WO2014200222A1 - 유전체 장벽 방전을 통해 실란가스에서 디실란, 트리실란, 테트라실란 가스를 제조하는 제조방법 - Google Patents

유전체 장벽 방전을 통해 실란가스에서 디실란, 트리실란, 테트라실란 가스를 제조하는 제조방법 Download PDF

Info

Publication number
WO2014200222A1
WO2014200222A1 PCT/KR2014/004919 KR2014004919W WO2014200222A1 WO 2014200222 A1 WO2014200222 A1 WO 2014200222A1 KR 2014004919 W KR2014004919 W KR 2014004919W WO 2014200222 A1 WO2014200222 A1 WO 2014200222A1
Authority
WO
WIPO (PCT)
Prior art keywords
gas
reactor
tetrasilane
disilane
trisilane
Prior art date
Application number
PCT/KR2014/004919
Other languages
English (en)
French (fr)
Inventor
유이치이이쿠보
장향자
Original Assignee
Yuichi Iikubo
Jang Hyang-Ja
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yuichi Iikubo, Jang Hyang-Ja filed Critical Yuichi Iikubo
Publication of WO2014200222A1 publication Critical patent/WO2014200222A1/ko

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B33/00Silicon; Compounds thereof
    • C01B33/04Hydrides of silicon
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B33/00Silicon; Compounds thereof
    • C01B33/02Silicon
    • C01B33/021Preparation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J19/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J19/08Processes employing the direct application of electric or wave energy, or particle radiation; Apparatus therefor
    • B01J19/087Processes employing the direct application of electric or wave energy, or particle radiation; Apparatus therefor employing electric or magnetic energy
    • B01J19/088Processes employing the direct application of electric or wave energy, or particle radiation; Apparatus therefor employing electric or magnetic energy giving rise to electric discharges
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J19/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J19/08Processes employing the direct application of electric or wave energy, or particle radiation; Apparatus therefor
    • B01J19/12Processes employing the direct application of electric or wave energy, or particle radiation; Apparatus therefor employing electromagnetic waves
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J7/00Apparatus for generating gases
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/00049Controlling or regulating processes
    • B01J2219/00164Controlling or regulating processes controlling the flow
    • B01J2219/00166Controlling or regulating processes controlling the flow controlling the residence time inside the reactor vessel
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/08Processes employing the direct application of electric or wave energy, or particle radiation; Apparatus therefor
    • B01J2219/0803Processes employing the direct application of electric or wave energy, or particle radiation; Apparatus therefor employing electric or magnetic energy
    • B01J2219/0805Processes employing the direct application of electric or wave energy, or particle radiation; Apparatus therefor employing electric or magnetic energy giving rise to electric discharges
    • B01J2219/0807Processes employing the direct application of electric or wave energy, or particle radiation; Apparatus therefor employing electric or magnetic energy giving rise to electric discharges involving electrodes
    • B01J2219/0837Details relating to the material of the electrodes
    • B01J2219/0841Metal
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/08Processes employing the direct application of electric or wave energy, or particle radiation; Apparatus therefor
    • B01J2219/0871Heating or cooling of the reactor
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/08Processes employing the direct application of electric or wave energy, or particle radiation; Apparatus therefor
    • B01J2219/0873Materials to be treated
    • B01J2219/0881Two or more materials
    • B01J2219/0883Gas-gas

Definitions

  • the present invention relates to a manufacturing method using a dielectric barrier discharge, which is capable of controlling the reaction conditions in a wide range, and to easily prepare disilane, trisilane, and tetrasilane in high yield.
  • Disilane is mainly used in poly silicon process, which is rapidly replacing silane due to the low temperature of CVD decomposition process and fast deposition rate.
  • the raw material is Silane
  • the method of making Disilane in a continuous process above atmospheric pressure in Silane may be pyrolysis reaction or catalytic reaction.
  • the yield of the process does not exceed 2 ⁇ 3%.
  • the technique for more precisely controlling the polymerization rate or pyrolysis rate of silane is to use high frequency or plasma, which is not suitable for the actual mass production process because the reaction pressure requires vacuum pressure.
  • the present invention has been made to solve the above problems, to be able to produce a disilane in a continuous and more industrially silane, and to be used in the synthesis of trisilane and tetrasilane in addition to the disilane,
  • the reaction conditions such as the mixing ratio of the source gas, the reaction pressure, and the reaction temperature can be used in a wide range, and the disilane and tree in the silane gas are discharged through the dielectric barrier discharge, in which the continuous yield produced is 50 to 85% depending on the reaction conditions.
  • a silane and a tetrasilane gas are provided.
  • the present invention as a means for solving the above problems, the step of internally enclosing the electrode rod in the reactor outer periphery wrapped with an insulator (S100); Adjusting the reaction temperature inside the reactor to a preset temperature (S200); Adjusting the pressure inside the reactor to a preset pressure (S300); Injecting a raw material gas consisting of diluent gas and silane gas into the reactor (S400); Setting a supply power and a high frequency range for generating a discharge in the reactor (S500); Discharging the inside of the reactor through the electrode (S600); Adjusting a residence time of the source gas in the reactor (S700); Analyzing the reaction gas generated in the reactor (S800); Characterized in that it comprises a.
  • the present invention has an effect of easily producing a disilane from silane using a dielectric barrier discharge.
  • the present invention has the effect that can be easily and continuously produced in a high yield by adjusting the reaction conditions in the silane, as well as trisilane and tetrasilane in various ways.
  • the present invention has the effect of using a wide range of various reaction conditions, such as temperature, pressure that can be controlled and controlled.
  • 1 is a flow chart of an embodiment showing a method for producing a disilane, trisilane, tetrasilane gas in silane gas through a dielectric barrier discharge in accordance with the present invention.
  • Figure 2 is an embodiment analysis table of a method for producing a disilane, trisilane, tetrasilane gas in silane gas through a dielectric barrier discharge in accordance with the present invention.
  • the present invention has the following features to achieve the above object.
  • step (S100) of the electrode rod is wrapped around the outer periphery is insulated inside the reactor (S100); Adjusting the reaction temperature inside the reactor to a preset temperature (S200); Adjusting the pressure inside the reactor to a preset pressure (S300); Injecting a raw material gas consisting of diluent gas and silane gas into the reactor (S400); Setting a supply power and a high frequency range for generating a discharge in the reactor (S500); Discharging the inside of the reactor through the electrode (S600); Adjusting a residence time of the source gas in the reactor (S700); Analyzing the reaction gas generated in the reactor (S800); Characterized in that it comprises a.
  • step S100 is characterized in that for the discharge space between the inner circumference of the reactor and the outer circumference of the electrode, the separation distance is maintained at 0.5 ⁇ 3mm.
  • step S200 heating means is installed outside the reactor to heat the reactor, or a cooling means is attached to the outer periphery of the reactor to control the reaction temperature, but the preset temperature of the reaction temperature is 80 ⁇ -130 °C. It is characterized by adjusting to.
  • the dilution gas is a mixed gas in which hydrogen (H 2 ) is mixed with any one inert gas of helium (He), nitrogen (N 2 ), and argon (Ar) gas, and silane gas and dilution.
  • the gas is used by adjusting the mixing amount by a mass flow controller, respectively, and the silane gas and the dilution gas are formed at a ratio of 50:50 to 1: 99%.
  • step S500 is controlled through a high frequency generator connected to the electrode, the power supply is characterized in that the 0.01 ⁇ 1 Watt / cm 3 , the frequency is maintained in the range of 20 ⁇ 100 kHz.
  • step S700 is characterized in that 0.1 ⁇ 30 sec.
  • the step S800 is characterized in that the reaction gas is a disilane (Disilane), trisilane (Trisilane), tetrasilane (Tetrasilane) gas.
  • the reaction gas is a disilane (Disilane), trisilane (Trisilane), tetrasilane (Tetrasilane) gas.
  • disilane, trisilane, and tetrasilane gas may be prepared from silane gas through a dielectric barrier discharge according to an exemplary embodiment of the present invention.
  • the manufacturing method will be described in detail.
  • a method for producing disilane, trisilane and tetrasilane gas in silane gas through the dielectric barrier discharge is a disilane (and trisilane) in silane through a pipe-type reactor using Dielectric Barrier Discharge And tetrasilane), the manufacturing steps include the following manufacturing steps, and each manufacturing step is a step before the step S600 in which the discharge is a natural order may be changed by various embodiments to the user will be.
  • Outer periphery of the electrode rod is wrapped in the insulator insulated inside the reactor (S100): for the production method of the present invention is a housing for the source gas is introduced to generate the reaction gas through the discharge.
  • the reactor has, in one embodiment, a metal material having an outer circumference surrounded by an insulator, and having a form in which the electrode is in the interior of the reactor which is empty, and a part of the electrode protrudes out of the reactor.
  • the reactor (eg, a 1 inch 600 mm flanged pipe) should have a source gas inlet for the source gas to be introduced therein and a reaction gas outlet for the reaction gas to be reacted therein.
  • the reactor is insulated (with other components) from the flange and the reactor body formed at both ends and the insulating film and the insulating bushing, and the outside of the reactor is connected to other devices (other process equipment, heating means, cooling means, etc.) connected to the reactor. Naturally, it should be grounded together.
  • the electrode for example, 1/4 inch stainless pipe or stainless rod
  • the electrode is electrically connected to the high frequency generator to generate a discharge in the reactor, the discharge space between the outer circumference of the electrode and the inner circumference of the reactor, ie
  • the separation distance should be 0.5 to 3mm, preferably 1 to 2mm.
  • the material of any one of PFA (Perfluoro alkoxy), PTFE (Polytetrafluoroethylene), Quartz (quartz), Glass (glass), Ceramic (ceramic), Silicon rubber (silicone rubber) Is used, of which PFA shows a more stable disilane yield.
  • heating means for example, high frequency heating device (high frequency heating device) outside the reactor system (heater, etc.
  • a cooling means eg cryogenic cooling coil, or cooling jacket
  • the reaction temperature (preset temperature) in the reactor controlled by the aforementioned heating means and cooling means is 80 to -130 ° C. (In the present invention, the yield difference did not show much at any temperature, such as room temperature to 80 ° C or 0 to -120 ° C, which is a technology different from the US 5478453 patent described in the technology column that is the background of the invention.)
  • Adjusting the pressure inside the reactor to a predetermined pressure (S300): The step of adjusting the pressure inside the reactor, for this purpose, the reactor is a separate various pressure regulator and to check the change in this pressure Pressure gauge for the like can be installed.
  • the preset pressure is maintained above the normal pressure and the lower the pressure, the higher the yield of disilane and less solid formation.
  • the pressure thus allows to maintain a pressure of less than 30 psig.
  • the diluent gas is a mixture of hydrogen gas (H 2 ) to prevent solid formation in an inert gas (helium is most suitable.) Of helium (He), nitrogen (N 2 ), argon (Ar). Gas is used and such mixed gas is mixed with helium gas or co-injected upon injection into the reactor.
  • the ratio of the inert gas and the hydrogen gas may be used from 1: 9 to 9: 1, and preferably 5: 5 to 8: 2.
  • silane gas and the dilution gas are formed in a volume (volume) of 50: 50 ⁇ 1: 99% ratio. (Ie, 1 to 50% for silane gas and 50 to 99.9% for diluted gas)
  • the reactor is electrically connected to an internal electrode rod, a high frequency generator (Adjustable frequency or Ampere, etc.) is installed outside the reactor, the discharge space between the reactor and the electrode Allow discharge to occur at.
  • the high frequency generator is 120V
  • the frequency to be resonated is determined according to various conditions used, but usually in the range of 20 ⁇ 100 kHz, preferably 30 to 50 kHz.
  • the charge power applied to the high frequency generator is about 0.01 ⁇ 1 Watt / cm 3 , preferably 0.1 ⁇ 0.5 Watt / cm 3 It is to be.
  • the source gas is injected into the inside through the source gas injection port of the reactor, when discharge is generated through the electrode, source gas injected into the reactor
  • the residence time in the reactor is 0.1 to 30 sec, preferably 0.5 to 3 sec.
  • step S800 is a step of analyzing the reaction gas, as an example, as described above (S100 ⁇ S700), a dielectric barrier consisting of a reactor and electrode
  • the silane in the disilane is controlled by controlling and controlling various reaction conditions such as the separation distance between the reactor and the electrode, the composition ratio of the source gas, the reaction temperature, the pressure, the applied power and frequency, and the residence time of the source gas.
  • the reaction yield was monitored continuously in real time (in situ system) using a gas sampler and a flame ionization detector (GC-FID) and a mass selective detector (GC-Mass).
  • GC-FID flame ionization detector
  • GC-Mass mass selective detector
  • the column used is the Poraplot Q capillary column, and each peak position or quantification is calibrated in advance using standard gas, and after various experiments, solid formation is visually confirmed after opening the internal device. It was.
  • Silane gas and diluent gas which are the raw material gases, are used after calibrating a mass flow controller (MFC) respectively.Sampling is continuously analyzed every 40 minutes to 1 hour after supplying the raw material gas to the reactor. It was.
  • MFC mass flow controller
  • the amount of silane gas supplied to the reactor was 0.01-0.2 L / min, and the amount of diluent gas was 0.1-1.2 L / min.
  • the diluent gas was nitrogen or helium, and hydrogen gas was added to the molar ratio. The feed amount was adjusted accordingly.
  • the applied high current power was calculated for the applied volt and the amount of amperage applied to each condition per reaction zone area.
  • the reaction gas also included Disilane, Trisilane and Tetrasilane, and the ratio was about 500: 47. : It was confirmed that it is about 1, as described above, it can be seen that the production method of the present invention according to the reaction conditions can be used for the synthesis of not only disilane but also trisilane and tetrasilane.
  • reaction gas analysis table is a reaction gas analysis table according to an embodiment of the production method of the present invention.
  • the pressure affects the yield of the reaction and as the pressure increases the selectivity to the disilane decreases. Although there is a difference according to various conditions, it can be seen that the disilane yield increases by about 3 to 4 times when the pressure is reduced by 2 times.
  • Applied high frequency power is 0.1 ⁇ 0.5 W / cm 3 is suitable and if it is more than that the decomposition of the silane occurs a large amount of powder without the formation of disilane.
  • Diluent gas was helium more stable than nitrogen and the yield of disilane was higher.
  • Disilane yield (depending on the reaction conditions) using the manufacturing method for producing disilane, trisilane, tetrasilane gas from silane gas using the dielectric barrier discharge of the present invention as in the above embodiment It can be seen that this can be continuously manufactured up to about 35 to 85%.

Abstract

본 발명은 유전체 장벽 방전을 통해 실란가스에서 디실란, 트리실란, 테트라실란 가스를 제조하는 제조방법에 관한 것으로서, 보다 상세하게는 유전체 장벽 방전(Dielectric Barrier Discharge) 반응기를 이용하여, 실란에서 디실란을 연속 공정으로 제조할 수 있도록 한 제조방법으로, 반응기 내부에 절연체로 감싸져 있는 전극봉을 설치하고, 원료가스는 헬륨 또는 질소의 불활성가스에 수소를 혼합하여 사전설정범위 내에서 실란가스와 동시에 투입하되, 반응 압력 및 반응 온도 등과 같은 반응조건이 넓은 범위에서 사용 가능토록 하며, 연속적 수율이 반응 조건에 따라 50 ~ 85%까지 가능한 유전체 장벽 방전을 통해 실란가스에서 디실란, 트리실란, 테트라실란 가스를 제조하는 제조방법에 관한 것이다.

Description

유전체 장벽 방전을 통해 실란가스에서 디실란, 트리실란, 테트라실란 가스를 제조하는 제조방법
본 발명은 유전체 장벽 방전을 이용하되, 폭넓은 범위에서 반응조건의 조절이 가능하며, 실란에서 디실란 및 트리실란과 테트라실란을 높은 수율로 용이하게 제조할 수 있도록 한 제조방법에 관한 것이다.
반도체 chip의 집적도가 날이 갈수록 세분화되면서 사용되는 가스도 보다 나은 공정 특성을 위해 바뀌어 가고 있는데, 디실란(Disilane)의 증가된 사용이 그 예가 된다. Disilane은 주로 poly silicon 공정에서 사용되는데 디실란을 사용 시 CVD 분해 공정 온도가 낮고 증착 속도가 빨라 실란(Silane)을 빠르게 대체하고 있다.
디실란의 알려진 제조 방법으로는 여러 가지가 있으나, 다른 일반적 화학 반응과 달리 반응 수율이 극히 나쁘거나 혹은 여러 값비싼 원료를 사용 다단계 공정으로 만들어지기 때문에 제품의 가격이 비싸다.
Disilane을 공업적으로 보다 저렴하게 만들 수 있는 방법으로, 원료를 Silane을 사용하는 것인데 Silane에서 Disilane을 대기압 이상 연속적 공정(process)으로 만드는 방법으로는, 열분해 반응이나 촉매 반응 등을 들 수 있으나, 이들 공정의 수율은 2 ~ 3%대를 넘기지 못하고 있다.
이는 Silane의 열분해 혹은 고분자 물질로 알려진 solid formation의 열역학 속도가 서로 유사하여 disilane으로의 반응을 제어하기 어렵기 때문이며, 따라서 알려진 공정(process)은 압축기(compressor) 등을 사용하여, 반응기로 여러번 반응가스를 재순환(recycle)하여 수율을 증가시키고 있는 실정이나, 대량의 disilane을 공업적으로 만들기에는 아직 부족한 기술이다.
Silane의 (중합반응)polymerization 속도나 열분해 속도를 보다 세밀하게 조절할 수 있는 기술이 고주파나 플라즈마를 사용하는 것인데, 플라즈마는 반응 압력이 진공 압력을 요구하므로 실제 대량의 제조 공정으로는 맞지 않다.
Dielectric Barrier Discharge를 이용한 종래의 기술로는 US 5478453이 있으나, 이러한 종래의 기술을 살펴보면, 반응기 내 액 레벨의 조절이 불가능하여 연속적으로 사용하기 어렵고, 반응기 내부에 disilane 액이 쌓이게 되면 원료 피드라인이 클로깅(clogging) 될 뿐 아니라, 반응기 존의 부피가 감소하여 반응 효율이 달라지며, 또한 액으로 쌓여진 disilane이 high frequency 하에 여전히 노출되어 있어, 다시 분해되거나 폴리머가 될 가능성이 크다. 이와 더불어 부반응 물질인 Trisilane 이나 tetra silane 등의 high silane은 -120 ~ -145℃에서 얼거나 액의 점도가 증가하므로 실질적인 연속 공정은, 이러한 종래의 기술로는 불가능하다는 문제점이 있었다.
본 발명은 상기와 같은 문제점을 해결하기 위해 안출된 것으로서, 연속적이면서 보다 공업적으로 실란에서 디실란을 제조할 수 있도록 하고, 상기 디실란 외에, 트리실란 및 테트라실란의 합성에도 사용될 수 있도록 하되, 원료가스의 혼합비율, 반응압력, 반응온도 등 반응조건을 넓은 범위에서 사용가능토록 하며, 제조되는 연속적 수율이 반응 조건에 따라 50 ~ 85%까지 가능한 유전체 장벽 방전을 통해 실란가스에서 디실란, 트리실란, 테트라실란 가스를 제조하는 제조방법을 제공하는데 있다.
본 발명의 다른 목적 및 장점들은 하기에 설명될 것이며, 본 발명의 실시 예에 의해 알게 될 것이다. 또한, 본 발명의 목적 및 장점들은 특허청구범위에 나타낸 수단 및 조합에 의해 실현될 수 있다.
본 발명은 상기와 같은 문제점을 해결하기 위한 수단으로서, 외주연이 절연체로 감싸져 있는 전극봉을 반응기 내부에 내설하는 단계(S100); 상기 반응기 내부의 반응온도를 사전설정온도로 조절하는 단계(S200); 상기 반응기 내부의 압력을 사전설정압력으로 조절하는 단계(S300); 상기 반응기 내부에 희석가스와 실란가스로 이루어진 원료가스를 주입하는 단계(S400); 상기 반응기 내부의 방전을 발생시키기 위한 공급전력 및 고주파 범위를 설정하는 단계(S500); 상기 전극봉을 통해 반응기 내부에 방전이 발생되도록 하는 단계(S600); 상기 반응기 내 원료가스의 체류시간을 조절하는 단계(S700); 상기 반응기 내에 생성된 반응가스를 분석하는 단계(S800); 를 포함하는 것을 특징으로 한다.
이상에서 살펴본 바와 같이, 본 발명은 유전체 장벽 방전을 이용하여, 실란에서 디실란을 용이하게 제조할 수 있는 효과가 있다.
또한, 본 발명은 실란에서 디실란 뿐만 아니라, 트리실란 및 테트라실란을 반응조건을 다양하게 조절하여, 높은 수율로 용이하게 연속 제조할 수 있는 효과가 있다.
또한, 본 발명은 조절 및 제어할 수 있는 온도, 압력 등 다양한 반응조건의 범위를 넓게 사용할 수 있는 효과가 있다.
도 1은 본 발명에 따른 유전체 장벽 방전을 통해 실란가스에서 디실란, 트리실란, 테트라실란 가스를 제조하는 제조방법을 나타낸 일실시예의 순서도.
도 2는 본 발명에 따른 유전체 장벽 방전을 통해 실란가스에서 디실란, 트리실란, 테트라실란 가스를 제조하는 제조방법의 일실시예 분석표.
본 발명의 여러 실시예들을 상세히 설명하기 전에, 다음의 상세한 설명에 기재되거나 도면에 도시된 구성요소들의 구성 및 배열들의 상세로 그 응용이 제한되는 것이 아니라는 것을 알 수 있을 것이다. 본 발명은 다른 실시예들로 구현되고 실시될 수 있고 다양한 방법으로 수행될 수 있다. 또, 장치 또는 요소 방향(예를 들어 "전(front)", "후(back)", "위(up)", "아래(down)", "상(top)", "하(bottom)", "좌(left)", "우(right)", "횡(lateral)")등과 같은 용어들에 관하여 본원에 사용된 표현 및 술어는 단지 본 발명의 설명을 단순화하기 위해 사용되고, 관련된 장치 또는 요소가 단순히 특정 방향을 가져야 함을 나타내거나 의미하지 않는다는 것을 알 수 있을 것이다. 또한, "제 1(first)", "제 2(second)"와 같은 용어는 설명을 위해 본원 및 첨부 청구항들에 사용되고 상대적인 중요성 또는 취지를 나타내거나 의미하는 것으로 의도되지 않는다.
본 발명은 상기의 목적을 달성하기 위해 아래의 특징을 갖는다.
이하 첨부된 도면을 참조로 본 발명의 바람직한 실시예를 상세히 설명하도록 한다. 이에 앞서, 본 명세서 및 청구범위에 사용된 용어나 단어는 통상적이거나 사전적인 의미로 한정해서 해석되어서는 아니 되며, 발명자는 그 자신의 발명을 가장 최선의 방법으로 설명하기 위해 용어의 개념을 적절하게 정의할 수 있다는 원칙에 입각하여 본 발명의 기술적 사상에 부합하는 의미와 개념으로 해석되어야만 한다.
따라서, 본 명세서에 기재된 실시예와 도면에 도시된 구성은 본 발명의 가장 바람직한 일 실시예에 불과할 뿐이고 본 발명의 기술적 사상을 모두 대변하는 것은 아니므로, 본 출원시점에 있어서 이들을 대체할 수 있는 다양한 균등물과 변형 예들이 있을 수 있음을 이해하여야 한다.
이러한 본 발명에 따른 실시예를 살펴보면, 외주연이 절연체로 감싸져 있는 전극봉을 반응기 내부에 내설하는 단계(S100); 상기 반응기 내부의 반응온도를 사전설정온도로 조절하는 단계(S200); 상기 반응기 내부의 압력을 사전설정압력으로 조절하는 단계(S300); 상기 반응기 내부에 희석가스와 실란가스로 이루어진 원료가스를 주입하는 단계(S400); 상기 반응기 내부의 방전을 발생시키기 위한 공급전력 및 고주파 범위를 설정하는 단계(S500); 상기 전극봉을 통해 반응기 내부에 방전이 발생되도록 하는 단계(S600); 상기 반응기 내 원료가스의 체류시간을 조절하는 단계(S700); 상기 반응기 내에 생성된 반응가스를 분석하는 단계(S800); 를 포함하는 것을 특징으로 한다.
또한, 상기 S100단계는 상기 반응기 내주연과 전극봉의 외주연 사이의 방전공간을 위해, 이격거리를 0.5 ~ 3mm로 유지하는 것을 특징으로 한다.
또한, 상기 S200단계는 상기 반응기 외부에 가열수단을 설치하여 상기 반응기를 가열하거나, 또는 냉각수단을 반응기 외주연에 부착하여 반응온도를 조절하되, 상기 반응온도의 사전설정온도는 80 ~ -130℃로 조절하는 것을 특징으로 한다.
또한, 상기 S400단계에서 상기 희석가스는 헬륨(He), 질소(N2), 알곤(Ar) 가스 중 어느 하나의 불활성 가스에 수소(H2)가 혼합되어 있는 혼합가스이며, 실란가스 및 희석가스는 각각 질량유량계(Mass flow controller)로 혼합량이 조절되어 사용되고, 실란가스와 상기 희석가스는 50 : 50 ~ 1 : 99%의 비율로 조성되는 것을 특징으로 한다.
또한, 상기 S500단계는 상기 전극봉과 연결된 고주파 발생장치를 통해 조절하되, 상기 공급전력은 0.01 ~ 1 Watt/cm3, 주파수는 20 ~ 100 kHz의 범위로 유지되는 것을 특징으로 한다.
또한, 상기 S700단계에서 상기 체류시간은 0.1~30 sec 인 것을 특징으로 한다.
또한, 상기 S800단계는 상기 반응가스는 디실란(Disilane), 트리실란(Trisilane), 테트라실란(Tetrasilane) 가스인 것을 특징으로 한다.
이하, 도 1 내지 도 2를 참조하여 본 발명의 바람직한 실시예에 따른 유전체 장벽 방전을 통해 실란가스(silane)에서 디실란(Disilane), 트리실란(Trisilane), 테트라실란(Tetrasilane) 가스를 제조하는 제조방법을 상세히 설명하도록 한다.
도시한 바와 같이, 본 발명에 따른 유전체 장벽 방전을 통해 실란가스에서 디실란, 트리실란, 테트라실란 가스를 제조하는 제조방법은 Dielectric Barrier Discharge를 이용한 파이프형 반응기를 통해 실란에서 디실란(및 트리실란 및 테트라실란)의 연속적 합성에 관한 기술로, 하기와 같은 제조단계를 포함하며, 각 제조단계들은 방전이 발생되는 S600단계 이전의 단계들은 사용자에 다양한 실시예에 의해 순서가 바뀔 수도 있음은 당연할 것이다.
1. 외주연이 절연체로 감싸져 있는 전극봉을 반응기 내부에 내설하는 단계(S100): 본 발명의 제조방법을 위해 원료가스가 유입되어 방전을 통해 반응가스가 생성되도록 하는 하우징이다. 이러한 상기 반응기는 일실시예로, 금속재질을 가지되 외주연이 절연체로 감싸져 있는 전극봉이 내부가 비어있는 반응기 내부에 내설되어 있는 형태를 가지며, 이러한 전극봉의 일부는 반응기 외부로 돌출되어 있는 구조를 가진다.
상기 반응기(예: 1 인치 600mm의 플랜지형 파이프)는 내부에 원료가스가 유입되기 위한 원료가스 유입구 및 내부에서 반응된 반응가스가 배출되기 위한 반응가스 배출구가 각각 형성되어 있어야 한다. 또한, 반응기는 양단에 형성된 플랜지 및 반응기 본체와 절연막과 절연부싱 등으로 (다른 구성들과) 절연되어 있으며 반응기 외부는 연결된 다른 장치(반응기와 연결된 다른 공정장치, 가열수단, 냉각수단 등)들과 같이 접지되어 있도록 함은 당연하다.
상기 전극봉(예: 1/4 인치의 Stainless pipe나 Stainless rod)은 고주파 발생장치와 전기적으로 연결되어, 상기 반응기 내부에서 방전을 일으키되, 상기 전극봉의 외주연과 반응기 내주연 사이의 방전공간, 즉 이격거리는 0.5 ~ 3mm가 되도록 하며, 좋게는 1 ~ 2mm가 되도록 한다.
또한, 이러한 전극봉의 외주연에 형성된 절연체의 경우, PFA(Perfluoro alkoxy), PTFE(Polytetrafluoroethylene), Quartz(석영), Glass(유리), Ceramic(세라믹), Silicon rubber(실리콘 고무) 중 어느 하나의 재질이 사용되되, 이 중 PFA가 더욱 안정된 디실란 수율을 나타낸다.
2. 상기 반응기 내부의 반응온도를 사전설정온도로 조절하는 단계(S200): 상기 반응기 내부의 반응온도를 조절하기 위해, 본 발명에서는 상기 반응기 외부에 가열수단(예: 고주파 가열장치(high frequency heating system(히터 등))를 전기적으로 연결하여, 상기 반응기 외부로부터 열을 가하거나, 또는 냉각수단(예: cryogenic cooling coil, 또는 냉각 자켓)을 반응기 외주연에 부착하여, 상기 반응기 내 반응온도를 조절할 수 있도록 한다.
이러한 전술된 가열수단 및 냉각수단을 통해 조절되는 상기 반응기 내 반응온도(사전설정온도)는 80 ~ -130℃가 되도록 한다. (본 발명에서는 상온 ~ 80℃ 또는 0 ~ -120℃ 등 어떤 온도에서도 수율 차이를 많이 보이지 않았으며 이는 발명의 배경이 되는 기술 란에 기재된 US 5478453 특허와 차별화된 기술이다.)
3. 상기 반응기 내부의 압력을 사전설정압력으로 조절하는 단계(S300): 상기 반응기 내부의 압력을 조절하는 단계로, 이를 위해, 상기 반응기는 별도의 다양한 압력 조절장치 및 이러한 압력의 변화를 확인하기 위한 압력게이지 등이 설치될 수 있음이다.
이러한 상기 사전설정압력은 상압 이상을 유지하고 압력이 낮을수록 디실란의 수율이 증가하고 solid formation이 적다. 이에 압력은 30 psig 미만의 압력을 유지되도록 한다.
4. 상기 반응기 내부에 희석가스와 실란가스로 이루어진 원료가스를 주입하는 단계(S400): 본 발명에서는 원료가스로 희석가스와 실란가스를 동시에 주입하도록 한다.
이 중 상기 희석가스는 헬륨(He), 질소(N2), 알곤(Ar) 중 하나인 불활성 가스(헬륨이 가장 적합함.)에 Solid formation을 막도록 수소 가스(H2)를 혼합한 혼합가스를 사용하고, 이러한 혼합가스를 헬륨가스와 혼합하여 사용하거나 또는 반응기 내에 주입시 동시 주입되도록 한다.
더불어, 상기 불활성(inert) 가스와 수소 가스의 비율은 1 : 9 ~ 9 : 1까지 사용가능하고, 좋게는 5 : 5 ~ 8 : 2가 되도록 한다.
또한, 상기 실란가스와 희석가스는 Volume(용량)으로 50 : 50 ~ 1 : 99%의 비율이 되도록 조성한다. (즉, 실란가스는 1 ~ 50%, 희석가스는 50 ~ 99.9%로 사용)
5. 상기 반응기 내부의 방전을 발생시키기 위한 공급전력 및 고주파 범위를 설정하는 단계(S500) 및 상기 전극봉을 통해 반응기 내부에 방전이 발생되도록 하는 단계(S600): 원료가스가 유입된 상기 반응기 내부에 방전을 발생시키기 위한 것으로, 상기 반응기는 내설되어 있는 전극봉과 전기적으로 연결되며, frequency나 Ampere 등이 조절 가능한 고주파 발생장치(High frequency generator)를 반응기 외부에 설치하여, 상기 반응기와 전극봉 사이의 방전공간에서 방전이 발생되도록 한다.
이때, 상기 고주파 발생장치(High frequency generator)는 120V이고, 사용되는 다양한 조건에 따라 resonate(공명) 되는 주파수가 결정되나 대개 20 ~ 100 kHz 범위로 하며, 좋게는 30 ~ 50 kHz가 되도록 한다. 또한, 이러한 고주파 발생장치에 인가된 charge power는 0.01~1 Watt/cm3 정도이며, 좋게는 0.1~0.5 Watt/cm3가 되도록 한다.
7. 상기 반응기 내 원료가스의 체류시간을 조절하는 단계(S700): 상기 원료가스는 반응기의 원료가스 주입구를 통해 내부로 주입되고, 전극봉을 통해 방전이 발생될 시, 이러한 반응기 내에 주입된 원료가스의 반응기 내 체류시간(Residence time)은 0.1 ~ 30 sec이며, 좋게는 0.5 ~ 3 sec가 되도록 한다.
8. 상기 반응기 내에 생성된 반응가스를 분석하는 단계(S800): S800단계에서는 반응가스를 분석하는 단계로써, 실시예로, 전술된 단계(S100~S700)와 같이, 반응기 및 전극봉으로 이루어진 유전체 장벽 방전장치를 이용하면서, 반응기와 전극봉 사이의 이격거리, 원료가스의 조성비, 반응온도, 압력, 인가되는 전력과 주파수, 원료가스의 체류시간 등 다양한 반응조건을 조절 및 제어함에 따라, 실란에서 디실란으로의 반응 수율을 검출기인 GC-FID(Flame ionization detector)와 GC-Mass(Mass selective detector)를 사용하고 가스채취기(gas sampler)를 통해 실시간(in situ system)으로 연속적으로 모니터링(monitoring) 하였다.
사용된 column은 Poraplot Q capillary column 이고, 각각의 peak 위치나 정량은 standard gas를 사용하여 미리 보정(calibration)하며, 다양한 각각의 실험 후, solid formation은 내부 장치를 오픈(open)한 후 육안으로 확인하였다.
원료가스인 실란가스와 희석가스는 각각 질량유량계(MFC(Mass flow controller))을 보정(calibration) 한 후 사용하고, sampling은 원료가스를 반응기에 공급 후, 40분 ~ 1시간 간격으로 연속적으로 분석하였다.
상기 반응기로 공급된 실란가스 양은 0.01~0.2L/min이고, 희석가스의 양은 0.1~1.2L/min가 되도록 하였으며, 희석가스는 질소 혹은 헬륨을 사용하였고, 여기에 수소가스를 첨가하여 몰 비율에 따라 피드량을 조절하였다.
인가된 고전류 power는 인가된 volt와 각 조건에 가해진 암페어 량을 반응 zone 면적당 계산하였고, 분석 결과 반응가스에는 Disilane 및 Trisilane, Tetrasilane도 포함되었으며 그 비율은 나오는 가스를 응축하여 분석해 본 결과 약 500 : 47 : 1 정도 됨을 확인되었으나, 전술된 바와 같이, 반응조건에 따른 본 발명의 제조방법은 디실란 뿐만 아니라 트리실란 및 테트라실란의 합성에도 사용될 수 있음을 알 수 있다.
상기 도 2는 본 발명의 제조방법의 실시예에 따른 반응가스 분석표이다.
실란가스의 농도가 줄어들수록 디실란으로의 선택성이 높아진다.
반응온도의 경우, 80 ~ -120℃까지 넓은 범위에서 유사한 조건에서 유사한 결과를 가졌고 이는 종래의 특허들과 차별된다.
압력은 반응 수율에 영향을 주어 압력이 증가하면 디실란으로의 선택성이 줄어든다. 다양한 조건에 따라 차이가 있으나 압력이 2배 감소하면 디실란 수율은 약 3 ~ 4배 증가함을 알 수 있다.
인가된 고주파 전력은 0.1 ~ 0.5 W/cm3가 적당하고 그 이상이 되면 실란의 분해가 일어나 디실란 생성없이 다량의 powder가 형성되었다.
희석가스는 헬륨이 질소보다 반응에 더욱 안정되고 디실란의 수율이 높았다.
상기의 실시예와 같이 본 발명의 유전체 장벽 방전(Dielectric Barrier Discharge)을 이용하여 실란가스에서 디실란, 트리실란, 테트라실란 가스를 제조하는 제조방법을 이용하면, (반응조건에 따라) 디실란 수율이 약 35 ~ 85%까지 연속적으로 제조 가능함을 알 수가 있다.
이상과 같이, 본 발명은 비록 한정된 실시예와 도면에 의해 설명되었으나, 본 발명은 이것에 의해 한정되지 않으며 본 발명이 속하는 기술 분야에서 통상의 지식을 가진 자에 의해 본 발명의 기술 사상과 아래에 기재될 특허청구범위의 균등범위 내에서 다양한 수정 및 변경이 가능함은 물론이다.

Claims (7)

  1. 외주연이 절연체로 감싸져 있는 전극봉을 반응기 내부에 내설하는 단계(S100);
    상기 반응기 내부의 반응온도를 사전설정온도로 조절하는 단계(S200);
    상기 반응기 내부의 압력을 사전설정압력으로 조절하는 단계(S300);
    상기 반응기 내부에 희석가스와 실란가스로 이루어진 원료가스를 주입하는 단계(S400);
    상기 반응기 내부의 방전을 발생시키기 위한 공급전력 및 고주파 범위를 설정하는 단계(S500);
    상기 전극봉을 통해 반응기 내부에 방전이 발생되도록 하는 단계(S600);
    상기 반응기 내 원료가스의 체류시간을 조절하는 단계(S700);
    상기 반응기 내에 생성된 반응가스를 분석하는 단계(S800);
    를 포함하는 것을 특징으로 하는 유전체 장벽 방전을 통해 실란가스에서 디실란, 트리실란, 테트라실란 가스를 제조하는 제조방법.
  2. 제 1항에 있어서,
    상기 S100단계는
    상기 반응기 내주연과 전극봉의 외주연 사이의 방전공간을 위해, 이격거리를 0.5 ~ 3mm로 유지하는 것을 특징으로 하는 유전체 장벽 방전을 통해 실란가스에서 디실란, 트리실란, 테트라실란 가스를 제조하는 제조방법.
  3. 제 1항에 있어서,
    상기 S200단계는
    상기 반응기 외부에 가열수단을 설치하여 상기 반응기를 가열하거나, 또는 냉각수단을 반응기 외주연에 부착하여 반응온도를 조절하되, 상기 반응온도의 사전설정온도는 80 ~ -130℃로 조절하는 것을 특징으로 하는 유전체 장벽 방전을 통해 실란가스에서 디실란, 트리실란, 테트라실란 가스를 제조하는 제조방법.
  4. 제 1항에 있어서,
    상기 S400단계에서
    상기 희석가스는 헬륨(He), 질소(N2), 알곤(Ar) 가스 중 어느 하나의 불활성 가스에 수소(H2)가 혼합되어 있는 혼합가스이며, 실란가스 및 희석가스는 각각 질량유량계(Mass flow controller)로 혼합량이 조절되어 사용되고, 상기 실란가스와 희석가스는 50 : 50 ~ 1 : 99%의 비율로 조성되는 것을 특징으로 하는 유전체 장벽 방전을 통해 실란가스에서 디실란, 트리실란, 테트라실란 가스를 제조하는 제조방법.
  5. 제 1항에 있어서,
    상기 S500단계는
    상기 전극봉과 연결된 고주파 발생장치를 통해 조절하되, 상기 공급전력은 0.01 ~ 1 Watt/cm3, 주파수는 20 ~ 100 kHz의 범위로 유지되는 것을 특징으로 하는 유전체 장벽 방전을 통해 실란가스에서 디실란, 트리실란, 테트라실란 가스를 제조하는 제조방법.
  6. 제 1항에 있어서
    상기 S700단계에서
    상기 체류시간은 0.1~30 sec 인 것을 특징으로 하는 유전체 장벽 방전을 통해 실란가스에서 디실란, 트리실란, 테트라실란 가스를 제조하는 제조방법.
  7. 제 1항에 있어서,
    상기 S800단계는
    상기 반응가스는 디실란(Disilane), 트리실란(Trisilane), 테트라실란(Tetrasilane) 가스인 것을 특징으로 하는 유전체 장벽 방전을 통해 실란가스에서 디실란, 트리실란, 테트라실란 가스를 제조하는 제조방법.
PCT/KR2014/004919 2013-06-11 2014-06-03 유전체 장벽 방전을 통해 실란가스에서 디실란, 트리실란, 테트라실란 가스를 제조하는 제조방법 WO2014200222A1 (ko)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2013-0066751 2013-06-11
KR1020130066751A KR101566920B1 (ko) 2013-06-11 2013-06-11 유전체 장벽 방전을 통해 실란가스에서 디실란, 트리실란 가스를 제조하는 제조방법

Publications (1)

Publication Number Publication Date
WO2014200222A1 true WO2014200222A1 (ko) 2014-12-18

Family

ID=52022463

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2014/004919 WO2014200222A1 (ko) 2013-06-11 2014-06-03 유전체 장벽 방전을 통해 실란가스에서 디실란, 트리실란, 테트라실란 가스를 제조하는 제조방법

Country Status (2)

Country Link
KR (1) KR101566920B1 (ko)
WO (1) WO2014200222A1 (ko)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102020211833A1 (de) 2020-09-22 2022-03-24 Evonik Operations Gmbh Verfahren zur Herstellung oligomerer Hydridosilane aus SiH4
CN117383565A (zh) * 2023-09-06 2024-01-12 中船(邯郸)派瑞特种气体股份有限公司 一种放电反应制备乙硅烷的方法及系统

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5478453A (en) * 1993-03-11 1995-12-26 L'air Liquide, Societe Anonyme Pour L'etude Et L'exploitation Des Procedes Georges Claude Process for preparing disilane from monosilane by electric discharge and cryogenic trapping
US6399489B1 (en) * 1999-11-01 2002-06-04 Applied Materials, Inc. Barrier layer deposition using HDP-CVD
US20060244386A1 (en) * 2005-05-02 2006-11-02 Hooke William M Pulsed dielectric barrier discharge
KR101231370B1 (ko) * 2012-06-13 2013-02-07 오씨아이머티리얼즈 주식회사 모노실란의 열분해에 의한 디실란의 제조방법 및 제조장치
US20130129582A1 (en) * 2010-05-03 2013-05-23 Fraunhofer-Gesellschaft Zur Foerderung Der Angewandten Forschung E.V. Method for the plasma-enhanced treatment of internal surfaces of a hollow body, fluid separator, and use thereof

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5478453A (en) * 1993-03-11 1995-12-26 L'air Liquide, Societe Anonyme Pour L'etude Et L'exploitation Des Procedes Georges Claude Process for preparing disilane from monosilane by electric discharge and cryogenic trapping
US6399489B1 (en) * 1999-11-01 2002-06-04 Applied Materials, Inc. Barrier layer deposition using HDP-CVD
US20060244386A1 (en) * 2005-05-02 2006-11-02 Hooke William M Pulsed dielectric barrier discharge
US20130129582A1 (en) * 2010-05-03 2013-05-23 Fraunhofer-Gesellschaft Zur Foerderung Der Angewandten Forschung E.V. Method for the plasma-enhanced treatment of internal surfaces of a hollow body, fluid separator, and use thereof
KR101231370B1 (ko) * 2012-06-13 2013-02-07 오씨아이머티리얼즈 주식회사 모노실란의 열분해에 의한 디실란의 제조방법 및 제조장치

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102020211833A1 (de) 2020-09-22 2022-03-24 Evonik Operations Gmbh Verfahren zur Herstellung oligomerer Hydridosilane aus SiH4
WO2022063680A1 (de) 2020-09-22 2022-03-31 Evonik Operations Gmbh Verfahren zur herstellung oligomerer hydridosilane aus sih4
CN117383565A (zh) * 2023-09-06 2024-01-12 中船(邯郸)派瑞特种气体股份有限公司 一种放电反应制备乙硅烷的方法及系统

Also Published As

Publication number Publication date
KR101566920B1 (ko) 2015-11-17
KR20140144595A (ko) 2014-12-19

Similar Documents

Publication Publication Date Title
US8399072B2 (en) Process for improved chemcial vapor deposition of polysilicon
US6221155B1 (en) Chemical vapor deposition system for polycrystalline silicon rod production
US6749824B2 (en) Chemical vapor deposition system for polycrystalline silicon rod production
KR101566841B1 (ko) 플라즈마 증가 합성
KR100687064B1 (ko) 분배된 출력을 가진 rf 정합 네트워크
Gicquel et al. Spectroscopic analysis and chemical kinetics modeling of a diamond deposition plasma reactor
US20120097330A1 (en) Dual delivery chamber design
CA1083728A (en) Method and apparatus for manufacturing high-purity silicon rods
WO2014200222A1 (ko) 유전체 장벽 방전을 통해 실란가스에서 디실란, 트리실란, 테트라실란 가스를 제조하는 제조방법
EP0052615B1 (en) High pressure plasma hydrogenation of silicon tetrachloride
WO2009142367A1 (en) Plasma reactor with internal transformer
EP0955665A2 (en) Plasma chemical vapor deposition apparatus
KR101279414B1 (ko) 폴리실리콘 제조장치 및 폴리실리콘 제조방법
CN102140678A (zh) 生产均匀多晶硅棒的方法、装置和cvd-西门子系统
JPS6063375A (ja) 気相法堆積膜製造装置
US8815168B2 (en) Carbon nanotube synthesizing apparatus
KR20120119012A (ko) 유동층 반응기
KR20110025163A (ko) 이동 가능한 실드를 갖는 전극 배열체
KR20120020928A (ko) 폴리실리콘 제조용 cvd 반응기의 노즐 겸용 척 및 이를 포함하는 폴리실리콘 제조용 cvd 반응기
KR101913239B1 (ko) 다결정질 실리콘 과립 제조용 유동층 반응기 및 그 반응기의 조립방법
KR101538388B1 (ko) 디실란과 트리실란과 테트라실란의 제조를 위한 유전체 장벽 방전 반응장치
WO2012157871A2 (ko) 플라즈마 수소화 반응 장치
CN214244667U (zh) 一种制备腔室及cvd沉积石墨烯的规模化制备设备
KR101590679B1 (ko) 2 중 플라즈마 발생 장치 및 이를 이용한 폴리실리콘 제조 방법
CN215249591U (zh) 一种反应室及cvd沉积石墨烯的规模化制备设备

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14811379

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14811379

Country of ref document: EP

Kind code of ref document: A1