WO2014200241A1 - Method for preparing fermented soybean meal to increase feed efficiency and milk yield of dairy cows - Google Patents

Method for preparing fermented soybean meal to increase feed efficiency and milk yield of dairy cows Download PDF

Info

Publication number
WO2014200241A1
WO2014200241A1 PCT/KR2014/005073 KR2014005073W WO2014200241A1 WO 2014200241 A1 WO2014200241 A1 WO 2014200241A1 KR 2014005073 W KR2014005073 W KR 2014005073W WO 2014200241 A1 WO2014200241 A1 WO 2014200241A1
Authority
WO
WIPO (PCT)
Prior art keywords
soybean meal
lactic acid
acid bacteria
fermentation
heat treatment
Prior art date
Application number
PCT/KR2014/005073
Other languages
French (fr)
Korean (ko)
Inventor
이종화
구본탁
Original Assignee
농업회사법인 주식회사 피드업
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 농업회사법인 주식회사 피드업 filed Critical 농업회사법인 주식회사 피드업
Publication of WO2014200241A1 publication Critical patent/WO2014200241A1/en

Links

Classifications

    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23JPROTEIN COMPOSITIONS FOR FOODSTUFFS; WORKING-UP PROTEINS FOR FOODSTUFFS; PHOSPHATIDE COMPOSITIONS FOR FOODSTUFFS
    • A23J1/00Obtaining protein compositions for foodstuffs; Bulk opening of eggs and separation of yolks from whites
    • A23J1/14Obtaining protein compositions for foodstuffs; Bulk opening of eggs and separation of yolks from whites from leguminous or other vegetable seeds; from press-cake or oil-bearing seeds
    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23JPROTEIN COMPOSITIONS FOR FOODSTUFFS; WORKING-UP PROTEINS FOR FOODSTUFFS; PHOSPHATIDE COMPOSITIONS FOR FOODSTUFFS
    • A23J3/00Working-up of proteins for foodstuffs
    • A23J3/14Vegetable proteins
    • A23J3/16Vegetable proteins from soybean
    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23KFODDER
    • A23K10/00Animal feeding-stuffs
    • A23K10/10Animal feeding-stuffs obtained by microbiological or biochemical processes
    • A23K10/12Animal feeding-stuffs obtained by microbiological or biochemical processes by fermentation of natural products, e.g. of vegetable material, animal waste material or biomass
    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23KFODDER
    • A23K10/00Animal feeding-stuffs
    • A23K10/30Animal feeding-stuffs from material of plant origin, e.g. roots, seeds or hay; from material of fungal origin, e.g. mushrooms
    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23KFODDER
    • A23K20/00Accessory food factors for animal feeding-stuffs
    • A23K20/10Organic substances
    • A23K20/142Amino acids; Derivatives thereof
    • A23K20/147Polymeric derivatives, e.g. peptides or proteins
    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23KFODDER
    • A23K50/00Feeding-stuffs specially adapted for particular animals
    • A23K50/10Feeding-stuffs specially adapted for particular animals for ruminants

Definitions

  • the present invention relates to a fermentation method of soybean meal to increase the milk yield and feed efficiency of the cow.
  • Soybean meal is fermented using lactic acid bacteria and then heat-treated at high temperature, and the activated sugar and protein are combined by browning reaction.
  • the cattle obtain most of the amino acids needed from the microbial proteins produced during the rumen fermentation or the proteins that have passed through the rumen, ie bypass proteins.
  • Soybean meal has the disadvantage of being inefficient because it is the most important protein source, which accounts for 60% of the world's vegetable protein feedstock by production, and most cattle are degraded in the rumen and only 25-34% are bypassed. .
  • the present inventors have developed a process to increase the ratio of bypass proteins by promoting the Maillard reaction through lactic acid bacteria fermentation, which effectively decomposes fructose in soybean meal such as Raffinose and Stachyose in metabolic processes to form an activated sugar.
  • the processed soybean meal obtained as a result of the present invention can be secured economically by using only the fermentation process and heat treatment without additives such as enzymes or sugars.
  • the product has a RUP (Rumen Undegradable Protein) of 65% or more and a digestive absorption rate of 90% It was found to be competitive.
  • An object of the present invention is to produce a bypass protein by using soybean meal, specifically to provide a soybean meal bypass protein through the lactic acid bacteria fermentation process and high temperature heat treatment process does not add any additives such as enzymes or sugars from the outside It is for.
  • Soybean meal bypass protein of the present invention is to provide a process that can produce a product that is economical and efficient compared to the conventional soybean meal bypass protein manufacturing process in terms of efficiency and performance. To this end, (1) select lactic acid bacteria that effectively break down the fructose of soybean meal in metabolism, (2) establish solid fermentation conditions in which these fructose are degraded to the form of activated sugars, and (3) activate soybean meal. It is to develop a high temperature heat treatment process to maximize the Maillard reaction between sugar and protein.
  • the present invention includes the following process development steps to achieve the above object.
  • the present invention enables economic production of high quality bypass proteins by establishing fermentation and heat treatment conditions using lactic acid bacteria that can promote Maillard reaction by effectively metabolizing water-soluble carbohydrates, especially fructose in soybean meal.
  • anaerobic fermentation using lactic acid bacteria converts fructose and carbohydrates of soybean meal into activated sugar form by Maillard reaction, which enables to prepare bypass protein from soybean meal without using additives from the outside.
  • the bypass protein production method of the present invention is a simple and economical bypass protein production method.
  • the heat treatment process is performed at a relatively low temperature, thereby providing a method of reducing digestive absorption rate in the small intestine of cattle or excessive destruction of essential amino acids such as lysine by excessive heat treatment.
  • Processed soybean meal prepared by the process of the present invention can ensure the quality competitiveness by ensuring that the RUP is 65% or more in the quality, the digestive absorption rate in the small intestine is 90% or more.
  • the present invention relates to a method for producing fermented soybean meal, comprising: extracting a medium from soybean meal to culture lactic acid bacteria; Inoculating and incubating the lactic acid bacteria in the medium extracted from the soybean meal; Fermenting soybean meal using the culture medium of the culture medium in which the lactic acid bacteria were cultured and heat-treating the fermented soybean meal.
  • Soybean meal contains fructose and various carbohydrates represented by stakiose and raffinose, most of which are water-soluble and digestive inhibitors.
  • it focuses on using lactic acid bacteria that effectively metabolize fructose and carbohydrates, which are irrelevant to the nutrition of soybean meal but rather deteriorate as a feed. That is, in the fermentation process of lactic acid bacteria, large amounts of monosaccharides such as glucose and galactose are made from fructose and carbohydrates, and these monosaccharides utilize the principle of thermally binding with proteins or peptides more effectively. .
  • lactic acid bacteria are known to have excellent metabolic activity against fructose.
  • An enzyme called alpa- (1,6) galactosidase which is commonly found in lactic acid bacteria, is contained in soybean meal such as raffinose and starchiose. It is an enzyme that breaks down fructose.
  • the content of raffinose and stachyose in soybean meal is over 6% by dry weight.
  • alpha galactosidase each molecule of three monosaccharides, such as galactose, fructose, and glucose, is decomposed into one molecule.
  • Stachyose is broken down into two galactose, one fructose and one glucose molecule.
  • the lactic acid bacteria that can secrete a lot of alpha galaccosidase enzyme and convert the fructose in soybean meal into a more active form and increase the proportion of monosaccharides can promote the Maillard reaction more effectively.
  • lactic acid bacteria in order to select such lactic acid bacteria was used a method of measuring the growth rate in soybean meal aqueous extract.
  • the extraction of soybean meal using water results in the dissolution of most sugar components and water-soluble carbohydrates.
  • the growth rate is measured by using the extract as a medium without any additives, lactic acid bacteria having high sugar metabolism from fructose and carbohydrates of soybean meal Can be selected efficiently.
  • the lactic acid bacteria used for culturing soybean meal extract in the present invention is Enterococcus lactic acid bacteria, Lactobacillus (Lactobacillus) lactic acid bacteria, Bisella (Weissella) lactic acid bacteria, Leuconostoc (Leuconostoc) lactic acid bacteria, Streptococcus (Streptococcus) genus Lactic acid bacteria, Lactococcus (Lactococcus) is a lactic acid bacteria which is any one selected from the lactic acid bacteria and mixed lactic acid bacteria thereof.
  • the Enterococcus genus lactic acid bacteria include Enterococcus faecium, Enterococcus faecalis, and Lactobacillus genus Lactobacillus (Lactobacillus plantarum), Lactobacillus plantarum (Lactobacillus plantarum) Lactobacillus acidophilus, and the Weissella genus Lactobacillus (Weissella koreensis), Weissella ciberia (Weissella cibaria).
  • lactic acid bacteria of the genus Leuconostoc include Leuconostoc citreum and Leuconostoc mesenteroides, and streptococcus thermophillus in the strains of Streptococcus genus.
  • Lactococcus (Lactococcus) lactic acid bacteria are Lactococcus lactis (Lactococcus lactis).
  • One or more lactic acid bacteria are inoculated and incubated in the extract (medium) extracted from soybean meal, and the culture medium in which the lactic acid bacteria are cultured is mixed with soybean meal to ferment soybean meal as lactic acid bacteria.
  • Soybean meal fermentation using microorganisms is mainly used in the solid substrate fermentation (solid substrate fermentation) method. After adding an appropriate amount of water to soybean meal, the microorganisms are inoculated and fermented. In order to make fermentation well, a process such as steaming to pre-treat soybean meal with hot steam may be added. Extracting the medium from the soybean meal is extracted with extract water at a temperature of 40 ⁇ 80 °C, extract so that the sugar concentration of the extracted medium (extract solution) is a concentration of 1 ⁇ 10 Brix.
  • lactic acid bacteria culture belongs to anaerobic fermentation. This is because the former microorganisms are aerobic microorganisms that require oxygen for growth and fermentation, whereas most lactic acid bacteria are facultative anaerobes. This means that both growth and fermentation are possible in the presence or absence of oxygen. For this reason, anaerobic fermentation using lactic acid bacteria is economical fermented soybean meal production is possible because there is no precise oxygen supply device, such as the imperial chamber or energy consumption.
  • lactic acid bacteria have the advantage that the production of contaminating bacteria by the effect of lowering the pH of the fermentation product because it generates lactic acid (lactic acid) during the fermentation process.
  • a culture solution was prepared from the soybean meal extract to make the inoculum bacterium solution, and then inoculated into the soybean meal with water to establish a process condition of fermentation at a constant temperature for a certain time.
  • Inoculum required for stable fermentation ie inoculation rate of culture solution is 10 6 ⁇ 10 9 cfu / g
  • soybean meal water content is 30-60%
  • fermentation temperature is 20-40 °C
  • fermentation period is 2-4 days Ferment during.
  • Heat treatment is essential to make browning conjugates between activated sugars and proteins produced by lactic acid bacteria fermentation. If more heat is applied, the bypass rate is higher but the digestibility in the small intestine is lower. Is lowered.
  • amino acids such as lysine are very important to the quality of the feed, and are relatively bad for heat, so they are likely to be destroyed during heat treatment. Therefore, the heat treatment of fermented soybean meal is a sensitive process that must be precisely controlled to use the minimum temperature and time required for the browning reaction.
  • roasting which is the most common method, is mainly used for direct heating with a flame on soybean meal dispersed by a fin installed inside a cylindrical reactor.
  • a roasting type heat treatment was used, and a batch type rotary drum was used as a mechanical device for accurate control of temperature and processing time.
  • the temperature used for the heat treatment various conditions are used from 90 ° C. to 145 ° C., but preferably 30 to 120 minutes at 90 ° C. to 98 ° C.
  • the heat treatment conditions are aimed at as low a temperature as possible.
  • soybean meal extract When used as a medium, it was proceeded as follows to select lactic acid bacteria with excellent growth rate.
  • the concentration of sugar in the extract was measured using a sugar meter and the unit was Brix. 1 Brix is defined as the number of grams of sugar in 100 grams of solution. Proteins were quantified by the Bradford method and used as the mass (g) of protein contained in 100 ml extract.
  • Extracts to be used as a medium was a sugar concentration of 5 Brix or more, protein concentration of less than 1% was used and sterilized using a membrane filter having a pore size of 0.22 ⁇ m.
  • the growth curves of the extracts inoculated with each microorganism were measured for absorbance at 660 nm wavelength, and specific growth rates were calculated based on the growth curves.
  • the highest specific growth rate is Enterococcus faecium strain. Not only was it superior to other lactic acid bacteria, but also superior to Bacillus genus bacteria.
  • Example 2 Soybean meal solid phase fermentation using Enterococcus faecium (SLB120) strain
  • Anaerobic fermentation using lactic acid bacteria in the actual production scale proceeds without supplying air from the outside in a closed space such as a bulk bag, so as the fermentation proceeds, the temperature of the whole soybean meal increases due to the latent heat. Unless otherwise stated, 500 kg soybean meal is fermented in closed bulk bags and rises up to 40 ° C. In the present invention, the temperature at the time of inoculation of the inoculated bacteria was set at 25 to 30 ° C.
  • Soybean meal inoculated with soybean meal temperature controlled at 25 °C was inoculated at 10 7 cfu / g per gram of soybean meal and fermented for 24 hours, 36 hours, 48 hours, 56 hours, 72 hours, respectively. pH was measured.
  • the optimum elapsed time of soybean meal fermentation using the SLB120 strain was set to 56 to 72 hours.
  • Soybean meal heat treatment in the present invention used a rotary drum type dryer has a double screw conveyor is installed inside the drum has a batch structure in which the raw material continues to circulate in the drum.
  • the treatment time was set to one hour, and heat treatment was performed at each temperature.
  • the fermented soybean meal was put into the above dryer and the internal soybean meal temperature was set to 90 ° C., 95 ° C., 100 ° C., and 105 ° C. using a diesel gas burner of 200,000 Kcal / hr. Thereafter, the temperature was limited to 60 ° C. and dried until the water content was 12% or less.
  • the UIP ratio was over 65%.
  • the temperature was set to 95 ° C. and heat treatment was performed for 30 minutes, 60 minutes, 90 minutes, and 120 minutes, respectively.
  • Each sample was measured for UIP in the same manner as above, and subjected to KOH solubility test. About 0.2% of the sample was added to 0.2% KOH solution and stirred at room temperature for a period of time, followed by filtration using filter paper. The filtered supernatant was measured for protein by Kjeldahl method.
  • Table 5 shows the results of measuring the UIP ratio and KOH solubility for each sample.
  • KOH solubility is a method for analyzing the solubility of proteins in soybean meal.
  • a low value means that the protein has a high degree of denaturation. Therefore, it can be estimated that the digestibility of the small intestine is low.
  • the heat treatment time of the fermented soybean meal was determined to be 60 to 90 minutes in order to maintain a high digestibility in the small intestine.
  • the bypass protein manufacturing process of the present invention has the usefulness of effectively producing the bypass protein by causing a Maillard reaction to occur by changing the composition of soybean meal through fermentation without a separate additive.
  • the processed soybean meal prepared by the process of the present invention is useful in securing quality competitiveness by providing a RUP of 65% or more and a digestive absorption rate of 90% or more in the small intestine in its quality.

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Polymers & Plastics (AREA)
  • Engineering & Computer Science (AREA)
  • Food Science & Technology (AREA)
  • Biochemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Animal Husbandry (AREA)
  • Zoology (AREA)
  • Biotechnology (AREA)
  • Molecular Biology (AREA)
  • Physiology (AREA)
  • Nutrition Science (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Mycology (AREA)
  • Botany (AREA)
  • Birds (AREA)
  • Sustainable Development (AREA)
  • Biomedical Technology (AREA)
  • Microbiology (AREA)
  • Fodder In General (AREA)
  • Beans For Foods Or Fodder (AREA)

Abstract

The present invention relates to a method for preparing a bypass protein of which the digestive absorption can intensively occur in the small intestine after passing the cow rumen while the digestive absorption thereof is suppressed. A soybean meal is (1) fermented by using lactic acid bacteria to convert fruit sugar and the like into reactive sugar; and (2) thermally treated to suppress the digestive absorption thereof in the rumen and maximize the digestive absorption thereof in the small intestine. According to method for preparing a bypass protein, the bypass protein can be effectively produced by changing ingredients of the soybean meal through fermentation without a separate additive to induce a Maillard reaction well.

Description

젖소의 사료효율 및 산유량을 증대시킬 수 있는 발효 대두박의 제조방법Method of manufacturing fermented soybean meal to increase feed efficiency and yield
본 발명은 젖소의 산유량과 사료효율을 증대시키기 위한 대두박의 발효방법에 관한 것이다. 대두박을 유산균을 이용하여 고상발효시킨 후 고온에서 열처리하고, 이와 같은 공정으로 생성되어 활성화된 당과 단백질이 갈색화 반응을 통해 결합되도록 한 것이다.The present invention relates to a fermentation method of soybean meal to increase the milk yield and feed efficiency of the cow. Soybean meal is fermented using lactic acid bacteria and then heat-treated at high temperature, and the activated sugar and protein are combined by browning reaction.
축우는 반추위의 발효과정에서 만들어진 미생물 단백질이나 반추위를 통과한 단백질, 즉 바이패스 단백질로부터 필요한 아미노산의 대부분을 얻는다. The cattle obtain most of the amino acids needed from the microbial proteins produced during the rumen fermentation or the proteins that have passed through the rumen, ie bypass proteins.
대두박은 생산량 기준으로 전세계 식물성 단백질 사료원료 중 60%를 차지할 정도로 매우 중요한 단백질원이나 축우에서는 대부분 반추위에서 분해가 이루어지고 단지 25~34% 정도 만이 바이패스가 되기 때문에 효율적이지 못하다는 단점을 가지고 있다.Soybean meal has the disadvantage of being inefficient because it is the most important protein source, which accounts for 60% of the world's vegetable protein feedstock by production, and most cattle are degraded in the rumen and only 25-34% are bypassed. .
그동안 반추동물에서의 바이패스 비율을 높이기 위해 대두박을 가공하는 여러가지 방법들이 연구되어 왔으며, 열처리를 하거나 lignosulfonate 또는 formaldehyde로 처리하는 방법 등이 주로 사용되며, 최근에는 식물성 오일 등으로 코팅하는 방법도 개발되어 있다. Various methods of processing soybean meal have been studied in order to increase the bypass ratio in ruminants, and heat treatment or treatment with lignosulfonate or formaldehyde is mainly used. Recently, coating with vegetable oil has been developed. have.
그 중에서 대두박을 열처리하는 공정이 가장 많이 시도되고 있는데, 이는 대두박 내의 단백질과 당이 가열 과정에서 일어나는 갈색화반응(Maillard reaction, 마이야르 반응)을 이용하는 것이다. 즉, 당의 카보닐기(carbonyl group)와 아마노산의 아미노기(amino group)가 열에 의해 결합하게 되면 반추위에서 소화작용을 일으키는 미생물 효소들의 공격을 받지 않고 바이패스 되어 소장에서 대부분 소화가 일어나게 된다.Among them, the process of heat-treating soybean meal is the most attempted, which uses a Maillard reaction (Meylar reaction) in which proteins and sugars in soybean meal are heated during heating. In other words, when the carbonyl group of sugar (amino group) of amino acid (amino group) of sugar is combined by heat and bypasses the attack of microbial enzymes that cause digestion in the rumen, most digestion occurs in the small intestine.
익스트루더 등을 사용하여 고온에서 짧은 시간 열을 가하거나 자일로스(xylose) 등의 활성화 당(reactive sugar)을 첨가한 후 열처리 하는 방식 등이 사용되는데 최근에는 효모 등에서 분리한 효소를 사용하여 대두박을 처리한 후 열처리를 함으로써 마이야르 반응을 촉진시키는 공정도 개발되었다.Using extruder for a short time at high temperature or adding a reactive sugar such as xylose and heat treatment, etc. Recently, soybean meal using enzymes isolated from yeast The process of promoting the Maillard reaction by heat treatment after heat treatment was also developed.
한편, 트립신 저해제 등의 항영양인자(anti-nutritional factors)들을 비가열적 방법으로 제거하기 위해 대두박을 효소로 처리하거나 미생물로 발효시키는 공정들이 산업화 되어 있는데, 후자의 경우 Aspergillus 등의 곰팡이 균을 사용하거나 Bacillus 등의 세균을 사용하는 것이 일반적이다. 일부에서는 유산균을 이용하는 혐기적 공정을 사용하여 경제적으로 발효하는 공정을 사용하기도 하는데, 유산균의 경우 대사과정에서 대두박의 항영양인자의 하나인 과당류(oligo-saccharide)들을 활발하게 분해하는 것으로 알려져 있다. On the other hand, in order to remove anti-nutritional factors such as trypsin inhibitors by non-heating methods, processes for treating soybean meal with enzymes or fermenting with microorganisms have been industrialized. In the latter case, fungi such as Aspergillus or Bacillus It is common to use such bacteria. In some cases, an anaerobic process using lactic acid bacteria is used to ferment economically. Lactic acid bacteria are known to actively break down oligosaccharides, one of the anti-nutritive factors of soybean meal, during metabolism.
이에 본 발명자들은 Raffinose, Stachyose 등 대두박 내의 과당류들을 대사과정에서 효과적으로 분해하여 활성화 당 형태로 만드는 유산균 발효를 통해 마이야르 반응을 촉진함으로써 바이패스 단백질의 비율을 높일 수 있는 공정을 개발하였다. 본 발명의 결과로 얻어진 가공대두박은 효소나 당 등의 첨가물 없이 발효공정과 열처리 만을 사용하므로 경제성을 확보할 수 있었고 RUP(Rumen Undegradable Protein)가 65% 이상, 소장에서의 소화흡수율이 90% 정도로 제품 경쟁력이 있는 것으로 나타났다. Accordingly, the present inventors have developed a process to increase the ratio of bypass proteins by promoting the Maillard reaction through lactic acid bacteria fermentation, which effectively decomposes fructose in soybean meal such as Raffinose and Stachyose in metabolic processes to form an activated sugar. The processed soybean meal obtained as a result of the present invention can be secured economically by using only the fermentation process and heat treatment without additives such as enzymes or sugars. The product has a RUP (Rumen Undegradable Protein) of 65% or more and a digestive absorption rate of 90% It was found to be competitive.
본 발명의 목적은 대두박을 이용하여 바이패스 단백질을 생산하기 위한 것으로, 구체적으로는 외부로부터 효소나 당 등의 첨가물을 일체 첨가하지 않는 유산균 발효공정과 고온 열처리공정을 통해 대두박 바이패스 단백질을 제공하기 위한 것이다. 본 발명의 대두박 바이패스 단백질은 종래의 대두박 바이패스 단백질 제조 공정에 비하여 경제적이고 효율적인 동시에 효율과 성능에서도 우수한 제품을 생산할 수 있는 공정을 제공하는 것이다. 이를 위한 방법으로, (1) 대사과정에서 대두박의 과당류들을 효과적으로 분해하는 유산균을 선택하고, (2) 이 과당류들이 활성화 당 형태로 최대한 분해되는 고상발효 조건을 확립하며, (3) 대두박 활성화 당과 단백질들 간의 마이야르 반응이 최대로 일어 날 수 있도록 하는 고온 열처리 공정을 개발하는 데 있다. An object of the present invention is to produce a bypass protein by using soybean meal, specifically to provide a soybean meal bypass protein through the lactic acid bacteria fermentation process and high temperature heat treatment process does not add any additives such as enzymes or sugars from the outside It is for. Soybean meal bypass protein of the present invention is to provide a process that can produce a product that is economical and efficient compared to the conventional soybean meal bypass protein manufacturing process in terms of efficiency and performance. To this end, (1) select lactic acid bacteria that effectively break down the fructose of soybean meal in metabolism, (2) establish solid fermentation conditions in which these fructose are degraded to the form of activated sugars, and (3) activate soybean meal. It is to develop a high temperature heat treatment process to maximize the Maillard reaction between sugar and protein.
본 발명은 상기 목적을 달성하기 위하여 다음의 공정개발 단계들을 포함한다. (1) 대두박의 과당류들이 포함된 추출액을 제조하고 이를 배지로 하였을 때 성장속도가 우수한 유산균을 선정하는 유산균 선정단계, (2) 상기 유산균을 이용한 대두박 고상발효에 있어서 과당류의 분해가 최대에 이르도록 하는 공정 조건을 확립하는 분해공정단계, (3) 마이야르 반응이 효과적으로 이루어지도록 하는 열처리 조건을 확립하는 열처리단계로 구성된다.The present invention includes the following process development steps to achieve the above object. (1) lactic acid bacteria selection step of producing an extract containing soybean meal fructose and the medium as a medium, the lactic acid bacteria excellent growth rate, (2) the decomposition of fructose in soybean meal solid phase fermentation using the lactic acid bacteria to the maximum And (3) a heat treatment step for establishing a heat treatment condition for effecting the Maillard reaction.
본 발명은 대두박 내의 수용성 탄수화물, 특히 과당류들을 효과적으로 대사함으로써 마이야르 반응을 촉진할 수 있는 유산균을 이용하여 발효와 열처리 조건을 확립함으로써 우수한 품질의 바이패스 단백질을 경제적으로 생산할 수 있도록 한 것이다.The present invention enables economic production of high quality bypass proteins by establishing fermentation and heat treatment conditions using lactic acid bacteria that can promote Maillard reaction by effectively metabolizing water-soluble carbohydrates, especially fructose in soybean meal.
본 발명은 유산균을 이용한 혐기적 발효를 통해 대두박의 과당류들과 탄수화물이 마이야르 반응에 의해 활성화 당 형태로 전환되며, 이는 외부로부터 첨가물을 사용하지 않고 대두박으로부터 바이패스 단백질을 제조할 수 있게 된다. 본원 발명의 상기 바이패스 단백질 제조방법은 간편하고 경제적인 바이패스 단백질 제조방법인 것이다.In the present invention, anaerobic fermentation using lactic acid bacteria converts fructose and carbohydrates of soybean meal into activated sugar form by Maillard reaction, which enables to prepare bypass protein from soybean meal without using additives from the outside. . The bypass protein production method of the present invention is a simple and economical bypass protein production method.
본 발명에서의 열처리 공정은 상대적으로 낮은 온도에서 이루어지게 함으로써 과도한 열처리에 의해 축우의 소장에서의 소화흡수율을 떨어뜨리거나 라이신 등 필수 아미노산의 파괴를 최대한 억제할 수 있는 방법을 제공한다.In the present invention, the heat treatment process is performed at a relatively low temperature, thereby providing a method of reducing digestive absorption rate in the small intestine of cattle or excessive destruction of essential amino acids such as lysine by excessive heat treatment.
본 발명의 공정으로 제조된 가공대두박은 그 품질에 있어서 RUP가 65% 이상, 소장에서의 소화흡수율이 90% 이상이 되도록 함으로써 품질 경쟁력을 확보할 수 있다.Processed soybean meal prepared by the process of the present invention can ensure the quality competitiveness by ensuring that the RUP is 65% or more in the quality, the digestive absorption rate in the small intestine is 90% or more.
본 발명은 발효 대두박의 제조방법에 관한 것으로 유산균을 배양하기 위하여 대두박으로부터 배지를 추출하는 단계; 상기 대두박으로부터 추출된 배지에 유산균을 접종하고 배양하는 단계; 상기 유산균이 배양된 배지의 배양액을 이용하여 대두박을 발효시키는 단계 및 상기 발효된 대두박을 열처리 하는 단계로 구성된다.The present invention relates to a method for producing fermented soybean meal, comprising: extracting a medium from soybean meal to culture lactic acid bacteria; Inoculating and incubating the lactic acid bacteria in the medium extracted from the soybean meal; Fermenting soybean meal using the culture medium of the culture medium in which the lactic acid bacteria were cultured and heat-treating the fermented soybean meal.
본 발명의 대두박으로부터 유산균 발효 및 열처리에 의해 바이패스 단백질의 제조방법은 아래 실시예를 이용하여 상세하게 설명하도록 한다. 이하의 설명은 이 발명을 한정하는 것은 아니며, 이로부터 예상되는 발명의 변경 가능한 구성은 이 발명의 범위 내로 한다.Method for producing a bypass protein by lactic acid bacteria fermentation and heat treatment from soybean meal of the present invention will be described in detail using the following examples. The following description does not limit this invention, and the changeable structure of this invention anticipated from this is within the scope of this invention.
본 발명의 과정을 단계별로 상세하게 설명하면 다음과 같다.The process of the present invention will be described in detail step by step as follows.
1. 유산균의 선정1. Selection of Lactobacillus
대두박의 성분 중에는 스타키오즈, 라피노즈 등으로 대표되는 과당류와 다양한 탄수화물들이 포함되어 있는데 이들의 대부분은 수용성이며 소화를 저해하는 항영양인자의 일종이다. 본 발명에서는 이와 같이 대두박의 영양성과 무관하면서 오히려 사료로서의 성능을 떨어뜨리는 과당류들과 탄수화물들을 효과적으로 대사시키는 유산균을 이용하는데 중점을 둔다. 즉, 유산균 발효 과정에서 과당류들과 탄수화물들로부터 글루코스(glucose), 칼락토스(galactose) 등의 단당류들이 다량 만들어지고, 이러한 단당류들은 보다 효과적으로 단백질이나 펩타이드들과 열의 의해 결합한다는 원리를 활용하는 것이다.Soybean meal contains fructose and various carbohydrates represented by stakiose and raffinose, most of which are water-soluble and digestive inhibitors. In the present invention, it focuses on using lactic acid bacteria that effectively metabolize fructose and carbohydrates, which are irrelevant to the nutrition of soybean meal but rather deteriorate as a feed. That is, in the fermentation process of lactic acid bacteria, large amounts of monosaccharides such as glucose and galactose are made from fructose and carbohydrates, and these monosaccharides utilize the principle of thermally binding with proteins or peptides more effectively. .
특히 유산균들은 과당류들에 대한 대사능이 뛰어난 것으로 알려져 있는데, 유산균에서 흔히 발견되는 알파갈락토시데이즈 (alpa-(1,6)galactosidase)라는 효소는 라피노즈와 스타키오즈 등의 대두박에 다량으로 포함되어 있는 과당류들을 분해하는 효소이다. 대두박 중 라피노즈와 스타키오즈의 함량은 건물량 기준으로 6% 이상이다. 한 개의 라피노스 분자는 알파갈락토시데이즈에 의해 분해되면 갈락토스, 프럭토스(fructose), 글루코스 등 3종의 단당류 각각 한 분자씩으로 분해된다. 한편, 스타키오스는 두 개의 갈락토스와 1개의 프럭토스, 1개의 글루코스 분자로 분해된다.In particular, lactic acid bacteria are known to have excellent metabolic activity against fructose. An enzyme called alpa- (1,6) galactosidase, which is commonly found in lactic acid bacteria, is contained in soybean meal such as raffinose and starchiose. It is an enzyme that breaks down fructose. The content of raffinose and stachyose in soybean meal is over 6% by dry weight. When one raffinose molecule is decomposed by alpha galactosidase, each molecule of three monosaccharides, such as galactose, fructose, and glucose, is decomposed into one molecule. Stachyose, on the other hand, is broken down into two galactose, one fructose and one glucose molecule.
이와 같이 알파갈락코시데이즈 효소를 많이 분비하여 대두박 내의 과당류들을 보다 활성화된 형태이면서 비율적으로 증가된 단당류들로 전환할 수 있는 유산균을 활용한다면 마이야르 반응을 보다 효과적으로 촉진시킬 수 있다. In this way, the lactic acid bacteria that can secrete a lot of alpha galaccosidase enzyme and convert the fructose in soybean meal into a more active form and increase the proportion of monosaccharides can promote the Maillard reaction more effectively.
본 발명에서는 이와 같은 유산균을 선정하기 위해 대두박 수용성 추출액에서의 성장속도를 측정하는 방법을 사용하였다. 먼저 물을 사용하여 대두박을 추출하면 대부분의 당 성분들과 수용성 탄수화물들이 용해되어 나오는데, 이러한 추출액을 별도의 첨가물 없이 배지로 사용하여 성장속도를 측정하면 대두박의 과당류나 탄수화물로부터의 당대사도가 높은 유산균을 효율적으로 선정할 수 있다. In the present invention, in order to select such lactic acid bacteria was used a method of measuring the growth rate in soybean meal aqueous extract. First, the extraction of soybean meal using water results in the dissolution of most sugar components and water-soluble carbohydrates. When the growth rate is measured by using the extract as a medium without any additives, lactic acid bacteria having high sugar metabolism from fructose and carbohydrates of soybean meal Can be selected efficiently.
본 발명에서 대두박 추출물 배양에 사용되는 유산균은 엔테로코커스(Enterococcus)속 유산균, 락토바실러스(Lactobacillus)속 유산균, 바이셀라(Weissella)속 유산균, 류코노스톡(Leuconostoc)속 유산균, 스트렙토코커스(Streptococcus)속 유산균, 락토코커스(Lactococcus)속 유산균 및 이들의 혼합 유산균에서 선택되는 어느 하나인 유산균이다.The lactic acid bacteria used for culturing soybean meal extract in the present invention is Enterococcus lactic acid bacteria, Lactobacillus (Lactobacillus) lactic acid bacteria, Bisella (Weissella) lactic acid bacteria, Leuconostoc (Leuconostoc) lactic acid bacteria, Streptococcus (Streptococcus) genus Lactic acid bacteria, Lactococcus (Lactococcus) is a lactic acid bacteria which is any one selected from the lactic acid bacteria and mixed lactic acid bacteria thereof.
상기 엔테로코커스(Enterococcus)속 유산균에는 엔테로코커스 페시움(Enterococcus faecium), 엔테로코커스 피칼리스(Enterococcus faecalis)가 있고, 락토바실러스(Lactobacillus)속 유산균에는 락토바실러스 플란타룸(Lactobacillus plantarum), 락토바실러스 에시도필러스(Lactobacillus acidophilus)가 있으며, 바이셀라(Weissella)속 유산균에는 바이셀라 코리엔시스(Weissella koreensis), 바이셀라 사이베리아 (Weissella cibaria)가 있다. 또한 류코노스톡(Leuconostoc)속 유산균에는 류코노스톡 시트레움(Leuconostoc citreum), 류코노스톡 메젠테로이드스(Leuconostoc mesenteroides)가 있으며, 스트렙토코커스(Streptococcus)속 유산균에는 스트렙토코커스 서모필러스 (Streptococcus thermophillus)이 있으며, 락토코커스(Lactococcus)속 유산균에는 락토코커스 락티스 (Lactococcus lactis)가 있다. The Enterococcus genus lactic acid bacteria include Enterococcus faecium, Enterococcus faecalis, and Lactobacillus genus Lactobacillus (Lactobacillus plantarum), Lactobacillus plantarum (Lactobacillus plantarum) Lactobacillus acidophilus, and the Weissella genus Lactobacillus (Weissella koreensis), Weissella ciberia (Weissella cibaria). In addition, lactic acid bacteria of the genus Leuconostoc include Leuconostoc citreum and Leuconostoc mesenteroides, and streptococcus thermophillus in the strains of Streptococcus genus. There is, Lactococcus (Lactococcus) lactic acid bacteria are Lactococcus lactis (Lactococcus lactis).
대두박으로부터 추출된 추출물(배지)에 상기 유산균을 하나 또는 둘 이상의 유산균을 접종, 배양한 다음 유산균이 배양된 배양액을 대두박에 혼합하여 대두박을 유산균으로 발효시키는 것이다. One or more lactic acid bacteria are inoculated and incubated in the extract (medium) extracted from soybean meal, and the culture medium in which the lactic acid bacteria are cultured is mixed with soybean meal to ferment soybean meal as lactic acid bacteria.
2. 유산균을 이용한 대두박 발효2. Soybean meal fermentation using lactic acid bacteria
미생물을 이용한 대두박 발효에는 고상발효(solid substrate fermentation)법이 주로 사용된다. 대두박에 적당한 양의 물을 첨가한 후 미생물을 접종하여 발효시키는 것인데, 발효가 잘 일어나도록 하기 위해서 고온의 수증기로 대두박을 전처리하는 증자 등의 공정이 추가되기도 한다. 대두박으로부터 배지를 추출하는 단계는 40~80℃ 온도의 추출수로 추출하되, 추출된 배지(추출액)의 당농도가 1~10Brix의 농도가 되도록 추출한다.Soybean meal fermentation using microorganisms is mainly used in the solid substrate fermentation (solid substrate fermentation) method. After adding an appropriate amount of water to soybean meal, the microorganisms are inoculated and fermented. In order to make fermentation well, a process such as steaming to pre-treat soybean meal with hot steam may be added. Extracting the medium from the soybean meal is extracted with extract water at a temperature of 40 ~ 80 ℃, extract so that the sugar concentration of the extracted medium (extract solution) is a concentration of 1 ~ 10 Brix.
곰팡이나 효모 또는 바실러스(Bacillus) 등의 세균을 이용한 호기적 발효와 달리 유산균 배양은 혐기적 발효에 속한다. 이는 전자의 미생물들이 생육과 발효에 있어서 산소를 요구하는 호기성(aerobic) 미생물인데 반하여 대부분의 유산균은 통성혐기성(facultative anaerobe)이기 때문이다. 이는 산소가 있는 조건이나 없는 환경에서 모두 생육과 발효가 가능하다는 것을 의미한다. 이와 같은 이유로 유산균을 이용한 혐기적 발효는 제국실과 같은 정밀한 산소공급장치나 그에 따른 에너지 소모가 없기 때문에 경제적인 발효대두박 생산이 가능하다. 또한 유산균은 발효과정에서 젖산(lactic acid)을 생성시키기 때문에 발효물의 pH를 떨어뜨리는 효과에 의해 오염균의 발생을 억제할 수 있다는 장점이 있다. Unlike aerobic fermentation using bacteria such as fungi, yeast or Bacillus, lactic acid bacteria culture belongs to anaerobic fermentation. This is because the former microorganisms are aerobic microorganisms that require oxygen for growth and fermentation, whereas most lactic acid bacteria are facultative anaerobes. This means that both growth and fermentation are possible in the presence or absence of oxygen. For this reason, anaerobic fermentation using lactic acid bacteria is economical fermented soybean meal production is possible because there is no precise oxygen supply device, such as the imperial chamber or energy consumption. In addition, lactic acid bacteria have the advantage that the production of contaminating bacteria by the effect of lowering the pH of the fermentation product because it generates lactic acid (lactic acid) during the fermentation process.
본 발명에서는 대두박 추출액으로 배양액을 제조하여 접종균액을 만들고 물과 함께 대두박에 접종한 후 일정한 온도에서 일정 시간 발효시키는 공정 조건을 확립하였다. 주요 조건으로 안정적인 발효를 위해 필요한 접종균체량, 즉 배양액 접종비율은 106 ~ 109cfu/g, 대두박의 수분함량은 30~60%, 발효 온도는 20~40℃, 발효 기간은 2~4일 동안 발효시킨다. In the present invention, a culture solution was prepared from the soybean meal extract to make the inoculum bacterium solution, and then inoculated into the soybean meal with water to establish a process condition of fermentation at a constant temperature for a certain time. Inoculum required for stable fermentation, ie inoculation rate of culture solution is 10 6 ~ 10 9 cfu / g, soybean meal water content is 30-60%, fermentation temperature is 20-40 ℃, fermentation period is 2-4 days Ferment during.
3. 발효대두박의 열처리3. Heat treatment of fermented soybean meal
유산균 발효 결과 만들어진 활성화 당들과 단백질 간의 갈색화 결합물을 만들기 위해서는 열처리가 필수적인데 필요 이상의 열이 가해질 경우에는 바이패스율은 높으나 소장에서의 소화율이 낮아지고, 적은 양의 열이 가해질 경우에는 바이패스 비율이 낮아진다. 한편 라이신(lysine)과 같은 아미노산은 사료의 품질에 매우 중요한 성분인데 열에 상대적으로 악하기 때문에 열처리 과정에서 파괴될 가능성이 높다. 따라서 발효대두박의 열처리는 갈색화 반응에 필요한 최소한의 온도와 시간이 사용되도록 정확하게 통제되어야 하는 민감한 공정이다. Heat treatment is essential to make browning conjugates between activated sugars and proteins produced by lactic acid bacteria fermentation. If more heat is applied, the bypass rate is higher but the digestibility in the small intestine is lower. Is lowered. On the other hand, amino acids such as lysine are very important to the quality of the feed, and are relatively bad for heat, so they are likely to be destroyed during heat treatment. Therefore, the heat treatment of fermented soybean meal is a sensitive process that must be precisely controlled to use the minimum temperature and time required for the browning reaction.
대두박의 열처리를 위해서는 익스트루더(extruder)나 익스펠러(expeller) 등의 장치를 사용하거나 로스팅 방식이 적용되는 장치를 사용하기도 한다. 가장 많이 쓰는 방식인 로스팅에는 실린더 형태의 반응기 내부에 설치된 핀(fin)에 의해 분산되는 대두박에 화염으로 직접 가열하는 장치들이 주로 사용된다. 본 발명에서는 로스팅 방식의 열처리를 사용하였으며 온도와 처리시간의 정확한 제어를 위해 회분식(batch type)의 로타리 드럼(rotary drum)을 기계장치로 채택하였다.For heat treatment of soybean meal, an apparatus such as an extruder or an expeller may be used, or a roasting method may be used. Roasting, which is the most common method, is mainly used for direct heating with a flame on soybean meal dispersed by a fin installed inside a cylindrical reactor. In the present invention, a roasting type heat treatment was used, and a batch type rotary drum was used as a mechanical device for accurate control of temperature and processing time.
열처리에 사용하는 온도로는 90℃에서부터 145℃까지 다양한 조건들이 사용되고 있으나 바람직하게는 90~98℃에서 30~120분 열처리 한다. 본 발명에서는 과도한 열처리에 의해 발생할 수 있는 문제점들을 회피하기 위해 가급적 낮은 온도에서의 열처리 조건을 지향하였다. As the temperature used for the heat treatment, various conditions are used from 90 ° C. to 145 ° C., but preferably 30 to 120 minutes at 90 ° C. to 98 ° C. In the present invention, in order to avoid problems that may occur due to excessive heat treatment, the heat treatment conditions are aimed at as low a temperature as possible.
실시예 1: 선정된 유산균의 특성Example 1 Characteristics of Selected Lactic Acid Bacteria
대두박 추출액을 배지로 하였을 때 성장속도가 우수한 유산균을 선정하기 위해 다음과 같이 진행하였다.When the soybean meal extract was used as a medium, it was proceeded as follows to select lactic acid bacteria with excellent growth rate.
염산을 사용하여 pH를 4.4로 조정한 물을 추출용매로 사용하였다. 이 때 용매의 온도는 40~80℃로 하였으며 중량 기준으로 대두박 대비 5배의 용매를 가하였다. 10분 간 충분히 교반한 후 50mesh의 체로 여과한 것을 추출액으로 하였다.Water adjusted to pH 4.4 using hydrochloric acid was used as the extraction solvent. At this time, the temperature of the solvent was 40 ~ 80 ℃ and 5 times the solvent was added to the soybean meal by weight. After sufficiently stirring for 10 minutes, the resultant was filtered through a 50-mesh sieve to obtain an extract.
추출액 중의 당의 농도는 당도계를 사용하여 측정하였으며 단위는 Brix로 하였다. 1 Brix는 100g의 용액에 들어있는 당의 g수로 정의된다, 단백질은 Bradford법에 의해 정량하고 이를 100㎖ 추출액 중 들어있는 단백질의 질량(g)으로 하였다.The concentration of sugar in the extract was measured using a sugar meter and the unit was Brix. 1 Brix is defined as the number of grams of sugar in 100 grams of solution. Proteins were quantified by the Bradford method and used as the mass (g) of protein contained in 100 ml extract.
배지로 사용될 추출액은 당농도 5 Brix 이상, 단백질 농도 1% 미만의 것을 사용하였고 0.22㎛의 pore size를 갖는 멤브레인필터를 사용하여 멸균하였다. 각각의 미생물로 접종한 추출액을 660nm 파장에서의 흡광도를 측정하면서 생육곡선을 관찰하였고 이를 근거로 비성장속도(specific growth rate)를 계산하였다. Extracts to be used as a medium was a sugar concentration of 5 Brix or more, protein concentration of less than 1% was used and sterilized using a membrane filter having a pore size of 0.22㎛. The growth curves of the extracts inoculated with each microorganism were measured for absorbance at 660 nm wavelength, and specific growth rates were calculated based on the growth curves.
표 1 미생물의 비성장속도
균주명 비성장속도
Enterococcus faecium 1.46
Weissella koreensis 1.04
Lactobacillus plantarum 0.61
Bacillus subtilis 0.31
Table 1 Specific growth rate of microorganisms
Strain name Specific growth rate
Enterococcus faecium 1.46
Weissella koreensis 1.04
Lactobacillus plantarum 0.61
Bacillus subtilis 0.31
상기 [표 1]에서와 같이 대두박 추출액을 배지로 사용하였을 때 가장 높은 비성장속도를 나타내는 것은 Enterococcus faecium 균주다. 다른 유산균들과 비교하여 월등하였을 뿐 만 아니라 Bacillus 속 세균과 비교하여도 탁월하였다.As shown in Table 1, when the soybean meal extract is used as a medium, the highest specific growth rate is Enterococcus faecium strain. Not only was it superior to other lactic acid bacteria, but also superior to Bacillus genus bacteria.
실시예 2: Enterococcus faecium(SLB120) 균주을 이용한 대두박 고상발효Example 2: Soybean meal solid phase fermentation using Enterococcus faecium (SLB120) strain
SLB120 균주의 발효 최적 온도를 분석하기 위한 실험을 실시하였다. 20℃, 25℃, 30℃, 35℃, 40℃ 등으로 사전 조정된 배양기에 최종 40% 수분과, 대두박 gram 당 107cfu(colony forming unit)/g의 SLB120 균체가 첨가된 대두박을 24 시간 발효시킨 후 대두박의 pH를 측정하였다. 유산균의 발효가 많이 일어날수록 lactic acid가 많이 생성되고 이는 배지의 pH를 떨어뜨린다는 원리이다. 중량 기준으로 발효대두박에 두 배의 증류수를 첨가하여 5분간 교반한 후의 pH를 대두박의 pH로 하였다. An experiment was conducted to analyze the optimal fermentation temperature of the SLB120 strain. The soybean meal with the final 40% moisture and 10 7 cfu (colony forming unit) / g SLB120 cells per gram of soybean meal was added to the incubator pre-adjusted at 20 ° C, 25 ° C, 30 ° C, 35 ° C, 40 ° C, etc. for 24 hours. After fermentation, the pH of soybean meal was measured. The more lactic acid is fermented, the more lactic acid is produced, which lowers the pH of the medium. Double distilled water was added to the fermented soybean meal by weight and the pH after stirring for 5 minutes was used as the pH of soybean meal.
표 2 온도 별 pH
온도 (℃) pH
20 5.9
25 5.5
30 5.4
35 5.6
40 5.7
TABLE 2 PH by temperature
Temperature (℃) pH
20 5.9
25 5.5
30 5.4
35 5.6
40 5.7
위의 표에서와 같이 20℃에서 40℃ 사이의 온도 조건에서 대체적으로 발효가 충분히 일어났으나 25℃와 30℃에서의 pH 감소가 가장 큰 것으로 나타나, 이 온도 구간에서 발효가 가장 활발한 것으로 추정할 수 있었다. As shown in the above table, fermentation occurred sufficiently at the temperature conditions between 20 ° C and 40 ° C, but the decrease in pH at 25 ° C and 30 ° C was the largest, suggesting that fermentation was the most active at this temperature range. Could.
유산균을 이용한 혐기적 발효는 실제 생산규모에 있어서는 벌크백 등의 밀폐된 공간에서 외부로부터의 공기 공급없이 진행되므로 발효가 진행될수록 내부 잠열에 의해 대두박 전체의 온도가 상승하게 된다. 데이타는 별도로 제시하지 않았지만 500kg 규모의 대두박을 밀폐된 벌크백에서 발효 시킬 경우 최고 40℃까지 상승한다. 본 발명에서는 접종균이 혼합되는 당시의 온도를 25~30℃로 조건을 정하였다.Anaerobic fermentation using lactic acid bacteria in the actual production scale proceeds without supplying air from the outside in a closed space such as a bulk bag, so as the fermentation proceeds, the temperature of the whole soybean meal increases due to the latent heat. Unless otherwise stated, 500 kg soybean meal is fermented in closed bulk bags and rises up to 40 ° C. In the present invention, the temperature at the time of inoculation of the inoculated bacteria was set at 25 to 30 ° C.
다음은 SLB120 균주의 발효최적 시간을 결정하기 위한 실험을 실시하였다. 25℃로 온도가 조절된 대두박에 균체가 대두박 gram당 107 cfu/g 되도록 접종하고 각각 24시간, 36시간, 48시간, 56시간, 72시간 동안 발효를 진행한 후 위에서와 같은 방법으로 대두박의 pH을 측정하였다.Next, an experiment was conducted to determine the optimal fermentation time of the SLB120 strain. Soybean meal inoculated with soybean meal temperature controlled at 25 ℃ was inoculated at 10 7 cfu / g per gram of soybean meal and fermented for 24 hours, 36 hours, 48 hours, 56 hours, 72 hours, respectively. pH was measured.
표 3 발효시간 별 pH
발효시간 (h) pH
24 6.1
36 5.9
48 5.7
56 5.5
72 5.4
TABLE 3 PH by fermentation time
Fermentation time (h) pH
24 6.1
36 5.9
48 5.7
56 5.5
72 5.4
위의 표에서와 같이 시간이 경과함에 따라 대두박의 pH는 점차로 감소하였는데, 56 시간 이후 그 감소폭이 크게 줄어들었다. As shown in the table above, the pH of soybean meal decreased gradually over time, and after 56 hours, the decrease decreased significantly.
본 발명에서는 SLB120 균주를 사용한 대두박 발효의 최적 경과시간을 56~72시간으로 정하였다.In the present invention, the optimum elapsed time of soybean meal fermentation using the SLB120 strain was set to 56 to 72 hours.
실시예 3: 발효대두박의 열처리Example 3: Heat Treatment of Fermented Soybean Meal
본 발명에서의 대두박 열처리는 로타리 드럼 방식의 건조기를 사용하였는데 드럼 내부에 이중 스크류컨베이어가 설치되어 있어서 원료가 드럼 내부에서 계속 순환되는 회분식 구조를 가지고 있다. Soybean meal heat treatment in the present invention used a rotary drum type dryer has a double screw conveyor is installed inside the drum has a batch structure in which the raw material continues to circulate in the drum.
열처리 조건을 결정하기 위하여 우선 처리시간을 한 시간으로 정해 각 온도에서의 열처리를 실시하였다. 발효가 끝난 대두박을 위의 건조기에 투입하고 200,000Kcal/hr 열량의 경유 버너를 사용하여 내부 대두박 온도를 각각 90℃, 95℃, 100℃, 105℃로 설정하여 한 시간 동안 가열하였다. 이후에는 온도를 60℃로 제한하여 수분함량이 12% 이하가 될 때까지 건조를 실시하였다. In order to determine the heat treatment conditions, first, the treatment time was set to one hour, and heat treatment was performed at each temperature. The fermented soybean meal was put into the above dryer and the internal soybean meal temperature was set to 90 ° C., 95 ° C., 100 ° C., and 105 ° C. using a diesel gas burner of 200,000 Kcal / hr. Thereafter, the temperature was limited to 60 ° C. and dried until the water content was 12% or less.
각각의 시료는 UIP(비분해성 단백질) 분석을 위해 protease 용액을 사용하는 in vitro 분석을 실시하였다.Each sample was subjected to in vitro analysis using protease solution for UIP (non-degradable protein) analysis.
다음은 각 온도별로 열처리된 발효대두박의 UIP 분석 결과이다.The following is the results of UIP analysis of fermented soybean meal heat-treated at each temperature.
표 4 온도별 UIP
온도 (℃) UIP (%)
90 60
95 65
100 72
105 81
Table 4 UIP by temperature
Temperature (℃) UIP (%)
90 60
95 65
100 72
105 81
위에서와 같이 95℃ 이상의 온도에서 한 시간 처리한 경우에서 65% 이상의 UIP 비율을 나타내었다. 열처리 온도가 높을수록 UIP 비율은 높아지나 과도한 마이야르 반응이 일어날 경우 소장에서의 소화흡수율이 낮아지고 라이신 등 열에 약한 아미노산의 파괴가 일어날 수 있으므로 본 발명에서는 발효대두박의 열처리 온도조건으로서 90~95℃ 범위로 정하였다.As shown above, when treated at a temperature of 95 ° C. or more for one hour, the UIP ratio was over 65%. The higher the heat treatment temperature, the higher the UIP ratio, but if excessive Maillard reaction occurs, the digestive absorption rate in the small intestine may be lowered and the breakdown of weak amino acids such as lysine may occur. It was set in the range.
열처리 시간을 결정하기 위해서 이번에는 온도를 95℃로 설정하고 각각 30분, 60분, 90분, 120분 동안 열처리를 실시하였다. 각 시료는 위에서와 같은 방법으로 UIP를 측정하고 한편으로는 KOH 용해도 검사를 실시하였다. 0.2%의 KOH용액에 약 %의 시료를 첨가하고 시간동안 상온에서 교반한 후에 여과지를 사용하여 여과하였다. 여과된 상징액은 킬달 법을 이용하여 단백질량을 측정하였다.In order to determine the heat treatment time, this time, the temperature was set to 95 ° C. and heat treatment was performed for 30 minutes, 60 minutes, 90 minutes, and 120 minutes, respectively. Each sample was measured for UIP in the same manner as above, and subjected to KOH solubility test. About 0.2% of the sample was added to 0.2% KOH solution and stirred at room temperature for a period of time, followed by filtration using filter paper. The filtered supernatant was measured for protein by Kjeldahl method.
표 5는 각각의 시료에 대한 UIP 비율과 KOH 용해도를 측정한 결과이다.Table 5 shows the results of measuring the UIP ratio and KOH solubility for each sample.
표 5 열처리 시간별 UIP 및 KOH 용해도
열처리시간 (분) UIP (%) KOH 용해도 (%)
30 45 72.1
60 65 68.2
90 72 57.3
120 80 45.4
Table 5 UIP and KOH Solubility by Heat Treatment Time
Heat treatment time (minutes) UIP (%) KOH solubility (%)
30 45 72.1
60 65 68.2
90 72 57.3
120 80 45.4
상기 표에서와 같이 90분 이상 열처리한 시료에는 KOH용해도가 크게 감소하는 것으로 나타났다. KOH 용해도는 대두박 내 단백질의 용해성을 분석하는 방법으로써, 이 값이 낮다는 것은 단백질의 변성도가 높다는 것을 의미하고 따라서 소의 소장에서의 소화율도 낮을 것으로 추정할 수 있다.As shown in the table, the KOH solubility was significantly reduced in the sample heat-treated for 90 minutes or more. KOH solubility is a method for analyzing the solubility of proteins in soybean meal. A low value means that the protein has a high degree of denaturation. Therefore, it can be estimated that the digestibility of the small intestine is low.
본 발명에서는 소장에서의 높은 소화율을 유지하기 위해 발효대두박의 열처리 시간을 60~90분으로 결정하였다.In the present invention, the heat treatment time of the fermented soybean meal was determined to be 60 to 90 minutes in order to maintain a high digestibility in the small intestine.
실시예 4: 바이패스 단백질로서의 성능 분석Example 4: Performance Analysis as Bypass Protein
본 발명에서의 바이패스 단백질을 위한 대두박 가공공정에 따라 제조된 시료를 사용하여 사양시험과 in-situ 실험을 실시하였다. Specimen testing and in-situ experiments were performed using samples prepared according to soybean meal processing for bypass proteins in the present invention.
최초 온도 25℃에서 대두박 gram당 107cfu/g 이상의 농도로 SLB120 유산균을 접종하고 72시간 발효시킨 대두박을 95℃에서 60분간 열처리 한 후 최종 12% 수분함량으로 건조시킨 시료를 사용하였다.A sample inoculated with SLB120 lactic acid bacteria at a concentration of 10 7 cfu / g or more per gram of soybean meal at 25 ° C. and then fermented for 72 hours was heat treated at 95 ° C. for 60 minutes and dried to a final 12% moisture content.
In-situ 바이패스율을 측정하기 위해서 피스툴라 (fistula)를 설치한 축우를 이용하여 실험하였다. 실험동물은 3두 이상의 피스툴라를 장착한 축우를 이용하여 2일간 배양하였다. 샘플백은 동시에 투입하고 동시에 꺼내며, ruminal position은 ventral rumen으로 한다. 사용되는 백은 폴리에스터 재질로 포어사이즈는 40~60 um이며, 샘플사이즈/표면적 비는 약 10 mg/㎠로 한다. 실험동물의 반추위내에서 배양이 끝난 샘플백은 1min/rinse로 5회 반복하여 샘플백내 잔류 미생물에 대한 보정을 실시한다. 대조군으로 일반대두박을 사용하였다.In order to measure the in-situ bypass rate, experiments were conducted using cattle equipped with pistol. Experimental animals were incubated for 2 days using cattle equipped with three or more pistol. Sample bags are loaded at the same time and taken out at the same time. The ruminal position is the ventral rumen. The bag used is polyester and the pore size is 40 ~ 60um, and the sample size / surface area ratio is about 10 mg / ㎠. Sample bags that have been incubated in the rumen of experimental animals are repeated 5 times at 1 min / rinse to correct for residual microorganisms in the sample bags. Normal soybean meal was used as a control.
다음은 상기 시료에 대한 성능분석 결과들이다.The following are the performance analysis results for the sample.
표 6 In-situ 바이패스율
시료명 In-situ 바이패스율(%)
대두박 35
시료 69
Table 6 In-situ bypass rate
Sample name In-situ bypass rate (%)
Soybean meal 35
sample 69
본 발명의 바이패스 단백질 제조공정은 별도의 첨가물이 없이 발효를 통해 대두박의 성분변화를 일으켜 마이야르 반응(Maillard reaction)이 잘 일어나도록 함으로써 바이패스 단백질을 효과적으로 생산할 수 있는 유용성이 있다.The bypass protein manufacturing process of the present invention has the usefulness of effectively producing the bypass protein by causing a Maillard reaction to occur by changing the composition of soybean meal through fermentation without a separate additive.
또한 본 발명의 공정으로 제조된 가공대두박은 그 품질에 있어서 RUP가 65% 이상, 소장에서의 소화흡수율이 90% 이상이 되도록 함으로써 품질 경쟁력을 확보하는데 유용성이 있다.In addition, the processed soybean meal prepared by the process of the present invention is useful in securing quality competitiveness by providing a RUP of 65% or more and a digestive absorption rate of 90% or more in the small intestine in its quality.

Claims (5)

  1. 발효 대두박의 제조방법에 있어서,In the manufacturing method of fermented soybean meal,
    유산균을 배양하기 위하여 대두박으로부터 배지를 추출하는 단계;Extracting the medium from the soybean meal to culture the lactic acid bacteria;
    상기 대두박으로부터 추출된 배지에 유산균을 접종하고 배양하는 단계;Inoculating and incubating the lactic acid bacteria in the medium extracted from the soybean meal;
    상기 유산균이 배양된 배지의 배양액을 이용하여 대두박을 발효시키는 단계;Fermenting soybean meal using the culture solution of the culture medium in which the lactic acid bacteria were cultured;
    상기 발효된 대두박을 열처리하는 것을 특징으로 하는 반추위 동물용 발효 대두박의 제조방법.Method for producing a fermented soybean meal for ruminant animals, characterized in that the fermented soybean meal heat treatment.
  2. 제1항에 있어서, The method of claim 1,
    상기 대두박으로부터 배지를 추출하는 단계는 40~80℃ 온도의 추출수로 추출하되, 추출액의 당농도가 1~10Brix의 농도로 추출하는 것을 특징으로 하는 반추위 동물용 발효 대두박의 제조방법.Extracting the medium from the soybean meal is extracted with extract water of 40 ~ 80 ℃ temperature, the method of producing a fermented soybean meal for ruminant animal, characterized in that the sugar concentration of the extract is extracted at a concentration of 1 ~ 10 Brix.
  3. 제1항 또는 제2항에 있어서,The method according to claim 1 or 2,
    상기 추출된 배지에 접종하는 유산균은 엔테로코커스(Enterococcus)속 유산균, 락토바실러스(Lactobacillus)속 유산균, 바이셀라(Weissella)속 유산균, 류코노스톡(Leuconostoc)속 유산균, 스트렙토코커스(Streptococcus)속 유산균, 락토코커스(Lactococcus)속 유산균 중 하나 또는 둘 이상을 혼합한 유산균으로부터 선택되는 것을 특징으로 하는 반추위 동물용 발효 대두박의 제조방법. The lactic acid bacteria inoculated in the extracted medium are Enterococcus lactic acid bacteria, Lactobacillus lactic acid bacteria, Weissella lactic acid bacteria, Leukonostoc lactic acid bacteria, Streptococcus (Streptococcus) lactic acid bacteria, A method for producing fermented soybean meal for ruminant animals, characterized in that it is selected from one or two or more lactic acid bacteria of Lactococcus genus lactic acid bacteria.
  4. 제1항 또는 제2항에 있어서,The method according to claim 1 or 2,
    상기 배양액을 이용하여 대두박을 발효시킬 때 대두박은 수분함량 30~60%, 온도 20~40℃에서 2~4일 동안 배양하는 것을 특징으로 하는 반추위 동물용 발효 대두박의 제조방법. When the soybean meal is fermented using the culture solution, soybean meal is a method of producing a fermented soybean meal for ruminant animals, characterized in that the culture for 2 to 4 days at water content 30 ~ 60%, temperature 20 ~ 40 ℃.
  5. 제1항 또는 제2항에 있어서,The method according to claim 1 or 2,
    상기 발효된 대두박을 열처리 하는 단계에서 열처리 온도는 90~98℃의 온도에서 30~120분 동안 열처리 하는 것을 특징으로 하는 반추위 동물용 발효 대두박의 제조방법. The heat treatment temperature in the step of heat-treating the fermented soybean meal is a method of producing a fermented soybean meal for ruminant, characterized in that the heat treatment for 30 to 120 minutes at a temperature of 90 ~ 98 ℃.
PCT/KR2014/005073 2013-06-11 2014-06-10 Method for preparing fermented soybean meal to increase feed efficiency and milk yield of dairy cows WO2014200241A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2013-0066730 2013-06-11
KR20130066730A KR101485554B1 (en) 2013-06-11 2013-06-11 The cow's feed efficiency and flow rate can be fermented for two nights to increase manufacturing method

Publications (1)

Publication Number Publication Date
WO2014200241A1 true WO2014200241A1 (en) 2014-12-18

Family

ID=52022473

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2014/005073 WO2014200241A1 (en) 2013-06-11 2014-06-10 Method for preparing fermented soybean meal to increase feed efficiency and milk yield of dairy cows

Country Status (2)

Country Link
KR (1) KR101485554B1 (en)
WO (1) WO2014200241A1 (en)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101786386B1 (en) 2016-09-26 2017-10-17 주식회사 피드업 A manufacturing methods of fermented soybean meal using lactic acid bacteria
WO2020017721A1 (en) * 2018-07-17 2020-01-23 주식회사 피드업 Fermented soybean meal and preparation method therefor
KR102072696B1 (en) * 2018-07-17 2020-02-03 주식회사 피드업 Enterococcus sp. strain and Method for manufacturing fermented soybean meal using the same
US20220049200A1 (en) * 2018-12-10 2022-02-17 Sung Min Lee Apparatus for producing fermented soybean meal
KR102082391B1 (en) * 2018-12-10 2020-02-27 주식회사 피드업 Fermented soybean meal producing apparatus
KR102603142B1 (en) * 2021-02-02 2023-11-16 서형완 Feed for milk cow having high amount of milk and preparation method thereof
WO2023014072A1 (en) * 2021-08-03 2023-02-09 주식회사 피드업 Composition for increasing protein bypass rate and method for increasing protein bypass rate

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007143539A (en) * 2005-11-28 2007-06-14 Amenity:Kk Method for preserving and producing organic residue of livestock feed using organic residue
KR20090005729A (en) * 2007-07-10 2009-01-14 유희민 Feed for the funtional and nothing antibiotic livesock production which uses the vegetabillity nature ingredients and the useful microbes, and method for producing the same
KR20110128101A (en) * 2010-05-20 2011-11-28 중앙대학교 산학협력단 A manufacturing method of soybean meal for adding to feed
KR20120127092A (en) * 2011-05-13 2012-11-21 주식회사 리스나 Fermented soybean meal by Weissella koreensis and method of preparing the same

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4163276B2 (en) 1998-02-05 2008-10-08 独立行政法人理化学研究所 Functional composition

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007143539A (en) * 2005-11-28 2007-06-14 Amenity:Kk Method for preserving and producing organic residue of livestock feed using organic residue
KR20090005729A (en) * 2007-07-10 2009-01-14 유희민 Feed for the funtional and nothing antibiotic livesock production which uses the vegetabillity nature ingredients and the useful microbes, and method for producing the same
KR20110128101A (en) * 2010-05-20 2011-11-28 중앙대학교 산학협력단 A manufacturing method of soybean meal for adding to feed
KR20120127092A (en) * 2011-05-13 2012-11-21 주식회사 리스나 Fermented soybean meal by Weissella koreensis and method of preparing the same

Also Published As

Publication number Publication date
KR20140144585A (en) 2014-12-19
KR101485554B1 (en) 2015-01-29

Similar Documents

Publication Publication Date Title
WO2014200241A1 (en) Method for preparing fermented soybean meal to increase feed efficiency and milk yield of dairy cows
Yang et al. Advances in research on solid-state fermented feed and its utilization: The pioneer of private customization for intestinal microorganisms
CN111363698B (en) Microbial inoculum for reducing mildew and mycotoxin harm of fermented feed and application
CN104054902B (en) A kind of mixed bacteria solid state fermentation produces the technique of fermented bean dregs
CN103478405B (en) Method used for preparing probiotic preparations by using vitamin B2 fermentation liquid waste
CN103403146A (en) Probiotics for biological control against vibrio sp.
CN106387311A (en) Fermented soybean meal and production method thereof
CN111436526A (en) Preparation method and application of fermented rice bran meal with bacterium enzyme for improving growth performance of fattening pigs
JP2021112190A (en) Method for concentrating protein in grain powder
KR101934400B1 (en) Feed additive comprising Bacillus subtilis and Bacillus licheniformis, a feed composition comprising the feed additive and a method for producing the feed additive
CN109452449A (en) A kind of method and its application of rapeseed meal raw material secondary fermentation production fermentation rapeseed meal
CN110235985A (en) A kind of microbial fermentation processes for eliminating anti-nutritional factors in bean dregs feed
CN114032196A (en) Microbial preparation, preparation method and application thereof
CN111165653A (en) Potato residue and corn straw mixture fermented feed and preparation method and leavening agent thereof
CN107279289A (en) A kind of pre-acidified enzyme crosslinking probiotic yogurt and preparation method thereof
CN106578420A (en) Fermentation feed and preparation method thereof
KR20000073915A (en) Probiotics For Feed Additives
KR101252132B1 (en) Feed additives for producing milk having high amount of milk proteins and process for the preparation of feed for lactating dairy cattle using the same
KR101252134B1 (en) Feed additives for promoting growth of cattle and process for the preparation of feed for breeding cattle using the same
Yin et al. Dietary supplementation with Acanthopanax senticosus extract modulates gut microflora in weaned piglets
CN109287864A (en) A kind of fermentation process of dregs of beans, the fermented bean dregs of this method preparation and application
CN114931217A (en) Probiotic freeze-dried powder and preparation method thereof
KR101470995B1 (en) Propionic acid producing microorganism and roughage comprising the same
WO2015105370A1 (en) Assorted livestock feed with enhanced nutrients and method of preparing the same
Marounek et al. Metabolism and some characteristics of lactobacilli isolated from the rumen of young calves

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14811583

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14811583

Country of ref document: EP

Kind code of ref document: A1