WO2014203720A1 - 撮像レンズ及び撮像装置 - Google Patents

撮像レンズ及び撮像装置 Download PDF

Info

Publication number
WO2014203720A1
WO2014203720A1 PCT/JP2014/064683 JP2014064683W WO2014203720A1 WO 2014203720 A1 WO2014203720 A1 WO 2014203720A1 JP 2014064683 W JP2014064683 W JP 2014064683W WO 2014203720 A1 WO2014203720 A1 WO 2014203720A1
Authority
WO
WIPO (PCT)
Prior art keywords
lens
imaging
refractive power
conditional expression
imaging lens
Prior art date
Application number
PCT/JP2014/064683
Other languages
English (en)
French (fr)
Inventor
貴志 川崎
Original Assignee
コニカミノルタ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by コニカミノルタ株式会社 filed Critical コニカミノルタ株式会社
Priority to JP2015522719A priority Critical patent/JPWO2014203720A1/ja
Priority to US14/900,022 priority patent/US20160139362A1/en
Publication of WO2014203720A1 publication Critical patent/WO2014203720A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B13/00Optical objectives specially designed for the purposes specified below
    • G02B13/001Miniaturised objectives for electronic devices, e.g. portable telephones, webcams, PDAs, small digital cameras
    • G02B13/0015Miniaturised objectives for electronic devices, e.g. portable telephones, webcams, PDAs, small digital cameras characterised by the lens design
    • G02B13/002Miniaturised objectives for electronic devices, e.g. portable telephones, webcams, PDAs, small digital cameras characterised by the lens design having at least one aspherical surface
    • G02B13/004Miniaturised objectives for electronic devices, e.g. portable telephones, webcams, PDAs, small digital cameras characterised by the lens design having at least one aspherical surface having four lenses
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B13/00Optical objectives specially designed for the purposes specified below
    • G02B13/06Panoramic objectives; So-called "sky lenses" including panoramic objectives having reflecting surfaces
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B13/00Optical objectives specially designed for the purposes specified below
    • G02B13/16Optical objectives specially designed for the purposes specified below for use in conjunction with image converters or intensifiers, or for use with projectors, e.g. objectives for projection TV
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/0025Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00 for optical correction, e.g. distorsion, aberration
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B9/00Optical objectives characterised both by the number of the components and their arrangements according to their sign, i.e. + or -
    • G02B9/34Optical objectives characterised both by the number of the components and their arrangements according to their sign, i.e. + or - having four components only

Definitions

  • the present invention relates to an imaging lens suitable for an imaging device using a solid-state imaging device, and an imaging device using the imaging lens.
  • the most object side lens is often a glass lens having environmental resistance and high optical performance.
  • a spherical lens is used from the viewpoint of ease.
  • the most object-side lens must be an aspheric lens. .
  • Patent Documents 1 and 2 disclose an imaging lens having a four-lens configuration in which an aspherical surface is used as the lens on the most object side and the image side surface is close to a flat surface.
  • the imaging lens described in Patent Document 1 has a sufficiently wide angle.
  • the imaging lens of Patent Document 2 lacks both wide angle and low profile because the refractive power of the second lens is weak.
  • Patent Document 3 discloses an imaging lens having a meniscus shape in which the most object side lens has a convex surface facing the object side, but both the wide angle and the low profile are insufficient.
  • the present invention has been made in view of such problems, and has a four-lens imaging lens capable of achieving a wide angle and a low profile as compared with a conventional type, while ensuring low cost and optical performance, And it aims at providing the imaging device using the same.
  • an imaging lens reflecting one aspect of the present invention includes a first lens having a negative refractive power and a second lens having a negative refractive power in order from the object side.
  • the third lens and the fourth lens, the object side surface of the first lens is aspherical, and satisfies the following conditional expression.
  • f2 Focal length (mm) of the second lens
  • f1 Focal length of the entire system (mm)
  • r1 curvature radius (mm) of the side surface of the first lens object
  • r2 radius of curvature (mm) of the side surface of the first lens image
  • the principal point position of the entire system can be moved toward the image side, so that a wider angle can be obtained.
  • the object side surface of the first lens an aspherical surface, different refractive powers can be given to the vicinity of the center and the periphery of the first lens, and appropriate aberration correction can be performed for the axial light beam and the peripheral light beam, respectively.
  • the shape of the first lens that satisfies the conditional expression (2) is a meniscus lens having a gentle convex surface facing the object side from a biconcave shape with a gentle radius of curvature of the object side surface compared to the image side surface. If it is a spherical shape, light with an angle of view of 180 ° or more cannot be incident in the case of a flat or concave shape, and light with an angle of view exceeding 180 ° is not incident on the object side surface of the first lens in the case of a loosely convex shape. On the other hand, it is incident with a large incident angle, and a large aberration is generated. Therefore, in this imaging lens, the side surface of the first lens object is aspherical and the peripheral part is convex so that light with a large angle of view can be incident at a small incident angle. The generation can be kept small.
  • conditional expression (1) if the value of conditional expression (1) exceeds the lower limit, the negative refractive power of the second lens is strengthened, so that the principal point position can be brought closer to the image plane, which is advantageous for widening the angle. .
  • the value of conditional expression (1) when the value of conditional expression (1) is less than the upper limit, it is possible to prevent occurrence of spherical aberration and coma aberration and increase in error sensitivity due to the negative refractive power of the second lens becoming too strong.
  • this imaging lens desirably satisfies the following conditional expression (1 ′). ⁇ 2.3 ⁇ f2 / f ⁇ 1.0 (1 ′)
  • conditional expression (2) when the value of conditional expression (2) exceeds the lower limit, the first lens becomes a biconcave lens having a radius of curvature of the object side larger than that of the image side, so that the principal point position of the first lens is closer to the image side. This is advantageous for widening the angle.
  • the value of the conditional expression (2) is less than the upper limit, a meniscus lens having a gentle convex surface directed toward the first lens object side surface is obtained, so that the first lens does not protrude toward the object side, which is advantageous in reducing the height.
  • this imaging lens desirably satisfies the following conditional expression (2 ′). 0.5 ⁇ (r1 + r2) / (r1-r2) ⁇ 1.8 (2 ′)
  • This imaging apparatus includes the above-described imaging lens.
  • the present invention it is possible to provide a four-lens imaging lens capable of achieving a wide angle and a low profile as compared with a conventional type while ensuring low cost and optical performance, and an imaging apparatus using the imaging lens. it can.
  • FIG. 1 is a cross-sectional view of an imaging lens according to Example 1.
  • FIG. FIG. 6 shows spherical aberration (a), astigmatism (b), and distortion (c) of the imaging lens according to Example 1.
  • FIG. FIG. 6 is an aberration diagram of meridional coma aberrations (a) and (b) according to Example 1; 6 is a cross-sectional view of an imaging lens according to Example 2.
  • FIG. FIG. 6 shows spherical aberration (a), astigmatism (b), and distortion (c)) of the imaging lens according to Example 2.
  • FIG. 6 is an aberration diagram of meridional coma aberrations (a) and (b) according to Example 2; 6 is a cross-sectional view of an imaging lens according to Example 3.
  • FIG. FIG. 6 shows spherical aberration (a), astigmatism (b), and distortion (c) of the imaging lens according to Example 3.
  • FIG. FIG. 6 is an aberration diagram of meridional coma aberrations (a) and (b) according to Example 3; 6 is a cross-sectional view of an imaging lens according to Example 4.
  • FIG. FIG. 6 shows spherical aberration (a), astigmatism (b), and distortion (c) of the imaging lens according to Example 4.
  • FIG. 6 is an aberration diagram of meridional coma aberrations (a) and (b) according to Example 4; 6 is a cross-sectional view of an imaging lens according to Example 5.
  • FIG. FIG. 6 shows spherical aberration (a), astigmatism (b), and distortion (c)) of the imaging lens according to Example 5.
  • FIG. FIG. 6 is an aberration diagram of meridional coma aberrations (a) and (b) according to Example 5; 6 is a cross-sectional view of an imaging lens according to Example 6.
  • FIG. FIG. 6 shows spherical aberration (a), astigmatism (b), and distortion (c) of the imaging lens according to Example 6.
  • FIG. 6 is an aberration diagram of meridional coma aberrations (a) and (b) according to Example 6; 10 is a cross-sectional view of an imaging lens according to Example 7.
  • FIG. FIG. 10 shows spherical aberration (a), astigmatism (b), and distortion (c) of the imaging lens according to Example 7.
  • FIG. 10 is an aberration diagram of meridional coma aberrations (a) and (b) according to Example 7;
  • FIG. 2 is a perspective view of the in-vehicle camera 1 using the imaging apparatus according to the present embodiment.
  • the imaging device of the in-vehicle camera 1 includes a CMOS image sensor IM and an imaging lens LN that captures a subject image on a photoelectric conversion unit (light receiving surface) of the image sensor IM.
  • An image signal output from the CMOS image sensor IM is output to an in-vehicle computer (not shown) via the cable 2.
  • the imaging lens LN includes a first lens having a negative refractive power, a second lens having a negative refractive power, a third lens, and a fourth lens in order from the object side, and the object side surface of the first lens has an aspherical shape.
  • the following conditional expression is satisfied. -2.8 ⁇ f2 / f ⁇ -0.5 (1) 0.0 ⁇ (r1 + r2) / (r1-r2) ⁇ 2.3 (2)
  • f2 focal length of the second lens (mm)
  • r1 radius of curvature of the first lens object side surface (mm)
  • r2 radius of curvature of the first lens image side surface (mm)
  • the third lens and the fourth lens have positive refractive power.
  • the third lens and the fourth lens positive lenses, the first lens and the second lens having negative refractive power are added, and the entire system becomes a retrofocus type, which is advantageous for widening the angle.
  • a strong positive refractive power is required, but since the positive refractive power can be shared by the third lens and the fourth lens, the refractive power of one lens becomes too strong. Therefore, an increase in error sensitivity and occurrence of aberration can be suppressed.
  • the periphery of the object side surface of the first lens has a positive refractive power. Since the peripheral portion of the side surface of the first lens object has a positive refractive power, light can be incident from an angle of view of 180 ° or more, so that a wide angle of view of 180 ° or more can be achieved.
  • the first lens has a concave surface facing the image side
  • the second lens has a concave surface facing the image side
  • the third lens has a convex surface facing the object side
  • the fourth lens has a convex surface facing the image side.
  • the material of the first lens satisfies the following conditional expression. 40 ⁇ 1 ⁇ 70 (3) Where ⁇ 1: Abbe number of the first lens
  • conditional expression (3) When the value of conditional expression (3) exceeds the lower limit, chromatic aberration generated in the first lens can be suppressed to a small value, so that high performance is facilitated. Moreover, when the value of conditional expression (3) is less than the upper limit, it can be made of a readily available material, which is advantageous for cost reduction. Further, it is possible to prevent the occurrence of chromatic aberration from becoming excessively small and causing the balance with chromatic aberration correction of other lenses to be over-corrected. Desirably, the following expression (3 ′) is satisfied. 50 ⁇ 1 ⁇ 65 (3 ′)
  • the first lens is preferably made of a plastic material. By making the first lens a plastic lens, its optical surface can be easily aspherical, which is advantageous for cost reduction.
  • an aperture stop between the third lens and the fourth lens.
  • the effective diameters of the third lens and the fourth lens can be kept small, so that a strong positive refractive power is exerted on the third lens and the fourth lens. Even if it is provided, higher-order aberrations can be kept small.
  • the axial ray height is increased, and the contribution of the refractive power of the third lens and the fourth lens to the total focal length is increased. This is advantageous for widening the angle.
  • FIG. 1 is an exaggerated view showing an example of the object side surface S1 of the first lens.
  • the surface angle ⁇ 1 (°) that is the maximum of the surface angles formed by intersecting the object side surface S1 of the first lens with respect to the perpendicular of the optical axis OA is obtained at the position P1
  • the distance to the position P1 is reached.
  • the conditional expression (4) is satisfied.
  • this imaging lens desirably satisfies the following conditional expression (4 ′). ⁇ 1> ⁇ 2 ⁇ 10 (4 ′)
  • the imaging lens preferably satisfies the following conditional expression. -0.06 ⁇ f / r1 ⁇ 0.06 (5)
  • the surface becomes a plane close to a plane.
  • the value of conditional expression (5) is less than the upper limit, the convex shape of the side surface of the first lens object does not become too strong, the occurrence of spherical aberration does not increase, and at the same time, the principal point position of the first lens is imaged with respect to the lens. Since it is not close to the side, it can promote a low profile.
  • conditional expression (5) when the value of conditional expression (5) exceeds the lower limit, the concave shape on the side surface of the first lens object does not become too strong, and a light having a large angle of view exceeding 180 ° can be incident on the lens, thereby widening the angle. .
  • this imaging lens desirably satisfies the following conditional expression (5 ′). ⁇ 0.04 ⁇ f / r1 ⁇ 0.04 (5 ′)
  • the imaging lens preferably satisfies the following conditional expression. 1.8 ⁇ f3 / f ⁇ 4.3 (6)
  • f3 focal length of the third lens (mm)
  • conditional expression (6) When the value of conditional expression (6) exceeds the lower limit, the positive refractive power of the third lens does not become too strong, so that the occurrence of spherical aberration and coma can be kept small. Further, when the value of conditional expression (6) is less than the upper limit, the third lens has a strong positive refractive power, so that the principal point position of the entire system is closer to the image side, making it easier to reduce the focal length and widening the angle. Become advantageous. In addition, it is possible to correct chromatic aberration generated in the first lens and the second lens. Furthermore, the imaging lens desirably satisfies the following conditional expression (6 ′). 2.0 ⁇ f3 / f ⁇ 4.0 (6 ′)
  • the imaging lens preferably satisfies the following conditional expression. ⁇ 30.0 ⁇ fl / f ⁇ 6.0 (7) However, f1: Focal length of the first lens (mm)
  • conditional expression (7) When the value of conditional expression (7) exceeds the lower limit, the first lens has a weak refractive power, so that it is possible to suppress the occurrence of spherical aberration and coma that are a concern when the refractive power is too strong. Further, when the value of conditional expression (7) is below the upper limit, the first lens has a negative refractive power, which contributes to shortening the focal length of the entire system and is advantageous for widening the angle. Furthermore, the imaging lens desirably satisfies the following conditional expression (7 ′). -20.0 ⁇ fl / f ⁇ -7.0 (7 ')
  • the imaging lens preferably satisfies the following conditional expression. 2.0 ⁇ f34 / f ⁇ 4.0 (8) However, f34: Composite focal length of the third lens and the fourth lens (mm)
  • Conditional expression (8) defines a preferable range of the combined focal length of the third lens and the fourth lens.
  • the value of conditional expression (8) exceeds the lower limit, the combined refractive power of the third lens and the fourth lens does not become too strong with respect to the focal length of the entire system, so that the occurrence of spherical aberration and coma aberration can be suppressed. it can.
  • the value of conditional expression (8) is less than the upper limit, the positive refractive power becomes strong at a position close to the image plane, so that it is easy to shorten the focal point, which is advantageous for widening the angle.
  • the imaging lens desirably satisfies the following conditional expression (8 ′). 2.5 ⁇ f34 / f ⁇ 3.5 (8 ′)
  • the imaging lens preferably satisfies the following conditional expression. ⁇ 1.0 ⁇ (r5 + r6) / (r5 ⁇ r6) ⁇ 0.2 (9)
  • r5 radius of curvature (mm) of the side surface of the third lens object
  • r6 radius of curvature (mm) of the side surface of the third lens image
  • Conditional expression (9) defines a preferable shape of the third lens.
  • the third lens becomes a convex lens with a loose image side surface.
  • the strong positive refractive power of the third lens is increased between the convex surface on the object side and the image side. Since the refractive power of the convex surface on the object side becomes too strong, the occurrence of spherical aberration and coma aberration can be avoided.
  • the convex surface of the third lens image side surface does not become too strong, the incident angle of the light of the peripheral image height to the third lens image side surface does not become too large, and coma aberration is reduced. The increase can be suppressed.
  • the imaging lens desirably satisfies the following conditional expression (9 ′). ⁇ 0.8 ⁇ (r5 + r6) / (r5-r6) ⁇ 0.3 (9 ′)
  • the imaging lens preferably satisfies the following conditional expression. 0.8 ⁇ f3 / f4 ⁇ 2.0 (10) However, f3: Focal length (mm) of the third lens f4: Focal length (mm) of the fourth lens
  • conditional expression (10) defines a preferable range of the ratio of the focal lengths of the third lens and the fourth lens.
  • conditional expression (10) the balance between the refractive power of the third lens and the refractive power of the fourth lens becomes good, and both wide angle and aberration correction can be achieved.
  • the imaging lens desirably satisfies the following conditional expression (10 ′). 1.0 ⁇ f3 / f4 ⁇ 1.8 (10 ′)
  • the image side surface of the second lens is an aspherical surface. This makes it possible to provide different powers near and in the vicinity of the center of the second lens image side surface within the effective diameter, so that aberration correction is advantageous.
  • the imaging lens may have a lens that does not substantially have refractive power.
  • the image point is the air conversion length of the cover glass.
  • r radius of curvature of refractive surface (mm)
  • d Distance between shaft upper surfaces (mm)
  • nd Refractive index of lens material at d-line at room temperature
  • vd Abbe number of lens material
  • STO Aperture stop eff.diameter: Effective diameter
  • the surface described with “*” after each surface number is a surface having an aspheric shape, and the shape of the aspheric surface has the vertex of the surface as the origin and the X axis in the optical axis direction.
  • the height in the direction perpendicular to the optical axis is h, and is expressed by the following “Equation 1”.
  • a power of 10 for example, 2.5 ⁇ 10 ⁇ 02
  • E for example, 2.5e ⁇ 002
  • the surface number of the lens data was given in order with the object side of the first lens as one surface.
  • the unit of the numerical value showing the length as described in an Example shall be mm.
  • the paraxial radius of curvature in the actual lens measurement scene, in the vicinity of the center of the lens (specifically, the central region within 10% of the lens effective diameter).
  • the approximate radius of curvature when the measured shape of the shape is fitted by the method of least squares can be regarded as the paraxial radius of curvature.
  • a radius of curvature that takes into account the secondary aspherical coefficient in the reference curvature radius of the aspherical definition formula can be regarded as a paraxial curvature radius.
  • Example 1 shows lens data in Example 1.
  • 3 is a sectional view of the lens of Example 1.
  • the imaging lens of Example 1 includes, in order from the object side, a first lens L1 having a negative refractive power, a second lens L2 having a negative refractive power, a third lens L3 having a positive refractive power, an aperture stop S,
  • the fourth lens L4 has a positive refractive power
  • the object side surface of the first lens L1 made of a plastic material has an aspherical shape
  • the peripheral portion has a positive refractive power.
  • the first lens L1 has a concave surface on the image side
  • the second lens L2 has a concave surface on the image side
  • the third lens L3 has a convex surface on the object side
  • the fourth lens L4 has a convex surface on the image side.
  • F is a parallel plate assuming a cover glass or an IR cut filter
  • IM is an imaging surface of the solid-state imaging device.
  • FIG. 4 is an aberration diagram of Example 1 (spherical aberration (a), astigmatism (b), distortion aberration (c)), and FIG. 5 is a meridional coma aberration (a), (b)).
  • the solid line represents the spherical aberration amount with respect to the d line and the dotted line, respectively
  • the solid line represents the sagittal surface and the dotted line represents the meridional surface ( same as below).
  • Example 2 shows lens data in Example 2.
  • 6 is a sectional view of the lens of Example 2.
  • the imaging lens of Example 2 includes, in order from the object side, a first lens L1 having a negative refractive power, a second lens L2 having a negative refractive power, a third lens L3 having a positive refractive power, an aperture stop S,
  • the fourth lens L4 has a positive refractive power
  • the object side surface of the first lens L1 made of a plastic material has an aspherical shape
  • the peripheral portion has a positive refractive power.
  • the first lens L1 has a concave surface on the image side
  • the second lens L2 has a concave surface on the image side
  • the third lens L3 has a convex surface on the object side
  • the fourth lens L4 has a convex surface on the image side.
  • F is a parallel plate assuming a cover glass or an IR cut filter
  • IM is an imaging surface of the solid-state imaging device.
  • FIG. 7 is an aberration diagram of Example 2 (spherical aberration (a), astigmatism (b), distortion aberration (c)), and FIG. 8 is a meridional coma aberration (a), (b)). is there.
  • FIG. 9 is a sectional view of the lens of Example 3.
  • the imaging lens of Example 3 includes, in order from the object side, a first lens L1 having a negative refractive power, a second lens L2 having a negative refractive power, a third lens L3 having a positive refractive power, an aperture stop S,
  • the fourth lens L4 has a positive refractive power
  • the object side surface of the first lens L1 made of a plastic material has an aspherical shape, and the peripheral portion has a positive refractive power.
  • the first lens L1 has a concave surface on the image side
  • the second lens L2 has a concave surface on the image side
  • the third lens L3 has a convex surface on the object side
  • the fourth lens L4 has a convex surface on the image side.
  • F is a parallel plate assuming a cover glass or an IR cut filter
  • IM is an imaging surface of the solid-state imaging device.
  • FIG. 10 is an aberration diagram of Example 3 (spherical aberration (a), astigmatism (b), distortion aberration (c)), and FIG. 11 is a meridional coma aberration (a), (b)). is there.
  • Example 4 Table 4 shows lens data in Example 4. 12 is a sectional view of the lens of Example 4.
  • the imaging lens of Example 4 includes, in order from the object side, a first lens L1 having negative refractive power, a second lens L2 having negative refractive power, a third lens L3 having positive refractive power, an aperture stop S,
  • the fourth lens L4 has a positive refractive power
  • the object side surface of the first lens L1 made of a plastic material has an aspherical shape
  • the peripheral portion has a positive refractive power.
  • the first lens L1 has a concave surface on the image side
  • the second lens L2 has a concave surface on the image side
  • the third lens L3 has a convex surface on the object side
  • the fourth lens L4 has a convex surface on the image side.
  • F is a parallel plate assuming a cover glass or an IR cut filter
  • IM is an imaging surface of the solid-state imaging device.
  • FIG. 13 is an aberration diagram of Example 4 (spherical aberration (a), astigmatism (b), distortion aberration (c)), and FIG. 14 is a meridional coma aberration (a), (b)). is there.
  • Example 5 shows lens data in Example 5.
  • FIG. 15 is a sectional view of the lens of Example 5.
  • the imaging lens of Example 5 includes, in order from the object side, a first lens L1 having negative refractive power, a second lens L2 having negative refractive power, a third lens L3 having positive refractive power, an aperture stop S,
  • the fourth lens L4 has a positive refractive power
  • the object side surface of the first lens L1 made of a plastic material has an aspherical shape
  • the peripheral portion has a positive refractive power.
  • the first lens L1 has a concave surface on the image side
  • the second lens L2 has a concave surface on the image side
  • the third lens L3 has a convex surface on the object side
  • the fourth lens L4 has a convex surface on the image side.
  • F is a parallel plate assuming a cover glass or an IR cut filter
  • IM is an imaging surface of the solid-state imaging device.
  • FIG. 16 is an aberration diagram of Example 5 (spherical aberration (a), astigmatism (b), distortion aberration (c)), and FIG. 17 is a meridional coma aberration (a), (b)). is there.
  • Example 6 shows lens data in Example 6.
  • FIG. 18 is a sectional view of the lens of Example 6.
  • the imaging lens of Example 6 includes, in order from the object side, a first lens L1 having a negative refractive power, a second lens L2 having a negative refractive power, a third lens L3 having a positive refractive power, an aperture stop S,
  • the fourth lens L4 has a positive refractive power
  • the object side surface of the first lens L1 made of a plastic material has an aspherical shape
  • the peripheral portion has a positive refractive power.
  • the first lens L1 has a concave surface on the image side
  • the second lens L2 has a concave surface on the image side
  • the third lens L3 has a convex surface on the object side
  • the fourth lens L4 has a convex surface on the image side.
  • F is a parallel plate assuming a cover glass or an IR cut filter
  • IM is an imaging surface of the solid-state imaging device.
  • FIG. 19 is an aberration diagram of Example 6 (spherical aberration (a), astigmatism (b), distortion aberration (c)), and FIG. 20 is a meridional coma aberration (a), (b)). is there.
  • Example 7 shows lens data in Example 7.
  • FIG. 21 is a sectional view of the lens of Example 7.
  • the imaging lens of Example 7 includes, in order from the object side, a first lens L1 having negative refractive power, a second lens L2 having negative refractive power, a third lens L3 having positive refractive power, an aperture stop S,
  • the fourth lens L4 has a positive refractive power
  • the object side surface of the first lens L1 made of a plastic material has an aspherical shape, and the peripheral portion has a positive refractive power.
  • the first lens L1 has a concave surface on the image side
  • the second lens L2 has a concave surface on the image side
  • the third lens L3 has a convex surface on the object side
  • the fourth lens L4 has a convex surface on the image side.
  • F is a parallel plate assuming a cover glass or an IR cut filter
  • IM is an imaging surface of the solid-state imaging device.
  • Example 7 is an aberration diagram of Example 7 (spherical aberration (a), astigmatism (b), distortion aberration (c)), and FIG. 23 is a meridional coma aberration (a), (b)). is there.
  • Table 8 summarizes the values of the examples corresponding to each conditional expression.
  • the present invention is not limited to the embodiments and examples described in the specification, and includes other examples and modifications, and includes the embodiments, examples, and techniques described in the present specification. It will be apparent to those skilled in the art from the idea. For example, even when a dummy lens having substantially no refractive power is further provided, it is within the scope of application of the present invention.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Lenses (AREA)

Abstract

 低コスト且つ光学性能を確保しつつ、従来タイプに比べ広角化及び低背化を図ることができる4枚構成の撮像レンズ、及びそれを用いた撮像装置を提供する。撮像レンズLNは、物体側から順に負の屈折力を有する第1レンズ、負の屈折力を有する第2レンズ、第3レンズ、第4レンズからなり、前記第1レンズの物体側面が非球面形状であり、下記の条件式を満足する。 -2.8<f2/f<-0.5 (1) 0.0<(r1+r2)/(r1-r2)<2.3 (2) 但し、f2:第2レンズの焦点距離(mm) f:全系の焦点距離(mm) r1:第1レンズ物体側面の曲率半径(mm) r2:第1レンズ像側面の曲率半径(mm)

Description

撮像レンズ及び撮像装置
 本発明は、固体撮像素子を用いた撮像装置に好適な撮像レンズ、及び撮像レンズを用いた撮像装置に関する。
 近年、CCD(Charge Coupled Devices)型イメージセンサやCMOS(Complementary Meta1-Oxide Semiconductor)型イメージセンサ等の固体撮像素子を用いた撮像素子の高性能化、小型化に伴い、撮像装置を備えた機器が普及しつつある。このような機器の内、車載カメラや監視カメラ等は、なるべく広範囲を撮影するために180度以上に広角化したいという要請がある。一方、小型化や低コスト化についても当然要請されており、そのため4枚レンズ構成の撮像レンズが提案されている。
 ここで、従来用いられている4枚レンズ構成の撮像レンズのうち最も物体側のレンズは、耐環境性や高い光学性能を持つガラス製のレンズが用いられることが多いが、低コスト化や製造容易性の観点から球面レンズを用いているのが一般的である。しかしながら、低コストと広角化を維持しつつ、近年の高性能化や光学全長短縮化(低背化)の要求に応じるためには、最も物体側のレンズを非球面レンズとする必要が生じた。特に、撮像レンズを搭載する機器の意匠性や小型化を促進するには、最も物体側のレンズの物体側面を平面に近づけることが望ましいといえる。
 これに対し、特許文献1、2には、最も物体側のレンズに非球面を用いてなり、像側面を平面に近づけた4枚レンズ構成の撮像レンズが開示されている。
特開2011-81425号公報 特開2008-281859号公報 特開2007-25499号公報
 しかしながら、特許文献1に記載の撮像レンズでは、十分に広角化が図られているとは言いがたい。又、特許文献2の撮像レンズは、第2レンズの屈折力が弱いため、広角化及び低背化がともに不足している。
 更に特許文献3には、最も物体側のレンズが物体側に凸面を向けたメニスカス形状である撮像レンズが開示されているが、広角化及び低背化がともに不足している。
 本発明は、このような問題点に鑑みてなされたものであり、低コスト且つ光学性能を確保しつつ、従来タイプに比べ広角化及び低背化を図ることができる4枚構成の撮像レンズ、及びそれを用いた撮像装置を提供することを目的とする。
 上述した目的のうち少なくとも一つを実現するために、本発明の一側面を反映した撮像レンズは、物体側から順に、負の屈折力を有する第1レンズ、負の屈折力を有する第2レンズ、第3レンズ、第4レンズからなり、前記第1レンズの物体側面が非球面形状であり、下記の条件式を満足することを特徴とする。
 -2.8<f2/f<-0.5   (1)
 0.0<(r1+r2)/(r1-r2)<2.3   (2)
但し、
f2:前記第2レンズの焦点距離(mm)
f:全系の焦点距離(mm)
r1:前記第1レンズ物体側面の曲率半径(mm)
r2:前記第1レンズ像側面の曲率半径(mm)
 第1レンズ、第2レンズを負レンズとすることで、全系の主点位置を像側に寄せることができるため,より広角化することが可能になる。更に第1レンズの物体側面を非球面とすることで、第1レンズの中心付近と周辺部に異なる屈折力を持たせ、軸上光束と周辺光束に対し、それぞれ適切な収差補正ができる。
 条件式(2)を満たす第1レンズの形状は、像側面に比べ物体側面の曲率半径が緩い両凹形状から物体側に緩い凸面を向けたメニスカスレンズになるが、仮に第1レンズ物体側面が球面形状であるとすると、平面や凹形状の場合は180°以上の画角の光は入射できず、緩い凸形状の場合は180°を超える画角の光は、第1レンズの物体側面に対し、大きな入射角を持って入射することになり、大きな収差を発生してしまう。そこで、本撮像レンズでは第1レンズ物体側面を非球面とし、周辺部を凸形状とすることで大きな画角の光が小さな入射角で入射できるようにし、180°を超える広角レンズとしても収差の発生を小さく抑えることができるようにしている。
 さらに条件式(1)の値が下限を上回ることで、第2レンズが有する負の屈折力を強くすることになるため、主点位置を像面に近付けることができ、広角化に有利になる。一方、条件式(1)の値が上限を下回ることにより、第2レンズの負の屈折力が強くなり過ぎることによる、球面収差やコマ収差の発生や誤差感度の増大を防ぐことができる。さらに、本撮像レンズは、望ましくは以下の条件式(1’)を満足する。
 -2.3<f2/f<-1.0   (1’)
 また条件式(2)の値が下限を上回ることで、第1レンズが、像側面に比べ物体側面の曲率半径が大きい両凹レンズになるため、第1レンズの主点位置が像側に寄ることから広角化に有利になる。また条件式(2)の値が上限を下回ることによって、第1レンズ物体側面に緩い凸面を向けたメニスカスレンズになるため、第1レンズが物体側に突出せず、低背化に有利になる。さらに、本撮像レンズは、望ましくは以下の条件式(2’)を満足する。
 0.5<(r1+r2)/(r1-r2)<1.8   (2’)
 本撮像装置は、上述の撮像レンズを備えることを特徴とする。
 本発明によれば、低コスト且つ光学性能を確保しつつ、従来タイプに比べ広角化及び低背化を図ることができる4枚構成の撮像レンズ、及びそれを用いた撮像装置を提供することができる。
第1レンズの物体側面S1の一例を誇張して示す図である。 本実施形態にかかる撮像装置LUの斜視図である。 実施例1にかかる撮像レンズの断面図である。 実施例1にかかる撮像レンズの球面収差(a)、非点収差(b)、及び歪曲収差(c))である。 実施例1にかかるメリディオナルコマ収差(a)、(b)の収差図である。 実施例2にかかる撮像レンズの断面図である。 実施例2にかかる撮像レンズの球面収差(a)、非点収差(b)、及び歪曲収差(c))である。 実施例2にかかるメリディオナルコマ収差(a)、(b)の収差図である。 実施例3にかかる撮像レンズの断面図である。 実施例3にかかる撮像レンズの球面収差(a)、非点収差(b)、及び歪曲収差(c))である。 実施例3にかかるメリディオナルコマ収差(a)、(b)の収差図である。 実施例4にかかる撮像レンズの断面図である。 実施例4にかかる撮像レンズの球面収差(a)、非点収差(b)、及び歪曲収差(c))である。 実施例4にかかるメリディオナルコマ収差(a)、(b)の収差図である。 実施例5にかかる撮像レンズの断面図である。 実施例5にかかる撮像レンズの球面収差(a)、非点収差(b)、及び歪曲収差(c))である。 実施例5にかかるメリディオナルコマ収差(a)、(b)の収差図である。 実施例6にかかる撮像レンズの断面図である。 実施例6にかかる撮像レンズの球面収差(a)、非点収差(b)、及び歪曲収差(c))である。 実施例6にかかるメリディオナルコマ収差(a)、(b)の収差図である。 実施例7にかかる撮像レンズの断面図である。 実施例7にかかる撮像レンズの球面収差(a)、非点収差(b)、及び歪曲収差(c))である。 実施例7にかかるメリディオナルコマ収差(a)、(b)の収差図である。
 以下、本発明による実施形態を図面に基づいて説明する。図2は、本実施形態にかかる撮像装置を用いた車載カメラ1の斜視図である。車載カメラ1の撮像装置は、CMOS型イメージセンサIMと、このイメージセンサIMの光電変換部(受光面)に被写体像を撮像させる撮像レンズLNとから構成されている。CMOS型イメージセンサIMから出力された画像信号は、ケーブル2を介して車載コンピュータ(不図示)に出力されるようになっている。
 撮像レンズLNは、物体側から順に負の屈折力を有する第1レンズ、負の屈折力を有する第2レンズ、第3レンズ、第4レンズからなり、第1レンズの物体側面が非球面形状であり、下記の条件式を満足する。
 -2.8<f2/f<-0.5   (1)
 0.0<(r1+r2)/(r1-r2)<2.3   (2)
但し、
f2:第2レンズの焦点距離(mm)
f:全系の焦点距離(mm)
r1:第1レンズ物体側面の曲率半径(mm)
r2:第1レンズ像側面の曲率半径(mm)
 以下、好ましい実施態様について説明する。
 上記撮像レンズにおいて、第3レンズと第4レンズは正の屈折力を有することが好ましい。第3レンズと第4レンズを正レンズとすることで、負の屈折力を有する第1レンズ及び第2レンズを加えて、全系でレトロフォーカスタイプとなるため、広角化に有利になる。また焦点距離を短くするためには強い正の屈折力が必要になるが、第3レンズと第4レンズで正の屈折力を分担することができるため、一方のレンズの屈折力が強くなり過ぎず、誤差感度の増大や収差の発生を抑えることができる。
 また、第1レンズの物体側面は周辺部が正の屈折力を有することが好ましい。第1レンズ物体側面の周辺部が正の屈折力を持つことで、180°以上の画角から光線が入射することができるため、画角180°以上の広角化が可能になる。
 また、第1レンズは像側に凹面を向け、第2レンズは像側に凹面を向け、第3レンズは物体側に凸面を向け、第4レンズは像側に凸面を向けていることが好ましい。第1レンズと第2レンズの像側面を凹面、第3レンズの物体側面を凸面とすることで、大きい画角で入射した光線に対し、各面が垂直に近い角度を取ることになるため、面への入射角が小さくなり、収差の発生を抑えることができる。また、第4レンズ像側面を凸面とすることで、像面への光線入射角を小さく抑えることができる。
 また、第1レンズの材料が以下の条件式を満たすことが好ましい。
 40<ν1<70   (3)
但し
ν1:第1レンズのアッベ数
 条件式(3)の値が下限を上回ることで、第1レンズで発生する色収差を小さく抑えることができるため、高性能化が容易になる。また条件式(3)の値が上限を下回ることで、入手しやすい材料で構成することができ、低コスト化に有利になる。また色収差の発生が小さくなり過ぎず、他のレンズの色収差補正とのバランスが崩れて過剰補正になることを防ぐことができる。望ましくは、以下の式(3’)を満たすことである。
 50<ν1<65   (3’)
 また、第1レンズはプラスチック材料からなることが好ましい。第1レンズをプラスチックレンズとすることで、その光学面を容易に非球面とすることができ、また低コスト化に有利になる。
 また、第3レンズと第4レンズの間に開口絞りを有することが好ましい。第3レンズと第4レンズの間に開口絞りを配置することで、第3レンズと第4レンズの有効径を小さく抑えることができるため、第3レンズと第4レンズに強い正の屈折力を持たせても高次収差を小さく抑えることができる。一方で、このような開口絞りの配置により、軸上光線高さは高くなり第3レンズと第4レンズの屈折力の全系焦点距離への寄与が大きくなるため、短焦点化が容易になり広角化に有利になる。
 また、第1レンズの物体側面が、光軸垂線に対し最大となる面角度θ1(°)で交差する光軸からの距離をh1としたときに、光軸からの距離h1/5の位置における光軸垂線に対する面角度をθ2(°)とすると、以下の条件式を満たすことが好ましい。
 θ1>θ2×6   (4)
 図1は、第1レンズの物体側面S1の一例を誇張して示す図である。図1において、光軸OAの垂線に対し、第1レンズの物体側面S1が交差してなす面角度のうち最大となる面角度θ1(°)が位置P1で得られたとき、位置P1までの光軸OAからの距離をh1として、更に光軸OAからの距離h1/5の位置P2における面角度θ2(°)とするとき、条件式(4)を満たす。このように条件式(4)を満たすことで、第1レンズ物体側面の中心付近の面角度は小さく、周辺部の面角度は大きくなるが、そうすることによって、中心付近が突出せず低背化に有利になる。また周辺部の面角度を大きくすることによって、大きな角度で入射する光線の面への入射角を小さく抑えることができるため、収差の発生を抑えることができる。さらに、本撮像レンズは、望ましくは以下の条件式(4’)を満足する。
 θ1>θ2×10   (4’)
 また、上記撮像レンズは、以下の条件式を満たすことが好ましい。
 -0.06<f/r1<0.06   (5)
 第1レンズの物体側面の曲率半径を、条件式(5)の範囲を満足するようにすることで、平面に近い面となる。条件式(5)の値が上限を下回ることで、第1レンズ物体側面の凸形状が強くなりすぎず、球面収差の発生が大きくならず、同時に第1レンズの主点位置がレンズに対し像側に寄らないので、低背化を促進できる。また条件式(5)の値が下限を上回ることで、第1レンズ物体側面の凹形状が強くなりすぎず、180°を超えるような大きな画角の光線がレンズに入射でき、広角化を図れる。又、非球面形状で周辺部を凸形状とすれば広角化が可能となるが、中心部と周辺部とで曲率半径が大きく異ならないので,製造誤差感度を弱めて製造容易性を高めることができる。さらに、本撮像レンズは、望ましくは以下の条件式(5’)を満足する。
 -0.04<f/r1<0.04   (5’)
 また、上記撮像レンズは、以下の条件式を満たすことが好ましい。
 1.8<f3/f<4.3   (6)
但し、
f3:第3レンズの焦点距離(mm)
 条件式(6)の値が下限を上回ることで、第3レンズの正の屈折力が強くなり過ぎないため、球面収差やコマ収差の発生を小さく抑えることができる。また条件式(6)の値が上限を下回ることで、第3レンズが強い正の屈折力を持つため、全系の主点位置が像側に寄って短焦点化が容易となり、広角化に有利になる。また第1レンズと第2レンズで発生した色収差を補正することが可能となる。さらに、本撮像レンズは、望ましくは以下の条件式(6’)を満足する。
 2.0<f3/f<4.0   (6’)
 また、上記撮像レンズは、以下の条件式を満たすことが好ましい。
 -30.0<fl/f<-6.0   (7)
但し、
f1:第1レンズの焦点距離(mm)
 条件式(7)の値が下限を上回ることで、第1レンズが弱い屈折力となるため、屈折力が強過ぎる場合に懸念される球面収差やコマ収差の発生を抑えることができる。また,条件式(7)の値が上限を下回ることで、第1レンズが負の屈折力を持つため、全系の短焦点化に寄与し、広角化に優位になる。さらに、本撮像レンズは、望ましくは以下の条件式(7’)を満足する。
 -20.0<fl/f<-7.0   (7’)
 また、上記撮像レンズは、以下の条件式を満たすことが好ましい。
 2.0<f34/f<4.0   (8)
但し、
f34:第3レンズと第4レンズの合成焦点距離(mm)
 条件式(8)は、第3レンズと第4レンズの合成焦点距離の好ましい範囲を定めている。条件式(8)の値が下限を上回ることで、全系の焦点距離に対し第3レンズと第4レンズの合成屈折力が強くなり過ぎないため、球面収差やコマ収差の発生を抑えることができる。また、条件式(8)の値が上限を下回ることで、像面に近い位置で正の屈折力が強くなるため、短焦点化が容易になり広角化に有利になる。さらに、本撮像レンズは、望ましくは以下の条件式(8’)を満足する。
 2.5<f34/f<3.5   (8’)
 また、上記撮像レンズは、以下の条件式を満たすことが好ましい。
-1.0≦(r5+r6)/(r5-r6)<-0.2   (9)
但し、
r5:前記第3レンズ物体側面の曲率半径(mm)
r6:前記第3レンズ像側面の曲率半径(mm)
 条件式(9)は好ましい第3レンズの形状を定めている。条件式(9)の値が下限を上回ることで第3レンズは像側面が緩い凸面のレンズとなるが、そうすることにより第3レンズの持つ強い正の屈折力を物体側の凸面と像側の凸面で分担することができるため、物体側の凸面の屈折力が強くなり過ぎることにより球面収差やコマ収差が発生するのを避けることができる。また条件式(9)の上限を下回ることで、第3レンズ像側面の凸面が強くなりすぎず、周辺像高の光の第3レンズ像側面への入射角が大きくなりすぎず、コマ収差の増大を抑えることができる。さらに、本撮像レンズは、望ましくは以下の条件式(9’)を満足する。
-0.8<(r5+r6)/(r5-r6)<-0.3   (9’)
 また、上記撮像レンズは、以下の条件式を満たすことが好ましい。
 0.8<f3/f4<2.0   (10)
但し、
f3:前記第3レンズの焦点距離(mm)
f4:前記第4レンズの焦点距離(mm)
 条件式(10)の値は、第3レンズと第4レンズの焦点距離の比の好ましい範囲を定めている。条件式(10)を満足することで、第3レンズの屈折力と第4レンズの屈折力のバランスが良好になり、広角化と収差補正の両立が可能になる。さらに、本撮像レンズは、望ましくは以下の条件式(10’)を満足する。
 1.0<f3/f4<1.8   (10’)
 また、第2レンズの像側面は非球面であることが好ましい。これにより、第2レンズ像側面の有効径内の中心付近と周辺部で異なるパワーを持たせることができるため、収差補正が有利になる。
 また、上記撮像レンズは、実質的に屈折力を有しないレンズを有してもよい。
(実施例)
 次に、上述した実施形態に好適な実施例について説明する。但し、以下に示す実施例により本発明が限定されるものではない。実施例における各符号の意味は以下の通りである(長さの単位は、波長以外mm)。
FL:撮像レンズ全系の焦点距離(mm)
BF:バックフォーカス(mm)(但し、カバーガラスを空気換算長とした場合の近軸像面までの距離)
Fno :Fナンバー
w :半画角(゜)
Ymax:固体撮像素子の撮像面対角線長の半分の長さ(mm)
TL:撮像レンズ全系の最も物体側のレンズ面から像側焦点までの光軸上の距離(mm)(但し、「像側焦点」とは、撮像レンズに光軸と平行な平行光線が入射した場合の像点をいう。またカバーガラスは空気換算長とする。)
r :屈折面の曲率半径(mm)
d :軸上面間隔(mm)
nd:レンズ材料のd線の常温での屈折率
vd:レンズ材料のアッベ数
STO:開口絞り
eff.diameter:有効径
 各実施例において、各面番号の後に「*」が記載されている面が非球面形状を有する面であり、非球面の形状は、面の頂点を原点とし、光軸方向にX軸をとり、光軸と垂直方向の高さをhとして以下の「数1」で表す。
Figure JPOXMLDOC01-appb-M000001
但し、
Ai:i次の非球面係数
R :曲率半径
K :円錐定数
である。
 また、以降(表のレンズデータを含む)において、10のべき乗数(例えば、2.5×10-02)を、E(例えば2.5e-002)を用いて表すものとする。また、レンズデータの面番号は第1レンズの物体側を1面として順に付与した。なお、実施例に記載の長さを表す数値の単位はすべてmmとする。
 なお、請求項ならびに実施例に記載の近軸曲率半径の意味合いについて、実際のレンズ測定の場面においては、レンズ中央近傍(具体的には、レンズ有効径に対して10%以内の中央領域)での形状測定値を最小自乗法でフィッティングした際の近似曲率半径を近軸曲率半径であるとみなすことができる。また、例えば2次の非球面係数を使用した場合には、非球面定義式の基準曲率半径に2次の非球面係数も勘案した曲率半径を近軸曲率半径とみなすことができる。(例えば参考文献として、松居吉哉著「レンズ設計法」(共立出版株式会社)のP41~42を参照のこと)
(実施例1)
 実施例1におけるレンズデータを表1に示す。図3は実施例1のレンズの断面図である。実施例1の撮像レンズは、物体側から順に、負の屈折力を有する第1レンズL1、負の屈折力を有する第2レンズL2、正の屈折力を有する第3レンズL3、開口絞りS、正の屈折力を有する第4レンズL4からなり、プラスチック材料からなる第1レンズL1の物体側面は非球面形状であって、周辺部が正の屈折力を有する。第1レンズL1は像側に凹面を向け、第2レンズL2は像側に凹面を向け、第3レンズL3は物体側に凸面を向け、第4レンズL4は像側に凸面を向けている。Fはカバーガラス又はIRカットフィルタを想定した平行平板であり、IMは固体撮像素子の撮像面である。
[表1]
[実施例1]
Reference Wave Length = 587.56 nm
 unit: mm

面番号        r           d        nd     vd     eff.diameter
   1*      1e+018      0.8000   1.54470  55.99    12.968
   2*      5.7049      2.3699                      6.891
   3*      3.6648      1.0101   1.54470  55.99     5.808
   4*      0.7497      0.6532                      3.912
   5*      2.1522      1.6597   1.63469  23.86     3.763
   6*     -5.5145      0.7689                      2.859
 STO     INFINITY      0.8498                      1.201
   8*      5.5351      1.3217   1.54470  56.00     2.889
   9*     -1.4688      0.5000                      3.054
  10     INFINITY      0.3000   1.56400  47.00     3.329
  11     INFINITY      1.5397                      3.375
 
面番号:非球面係数
1 :K=0.00000e+000,A4=6.96143e-004,A6=-3.86461e-006,A8=-1.06354e-007,A10=1.41062e-009
2 :K=0.00000e+000,A4=-3.12737e-004,A6=6.88601e-004,A8=-7.82132e-005,A10=4.60432e-006
3 :K=-5.00000e+001,A4=-1.90113e-002,A6=2.15327e-003,A8=-1.20466e-004,A10=2.87551e-006
4 :K=-1.94492e+000,A4=1.01466e-002,A6=-6.21379e-004,A8=-2.54781e-003,A10=4.05222e-004
5 :K=0.00000e+000,A4=-4.33199e-002,A6=2.85933e-002,A8=-9.67521e-003,A10=1.15315e-003
6 :K=0.00000e+000,A4=2.07964e-002,A6=2.48808e-002,A8=-2.56711e-002,A10=1.32981e-002,A12=-2.25096e-003
8 :K=0.00000e+000,A4=-2.18040e-002,A6=6.65018e-003,A8=1.69852e-003,A10=1.88678e-004
9 :K=-2.13847e+000,A4=-2.72322e-002,A6=1.44832e-002,A8=-9.54128e-003,A10=3.48938e-003

  FL       1.173
 Fno       2.00
   w       187.00
 Ymax      1.931
  BF       2.232
  TL       11.665

 Elem   Surfs   Focal Length    Diameter
   1     1- 2    -10.4735       12.968
   2     3- 4     -1.9710        5.808
   3     5- 6      2.6628        3.763
   4     8- 9      2.2830        3.054
 図4は実施例1の収差図(球面収差(a)、非点収差(b)、歪曲収差(c))であり、図5は、メリディオナルコマ収差(a)、(b))である。ここで、球面収差図及びメリディオナルコマ収差図において、実線はd線、点線はg線に対する球面収差量をそれぞれ表し、非点収差図において、実線はサジタル面、点線はメリディオナル面を表す(以下、同じ)。
(実施例2)
 実施例2におけるレンズデータを表2に示す。図6は実施例2のレンズの断面図である。実施例2の撮像レンズは、物体側から順に、負の屈折力を有する第1レンズL1、負の屈折力を有する第2レンズL2、正の屈折力を有する第3レンズL3、開口絞りS、正の屈折力を有する第4レンズL4からなり、プラスチック材料からなる第1レンズL1の物体側面は非球面形状であって、周辺部が正の屈折力を有する。第1レンズL1は像側に凹面を向け、第2レンズL2は像側に凹面を向け、第3レンズL3は物体側に凸面を向け、第4レンズL4は像側に凸面を向けている。Fはカバーガラス又はIRカットフィルタを想定した平行平板であり、IMは固体撮像素子の撮像面である。
[表2]
[実施例2]
Reference Wave Length = 587.56 nm
 unit: mm

 面番号      r           d        nd      vd     eff.diameter
   1*      1e+018      0.8000   1.54470  55.99    12.665
   2*      4.5554      2.3208                      6.646
   3*      3.5404      0.9325   1.54470  55.99     5.680
   4*      0.7386      0.6815                      3.481
   5*      1.9061      1.3063   1.63469  23.86     3.294
   6*     -8.0154      0.7780                      2.715
 STO     INFINITY      0.7171                      1.219
   8*      4.3032      1.4616   1.54470  56.00     2.663
   9*     -1.5587      1.7358                      3.164
  10     INFINITY      0.3000   1.56400  47.00     3.754
  11     INFINITY      0.2919                      3.798
 
面番号:非球面係数
1 :K=0.00000e+000,A4=7.76977e-004,A6=-2.79927e-006,A8=-1.18676e-007,A10=8.50507e-010
2 :K=0.00000e+000,A4=-1.29350e-003,A6=9.46875e-004,A8=-1.28640e-004,A10=7.58000e-006
3 :K=-3.11243e+001,A4=-2.07764e-002,A6=2.30146e-003,A8=-8.28633e-005,A10=-4.21018e-008
4 :K=-1.89093e+000,A4=5.99182e-002,A6=-9.18142e-003,A8=-7.34492e-003,A10=1.47135e-003
5 :K=0.00000e+000,A4=-2.72150e-002,A6=2.27525e-002,A8=-6.61266e-003,A10=-3.00618e-004
6 :K=0.00000e+000,A4=1.38298e-002,A6=3.82173e-002,A8=-3.04123e-002,A10=1.36523e-002,A12=-2.69843e-003
8 :K=0.00000e+000,A4=-3.56221e-002,A6=1.53074e-002,A8=-1.12135e-002,A10=2.16767e-003
9 :K=-2.00000e+000,A4=-2.07585e-002,A6=5.81866e-003,A8=-1.88585e-003,A10=-4.66717e-004

  FL       1.163
 Fno       2.00
   w       187.00
 Ymax      1.930
  BF       2.219
  TL       11.217

 Elem   Surfs   Focal Length    Diameter
   1     1- 2     -8.3632       12.665
   2     3- 4     -1.9411        5.680
   3     5- 6      2.5569        3.294
   4     8- 9      2.3032        3.164
 図7は実施例2の収差図(球面収差(a)、非点収差(b)、歪曲収差(c))であり、図8は、メリディオナルコマ収差(a)、(b))である。
(実施例3)
 実施例3におけるレンズデータを表3に示す。図9は実施例3のレンズの断面図である。実施例3の撮像レンズは、物体側から順に、負の屈折力を有する第1レンズL1、負の屈折力を有する第2レンズL2、正の屈折力を有する第3レンズL3、開口絞りS、正の屈折力を有する第4レンズL4からなり、プラスチック材料からなる第1レンズL1の物体側面は非球面形状であって、周辺部が正の屈折力を有する。第1レンズL1は像側に凹面を向け、第2レンズL2は像側に凹面を向け、第3レンズL3は物体側に凸面を向け、第4レンズL4は像側に凸面を向けている。Fはカバーガラス又はIRカットフィルタを想定した平行平板であり、IMは固体撮像素子の撮像面である。
[表3]
[実施例3]
Reference Wave Length = 587.56 nm
 unit: mm

 面番号      r           d        nd      vd     eff.diameter
   1*    235.6060      0.8000   1.54470  55.99    12.640
   2*      5.7550      2.2146                      6.885
   3*      4.9447      1.0887   1.54470  55.99     6.071
   4*      0.8385      0.5964                      3.933
   5*      2.0370      2.0692   1.63469  23.86     3.692
   6*    -14.7235      0.6396                      2.233
 STO     INFINITY      0.6953                      1.180
   8*      6.9822      1.3724   1.54470  56.00     2.394
   9*     -1.3431      0.5282                      2.887
  10     INFINITY      0.3000   1.56400  47.00     3.647
  11     INFINITY      1.6810                      3.704

面番号:非球面係数
1 :K=0.00000e+000,A4=6.88972e-004,A6=-4.37326e-006,A8=-1.12963e-007,A10=1.69103e-009
2 :K=0.00000e+000,A4=2.24714e-003,A6=-2.29813e-005,A8=5.70701e-006,A10=9.54569e-007
3 :K=-4.97988e+001,A4=-1.76229e-002,A6=2.17815e-003,A8=-1.28225e-004,A10=2.83805e-006
4 :K=-1.97171e+000,A4=5.69974e-002,A6=-9.78951e-003,A8=-3.98929e-003,A10=7.27255e-004
5 :K=0.00000e+000,A4=-5.28533e-003,A6=1.73548e-002,A8=-7.83953e-003,A10=7.11921e-004
6 :K=0.00000e+000,A4=6.29023e-002,A6=7.75096e-003,A8=-3.29505e-002,A10=3.78436e-002,A12=-9.97977e-003
8 :K=0.00000e+000,A4=-5.58407e-002,A6=2.16291e-002,A8=-1.13394e-002,A10=3.17925e-003
9 :K=-2.00000e+000,A4=-5.71121e-002,A6=1.66570e-002,A8=-1.04868e-002,A10=2.06937e-003

  FL       1.169
 Fno       2.00
   w       187.00
 Ymax      1.925
  BF       2.406
  TL       11.882

 Elem   Surfs   Focal Length    Diameter
   1     1- 2    -10.8433       12.640
   2     3- 4     -2.0450        6.071
   3     5- 6      2.9613        3.692
   4     8- 9      2.1956        2.887
 図10は実施例3の収差図(球面収差(a)、非点収差(b)、歪曲収差(c))であり、図11は、メリディオナルコマ収差(a)、(b))である。
(実施例4)
 実施例4におけるレンズデータを表4に示す。図12は実施例4のレンズの断面図である。実施例4の撮像レンズは、物体側から順に、負の屈折力を有する第1レンズL1、負の屈折力を有する第2レンズL2、正の屈折力を有する第3レンズL3、開口絞りS、正の屈折力を有する第4レンズL4からなり、プラスチック材料からなる第1レンズL1の物体側面は非球面形状であって、周辺部が正の屈折力を有する。第1レンズL1は像側に凹面を向け、第2レンズL2は像側に凹面を向け、第3レンズL3は物体側に凸面を向け、第4レンズL4は像側に凸面を向けている。Fはカバーガラス又はIRカットフィルタを想定した平行平板であり、IMは固体撮像素子の撮像面である。
[表4]
[実施例4]
Reference Wave Length = 587.56 nm
 unit: mm

面番号       r           d        nd      vd     eff.diameter
   1*      1e+018      0.8000   1.54470  55.99    12.675
   2*      5.4656      2.3691                      6.776
   3*      4.1783      1.0912   1.54470  55.99     5.890
   4*      0.7827      0.8377                      4.110
   5*      2.0910      1.5847   1.58313  29.99     3.762
   6*     -4.3089      0.8535                      3.079
 STO     INFINITY      0.9660                      1.247
   8*      6.1218      1.2418   1.54470  56.00     2.761
   9*     -1.5891      0.5700                      2.976
  10     INFINITY      0.3000   1.56400  47.00     3.285
  11     INFINITY      1.4543                      3.335

面番号:非球面係数
1 :K=0.00000e+000,A4=7.06954e-004,A6=-3.91178e-006,A8=-1.06635e-007,A10=1.42267e-009
2 :K=0.00000e+000,A4=1.39784e-004,A6=5.98393e-004,A8=-7.27836e-005,A10=4.73649e-006
3 :K=-5.00000e+001,A4=-1.97803e-002,A6=2.14957e-003,A8=-1.18330e-004,A10=2.89387e-006
4 :K=-1.94972e+000,A4=1.80934e-002,A6=-1.57153e-003,A8=-2.79339e-003,A10=3.95515e-004
5 :K=0.00000e+000,A4=-3.67029e-002,A6=2.60833e-002,A8=-8.70673e-003,A10=8.70457e-004
6 :K=0.00000e+000,A4=1.75289e-002,A6=3.10890e-002,A8=-2.88965e-002,A10=1.22878e-002,A12=-1.76066e-003
8 :K=0.00000e+000,A4=-2.15151e-002,A6=-1.13259e-003,A8=5.30843e-003,A10=-1.07517e-004
9 :K=-3.37734e+000,A4=-5.37472e-002,A6=2.65444e-002,A8=-1.44340e-002,A10=4.41219e-003

  FL       1.174
 Fno       2.00
   w       187.00
 Ymax      1.929
  BF       2.216
  TL       11.960

 Elem   Surfs   Focal Length    Diameter
   1     1- 2    -10.0341       12.675
   2     3- 4     -1.9940        5.890
   3     5- 6      2.6565        3.762
   4     8- 9      2.4556        2.976
 図13は実施例4の収差図(球面収差(a)、非点収差(b)、歪曲収差(c))であり、図14は、メリディオナルコマ収差(a)、(b))である。
(実施例5)
 実施例5におけるレンズデータを表5に示す。図15は実施例5のレンズの断面図である。実施例5の撮像レンズは、物体側から順に、負の屈折力を有する第1レンズL1、負の屈折力を有する第2レンズL2、正の屈折力を有する第3レンズL3、開口絞りS、正の屈折力を有する第4レンズL4からなり、プラスチック材料からなる第1レンズL1の物体側面は非球面形状であって、周辺部が正の屈折力を有する。第1レンズL1は像側に凹面を向け、第2レンズL2は像側に凹面を向け、第3レンズL3は物体側に凸面を向け、第4レンズL4は像側に凸面を向けている。Fはカバーガラス又はIRカットフィルタを想定した平行平板であり、IMは固体撮像素子の撮像面である。
[表5]
[実施例5]
Reference Wave Length = 587.56 nm
 unit: mm

 面番号      r           d        nd      vd     eff.diameter
   1*    -23.5910      0.8000   1.54470  55.99    10.908
   2*     17.9564      1.3710                      6.253
   3*      9.2990      0.9000   1.53048  55.72     5.430
   4*      0.8539      0.4896                      3.137
   5*      1.9088      1.1886   1.63200  23.40     2.827
   6*    -12.4254      0.4800                      2.007
 STO     INFINITY      0.6073                      0.949
   8*      4.5251      1.5266   1.53048  55.72     2.322
   9*     -1.0937      0.5864                      2.851
  10     INFINITY      0.3000   1.56400  47.00     3.398
  11     INFINITY      1.0739                      3.467

面番号:非球面係数
1 :K=0.00000e+000,A4=1.69807e-003,A6=-1.35921e-005,A8=-4.74110e-008
2 :K=0.00000e+000,A4=1.04215e-002,A6=-1.42840e-003,A8=1.16066e-004
3 :K=-3.45700e+001,A4=-1.86085e-002,A6=1.71112e-003,A8=-1.31118e-005,A10=-2.56407e-006
4 :K=-1.71331e+000,A4=8.97956e-002,A6=-3.42153e-002,A8=-1.32515e-002,A10=4.55224e-003
5 :K=0.00000e+000,A4=2.28289e-002,A6=1.13156e-002,A8=-1.46609e-003,A10=-8.82522e-004
6 :K=0.00000e+000,A4=6.38174e-002,A6=7.27780e-002,A8=-1.00851e-001,A10=1.17584e-001,A12=-4.93281e-002
8 :K=0.00000e+000,A4=-7.84940e-002,A6=3.32129e-002,A8=-8.23504e-003,A10=1.45015e-003
9 :K=-2.00000e+000,A4=-6.72534e-002,A6=2.50816e-002,A8=-1.84000e-002,A10=4.92548e-003

  FL       1.170
 Fno       2.00
   w     187.00
 Ymax      1.919
  BF       1.852
  TL       9.215

 Elem   Surfs   Focal Length    Diameter
   1     1- 2    -18.5920       10.908
   2     3- 4     -1.8404        5.430
   3     5- 6      2.7049        2.827
   4     8- 9      1.8330        2.851
 図16は実施例5の収差図(球面収差(a)、非点収差(b)、歪曲収差(c))であり、図17は、メリディオナルコマ収差(a)、(b))である。
(実施例6)
 実施例6におけるレンズデータを表6に示す。図18は実施例6のレンズの断面図である。実施例6の撮像レンズは、物体側から順に、負の屈折力を有する第1レンズL1、負の屈折力を有する第2レンズL2、正の屈折力を有する第3レンズL3、開口絞りS、正の屈折力を有する第4レンズL4からなり、プラスチック材料からなる第1レンズL1の物体側面は非球面形状であって、周辺部が正の屈折力を有する。第1レンズL1は像側に凹面を向け、第2レンズL2は像側に凹面を向け、第3レンズL3は物体側に凸面を向け、第4レンズL4は像側に凸面を向けている。Fはカバーガラス又はIRカットフィルタを想定した平行平板であり、IMは固体撮像素子の撮像面である。
[表6]
[実施例6]
Reference Wave Length = 587.56 nm
 unit: mm

 面番号      r           d          nd     vd     eff.diameter
   1*     20.9758      0.8000   1.54470  56.00    12.863
   2*      5.1309      2.4914                      6.881
   3*     11.7626      0.9598   1.53048  55.72     6.060
   4*      0.9567      0.5476                      3.850
   5*      1.9171      1.9410   1.63200  23.40     3.510
   6*    -18.8610      0.4800                      2.061
 STO     INFINITY      0.6132                      0.795
   8*      4.2820      1.5334   1.53048  55.72     2.151
   9*     -0.9600      0.5241                      2.751
  10     INFINITY      0.3000   1.56400  47.00     3.385
  11     INFINITY      0.8760                      3.465

面番号:非球面係数
1 :K=0.00000e+000,A4=-6.58293e-005,A6=1.72741e-006,A8=2.99117e-009,A10=-4.78507e-010,A12=4.90978e-012
2 :K=0.00000e+000,A4=4.41305e-003,A6=-1.33075e-003,A8=3.10218e-004,A10=-2.28327e-005,A12=5.84599e-007
3 :K=-3.28381e+001,A4=-6.93633e-003,A6=1.13291e-004,A8=5.40339e-005,A10=-3.41528e-006
4 :K=-1.65423e+000,A4=1.16391e-001,A6=-5.31827e-002,A8=5.74934e-003,A10=-2.95623e-005
5 :K=0.00000e+000,A4=4.47023e-002,A6=-1.41596e-002,A8=-2.14457e-004,A10=-3.44528e-004
6 :K=0.00000e+000,A4=8.25610e-002,A6=-5.50611e-002,A8=4.23568e-002,A10=-9.91868e-003,A12=1.14367e-003
8 :K=0.00000e+000,A4=-1.47631e-001,A6=1.41497e-001,A8=-9.45915e-002,A10=2.18300e-002
9 :K=-2.00000e+000,A4=-8.26021e-002,A6=-7.67482e-003,A8=1.73154e-002,A10=-5.97261e-003

  FL       0.904
 Fno       2.08
   w       187.00
 Ymax      1.918
  BF       1.582
  TL       10.948

 Elem   Surfs   Focal Length    Diameter
   1     1- 2    -12.6960       12.863
   2     3- 4     -2.0254        6.060
   3     5- 6      2.8569        3.510
   4     8- 9      1.6451        2.751
 図19は実施例6の収差図(球面収差(a)、非点収差(b)、歪曲収差(c))であり、図20は、メリディオナルコマ収差(a)、(b))である。
(実施例7)
 実施例7におけるレンズデータを表7に示す。図21は実施例7のレンズの断面図である。実施例7の撮像レンズは、物体側から順に、負の屈折力を有する第1レンズL1、負の屈折力を有する第2レンズL2、正の屈折力を有する第3レンズL3、開口絞りS、正の屈折力を有する第4レンズL4からなり、プラスチック材料からなる第1レンズL1の物体側面は非球面形状であって、周辺部が正の屈折力を有する。第1レンズL1は像側に凹面を向け、第2レンズL2は像側に凹面を向け、第3レンズL3は物体側に凸面を向け、第4レンズL4は像側に凸面を向けている。Fはカバーガラス又はIRカットフィルタを想定した平行平板であり、IMは固体撮像素子の撮像面である。
[表7]
[実施例7]
Reference Wave Length = 587.56 nm
 unit: mm

面番号       r           d        nd      vd     eff.diameter
   1*     99.7730      0.8000   1.54470  56.00    12.924
   2*      8.1687      2.1309                      7.190
   3*     11.6128      1.0310   1.53048  55.72     6.500
   4*      0.9622      0.6250                      4.153
   5*      2.0408      2.0683   1.63200  23.40     3.637
   6*   3617.4634      0.4800                      1.968
 STO     INFINITY      0.6382                      0.786
   8*      3.4476      1.5187   1.53048  55.72     2.535
   9*     -0.9722      0.5240                      2.808
  10     INFINITY      0.3000   1.56400  47.00     3.388
  11     INFINITY      0.8760                      3.471

面番号:非球面係数
1 :K=0.00000e+000,A4=3.80379e-004,A6=1.22722e-007,A8=-4.26696e-008,A10=-8.43442e-010,A12=1.66765e-011
2 :K=0.00000e+000,A4=2.72172e-003,A6=-2.15756e-004,A8=9.08544e-005,A10=-7.06194e-006,A12=2.16274e-007
3 :K=-5.93299e+000,A4=-7.53002e-003,A6=8.93918e-005,A8=5.52211e-005,A10=-3.15012e-006
4 :K=-1.86098e+000,A4=1.31809e-001,A6=-5.13977e-002,A8=5.65127e-003,A10=-1.51596e-004
5 :K=0.00000e+000,A4=4.77225e-002,A6=-7.14230e-003,A8=-8.32799e-004,A10=-1.23057e-004
6 :K=0.00000e+000,A4=1.07470e-001,A6=-5.40565e-002,A8=2.92632e-002,A10=7.91229e-003,A12=1.14367e-003
8 :K=0.00000e+000,A4=-9.86947e-002,A6=8.79011e-002,A8=-3.37835e-002,A10=6.32040e-003
9 :K=-2.00000e+000,A4=-7.03031e-002,A6=2.00520e-002,A8=-9.35167e-003,A10=6.66469e-003

  FL       0.905
 Fno       2.08
   w       187.00
 Ymax      1.918
  BF       1.700
  TL       10.993

 Elem   Surfs   Focal Length    Diameter
   1     1- 2    -16.3845       12.924
   2     3- 4     -2.0463        6.500
   3     5- 6      3.2303        3.637
   4     8- 9      1.6228        2.808
 図22は実施例7の収差図(球面収差(a)、非点収差(b)、歪曲収差(c))であり、図23は、メリディオナルコマ収差(a)、(b))である。
 各条件式に対応する実施例の値を表8にまとめて示す。
Figure JPOXMLDOC01-appb-T000002
 また、本発明は、明細書に記載の実施形態や実施例に限定されるものではなく、他の実施例・変形例を含むことは、本明細書に記載された実施形態や実施例や技術思想から本分野の当業者にとって明らかである。例えば、実質的に屈折力を持たないダミーレンズを更に付与した場合でも本発明の適用範囲内である。
1 撮像装置
2 ケーブル
L1 第1レンズ
L2 第2レンズ
L3 第3レンズ
L4 第4レンズ
LN 撮像レンズ
IM 撮像素子

Claims (17)

  1.  物体側から順に、負の屈折力を有する第1レンズ、負の屈折力を有する第2レンズ、第3レンズ、第4レンズからなり、前記第1レンズの物体側面が非球面形状であり、下記の条件式を満足することを特徴とする撮像レンズ。
     -2.8<f2/f<-0.5   (1)
     0.0<(r1+r2)/(r1-r2)<2.3   (2)
    但し、
    f2:前記第2レンズの焦点距離(mm)
    f:全系の焦点距離(mm)
    r1:前記第1レンズ物体側面の曲率半径(mm)
    r2:前記第1レンズ像側面の曲率半径(mm)
  2.  前記第3レンズと前記第4レンズは正の屈折力を有することを特徴とする請求項1に記載の撮像レンズ。
  3.  前記第1レンズの物体側面は周辺部が正の屈折力を有することを特徴とする請求項1又は2に記載の撮像レンズ。
  4.  前記第1レンズは像側に凹面を向け、前記第2レンズは像側に凹面を向け、前記第3レンズは物体側に凸面を向け、前記第4レンズは像側に凸面を向けていることを特徴とする請求項1~3のいずれかに記載の撮像レンズ。
  5.  前記第1レンズの材料が以下の条件式を満たすことを特徴とする請求項1~4のいずれかに記載の撮像レンズ。
     40<ν1<70   (3)
    但し
    ν1:前記第1レンズのアッベ数
  6.  前記第1レンズはプラスチック材料からなることを特徴とする請求項1~5のいずれかに記載の撮像レンズ。
  7.  前記第3レンズと前記第4レンズの間に開口絞りを有することを特徴する請求項1~6のいずれかに記載の撮像レンズ。
  8.  前記第1レンズの物体側面が、光軸垂線に対し最大となる面角度θ1(°)で交差する光軸からの距離をh1としたときに、光軸からの距離h1/5の位置における光軸垂線に対する面角度をθ2(°)とすると、以下の条件式を満たすことを特徴とする請求項1~7のいずれかに記載の撮像レンズ。
     θ1>θ2×6   (4)
  9.  以下の条件式を満たすことを特徴とする請求項1~8のいずれかに記載の撮像レンズ。
     -0.06<f/r1<0.06   (5)
  10.  以下の条件式を満たすことを特徴とする請求項1~9のいずれかに記載の撮像レンズ。
     1.8<f3/f<4.3   (6)
    但し、
    f3:前記第3レンズの焦点距離(mm)
  11.  以下の条件式を満たすことを特徴とする請求項1~10のいずれかに記載の撮像レンズ。
     -30.0<fl/f<-6.0   (7)
    但し、
    f1:前記第1レンズの焦点距離(mm)
  12.  以下の条件式を満たすことを特徴とする請求項1~11に記載の撮像レンズ。
     2.0<f34/f<4.0   (8)
    但し、
    f34:前記第3レンズと前記第4レンズの合成焦点距離(mm)
  13.  以下の条件式を満たすことを特徴とする請求項1~12に記載の撮像レンズ。
    -1.0≦(r5+r6)/(r5-r6)<-0.2   (9)
    但し、
    r5:前記第3レンズ物体側面の曲率半径(mm)
    r6:前記第3レンズ像側面の曲率半径(mm)
  14.  以下の条件式を満たすことを特徴とする請求項1~13のいずれかに記載の撮像レンズ。
     0.8<f3/f4<2.0   (10〉
    但し、
    f3:前記第3レンズの焦点距離(mm)
    f4:前記第4レンズの焦点距離(mm)
  15.  前記第2レンズの像側面は非球面であることを特徴とする請求項1~14のいずれかに記載の撮像レンズ。
  16.  実質的に屈折力を有しないレンズを有することを特徴とする請求項1~15のいずれかに記載の撮像レンズ。
  17.  請求項1~16のいずれかに記載の撮像レンズを備えることを特徴とする撮像装置。
PCT/JP2014/064683 2013-06-20 2014-06-03 撮像レンズ及び撮像装置 WO2014203720A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2015522719A JPWO2014203720A1 (ja) 2013-06-20 2014-06-03 撮像レンズ及び撮像装置
US14/900,022 US20160139362A1 (en) 2013-06-20 2014-06-03 Imaging Lens And Imaging Device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2013129311 2013-06-20
JP2013-129311 2013-06-20

Publications (1)

Publication Number Publication Date
WO2014203720A1 true WO2014203720A1 (ja) 2014-12-24

Family

ID=52104461

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/064683 WO2014203720A1 (ja) 2013-06-20 2014-06-03 撮像レンズ及び撮像装置

Country Status (3)

Country Link
US (1) US20160139362A1 (ja)
JP (1) JPWO2014203720A1 (ja)
WO (1) WO2014203720A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015184498A (ja) * 2014-03-25 2015-10-22 カンタツ株式会社 撮像レンズ
WO2017099153A1 (ja) * 2015-12-07 2017-06-15 京セラオプテック株式会社 トロカールおよび低背型光学系レンズ

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102375648B1 (ko) * 2014-12-17 2022-03-17 엘지이노텍 주식회사 촬상 렌즈, 이를 포함하는 카메라 모듈 및 디지털 기기
KR101964181B1 (ko) * 2017-09-27 2019-04-01 현대모비스 주식회사 자동차용 렌즈 광학계 및 이를 포함한 자동차용 광학 장치

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08313804A (ja) * 1995-05-19 1996-11-29 Olympus Optical Co Ltd 広角レンズ
JP2007025499A (ja) * 2005-07-20 2007-02-01 Alps Electric Co Ltd 光学装置
JP2008276185A (ja) * 2007-03-30 2008-11-13 Ricoh Opt Ind Co Ltd 広角レンズおよび撮影装置
JP2009265354A (ja) * 2008-04-25 2009-11-12 Fujinon Corp 撮像レンズおよびこの撮像レンズを用いた撮像装置
JP2009276371A (ja) * 2008-05-12 2009-11-26 Olympus Medical Systems Corp 内視鏡用画像装置
JP2011081425A (ja) * 2005-02-21 2011-04-21 Fujifilm Corp 広角撮像レンズおよび光学装置
JP2011158508A (ja) * 2010-01-29 2011-08-18 Fujifilm Corp 撮像レンズおよび撮像装置

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7446955B1 (en) * 2007-08-26 2008-11-04 Largan Precision Co., Ltd. Wide-angle lens system
EP2214044A4 (en) * 2007-11-22 2011-02-23 Konica Minolta Opto Inc WIDE ANGLE OPTICAL SYSTEM, IMAGING LENS DEVICE, MONITOR CAMERA, AND DIGITAL APPARATUS
JP2010243711A (ja) * 2009-04-03 2010-10-28 Ricoh Co Ltd 広角レンズ及び撮像装置
JP5399306B2 (ja) * 2009-04-10 2014-01-29 富士フイルム株式会社 撮像レンズおよび撮像装置
JP5486408B2 (ja) * 2009-07-29 2014-05-07 富士フイルム株式会社 撮像レンズおよび撮像装置
KR101108802B1 (ko) * 2009-12-08 2012-02-09 삼성전기주식회사 카메라용 광학계
JP5405324B2 (ja) * 2010-01-04 2014-02-05 富士フイルム株式会社 撮像レンズおよび撮像装置
JP5438583B2 (ja) * 2010-04-01 2014-03-12 富士フイルム株式会社 撮像レンズおよび撮像装置
JP5466569B2 (ja) * 2010-04-26 2014-04-09 富士フイルム株式会社 撮像レンズおよび撮像装置
WO2014123137A1 (ja) * 2013-02-08 2014-08-14 コニカミノルタ株式会社 撮影光学系,撮像光学装置及びデジタル機器
US9007702B2 (en) * 2013-03-03 2015-04-14 Newmax Technology Co., Ltd. Five-piece optical lens system
TWI480577B (zh) * 2013-04-16 2015-04-11 Sintai Optical Shenzhen Co Ltd 廣角鏡頭

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08313804A (ja) * 1995-05-19 1996-11-29 Olympus Optical Co Ltd 広角レンズ
JP2011081425A (ja) * 2005-02-21 2011-04-21 Fujifilm Corp 広角撮像レンズおよび光学装置
JP2007025499A (ja) * 2005-07-20 2007-02-01 Alps Electric Co Ltd 光学装置
JP2008276185A (ja) * 2007-03-30 2008-11-13 Ricoh Opt Ind Co Ltd 広角レンズおよび撮影装置
JP2009265354A (ja) * 2008-04-25 2009-11-12 Fujinon Corp 撮像レンズおよびこの撮像レンズを用いた撮像装置
JP2009276371A (ja) * 2008-05-12 2009-11-26 Olympus Medical Systems Corp 内視鏡用画像装置
JP2011158508A (ja) * 2010-01-29 2011-08-18 Fujifilm Corp 撮像レンズおよび撮像装置

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015184498A (ja) * 2014-03-25 2015-10-22 カンタツ株式会社 撮像レンズ
WO2017099153A1 (ja) * 2015-12-07 2017-06-15 京セラオプテック株式会社 トロカールおよび低背型光学系レンズ
JPWO2017099153A1 (ja) * 2015-12-07 2018-11-08 京セラオプテック株式会社 トロカールおよび低背型光学系レンズ

Also Published As

Publication number Publication date
US20160139362A1 (en) 2016-05-19
JPWO2014203720A1 (ja) 2017-02-23

Similar Documents

Publication Publication Date Title
JP5975386B2 (ja) 撮像レンズ
JP5671190B2 (ja) 撮像レンズおよび撮像装置
JP6128673B2 (ja) 撮像レンズ
JP4947423B2 (ja) 撮像レンズ
JP4747645B2 (ja) 広角レンズ、及び、撮像装置
US8611023B2 (en) Photographing optical lens assembly
JP6490115B2 (ja) 撮像レンズ
WO2010073522A1 (ja) 撮像レンズ
WO2011052444A1 (ja) 撮像レンズ
JP5513641B1 (ja) 撮像レンズ
JP6710473B2 (ja) 撮像レンズ
JP2015055728A (ja) 撮像レンズ
JP2010008562A (ja) 撮像レンズ
JP2013140398A (ja) 撮像レンズ
WO2014123136A1 (ja) 撮影光学系,撮像光学装置及びデジタル機器
JP2011064989A (ja) 撮像レンズ
JP6474434B2 (ja) 撮像レンズ
WO2011049107A1 (ja) 撮像レンズ
JP5069554B2 (ja) 撮像レンズ
JP2005316010A (ja) 撮像レンズ
JP5877523B2 (ja) 撮像レンズ
US9207432B2 (en) Imaging lens and imaging device provided with the same
WO2014203720A1 (ja) 撮像レンズ及び撮像装置
JP2010282174A (ja) レンズシステム
WO2014123137A1 (ja) 撮影光学系,撮像光学装置及びデジタル機器

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14813802

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2015522719

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 14900022

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14813802

Country of ref document: EP

Kind code of ref document: A1