CSI-RS的数据Y3进行信道估计,获取服务小区和协同小区的相位差。
可选地,所述相干JT的实现装置还包括:
修正模块,设置为根据服务小区和协同小区之间的相位差,对所述服务小区和协同小区进行相位修正。
可选地,所述修正模块包括:
服务小区加权单元,设置为根据反馈的服务小区的预编码权值W1,对所述服务小区发送的数据和DMRS进行加权;
协同小区加权和相位修正单元,设置为根据反馈的协同小区的预编码权值W2,对所述协同小区发送的数据和DMRS进行加权;根据反馈的服务小区和协同小区之间的相位差,对所述协同小区进行相位修正。
本发明实施例进一步提供一种计算机存储介质,所述计算机存储介质中存储有计算机可执行指令,所述计算机可执行指令用于执行上述的方法。
本发明实施例提供的相干JT的实现方法,通过获取上一时刻反馈的服务小区和协同小区的预编码权值;分别加权到不同的信道状态信息参考信号端口上以获取服务小区和协同小区之间的相位差。本发明实施例解决了相干JT中相位差估计不准所引起的同相合并效果不佳的现状,有效提升了系统系能。
在阅读并理解了附图和详细描述后,可以明白其他方面。
附图概述
图1为本发明第一实施例的相干JT的实现方法流程示意图;
图2为图1中所述获取上一时刻反馈的服务小区和协同小区使用的预编码权值的步骤的细化流程示意图;
图3为本发明第二实施例的相干JT的实现方法流程示意图;
图4为本发明第三实施例的相干JT的实现方法流程示意图;
图5为本发明第四实施例的相干JT的实现方法流程示意图;
图6为图5中所述根据服务小区和协同小区之间的相位差,对所述服务小区和协同小区进行相位修正的步骤的细化流程示意图;
图7为本发明第一实施例的相干JT的实现装置功能模块示意图;
图8为图7中所述权值获取模块的功能模块示意图;
图9为本发明第二实施例的相干JT的实现装置功能模块示意图;
图10为图9中所述修正模块的功能模块示意图。
本发明的实施方式
应当理解,此处所描述的具体实施例仅仅用以解释本发明,并不用于限 定本发明。
本发明实施例提供一种相干JT的实现方法,参照图1,图1为本发明第一实施例的相干JT的实现方法流程示意图,在第一实施例中,所述相干JT的实现方法包括以下步骤:
步骤S100、获取上一时刻反馈的服务小区和协同小区使用的预编码权值。
相干JT的实现装置获取上一时刻反馈的服务小区和协同小区的预编码权值,所述预编码权值可通过如下方式获取,基站侧配置第一套信道的信道状态信息参考符号(Channel State Information Reference Signal,CSI-RS)的数据,其中,基站侧可以是eNB,终端侧接收基站侧配置的第一套CSI-RS的数据,对第一套CSI-RS的接收数据Y1进行信道估计得到服务小区与终端间的信道H1,获取服务小区使用的预编码权值W1;终端侧接收基站侧配置的第二套CSI-RS的数据,对第二套CSI-RS的接收数据Y2进行信道估计得到协同小区与终端的间的信道H2,获取协同小区使用的预编码权值W2。
步骤S200、将获取的预编码权值分别加权到不同的信道状态信息参考信号端口上。
相干JT的实现装置将获取的预编码权值分别加权到不同的信道状态信息参考信号端口上,例如,配置二端口的第三套CSI-RS的数据,将上一时刻反馈的服务小区和协同小区的预编码权值分别加权到不同的信道状态信息参考信号端口上,如将服务小区反馈的预编码权值加权在第三套CSI-RS的数据的第一端口上,将协同小区使用的预编码权值加权在第三套CSI-RS的数据的第二端口上。
步骤S300、根据不同信道状态信息参考信号端口上的接收数据,获取服务小区和协同小区的相位差,反馈给基站侧。
相干JT的实现装置根据分别加权到不同的信道状态信息参考信号端口上的接收数据,由终端侧接收第三套CSI-RS的数据,对第三套CSI-RS的接收数据Y3进行信道估计得到[H1×W1(n-1)H2×W2(n-1)]。其中,H1表示服务小区与终端间的信道,H2表示协同小区与终端间的信道,W1(n-1)表示上一 时刻反馈的服务小区的预编码权值,W2(n-1)表示上一时刻反馈的协同小区的预编码权值,n表示当前时刻,H1×W1(n-1)表示服务小区与终端间的信道估计值,H2×W2(n-1)表示协同小区与终端间的信道估计值。根据服务小区与终端间的信道估计值,以及协同小区与终端间的信道估计值,获取服务小区和协同小区之间的相位差。
本实施例提供的相干JT的实现方法,解决了相干JT中相位差估计不准所引起的同相合并效果不佳的现状,有效提升了系统系能。
如图2所示,图2为图1中步骤S100的细化流程示意图,在第一实施例的基础上,所述步骤S100包括:
步骤S110、由终端侧接收基站侧配置的第一套CSI-RS,对第一套CSI-RS的接收数据Y1进行信道估计,获取服务小区使用的预编码权值W1。
相干JT的实现装置接收基站侧配置的第一套CSI-RS,对第一套CSI-RS的接收数据Y1进行信道估计得到H1,获取服务小区使用的预编码权值W1。下面以基站侧(eNB)采取八根天线,终端侧采取两根天线为例进行说明:
在本实施例中,eNB配置八端口的第一套CSI-RS数据,终端接收到eNB配置的第一套CSI-RS接收数据,所述终端侧接收到的第一套CSI-RS数据的第l个CSI-RS数据表示为:
Y1,l=H1,l×CSIRS1,l  (1)
其中,在公式(1)中,H1,l表示服务小区和终端间的信道,维度为2*8;CSIRS1,l表示第一套八端口的CSI-RS的第l个数据,维度为8*1;l为正整数且1≤l≤L,L表示第一套CSI-RS的长度。
步骤S120、由终端侧接收基站侧配置的第二套CSI-RS,对第二套CSI-RS的接收数据Y2进行信道估计,获取协同小区使用的预编码权值W2。
相干JT的实现装置接收基站侧配置的第二套CSI-RS,对第二套CSI-RS的接收数据Y2进行信道估计得到H2,获取协同小区使用的预编码权值W2。下面以基站侧(eNB)采取八根天线,终端侧采取两根天线为例进行说明:
在本实施例中,eNB配置八端口的第二套CSI-RS数据,终端接收到eNB配置的第二套CSI-RS接收数据,所述终端侧接收到的第二套CSI-RS接收数据的第l个CSI-RS数据表示为:
Y2,l=H2,l×CSIRS2,l  (2)
其中,在公式(2)中,H2,l表示协同小区和终端间的信道,维度为2*8;CSIRS2,l表示第二套八端口的CSI-RS的第l个数据,维度为8*1;l为正整数且1≤l≤L,L表示第二套CSI-RS的长度。
如图3所示,图3为本发明第二实施例的相干JT的实现方法流程示意图,在第一实施例的基础上,所述步骤S200的步骤包括:
步骤S200A、由基站侧将获取的服务小区的预编码权值W1和协同小区的预编码权值W2分别加权到第三套CSI-RS不同的信道状态信息参考信号端口上。
相干JT的实现装置由基站端将上一时刻反馈的服务小区和协同小区的预编码权值分别加权到第三套CSI-RS不同的信道状态信息参考信号端口上,例如将服务小区使用的预编码权值加权到第三套CSI-RS的数据的第一端口上,并通过基站侧的八根天线同时进行发送;将协同小区使用的预编码权值加权到第三套CSI-RS的数据的第二端口上,同样通过基站侧的八根天线同时进行发送。
如图4所示,图4为本发明第三实施例的相干JT的实现方法流程示意图,在第一实施例的基础上,所述步骤S300的步骤包括::
步骤S300A、由终端侧根据加权到不同的信道状态信息参考信号端口上的第三套CSI-RS,对第三套CSI-RS的接收数据Y3进行信道估计,获取服务 小区和协同小区的相位差。
相干JT的实现装置由终端侧根据加权到不同的信道状态信息参考信号端口上的第三套CSI-RS,对第三套CSI-RS的接收数据Y3进行信道估计得到[H1×W1(n-1)H2×W2(n-1)]。其中,H1表示服务小区与终端间的信道,H2表示协同小区与终端间的信道,W1(n-1)表示上一时刻反馈的服务小区的预编码权值,W2(n-1)表示上一时刻反馈的协同小区的预编码权值,n表示当前时刻,H1×W1(n-1)表示服务小区与终端间的信道估计值,H2×W2(n-1)表示协同小区与终端间的信道估计值。根据服务小区与终端间的信道估计值,以及协同小区与终端间的信道估计值,获取服务小区和协同小区之间的相位差。同样以基站侧的八根天线为例进行说明,其中,服务小区采用的预编码权值加权到第三套CSI-RS的数据的第一个端口上,协同小区采用的预编码权值加权到第三套CSI-RS的数据的第二个端口上,所述终端侧接收到的第三套CSI-RS数据中的第l个CSI-RS数据表示为:
Figure PCTCN2015090168-appb-000001
其中,W1,l(n-1)表示上一时刻反馈的服务小区的预编码权值,维度为8*1,W2,l(n-1)表示上一时刻反馈的协同小区的预编码权值,维度为8*1;
Figure PCTCN2015090168-appb-000002
表示第三套二端口的CSI-RS的第一个端口的第l个数据,
Figure PCTCN2015090168-appb-000003
表示第三套二端口的CSI-RS的第二个端口的第l个数据,维度为1*1;n表示当前时刻;l为正整数且1≤l≤L。
如图5所示,图5为本发明第四实施例的相干JT的实现方法流程示意图,在第一实施例的基础上,所述步骤S300的步骤之后还包括:
步骤S400、根据服务小区和协同小区之间的相位差,对所述服务小区和协同小区进行相位修正。
相干JT的实现装置根据所述服务小区和协同小区之间的相位差,对所述协同小区进行相位修正。从而解决了相干JT中相位差估计不准所引起的同相合并效果不佳的现状,有效提升了系统系能。
如图6所示,图6为图5中步骤S400的细化流程示意图,在第二实施例的基础上,所述步骤S400包括:
步骤S410、根据所述反馈的服务小区的预编码权值W1,对所述服务小区发送的数据和解调参考信号DMRS进行加权。
相干JT的实现装置根据所述反馈的服务小区的预编码权值W1,对所述服务小区发送的数据进行加权,终端侧接收服务小区发送的加权的数据,其中,终端侧接收的服务小区发送的加权的数据为:
Y1 D=H1×W1(n-1)×D  (4)
其中,在公式(4)中,H1表示服务小区与终端间的信道;D表示服务小区发送的数据,W1(n-1)表示上一时刻反馈的服务小区的预编码权值。
相干JT的实现装置根据所述反馈的服务小区的预编码权值W1,对所述服务小区发送的DMRS进行加权:其中,终端侧接收的服务小区发送的DMRS为:
Y1 DMRS=H1×W1(n-1)×DMRS  (5)
其中,在公式(5)中,H1表示服务小区与终端间的信道;DMRS表示服务小区发送的DMRS数据;W1(n-1)表示上一时刻反馈的服务小区的预编码权值。
步骤S420、根据所述反馈的协同小区的预编码权值W2,对所述协同小区发送的数据和DMRS进行加权;根据所述服务小区和协同小区之间的相位差,对所述协同小区进行相位修正。
相干JT的实现装置根据所述反馈的协同小区的预编码权值W2,对所述协同小区发送的数据进行加权,终端侧接收协同小区发送的加权的数据,其中,终端侧接收的协同小区发送的加权的数据为:
Y2 D=H2×e×W2(n-1)×D  (6)
其中,在公式(6)中,H2表示协同小区与终端间的信道;D表示协同小 区发送的数据,W2(n-1)表示上一时刻反馈的协同小区的预编码权值,θ表示服务小区和协同小区之间的相位差。
相干JT的实现装置根据所述反馈的协同小区的预编码权值W2,对所述协同小区发送的DMRS进行加权:其中,终端侧接收的协同小区发送的DMRS为:
Y2 DMRS=H2×e×W2(n-1)×DMRS  (7)
其中,在公式(7)中,H2表示协同小区与终端间的信道;DMRS表示协同小区发送的DMRS数据;W2(n-1)表示上一时刻反馈的协同小区的预编码权值,θ表示服务小区和协同小区之间的相位差。
相干JT的实现装置根据获取的所述服务小区和协同小区之间的相位差,对所述协同小区进行相位修正。
本发明实施例进一步提供一种计算机存储介质,所述计算机存储介质中存储有计算机可执行指令,所述计算机可执行指令用于执行上述的方法。
如图7所示,图7为本发明第一实施例的相干JT的实现装置功能模块示意图,在第一实施例中,所述提供的相干JT的实现装置包括:
权值获取模块10,设置为获取上一时刻反馈的服务小区和协同小区的预编码权值;
加权模块20,设置为将获取的预编码权值分别加权到不同的信道状态信息参考信号端口上;
相位获取模块30,设置为根据不同信道状态信息参考信号端口上的接收数据,获取服务小区和协同小区的相位差,反馈给基站侧。
相干JT的实现装置的权值获取模块10获取上一时刻反馈的服务小区和协同小区的预编码权值,所述预编码权值可通过如下方式获取,基站侧配置第一套信道CSI-RS的数据,其中,基站侧可以是eNB,终端侧接收基站侧 配置的第一套CSI-RS的数据,对第一套CSI-RS的接收数据Y1进行信道估计得到服务小区与终端间的信道H1,获取服务小区使用的预编码权值W1;终端侧接收基站侧配置的第二套CSI-RS的数据,对第二套CSI-RS的接收数据Y2进行信道估计得到协同小区与终端的间的信道H2,获取协同小区使用的预编码权值W2。
相干JT的实现装置的加权模块20将获取的预编码权值分别加权到不同的信道状态信息参考信号端口上,例如,配置二端口的第三套CSI-RS的数据,将上一时刻反馈的服务小区和协同小区的预编码权值分别加权到不同的信道状态信息参考信号端口上,如将服务小区使用的预编码权值加权在第三套CSI-RS的数据的第一端口上,将协同小区使用的预编码权值加权在第三套CSI-RS的数据的第二端口上。
相干JT的实现装置的相位获取模块30根据分别加权到不同的信道状态信息参考信号端口上的接收数据,由终端侧接收第三套CSI-RS的数据,对第三套CSI-RS的接收数据Y3进行信道估计得到[H1×W1(n-1)H2×W2(n-1)]。其中,H1表示服务小区与终端间的信道,H2表示协同小区与终端间的信道,W1(n-1)表示上一时刻反馈的服务小区的预编码权值,W2(n-1)表示上一时刻反馈的协同小区的预编码权值,n表示当前时刻,H1×W1(n-1)表示服务小区与终端间的信道估计值,H2×W2(n-1)表示协同小区与终端间的信道估计值。根据服务小区与终端间的信道估计值,以及协同小区与终端间的信道估计值,获取服务小区和协同小区之间的相位差。
本实施例提供的相干JT的实现装置,解决了相干JT中相位差估计不准所引起的同相合并效果不佳的现状,有效提升了系统系能。
如图8所示,图8为权值获取模块的功能模块示意图,所述权值获取模块10包括:
服务小区获取单元11,设置为由终端侧接收基站侧配置的第一套信道状态信息参考符号CSI-RS,对第一套CSI-RS的接收数据Y1进行信道估计,获取服务小区使用的预编码权值W1;
协同小区获取单元12,设置为由终端侧接收基站侧配置的第二套CSI-RS,对第二套CSI-RS的接收数据Y2进行信道估计,获取协同小区使用的预编码权值W2。
相干JT的实现装置的服务小区获取单元11接收基站侧配置的第一套CSI-RS的数据,对第一套CSI-RS的接收数据进行信道估计得到H1,获取服务小区使用的预编码权值W1。下面以基站侧(eNB)采取八根天线,终端侧采取两根天线为例进行说明:在本实施例中,eNB配置八个端口的第一套CSI-RS数据,终端接收到eNB配置的第一套CSI-RS数据,所述终端侧接收到的第一套CSI-RS数据的第l个CSI-RS数据表示为:
Y1,l=H1,l×CSIRS1,l  (1)
其中,在公式(1)中,H1,l表示服务小区和终端间的信道,维度为2*8;CSIRS1,l表示第一套八端口的CSI-RS的第l个数据,维度为8*1;l为正整数且1≤l≤L,L表示第一套CSI-RS的长度。
相干JT的实现装置的协同小区获取单元12接收基站侧配置的第二套CSI-RS的数据,对第二套CSI-RS的接收数据进行信道估计得到H2,获取协同小区使用的预编码权值W2。下面以基站侧(eNB)采取八根天线,终端侧采取两根天线为例进行说明:在本实施例中,eNB配置八个端口的第二套CSI-RS数据,终端接收到eNB配置的第二套CSI-RS数据,所述终端侧接收到的第二套接收CSI-RS数据的第l个CSI-RS数据表示为:
Y2,l=H2,l×CSIRS2,l  (2)
其中,在公式(2)中,H2,l表示协同小区和终端间的信道,维度为2*8;CSIRS2,l表示第二套八端口的CSI-RS的第l个数据,维度为8*1;l为正整数且1≤l≤L,L表示第二套CSI-RS的长度。
进一步参见图7,所述加权模块20还设置为由基站侧将获取的服务小区的预编码权值W1和协同小区的预编码权值W2分别加权到第三套CSI-RS不同的信道状态信息参考信号端口上。
相干JT的实现装置的加权模块20由基站端将上一时刻反馈的服务小区和协同小区的预编码权值分别加权到第三套CSI-RS不同的信道状态信息参考信号端口上,例如将服务小区使用的预编码权值加权到第三套CSI-RS的数据的第一端口上,并通过基站侧的八根天线同时进行发送;将协同小区使用的预编码权值加权到第三套CSI-RS的数据的第二端口上,同样通过基站侧的八根天线同时进行发送。
进一步参见图7,所述相位获取模块30,还设置为由终端侧根据加权到不同的信道状态信息参考信号端口上的第三套CSI-RS,对第三套CSI-RS的接收数据Y3进行信道估计,获取服务小区和协同小区的相位差。
相干JT的实现装置的相位获取模块30根据加权到不同的信道状态信息参考信号端口上的第三套CSI-RS的接收数据Y3,对第三套CSI-RS的接收数据Y3进行信道估计得到[H1×W1(n-1)H2×W2(n-1)]。其中,H1表示服务小区与终端间的信道,H2表示协同小区与终端间的信道,W1(n-1)表示上一时刻反馈的服务小区的预编码权值,W2(n-1)表示上一时刻反馈的协同小区的预编码权值,n表示当前时刻,H1×W1(n-1)表示服务小区与终端间的信道估计值,H2×W2(n-1)表示协同小区与终端间的信道估计值。根据服务小区与终端间的信道估计值,以及协同小区与终端间的信道估计值,获取服务小区和协同小区之间的相位差。同样以基站侧的八根天线为例进行说明,其中,服务小区采用的预编码权值加权到第三套CSI-RS的数据的第一个端口上,协同小区采用的预编码权值加权到第三套CSI-RS的数据的第二个端口上,所述终端侧接收到的第三套CSI-RS数据中的第l个CSI-RS数据表示为:
Figure PCTCN2015090168-appb-000004
其中,W1,l(n-1)表示上一时刻反馈的服务小区的预编码权值,维度为8*1,W2,l(n-1)表示上一时刻反馈的协同小区的预编码权值,维度为8*1;
Figure PCTCN2015090168-appb-000005
表示第三套二端口的CSI-RS的第一个端口的第l个数据,
Figure PCTCN2015090168-appb-000006
表示第三套二端口的CSI-RS的第二个端口的第l个数据,维度为1*1;n表示当前时刻;l为正整数且1≤l≤L。
如图9所示,图9为本发明第二实施例的相干JT的实现装置功能模块示 意图,在第一实施例的基础上,所述第二实施例提供的相干JT的实现装置还包括:
修正模块40,设置为根据服务小区和协同小区之间的相位差,对所述服务小区和协同小区进行相位修正。
相干JT的实现装置的修正模块40根据所述服务小区和协同小区之间的相位差,对所述协同小区发送的数据和DMRS进行相位修正。从而解决了相干JT中相位差估计不准所引起的同相合并效果不佳的现状,有效提升了系统系能。
如图10所示,图10为所述修正模块的功能模块示意图,在第二实施例的基础上,所述修正模块40包括:
服务小区加权单元41,设置为根据所述反馈的服务小区的预编码权值W1,对所述服务小区发送的数据和DMRS进行加权;
协同小区加权和相位修正单元42,设置为根据所述反馈的协同小区的预编码权值W2,对所述协同小区发送的数据和DMRS进行加权;根据所述服务小区和协同小区之间的相位差,对所述协同小区进行相位修正。
相干JT的实现装置的服务小区加权单元41根据所述反馈的服务小区的预编码权值W1,对所述服务小区发送的数据进行加权,终端侧接收服务小区发送的加权的数据,其中,终端侧接收的服务小区发送的加权的数据为:
Y1 D=H1×W1(n-1)×D  (4)
其中,在公式(4)中,H1表示服务小区与终端间的信道;D表示服务小区发送的数据,W1(n-1)表示上一时刻反馈的服务小区的预编码权值。
相干JT的实现装置的服务小区加权单元41根据所述反馈的服务小区的预编码权值W1,对所述服务小区发送的DMRS进行加权:其中,终端侧接收的服务小区发送的DMRS为:
Y1 DMRS=H1×W1(n-1)×DMRS  (5)
其中,在公式(5)中,H1表示服务小区与终端间的信道;DMRS表示服务小区发送的DMRS数据;W1(n-1)表示上一时刻反馈的服务小区的预编码 权值。
相干JT的实现装置的协同小区加权和相位修正单元42根据所述反馈的协同小区的预编码权值W2,对所述协同小区发送的数据进行加权,终端侧接收协同小区发送的加权的数据,其中,终端侧接收的协同小区发送的加权的数据为:
Y2 D=H2×e×W2(n-1)×D  (6)
其中,在公式(6)中,H2表示协同小区与终端间的信道;D表示协同小区发送的数据,W2(n-1)表示上一时刻反馈的协同小区的预编码权值,θ表示服务小区和协同小区之间的相位差。
相干JT的实现装置的协同小区加权和相位修正单元42根据所述反馈的协同小区的预编码权值W2,对所述协同小区发送的DMRS进行加权:其中,终端侧接收的协同小区发送的DMRS为:
Y2 DMRS=H2×e×W2(n-1)×DMRS  (7)
其中,在公式(7)中,H2表示协同小区与终端间的信道;DMRS表示协同小区发送的DMRS数据;W2(n-1)表示上一时刻反馈的协同小区的预编码权值,θ表示服务小区和协同小区之间的相位差。
根据获取的所述服务小区和协同小区之间的相位差,对所述协同小区进行相位修正。
以上内容是结合具体的实施方式对本发明所作的进一步详细说明,不能认定本发明的具体实施只局限于这些说明。
本领域普通技术人员可以理解上述实施例的全部或部分步骤可以使用计算机程序流程来实现,所述计算机程序可以存储于一计算机可读存储介质中,所述计算机程序在相应的硬件平台上(如系统、设备、装置、器件等)执行, 在执行时,包括方法实施例的步骤之一或其组合。
可选地,上述实施例的全部或部分步骤也可以使用集成电路来实现,这些步骤可以被分别制作成一个个集成电路模块,或者将它们中的多个模块或步骤制作成单个集成电路模块来实现。
上述实施例中的各装置/功能模块/功能单元可以采用通用的计算装置来实现,它们可以集中在单个的计算装置上,也可以分布在多个计算装置所组成的网络上。
上述实施例中的各装置/功能模块/功能单元以软件功能模块的形式实现并作为独立的产品销售或使用时,可以存储在一个计算机可读取存储介质中。上述提到的计算机可读取存储介质可以是只读存储器,磁盘或光盘等。
工业实用性
上述技术方案解决了相干JT中相位差估计不准所引起的同相合并效果不佳的现状,有效提升了系统系能。

Claims (13)

  1. 一种相干联合传输JT的实现方法,所述相干JT的实现方法包括以下步骤:
    获取上一时刻反馈的服务小区和协同小区使用的预编码权值;
    将获取的预编码权值分别加权到不同的信道状态信息参考信号端口上;
    根据不同信道状态信息参考信号端口上的接收数据,获取服务小区和协同小区的相位差,反馈给基站侧。
  2. 如权利1所述的相干JT的实现方法,其中,所述获取上一时刻反馈的服务小区和协同小区使用的预编码权值的步骤包括:
    由终端侧接收基站侧配置的第一套信道状态信息参考符号CSI-RS,对第一套CSI-RS的接收数据Y1进行信道估计,获取服务小区使用的预编码权值W1;
    由终端侧接收基站侧配置的第二套CSI-RS,对第二套CSI-RS的接收数据Y2进行信道估计,获取协同小区使用的预编码权值W2。
  3. 如权利要求1或2所述的相干JT的实现方法,其中,所述将获取的预编码权值分别加权到不同的信道状态信息参考信号端口上的步骤包括:
    基站侧将获取的服务小区的预编码权值W1和协同小区的预编码权值W2分别加权到第三套CSI-RS不同的信道状态信息参考信号端口上。
  4. 如权利要求1所述的相干JT的实现方法,其中,所述根据不同信道状态信息参考信号端口上的接收数据,获取服务小区和协同小区的相位差,反馈给基站侧的步骤包括:
    由终端侧根据加权到不同的信道状态信息参考信号端口上的第三套CSI-RS,对第三套CSI-RS的数据Y3进行信道估计,获取服务小区和协同小区的相位差。
  5. 如权利要求1所述的相干JT的实现方法,所述还包括:
    所述根据不同信道状态信息参考信号端口上的接收数据,获取服务小区和协同小区的相位差,反馈给基站侧的步骤之后,根据服务小区和协同小区之间的相位差,对所述服务小区和协同小区进行相位修正。
  6. 如权利要求5所述的相干JT的实现方法,其中,所述根据服务小区和协同小区之间的相位差,对所述服务小区和协同小区进行相位修正的步骤包括:
    根据反馈的服务小区的预编码权值W1,对所述服务小区发送的数据和解调参考信号DMRS进行加权;
    根据反馈的协同小区的预编码权值W2,对所述协同小区发送的数据和DMRS进行加权;根据反馈的服务小区和协同小区之间的相位差,对所述协同小区进行相位修正。
  7. 一种相干联合传输JT的实现装置,所述相干JT的实现装置包括:
    权值获取模块,设置为获取上一时刻反馈的服务小区和协同小区使用的预编码权值;
    加权模块,设置为将获取的预编码权值分别加权到不同的信道状态信息参考信号端口上;
    相位获取模块,设置为根据不同信道状态信息参考信号端口上的接收数据,获取服务小区和协同小区的相位差,反馈给基站侧。
  8. 如权利7所述的相干JT的实现装置,其中,所述权值获取模块包括:
    服务小区获取单元,设置为通过终端侧接收基站侧配置的第一套CSI-RS,对第一套CSI-RS的接收数据Y1进行信道估计,获取服务小区使用的预编码权值W1;
    协同小区获取单元,设置为通过终端侧接收基站侧配置的第二套CSI-RS,对第二套CSI-RS的接收数据Y2进行信道估计,获取协同小区使用 的预编码权值W2。
  9. 如权利要求7或8所述的相干JT的实现装置,其中,
    所述加权模块是设置为通过基站侧将获取的服务小区的预编码权值W1和协同小区的预编码权值W2分别加权到第三套CSI-RS不同的信道状态信息参考信号端口上。
  10. 如权利要求7所述的相干JT的实现装置,其中,
    所述相位获取模块,是设置为通用终端侧根据加权到不同的信道状态信息参考信号端口上的第三套CSI-RS,对第三套CSI-RS的数据Y3进行信道估计,获取服务小区和协同小区的相位差。
  11. 如权利要求7所述的相干JT的实现装置,所述相干JT的实现装置还包括:
    修正模块,设置为根据服务小区和协同小区之间的相位差,对所述服务小区和协同小区进行相位修正。
  12. 如权利要求11所述的相干JT的实现装置,其中,所述修正模块包括:
    服务小区加权单元,设置为根据反馈的服务小区的预编码权值W1,对所述服务小区发送的数据和解调参考信号DMRS进行加权;协同小区加权和相位修正单元,设置为根据反馈的协同小区的预编码权值W2,对所述协同小区发送的数据和DMRS进行加权;根据反馈的服务小区和协同小区之间的相位差,对所述协同小区进行相位修正。
  13. 一种计算机存储介质,所述计算机存储介质中存储有计算机可执行指令,所述计算机可执行指令用于执行权利要求1~6中任一项所述的方法。
PCT/CN2015/090168 2015-01-15 2015-09-21 相干联合传输jt的实现方法和装置 WO2016112709A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201510021810.XA CN105846950A (zh) 2015-01-15 2015-01-15 相干jt的实现方法和装置
CN201510021810.X 2015-01-15

Publications (1)

Publication Number Publication Date
WO2016112709A1 true WO2016112709A1 (zh) 2016-07-21

Family

ID=56405210

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2015/090168 WO2016112709A1 (zh) 2015-01-15 2015-09-21 相干联合传输jt的实现方法和装置

Country Status (2)

Country Link
CN (1) CN105846950A (zh)
WO (1) WO2016112709A1 (zh)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106452676B (zh) * 2016-10-14 2019-12-06 上海华为技术有限公司 一种多点协同传输的方法及相关设备
CN109690962A (zh) * 2017-12-27 2019-04-26 Oppo广东移动通信有限公司 数据预编码的方法、终端设备和网络设备
CN111656856B (zh) * 2018-01-30 2022-03-29 华为技术有限公司 一种信号发送方法及相关设备
WO2024031604A1 (en) * 2022-08-12 2024-02-15 Qualcomm Incorporated Coherent joint transmissions with transmission reception point (trp) level power restrictions

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011079655A1 (zh) * 2009-12-31 2011-07-07 华为技术有限公司 实现多点联合传输的方法、终端及系统
CN103249080A (zh) * 2012-02-03 2013-08-14 中国移动通信集团公司 一种确定基站的天线校准系数的方法、系统以及装置
CN103299667A (zh) * 2011-01-07 2013-09-11 株式会社Ntt都科摩 移动终端装置、无线基站装置、以及无线通信方法
US20130267268A1 (en) * 2012-04-06 2013-10-10 Samsung Electronics Co., Ltd. Channel state information transmission/reception method and apparatus of downlink coordinated multi-point communication system
CN104170450A (zh) * 2012-03-16 2014-11-26 株式会社Ntt都科摩 无线基站、用户终端、无线通信方法以及无线通信系统

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101729131B (zh) * 2008-11-03 2014-06-04 夏普株式会社 无线通信系统及预编码方法
CN101873282B (zh) * 2009-04-24 2013-02-13 电信科学技术研究院 一种多小区数据传输的方法和装置
CN102055562B (zh) * 2009-11-06 2014-04-09 中兴通讯股份有限公司 多点协同传输中的多用户复用预编码的实现方法及系统
CN103178940B (zh) * 2011-12-23 2017-02-15 中国电信股份有限公司 多点协同传输的反馈方法、系统以及基站和终端

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011079655A1 (zh) * 2009-12-31 2011-07-07 华为技术有限公司 实现多点联合传输的方法、终端及系统
CN103299667A (zh) * 2011-01-07 2013-09-11 株式会社Ntt都科摩 移动终端装置、无线基站装置、以及无线通信方法
CN103249080A (zh) * 2012-02-03 2013-08-14 中国移动通信集团公司 一种确定基站的天线校准系数的方法、系统以及装置
CN104170450A (zh) * 2012-03-16 2014-11-26 株式会社Ntt都科摩 无线基站、用户终端、无线通信方法以及无线通信系统
US20130267268A1 (en) * 2012-04-06 2013-10-10 Samsung Electronics Co., Ltd. Channel state information transmission/reception method and apparatus of downlink coordinated multi-point communication system

Also Published As

Publication number Publication date
CN105846950A (zh) 2016-08-10

Similar Documents

Publication Publication Date Title
EP2599237B1 (en) Method and apparatus for coordinated multi-point communication for each sub-band based on long-term channel state information
WO2016037524A1 (zh) 无线通信设备和无线通信方法
JP5518649B2 (ja) 無線通信制御方法、無線通信システム、無線基地局および移動端末
HUE032372T2 (en) Reference signal configuration for coordinated multipoint transmission
US9344160B2 (en) Data transmission method and system, transmitter, and receiver
US11522586B2 (en) Apparatuses and methods for non-linear precoding
KR20180116461A (ko) 무선 네트워크들에서의 간섭 측정
US20230387997A1 (en) Apparatus and method
WO2018171604A1 (zh) 信息的传输方法和设备
WO2016112709A1 (zh) 相干联合传输jt的实现方法和装置
US20210143878A1 (en) Method and apparatus for channel state information feedback for joint transmission
WO2012055276A1 (zh) 业务数据下发方法和装置
TW201242293A (en) Systems and methods for providing precoding and feedback
WO2015184915A1 (zh) 多输入多输出系统信令传输方法和装置
CN102377527B (zh) 一种降低多小区反馈开销的方法和装置
CN114600384A (zh) 一种信道测量方法和通信装置
WO2017185982A1 (zh) 准共位置类型的处理方法、装置及计算机存储介质
WO2017118079A1 (zh) 一种双流波束赋形的方法、装置及基站
WO2022267853A1 (zh) 通道相位校正的方法和相关装置
US20230019630A1 (en) Update Method and Communications Apparatus
WO2015100939A1 (zh) 一种实现空分复用的方法、基站及终端
WO2012113185A1 (zh) 一种发射信号预处理发送方法及装置
CN105122877B (zh) 终端协作通信的方法、装置和系统
KR20120100456A (ko) 규준화된 빔포밍을 사용하는 네트워크 다중 입출력 통신 시스템
WO2023284659A1 (zh) 信道信息获取方法和通信装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15877622

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15877622

Country of ref document: EP

Kind code of ref document: A1