WO2014203574A1 - Steering device - Google Patents

Steering device Download PDF

Info

Publication number
WO2014203574A1
WO2014203574A1 PCT/JP2014/057124 JP2014057124W WO2014203574A1 WO 2014203574 A1 WO2014203574 A1 WO 2014203574A1 JP 2014057124 W JP2014057124 W JP 2014057124W WO 2014203574 A1 WO2014203574 A1 WO 2014203574A1
Authority
WO
WIPO (PCT)
Prior art keywords
steering
wheel
shaft
turning
front wheel
Prior art date
Application number
PCT/JP2014/057124
Other languages
French (fr)
Japanese (ja)
Inventor
幸司 熊谷
Original Assignee
日産自動車株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日産自動車株式会社 filed Critical 日産自動車株式会社
Publication of WO2014203574A1 publication Critical patent/WO2014203574A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B62LAND VEHICLES FOR TRAVELLING OTHERWISE THAN ON RAILS
    • B62DMOTOR VEHICLES; TRAILERS
    • B62D5/00Power-assisted or power-driven steering
    • B62D5/04Power-assisted or power-driven steering electrical, e.g. using an electric servo-motor connected to, or forming part of, the steering gear
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B62LAND VEHICLES FOR TRAVELLING OTHERWISE THAN ON RAILS
    • B62DMOTOR VEHICLES; TRAILERS
    • B62D7/00Steering linkage; Stub axles or their mountings
    • B62D7/06Steering linkage; Stub axles or their mountings for individually-pivoted wheels, e.g. on king-pins
    • B62D7/14Steering linkage; Stub axles or their mountings for individually-pivoted wheels, e.g. on king-pins the pivotal axes being situated in more than one plane transverse to the longitudinal centre line of the vehicle, e.g. all-wheel steering
    • B62D7/15Steering linkage; Stub axles or their mountings for individually-pivoted wheels, e.g. on king-pins the pivotal axes being situated in more than one plane transverse to the longitudinal centre line of the vehicle, e.g. all-wheel steering characterised by means varying the ratio between the steering angles of the steered wheels
    • B62D7/1509Steering linkage; Stub axles or their mountings for individually-pivoted wheels, e.g. on king-pins the pivotal axes being situated in more than one plane transverse to the longitudinal centre line of the vehicle, e.g. all-wheel steering characterised by means varying the ratio between the steering angles of the steered wheels with different steering modes, e.g. crab-steering, or steering specially adapted for reversing of the vehicle

Definitions

  • the present invention relates to a steering apparatus, and more particularly to an apparatus that independently steers a pair of wheels in accordance with a steering operation.
  • a transmission ratio variable device including a motor and a differential generator is provided on the handle shaft.
  • the conventional technology includes a planetary gear unit having a pair of planetary gear mechanisms, left and right ball screw mechanisms, and left and right motors between rack portions provided independently on the left and right sides.
  • the structure is provided with a steering device capable of forming movement.
  • the rotational power of the steering is input to one of the left and right independent rack shafts, and when this input is transmitted between the left and right rack shafts by the planetary gear unit, a differential is generated, It is possible to make the amount of movement equal or different. Further, when the motor fails, the planetary gear unit is locked, and the rotational power of the steering is mechanically transmitted to the left and right rack shafts.
  • the conventional technology has a large number of parts such as a transmission ratio variable device, a planetary gear unit having a pair of planetary gear mechanisms, left and right ball screw mechanisms, left and right motors, and a locking device in the event of a motor failure.
  • a transmission ratio variable device such as a transmission ratio variable device, a planetary gear unit having a pair of planetary gear mechanisms, left and right ball screw mechanisms, left and right motors, and a locking device in the event of a motor failure.
  • a transmission ratio variable device such as a transmission ratio variable device, a planetary gear unit having a pair of planetary gear mechanisms, left and right ball screw mechanisms, left and right motors, and a locking device in the event of a motor failure.
  • the present invention has been made by paying attention to the above-mentioned conventional problems, and can reduce the number of parts while ensuring that the left and right wheels can be steered independently and also ensuring the steering in the event of a motor failure. It is an object of the present invention to provide a possible steering device.
  • the present invention provides both steering shafts with the rotation directly input from the handle column shaft between the left wheel steering shaft for turning the left wheel and the right wheel steering shaft for turning the right wheel.
  • a differential mechanism capable of transmitting is provided, and a left steering motor capable of driving or braking the left wheel steering shaft and a right steering motor capable of driving or braking the right wheel steering shaft are provided.
  • a steering device is provided.
  • the steering rotation of the steering wheel is directly input to the differential mechanism via the steering column column shaft, and is transmitted to the left wheel steering shaft and the right wheel steering shaft, so that the left and right wheels can be steered. Therefore, the steering at the time of failure of the left and right steering motor is guaranteed.
  • the rotation amount of the left wheel steering shaft and the right wheel steering shaft can be independently controlled by independently driving and braking the left steering motor and the right steering motor. Therefore, it is possible to steer the left wheel and the right wheel independently.
  • the above operation can be performed by a differential mechanism that is input from the handle column shaft between the left and right wheel steering shafts, and a left and right steering motor provided on each steering shaft.
  • the steering device of the present invention provides a steering device that can steer left and right wheels independently and can reduce the number of parts while guaranteeing steering in the event of a motor failure. It becomes possible to do.
  • FIG. 3 is a schematic plan view showing a front wheel steering system in the steering device of the first embodiment. It is a perspective view shown in the state where the principal part showing the wheel steering gear set for the left front wheel in the steering device of Embodiment 1 was fractured.
  • FIG. 3 is a schematic plan view showing a wheel turning gear set for left and right front wheels in the steering device of the first embodiment.
  • FIG. 6 is a rotation angle characteristic diagram showing a relationship between a rotation angle of a face gear of a wheel steering gear set and a gear ratio in the steering device of the first embodiment.
  • FIG. 3 is a front wheel turning angle characteristic diagram showing a relationship of a front wheel turning angle with respect to a steering wheel steering angle in the steering device of the first embodiment.
  • FIG. 3 is a schematic diagram schematically showing a rear wheel steering system of the steering device according to the first embodiment.
  • FIG. 3 is a collinear diagram showing a rotational speed relationship between members of a front wheel differential mechanism in the steering device of the first embodiment.
  • FIG. 3 is a collinear diagram showing a rotational speed relationship between members of a rear wheel differential mechanism in the steering device of the first embodiment.
  • FIG. 11 is a collinear diagram showing a rotational speed relationship between members in the rear wheel differential mechanism when the left and right rear wheels are steered as shown in FIG. 10 in the steering device of the first embodiment.
  • FIG. 11 is a schematic plan view which shows the front-and-rear wheel steering system of the electric vehicle provided with the steering apparatus of Embodiment 1, Comprising: The operation state in the small turn mode in all-wheel steering mode is shown.
  • FIG. 13 is a collinear diagram showing a rotational speed relationship between members in the rear wheel differential mechanism when the left and right rear wheels are steered as shown in FIG. 12 in the steering device of the first embodiment. It is a schematic plan view which shows the front-and-rear wheel steering system of the electric vehicle provided with the steering apparatus of Embodiment 1, Comprising: The operation state in the spot turn mode in all-wheel steering mode is shown.
  • FIG. 15 is a collinear diagram showing a rotational speed relationship between members in the front wheel differential mechanism when the left and right front wheels are steered as shown in FIG. 14 in the steering device of the first embodiment.
  • FIG. 15 is a collinear diagram showing a rotational speed relationship between members in the rear wheel differential mechanism when the left and right rear wheels are steered as shown in FIG. 14 in the steering device of the first embodiment.
  • FIG. 6 is a schematic plan view showing a front wheel steering system in a steering device of a second embodiment.
  • FIG. 10 is a collinear diagram showing a rotational speed relationship between members of a front wheel differential mechanism in a normal steering mode in the steering device of the second embodiment.
  • FIG. 6 is a rotation angle characteristic diagram showing a relationship between a rotation angle of a face gear of a wheel steering gear set and a gear ratio in the steering device of the second embodiment.
  • FIG. 10 is a front wheel turning angle characteristic diagram showing a relationship of a front wheel turning angle with respect to a steering wheel steering angle in the steering device of the second embodiment.
  • FIG. 10 is a collinear diagram showing a rotational speed relationship between members of a front wheel differential mechanism in a left-right antiphase steering mode in the steering device of the second embodiment. It is a schematic plan view which shows the front-wheel steering system in the steering apparatus of other embodiment.
  • FIG. 1 is a schematic plan view showing a front and rear wheel steering system of an electric vehicle equipped with a steering device A according to Embodiment 1 of the present invention, and shows an operation state in a two-wheel steering mode by turning only left and right front wheels. Yes.
  • the steering device A is a device that steers the left and right front wheels WFL, WFR and the left and right rear wheels WRL, WRR in accordance with the operation (steering amount and steering speed) of the steering wheel 1.
  • at least the left and right front wheels WFL and WFR are each provided with an in-wheel motor (not shown) that rotates an axle (not shown).
  • the left and right front wheels WFL and WFR include left and right front wheel steering shafts 2FL and 2FR extending from the respective wheels WFL and WFR in the vehicle width direction, and the left and right front wheel steering shafts 2FL and 2FR, respectively. Is steered by rotation about the longitudinal axis of the.
  • Front wheel rotation conversion gear for converting the rotation around the axis of the left and right front wheel steering shafts 2FL and 2FR to the rotation of the kingpin axis KP of the left and right front wheels WFL and WFR at the front end portions of the left and right front wheel steering shafts 2FL and 2FR in the axial direction Mechanisms 3FL and 3FR are provided.
  • the gear ratios of the front wheel rotation conversion gear mechanisms 3FL and 3FR are iFL and iFR.
  • a universal joint 21 is interposed in the middle of the left and right front wheel steering shafts 2FL and 2FR.
  • the front wheel rotation conversion gear mechanism 3FL of the left front wheel WFL includes a pinion 3p and a face gear 3f.
  • the pinion 3p is coupled to or integrally formed with the outer periphery of the front end of the left front wheel steering shaft 2FL.
  • the face gear 3f is disposed on the kingpin axis KP of the left front wheel WFL, and is supported by the casing 3c of the front wheel rotation conversion gear mechanism 3FL so as to be rotatable around the kingpin axis KP.
  • the casing 3c is supported by a knuckle spindle (not shown) and connected to a vehicle body (not shown) via a suspension device (not shown).
  • the pinion 3p is meshed with the face gear 3f, and the rotation of the left front wheel steering shaft 2FL is converted into the rotation around the kingpin axis KP in the face gear 3f.
  • the face gear 3f is pressed against the pinion 3p by an elastic body such as a spring (not shown), and the backlash between the face gear 3f and the pinion 3p is removed.
  • the pinion 3p and the face gear 3f are connected to the left and right face gears 3f and 3f, respectively. They are meshed so as to rotate in the direction of YFR. That is, the left front wheel WFL meshes with the pinion 3p on the inner side in the vehicle width direction of the kingpin axis KP, while the right front wheel WFR meshes with the pinion 3p on the outer side of the kingpin axis KP in the vehicle width direction. .
  • the face gear 3f is engaged with the outer ring side meshing region 3out that meshes with the pinion 3p when it is on the outer ring side during turning, and the inner ring side meshing with the pinion 3p when it is on the inner ring side during turning.
  • the gear ratio of both the regions 3 in and 3 out is set so that the outer ring side meshing region 3 out is a substantially constant gear ratio, while the inner ring side meshing region 3 in is set to be more than the outer ring side meshing region 3 out.
  • the gear ratio can be lowered.
  • the steering angle on the inner wheel side can be set to be larger than the steering angle on the outer wheel side, that is, so-called Ackerman steering, at the time of steering the steering wheel.
  • the outer wheel side meshing region 3out is set so as to increase proportionally or monotonously with respect to the steering angle of the steering wheel.
  • the front wheel steering mechanism 5 includes a front wheel differential mechanism 6, a left steering motor 7, and a right steering motor 8.
  • the front wheel differential mechanism 6 includes a cross shaft gear set 61 and a planetary gear set 62.
  • the cross shaft gear set 61 includes a first bevel gear 61a and a second bevel gear 61b.
  • the cross shaft gear set 61 is configured so that the rotation of the first bevel gear 61a connected to the handle column shaft 4 rotated by the steering of the handle 1 around the axis in the front-rear direction of the vehicle is substantially performed by the second bevel gear 61b meshing with the rotation. Convert to rotation around the axis in the width direction.
  • the planetary gear set 62 is of a so-called single pinion type, and includes a sun gear 62a, a ring gear 62b, a pinion 62c that rotates while meshing with both gears 62a and 62b, and a carrier 62d that supports the pinion 62c. .
  • the sun gear 62a is connected to the right front wheel steering shaft 2FR on the right front wheel WFR side.
  • Ring gear 62b is connected to left front wheel steering shaft 2FL on the left front wheel WFL side.
  • the rotation of the handle column shaft 4 is input to the carrier 62d via the cross shaft gear set 61. Accordingly, the steering rotation of the handle 1 is directly input to the front wheel differential mechanism 6 from the handle column shaft 4 and is transmitted from the planetary gear set 62 of the front wheel differential mechanism 6 to the left and right front wheel steering shafts 2FL and 2FR.
  • the left steering motor 7 is provided so as to be able to drive and brake the left front wheel steering shaft 2FL on the left front wheel WFL side. That is, the left steering motor 7 can rotate the left front wheel steering shaft 2FL, or conversely, can input the rotation of the left front wheel steering shaft 2FL and regenerate it.
  • the right steering motor 8 is provided so as to drive and brake the right front wheel steering shaft 2FR on the right front wheel WFR side. That is, the right steered motor 8 can rotate the right front wheel steering shaft 2FR, or conversely, can input the rotation of the right front wheel steering shaft 2FR and regenerate it.
  • the planetary gear set 62 has a rotational difference between the sun gear 62a and the carrier 62d based on the number of teeth of the sun gear 62a and the number of teeth of the ring gear 62b. And the rotation difference between the carrier 62d and the carrier 62d.
  • the gear ratio iFL between the pinion 3p of the front wheel rotation conversion gear mechanisms 3FL and 3FR and the face gear 3f is set so that the turning angle of the inner and outer wheels is equal to the steering angle when turning left and right.
  • IFR are set differently.
  • the rear wheel steering system 11 that is a steering system for the left and right rear wheels WFL and WFR will be described with reference to FIGS. 1 and 7.
  • the rear wheel steering system 11 is not a feature of the present invention, and may have any configuration, but an example is simply shown.
  • the left and right rear wheels WRL and WRR also include left and right rear wheel steering shafts 9RL and 9RR that rotate about a longitudinal axis substantially along the vehicle width direction, similarly to the front wheel side.
  • Rear wheel rotation conversion gear mechanisms 10RL and 10RR are provided at the front ends of the left and right rear wheel steering shafts 9RL and 9RR.
  • the left and right rear wheels WRL and WRR can also be steered around the kingpin axis KP. It is supported by a suspension device that is omitted.
  • the left and right rear wheels WRL and WRR are also steered by converting the rotation around the axis of the left and right rear wheel steering shafts 9RL and 9RR into rotation around the kingpin axis KP.
  • a universal joint 91 is interposed in the middle of the left and right rear wheel steering shafts 9RL and 9RR.
  • the pinions 10p and 10p are arranged on the inner side in the vehicle width direction than the kingpin axis KP with respect to the face gears 10f and 10f. For this reason, when the left and right rear wheels WRL and WRR are steered to the left and right in-phase, the rotation directions of the left and right rear wheel steering shafts 9RL and 9RR are reversed.
  • a rear wheel steering system 11 As a configuration for rotating these left and right rear wheel steering shafts 9RL and 9RR, a rear wheel steering system 11 is provided. As shown in FIG. 7, the rear wheel steering system 11 includes a rear wheel differential mechanism 12, a rear wheel steering motor 13, and a steering angle adjustment motor 14.
  • the rear wheel differential mechanism 12 includes a rear wheel planetary gear set 15.
  • the rear wheel planetary gear set 15 is of a so-called single pinion type, and includes a sun gear 15a, a ring gear 15b, a pinion 15c, and a carrier 15d.
  • the sun gear 15a is coupled to the right rear wheel steering shaft 9RR on the right rear wheel WRR side.
  • the driving force of the rear wheel steering motor 13 is input to the right rear wheel steering shaft 9RR.
  • Ring gear 15b is coupled to left rear wheel steering shaft 9RL on the left rear wheel WRL side.
  • the pinion 15c is meshed with the sun gear 15a and the ring gear 15b, and is rotatably supported by the carrier 15d.
  • the carrier 15d is connected to the rudder angle adjusting motor 14 via the reduction gear 16 so as to be able to transmit drive.
  • FIG. 11 is a collinear diagram showing a rotational speed relationship between members of the rear planetary gear set 15 at the time of the right steering. That is, the right rear wheel steering shaft 9RR is rotated by the rear wheel steering motor 13 (see FIG. 7) to give the desired right rear wheel steering angle ⁇ R to the right rear wheel WRR. At the same time, the steering angle adjustment motor 14 (see FIG. 7) rotates the carrier 15d in the reverse direction, thereby rotating the left rear wheel steering shaft 9RL in the reverse direction so that the left rear wheel WRL has a desired left rear wheel turning angle ⁇ R. Get.
  • the steering angle shown in FIG. 7 is set in the same direction as the rotation direction of the right rear wheel steering shaft 9RR by the rear wheel steering motor 13.
  • the carrier 15d is rotated by the adjusting motor 14.
  • the left rear wheel steering shaft 9RL and the right rear wheel steering shaft 9RR rotate in the same direction, and as shown in FIG. 14, the left rear wheel turning angle ⁇ R becomes the right rear wheel steering.
  • the phase is opposite to that of the angle ⁇ R.
  • the steering apparatus A is provided with a controller 100 that controls driving of the motors 7, 8, 13, and 14 (see FIG. 4). Further, the controller 100 is provided with a steering angle sensor 101, a left steering shaft rotation angle sensor 102, a right steering shaft rotation angle sensor 103, and a mode changeover switch 104 on the input side.
  • the steering angle sensor 101 is provided on the handle column shaft 4 and detects the steering angle.
  • the left steering shaft rotation angle sensor 102 and the right steering shaft rotation angle sensor 103 are provided on the left front wheel steering shaft 2FL and the right front wheel steering shaft 2FR, respectively, and detect their rotation angles.
  • the rotation angle sensors 102 and 103 may be encoder-type sensors that detect the rotation angles of the front wheel steering shafts 2FL and 2FR and the steering motors 7 and 8, or may be used. , 8 resolvers may be used for detection.
  • the mode changeover switch 104 is installed on the steering wheel 1 and selects the normal steering mode, the left / right in-phase steering mode, the left / right opposite phase steering mode, and the in-situ turn (C-shaped) mode as the steering mode. It is possible.
  • the controller 100 described above drives the motors 7, 8, 12, and 13 based on the detection of the steering angle sensor 101, and performs steering control of the left and right front wheels WFL and WRR and, if necessary, the left and right rear wheels WRL and WRR. . At this time, the contents of control differ depending on the steering mode selected by the mode changeover switch 104.
  • the normal steering mode is a mode in which only the left and right front wheels WFL and WFR are steered. This normal steering mode is included in the left and right in-phase steering mode in which the left and right wheels are steered to the same phase. , 8 are driven.
  • the controller 100 controls the rotational speeds of the respective steering motors 7 and 8 as shown in the alignment chart of the planetary gear set 62 in the normal steering mode in FIG. That is, when turning right, the rotational speed of the right steered motor 8 (sun gear 62a) is controlled to be larger than the rotational speed of the left steered motor 7 (ring gear 62b), as indicated by a dashed line in the figure. At this time, when it is desired to relatively increase the steering angle difference between the left and right front wheels WFL and WFR, control is performed so that the difference in rotational speed between the left and right steering motors 7 and 8 becomes larger.
  • the rotational speed of the left steered motor 7 (ring gear 62b) is controlled to be larger than the rotational speed of the right steered motor 8 (sun gear 62a).
  • FIG. 8 shows the difference in the steering angle between the outer wheel and the inner wheel with respect to the steering angle.
  • the controller 100 increases the difference in the steering angle between the inner wheel and the outer wheel as the steering angle increases relatively. As described above, the rotational speeds of the left and right steering motors 7 and 8 are controlled.
  • FIG. 9 is a collinear diagram showing the rotational speed relationship between members of the rear planetary gear set 15 in this case, and the left and right rear wheels WRL, WRR are not steered.
  • the angular velocity is set to zero.
  • ⁇ All-wheel steering mode> it is possible to steer all the wheels WFL, WFR, WRL, WRR.
  • the all-wheel steering mode there are a parallel movement mode, a small turning mode, and an in-situ turning mode (a left-right antiphase steering mode).
  • the left and right front wheels WRL and WRR and the left and right rear wheels WRL and WRR are steered to the same angle, and the vehicle is steered by all wheels WFL, WFR, WRL and WRR.
  • this mode translation is performed in the direction.
  • a mode in which the left and right front wheels WFL and WFR are steered is included in the left and right in-phase steer mode.
  • the small turning mode is a mode in which the left and right front wheels WFL, WFR and the left and right rear wheels WRL, WRR are reverse-phase steered as shown in FIG.
  • the left and right front wheels WFL, WFR are included in the left / right in-phase steering mode.
  • the in-situ turning mode is such that the left and right front wheels WFL and WFR and the left and right rear wheels WRL and WRR are steered into a letter C and a letter C, and the vehicle turns on the spot.
  • This is a mode for turning.
  • the left and right front wheels WFL and WFR are steered by the left and right anti-phase steer mode.
  • the left and right front wheels WFL, WFR and the left and right rear wheels WRL, WRR are reverse-phase-steered so that the vehicle turning center is located in front of the vehicle by LR from the rear axle extension line.
  • the right front wheel turning angle ⁇ F, the left front wheel turning angle ⁇ F, the right rear wheel turning angle ⁇ R, and the left rear wheel turning angle ⁇ R are expressed by the following equations (2) to (4) because of the Ackermann-Jantt relationship. expressed.
  • W / LR cot ⁇ R ⁇ cot ⁇ R (4)
  • the front wheel steering mechanism 5 is controlled in the same manner as in the normal mode, and the rear wheel differential mechanism 12 is controlled by the left and right rear wheels WRL, WRR as shown in the alignment chart of FIG. Is steered so as to have an opposite phase to the example shown in FIG.
  • the front wheel steering mechanism 5 reverses the left and right front wheels WFL, WFR by reversing the sun gear 62a and the ring gear 62b based on the driving of the steering motors 7, 8 as shown in FIG. It steers with a phase (refer FIG. 14). Further, as shown in FIG. 16, the rear wheel differential mechanism 12 rotates the sun gear 15a and the ring gear 15b in the same phase based on the driving of the motors 13 and 14, and the left and right rear wheels WRL and WRR are in opposite phases. Turn the steering wheel (see FIG. 14). At this time, the carrier 62d is preferably fixed using a lock mechanism (not shown). Further, the handle 1 may be fixed by the driver.
  • the right front wheel turning angle ⁇ F, the left front wheel turning angle ⁇ F, the right rear wheel turning angle ⁇ R, and the left rear wheel turning angle ⁇ R shown in FIG. It is expressed by equation (5).
  • the fail mode is a control mode when an abnormality occurs in one of the left and right steering motors 7 and 8. That is, when one of the left and right steered motors 7 and 8 fails, when the rotational load torque between the sun gear 62a and the ring gear 62b is ⁇ : 1, if the other motor is not operated, the torque is balanced and the front wheels Each element of the differential mechanism 6 rotates at the same speed. However, when the rotational load torque between the sun gear 62a and the ring gear 62b deviates from ⁇ : 1, the smaller the load on the left and right front wheels WFL, WFR tends to rotate. Therefore, the controller 100 drives or regenerates the motor in which the left and right steered motors 7 and 8 have not failed so as to correct the difference in the rotational load torque, that is, to balance the left and right steered load torques. To control.
  • the controller 100 stores in advance the rotation angles of the left and right front wheel steering shafts 2FL and 2FR corresponding to the steering angle of the handle 1 to be used for failure determination.
  • the rotation angle of the left and right front wheel steering shafts 2FL and 2FR corresponding to the steering angle of the steering wheel 1 shows an abnormal value different from the stored value
  • the abnormal value is shown in the left and right steering motors 7 and 8. A thing is determined to be a failure.
  • the rotation angles of the left and right front wheel steering shafts 2FL and 2FR are detected, and the turning motors 7 and 8 are controlled so that the rotation angle becomes a preset stored angle. Drive or regenerate the one that is not out of order.
  • the steering apparatus of the first embodiment is A left front wheel steering shaft 2FL provided to extend inward in the vehicle width direction from the left front wheel WFL as a left wheel and steer the left front wheel WFL by rotation around a longitudinal axis;
  • a right front wheel steering shaft 2FR provided to extend inward in the vehicle width direction from the right front wheel WFR as a right wheel and steer the right wheel by rotation around a longitudinal axis;
  • a left steering motor 7 capable of driving and braking the left front wheel steering shaft 2FL;
  • a right steering motor 8 capable of driving and braking the right front wheel steering shaft 2FR;
  • a handle column shaft 4 that is rotated by a handle 1 that steers the left and right front wheels WFL, WFR;
  • a front wheel drive having a front wheel differential mechanism 6 provided between the left front wheel steering shaft 2FL and the right front wheel steering shaft 2FR and capable of transmitting the rotation directly input from the handle column shaft 4 to the front wheel steering shafts 2FL, 2
  • Rudder mechanism 5 It is characterized by having.
  • the left and right front wheels WFL and WFR are independently steered to steer left and right in-phase, It is possible to steer to the opposite phase.
  • the rotation of the handle 1 is directly input to the front wheel steering mechanism 5 and can be directly transmitted to the left and right front wheel steering shafts 2FL and 2FR. For this reason, the left and right front wheels WFL and WFR can be steered even when both the steering motors 7 and 8 fail.
  • one front wheel steering mechanism 5 is capable of steering the left and right front wheels WFL and WFR in the various aspects described above and transmitting steering rotation from the handle column shaft 4 to the left and right front wheel steering shafts 2FL and 2FR. This is achieved by the left and right steering motors 7 and 8. Therefore, the number of parts can be reduced. As described above, in the steering apparatus according to the first embodiment, the left and right front wheels WFL and WFR can be steered independently, and the number of parts can be reduced while ensuring the steering in the event of a motor failure. It is possible to plan. In addition, fine adjustment can be made to make a difference between the left and right turning angles by adjusting the torque by the steering motors 7 and 8 with respect to the handle column shaft 4 by operating the steering wheel.
  • the adjustment allowance is reduced. It can be shared when turning left and right, and has excellent controllability.
  • the adjustment range of the turning angle by the motor drive differs depending on whether the steering shaft on which the steering wheel operation is not input is on the inner wheel side or the outer wheel side of the turning, and the control becomes complicated.
  • the steering device of the first embodiment is The front wheel differential mechanism 6 as a differential mechanism includes a planetary gear set 62. Therefore, the front wheel differential mechanism 6 can be made more compact than that using a plurality of bevel gears or the like as the front wheel differential mechanism 6, and the degree of freedom of the in-vehicle layout is improved.
  • the steering device of the first embodiment is Front wheel rotation between the left and right front wheel steering shafts 2FL and 2FR and the left and right front wheels WFL and WFR that converts the rotation around the longitudinal axis of the left and right front wheel steering shafts 2FL and 2FR into the rotation of the kingpin axis KP of the left and right front wheels WFL and WFR Conversion gear mechanisms 3FL and 3FR are provided,
  • the front wheel rotation conversion gear mechanisms 3FL and 3FR are positioned at the time when the left and right front wheels WFL and WFR are steered rather than the gear ratio in the vicinity of the neutral position of the left and right front wheels WFL and WFR.
  • a variable gear ratio is set such that the gear ratio of the inner ring side meshing region 3 in meshing with 3p is smaller.
  • the steering device of the first embodiment is Rudder angle sensor 101 for detecting the steering angle of the handle column shaft 4,
  • a controller 100 as a control means for issuing a drive or regeneration command to the left and right steered motors 7 and 8 so as to give a rotation angle difference to the left and right front wheel steering shafts 2FL and 2FR based on the rotation angle of the handle column shaft 4; It is characterized by having. Therefore, as described in 1) above, when the left and right front wheels WFL and WFR are independently steered and left / right in-phase steering and left / right reverse phase steering are performed, the left / right turning is performed according to the rotation angle of the handle column shaft 4. It is possible to drive the steering motors 7 and 8 to optimally control the turning angle.
  • the steering device of Embodiment 1 receives a signal from a mode changeover switch 104 that switches between left and right in-phase steering mode and left and right opposite phase steering mode.
  • the controller 100 is characterized in that when the left-right antiphase steering mode is selected, the left steering motor 7 and the right steering motor 8 are relatively reversely rotated.
  • the left and right steered motors 7 and 8 are relatively in reverse in the left and right in-phase turning mode, the turning directions of the left and right front wheels WFL and WFR can be switched between the same phase and the opposite phase. . Therefore, the steering direction of the left and right front wheels WFL, WFR can be reversed in the forward and reverse directions by simply adjusting the rotation angle of the left and right steering motors 7, 8.
  • the configuration can be simplified.
  • the rotation directions of the motors 13 and 14 are reversed with respect to the left and right in-phase steering mode to reverse the rotation direction of the left and right rear wheels WRL and WRR.
  • the direction of steering can be reversed left and right. Therefore, the rear wheel steering system 11 can have the same effect that the configuration can be simplified.
  • the steering apparatus of the first embodiment is A left steering shaft rotation angle sensor 102 and a right steering shaft rotation angle sensor 103 as steering shaft rotation angle detection means for detecting the rotation angle of the left front wheel steering shaft 2FL and the right wheel steering shaft 2FR;
  • the controller 100 sets the steering column shaft turning angle and the steering shaft turning angle detected by the rotation angle sensors 102 and 103 when either the left turning motor 7 or the right turning motor 8 fails.
  • a process at the time of failure for driving or regenerating a motor on the non-failed side of both the steered motors 7 and 8 is executed.
  • the left and right front wheels WFL and WFR are appropriately turned only by adjusting the torque by the normal motor. It is possible to steer when a motor fails without adding new parts.
  • Embodiment 2 Next, a steering device B according to Embodiment 2 of the present invention will be described with reference to FIG. Since the second embodiment is obtained by changing a part of the first embodiment, the description of the same configuration and effect as those of the first embodiment is omitted, and the difference from the first embodiment is described. Only explained.
  • the second embodiment differs from the first embodiment in the configuration of the front wheel differential mechanism 26 in the front wheel steering mechanism 205. That is, the planetary gear mechanism 262 of the front wheel differential mechanism 26 uses a so-called double pinion structure having a pair of pinions 262c between the sun gear 62a and the ring gear 62b.
  • the right front wheel steering shaft 2FR is input to the sun gear 62a
  • the rotation of the left front wheel steering shaft 2FL is input to the carrier 62d
  • the handle column shaft 4 is input to the ring gear 62b.
  • the gear ratio between the sun gear 62a and the ring gear 62b is set to 1: 2. Therefore, in the planetary gear mechanism 262, as shown in the collinear diagram of FIG. 18, the difference between the rotational speeds ⁇ R1 and ⁇ R2 of the ring gear 62b and the sun gear 62a and the difference between the rotational speeds ⁇ L1 and ⁇ L2 of the ring gear 62b and the carrier 62d are the same. become.
  • the gear ratio between the pinion 3p and the face gear 3f of the left and right front wheel rotation conversion gear mechanisms 3FL, 3FR is set in common.
  • the outer wheel side meshing region 3out and the inner wheel side meshing region 3in are in a tire neutral state (vehicle front) as shown in FIG. Is set to be smaller than the gear ratio of
  • the gear ratio of the face gear 3f is set so that it can be steered in a so-called quick manner so that the gear ratio decreases as the face gear rotation angle increases, as shown in the figure. Yes.
  • the front wheel rotation conversion gear mechanisms 3FL and 3FR on the kingpin axis KP can have the same gear ratio on both the left and right sides, and the left and right parts pinion 3p and the face gear 3f can be shared on the left and right. , And can be made compact.
  • the left and right turning motors 7 and 8 that have not failed are driven or regenerated.
  • the normal steering motor is adjusted so that both detection values are balanced based on the detection values of the rotation angle sensors 102 and 103.
  • Give feedback control Thereby, even if one of both the steering motors 7 and 8 breaks down, it can be avoided that the steering becomes impossible.
  • spot turn mode In the spot turning mode, the left and right front wheels WFL and WFR are steered symmetrically into a letter C, so that the left turning motor 7 and the right turning motor 8 rotate in opposite directions as shown in FIG. And the absolute amount of the rotation angle is made equal. For this reason, the carrier 62d does not rotate, and the handle column shaft 4 and the handle 1 connected thereto do not rotate. Therefore, a structure such as a lock for preventing the handle 1 from rotating in the spot turning mode is not necessary.
  • the steering device of the second embodiment is
  • the planetary gear mechanism 262 is a double pinion type, and the right front wheel steering shaft 2FR is input to the sun gear 62a, the left front wheel steering shaft 2FL is input to the carrier 62d, and the handle column shaft 4 is passed through the cross shaft gear set 61.
  • the gear ratio of the sun gear 62a and the ring gear 62b is 1: 2. Therefore, the relationship of the gear ratio between the steering wheel 1 and the left and right front wheel steering shafts 2FL and 2FR can be made common to the left and right. For this reason, it is possible to make the left and right front wheel rotation conversion gear mechanisms 3FL and 3FR provided between the front wheel steering shafts 2FL and 2FR and the left and right front wheels WFL and WFR common. Therefore, the cost of the steering device B can be reduced.
  • the steering device of the second embodiment is The face gear 3f of the front wheel rotation conversion gear mechanism 3FL, 3FR is a position at the time of inner wheel side meshing region 3in that is a position at the time of inner wheel steering and a position at the time of outer wheel steering, rather than the gear ratio near the neutral of the left and right front wheels WFL, WFR.
  • the gear ratio of the outer ring side meshing region 3out is set to a variable gear ratio that is smaller, Further, the change in the gear ratio of the inner wheel side meshing region 3in and the outer wheel side meshing region 3out with respect to the steering angle is set to be the same with respect to the neutral position.
  • the tire is steered more quickly with respect to the rotation angle of the handle 1 as the steered angle becomes larger. Therefore, in the vicinity of neutrality (a state in which the turning angles of the left and right front wheels are small), straight running stability can be ensured, and the driver's steering amount can be kept small during large turning.
  • the shape of the members having the variable gear ratio of the front wheel rotation conversion gear mechanisms 3FL and 3FR specifically, the shapes of the face members 3f and 3f are symmetrical. For this reason, since the same parts on the left and right can be used as the face members 3f and 3f of the front wheel rotation conversion gear mechanisms 3FL and 3FR arranged on the left and right, the cost can be reduced.
  • the cooling device of the drive unit of the present invention has been described based on the embodiment, the specific configuration is not limited to this embodiment, and the invention according to each claim of the claims is not limited to this embodiment. Design changes and additions are allowed without departing from the gist.
  • an electric vehicle provided with a so-called in-wheel motor has been described as an example.
  • a vehicle to which the present invention is applied is not limited to an electric vehicle, and may be a vehicle driven by other power such as an internal combustion engine. Can also be used.
  • the four wheels are steered.
  • the present invention is not limited to this.
  • the present invention can also be applied to steer two wheels.
  • the steering device of the present invention can also be used for steering the rear wheels.
  • the differential mechanism using a planetary gear set is shown, but the present invention is not limited to this.
  • a differential mechanism 360 using a bevel gear as shown in FIG. 22 may be used as the differential mechanism.
  • the left front wheel steering shaft is input to the sun gear and the right wheel steering shaft is input to the carrier.
  • the right front wheel steering shaft is input to the sun gear and the left wheel steering shaft is used as the carrier. You may enter.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Transportation (AREA)
  • Mechanical Engineering (AREA)
  • Power Steering Mechanism (AREA)
  • Steering Control In Accordance With Driving Conditions (AREA)

Abstract

Provided is a steering device capable of independently steering left and right wheels and reducing the number of components while ensuring steering in case of motor failure. The steering device is characterized by being provided with: a front wheel differential mechanism (5) disposed between a left front wheel steering shaft (2FL) for turning a left front wheel (WFL) and a right front wheel steering shaft (2FR) for turning a right front wheel (WFR), the front wheel differential mechanism being capable of transmitting direct rotation input from a steering wheel column shaft (4) to both of the front wheel steering shafts (2FL, 2FR); a left turn motor (7) capable of transmitting drive force in a rotation direction of the left front wheel steering shaft (2FL); and a right turn motor (8) capable of transmitting drive force in a rotation direction of the right front wheel steering shaft (2FR).

Description

ステアリング装置Steering device
 本発明は、ステアリング装置に関し、特に、ハンドル操作に応じて一対の車輪を独立して操舵するものに関する。 The present invention relates to a steering apparatus, and more particularly to an apparatus that independently steers a pair of wheels in accordance with a steering operation.
 従来、車両用のステアリング装置において、左右の転舵輪を独立して転舵させることができるものが知られている(例えば、特許文献1参照)。
  この従来技術は、ハンドル軸にモータおよび差動発生装置を含む伝達比可変装置が設けられている。さらに、従来技術では、左右独立して設けられたラック部の間に、一対の遊星歯車機構を有した遊星ギヤユニット、左右のボールねじ機構、左右のモータを備え、左右のラック部間で差動を形成可能な操舵装置が設けられた構造となっている。
  上記の従来技術では、ステアリングの回転動力を左右独立のラック軸の一方に入力させ、この入力が遊星歯車ユニットにより左右ラック軸間を伝達される際に差動を生じさせ、左右のラック軸の移動量を等しくしたり、異ならせたりすることが可能となっている。また、モータの故障時には、遊星歯車ユニットをロックさせ、ステアリングの回転動力が左右のラック軸に機械的に伝達されるようになっている。
2. Description of the Related Art Conventionally, in a vehicle steering device, one that can independently steer left and right steered wheels is known (see, for example, Patent Document 1).
In this prior art, a transmission ratio variable device including a motor and a differential generator is provided on the handle shaft. Further, the conventional technology includes a planetary gear unit having a pair of planetary gear mechanisms, left and right ball screw mechanisms, and left and right motors between rack portions provided independently on the left and right sides. The structure is provided with a steering device capable of forming movement.
In the above prior art, the rotational power of the steering is input to one of the left and right independent rack shafts, and when this input is transmitted between the left and right rack shafts by the planetary gear unit, a differential is generated, It is possible to make the amount of movement equal or different. Further, when the motor fails, the planetary gear unit is locked, and the rotational power of the steering is mechanically transmitted to the left and right rack shafts.
特開2007-99144号公報JP 2007-99144 A
 しかしながら、従来技術にあっては、伝達比可変装置、一対の遊星歯車機構を有した遊星ギヤユニット、左右のボールねじ機構、左右のモータ、モータ故障時のロック装置というように、部品点数が多く、コストアップや車両重量増を招くという問題があった。 However, the conventional technology has a large number of parts such as a transmission ratio variable device, a planetary gear unit having a pair of planetary gear mechanisms, left and right ball screw mechanisms, left and right motors, and a locking device in the event of a motor failure. There has been a problem that the cost is increased and the vehicle weight is increased.
 本発明は、上述の従来の問題点に着目してなされたもので、左右輪を独立して操舵可能であるとともに、モータ故障時の操舵も保障しながらも、部品点数の削減を図ることが可能なステアリング装置を提供することを目的とする。 The present invention has been made by paying attention to the above-mentioned conventional problems, and can reduce the number of parts while ensuring that the left and right wheels can be steered independently and also ensuring the steering in the event of a motor failure. It is an object of the present invention to provide a possible steering device.
 上記目的を達成するため、本発明は、左輪を転舵させる左輪ステアリングシャフトと、右輪を転舵させる右輪ステアリングシャフトとの間に、ハンドルコラムシャフトから直接入力された回転を両ステアリングシャフトに伝達可能な差動機構を設けるとともに、前記左輪ステアリングシャフトを駆動または制動可能な左転舵モータと、前記右輪ステアリングシャフトを駆動または制動可能な右転舵モータと、を設けたことを特徴とするステアリング装置とした。 In order to achieve the above-mentioned object, the present invention provides both steering shafts with the rotation directly input from the handle column shaft between the left wheel steering shaft for turning the left wheel and the right wheel steering shaft for turning the right wheel. A differential mechanism capable of transmitting is provided, and a left steering motor capable of driving or braking the left wheel steering shaft and a right steering motor capable of driving or braking the right wheel steering shaft are provided. A steering device is provided.
 本発明のステアリング装置では、ハンドルの操舵回転が、ハンドルコラムシャフトを介して、差動機構に直接入力され、左輪ステアリングシャフトおよび右輪ステアリングシャフトに伝達され、左右輪を転舵させることができる。
  したがって、左右転舵モータの故障時の操舵が保障される。また、操舵時に、左転舵モータおよび右転舵モータをそれぞれ独立して駆動および制動させることにより、左輪ステアリングシャフトおよび右輪ステアリングシャフトの回転量をそれぞれ独立して制御可能である。よって、左輪および右輪を独立して転舵させることが可能である。
  上記の動作は、左右輪ステアリングシャフトの間で、ハンドルコラムシャフトから入力される差動機構、および、各ステアリングシャフトに設けた左右転舵モータにより可能となる。よって、伝達比可変装置、一対の遊星歯車機構を有した遊星ギヤユニット、左右のボールねじ機構、左右のモータ、およびモータ故障時のロック装置などを備えた従来技術と比較して、部品点数を削減できる。
  以上のように、本発明のステアリング装置は、左右輪を独立して転舵可能であるとともに、モータ故障時の操舵も保障しながらも、部品点数の削減を図ることが可能なステアリング装置を提供することが可能となる。
In the steering device of the present invention, the steering rotation of the steering wheel is directly input to the differential mechanism via the steering column column shaft, and is transmitted to the left wheel steering shaft and the right wheel steering shaft, so that the left and right wheels can be steered.
Therefore, the steering at the time of failure of the left and right steering motor is guaranteed. In addition, during the steering, the rotation amount of the left wheel steering shaft and the right wheel steering shaft can be independently controlled by independently driving and braking the left steering motor and the right steering motor. Therefore, it is possible to steer the left wheel and the right wheel independently.
The above operation can be performed by a differential mechanism that is input from the handle column shaft between the left and right wheel steering shafts, and a left and right steering motor provided on each steering shaft. Therefore, the number of parts is reduced compared to the conventional technology including a transmission ratio variable device, a planetary gear unit having a pair of planetary gear mechanisms, left and right ball screw mechanisms, left and right motors, and a locking device in the event of a motor failure. Can be reduced.
As described above, the steering device of the present invention provides a steering device that can steer left and right wheels independently and can reduce the number of parts while guaranteeing steering in the event of a motor failure. It becomes possible to do.
実施の形態1のステアリング装置を備えた電気自動車の前後輪操舵系を示す概略平面図であって、左右前輪のみの転舵による二輪操舵モードにおける動作状態を示している。It is a schematic plan view which shows the front-and-rear wheel steering system of an electric vehicle provided with the steering apparatus of Embodiment 1, Comprising: The operation state in the two-wheel steering mode by the steering of only a left-right front wheel is shown. 実施の形態1のステアリング装置における前輪操舵系を示す概略平面図である。FIG. 3 is a schematic plan view showing a front wheel steering system in the steering device of the first embodiment. 実施の形態1のステアリング装置における左前輪用の車輪転舵歯車組を示す要部を破断した状態で示す斜視図である。It is a perspective view shown in the state where the principal part showing the wheel steering gear set for the left front wheel in the steering device of Embodiment 1 was fractured. 実施の形態1のステアリング装置における左右前輪の車輪転舵歯車組を示す概略平面図である。FIG. 3 is a schematic plan view showing a wheel turning gear set for left and right front wheels in the steering device of the first embodiment. 実施の形態1のステアリング装置における車輪転舵歯車組のフェースギヤの回転角とギヤ比との関係を示す回転角特性図である。FIG. 6 is a rotation angle characteristic diagram showing a relationship between a rotation angle of a face gear of a wheel steering gear set and a gear ratio in the steering device of the first embodiment. 実施の形態1のステアリング装置におけるハンドル操舵角に対する前輪転舵角の関係を示す前輪転舵角特性図である。FIG. 3 is a front wheel turning angle characteristic diagram showing a relationship of a front wheel turning angle with respect to a steering wheel steering angle in the steering device of the first embodiment. 実施の形態1のステアリング装置の後輪操舵系を線図的に表わす略線図である。FIG. 3 is a schematic diagram schematically showing a rear wheel steering system of the steering device according to the first embodiment. 実施の形態1のステアリング装置における前輪差動機構のメンバ間の回転速度関係を示す共線図である。FIG. 3 is a collinear diagram showing a rotational speed relationship between members of a front wheel differential mechanism in the steering device of the first embodiment. 実施の形態1のステアリング装置における後輪差動機構のメンバ間の回転速度関係を示す共線図である。FIG. 3 is a collinear diagram showing a rotational speed relationship between members of a rear wheel differential mechanism in the steering device of the first embodiment. 実施の形態1のステアリング装置を備えた電気自動車の前後輪操舵系を示す概略平面図であって、全輪転舵モードにおける平行移動操舵モードにおける動作状態を示している。It is a schematic plan view which shows the front-and-rear wheel steering system of the electric vehicle provided with the steering apparatus of Embodiment 1, Comprising: The operation state in the parallel movement steering mode in all-wheel steering mode is shown. 実施の形態1のステアリング装置において左右後輪が図10に示すように転舵されている場合における後輪差動機構におけるメンバ間の回転速度関係を示す共線図である。FIG. 11 is a collinear diagram showing a rotational speed relationship between members in the rear wheel differential mechanism when the left and right rear wheels are steered as shown in FIG. 10 in the steering device of the first embodiment. 実施の形態1のステアリング装置を備えた電気自動車の前後輪操舵系を示す概略平面図であって、全輪転舵モードにおける小回り旋回モードにおける動作状態を示している。It is a schematic plan view which shows the front-and-rear wheel steering system of the electric vehicle provided with the steering apparatus of Embodiment 1, Comprising: The operation state in the small turn mode in all-wheel steering mode is shown. 実施の形態1のステアリング装置において左右後輪が図12に示すように転舵されている場合における後輪差動機構におけるメンバ間の回転速度関係を示す共線図である。FIG. 13 is a collinear diagram showing a rotational speed relationship between members in the rear wheel differential mechanism when the left and right rear wheels are steered as shown in FIG. 12 in the steering device of the first embodiment. 実施の形態1のステアリング装置を備えた電気自動車の前後輪操舵系を示す概略平面図であって、全輪転舵モードにおけるその場旋回モードにおける動作状態を示している。It is a schematic plan view which shows the front-and-rear wheel steering system of the electric vehicle provided with the steering apparatus of Embodiment 1, Comprising: The operation state in the spot turn mode in all-wheel steering mode is shown. 実施の形態1のステアリング装置において左右前輪が図14に示すように転舵されている場合における前輪差動機構におけるメンバ間の回転速度関係を示す共線図である。FIG. 15 is a collinear diagram showing a rotational speed relationship between members in the front wheel differential mechanism when the left and right front wheels are steered as shown in FIG. 14 in the steering device of the first embodiment. 実施の形態1のステアリング装置において左右後輪が図14に示すように転舵されている場合における後輪差動機構におけるメンバ間の回転速度関係を示す共線図である。FIG. 15 is a collinear diagram showing a rotational speed relationship between members in the rear wheel differential mechanism when the left and right rear wheels are steered as shown in FIG. 14 in the steering device of the first embodiment. 実施の形態2のステアリング装置における前輪操舵系を示す概略平面図である。FIG. 6 is a schematic plan view showing a front wheel steering system in a steering device of a second embodiment. 実施の形態2のステアリング装置において通常操舵モードにおける前輪差動機構のメンバ間の回転速度関係を示す共線図である。FIG. 10 is a collinear diagram showing a rotational speed relationship between members of a front wheel differential mechanism in a normal steering mode in the steering device of the second embodiment. 実施の形態2のステアリング装置における車輪転舵歯車組のフェースギヤの回転角とギヤ比との関係を示す回転角特性図である。FIG. 6 is a rotation angle characteristic diagram showing a relationship between a rotation angle of a face gear of a wheel steering gear set and a gear ratio in the steering device of the second embodiment. 実施の形態2のステアリング装置におけるハンドル操舵角に対する前輪転舵角の関係を示す前輪転舵角特性図である。FIG. 10 is a front wheel turning angle characteristic diagram showing a relationship of a front wheel turning angle with respect to a steering wheel steering angle in the steering device of the second embodiment. 実施の形態2のステアリング装置における左右逆位相転舵モード時における前輪差動機構のメンバ間の回転速度関係を示す共線図である。FIG. 10 is a collinear diagram showing a rotational speed relationship between members of a front wheel differential mechanism in a left-right antiphase steering mode in the steering device of the second embodiment. 他の実施の形態のステアリング装置における前輪操舵系を示す概略平面図である。It is a schematic plan view which shows the front-wheel steering system in the steering apparatus of other embodiment.
 以下、本発明のステアリング装置を実施するための形態を、図面に示す実施の形態に基づいて説明する。 Hereinafter, modes for carrying out the steering device of the present invention will be described based on the embodiments shown in the drawings.
 以下、本発明の実施の形態を、図面に示す実施例に基づき詳細に説明する。
(実施の形態1)
  図1は、本発明の実施の形態1のステアリング装置Aを備えた電気自動車の前後輪操舵系を示す概略平面図であって、左右前輪のみの転舵による二輪操舵モードにおける動作状態を示している。
Hereinafter, embodiments of the present invention will be described in detail based on examples shown in the drawings.
(Embodiment 1)
FIG. 1 is a schematic plan view showing a front and rear wheel steering system of an electric vehicle equipped with a steering device A according to Embodiment 1 of the present invention, and shows an operation state in a two-wheel steering mode by turning only left and right front wheels. Yes.
 以下に、前輪操舵系、後輪操舵系、制御系について説明する。
  (前輪操舵系)
  ステアリング装置Aは、左右前輪WFL,WFRおよび左右後輪WRL,WRRを、ハンドル1の操作(操舵量および操舵速度)に応じ転舵する装置である。
  なお、本実施の形態では、少なくとも左右前輪WFL,WFRは、図示を省略した車軸を回転駆動させるインホイールモータ(図示省略)がそれぞれに設けられている。
The front wheel steering system, rear wheel steering system, and control system will be described below.
(Front wheel steering system)
The steering device A is a device that steers the left and right front wheels WFL, WFR and the left and right rear wheels WRL, WRR in accordance with the operation (steering amount and steering speed) of the steering wheel 1.
In the present embodiment, at least the left and right front wheels WFL and WFR are each provided with an in-wheel motor (not shown) that rotates an axle (not shown).
 以下に、左右前輪WFL,WFRの操舵系について詳細に説明する。
  図2に示すように、左右前輪WFL,WFRは、それぞれ、各輪WFL,WFRから車幅方向車内方向へ延在された左右前輪ステアリングシャフト2FL,2FRを備え、これら左右前輪ステアリングシャフト2FL,2FRの長手方向軸線周りの回転により転舵される。
Hereinafter, the steering system of the left and right front wheels WFL and WFR will be described in detail.
As shown in FIG. 2, the left and right front wheels WFL and WFR include left and right front wheel steering shafts 2FL and 2FR extending from the respective wheels WFL and WFR in the vehicle width direction, and the left and right front wheel steering shafts 2FL and 2FR, respectively. Is steered by rotation about the longitudinal axis of the.
 左右前輪ステアリングシャフト2FL,2FRの軸方向の車外側先端部には、左右前輪ステアリングシャフト2FL,2FRの軸線周りの回転を、左右前輪WFL,WFRのキングピン軸線KPの回転に変換する前輪回転変換ギヤ機構3FL,3FRが設けられている。なお、前輪回転変換ギヤ機構3FL,3FRのギヤ比はiFL,iFRとする。
  また、左右前輪ステアリングシャフト2FL,2FRの途中には、ユニバーサルジョイント21が介在されている。
Front wheel rotation conversion gear for converting the rotation around the axis of the left and right front wheel steering shafts 2FL and 2FR to the rotation of the kingpin axis KP of the left and right front wheels WFL and WFR at the front end portions of the left and right front wheel steering shafts 2FL and 2FR in the axial direction Mechanisms 3FL and 3FR are provided. The gear ratios of the front wheel rotation conversion gear mechanisms 3FL and 3FR are iFL and iFR.
A universal joint 21 is interposed in the middle of the left and right front wheel steering shafts 2FL and 2FR.
 次に、前輪回転変換ギヤ機構3FL,3FRについて説明するが、両者は同様の構造であるので、左前輪WFLの前輪回転変換ギヤ機構3FLを代表してその構造を図3に基づいて説明する。
  左前輪WFLの前輪回転変換ギヤ機構3FLは、ピニオン3pとフェースギヤ3fとを備えている。
  ピニオン3pは、左前輪ステアリングシャフト2FLの車外側の先端の外周に結合あるいは一体に形成されている。
  フェースギヤ3fは、左前輪WFLのキングピン軸線KP上に配置され、このキングピン軸線KP周りに回転可能に、前輪回転変換ギヤ機構3FLのケーシング3cに支持されている。なお、ケーシング3cは、図示を省略したナックルスピンドルに支持され、図示を省略した懸架装置を介して車体(図示省略)に接続されている。
Next, the front wheel rotation conversion gear mechanisms 3FL and 3FR will be described. Since both have the same structure, the structure of the front wheel rotation conversion gear mechanism 3FL of the left front wheel WFL will be described with reference to FIG.
The front wheel rotation conversion gear mechanism 3FL of the left front wheel WFL includes a pinion 3p and a face gear 3f.
The pinion 3p is coupled to or integrally formed with the outer periphery of the front end of the left front wheel steering shaft 2FL.
The face gear 3f is disposed on the kingpin axis KP of the left front wheel WFL, and is supported by the casing 3c of the front wheel rotation conversion gear mechanism 3FL so as to be rotatable around the kingpin axis KP. The casing 3c is supported by a knuckle spindle (not shown) and connected to a vehicle body (not shown) via a suspension device (not shown).
 そして、ピニオン3pは、フェースギヤ3fに噛み合わされており、左前輪ステアリングシャフト2FLの回転が、フェースギヤ3fにおいてキングピン軸線KP周りの回転に変換される。
  なお、フェースギヤ3fは、図示を省略したスプリングなどの弾性体によりピニオン3pに押し付けられており、これらフェースギヤ3fおよびピニオン3pの間のバックラッシが除去される。
The pinion 3p is meshed with the face gear 3f, and the rotation of the left front wheel steering shaft 2FL is converted into the rotation around the kingpin axis KP in the face gear 3f.
The face gear 3f is pressed against the pinion 3p by an elastic body such as a spring (not shown), and the backlash between the face gear 3f and the pinion 3p is removed.
 また、ピニオン3pとフェースギヤ3fとは、図2に示すように、左右前輪ステアリングシャフト2FL,2FRが矢印YSL,YSRの方向に回転した際に、左右のフェースギヤ3f,3fが、矢印YFL,YFRの方向に回転するように噛み合わされている。すなわち、左前輪WFLでは、キングピン軸線KPの車幅方向車内側でピニオン3pを噛み合わせているのに対し、右前輪WFRでは、キングピン軸線KPの車幅方向車外側でピニオン3pを噛み合わせている。 Further, as shown in FIG. 2, when the left and right front wheel steering shafts 2FL and 2FR are rotated in the directions of arrows YSL and YSR, the pinion 3p and the face gear 3f are connected to the left and right face gears 3f and 3f, respectively. They are meshed so as to rotate in the direction of YFR. That is, the left front wheel WFL meshes with the pinion 3p on the inner side in the vehicle width direction of the kingpin axis KP, while the right front wheel WFR meshes with the pinion 3p on the outer side of the kingpin axis KP in the vehicle width direction. .
 さらに、フェースギヤ3fは、図4に示すように、転舵時に外輪側である場合にピニオン3pと噛み合う外輪側噛合領域3outと、転舵時に内輪側である場合にピニオン3pと噛み合う内輪側噛合領域3inと、を備えている。 Further, as shown in FIG. 4, the face gear 3f is engaged with the outer ring side meshing region 3out that meshes with the pinion 3p when it is on the outer ring side during turning, and the inner ring side meshing with the pinion 3p when it is on the inner ring side during turning. A region 3in.
 ここで、両領域3in,3outのギヤ比として、図5に示すように、外輪側噛合領域3outをほぼ一定のギヤ比とする一方で、内輪側噛合領域3inを、外輪側噛合領域3outよりもギヤ比を低くすることができる。
  これにより、図6に示すように、ハンドル操舵時に、外輪側の転舵角よりも内輪側の転舵角が大きくなるように、すなわち、いわゆるアッカーマンステアリングに設定することができる。なお、この場合、外輪側噛合領域3outは、ハンドル操舵角に対し、比例増加、あるいは、単調増加となるように設定する。
Here, as shown in FIG. 5, the gear ratio of both the regions 3 in and 3 out is set so that the outer ring side meshing region 3 out is a substantially constant gear ratio, while the inner ring side meshing region 3 in is set to be more than the outer ring side meshing region 3 out. The gear ratio can be lowered.
Accordingly, as shown in FIG. 6, the steering angle on the inner wheel side can be set to be larger than the steering angle on the outer wheel side, that is, so-called Ackerman steering, at the time of steering the steering wheel. In this case, the outer wheel side meshing region 3out is set so as to increase proportionally or monotonously with respect to the steering angle of the steering wheel.
 (前輪差動機構)
  上述した左右前輪ステアリングシャフト2FL,2FRの軸線周りの回転は、ハンドル1の回転応じ、図2に示す前輪転舵機構5により必要に応じて差動回転およびアシスト力が与えられる。
(Front wheel differential mechanism)
The rotation of the left and right front wheel steering shafts 2FL and 2FR around the axis is given a differential rotation and an assist force as needed by the front wheel steering mechanism 5 shown in FIG.
 以下に前輪転舵機構5の構成について説明する。
  前輪転舵機構5は、前輪差動機構6、左転舵モータ7、右転舵モータ8を備えている。
  前輪差動機構6は、交差軸ギヤ組61と遊星歯車組62とを備えている。
  交差軸ギヤ組61は、第1ベベルギヤ61aと第2ベベルギヤ61bとを備えている。
そして、交差軸ギヤ組61は、ハンドル1の操舵により回転するハンドルコラムシャフト4に接続された第1ベベルギヤ61aの略車両前後方向の軸線周りの回転を、これに噛み合う第2ベベルギヤ61bにおいて略車幅方向の軸線周りの回転に変換する。
The configuration of the front wheel steering mechanism 5 will be described below.
The front wheel steering mechanism 5 includes a front wheel differential mechanism 6, a left steering motor 7, and a right steering motor 8.
The front wheel differential mechanism 6 includes a cross shaft gear set 61 and a planetary gear set 62.
The cross shaft gear set 61 includes a first bevel gear 61a and a second bevel gear 61b.
The cross shaft gear set 61 is configured so that the rotation of the first bevel gear 61a connected to the handle column shaft 4 rotated by the steering of the handle 1 around the axis in the front-rear direction of the vehicle is substantially performed by the second bevel gear 61b meshing with the rotation. Convert to rotation around the axis in the width direction.
 遊星歯車組62は、いわゆるシングルピニオンタイプのもので、サンギヤ62aと、リングギヤ62bと、両ギヤ62a,62bに噛み合って回転するピニオン62cと、このピニオン62cを支持するキャリア62dと、を備えている。 The planetary gear set 62 is of a so-called single pinion type, and includes a sun gear 62a, a ring gear 62b, a pinion 62c that rotates while meshing with both gears 62a and 62b, and a carrier 62d that supports the pinion 62c. .
 サンギヤ62aは、右前輪WFR側の右前輪ステアリングシャフト2FRに連結されている。
  リングギヤ62bは、左前輪WFL側の左前輪ステアリングシャフト2FLに連結されている。
  キャリア62dには、ハンドルコラムシャフト4の回転が、交差軸ギヤ組61を介して入力される。
  したがって、ハンドル1の操舵回転は、ハンドルコラムシャフト4から直接、前輪差動機構6に入力され、前輪差動機構6の遊星歯車組62から、左右前輪ステアリングシャフト2FL,2FRに伝達される。
The sun gear 62a is connected to the right front wheel steering shaft 2FR on the right front wheel WFR side.
Ring gear 62b is connected to left front wheel steering shaft 2FL on the left front wheel WFL side.
The rotation of the handle column shaft 4 is input to the carrier 62d via the cross shaft gear set 61.
Accordingly, the steering rotation of the handle 1 is directly input to the front wheel differential mechanism 6 from the handle column shaft 4 and is transmitted from the planetary gear set 62 of the front wheel differential mechanism 6 to the left and right front wheel steering shafts 2FL and 2FR.
 また、左転舵モータ7は、左前輪WFL側の左前輪ステアリングシャフト2FLを駆動および制動可能に設けられている。すなわち、左転舵モータ7は、左前輪ステアリングシャフト2FLを回転させたり、逆に、左前輪ステアリングシャフト2FLの回転を入力して回生したりすることができる。
  一方、右転舵モータ8は、右前輪WFR側の右前輪ステアリングシャフト2FRを駆動および制動可能に設けられている。すなわち、右転舵モータ8は、右前輪ステアリングシャフト2FRを回転させたり、逆に、右前輪ステアリングシャフト2FRの回転を入力して回生したりすることができる。
The left steering motor 7 is provided so as to be able to drive and brake the left front wheel steering shaft 2FL on the left front wheel WFL side. That is, the left steering motor 7 can rotate the left front wheel steering shaft 2FL, or conversely, can input the rotation of the left front wheel steering shaft 2FL and regenerate it.
On the other hand, the right steering motor 8 is provided so as to drive and brake the right front wheel steering shaft 2FR on the right front wheel WFR side. That is, the right steered motor 8 can rotate the right front wheel steering shaft 2FR, or conversely, can input the rotation of the right front wheel steering shaft 2FR and regenerate it.
 ところで、遊星歯車組62は、サンギヤ62aの歯数と、リングギヤ62bの歯数と、に基づいて、図8の共線図に示すように、サンギヤ62aとキャリア62dとの回転差は、リングギヤ62bとキャリア62dとの回転差よりも大きくなる構造となっている。 By the way, the planetary gear set 62 has a rotational difference between the sun gear 62a and the carrier 62d based on the number of teeth of the sun gear 62a and the number of teeth of the ring gear 62b. And the rotation difference between the carrier 62d and the carrier 62d.
 したがって、右旋回時には、左旋回時よりも、上記回転差が大きくなる。そこで、本実施の形態1では、左右旋回時で、ハンドル操舵角に対する内外輪の転舵角が等しくなるように、前輪回転変換ギヤ機構3FL,3FRのピニオン3pとフェースギヤ3fとのギヤ比iFL,iFRを異ならせて設定している。 Therefore, when turning right, the above rotation difference is larger than when turning left. Therefore, in the first embodiment, the gear ratio iFL between the pinion 3p of the front wheel rotation conversion gear mechanisms 3FL and 3FR and the face gear 3f is set so that the turning angle of the inner and outer wheels is equal to the steering angle when turning left and right. , IFR are set differently.
 (後輪操舵系)
  次に、左右後輪WFL,WFRの操舵系である後輪転舵システム11について、図1および図7に基づいて説明する。なお、後輪転舵システム11は本願発明の特徴とするものではなく、どのような構成のものを用いてもよいが、一例を簡単に示す。
(Rear wheel steering system)
Next, the rear wheel steering system 11 that is a steering system for the left and right rear wheels WFL and WFR will be described with reference to FIGS. 1 and 7. The rear wheel steering system 11 is not a feature of the present invention, and may have any configuration, but an example is simply shown.
 左右後輪WRL,WRRも、前輪側と同様に、略車幅方向に沿う長手方向軸線周りに回転する左右後輪ステアリングシャフト9RL,9RRを備えている。そして、左右後輪ステアリングシャフト9RL,9RRの先端部には、後輪回転変換ギヤ機構10RL,10RRが設けられており、左右後輪WRL,WRRも、キングピン軸線KP周りに転舵可能に、図示を省略した懸架装置に支持されている。 The left and right rear wheels WRL and WRR also include left and right rear wheel steering shafts 9RL and 9RR that rotate about a longitudinal axis substantially along the vehicle width direction, similarly to the front wheel side. Rear wheel rotation conversion gear mechanisms 10RL and 10RR are provided at the front ends of the left and right rear wheel steering shafts 9RL and 9RR. The left and right rear wheels WRL and WRR can also be steered around the kingpin axis KP. It is supported by a suspension device that is omitted.
 したがって、左右後輪WRL,WRRも、左右後輪ステアリングシャフト9RL,9RRの軸線周りの回転が、キングピン軸線KP周りに回転に変換されて転舵される。
  なお、左右後輪ステアリングシャフト9RL,9RRの途中には、ユニバーサルジョイント91が介在されている。
Accordingly, the left and right rear wheels WRL and WRR are also steered by converting the rotation around the axis of the left and right rear wheel steering shafts 9RL and 9RR into rotation around the kingpin axis KP.
A universal joint 91 is interposed in the middle of the left and right rear wheel steering shafts 9RL and 9RR.
 また、後輪回転変換ギヤ機構10RL,10RRは、フェースギヤ10f,10fに対し、キングピン軸線KPよりも車幅方向車内側にピニオン10p,10pが配置されている。このため、左右後輪WRL,WRRを左右同相に転舵させる場合、左右後輪ステアリングシャフト9RL,9RRの回転方向は逆方向となる。 Further, in the rear wheel rotation conversion gear mechanisms 10RL and 10RR, the pinions 10p and 10p are arranged on the inner side in the vehicle width direction than the kingpin axis KP with respect to the face gears 10f and 10f. For this reason, when the left and right rear wheels WRL and WRR are steered to the left and right in-phase, the rotation directions of the left and right rear wheel steering shafts 9RL and 9RR are reversed.
 これら左右後輪ステアリングシャフト9RL,9RRを回転させる構成として、後輪転舵システム11が設けられている。
  後輪転舵システム11は、図7に示すように、後輪差動機構12、後輪転舵モータ13、舵角調整モータ14を備えている。
  後輪差動機構12は、後輪遊星歯車組15を備えている。
  この後輪遊星歯車組15は、いわゆるシングルピニオンタイプのもので、サンギヤ15a、リングギヤ15b、ピニオン15c、キャリア15dを備えている。
As a configuration for rotating these left and right rear wheel steering shafts 9RL and 9RR, a rear wheel steering system 11 is provided.
As shown in FIG. 7, the rear wheel steering system 11 includes a rear wheel differential mechanism 12, a rear wheel steering motor 13, and a steering angle adjustment motor 14.
The rear wheel differential mechanism 12 includes a rear wheel planetary gear set 15.
The rear wheel planetary gear set 15 is of a so-called single pinion type, and includes a sun gear 15a, a ring gear 15b, a pinion 15c, and a carrier 15d.
 サンギヤ15aは、右後輪WRR側の右後輪ステアリングシャフト9RRに結合されている。なお、右後輪ステアリングシャフト9RRには、後輪転舵モータ13の駆動力が入力される。
  リングギヤ15bは、左後輪WRL側の左後輪ステアリングシャフト9RLに結合されている。
  ピニオン15cは、サンギヤ15aおよびリングギヤ15bに噛み合わされ、キャリア15dに回転可能に支持されている。そして、キャリア15dは、減速ギヤ16を介して舵角調整モータ14に駆動伝達可能に接続されている。
The sun gear 15a is coupled to the right rear wheel steering shaft 9RR on the right rear wheel WRR side. The driving force of the rear wheel steering motor 13 is input to the right rear wheel steering shaft 9RR.
Ring gear 15b is coupled to left rear wheel steering shaft 9RL on the left rear wheel WRL side.
The pinion 15c is meshed with the sun gear 15a and the ring gear 15b, and is rotatably supported by the carrier 15d. The carrier 15d is connected to the rudder angle adjusting motor 14 via the reduction gear 16 so as to be able to transmit drive.
 したがって、例えば、左右後輪WRL,WRRを、図10に示すように右に転舵させる場合、矢印YRL1に示す左後輪ステアリングシャフト9RLの回転方向と、矢印YRR1に示す右後輪ステアリングシャフト9RRの回転方向と、は逆方向となる。 Therefore, for example, when the left and right rear wheels WRL, WRR are steered to the right as shown in FIG. 10, the rotation direction of the left rear wheel steering shaft 9RL indicated by the arrow YRL1, and the right rear wheel steering shaft 9RR indicated by the arrow YRR1. The direction of rotation is the opposite direction.
 図11は、この右転舵時の、後輪遊星歯車組15のメンバ間の回転速度関係を示す共線図である。すなわち、後輪転舵モータ13(図7参照)により右後輪ステアリングシャフト9RRを回転させて、右後輪WRRに所望の右後輪転舵角αRを与える。それと同時に、舵角調整モータ14(図7参照)によりキャリア15dを逆回転させ、これにより、左後輪ステアリングシャフト9RLを逆回転させて、左後輪WRLに、所望の左後輪転舵角βRを得る。 FIG. 11 is a collinear diagram showing a rotational speed relationship between members of the rear planetary gear set 15 at the time of the right steering. That is, the right rear wheel steering shaft 9RR is rotated by the rear wheel steering motor 13 (see FIG. 7) to give the desired right rear wheel steering angle αR to the right rear wheel WRR. At the same time, the steering angle adjustment motor 14 (see FIG. 7) rotates the carrier 15d in the reverse direction, thereby rotating the left rear wheel steering shaft 9RL in the reverse direction so that the left rear wheel WRL has a desired left rear wheel turning angle βR. Get.
 また、図14に示すように、左右後輪WRL,WRRを逆相に転舵させる場合、後輪転舵モータ13による右後輪ステアリングシャフト9RRの回転方向と同方向に、図7に示す舵角調整モータ14によりキャリア15dを回転させる。これにより、図16に示すように、左後輪ステアリングシャフト9RLと右後輪ステアリングシャフト9RRとが同方向に回転し、図14に示すように、左後輪転舵角βRは、右後輪転舵角αRと逆相となる。 Further, as shown in FIG. 14, when the left and right rear wheels WRL, WRR are steered in opposite phases, the steering angle shown in FIG. 7 is set in the same direction as the rotation direction of the right rear wheel steering shaft 9RR by the rear wheel steering motor 13. The carrier 15d is rotated by the adjusting motor 14. As a result, as shown in FIG. 16, the left rear wheel steering shaft 9RL and the right rear wheel steering shaft 9RR rotate in the same direction, and as shown in FIG. 14, the left rear wheel turning angle βR becomes the right rear wheel steering. The phase is opposite to that of the angle αR.
 (制御系)
  図2に戻り、実施の形態1のステアリング装置Aの制御系について説明する。
  ステアリング装置Aは、各モータ7,8,13,14(図4参照)の駆動を制御するコントローラ100が設けられている。
  また、コントローラ100は、入力側に、舵角センサ101、左ステアリングシャフト回転角センサ102、右ステアリングシャフト回転角センサ103、モード切換スイッチ104が設けられている。
(Control system)
Returning to FIG. 2, the control system of the steering apparatus A according to the first embodiment will be described.
The steering apparatus A is provided with a controller 100 that controls driving of the motors 7, 8, 13, and 14 (see FIG. 4).
Further, the controller 100 is provided with a steering angle sensor 101, a left steering shaft rotation angle sensor 102, a right steering shaft rotation angle sensor 103, and a mode changeover switch 104 on the input side.
 舵角センサ101は、ハンドルコラムシャフト4に設けられて舵角を検出する。
  左ステアリングシャフト回転角センサ102および右ステアリングシャフト回転角センサ103は、それぞれ、左前輪ステアリングシャフト2FLおよび右前輪ステアリングシャフト2FRに設けられて、その回転角を検知する。
  なお、各回転角センサ102,103としては、各前輪ステアリングシャフト2FL,2FRや各転舵モータ7,8の回転角を検出するエンコーダ式のものを用いてもよいし、あるいは各転舵モータ7,8のレゾルバを用いて検出してもよい。
  モード切換スイッチ104は、ハンドル1に設置され、操舵モードとして、本実施の形態1では、通常操舵モード、左右同位相操舵モード、左右逆位相操舵モード、その場旋回(ハの字)モードを選択可能となっている。
The steering angle sensor 101 is provided on the handle column shaft 4 and detects the steering angle.
The left steering shaft rotation angle sensor 102 and the right steering shaft rotation angle sensor 103 are provided on the left front wheel steering shaft 2FL and the right front wheel steering shaft 2FR, respectively, and detect their rotation angles.
The rotation angle sensors 102 and 103 may be encoder-type sensors that detect the rotation angles of the front wheel steering shafts 2FL and 2FR and the steering motors 7 and 8, or may be used. , 8 resolvers may be used for detection.
The mode changeover switch 104 is installed on the steering wheel 1 and selects the normal steering mode, the left / right in-phase steering mode, the left / right opposite phase steering mode, and the in-situ turn (C-shaped) mode as the steering mode. It is possible.
 上述したコントローラ100は、舵角センサ101の検出に基づいて各モータ7,8,12,13を駆動させて、左右前輪WFL,WRRおよび必要に応じ左右後輪WRL,WRRの転舵制御を行う。この際、モード切換スイッチ104により選択された操舵モードに応じ制御内容が異なる。 The controller 100 described above drives the motors 7, 8, 12, and 13 based on the detection of the steering angle sensor 101, and performs steering control of the left and right front wheels WFL and WRR and, if necessary, the left and right rear wheels WRL and WRR. . At this time, the contents of control differ depending on the steering mode selected by the mode changeover switch 104.
  以下に、コントローラ100による制御について作用と共に説明する。
  <通常操舵モード>
  通常操舵モードは、左右前輪WFL,WFRのみを転舵させるモードである。この通常操舵モードは、左右輪を同位相に転舵させる左右同位相転舵モードに含まれ、舵角センサ101によりステアリング回転速度および操舵角を読み取り、これに基づいて前輪の左右転舵モータ7,8を駆動させる。
Below, control by the controller 100 is demonstrated with an effect | action.
<Normal steering mode>
The normal steering mode is a mode in which only the left and right front wheels WFL and WFR are steered. This normal steering mode is included in the left and right in-phase steering mode in which the left and right wheels are steered to the same phase. , 8 are driven.
 このステアリング操作の際に、遊星歯車組62において、キャリア62dの回転速度に対して、サンギヤ62aとリングギヤ62bとの回転速度が同じ場合には、左右前輪ステアリングシャフト2FL,2FRの回転速度は同じになる。それに対して、図1に示すように、右旋回する場合には、一般的に、右前輪WFR(内輪)の転舵角である右前輪転舵角αFを左前輪WFL(外輪)の転舵角である左前輪転舵角βFよりも大きくする。その逆に、左旋回時には、左前輪WFL(内輪)の転舵角を右前輪WFR(外輪)の転舵角よりも大きくする。 During the steering operation, in the planetary gear set 62, if the rotational speeds of the sun gear 62a and the ring gear 62b are the same as the rotational speed of the carrier 62d, the rotational speeds of the left and right front wheel steering shafts 2FL and 2FR are the same. Become. On the other hand, as shown in FIG. 1, when turning right, generally, the right front wheel turning angle αF, which is the turning angle of the right front wheel WFR (inner wheel), is changed to the left front wheel WFL (outer wheel). It is made larger than the left front wheel turning angle βF which is an angle. Conversely, when turning left, the turning angle of the left front wheel WFL (inner wheel) is made larger than the turning angle of the right front wheel WFR (outer wheel).
 そこで、コントローラ100は、図8の通常操舵モードにおける遊星歯車組62の共線図に示すように、各転舵モータ7,8の回転速度を制御する。すなわち、右旋回時には、図において一点鎖線で示すように、右転舵モータ8(サンギヤ62a)の回転速度を、左転舵モータ7(リングギヤ62b)の回転速度よりも大きく制御する。また、このとき、左右前輪WFL,WFRの舵角差を相対的に大きくしたい場合は、左右転舵モータ7,8の回転速度差がより大きくなるよう制御する。
  一方、左旋回時には、図において二点鎖線で示すように、左転舵モータ7(リングギヤ62b)の回転速度を、右転舵モータ8(サンギヤ62a)の回転速度よりも大きく制御する。
Therefore, the controller 100 controls the rotational speeds of the respective steering motors 7 and 8 as shown in the alignment chart of the planetary gear set 62 in the normal steering mode in FIG. That is, when turning right, the rotational speed of the right steered motor 8 (sun gear 62a) is controlled to be larger than the rotational speed of the left steered motor 7 (ring gear 62b), as indicated by a dashed line in the figure. At this time, when it is desired to relatively increase the steering angle difference between the left and right front wheels WFL and WFR, control is performed so that the difference in rotational speed between the left and right steering motors 7 and 8 becomes larger.
On the other hand, at the time of turning left, as indicated by a two-dot chain line in the figure, the rotational speed of the left steered motor 7 (ring gear 62b) is controlled to be larger than the rotational speed of the right steered motor 8 (sun gear 62a).
 なお、図8は、操舵角に対する外輪と内輪との転舵角の違いを示すものであり、コントローラ100は、操舵角が相対的に大きくなるほど、内輪と外輪との転舵角差が大きくなるように、左右転舵モータ7,8の回転速度を制御する。 FIG. 8 shows the difference in the steering angle between the outer wheel and the inner wheel with respect to the steering angle. The controller 100 increases the difference in the steering angle between the inner wheel and the outer wheel as the steering angle increases relatively. As described above, the rotational speeds of the left and right steering motors 7 and 8 are controlled.
 また、この通常モードでは、後輪転舵システム11は、各モータ13,14は、非作動状態に保つ。図9は、この場合の後輪遊星歯車組15のメンバ間回転速度関係を示す共線図であって、左右後輪WRL,WRRが転舵されないので、後輪遊星歯車組15の各回転メンバは角速度を0にされている。なお、このとき、左右後輪ステアリングシャフト9RL,9RRを回転不能に固定するブレーキを設けるのが好ましい。 In this normal mode, the rear wheel steering system 11 keeps the motors 13 and 14 in an inoperative state. FIG. 9 is a collinear diagram showing the rotational speed relationship between members of the rear planetary gear set 15 in this case, and the left and right rear wheels WRL, WRR are not steered. The angular velocity is set to zero. At this time, it is preferable to provide a brake for fixing the left and right rear wheel steering shafts 9RL and 9RR to be non-rotatable.
 <全車輪転舵モード>
  本実施の形態では、全車輪WFL,WFR,WRL,WRRを転舵させることも可能である。この全車輪転舵モードとして、平行移動モード、小回り旋回モード、その場旋回モード(左右逆位相転舵モード)がある。
<All-wheel steering mode>
In the present embodiment, it is possible to steer all the wheels WFL, WFR, WRL, WRR. As the all-wheel steering mode, there are a parallel movement mode, a small turning mode, and an in-situ turning mode (a left-right antiphase steering mode).
 平行移動モードは、図10に示すように、左右前輪WRL,WRRおよび左右後輪WRL,WRRの全車輪を同角度に転舵して、車両を全車輪WFL,WFR,WRL,WRRの転舵方向へ平行移動させるモードである。なお、この平行移動モードにおいて、左右前輪WFL、WFRを転舵させるモードとしては、左右同位相転舵モードに含まれる。 In the parallel movement mode, as shown in FIG. 10, the left and right front wheels WRL and WRR and the left and right rear wheels WRL and WRR are steered to the same angle, and the vehicle is steered by all wheels WFL, WFR, WRL and WRR. In this mode, translation is performed in the direction. In this parallel movement mode, a mode in which the left and right front wheels WFL and WFR are steered is included in the left and right in-phase steer mode.
 小回り旋回モードは、図12に示すように、左右前輪WFL,WFRと左右後輪WRL,WRRとを逆相転舵させるモードである。なお、この小回り旋回モードにおいて、左右前輪WFL、WFRを転舵させるモードとしては、左右同位相転舵モードに含まれる。 The small turning mode is a mode in which the left and right front wheels WFL, WFR and the left and right rear wheels WRL, WRR are reverse-phase steered as shown in FIG. In this small turning mode, the left and right front wheels WFL, WFR are included in the left / right in-phase steering mode.
 その場旋回モードは、図14に示すように、左右前輪WFL,WFRおよび左右後輪WRL,WRRをハの字、逆ハの字に転舵させて、車両をその場で旋回、いわゆる信地旋回させるモードである。このその場旋回モードにおいて、左右前輪WFL、WFRを転舵させるモードとしては、左右逆位相転舵モードに含まれる。 As shown in FIG. 14, the in-situ turning mode is such that the left and right front wheels WFL and WFR and the left and right rear wheels WRL and WRR are steered into a letter C and a letter C, and the vehicle turns on the spot. This is a mode for turning. In this spot turn mode, the left and right front wheels WFL and WFR are steered by the left and right anti-phase steer mode.
 上記各操舵モードについて説明を加える。
  図10に示す平行移動モードでは、左右前輪WFL,WFRの転舵角をそれぞれβF,αFとし、左右後輪WRL,WRRの転舵角をそれぞれβR,αRとすると、これらは下記式(1)の関係に制御する。
αF=βF=αR=βR ・・・(1)
 この場合、前輪転舵機構5では、図8の共線図において点線に示すように、左右前輪WFL,WFRの左右前輪転舵角βL,αLが等しくなるように、左右転舵モータ7,8を回転させる。
  また、後輪差動機構12では、図11に示すように、サンギヤ15aとリングギヤ15bとを逆転させて、両後輪WRL,WRRの左右後輪転舵角βR,αRが等しくなるように、各モータ13,14を回転させる。
A description will be given of each of the steering modes.
In the parallel movement mode shown in FIG. 10, assuming that the turning angles of the left and right front wheels WFL and WFR are βF and αF and the turning angles of the left and right rear wheels WRL and WRR are βR and αR, respectively, To control the relationship.
αF = βF = αR = βR (1)
In this case, in the front wheel steering mechanism 5, the left and right steered motors 7 and 8 are set so that the left and right front wheel turning angles βL and αL of the left and right front wheels WFL and WFR are equal as shown by the dotted line in the alignment chart of FIG. Rotate.
Further, in the rear wheel differential mechanism 12, as shown in FIG. 11, the sun gear 15a and the ring gear 15b are reversed so that the left and right rear wheel turning angles βR and αR of the rear wheels WRL and WRR are equal to each other. The motors 13 and 14 are rotated.
 小回り旋回モードでは、図12に示すように、車両旋回中心が後車軸延長線からLRだけ車両前方位置となるよう左右前輪WFL,WFRと左右後輪WRL,WRRとを逆相転舵させる。 In the small turning mode, as shown in FIG. 12, the left and right front wheels WFL, WFR and the left and right rear wheels WRL, WRR are reverse-phase-steered so that the vehicle turning center is located in front of the vehicle by LR from the rear axle extension line.
 この場合、アッカーマン・ジャントの関係から、右前輪転舵角αFと、左前輪転舵角βFと、右後輪転舵角αRと、左後輪転舵角βRは、次式(2)~(4)により表される。
W/(L-LR)=cotβF-cotαF ・・・(2)
cotαF=(L-LR)/LR)・cotαF ・・・(3)
W/LR=cotβR-cotαR ・・・(4)
 また、この小回りモード時は、前輪転舵機構5については、通常モードと同様の制御となり、後輪差動機構12については、図13の共線図に示すように、左右後輪WRL,WRRを、図11に示した例とは逆位相となるように転舵させる。
In this case, the right front wheel turning angle αF, the left front wheel turning angle βF, the right rear wheel turning angle αR, and the left rear wheel turning angle βR are expressed by the following equations (2) to (4) because of the Ackermann-Jantt relationship. expressed.
W / (L-LR) = cotβF-cotαF (2)
cotαF = (L-LR) / LR) ・ cotαF (3)
W / LR = cotβR−cotαR (4)
Further, in this small turning mode, the front wheel steering mechanism 5 is controlled in the same manner as in the normal mode, and the rear wheel differential mechanism 12 is controlled by the left and right rear wheels WRL, WRR as shown in the alignment chart of FIG. Is steered so as to have an opposite phase to the example shown in FIG.
 その場旋回モードでは、前輪転舵機構5は、図15に示すように、各転舵モータ7,8の駆動に基づいてサンギヤ62aとリングギヤ62bとを逆転させ、左右前輪WFL,WFRを、逆位相で転舵させる(図14参照)。また、後輪差動機構12は、各モータ13,14の駆動に基づいて、図16に示すように、サンギヤ15aとリングギヤ15bとを同相回転させて、左右後輪WRL,WRRを逆位相で転舵させる(図14参照)。このとき、キャリア62dは、ロック機構(図示省略)を用いて固定させるのが好ましい。また、運転者によりハンドル1を固定させるようにしてもよい。 In the spot turning mode, the front wheel steering mechanism 5 reverses the left and right front wheels WFL, WFR by reversing the sun gear 62a and the ring gear 62b based on the driving of the steering motors 7, 8 as shown in FIG. It steers with a phase (refer FIG. 14). Further, as shown in FIG. 16, the rear wheel differential mechanism 12 rotates the sun gear 15a and the ring gear 15b in the same phase based on the driving of the motors 13 and 14, and the left and right rear wheels WRL and WRR are in opposite phases. Turn the steering wheel (see FIG. 14). At this time, the carrier 62d is preferably fixed using a lock mechanism (not shown). Further, the handle 1 may be fixed by the driver.
 その場旋回モードでは、アッカーマン・ジャントの関係から、図14に示された右前輪転舵角αFと、左前輪転舵角βFと、右後輪転舵角αRと、左後輪転舵角βRは、次式(5)により表される。
αF=βF=αR=βR=tan-1(L/W)・・・(5)
  つまり右前輪転舵角αF、左前輪転舵角βF、右後輪転舵角αR、および左後輪転舵角βRはそれぞれ、トレッドWとホイールベースLとから一義的に決まる。
In the spot turn mode, the right front wheel turning angle αF, the left front wheel turning angle βF, the right rear wheel turning angle αR, and the left rear wheel turning angle βR shown in FIG. It is expressed by equation (5).
αF = βF = αR = βR = tan −1 (L / W) (5)
That is, the right front wheel turning angle αF, the left front wheel turning angle βF, the right rear wheel turning angle αR, and the left rear wheel turning angle βR are uniquely determined from the tread W and the wheel base L, respectively.
 <フェールモード>
  フェールモードは、左右転舵モータ7,8の一方に異常が生じた場合の制御モードである。
  すなわち、左右転舵モータ7,8の一方が故障した場合、サンギヤ62aとリングギヤ62bとの回転負荷トルクがλ:1となる場合は、もう一方のモータを動作させなければ、トルクが釣り合って前輪差動機構6の各要素は同じ速度で回転する。
  しかし、サンギヤ62aとリングギヤ62bとの回転負荷トルクがλ:1からずれた場合、左右前輪WFL,WFRの負荷の小さい方が多く回転しようとする。そこで、コントローラ100は、この回転負荷トルクの違いを補正するように、すなわち、左右の転舵負荷トルクが釣り合うように、左右転舵モータ7,8の故障していない方のモータを駆動または回生させるように制御する。
<Fail mode>
The fail mode is a control mode when an abnormality occurs in one of the left and right steering motors 7 and 8.
That is, when one of the left and right steered motors 7 and 8 fails, when the rotational load torque between the sun gear 62a and the ring gear 62b is λ: 1, if the other motor is not operated, the torque is balanced and the front wheels Each element of the differential mechanism 6 rotates at the same speed.
However, when the rotational load torque between the sun gear 62a and the ring gear 62b deviates from λ: 1, the smaller the load on the left and right front wheels WFL, WFR tends to rotate. Therefore, the controller 100 drives or regenerates the motor in which the left and right steered motors 7 and 8 have not failed so as to correct the difference in the rotational load torque, that is, to balance the left and right steered load torques. To control.
 そこで、コントローラ100には、故障判断に使用するためのハンドル1の舵角に応じた左右前輪ステアリングシャフト2FL,2FRの回転角があらかじめ記憶されている。そして、ハンドル1の舵角に応じた左右前輪ステアリングシャフト2FL,2FRの回転角が記憶値と異なる異常値を示した場合には、左右転舵モータ7,8のうちでその異常値を示したものを故障と判定する。 Therefore, the controller 100 stores in advance the rotation angles of the left and right front wheel steering shafts 2FL and 2FR corresponding to the steering angle of the handle 1 to be used for failure determination. When the rotation angle of the left and right front wheel steering shafts 2FL and 2FR corresponding to the steering angle of the steering wheel 1 shows an abnormal value different from the stored value, the abnormal value is shown in the left and right steering motors 7 and 8. A thing is determined to be a failure.
 さらに、この故障判断時には、操舵がなされた場合、左右前輪ステアリングシャフト2FL,2FRの回転角を検出し、この回転角があらかじめ記憶された設定角度となるように、両転舵モータ7,8のうちで故障していない方のものを、駆動または回生させる。 Further, at the time of this failure determination, when steering is performed, the rotation angles of the left and right front wheel steering shafts 2FL and 2FR are detected, and the turning motors 7 and 8 are controlled so that the rotation angle becomes a preset stored angle. Drive or regenerate the one that is not out of order.
 このように、左右転舵モータ7,8の一方が故障した場合には、左右の転舵負荷トルクが釣り合うように、故障していない方のモータを制御することによって、転舵不能となることを回避することができる。 Thus, when one of the left and right steered motors 7 and 8 fails, it becomes impossible to steer by controlling the non-failed motor so that the left and right steered load torques are balanced. Can be avoided.
 (実施の形態1の効果)
  以下に、実施の形態1のステアリング装置の効果を列挙する。
  1)実施の形態1のステアリング装置は、
左輪としての左前輪WFLから車幅方向内方へ延在させて設けられ、長手方向軸線周りの回転により左前輪WFLを転舵させる左前輪ステアリングシャフト2FLと、
右輪としての右前輪WFRから車幅方向内方へ延在させて設けられ、長手方向軸線周りの回転により前記右輪を転舵させる右前輪ステアリングシャフト2FRと、
左前輪ステアリングシャフト2FLを駆動および制動可能な左転舵モータ7と、
右前輪ステアリングシャフト2FRを駆動および制動可能な右転舵モータ8と、
左右前輪WFL,WFRの転舵操作を行うハンドル1により回転されるハンドルコラムシャフト4と、
左前輪ステアリングシャフト2FLと右前輪ステアリングシャフト2FRとの間に設けられ、ハンドルコラムシャフト4から直接入力された回転を両前輪ステアリングシャフト2FL,2FRに伝達可能な前輪差動機構6を備えた前輪転舵機構5と、
を備えていることを特徴とする。
  実施の形態1のステアリング装置において本発明を適用した前輪転舵機構5にあっては、上述したように、左右前輪WFL,WFRを独立に転舵させて、左右同相に転舵させたり、左右逆位相に転舵させたりすることが可能である。
  また、ハンドル1の回転は、直接前輪転舵機構5に入力され、直接各左右前輪ステアリングシャフト2FL,2FRに伝達可能である。このため、両転舵モータ7,8の失陥時でも左右前輪WFL,WFRの転舵が可能である。
  そして、上記の様々な態様の左右前輪WFL,WFRの転舵や、ハンドルコラムシャフト4から左右前輪ステアリングシャフト2FL,2FRへの操舵回転の伝達を可能とすることを、1つの前輪転舵機構5および左右転舵モータ7,8により達成している。したがって、部品点数の削減が可能である。
  以上のように、本実施の形態1のステアリング装置にあっては、左右前輪WFL,WFRを独立して転舵可能であるとともに、モータ故障時の操舵も保障しながらも、部品点数の削減を図ることが可能である。
  加えて、ハンドル操作によるハンドルコラムシャフト4に対する各転舵モータ7,8によるトルク調整により、左右の転舵角に違いを持たせる微調整が可能である。このため、左右同位相に転舵させる際に、例えば、通常モードと小回り旋回モードとで、ハンドル回転角に対する左右前輪WFL,WFRの転舵角に違いを持たせた場合でも、その調整代を左右の旋回時で共通化を図ることができ、制御性に優れる。
  ちなみに、ハンドル操作を、左右前輪ステアリングシャフト2FL,2FRの一方に入力する構成では、このハンドル操作が入力されない側のステアリングシャフトの回転角をモータ駆動などにより調整する必要がある。このため、このハンドル操作が入力されない側のステアリングシャフトが、旋回の内輪側であるか外輪側であるかにより、モータ駆動による転舵角の調整幅が異なり、制御が複雑になる。
(Effect of Embodiment 1)
The effects of the steering device according to Embodiment 1 are listed below.
1) The steering apparatus of the first embodiment is
A left front wheel steering shaft 2FL provided to extend inward in the vehicle width direction from the left front wheel WFL as a left wheel and steer the left front wheel WFL by rotation around a longitudinal axis;
A right front wheel steering shaft 2FR provided to extend inward in the vehicle width direction from the right front wheel WFR as a right wheel and steer the right wheel by rotation around a longitudinal axis;
A left steering motor 7 capable of driving and braking the left front wheel steering shaft 2FL;
A right steering motor 8 capable of driving and braking the right front wheel steering shaft 2FR;
A handle column shaft 4 that is rotated by a handle 1 that steers the left and right front wheels WFL, WFR;
A front wheel drive having a front wheel differential mechanism 6 provided between the left front wheel steering shaft 2FL and the right front wheel steering shaft 2FR and capable of transmitting the rotation directly input from the handle column shaft 4 to the front wheel steering shafts 2FL, 2FR. Rudder mechanism 5;
It is characterized by having.
In the front wheel steering mechanism 5 to which the present invention is applied in the steering apparatus according to the first embodiment, as described above, the left and right front wheels WFL and WFR are independently steered to steer left and right in-phase, It is possible to steer to the opposite phase.
The rotation of the handle 1 is directly input to the front wheel steering mechanism 5 and can be directly transmitted to the left and right front wheel steering shafts 2FL and 2FR. For this reason, the left and right front wheels WFL and WFR can be steered even when both the steering motors 7 and 8 fail.
Further, one front wheel steering mechanism 5 is capable of steering the left and right front wheels WFL and WFR in the various aspects described above and transmitting steering rotation from the handle column shaft 4 to the left and right front wheel steering shafts 2FL and 2FR. This is achieved by the left and right steering motors 7 and 8. Therefore, the number of parts can be reduced.
As described above, in the steering apparatus according to the first embodiment, the left and right front wheels WFL and WFR can be steered independently, and the number of parts can be reduced while ensuring the steering in the event of a motor failure. It is possible to plan.
In addition, fine adjustment can be made to make a difference between the left and right turning angles by adjusting the torque by the steering motors 7 and 8 with respect to the handle column shaft 4 by operating the steering wheel. Therefore, when turning left and right in the same phase, for example, even when the turning angle of the left and right front wheels WFL and WFR with respect to the steering wheel rotation angle is different between the normal mode and the small turn mode, the adjustment allowance is reduced. It can be shared when turning left and right, and has excellent controllability.
Incidentally, in the configuration in which the steering wheel operation is input to one of the left and right front wheel steering shafts 2FL and 2FR, it is necessary to adjust the rotation angle of the steering shaft on the side where the steering wheel operation is not input by motor driving or the like. For this reason, the adjustment range of the turning angle by the motor drive differs depending on whether the steering shaft on which the steering wheel operation is not input is on the inner wheel side or the outer wheel side of the turning, and the control becomes complicated.
 2)実施の形態1のステアリング装置は、
差動機構としての前輪差動機構6は、遊星歯車組62を備えていることを特徴とする。
  したがって、前輪差動機構6として複数の傘歯歯車などを使用したものと比較して、前輪差動機構6のコンパクト化を図ることができ、車載レイアウトの自由度が向上する。
2) The steering device of the first embodiment is
The front wheel differential mechanism 6 as a differential mechanism includes a planetary gear set 62.
Therefore, the front wheel differential mechanism 6 can be made more compact than that using a plurality of bevel gears or the like as the front wheel differential mechanism 6, and the degree of freedom of the in-vehicle layout is improved.
 3)実施の形態1のステアリング装置は、
左右前輪ステアリングシャフト2FL,2FRと左右前輪WFL,WFRとの間に、左右前輪ステアリングシャフト2FL,2FRの長手方向軸線周りの回転を、左右前輪WFL,WFRのキングピン軸線KPの回転に変換する前輪回転変換ギヤ機構3FL,3FRが設けられ、
この前輪回転変換ギヤ機構3FL,3FRは、左右前輪WFL,WFRの中立付近のギヤ比よりも、左右前輪WFL,WFRを転舵させた時の位置であって、内輪側への転舵時にピニオン3pと噛み合う内輪側噛合領域3inのギヤ比の方が小さくなるバリアブルギヤ比に設定されていることを特徴とする。
  したがって、左右前輪WFL,WFRの転舵時に、内輪側では転舵角が大きくなるほど、ハンドル1の回転角に対してタイヤがクイックに転舵されるので、中立付近(左右前輪の転舵角が小さい状態)では、直進安定性を確保し、大転舵時には、運転者の操舵量を小さく抑えることができる。
3) The steering device of the first embodiment is
Front wheel rotation between the left and right front wheel steering shafts 2FL and 2FR and the left and right front wheels WFL and WFR that converts the rotation around the longitudinal axis of the left and right front wheel steering shafts 2FL and 2FR into the rotation of the kingpin axis KP of the left and right front wheels WFL and WFR Conversion gear mechanisms 3FL and 3FR are provided,
The front wheel rotation conversion gear mechanisms 3FL and 3FR are positioned at the time when the left and right front wheels WFL and WFR are steered rather than the gear ratio in the vicinity of the neutral position of the left and right front wheels WFL and WFR. A variable gear ratio is set such that the gear ratio of the inner ring side meshing region 3 in meshing with 3p is smaller.
Therefore, when the left and right front wheels WFL and WFR are steered, the tire is steered more quickly with respect to the rotation angle of the handle 1 as the steered angle becomes larger on the inner wheel side. In a small state), straight running stability is ensured, and the driver's steering amount can be kept small during large turning.
 4)実施の形態1のステアリング装置は、
ハンドルコラムシャフト4の操舵角を検知する舵角センサ101と、
ハンドルコラムシャフト4の回転角に基づいて、左右前輪ステアリングシャフト2FL,2FRに回転角度差を与えるよう左右転舵モータ7,8に駆動または回生の指令を出す制御手段としてのコントローラ100と、
を備えていることを特徴とする。
  したがって、上記1)に述べたように、左右前輪WFL,WFRを独立に転舵させ、左右同相転舵や左右逆位相転舵を行う際に、ハンドルコラムシャフト4の回転角に応じて左右転舵モータ7,8を駆動させ、転舵角を最適に制御することが可能である。
4) The steering device of the first embodiment is
Rudder angle sensor 101 for detecting the steering angle of the handle column shaft 4,
A controller 100 as a control means for issuing a drive or regeneration command to the left and right steered motors 7 and 8 so as to give a rotation angle difference to the left and right front wheel steering shafts 2FL and 2FR based on the rotation angle of the handle column shaft 4;
It is characterized by having.
Therefore, as described in 1) above, when the left and right front wheels WFL and WFR are independently steered and left / right in-phase steering and left / right reverse phase steering are performed, the left / right turning is performed according to the rotation angle of the handle column shaft 4. It is possible to drive the steering motors 7 and 8 to optimally control the turning angle.
 5)実施の形態1のステアリング装置は、
コントローラ100には、左右同位相転舵モードと左右逆位相転舵モードとを切り換えるモード切換スイッチ104からの信号が入力され、
コントローラ100は、左右逆位相転舵モード選択時には、左転舵モータ7と右転舵モータ8とを相対的に逆回転させることを特徴とする。
  このように、左右同位相転舵モード時に、左右転舵モータ7,8を相対的に逆回転させることで、左右前輪WFL,WFRの転舵方向を同位相と逆位相とに切り換えることができる。
  よって、左右の転舵モータ7,8の回転角度を調整するだけで、左右前輪WFL,WFRの転舵の方向を正逆転させることが可能であるため、このモード切換のためのクラッチなどの機械的構成が不要であり、構成の簡略化を図ることができる。
  また、左右後輪WRL,WRRについても、各モータ13,14の回転方向を、左右同位相転舵モード時に対して、一方の回転方向を逆転させることで、左右後輪WRL,WRRの回転方向を逆回転とすることにより、転舵の方向を左右逆転させることができる。よって、後輪転舵システム11についても、同様の、構成の簡略化を図ることができるという効果を得ることができる。
5) The steering device of Embodiment 1
The controller 100 receives a signal from a mode changeover switch 104 that switches between left and right in-phase steering mode and left and right opposite phase steering mode.
The controller 100 is characterized in that when the left-right antiphase steering mode is selected, the left steering motor 7 and the right steering motor 8 are relatively reversely rotated.
Thus, by turning the left and right steered motors 7 and 8 relatively in reverse in the left and right in-phase turning mode, the turning directions of the left and right front wheels WFL and WFR can be switched between the same phase and the opposite phase. .
Therefore, the steering direction of the left and right front wheels WFL, WFR can be reversed in the forward and reverse directions by simply adjusting the rotation angle of the left and right steering motors 7, 8. Therefore, a machine such as a clutch for switching the mode. Therefore, the configuration can be simplified.
Also, for the left and right rear wheels WRL and WRR, the rotation directions of the motors 13 and 14 are reversed with respect to the left and right in-phase steering mode to reverse the rotation direction of the left and right rear wheels WRL and WRR. By turning in reverse, the direction of steering can be reversed left and right. Therefore, the rear wheel steering system 11 can have the same effect that the configuration can be simplified.
 6)実施の形態1のステアリング装置は、
左前輪ステアリングシャフト2FL、右輪ステアリングシャフト2FRの回転角を検知するステアリングシャフト回転角検知手段としての左ステアリングシャフト回転角センサ102、右ステアリングシャフト回転角センサ103を備え、
コントローラ100は、左転舵モータ7または右転舵モータ8のいずれか一方が失陥した場合に、ハンドルコラムシャフト転舵角および各回転角センサ102,103が検出するステアリングシャフトの転舵角に基づいて、両転舵モータ7,8のうちの失陥していない側のモータを駆動または回生させるフェール時処理を実行することを特徴とする。
  このように、左転舵モータ7または右転舵モータ8のいずれか一方が失陥した場合には、正常な方のモータによるトルク調整を行うだけで、左右前輪WFL,WFRの適切な転舵が可能であり、新たな部品を追加することなくモータ故障時の転舵が可能である。
6) The steering apparatus of the first embodiment is
A left steering shaft rotation angle sensor 102 and a right steering shaft rotation angle sensor 103 as steering shaft rotation angle detection means for detecting the rotation angle of the left front wheel steering shaft 2FL and the right wheel steering shaft 2FR;
The controller 100 sets the steering column shaft turning angle and the steering shaft turning angle detected by the rotation angle sensors 102 and 103 when either the left turning motor 7 or the right turning motor 8 fails. On the basis of this, it is characterized in that a process at the time of failure for driving or regenerating a motor on the non-failed side of both the steered motors 7 and 8 is executed.
As described above, when either the left turning motor 7 or the right turning motor 8 fails, the left and right front wheels WFL and WFR are appropriately turned only by adjusting the torque by the normal motor. It is possible to steer when a motor fails without adding new parts.
 (実施の形態2)
  次に、図17に基づいて、本発明の実施の形態2のステアリング装置Bについて説明する。
  なお、実施の形態2は、実施の形態1の一部を変更したものであるため、実施の形態1と同様の構成、作用効果については説明を省略し、実施の形態1との相違点についてのみ説明する。
(Embodiment 2)
Next, a steering device B according to Embodiment 2 of the present invention will be described with reference to FIG.
Since the second embodiment is obtained by changing a part of the first embodiment, the description of the same configuration and effect as those of the first embodiment is omitted, and the difference from the first embodiment is described. Only explained.
 この実施の形態2は、前輪転舵機構205における前輪差動機構26の構成が実施の形態1と異なる。
  すなわち、前輪差動機構26の遊星歯車機構262は、サンギヤ62aとリングギヤ62bとの間に、一対のピニオン262cを介したいわゆるダブルピニオンと称される構造のものを用いている。
The second embodiment differs from the first embodiment in the configuration of the front wheel differential mechanism 26 in the front wheel steering mechanism 205.
That is, the planetary gear mechanism 262 of the front wheel differential mechanism 26 uses a so-called double pinion structure having a pair of pinions 262c between the sun gear 62a and the ring gear 62b.
 そして、遊星歯車機構262では、右前輪ステアリングシャフト2FRがサンギヤ62aに入力され、左前輪ステアリングシャフト2FLの回転がキャリア62dに入力され、ハンドルコラムシャフト4がリングギヤ62bに入力されている。
  さらに、サンギヤ62aとリングギヤ62bの歯数比が1:2に設定されている。したがって、遊星歯車機構262では、図18の共線図に示すように、リングギヤ62bとサンギヤ62aの回転速度の差αR1,αR2と、リングギヤ62bとキャリア62dの回転速度の差αL1,αL2とは同じになる。
In the planetary gear mechanism 262, the right front wheel steering shaft 2FR is input to the sun gear 62a, the rotation of the left front wheel steering shaft 2FL is input to the carrier 62d, and the handle column shaft 4 is input to the ring gear 62b.
Further, the gear ratio between the sun gear 62a and the ring gear 62b is set to 1: 2. Therefore, in the planetary gear mechanism 262, as shown in the collinear diagram of FIG. 18, the difference between the rotational speeds αR1 and αR2 of the ring gear 62b and the sun gear 62a and the difference between the rotational speeds αL1 and αL2 of the ring gear 62b and the carrier 62d are the same. become.
 よって、本実施の形態2では、左右の前輪回転変換ギヤ機構3FL,3FRのピニオン3pとフェースギヤ3fとのギヤ比を共通に設定している。
  加えて、本実施の形態2では、フェースギヤ3fの左右部品の共通化を図るため、外輪側噛合領域3outと内輪側噛合領域3inとを、図19に示すように、タイヤ中立状態(車両前方を向いた状態)のギヤ比よりも小さくなるように設定している。しかも、本実施の形態1では、このフェースギヤ3fのギヤ比は、図示のように、フェースギヤ回転角が大きくなるにつれてギヤ比が小さくなるように、いわゆるクイックに転舵できるように設定されている。
Therefore, in the second embodiment, the gear ratio between the pinion 3p and the face gear 3f of the left and right front wheel rotation conversion gear mechanisms 3FL, 3FR is set in common.
In addition, in the second embodiment, in order to make the left and right parts of the face gear 3f common, the outer wheel side meshing region 3out and the inner wheel side meshing region 3in are in a tire neutral state (vehicle front) as shown in FIG. Is set to be smaller than the gear ratio of In addition, in the first embodiment, the gear ratio of the face gear 3f is set so that it can be steered in a so-called quick manner so that the gear ratio decreases as the face gear rotation angle increases, as shown in the figure. Yes.
 (通常転舵モード)
  実施の形態2では、通常転舵モードでは、左右前輪WFL,WFRの転舵角は、図20に示すように、左右転舵角が同一となる基準転舵角θBに対して、内輪側の転舵角を増加させた分だけ、外輪側の転舵角が減少する。
(Normal steering mode)
In the second embodiment, in the normal turning mode, the turning angles of the left and right front wheels WFL and WFR are on the inner wheel side with respect to the reference turning angle θB where the left and right turning angles are the same as shown in FIG. As the turning angle is increased, the turning angle on the outer wheel side decreases.
 よって、キングピン軸線KP上の前輪回転変換ギヤ機構3FL,3FRは、左右とも同じギヤ比とすることができ、左右部品であるピニオン3pやフェースギヤ3fを、左右で共通化を図ることができるとともに、コンパクト化を図ることができる。 Therefore, the front wheel rotation conversion gear mechanisms 3FL and 3FR on the kingpin axis KP can have the same gear ratio on both the left and right sides, and the left and right parts pinion 3p and the face gear 3f can be shared on the left and right. , And can be made compact.
 (フェールモード)
  次に、左右転舵モータ7,8の一方に異常が生じた場合のフェールモードの動作を説明する。
  左右転舵モータ7,8の一方が故障した場合、サンギヤ62aとリングギヤ62bとの回転負荷トルクが1:1となる場合は、もう一方の転舵モータを動作させなければ、トルクがつりあって前輪差動機構26の各要素は同じ速度で回転する。
  サンギヤ62aとリングギヤ62bの負荷が1:1からずれる場合、左右前輪WFL,WFRのうちの負荷の小さい方が多く回転しようとする。このため、それを補正するように(すなわち、左右の転舵負荷トルクがつりあうように)左右転舵モータ7,8の故障していないものを駆動または回生させる。このように、左右転舵モータ7,8の一方が故障した場合には、各回転角センサ102,103の検出値に基づいて、両検出値が釣り合うように、正常な方の転舵モータをフィードバック制御させる。これにより、両転舵モータ7,8の一方が故障しても、転舵不能となるのを回避することができる。
(Fail mode)
Next, the operation in the fail mode when an abnormality occurs in one of the left and right steering motors 7 and 8 will be described.
If one of the left and right steered motors 7 and 8 breaks down, and the rotational load torque between the sun gear 62a and the ring gear 62b is 1: 1, the torque is balanced and the front wheels are not operated unless the other steered motor is operated. Each element of the differential mechanism 26 rotates at the same speed.
When the load of the sun gear 62a and the ring gear 62b is deviated from 1: 1, the smaller one of the left and right front wheels WFL, WFR tends to rotate. For this reason, in order to correct it (that is, so that the left and right turning load torques are balanced), the left and right turning motors 7 and 8 that have not failed are driven or regenerated. As described above, when one of the left and right steering motors 7 and 8 breaks down, the normal steering motor is adjusted so that both detection values are balanced based on the detection values of the rotation angle sensors 102 and 103. Give feedback control. Thereby, even if one of both the steering motors 7 and 8 breaks down, it can be avoided that the steering becomes impossible.
 (その場旋回モード)
  その場旋回モードでは、左右前輪WFL,WFRは、左右対称にハの字に転舵させるため、図21に示すように、左転舵モータ7と右転舵モータ8とは、逆方向に回転させると共に、その回転角の絶対量は等しくする。このため、キャリア62dは、回転せず、これに接続されたハンドルコラムシャフト4およびハンドル1も回転されない。
  したがって、その場旋回モードの際に、ハンドル1を回転させないためのロックなどの構造が不要となる。
(Spot turn mode)
In the spot turning mode, the left and right front wheels WFL and WFR are steered symmetrically into a letter C, so that the left turning motor 7 and the right turning motor 8 rotate in opposite directions as shown in FIG. And the absolute amount of the rotation angle is made equal. For this reason, the carrier 62d does not rotate, and the handle column shaft 4 and the handle 1 connected thereto do not rotate.
Therefore, a structure such as a lock for preventing the handle 1 from rotating in the spot turning mode is not necessary.
 7)実施の形態2のステアリング装置は、
遊星歯車機構262は、ダブルピニオン式であり、かつ、右前輪ステアリングシャフト2FRがサンギヤ62aに入力され、左前輪ステアリングシャフト2FLがキャリア62dに入力され、ハンドルコラムシャフト4が交差軸ギヤ組61を介してリングギヤ62bに入力され、サンギヤ62aとリングギヤ62bの歯数比が1:2であることを特徴とする。
  したがって、ハンドル1と左右前輪ステアリングシャフト2FL,2FRのギヤ比の関係を左右で共通にできる。このため、各前輪ステアリングシャフト2FL,2FRと左右前輪WFL,WFRとの間に設けられた前輪回転変換ギヤ機構3FL,3FRの左右共通化を図ることが可能となる。よって、ステアリング装置Bのコスト低減を図ることができる。
7) The steering device of the second embodiment is
The planetary gear mechanism 262 is a double pinion type, and the right front wheel steering shaft 2FR is input to the sun gear 62a, the left front wheel steering shaft 2FL is input to the carrier 62d, and the handle column shaft 4 is passed through the cross shaft gear set 61. The gear ratio of the sun gear 62a and the ring gear 62b is 1: 2.
Therefore, the relationship of the gear ratio between the steering wheel 1 and the left and right front wheel steering shafts 2FL and 2FR can be made common to the left and right. For this reason, it is possible to make the left and right front wheel rotation conversion gear mechanisms 3FL and 3FR provided between the front wheel steering shafts 2FL and 2FR and the left and right front wheels WFL and WFR common. Therefore, the cost of the steering device B can be reduced.
 8)実施の形態2のステアリング装置は、
前輪回転変換ギヤ機構3FL,3FRのフェースギヤ3fは、左右前輪WFL,WFRの中立付近のギヤ比よりも、内輪転舵時の位置である内輪側噛合領域3inおよび外輪転舵時の位置である外輪側噛合領域3outのギヤ比の方が小さくなるバリアブルギヤ比に設定され、
さらに、中立位置を基準に、操舵角に対する内輪側噛合領域3inおよび外輪側噛合領域3outのギヤ比の変化が同じに設定されていることを特徴とする。
  したがって、左右前輪WFL,WFRの転舵時に、転舵角が大きくなるほど、ハンドル1の回転角に対してタイヤがクイックに転舵される。よって、中立付近(左右前輪の転舵角が小さい状態)では、直進安定性を確保し、大転舵時には、運転者の操舵量を小さく抑えることができる。
  加えて、前輪回転変換ギヤ機構3FL,3FRのバリアブルギヤ比を有した部材の形状、具体的には、フェース部材3f,3fの形状が左右対称となる。このため、左右に配置される前輪回転変換ギヤ機構3FL,3FRのフェース部材3f,3fとして左右同じ部品が使えるため、コスト低減を図ることができる。
8) The steering device of the second embodiment is
The face gear 3f of the front wheel rotation conversion gear mechanism 3FL, 3FR is a position at the time of inner wheel side meshing region 3in that is a position at the time of inner wheel steering and a position at the time of outer wheel steering, rather than the gear ratio near the neutral of the left and right front wheels WFL, WFR. The gear ratio of the outer ring side meshing region 3out is set to a variable gear ratio that is smaller,
Further, the change in the gear ratio of the inner wheel side meshing region 3in and the outer wheel side meshing region 3out with respect to the steering angle is set to be the same with respect to the neutral position.
Accordingly, when the left and right front wheels WFL and WFR are steered, the tire is steered more quickly with respect to the rotation angle of the handle 1 as the steered angle becomes larger. Therefore, in the vicinity of neutrality (a state in which the turning angles of the left and right front wheels are small), straight running stability can be ensured, and the driver's steering amount can be kept small during large turning.
In addition, the shape of the members having the variable gear ratio of the front wheel rotation conversion gear mechanisms 3FL and 3FR, specifically, the shapes of the face members 3f and 3f are symmetrical. For this reason, since the same parts on the left and right can be used as the face members 3f and 3f of the front wheel rotation conversion gear mechanisms 3FL and 3FR arranged on the left and right, the cost can be reduced.
 以上、本発明の駆動ユニットの冷却装置を実施の形態に基づき説明してきたが、具体的な構成については、この実施の形態に限られるものではなく、請求の範囲の各請求項に係る発明の要旨を逸脱しない限り、設計の変更や追加等は許容される。
  例えば、実施の形態では、いわゆるインホイールモータを備えた電気自動車を例に挙げたが、本発明を適用する車両としては、電気自動車に限定されず、内燃機関など他の動力により駆動する車両にも用いることができる。
  また、実施の形態では、4輪を操舵するものを示したが、これに限定されず、2輪を操舵するものにも適用することができる。さらに、本発明のステアリング装置は、後輪の操舵に用いることも可能である。
  また、実施の形態では、差動機構として、遊星歯車組を用いたものを示したがこれに限定されない。例えば、差動機構として、図22に示すような、傘歯歯車を用いた差動機構360を用いてもよい。
  実施の形態2では、左前輪ステアリングシャフトをサンギヤに入力し、右輪ステアリングシャフトをキャリアに入力する構造としたが、その逆に、右前輪ステアリングシャフトをサンギヤに入力し、左輪ステアリングシャフトをキャリアに入力してもよい。
As mentioned above, although the cooling device of the drive unit of the present invention has been described based on the embodiment, the specific configuration is not limited to this embodiment, and the invention according to each claim of the claims is not limited to this embodiment. Design changes and additions are allowed without departing from the gist.
For example, in the embodiment, an electric vehicle provided with a so-called in-wheel motor has been described as an example. However, a vehicle to which the present invention is applied is not limited to an electric vehicle, and may be a vehicle driven by other power such as an internal combustion engine. Can also be used.
In the embodiment, the four wheels are steered. However, the present invention is not limited to this. The present invention can also be applied to steer two wheels. Furthermore, the steering device of the present invention can also be used for steering the rear wheels.
In the embodiments, the differential mechanism using a planetary gear set is shown, but the present invention is not limited to this. For example, a differential mechanism 360 using a bevel gear as shown in FIG. 22 may be used as the differential mechanism.
In the second embodiment, the left front wheel steering shaft is input to the sun gear and the right wheel steering shaft is input to the carrier. Conversely, the right front wheel steering shaft is input to the sun gear and the left wheel steering shaft is used as the carrier. You may enter.
関連出願の相互参照Cross-reference of related applications
 本出願は、2013年6月17日に日本国特許庁に出願された特願2013-126309に基づいて優先権を主張し、その全ての開示は完全に本明細書で参照により組み込まれる。 This application claims priority based on Japanese Patent Application No. 2013-126309 filed with the Japan Patent Office on June 17, 2013, the entire disclosure of which is fully incorporated herein by reference.

Claims (8)

  1.  左輪から車幅方向内方へ延在させて設けられ、長手方向軸線周りの回転により前記左輪を転舵させる左輪ステアリングシャフトと、
     右輪から車幅方向内方へ延在させて設けられ、長手方向軸線周りの回転により前記右輪を転舵させる右輪ステアリングシャフトと、
     前記左輪ステアリングシャフトを駆動または制動可能な左転舵モータと、
     前記右輪ステアリングシャフトを駆動または制動可能な右転舵モータと、
     前記左右輪の転舵操作を行うハンドルにより回転されるハンドルコラムシャフトと、
     前記左輪ステアリングシャフトと前記右輪ステアリングシャフトとの間に設けられ、前記ハンドルコラムシャフトから直接入力された回転を両ステアリングシャフトに伝達可能な差動機構と、
    を備えていることを特徴とするステアリング装置。
    A left wheel steering shaft provided to extend inward in the vehicle width direction from the left wheel and steer the left wheel by rotation around a longitudinal axis;
    A right wheel steering shaft provided extending from the right wheel inward in the vehicle width direction and turning the right wheel by rotation around a longitudinal axis;
    A left steering motor capable of driving or braking the left wheel steering shaft;
    A right steering motor capable of driving or braking the right wheel steering shaft;
    A handle column shaft that is rotated by a handle that steers the left and right wheels;
    A differential mechanism provided between the left wheel steering shaft and the right wheel steering shaft and capable of transmitting rotation directly input from the handle column shaft to both steering shafts;
    A steering apparatus comprising:
  2.  請求項1に記載のステアリング装置において、
     前記差動機構は、遊星歯車機構により構成されていることを特徴とするステアリング装置。
    The steering apparatus according to claim 1, wherein
    The differential mechanism is configured by a planetary gear mechanism.
  3.  請求項2に記載のステアリング装置において、
     前記遊星歯車機構は、ダブルピニオン式であり、かつ、前記左右輪ステアリングシャフトの一方がサンギヤに入力され、他方がキャリアに入力され、前記ハンドルコラムシャフトがリングギヤに入力され、前記サンギヤと前記リングギヤの歯数比が1:2であることを特徴とするステアリング装置。
    The steering apparatus according to claim 2, wherein
    The planetary gear mechanism is a double pinion type, and one of the left and right wheel steering shafts is input to a sun gear, the other is input to a carrier, the handle column shaft is input to a ring gear, and the sun gear and the ring gear A steering device having a gear ratio of 1: 2.
  4.  請求項1~請求項3のいずれか1項に記載のステアリング装置において、
     前記左右輪ステアリングシャフトと前記左右輪との間に、前記左右輪ステアリングシャフトの長手方向軸線周りの回転を、前記左右輪のキングピン軸の回転に変換する回転変換ギヤ機構が設けられ、
     この回転変換ギヤ機構は、前記左右輪の中立付近のギヤ比よりも、前記左右輪の転舵時の位置のギヤ比の方が小さくなるバリアブルギヤ比に設定されていることを特徴とするステアリング装置。
    The steering apparatus according to any one of claims 1 to 3,
    Between the left and right wheel steering shaft and the left and right wheels, there is provided a rotation conversion gear mechanism that converts rotation around the longitudinal axis of the left and right wheel steering shaft into rotation of the kingpin shaft of the left and right wheels,
    This rotation conversion gear mechanism is set to a variable gear ratio in which the gear ratio at the position of the left and right wheels when turning is smaller than the gear ratio near the neutral position of the left and right wheels. apparatus.
  5.  請求項4に記載のステアリング装置において、
     前記バリアブルギヤ比の設定は、前記左右輪の中立位置を基準に、内輪転舵時と外輪転舵時とのギヤ比の変化が同じに設定されていることを特徴とするステアリング装置。
    The steering apparatus according to claim 4, wherein
    The variable gear ratio is set based on a neutral position of the left and right wheels, and a change in gear ratio between the inner wheel turning and the outer wheel turning is set to be the same.
  6.  請求項1~請求項5のいずれか1項に記載のステアリング装置において、
     前記ハンドルコラムシャフトの操舵角を検知する舵角センサと、
     前記ハンドルコラムシャフトの回転角に基づいて、前記左右輪ステアリングシャフトに回転角度差を与えるよう前記左右転舵モータに駆動または回生の指令を出す制御手段と、
    を備えていることを特徴とするステアリング装置。
    The steering apparatus according to any one of claims 1 to 5,
    A steering angle sensor for detecting a steering angle of the handle column shaft;
    Control means for issuing a drive or regeneration command to the left and right steering motor so as to give a rotation angle difference to the left and right wheel steering shaft based on the rotation angle of the handle column shaft;
    A steering apparatus comprising:
  7.  請求項6に記載のステアリング装置において、
     前記制御手段には、左右同位相転舵モードと左右逆位相転舵モードとを切り換える切換手段からの信号が入力され、
     前記制御手段は、前記左右逆位相転舵モード選択時には、前記左転舵モータと前記右転舵モータとを相対的に逆回転させることを特徴とするステアリング装置。
    The steering apparatus according to claim 6, wherein
    The control means receives a signal from the switching means for switching between the left and right in-phase steering mode and the left and right opposite phase steering mode,
    The control device, when selecting the left-right anti-phase steering mode, relatively rotates the left steering motor and the right steering motor in the reverse direction.
  8.  請求項6または請求項7に記載のステアリング装置において、
     前記左輪ステアリングシャフトまたは前記右輪ステアリングシャフトの回転角を検知するステアリングシャフト回転角検知手段を備え、
     前記制御手段は、前記左転舵モータまたは前記右転舵モータのいずれか一方が失陥した場合に、前記ハンドルコラムシャフト転舵角および前記ステアリングシャフトの転舵角に基づいて、失陥していない側のモータを駆動または回生させるフェール時処理を実行することを特徴とするステアリング装置。
    The steering apparatus according to claim 6 or 7,
    A steering shaft rotation angle detecting means for detecting a rotation angle of the left wheel steering shaft or the right wheel steering shaft;
    The control means has failed based on the steering column shaft turning angle and the steering shaft turning angle when either the left turning motor or the right turning motor fails. A steering apparatus characterized by executing a failure process for driving or regenerating a motor on the non-side.
PCT/JP2014/057124 2013-06-17 2014-03-17 Steering device WO2014203574A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2013126309 2013-06-17
JP2013-126309 2013-06-17

Publications (1)

Publication Number Publication Date
WO2014203574A1 true WO2014203574A1 (en) 2014-12-24

Family

ID=52104319

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/057124 WO2014203574A1 (en) 2013-06-17 2014-03-17 Steering device

Country Status (1)

Country Link
WO (1) WO2014203574A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7498097B2 (en) 2020-12-02 2024-06-11 株式会社Soken Vehicle driving control device

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2539097Y2 (en) * 1990-03-27 1997-06-18 本田技研工業株式会社 Electric power steering device
JP2006248506A (en) * 2005-02-14 2006-09-21 Toyota Motor Corp Steering device
JP2007099144A (en) * 2005-10-06 2007-04-19 Toyota Motor Corp Steering device
JP2007230511A (en) * 2006-03-03 2007-09-13 Toyota Motor Corp Turning device
JP2007297009A (en) * 2006-05-02 2007-11-15 Nissan Motor Co Ltd Vehicular steering control device
JP2008208990A (en) * 2006-12-01 2008-09-11 Gkn Driveline Internatl Gmbh Drive assembly equipped with intermediate shaft and clutch unit
JP2009078638A (en) * 2007-09-25 2009-04-16 Fuji Heavy Ind Ltd Steering device for vehicle
JP2010214978A (en) * 2009-03-13 2010-09-30 Ntn Corp Steer-by-wire steering device

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2539097Y2 (en) * 1990-03-27 1997-06-18 本田技研工業株式会社 Electric power steering device
JP2006248506A (en) * 2005-02-14 2006-09-21 Toyota Motor Corp Steering device
JP2007099144A (en) * 2005-10-06 2007-04-19 Toyota Motor Corp Steering device
JP2007230511A (en) * 2006-03-03 2007-09-13 Toyota Motor Corp Turning device
JP2007297009A (en) * 2006-05-02 2007-11-15 Nissan Motor Co Ltd Vehicular steering control device
JP2008208990A (en) * 2006-12-01 2008-09-11 Gkn Driveline Internatl Gmbh Drive assembly equipped with intermediate shaft and clutch unit
JP2009078638A (en) * 2007-09-25 2009-04-16 Fuji Heavy Ind Ltd Steering device for vehicle
JP2010214978A (en) * 2009-03-13 2010-09-30 Ntn Corp Steer-by-wire steering device

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7498097B2 (en) 2020-12-02 2024-06-11 株式会社Soken Vehicle driving control device

Similar Documents

Publication Publication Date Title
JP5919900B2 (en) Steering device
EP3050780B1 (en) Steering device
JP4635754B2 (en) Steering device
JP6382545B2 (en) Steering device and vehicle equipped with the same
JP4907390B2 (en) Driving force distribution device and vehicle control device
EP3072781B1 (en) Vehicle
JP6452944B2 (en) Steering device
WO2015072375A1 (en) Vehicle
US9481391B2 (en) Electric power steering apparatus
JP2012121391A (en) Steering device
US20050016791A1 (en) Steering control system
JP5481022B2 (en) Vehicle steering device
JP6523720B2 (en) Rear wheel steering control system
JP4635753B2 (en) Steering device
WO2014203574A1 (en) Steering device
WO2015050190A1 (en) Steering device
JP5226999B2 (en) Vehicle steering device
WO2016121677A1 (en) Steering device and vehicle equipped with same
JP6437189B2 (en) Steering device and steering device system
JP2019151327A (en) Actuator control device
JPS63184576A (en) Rear wheel steering device for automobile
JPH0537906Y2 (en)
JP2017001562A (en) Steering control device
JPH04266569A (en) Device for controlling steering force and steering angle
JP2005145254A (en) Vehicle steering device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14814218

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14814218

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP