WO2014199601A1 - Equalizer, polarization separator using same, and equalization method - Google Patents

Equalizer, polarization separator using same, and equalization method Download PDF

Info

Publication number
WO2014199601A1
WO2014199601A1 PCT/JP2014/002991 JP2014002991W WO2014199601A1 WO 2014199601 A1 WO2014199601 A1 WO 2014199601A1 JP 2014002991 W JP2014002991 W JP 2014002991W WO 2014199601 A1 WO2014199601 A1 WO 2014199601A1
Authority
WO
WIPO (PCT)
Prior art keywords
filter coefficient
output
output symbol
output signal
filter
Prior art date
Application number
PCT/JP2014/002991
Other languages
French (fr)
Japanese (ja)
Inventor
大作 小笠原
Original Assignee
日本電気株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本電気株式会社 filed Critical 日本電気株式会社
Priority to JP2015522526A priority Critical patent/JP6314979B2/en
Publication of WO2014199601A1 publication Critical patent/WO2014199601A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B10/00Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
    • H04B10/25Arrangements specific to fibre transmission
    • H04B10/2507Arrangements specific to fibre transmission for the reduction or elimination of distortion or dispersion
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B10/00Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
    • H04B10/60Receivers
    • H04B10/61Coherent receivers
    • H04B10/614Coherent receivers comprising one or more polarization beam splitters, e.g. polarization multiplexed [PolMux] X-PSK coherent receivers, polarization diversity heterodyne coherent receivers
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B10/00Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
    • H04B10/60Receivers
    • H04B10/66Non-coherent receivers, e.g. using direct detection
    • H04B10/69Electrical arrangements in the receiver
    • H04B10/697Arrangements for reducing noise and distortion
    • H04B10/6971Arrangements for reducing noise and distortion using equalisation
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/01Equalisers
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/18Phase-modulated carrier systems, i.e. using phase-shift keying
    • H04L27/22Demodulator circuits; Receiver circuits
    • H04L27/223Demodulation in the optical domain

Definitions

  • the present invention relates to an equalizer, a polarization separator using the same, and an equalization method, and more particularly to an equalizer using a constant envelope algorithm, a polarization separator using the same, and an equalization method.
  • an ultrahigh-speed optical communication system of 100 Gbps is desired.
  • an optical digital coherent communication system using an optical phase modulation system and a polarization multiplexing / demultiplexing technique has attracted attention.
  • the optical phase modulation method is a method for performing data modulation on the optical phase of the transmission laser beam, rather than performing data modulation on the optical intensity of the transmission laser beam as in the conventionally used optical intensity modulation method. It is.
  • Optical phase modulation methods include QPSK (Quadrature Phase Shift Keying) method, 8PSK (8 Phase Shift Modulation: 8-Phase Shift Keying) method, and QAM (Quadrature Amplitude Modulation Method). Etc. are known.
  • QPSK Quadratture Phase Shift Keying
  • 8PSK Phase Shift Modulation: 8-Phase Shift Keying
  • QAM Quadrature Amplitude Modulation Method
  • the polarization multiplexing / demultiplexing technology multiplexes two independent optical signals whose carrier waves are arranged in the same frequency band and whose polarization states are orthogonal to each other in an optical transmitter. Then, in the optical receiver, the above-described two independent optical signals are separated from the received signal. Thereby, a double transmission speed can be realized. In this case, since the symbol rate of the optical signal is halved, the operation speed of the electric device can be reduced. Therefore, according to the polarization demultiplexing technique, it is possible to reduce the manufacturing cost of the communication device.
  • an ultra-high speed optical communication system capable of 100 Gbps transmission can be realized. Then, a process for compensating for optical carrier frequency deviation and optical phase deviation, and a process for separating into two independent optical signals (polarization separation process) using a digital signal processing technique, and a technique for highly accurate demodulation are proposed. Has been. Such a system is called an optical digital coherent communication system.
  • FIG. 5 shows a block diagram of a related optical receiver 200 described in Patent Document 1.
  • the related optical receiver 200 receives the received optical signal through the optical transmission line.
  • Locally oscillated light having an optical frequency substantially the same as the carrier frequency of the received optical signal is input to the 90-degree hybrid 210 together with the received optical signal.
  • the 90-degree hybrid 210 separates the received optical signal into optical signal components having a polarization state parallel to each of two orthogonal polarization axes, and a total of 4 consisting of a real part component and an imaginary part component of each optical signal component. Number of optical signals are output. These four optical signals are converted into analog electric signals by four optical detectors 221 to 224, and then converted into digital electric signals by analog-to-digital converters (ADCs) 231 to 234.
  • ADCs analog-to-digital converters
  • the digital electric signals output from the analog-digital converters (ADCs) 231 to 234 are converted into digital electric signals sampled at the symbol rate of the received optical signal by a resampling unit (not shown), and then polarized. Input to the separation unit 240.
  • the polarization separation unit 240 extracts two independent optical signals that are polarization multiplexed based on the four input digital electric signals. Each of the extracted optical signals is compensated for optical phase rotation by the optical carrier frequency deviation and the optical phase deviation between the received optical signal and the local oscillation light by the optical carrier frequency deviation / optical phase deviation compensation units 251 and 252. .
  • the symbol identifying units 261 and 262 respectively demodulate the original transmission bit strings.
  • the optical phase modulation method and the polarization multiplexing / demultiplexing technology are combined.
  • the influence of the optical carrier frequency deviation and the optical phase deviation is compensated for each of the two independent optical signals subjected to polarization separation.
  • FIG. 6 shows a configuration of the related polarization separation unit 240.
  • the polarization separation unit 240 includes an equalizer including filter units 241 to 244 and filter coefficient update units 245 and 246.
  • the input signal 1 of the polarization separation unit 240 is a signal based on an optical signal having a polarization state parallel to one of two orthogonal polarization axes in the 90-degree hybrid 210. That is, it is a digital electric signal represented by a complex number having the digital electric signal output from the ADC 231 shown in FIG. 5 as a real part component and the digital electric signal output from the ADC 232 as an imaginary part component.
  • the input signal 2 of the polarization separation unit 240 is a signal based on an optical signal having a polarization state parallel to the other of the two polarization axes orthogonal to each other in the 90-degree hybrid 210. That is, the digital electric signal is represented by a complex number having the digital electric signal output from the ADC 233 shown in FIG. 5 as a real part component and the digital electric signal output from the ADC 234 as an imaginary part component.
  • the output signal 1 and the output signal 2 of the polarization separation unit 240 shown in FIG. 6 are digital electric signals based on two independent optical signals that are polarization multiplexed in the optical transmitter.
  • the filter units 241 to 244 included in the polarization separation unit 240 perform filtering processing on the input signal 1 and the input signal 2 using filter coefficients set independently for each filter unit. Thereafter, the sum of the outputs of the filter unit 241 and the filter unit 243 is set as the output signal 1, and the sum of the outputs of the filter unit 242 and the filter unit 244 is output as the output signal 2.
  • a general FIR (Finite Impulse Response) filter can be used for the filter units 241 to 244.
  • the filter coefficient updating unit 245 updates the filter coefficients of the filter unit 241 and the filter unit 243 according to a predetermined algorithm.
  • the filter coefficient update unit 246 updates the filter coefficients of the filter unit 242 and the filter unit 244.
  • a constant envelope algorithm Constant Modulus Algorithm: CMA
  • CMA Constant Modulus Algorithm
  • polarization separation is performed by adaptively controlling the filter coefficients of the filter units 241 to 244 so that the envelope of the extracted optical signal is constant, that is, the light intensity is constant.
  • Equation (1) shows an error function defined by CMA.
  • J x (W, W H ) is an error function for the output signal 1
  • J y (W, W H ) is an error function for the output signal 2.
  • W is a square matrix of size of 2 ⁇ 2, 1 row and the first column elements of the matrix W (w xx), 1 row 2 column component (w xy), 2 rows and one column component (w yx), 2
  • the row 2 column component (w yy ) represents the filter coefficients of the filter units 241 to 244, respectively.
  • the matrix W is a matrix representing the characteristics of an optical transmission line called a Jones matrix.
  • the matrix WH is a Hermitian conjugate of the matrix W.
  • the number of taps of the filter unit is 1 for simplicity, but the number of taps may be 2 or more.
  • the E x 'and E y' are each output signal 1 and the output signal 2
  • a target value of the amplitude of the r x and r y are the output signals 1 and the output signal 2.
  • E [x] represents an expected value of x.
  • the filter coefficient updating unit 245 sequentially updates the filter coefficients of the filter unit 241 and the filter unit 243 so that the error function J x for the output signal 1 is minimized.
  • the filter coefficient updating unit 246 sequentially updates the filter coefficients of the filter unit 242 and the filter unit 244 so that the error function J y with respect to the output signal 2 is minimized.
  • Equation (2) to (4) show equations for the filter coefficient updating units 245 and 246 to update the respective filter coefficients based on the CMA error function shown in the expression (1).
  • ⁇ in the equation (2) is a step parameter for stabilizing the feedback control by adjusting the update amount of the filter coefficient. That is, “ ⁇ ” is a parameter that determines the processing speed of the polarization separation process. Note that the expected value is generally replaced with an instantaneous value for calculating the update amount of the filter coefficient.
  • the filter coefficients of the filter units 241 to 244 are updated as follows. That is, as a symbol point on the figure constellation shown output signal of the polarization separation section 240, a direction toward the origin (or vice versa) moves on a circumference of radius r x or r y along, The filter coefficients of the filter units 241 to 244 are updated.
  • FIG. 7 is a flowchart for explaining the process of updating the filter coefficient.
  • the filter coefficient updating units 245 and 246 calculate a cost that is a difference between the square of the radius r x or r y centered at the origin and the square of the distance from the origin of the output symbol (step S10).
  • the symbol means a signal point on the constellation.
  • multiplying the input symbol E x or E y in the cost step S20.
  • multiplying the product obtained by multiplying the complex conjugate E x '* or E y ' * of the output symbol (step S30) by the step parameter ⁇ (step S40) the update amount of the filter coefficient is calculated.
  • a value obtained by adding the update amount to the filter coefficient is set as a new filter coefficient (step S50), and the new filter coefficient is set in the filter units 241 to 244 (step S60).
  • the filter coefficient update units 245 and 246 update the filter coefficients of the filter units 241 to 244.
  • the filter coefficient update units 245 and 246 update the filter coefficients of the filter units 241 to 244 using CMA, so that two independent optical signals are obtained from the received optical signal. Separation and extraction are possible.
  • FIG. 8 shows the distance from the output symbol before the filter coefficient update (hereinafter referred to as “output symbol movement amount”) in this case as the distance from the origin of the output symbol (hereinafter referred to as “output symbol distance”). Is shown.
  • r x and r y (radius of the target circle), which are target values of the amplitude of the output signal, are set to “1”, respectively, and step parameters are not multiplied for simplicity.
  • the solid line indicates that the input symbol is within the target circle
  • the broken line indicates that the input symbol is on the target circle
  • the alternate long and short dash line indicates that the input symbol is outside the target circle.
  • the output symbol whose horizontal axis is the distance from the origin of the output symbol is smaller than 1 that is, the output symbol that is inside the target circle (unit circle) of radius 1 has the symbol movement amount of the vertical axis. Since it takes a positive value, it can be seen that it moves in the direction outside the unit circle. In contrast, an output symbol having an output symbol distance greater than 1 and outside the unit circle moves to the inside of the unit circle because the symbol movement amount has a negative value. Further, it can be seen that an output symbol having an output symbol distance of 1, that is, an output symbol originally on the unit circle does not move because the symbol movement amount is zero “0”.
  • the filter coefficient updating units 245 and 246 update filter coefficients so that all output symbols are located on the unit circle by sequentially executing such processing.
  • the output symbol movement amount outside the unit circle is much larger than the output symbol inside the unit circle. This means that a strong force to move in the direction inside the unit circle acts on the output symbols outside the unit circle. Although the output symbols are evenly distributed around the ideal symbol point due to optical noise, a force for moving the output symbol in the inner direction acts as a whole by the update process of the filter coefficient. Therefore, when the related polarization separation unit 240 described above is used, there is a problem described below.
  • FIGS. 9A and 9B show examples of constellation diagrams of optical signals obtained by digital signal processing in the related optical receiver 200.
  • FIG. The QPSK method was used as the optical signal modulation method.
  • FIG. 9A shows a case where the optical SN (Signal to Noise) ratio is 15 dB
  • FIG. 9B shows a case where the optical SN ratio is 10 dB.
  • the filter coefficient is updated based on the above formulas (2) to (4).
  • the center of the symbol point greatly deviates from the ideal symbol point (symbol “+” in the figure), and the filter coefficient is updated.
  • the expected value of the error function used (the above formula (1)) is not zero.
  • the filter coefficients of the filter units 241 to 244 do not correctly represent the reverse characteristics of the transfer function of the optical transmission line or the front end, and thus there is a problem that the information of the optical transmission line cannot be correctly extracted from the filter coefficient. It was.
  • An object of the present invention is to use a polarization separator that updates a filter coefficient by a constant envelope algorithm (CMA), which is the above-mentioned problem, and when a received optical signal has a low optical signal-to-noise ratio, a constellation of a reproduced received optical signal. It is an object of the present invention to provide an equalizer, a polarization separator using the equalizer, and an equalization method that can solve the problem that the distortion of the modulation increases.
  • CMA constant envelope algorithm
  • the equalizer of the present invention has filter means for performing filter processing based on the filter coefficient, and filter coefficient update means for updating the filter coefficient so that the envelope of the output signal of the filter means becomes constant.
  • the update means calculates an output symbol distance that is a distance between an output symbol that is a position on the constellation of the output signal and an origin on the constellation from the output signal, and an output signal that is obtained using the first filter coefficient
  • An output symbol movement amount that is a difference between the first output symbol distance calculated from the above and the second output symbol distance calculated from the output signal acquired using the second filter coefficient obtained by updating the first filter coefficient
  • the change of the output symbol movement amount with respect to the first output symbol distance is calculated with a predetermined target value of the first output symbol distance as a center. Such that referred calculates the update amount of filter coefficients.
  • the equalizer of the present invention has filter means for performing filter processing based on the filter coefficient, and filter coefficient update means for updating the filter coefficient so that the envelope of the output signal of the filter means becomes constant
  • the filter coefficient updating means is a function of the output signal, and uses a point-symmetric function centered at a point at which the absolute value of the output signal is equal to a predetermined target value of the amplitude of the output signal, to update the update amount of the filter coefficient calculate.
  • the polarization separator of the present invention is a first that photoelectrically converts the first received light constituting the polarization multiplexed signal light and the second received light having a polarization direction orthogonal to the polarization direction of the first received light.
  • Filter means for inputting the received signal and the second received signal and performing filter processing based on the filter coefficient, and filter coefficient updating means for updating the filter coefficient so that the envelope of the output signal of the filter means becomes constant
  • a filter coefficient updating unit calculates an output symbol distance which is a distance between an output symbol which is a position on the constellation of the output signal and an origin on the constellation from the output signal, and uses the first filter coefficient. Calculated from the output signal acquired using the first output symbol distance calculated from the output signal acquired in this step and the second filter coefficient updated from the first filter coefficient. An output symbol movement amount that is a difference from the output symbol distance is calculated, and a change in the output symbol movement amount with respect to the first output symbol distance is point-symmetric about a predetermined target value of the first output symbol distance. Then, the update amount of the filter coefficient is calculated.
  • the equalization method of the present invention outputs an output signal by performing a filtering process on an input signal based on a filter coefficient, and outputs a constellation from an output signal that is a position on the constellation of the output signal.
  • the output symbol distance which is the distance from the upper origin, is calculated, and the first output symbol distance calculated from the output signal acquired using the first filter coefficient and the second filter in which the first filter coefficient is updated
  • An output symbol movement amount that is a difference from the second output symbol distance calculated from the output signal acquired using the coefficient is calculated, and a change in the output symbol movement amount with respect to the first output symbol distance is the first output symbol.
  • the update amount of the filter coefficient is calculated so as to be point-symmetric about a predetermined target value of distance.
  • the equalization method of the present invention outputs an output signal by performing filtering on the input signal based on the filter coefficient, and is an output signal function, where the absolute value of the output signal is the output signal.
  • a point-symmetric function centered on a point equal to a predetermined target value of amplitude calculates the value of the function taken for the output signal, and the value obtained by normalizing the input signal with the square norm
  • the filter coefficient update amount is calculated by multiplying the complex conjugate of the output signal by the norm normalized value, and the value obtained by adding the update amount to the filter coefficient is used as the update filter coefficient. Process.
  • the equalizer of the present invention the polarization separator using the same, and the equalization method, even if the polarization separator that updates the filter coefficient by the constant envelope algorithm (CMA) is used, the received light Regardless of the optical signal-to-noise ratio of the signal, the constellation distortion of the reproduced received optical signal can be reduced.
  • CMA constant envelope algorithm
  • FIG. 4 is a constellation diagram of a received optical signal obtained by a related optical receiver, in which the optical SN ratio is 15 dB.
  • FIG. 7 is a constellation diagram of a received optical signal obtained by a related optical receiver, in which the optical SN ratio is 10 dB.
  • FIG. 1 is a block diagram showing a configuration of an equalizer 100 according to an embodiment of the present invention.
  • the equalizer 100 includes filter means 111 to 114 that perform filter processing based on the filter coefficient, and filter coefficient update means 121 that updates the filter coefficient so that the envelopes of the output signals of the filter means 111 to 114 are constant. 122. That is, the filter coefficient updating means 121 and 122 uses a constant envelope algorithm (Constant Modulus Algorithm: CMA) as an algorithm for updating the filter coefficient.
  • CMA Constant Modulus Algorithm
  • the filter coefficient updating means 121 and 122 calculate an output symbol distance which is a distance between an output symbol which is a position on the constellation of the output signal and an origin on the constellation, from the output signals of the filter means 111 to 114.
  • the first output symbol distance calculated from the output signal acquired using the first filter coefficient and the output signal acquired using the second filter coefficient after updating the first filter coefficient An output symbol movement amount that is a difference from the second output symbol distance is calculated.
  • the filter coefficient update amount is calculated so that the change of the output symbol movement amount with respect to the first output symbol distance is point-symmetric about a predetermined target value of the first output symbol distance.
  • the filter coefficient is updated so that the output symbol movement amount becomes equal regardless of the magnitude relationship of the output symbol distance with respect to the predetermined target value. be able to. As a result, the constellation distortion of the output signal can be reduced.
  • the equalizer 100 can be used as a polarization separator by inputting the received signal obtained by receiving the polarization multiplexed signal light to the equalizer 100 of the present embodiment. That is, the filter means 111 to 114 photoelectrically convert the first received light constituting the polarization multiplexed signal light and the second received light having a polarization direction orthogonal to the polarization direction of the first received light, respectively. One reception signal and a second reception signal can be input.
  • the polarization separator can be used as the polarization separator 240 of the related optical receiver 200 shown in FIG.
  • the same effect as described above can be obtained. That is, even when a polarization separator that updates the filter coefficient by a constant envelope algorithm (CMA) is used, the constellation distortion of the reproduced received optical signal is reduced regardless of the optical SN ratio of the received optical signal. can do.
  • CMA constant envelope algorithm
  • the filter units 111 to 114 included in the equalizer 100 perform a filtering process on the input signal 1 and the input signal 2 using filter coefficients set independently for each filter unit. Thereafter, the sum of the outputs of the filter unit 111 and the filter unit 113 is set as an output signal 1, and the sum of the outputs of the filter unit 112 and the filter unit 114 is output as an output signal 2.
  • a general FIR (Finite Impulse Response) filter can be used as the filter means 111 to 114.
  • the filter coefficient update means 121 updates the filter coefficients of the filter means 111 and the filter means 113 according to the CMA algorithm.
  • the filter coefficient updating unit 122 updates the filter coefficients of the filter unit 112 and the filter unit 114 according to the CMA algorithm.
  • J x (W, W H ) is an error function for the output signal 1
  • J y (W, W H ) is an error function for the output signal 2.
  • the filter coefficient updating unit 121 sequentially updates the filter coefficients of the filter unit 111 and the filter unit 113 so that the error function J x for the output signal 1 is minimized.
  • the filter coefficient updating unit 122 sequentially updates the filter coefficients of the filter unit 112 and the filter unit 114 so that the error function J y with respect to the output signal 2 is minimized.
  • FIG. 2 is a flowchart for explaining the process of updating the filter coefficient in the equalizer 100 of the present embodiment.
  • the filter coefficient updating means 121 and 122 calculate the value of the function that the cost function f expressed by the above equation (6) takes on the output signal (step S100).
  • the cost function f ' is a function of the output signal E m' output signal E m that the absolute value of is equal to the target value r m of the amplitude of the output signal (
  • r m) around the Is a point-symmetric function.
  • the filter coefficient updating means 121, 122 is a function of the output signal, and uses a point-symmetric function centered on a point where the absolute value of the output signal is equal to the target value of the amplitude of the output signal. Calculate the update amount.
  • the cost function f is a quadratic function of the output signal E m ', showing a case in which the target value r m to "1".
  • step S200 the value of the cost function at this time is multiplied by the input signal normalized by the square norm (step S200). Further, the product obtained by multiplying the complex conjugate of the output signal normalized by the norm (step S300) is multiplied by the step parameter (step S400) to calculate the update amount of the filter coefficient. Then, a value obtained by adding the update amount to the filter coefficient is set as a new filter coefficient (update filter coefficient) (step S500), and this update filter coefficient is set in the filter means 111 to 114 (step S600).
  • the filter coefficient update means 121 and 122 update the filter coefficients of the filter means 111 to 114.
  • the polarization separator using the equalizer of the present embodiment includes the first received light constituting the multiplexed signal light and the second received light having a polarization direction orthogonal to the polarization direction of the first received light.
  • the first received signal and the second received signal that have been photoelectrically converted can be input to the filter means.
  • FIG. 3 shows the movement amount (output symbol movement amount) from the output symbol before updating the filter coefficient in this case with respect to the distance (output symbol distance) from the origin of the output symbol before updating the filter coefficient.
  • r x and r y radius of the target circle, which are target values of the amplitude of the output signal, are each “1”.
  • the filter coefficient updating formulas (formulas (2) to (4)) by the CMA used in the related polarization separation unit 240 are employed, the movement amount of the output symbol is shown in FIG.
  • the filter coefficient update formulas shown in the above formulas (5) and (6) are used.
  • the amount of movement of the output symbol is point-symmetric with respect to the distance from the origin of the output symbol and the sign of the target value error. Therefore, the force that works so that the output symbol inside the unit circle (target circle with radius 1) moves on the unit circle by the filter coefficient update process, and the output symbol outside the unit circle moves on the unit circle The force that works is zero when the update process is stable. Therefore, the average position of output symbols is almost the same as the ideal symbol point.
  • FIGS. 4A and 4B show examples of constellation diagrams of received optical signals when the polarization separator according to the present embodiment is used.
  • the QPSK method was used as the optical signal modulation method.
  • 4A shows a case where the optical SN ratio is 15 dB
  • FIG. 4B shows a case where the optical SN ratio is 10 dB.
  • the filter coefficient is updated based on the above-described filter coefficient update formulas (formulas (5) and (6)). 4A and 4B, it can be seen that the ideal symbol point is located substantially at the center of the symbol distribution regardless of the optical signal-to-noise ratio of the received optical signal, and a constellation with small distortion is obtained.
  • the polarization separator using the equalizer, and the equalization method the polarization separator that updates the filter coefficient by the constant envelope algorithm (CMA) is used. Even so, the constellation distortion of the regenerated received optical signal can be reduced regardless of the optical signal-to-noise ratio of the received optical signal.
  • CMA constant envelope algorithm
  • the quadratic function of the output signal E m ′ shown in Expression (6) is used as the filter coefficient update expression.
  • the cost function f used in the update equation of the filter coefficients, ' is a function of the output signal E m' output signal E m that the absolute value of is equal to the target value r m of the amplitude of the output signal Any function that is point-symmetric about (
  • r m ) may be used.
  • the filter coefficient that can calculate the update amount of the filter coefficient so that the change of the output symbol movement amount with respect to the output symbol distance is point-symmetric about the target value The update formula can be used.
  • an update formula for the filter coefficient an update formula having a large gradient (differential value) of the movement amount of the output symbol around the target value may be used. As a result, it becomes possible to adapt sensitively to fluctuations in the optimum filter coefficient, and it is possible to shorten the time required for convergence of the polarization separation processing in the polarization separator.
  • the filter coefficient update formula need not use the same update formula from the start of polarization separation processing until operation. It is possible to use an update formula suitable for each situation, such as high speed required from the start time to stabilization and stability required during operation. For example, when calculating the update amount of the filter coefficient, two or more different functions may be switched and used as the cost function. Thereby, it is possible to optimize the system including the equalizer of the present embodiment and the polarization separator using the equalizer.
  • the polarization separator according to the above-described embodiment, the case where the QPSK method is used as the optical signal modulation method has been described as an example.
  • the present invention is not limited to this, and the polarization separator of the present embodiment can be applied to an optical signal that can be polarized and separated by CMA even when an optical signal of another modulation method is used. Is possible.
  • polarization-demultiplexed QAM signals such as 8QAM and 16QAM can be polarized and separated using an RDE (Radius Directed Equalization) method (see, for example, Non-Patent Document 1). Since this RDE method is characterized as a CMA method having a plurality of target values, the polarization separator according to the present embodiment can be applied.
  • RDE Radius Directed Equalization
  • the update amount of the filter coefficient is calculated based on the error between the distance from the origin of the output symbol and the selected individual target value. At this time, the update amount of the filter coefficient can be calculated so that the movement amount of the output symbol is point-symmetric with respect to each individual target value.
  • the constellation distortion of the reproduced received optical signal can be reduced.
  • the effect of optical noise can be further reduced by not performing the process of updating the filter coefficient for such output symbols.
  • the output symbol separation distance which is the distance between the output symbol acquired using the first filter coefficient and the ideal symbol point
  • the calculated update amount of the filter coefficient is used.
  • the process of updating the first filter coefficient using the calculated update amount of the filter coefficient may not be performed.
  • Equalizer 111-114 Filter means 121, 122 Filter coefficient update means 200 Related optical receiver 210 90 degree hybrid 221-224 Optical detector 231-234 Analog-digital converter (ADC) 240 Polarization Separation Units 241 to 244 Filter Units 245, 246 Filter Coefficient Update Units 251, 252 Optical Carrier Frequency Deviation / Optical Phase Deviation Compensation Units 261, 262 Symbol Identification Units

Abstract

When using a polarization separator which updates filter coefficients by CMA, since distortion of the constellation of a reproduced received optical signal increases if the optical SNR of the received optical signal is low, this polarization separator comprises a filter means which inputs a first received signal and a second received signal acquired from a polarization division multiplexed signal beam, and a filter coefficient updating means which updates the filter coefficients such that the envelope of the output signal of the filter means is constant, wherein the filter coefficient updating means calculates an output symbol distance, calculates the output symbol movement amount, which is the difference between a first output symbol distance, calculated from the output signal acquired using the first filter coefficient, and a second output symbol distance, calculated from the output signal acquired using the second filter coefficient that updates the first filter coefficient, and calculates an update amount of the filter coefficient such that the change in the output symbol movement amount relative to the first output symbol distance is point-symmetric around a prescribed target value of the first output symbol distance.

Description

等化器、それを用いた偏光分離器、および等化方法Equalizer, polarization separator using the same, and equalization method
 本発明は、等化器、それを用いた偏光分離器、および等化方法に関し、特に、定包絡線アルゴリズムを用いた等化器、それを用いた偏光分離器、および等化方法に関する。 The present invention relates to an equalizer, a polarization separator using the same, and an equalization method, and more particularly to an equalizer using a constant envelope algorithm, a polarization separator using the same, and an equalization method.
 インターネットの普及により基幹ネットワークのトラフィック量が急増していることから、100Gbpsといった超高速光通信システムが望まれている。このような超高速光通信システムを実現する技術として、光位相変調方式と偏光多重分離技術を用いた光ディジタルコヒーレント通信方式が注目されている。 Since the traffic volume of the backbone network is rapidly increasing due to the spread of the Internet, an ultrahigh-speed optical communication system of 100 Gbps is desired. As a technique for realizing such an ultrahigh-speed optical communication system, an optical digital coherent communication system using an optical phase modulation system and a polarization multiplexing / demultiplexing technique has attracted attention.
 光位相変調方式は、従来から用いられている光強度変調方式のように送信レーザ光の光強度に対してデータ変調を行うのではなく、送信レーザ光の光位相に対してデータ変調を行う方式である。光位相変調方式としては、QPSK(4位相偏移変調:Quadrature Phase Shift Keying)方式、8PSK(8位相偏移変調:8-Phase Shift Keying)方式、およびQAM(直交振幅変調:Quadrature Amplitude Modulation)方式などが知られている。光位相変調方式では、1シンボルに対して複数のビットを割り当てることにより、シンボルレートを低下させることが可能である。それにより、電気デバイスの動作速度を低減することができるので、装置の製造コストを削減することが可能になると期待されている。 The optical phase modulation method is a method for performing data modulation on the optical phase of the transmission laser beam, rather than performing data modulation on the optical intensity of the transmission laser beam as in the conventionally used optical intensity modulation method. It is. Optical phase modulation methods include QPSK (Quadrature Phase Shift Keying) method, 8PSK (8 Phase Shift Modulation: 8-Phase Shift Keying) method, and QAM (Quadrature Amplitude Modulation Method). Etc. are known. In the optical phase modulation method, it is possible to reduce the symbol rate by assigning a plurality of bits to one symbol. As a result, the operating speed of the electric device can be reduced, and it is expected that the manufacturing cost of the apparatus can be reduced.
 一方、偏光多重分離技術は、光送信機において、搬送波が同一の周波数帯に配備され、かつ、偏光状態が互いに直交する2個の独立した光信号を多重する。そして、光受信機において、受信信号から前述の2個の独立した光信号を分離する。これにより、2倍の伝送速度を実現することができる。この場合、光信号のシンボルレートは逆に1/2になるため、電気デバイスの動作速度を低減することができる。そのため、偏光多重分離技術によれば、通信装置の製造コストを削減することが可能である。 On the other hand, the polarization multiplexing / demultiplexing technology multiplexes two independent optical signals whose carrier waves are arranged in the same frequency band and whose polarization states are orthogonal to each other in an optical transmitter. Then, in the optical receiver, the above-described two independent optical signals are separated from the received signal. Thereby, a double transmission speed can be realized. In this case, since the symbol rate of the optical signal is halved, the operation speed of the electric device can be reduced. Therefore, according to the polarization demultiplexing technique, it is possible to reduce the manufacturing cost of the communication device.
 上述した光位相変調方式と偏光多重分離技術を組み合わせることにより、100Gbpsの伝送が可能な超高速光通信システムを実現することができる。そして、光搬送波周波数偏差及び光位相偏差を補償する処理、及び、2個の独立した光信号に分離する処理(偏光分離処理)をディジタル信号処理技術により実施し、高精度に復調する技術が提案されている。このような方式は、光ディジタルコヒーレント通信方式と呼ばれている。 By combining the optical phase modulation method and polarization multiplexing / demultiplexing technology described above, an ultra-high speed optical communication system capable of 100 Gbps transmission can be realized. Then, a process for compensating for optical carrier frequency deviation and optical phase deviation, and a process for separating into two independent optical signals (polarization separation process) using a digital signal processing technique, and a technique for highly accurate demodulation are proposed. Has been. Such a system is called an optical digital coherent communication system.
 このような光ディジタルコヒーレント通信方式による光通信システムに用いられる光受信器の一例が特許文献1に記載されている。図5に、特許文献1に記載された関連する光受信器200のブロック図を示す。 An example of an optical receiver used in an optical communication system using such an optical digital coherent communication system is described in Patent Document 1. FIG. 5 shows a block diagram of a related optical receiver 200 described in Patent Document 1. In FIG.
 関連する光受信器200は光伝送路を通して受信光信号を受信する。受信光信号の搬送波周波数とほぼ同一の光周波数を有する局所発振光が、受信光信号とともに90度ハイブリッド210に入力される。90度ハイブリッド210は、受信光信号を直交する二つの偏光軸のそれぞれに対して平行な偏光状態を有する光信号成分に分離し、各光信号成分の実部成分と虚部成分からなる合計4個の光信号を出力する。これら4個の光信号は4個の光ディテクタ221~224によりアナログ電気信号に変換された後、アナログ-ディジタル変換器(Analog Digital Converter:ADC)231~234によりディジタル電気信号に変換される。アナログ-ディジタル変換器(ADC)231~234から出力されるディジタル電気信号は、リサンプリング部(図示せず)により受信光信号のシンボルレートで標本化されたディジタル電気信号に変換された後に、偏光分離部240に入力される。偏光分離部240は、入力された4個のディジタル電気信号に基づいて、偏光多重された2個の独立した光信号を抽出する。抽出された光信号はそれぞれ、光搬送波周波数偏差・光位相偏差補償部251、252によって、受信光信号と局所発振光との間の光搬送波周波数偏差と光位相偏差による光位相回転が補償される。最後にシンボル識別部261、262によって、それぞれ元の送信ビット列に復調される。 The related optical receiver 200 receives the received optical signal through the optical transmission line. Locally oscillated light having an optical frequency substantially the same as the carrier frequency of the received optical signal is input to the 90-degree hybrid 210 together with the received optical signal. The 90-degree hybrid 210 separates the received optical signal into optical signal components having a polarization state parallel to each of two orthogonal polarization axes, and a total of 4 consisting of a real part component and an imaginary part component of each optical signal component. Number of optical signals are output. These four optical signals are converted into analog electric signals by four optical detectors 221 to 224, and then converted into digital electric signals by analog-to-digital converters (ADCs) 231 to 234. The digital electric signals output from the analog-digital converters (ADCs) 231 to 234 are converted into digital electric signals sampled at the symbol rate of the received optical signal by a resampling unit (not shown), and then polarized. Input to the separation unit 240. The polarization separation unit 240 extracts two independent optical signals that are polarization multiplexed based on the four input digital electric signals. Each of the extracted optical signals is compensated for optical phase rotation by the optical carrier frequency deviation and the optical phase deviation between the received optical signal and the local oscillation light by the optical carrier frequency deviation / optical phase deviation compensation units 251 and 252. . Finally, the symbol identifying units 261 and 262 respectively demodulate the original transmission bit strings.
 上述した光ディジタルコヒーレント通信方式による光通信システムに用いられる光受信器においては、光位相変調方式と偏光多重分離技術が組み合わされている。その上で、偏波分離された2個の独立した光信号のそれぞれに対して、光搬送波周波数偏差および光位相偏差による影響が補償される。これにより、100Gbpsの伝送が可能な超高速光通信システムを実現することができる。 In the optical receiver used in the optical communication system based on the optical digital coherent communication method described above, the optical phase modulation method and the polarization multiplexing / demultiplexing technology are combined. In addition, the influence of the optical carrier frequency deviation and the optical phase deviation is compensated for each of the two independent optical signals subjected to polarization separation. Thereby, it is possible to realize an ultra-high speed optical communication system capable of 100 Gbps transmission.
国際公開第2012/105070号International Publication No. 2012/105070
 まず、関連する光受信器200に用いられる偏光分離部240の動作について説明する。図6に、関連する偏光分離部240の構成を示す。偏光分離部240はフィルタ部241~244とフィルタ係数更新部245、246を備えた等化器からなる。偏光分離部240の入力信号1は、90度ハイブリッド210において直交する2つの偏光軸の一方に平行な偏光状態を有する光信号に基づく信号である。すなわち、図5に示したADC231から出力されるディジタル電気信号を実部成分とし、ADC232から出力されるディジタル電気信号を虚部成分とする複素数によって表わされるディジタル電気信号である。同様に、偏光分離部240の入力信号2は、90度ハイブリッド210において直交する2つの偏光軸の他方に平行な偏光状態を有する光信号に基づく信号である。すなわち、図5に示したADC233から出力されるディジタル電気信号を実部成分とし、ADC234から出力されるディジタル電気信号を虚部成分とする複素数によって表わされるディジタル電気信号である。 First, the operation of the polarization separation unit 240 used in the related optical receiver 200 will be described. FIG. 6 shows a configuration of the related polarization separation unit 240. The polarization separation unit 240 includes an equalizer including filter units 241 to 244 and filter coefficient update units 245 and 246. The input signal 1 of the polarization separation unit 240 is a signal based on an optical signal having a polarization state parallel to one of two orthogonal polarization axes in the 90-degree hybrid 210. That is, it is a digital electric signal represented by a complex number having the digital electric signal output from the ADC 231 shown in FIG. 5 as a real part component and the digital electric signal output from the ADC 232 as an imaginary part component. Similarly, the input signal 2 of the polarization separation unit 240 is a signal based on an optical signal having a polarization state parallel to the other of the two polarization axes orthogonal to each other in the 90-degree hybrid 210. That is, the digital electric signal is represented by a complex number having the digital electric signal output from the ADC 233 shown in FIG. 5 as a real part component and the digital electric signal output from the ADC 234 as an imaginary part component.
 図6に示した偏光分離部240の出力信号1および出力信号2はそれぞれ、光送信器において偏光多重された2個の独立した光信号に基づくディジタル電気信号である。 The output signal 1 and the output signal 2 of the polarization separation unit 240 shown in FIG. 6 are digital electric signals based on two independent optical signals that are polarization multiplexed in the optical transmitter.
 偏光分離部240が備えるフィルタ部241~244は各フィルタ部に独立に設定されたフィルタ係数を用いて、入力信号1および入力信号2に対してそれぞれフィルタリング処理を実施する。その後、フィルタ部241とフィルタ部243の出力の和を出力信号1とし、フィルタ部242とフィルタ部244の出力の和を出力信号2として出力する。なおフィルタ部241~244には、一般的なFIR(Finite Impulse Response:有限インパルス応答)フィルタを用いることができる。 The filter units 241 to 244 included in the polarization separation unit 240 perform filtering processing on the input signal 1 and the input signal 2 using filter coefficients set independently for each filter unit. Thereafter, the sum of the outputs of the filter unit 241 and the filter unit 243 is set as the output signal 1, and the sum of the outputs of the filter unit 242 and the filter unit 244 is output as the output signal 2. Note that a general FIR (Finite Impulse Response) filter can be used for the filter units 241 to 244.
 フィルタ係数更新部245は所定のアルゴリズムに従ってフィルタ部241およびフィルタ部243のフィルタ係数を更新する。同様に、フィルタ係数更新部246はフィルタ部242およびフィルタ部244のフィルタ係数を更新する。フィルタ係数更新部245、246によるフィルタ部241~244のフィルタ係数を更新するためのアルゴリズムとして、定包絡線アルゴリズム(Constant Modulus Algorithm:CMA)が広く用いられている。CMAでは、抽出された光信号の包絡線が一定、すなわち光強度が一定となるようにフィルタ部241~244のフィルタ係数を適応的に制御することにより偏光分離を行う。 The filter coefficient updating unit 245 updates the filter coefficients of the filter unit 241 and the filter unit 243 according to a predetermined algorithm. Similarly, the filter coefficient update unit 246 updates the filter coefficients of the filter unit 242 and the filter unit 244. As an algorithm for updating the filter coefficients of the filter units 241 to 244 by the filter coefficient updating units 245 and 246, a constant envelope algorithm (Constant Modulus Algorithm: CMA) is widely used. In CMA, polarization separation is performed by adaptively controlling the filter coefficients of the filter units 241 to 244 so that the envelope of the extracted optical signal is constant, that is, the light intensity is constant.
 次に、CMAを用いてフィルタ係数を更新する場合について説明する。次式(1)に、CMAで定義される誤差関数を示す。
Figure JPOXMLDOC01-appb-I000001
Next, a case where the filter coefficient is updated using CMA will be described. The following equation (1) shows an error function defined by CMA.
Figure JPOXMLDOC01-appb-I000001
(W,W)は出力信号1に対する誤差関数であり、J(W,W)は出力信号2に対する誤差関数である。ここでWは大きさが2×2の正方行列であり、行列Wの1行1列成分(wxx)、1行2列成分(wxy)、2行1列成分(wyx)、2行2列成分(wyy)はそれぞれフィルタ部241~244のフィルタ係数を表す。行列Wはジョーンズ(Jones)行列と呼ばれる光伝送路の特性を表す行列である。なお、行列Wは行列Wのエルミート共役である。 J x (W, W H ) is an error function for the output signal 1, and J y (W, W H ) is an error function for the output signal 2. Wherein W is a square matrix of size of 2 × 2, 1 row and the first column elements of the matrix W (w xx), 1 row 2 column component (w xy), 2 rows and one column component (w yx), 2 The row 2 column component (w yy ) represents the filter coefficients of the filter units 241 to 244, respectively. The matrix W is a matrix representing the characteristics of an optical transmission line called a Jones matrix. Note that the matrix WH is a Hermitian conjugate of the matrix W.
 上記説明では、簡単のためフィルタ部のタップ数は1としたが、タップ数が2以上であってもよい。また式(1)において、E’とE’はそれぞれ出力信号1および出力信号2を、rとrはそれぞれ出力信号1と出力信号2の振幅の目標値を示す。また、E[x]はxの期待値を表す。 In the above description, the number of taps of the filter unit is 1 for simplicity, but the number of taps may be 2 or more. Also shown in the formula (1), the E x 'and E y' are each output signal 1 and the output signal 2, a target value of the amplitude of the r x and r y are the output signals 1 and the output signal 2. E [x] represents an expected value of x.
 フィルタ係数更新部245は、出力信号1に対する誤差関数Jが最小となるようにフィルタ部241とフィルタ部243のフィルタ係数を逐次更新する。またフィルタ係数更新部246は、出力信号2に対する誤差関数Jが最小となるようにフィルタ部242とフィルタ部244のフィルタ係数を逐次更新する。 The filter coefficient updating unit 245 sequentially updates the filter coefficients of the filter unit 241 and the filter unit 243 so that the error function J x for the output signal 1 is minimized. The filter coefficient updating unit 246 sequentially updates the filter coefficients of the filter unit 242 and the filter unit 244 so that the error function J y with respect to the output signal 2 is minimized.
 次式(2)~(4)に、式(1)で示したCMAの誤差関数に基づいて、フィルタ係数更新部245、246が各フィルタ係数を更新するための数式を示す。
Figure JPOXMLDOC01-appb-I000002

Figure JPOXMLDOC01-appb-I000003

Figure JPOXMLDOC01-appb-I000004
The following equations (2) to (4) show equations for the filter coefficient updating units 245 and 246 to update the respective filter coefficients based on the CMA error function shown in the expression (1).
Figure JPOXMLDOC01-appb-I000002

Figure JPOXMLDOC01-appb-I000003

Figure JPOXMLDOC01-appb-I000004
ここで、式(2)中の「μ」は、フィルタ係数の更新量を調整することによりフィードバック制御を安定化させるステップパラメータである。すなわち「μ」は偏光分離処理の処理速度を決めるパラメータである。なお、フィルタ係数の更新量の算出には期待値を瞬時値で代用するのが一般的である。 Here, “μ” in the equation (2) is a step parameter for stabilizing the feedback control by adjusting the update amount of the filter coefficient. That is, “μ” is a parameter that determines the processing speed of the polarization separation process. Note that the expected value is generally replaced with an instantaneous value for calculating the update amount of the filter coefficient.
 上式(2)~(4)から、CMAにおいては、フィルタ部241~244のフィルタ係数を以下のように更新することが分かる。すなわち、偏光分離部240の出力信号が示すコンスタレーション図上のシンボル点が、原点に向かう方向(または、その逆方向)に沿って半径rまたはrの円周上に移動するように、フィルタ部241~244のフィルタ係数を更新する。 From the above equations (2) to (4), it can be seen that in the CMA, the filter coefficients of the filter units 241 to 244 are updated as follows. That is, as a symbol point on the figure constellation shown output signal of the polarization separation section 240, a direction toward the origin (or vice versa) moves on a circumference of radius r x or r y along, The filter coefficients of the filter units 241 to 244 are updated.
 以下に、フィルタ係数更新部245、246がフィルタ部241~244のフィルタ係数を更新する処理についてさらに詳細に説明する。図7は、フィルタ係数を更新する処理を説明するためのフローチャートである。 Hereinafter, a process in which the filter coefficient update units 245 and 246 update the filter coefficients of the filter units 241 to 244 will be described in more detail. FIG. 7 is a flowchart for explaining the process of updating the filter coefficient.
 フィルタ係数更新部245、246はまず、原点を中心とする半径rまたはrの二乗と、出力シンボルの原点との距離の二乗との差であるコストを演算する(ステップS10)。ここでシンボルとは、コンスタレーション上の信号点をいう。次に、このコストに入力シンボルEまたはEを乗算する(ステップS20)。さらに出力シンボルの複素共役E ’*またはE ’*を乗算(ステップS30)した積に、ステップパラメータμを乗じることにより(ステップS40)フィルタ係数の更新量を算出する。そして、フィルタ係数に更新量を加算した値を新たなフィルタ係数とし(ステップS50)、この新たなフィルタ係数をフィルタ部241~244に設定する(ステップS60)。以上の処理により、フィルタ係数更新部245、246はフィルタ部241~244のフィルタ係数を更新する。 First, the filter coefficient updating units 245 and 246 calculate a cost that is a difference between the square of the radius r x or r y centered at the origin and the square of the distance from the origin of the output symbol (step S10). Here, the symbol means a signal point on the constellation. Then, multiplying the input symbol E x or E y in the cost (step S20). Further, by multiplying the product obtained by multiplying the complex conjugate E x '* or E y ' * of the output symbol (step S30) by the step parameter μ (step S40), the update amount of the filter coefficient is calculated. A value obtained by adding the update amount to the filter coefficient is set as a new filter coefficient (step S50), and the new filter coefficient is set in the filter units 241 to 244 (step S60). Through the above processing, the filter coefficient update units 245 and 246 update the filter coefficients of the filter units 241 to 244.
 以上述べたように、偏光分離部240において、フィルタ係数更新部245、246がCMAを用いてフィルタ部241~244のフィルタ係数を更新することにより、受信光信号から2個の独立した光信号を分離・抽出することが可能となる。 As described above, in the polarization separation unit 240, the filter coefficient update units 245 and 246 update the filter coefficients of the filter units 241 to 244 using CMA, so that two independent optical signals are obtained from the received optical signal. Separation and extraction are possible.
 次に、CMAにより更新したフィルタ係数を用いて、出力シンボルを再計算した場合における出力シンボルの変化について説明する。図8は、この場合におけるフィルタ係数更新前の出力シンボルからの移動量(以下、「出力シンボル移動量」と言う)を、出力シンボルの原点からの距離(以下、「出力シンボル距離」と言う)に対して示したものである。ここで、出力信号の振幅の目標値であるrおよびr(目標円の半径)はそれぞれ「1」とし、簡単のためステップパラメータは乗じていない。 Next, the change of the output symbol when the output symbol is recalculated using the filter coefficient updated by the CMA will be described. FIG. 8 shows the distance from the output symbol before the filter coefficient update (hereinafter referred to as “output symbol movement amount”) in this case as the distance from the origin of the output symbol (hereinafter referred to as “output symbol distance”). Is shown. Here, r x and r y (radius of the target circle), which are target values of the amplitude of the output signal, are set to “1”, respectively, and step parameters are not multiplied for simplicity.
 図8中、実線は入力シンボルが目標円内にある場合、破線は入力シンボルが目標円上にある場合、一点鎖線は入力シンボルが目標円外にある場合をそれぞれ示す。同図において、横軸である出力シンボルの原点からの距離が1よりも小さい出力シンボル、すなわち半径1の目標円(単位円)の内側にあった出力シンボルは、縦軸であるシンボル移動量が正の値を取ることから、単位円の外側の方向に移動することがわかる。それに対して、出力シンボル距離が1よりも大きく単位円の外側にあった出力シンボルは、シンボル移動量が負の値になることから、単位円の内側に移動することがわかる。また、出力シンボル距離が1である出力シンボル、すなわち、もともと単位円上にあった出力シンボルは、シンボル移動量がゼロ「0」であることから移動しないことがわかる。 In FIG. 8, the solid line indicates that the input symbol is within the target circle, the broken line indicates that the input symbol is on the target circle, and the alternate long and short dash line indicates that the input symbol is outside the target circle. In the same figure, the output symbol whose horizontal axis is the distance from the origin of the output symbol is smaller than 1, that is, the output symbol that is inside the target circle (unit circle) of radius 1 has the symbol movement amount of the vertical axis. Since it takes a positive value, it can be seen that it moves in the direction outside the unit circle. In contrast, an output symbol having an output symbol distance greater than 1 and outside the unit circle moves to the inside of the unit circle because the symbol movement amount has a negative value. Further, it can be seen that an output symbol having an output symbol distance of 1, that is, an output symbol originally on the unit circle does not move because the symbol movement amount is zero “0”.
 フィルタ係数更新部245、246は、このような処理を逐次的に実行することにより、全ての出力シンボルが単位円上に位置するようにフィルタ係数を更新する。 The filter coefficient updating units 245 and 246 update filter coefficients so that all output symbols are located on the unit circle by sequentially executing such processing.
 また図8から、単位円の外側にあった出力シンボル移動量は、単位円の内側にあった出力シンボルよりも、非常に大きいことがわかる。このことは、単位円の外側にある出力シンボルに対しては単位円の内側の方向に移動させる強い力が作用することを意味している。出力シンボルは光雑音により理想シンボル点の周りに均等に分布しているが、フィルタ係数の更新処理によって全体としては出力シンボルを内側の方向に移動させる力が働くことになる。そのため、上述した関連する偏光分離部240を用いる場合、以下に述べる問題がある。 Also, it can be seen from FIG. 8 that the output symbol movement amount outside the unit circle is much larger than the output symbol inside the unit circle. This means that a strong force to move in the direction inside the unit circle acts on the output symbols outside the unit circle. Although the output symbols are evenly distributed around the ideal symbol point due to optical noise, a force for moving the output symbol in the inner direction acts as a whole by the update process of the filter coefficient. Therefore, when the related polarization separation unit 240 described above is used, there is a problem described below.
 図9A、9Bに、関連する光受信器200におけるディジタル信号処理によって得られる光信号のコンスタレーション図の一例を示す。光信号の変調方式としてQPSK方式を用いた。図9Aは、光SN(Signal to Noise)比が15dBの場合、図9Bは光SN比が10dBの場合である。 FIGS. 9A and 9B show examples of constellation diagrams of optical signals obtained by digital signal processing in the related optical receiver 200. FIG. The QPSK method was used as the optical signal modulation method. FIG. 9A shows a case where the optical SN (Signal to Noise) ratio is 15 dB, and FIG. 9B shows a case where the optical SN ratio is 10 dB.
 上述したように関連する光受信器200が備える偏光分離部240においては、上述の式(2)~(4)に基づいてフィルタ係数を更新する。このとき、図9A、9Bに示すように、受信光信号の光SN比が低い場合、シンボル点の中心が理想シンボル点(同図中の記号「+」)から大きく外れ、フィルタ係数の更新に用いる誤差関数(上述の式(1))の期待値がゼロとならないことがわかる。その結果、フィルタ部241~244のフィルタ係数は光伝送路やフロントエンドの伝達関数の逆特性を正しく表さないため、フィルタ係数から光伝送路の情報を正しく抽出することができないという問題があった。 As described above, in the polarization separation unit 240 included in the related optical receiver 200, the filter coefficient is updated based on the above formulas (2) to (4). At this time, as shown in FIGS. 9A and 9B, when the optical S / N ratio of the received optical signal is low, the center of the symbol point greatly deviates from the ideal symbol point (symbol “+” in the figure), and the filter coefficient is updated. It can be seen that the expected value of the error function used (the above formula (1)) is not zero. As a result, the filter coefficients of the filter units 241 to 244 do not correctly represent the reverse characteristics of the transfer function of the optical transmission line or the front end, and thus there is a problem that the information of the optical transmission line cannot be correctly extracted from the filter coefficient. It was.
 このように、定包絡線アルゴリズム(CMA)によってフィルタ係数を更新する関連する偏光分離器を用いると、受信光信号の光SN比が低い場合、再生した受信光信号のコンスタレーションの歪が大きくなる、という問題があった。 As described above, when the related polarization separator that updates the filter coefficient by the constant envelope algorithm (CMA) is used, when the optical S / N ratio of the received optical signal is low, the distortion of the constellation of the reproduced received optical signal becomes large. There was a problem.
 本発明の目的は、上述した課題である、定包絡線アルゴリズム(CMA)によってフィルタ係数を更新する偏光分離器を用いると、受信光信号の光SN比が低い場合、再生した受信光信号のコンスタレーションの歪が大きくなる、という課題を解決する等化器、それを用いた偏光分離器、および等化方法を提供することにある。 An object of the present invention is to use a polarization separator that updates a filter coefficient by a constant envelope algorithm (CMA), which is the above-mentioned problem, and when a received optical signal has a low optical signal-to-noise ratio, a constellation of a reproduced received optical signal. It is an object of the present invention to provide an equalizer, a polarization separator using the equalizer, and an equalization method that can solve the problem that the distortion of the modulation increases.
 本発明の等化器は、フィルタ係数に基づいてフィルタ処理を行うフィルタ手段と、フィルタ手段の出力信号の包絡線が一定となるようにフィルタ係数を更新するフィルタ係数更新手段を有し、フィルタ係数更新手段は、出力信号から、出力信号のコンスタレーション上の位置である出力シンボルとコンスタレーション上の原点との距離である出力シンボル距離を算出し、第1のフィルタ係数を用いて取得した出力信号から算出した第1の出力シンボル距離と、第1のフィルタ係数を更新した第2のフィルタ係数を用いて取得した出力信号から算出した第2の出力シンボル距離との差である出力シンボル移動量を算出し、第1の出力シンボル距離に対する出力シンボル移動量の変化が、第1の出力シンボル距離の所定の目標値を中心として点対称となるようにフィルタ係数の更新量を算出する。 The equalizer of the present invention has filter means for performing filter processing based on the filter coefficient, and filter coefficient update means for updating the filter coefficient so that the envelope of the output signal of the filter means becomes constant. The update means calculates an output symbol distance that is a distance between an output symbol that is a position on the constellation of the output signal and an origin on the constellation from the output signal, and an output signal that is obtained using the first filter coefficient An output symbol movement amount that is a difference between the first output symbol distance calculated from the above and the second output symbol distance calculated from the output signal acquired using the second filter coefficient obtained by updating the first filter coefficient The change of the output symbol movement amount with respect to the first output symbol distance is calculated with a predetermined target value of the first output symbol distance as a center. Such that referred calculates the update amount of filter coefficients.
 また、本発明の等化器は、フィルタ係数に基づいてフィルタ処理を行うフィルタ手段と、 フィルタ手段の出力信号の包絡線が一定となるようにフィルタ係数を更新するフィルタ係数更新手段を有し、フィルタ係数更新手段は、出力信号の関数であって、出力信号の絶対値が出力信号の振幅の所定の目標値と等しくなる点を中心とする点対称な関数を用いてフィルタ係数の更新量を算出する。      
 本発明の偏光分離器は、偏光多重信号光を構成する第1の受信光と、第1の受信光の偏光方向と直交する偏光方向を有する第2の受信光を、それぞれ光電変換した第1の受信信号と第2の受信信号を入力し、フィルタ係数に基づいてフィルタ処理を行うフィルタ手段と、フィルタ手段の出力信号の包絡線が一定となるようにフィルタ係数を更新するフィルタ係数更新手段を有し、フィルタ係数更新手段は、出力信号から、出力信号のコンスタレーション上の位置である出力シンボルとコンスタレーション上の原点との距離である出力シンボル距離を算出し、第1のフィルタ係数を用いて取得した出力信号から算出した第1の出力シンボル距離と、第1のフィルタ係数を更新した第2のフィルタ係数を用いて取得した出力信号から算出した第2の出力シンボル距離との差である出力シンボル移動量を算出し、第1の出力シンボル距離に対する出力シンボル移動量の変化が、第1の出力シンボル距離の所定の目標値を中心として点対称となるようにフィルタ係数の更新量を算出する。
Further, the equalizer of the present invention has filter means for performing filter processing based on the filter coefficient, and filter coefficient update means for updating the filter coefficient so that the envelope of the output signal of the filter means becomes constant, The filter coefficient updating means is a function of the output signal, and uses a point-symmetric function centered at a point at which the absolute value of the output signal is equal to a predetermined target value of the amplitude of the output signal, to update the update amount of the filter coefficient calculate.
The polarization separator of the present invention is a first that photoelectrically converts the first received light constituting the polarization multiplexed signal light and the second received light having a polarization direction orthogonal to the polarization direction of the first received light. Filter means for inputting the received signal and the second received signal and performing filter processing based on the filter coefficient, and filter coefficient updating means for updating the filter coefficient so that the envelope of the output signal of the filter means becomes constant And a filter coefficient updating unit calculates an output symbol distance which is a distance between an output symbol which is a position on the constellation of the output signal and an origin on the constellation from the output signal, and uses the first filter coefficient. Calculated from the output signal acquired using the first output symbol distance calculated from the output signal acquired in this step and the second filter coefficient updated from the first filter coefficient. An output symbol movement amount that is a difference from the output symbol distance is calculated, and a change in the output symbol movement amount with respect to the first output symbol distance is point-symmetric about a predetermined target value of the first output symbol distance. Then, the update amount of the filter coefficient is calculated.
 本発明の等化方法は、入力信号に対して、フィルタ係数に基づいてフィルタ処理を行うことにより出力信号を出力し、出力信号から、出力信号のコンスタレーション上の位置である出力シンボルとコンスタレーション上の原点との距離である出力シンボル距離を算出し、第1のフィルタ係数を用いて取得した出力信号から算出した第1の出力シンボル距離と、第1のフィルタ係数を更新した第2のフィルタ係数を用いて取得した出力信号から算出した第2の出力シンボル距離との差である出力シンボル移動量を算出し、第1の出力シンボル距離に対する出力シンボル移動量の変化が、第1の出力シンボル距離の所定の目標値を中心として点対称となるようにフィルタ係数の更新量を算出する。 The equalization method of the present invention outputs an output signal by performing a filtering process on an input signal based on a filter coefficient, and outputs a constellation from an output signal that is a position on the constellation of the output signal. The output symbol distance, which is the distance from the upper origin, is calculated, and the first output symbol distance calculated from the output signal acquired using the first filter coefficient and the second filter in which the first filter coefficient is updated An output symbol movement amount that is a difference from the second output symbol distance calculated from the output signal acquired using the coefficient is calculated, and a change in the output symbol movement amount with respect to the first output symbol distance is the first output symbol. The update amount of the filter coefficient is calculated so as to be point-symmetric about a predetermined target value of distance.
 また、本発明の等化方法は、入力信号に対して、フィルタ係数に基づいてフィルタ処理を行うことにより出力信号を出力し、出力信号の関数であって、出力信号の絶対値が出力信号の振幅の所定の目標値と等しくなる点を中心とする点対称な関数が、出力信号に対してとる関数の値を算出し、関数の値に、入力信号を2乗ノルムで正規化した値と、出力信号の複素共役をノルムで正規化した値とを乗算することによりフィルタ係数の更新量を算出し、フィルタ係数に更新量を加算した値を更新フィルタ係数とし、更新フィルタ係数を用いてフィルタ処理を行う。 Also, the equalization method of the present invention outputs an output signal by performing filtering on the input signal based on the filter coefficient, and is an output signal function, where the absolute value of the output signal is the output signal. A point-symmetric function centered on a point equal to a predetermined target value of amplitude calculates the value of the function taken for the output signal, and the value obtained by normalizing the input signal with the square norm The filter coefficient update amount is calculated by multiplying the complex conjugate of the output signal by the norm normalized value, and the value obtained by adding the update amount to the filter coefficient is used as the update filter coefficient. Process.
 本発明の等化器、それを用いた偏光分離器、および等化方法によれば、定包絡線アルゴリズム(CMA)によってフィルタ係数を更新する偏光分離器を用いた場合であっても、受信光信号の光SN比によらず、再生した受信光信号のコンスタレーションの歪を小さくすることができる。 According to the equalizer of the present invention, the polarization separator using the same, and the equalization method, even if the polarization separator that updates the filter coefficient by the constant envelope algorithm (CMA) is used, the received light Regardless of the optical signal-to-noise ratio of the signal, the constellation distortion of the reproduced received optical signal can be reduced.
本発明の実施形態に係る等化器の構成を示すブロック図である。It is a block diagram which shows the structure of the equalizer which concerns on embodiment of this invention. 本発明の実施形態に係る等化器におけるフィルタ係数の更新処理を説明するためのフローチャートである。It is a flowchart for demonstrating the update process of the filter coefficient in the equalizer which concerns on embodiment of this invention. 本発明の実施形態に係る等化器を用いた場合における、出力シンボル距離に対する出力シンボルの移動量の変化を示す図である。It is a figure which shows the change of the moving amount | distance of the output symbol with respect to an output symbol distance at the time of using the equalizer which concerns on embodiment of this invention. 本発明の実施形態に係る偏光分離器を用いた場合における受信光信号のコンスタレーション図であり、光SN比が15dBの場合である。It is a constellation figure of the received optical signal at the time of using the polarization separator concerning the embodiment of the present invention, and is a case where optical SN ratio is 15 dB. 本発明の実施形態に係る偏光分離器を用いた場合における受信光信号のコンスタレーション図であり、光SN比が10dBの場合である。It is a constellation figure of the received optical signal at the time of using the polarization separator concerning the embodiment of the present invention, and is a case where optical SN ratio is 10 dB. 光ディジタルコヒーレント通信方式による光通信システムに用いられる関連する光受信器の構成を示すブロック図である。It is a block diagram which shows the structure of the related optical receiver used for the optical communication system by an optical digital coherent communication system. 関連する光受信器に用いられる関連する偏光分離部の構成を示すブロック図である。It is a block diagram which shows the structure of the related polarization separation part used for a related optical receiver. 関連する偏光分離部におけるフィルタ係数の更新処理を説明するためのフローチャートである。It is a flowchart for demonstrating the update process of the filter coefficient in a related polarization separation part. 関連する偏光分離部を用いた場合における、出力シンボル距離に対する出力シンボルの移動量の変化を示す図である。It is a figure which shows the change of the moving amount | distance of the output symbol with respect to an output symbol distance in the case of using a related polarization separation part. 関連する光受信器によって得られる受信光信号のコンスタレーション図であり、光SN比が15dBの場合である。FIG. 4 is a constellation diagram of a received optical signal obtained by a related optical receiver, in which the optical SN ratio is 15 dB. 関連する光受信器によって得られる受信光信号のコンスタレーション図であり、光SN比が10dBの場合である。FIG. 7 is a constellation diagram of a received optical signal obtained by a related optical receiver, in which the optical SN ratio is 10 dB.
 以下に、図面を参照しながら、本発明の実施形態について説明する。 Hereinafter, embodiments of the present invention will be described with reference to the drawings.
 図1は、本発明の実施形態に係る等化器100の構成を示すブロック図である。等化器100は、フィルタ係数に基づいてフィルタ処理を行うフィルタ手段111~114と、フィルタ手段111~114の出力信号の包絡線が一定となるようにフィルタ係数を更新するフィルタ係数更新手段121、122を有する。すなわち、フィルタ係数更新手段121、122はフィルタ係数を更新するためのアルゴリズムとして、定包絡線アルゴリズム(Constant Modulus Algorithm:CMA)を用いる。 FIG. 1 is a block diagram showing a configuration of an equalizer 100 according to an embodiment of the present invention. The equalizer 100 includes filter means 111 to 114 that perform filter processing based on the filter coefficient, and filter coefficient update means 121 that updates the filter coefficient so that the envelopes of the output signals of the filter means 111 to 114 are constant. 122. That is, the filter coefficient updating means 121 and 122 uses a constant envelope algorithm (Constant Modulus Algorithm: CMA) as an algorithm for updating the filter coefficient.
 フィルタ係数更新手段121、122は、フィルタ手段111~114の出力信号から、出力信号のコンスタレーション上の位置である出力シンボルとコンスタレーション上の原点との距離である出力シンボル距離を算出する。ここで、第1のフィルタ係数を用いて取得した出力信号から算出した第1の出力シンボル距離と、第1のフィルタ係数を更新した後の第2のフィルタ係数を用いて取得した出力信号から算出した第2の出力シンボル距離との差である出力シンボル移動量を算出する。そして、この出力シンボル移動量の第1の出力シンボル距離に対する変化が、第1の出力シンボル距離の所定の目標値を中心として点対称となるようにフィルタ係数の更新量を算出する。 The filter coefficient updating means 121 and 122 calculate an output symbol distance which is a distance between an output symbol which is a position on the constellation of the output signal and an origin on the constellation, from the output signals of the filter means 111 to 114. Here, the first output symbol distance calculated from the output signal acquired using the first filter coefficient and the output signal acquired using the second filter coefficient after updating the first filter coefficient An output symbol movement amount that is a difference from the second output symbol distance is calculated. Then, the filter coefficient update amount is calculated so that the change of the output symbol movement amount with respect to the first output symbol distance is point-symmetric about a predetermined target value of the first output symbol distance.
 このような構成としたことにより、本実施形態の等化器100によれば、所定の目標値に対する出力シンボル距離の大小関係にかかわらず、出力シンボル移動量が等しくなるようにフィルタ係数を更新することができる。その結果、出力信号のコンスタレーションの歪を小さくすることができる。 With this configuration, according to the equalizer 100 of the present embodiment, the filter coefficient is updated so that the output symbol movement amount becomes equal regardless of the magnitude relationship of the output symbol distance with respect to the predetermined target value. be able to. As a result, the constellation distortion of the output signal can be reduced.
 また、本実施形態の等化器100に、偏光多重信号光を受信して取得した受信信号を入力することにより、等化器100を偏光分離器として用いることができる。すなわち、フィルタ手段111~114は、偏光多重信号光を構成する第1の受信光と、第1の受信光の偏光方向と直交する偏光方向を有する第2の受信光を、それぞれ光電変換した第1の受信信号と第2の受信信号を入力する構成とすることができる。そして、この偏光分離器を図5に示した関連する光受信器200の偏光分離部240として用いることができる。 Also, the equalizer 100 can be used as a polarization separator by inputting the received signal obtained by receiving the polarization multiplexed signal light to the equalizer 100 of the present embodiment. That is, the filter means 111 to 114 photoelectrically convert the first received light constituting the polarization multiplexed signal light and the second received light having a polarization direction orthogonal to the polarization direction of the first received light, respectively. One reception signal and a second reception signal can be input. The polarization separator can be used as the polarization separator 240 of the related optical receiver 200 shown in FIG.
 この場合にも上述と同様の効果が得られる。すなわち、定包絡線アルゴリズム(CMA)によってフィルタ係数を更新する偏光分離器を用いた場合であっても、受信光信号の光SN比によらず、再生した受信光信号のコンスタレーションの歪を小さくすることができる。 In this case, the same effect as described above can be obtained. That is, even when a polarization separator that updates the filter coefficient by a constant envelope algorithm (CMA) is used, the constellation distortion of the reproduced received optical signal is reduced regardless of the optical SN ratio of the received optical signal. can do.
 次に、本実施形態による等化器100の動作について説明する。等化器100が備えるフィルタ手段111~114は各フィルタ手段に独立に設定されたフィルタ係数を用いて、入力信号1および入力信号2に対してそれぞれフィルタリング処理を実施する。その後、フィルタ手段111とフィルタ手段113の出力の和を出力信号1とし、フィルタ手段112とフィルタ手段114の出力の和を出力信号2として出力する。なおフィルタ手段111~114には、一般的なFIR(Finite Impulse Response:有限インパルス応答)フィルタを用いることができる。 Next, the operation of the equalizer 100 according to this embodiment will be described. The filter units 111 to 114 included in the equalizer 100 perform a filtering process on the input signal 1 and the input signal 2 using filter coefficients set independently for each filter unit. Thereafter, the sum of the outputs of the filter unit 111 and the filter unit 113 is set as an output signal 1, and the sum of the outputs of the filter unit 112 and the filter unit 114 is output as an output signal 2. As the filter means 111 to 114, a general FIR (Finite Impulse Response) filter can be used.
 フィルタ係数更新手段121はCMAアルゴリズムに従ってフィルタ手段111およびフィルタ手段113のフィルタ係数を更新する。同様に、フィルタ係数更新手段122はCMAアルゴリズムに従ってフィルタ手段112およびフィルタ手段114のフィルタ係数を更新する。 The filter coefficient update means 121 updates the filter coefficients of the filter means 111 and the filter means 113 according to the CMA algorithm. Similarly, the filter coefficient updating unit 122 updates the filter coefficients of the filter unit 112 and the filter unit 114 according to the CMA algorithm.
 次に、CMAを用いてフィルタ係数を更新する処理について説明する。CMAで定義される誤差関数は上述した式(1)と同じである。上述したように、J(W,W)は出力信号1に対する誤差関数であり、J(W,W)は出力信号2に対する誤差関数である。 Next, processing for updating the filter coefficient using CMA will be described. The error function defined by CMA is the same as the equation (1) described above. As described above, J x (W, W H ) is an error function for the output signal 1, and J y (W, W H ) is an error function for the output signal 2.
 フィルタ係数更新手段121は、出力信号1に対する誤差関数Jが最小となるようにフィルタ手段111とフィルタ手段113のフィルタ係数を逐次更新する。またフィルタ係数更新手段122は、出力信号2に対する誤差関数Jが最小となるようにフィルタ手段112とフィルタ手段114のフィルタ係数を逐次更新する。 The filter coefficient updating unit 121 sequentially updates the filter coefficients of the filter unit 111 and the filter unit 113 so that the error function J x for the output signal 1 is minimized. The filter coefficient updating unit 122 sequentially updates the filter coefficients of the filter unit 112 and the filter unit 114 so that the error function J y with respect to the output signal 2 is minimized.
 本実施形態の等化器100におけるフィルタ係数の更新式を下式(5)、(6)に示す。
Figure JPOXMLDOC01-appb-I000005

Figure JPOXMLDOC01-appb-I000006
The following formulas (5) and (6) show the filter coefficient update formulas in the equalizer 100 of the present embodiment.
Figure JPOXMLDOC01-appb-I000005

Figure JPOXMLDOC01-appb-I000006
 図2は、本実施形態の等化器100におけるフィルタ係数を更新する処理を説明するためのフローチャートである。 FIG. 2 is a flowchart for explaining the process of updating the filter coefficient in the equalizer 100 of the present embodiment.
 フィルタ係数更新手段121、122はまず、上式(6)で表されるコスト関数fが出力信号に対してとる関数の値を計算する(ステップS100)。ここでコスト関数fは出力信号E’の関数であり、出力信号E’の絶対値が出力信号の振幅の目標値rと等しくなる点(|E |=r)を中心とする点対称な関数である。すなわち、フィルタ係数更新手段121、122は、出力信号の関数であって、出力信号の絶対値が出力信号の振幅の目標値と等しくなる点を中心とする点対称な関数を用いてフィルタ係数の更新量を算出する。なお、式(6)では、コスト関数fが出力信号E’の2次関数となる場合であって、目標値rを「1」とした場合を示した。 First, the filter coefficient updating means 121 and 122 calculate the value of the function that the cost function f expressed by the above equation (6) takes on the output signal (step S100). Here the cost function f 'is a function of the output signal E m' output signal E m that the absolute value of is equal to the target value r m of the amplitude of the output signal (| E m '| = r m) around the Is a point-symmetric function. That is, the filter coefficient updating means 121, 122 is a function of the output signal, and uses a point-symmetric function centered on a point where the absolute value of the output signal is equal to the target value of the amplitude of the output signal. Calculate the update amount. In formula (6), in a case where the cost function f is a quadratic function of the output signal E m ', showing a case in which the target value r m to "1".
 次に、このときのコスト関数の値に2乗ノルムで正規化した入力信号を乗算する(ステップS200)。さらにノルムで正規化した出力信号の複素共役を乗算(ステップS300)した積に、ステップパラメータを乗じることにより(ステップS400)フィルタ係数の更新量を算出する。そして、フィルタ係数に更新量を加算した値を新たなフィルタ係数(更新フィルタ係数)とし(ステップS500)、この更新フィルタ係数をフィルタ手段111~114に設定する(ステップS600)。以上の処理により、フィルタ係数更新手段121、122はフィルタ手段111~114のフィルタ係数を更新する。 Next, the value of the cost function at this time is multiplied by the input signal normalized by the square norm (step S200). Further, the product obtained by multiplying the complex conjugate of the output signal normalized by the norm (step S300) is multiplied by the step parameter (step S400) to calculate the update amount of the filter coefficient. Then, a value obtained by adding the update amount to the filter coefficient is set as a new filter coefficient (update filter coefficient) (step S500), and this update filter coefficient is set in the filter means 111 to 114 (step S600). Through the above processing, the filter coefficient update means 121 and 122 update the filter coefficients of the filter means 111 to 114.
 ここで、フィルタ手段111~114に偏光多重信号光を光電変換した受信信号を入力することにより、偏光分離した2個の独立した受信信号を分離・抽出することが可能となる。すなわち、本実施形態の等化器を用いた偏光分離器は、多重信号光を構成する第1の受信光と、第1の受信光の偏光方向と直交する偏光方向を有する第2の受信光を、それぞれ光電変換した第1の受信信号と第2の受信信号をフィルタ手段に入力する構成とすることができる。 Here, by inputting a received signal obtained by photoelectrically converting the polarization multiplexed signal light to the filter means 111 to 114, it becomes possible to separate and extract two independent received signals that have been polarized and separated. In other words, the polarization separator using the equalizer of the present embodiment includes the first received light constituting the multiplexed signal light and the second received light having a polarization direction orthogonal to the polarization direction of the first received light. The first received signal and the second received signal that have been photoelectrically converted can be input to the filter means.
 次に、本実施形態の等化器100において、CMAにより更新したフィルタ係数を用いて、出力シンボルを再計算した場合における出力シンボルの変化について説明する。図3は、この場合におけるフィルタ係数更新前の出力シンボルからの移動量(出力シンボル移動量)を、フィルタ係数更新前の出力シンボルの原点からの距離(出力シンボル距離)に対して示したものである。ここで、出力信号の振幅の目標値であるrおよびr(目標円の半径)はそれぞれ「1」とした。 Next, changes in the output symbol when the equalizer 100 according to the present embodiment recalculates the output symbol using the filter coefficient updated by the CMA will be described. FIG. 3 shows the movement amount (output symbol movement amount) from the output symbol before updating the filter coefficient in this case with respect to the distance (output symbol distance) from the origin of the output symbol before updating the filter coefficient. is there. Here, r x and r y (radius of the target circle), which are target values of the amplitude of the output signal, are each “1”.
 図3から、上述の更新式(5)、(6)を用いた本実施形態の等化器100によれば、出力シンボル距離に対する出力シンボル移動量の変化は、目標値r、r(=1)を中心として点対称となることがわかる。すなわち、出力シンボル距離と目標値との差の絶対値が等しければ、出力シンボル移動量の絶対値も等しくなる。そして、出力シンボル距離が目標値よりも大きい場合、出力シンボル移動量は負の値を取ることから出力シンボル距離は減少する。一方、出力シンボル距離が目標値よりも小さい場合、出力シンボル移動量は正の値を取ることから出力シンボル距離は増大する。以上より、出力シンボルは、フィルタ係数を更新する前の出力シンボル距離と目標値との大小関係によらず、均等な移動量で目標値に到達することがわかる。 From FIG. 3, according to the equalizer 100 of the present embodiment using the above update equations (5) and (6), the change of the output symbol movement amount with respect to the output symbol distance is the target values r x , r y ( = 1) It can be seen that the point is symmetric about the center. That is, if the absolute value of the difference between the output symbol distance and the target value is equal, the absolute value of the output symbol movement amount is also equal. When the output symbol distance is larger than the target value, the output symbol distance decreases because the output symbol movement amount takes a negative value. On the other hand, when the output symbol distance is smaller than the target value, the output symbol distance increases because the output symbol movement amount takes a positive value. From the above, it can be seen that the output symbol reaches the target value with an equal amount of movement regardless of the magnitude relationship between the output symbol distance before the filter coefficient is updated and the target value.
 それに対して、上述した関連する偏光分離部240で用いられているCMAによるフィルタ係数の更新式(式(2)~(4))を採用した場合、出力シンボルの移動量は図8に示したように、目標値(r、r=1)に関して点対称とはならない。つまり、この場合は、出力シンボルの原点からの距離と目標値の誤差が正である場合の方が、負である場合よりも、出力シンボルの移動量の絶対値が大きくなる。そのため、図9A、Bに示すように、コンスタレーションの歪みが大きくなる、という問題があった。 On the other hand, when the filter coefficient updating formulas (formulas (2) to (4)) by the CMA used in the related polarization separation unit 240 are employed, the movement amount of the output symbol is shown in FIG. Thus, the target value (r x , r y = 1) is not point symmetric. That is, in this case, the absolute value of the movement amount of the output symbol is greater when the error between the distance from the origin of the output symbol and the target value is positive than when it is negative. Therefore, as shown in FIGS. 9A and 9B, there is a problem that distortion of the constellation increases.
 しかしながら、本実施形態による等化器100においては、上述の式(5)、(6)で示したフィルタ係数の更新式を用いている。この場合には上述したように、出力シンボルの移動量は、出力シンボルの原点からの距離と目標値の誤差の正負に関して点対称となる。そのため、単位円(半径1の目標円)の内側にある出力シンボルがフィルタ係数の更新処理により単位円上に移動するように働く力と、単位円の外側にある出力シンボルが単位円上に移動するように働く力は、更新処理が収束した安定時にはゼロとなる。そのため、出力シンボルの平均の位置は理想シンボル点とほぼ同一となる。 However, in the equalizer 100 according to the present embodiment, the filter coefficient update formulas shown in the above formulas (5) and (6) are used. In this case, as described above, the amount of movement of the output symbol is point-symmetric with respect to the distance from the origin of the output symbol and the sign of the target value error. Therefore, the force that works so that the output symbol inside the unit circle (target circle with radius 1) moves on the unit circle by the filter coefficient update process, and the output symbol outside the unit circle moves on the unit circle The force that works is zero when the update process is stable. Therefore, the average position of output symbols is almost the same as the ideal symbol point.
 図4A、Bに、本実施形態による偏光分離器を用いた場合における、受信光信号のコンスタレーション図の一例を示す。光信号の変調方式としてQPSK方式を用いた。図4Aは、光SN比が15dBの場合、図4Bは光SN比が10dBの場合である。 FIGS. 4A and 4B show examples of constellation diagrams of received optical signals when the polarization separator according to the present embodiment is used. The QPSK method was used as the optical signal modulation method. 4A shows a case where the optical SN ratio is 15 dB, and FIG. 4B shows a case where the optical SN ratio is 10 dB.
 上述したように、本実施形態による偏光分離器においては、上述したフィルタ係数の更新式(式(5)、(6))に基づいてフィルタ係数を更新する。図4A、Bから、受信光信号の光SN比によらず、理想シンボル点はシンボル分布のほぼ中心に位置し、歪みの小さいコンスタレーションが得られることがわかる。 As described above, in the polarization separator according to the present embodiment, the filter coefficient is updated based on the above-described filter coefficient update formulas (formulas (5) and (6)). 4A and 4B, it can be seen that the ideal symbol point is located substantially at the center of the symbol distribution regardless of the optical signal-to-noise ratio of the received optical signal, and a constellation with small distortion is obtained.
 以上説明したように、本実施形態による等化器、それを用いた偏光分離器、および等化方法によれば、定包絡線アルゴリズム(CMA)によってフィルタ係数を更新する偏光分離器を用いた場合であっても、受信光信号の光SN比によらず、再生した受信光信号のコンスタレーションの歪を小さくすることができる。 As described above, according to the equalizer according to the present embodiment, the polarization separator using the equalizer, and the equalization method, the polarization separator that updates the filter coefficient by the constant envelope algorithm (CMA) is used. Even so, the constellation distortion of the regenerated received optical signal can be reduced regardless of the optical signal-to-noise ratio of the received optical signal.
 上述した説明においては、フィルタ係数の更新式として式(6)に示した出力信号E’の2次関数を用いることとした。しかしこれに限らず、フィルタ係数の更新式に用いるコスト関数fは、出力信号E’の関数であり、出力信号E’の絶対値が出力信号の振幅の目標値rと等しくなる点(|E |=r)を中心とする点対称な関数であればよい。例えば、コスト関数f(E ,r)として、f(E ,r)=-aE’+arのような傾きが「-a」である一次関数を用いることもできる。さらに、これらのコスト関数を用いる更新式に限らず、出力シンボル距離に対する出力シンボル移動量の変化が、目標値を中心として点対称となるようにフィルタ係数の更新量を算出することができるフィルタ係数の更新式を用いることができる。 In the above description, the quadratic function of the output signal E m ′ shown in Expression (6) is used as the filter coefficient update expression. But not limited to this, the cost function f used in the update equation of the filter coefficients, 'is a function of the output signal E m' output signal E m that the absolute value of is equal to the target value r m of the amplitude of the output signal Any function that is point-symmetric about (| E m | = r m ) may be used. For example, as the cost function f (E m , r m ), a linear function having a slope “−a” such as f (E m , r m ) = − aE m ′ + ar m may be used. Furthermore, not only the update formula using these cost functions, but also the filter coefficient that can calculate the update amount of the filter coefficient so that the change of the output symbol movement amount with respect to the output symbol distance is point-symmetric about the target value The update formula can be used.
 また、フィルタ係数の更新式として、目標値の周りの出力シンボルの移動量の傾き(微分値)が大きい更新式を用いることとしてもよい。これにより、最適フィルタ係数の変動に対して敏感に適応することが可能となり、偏光分離器における偏光分離処理の収束に要する時間を短縮することができる。 Further, as an update formula for the filter coefficient, an update formula having a large gradient (differential value) of the movement amount of the output symbol around the target value may be used. As a result, it becomes possible to adapt sensitively to fluctuations in the optimum filter coefficient, and it is possible to shorten the time required for convergence of the polarization separation processing in the polarization separator.
 なお、フィルタ係数の更新式は、偏光分離処理の開始時点から運用時まで同一の更新式を用いる必要は無い。開始時点から安定するまでに要求される高速性、運用時に要求される安定性など、それぞれの状況に適した更新式を用いることができる。例えば、フィルタ係数の更新量を算出する際に、コスト関数として二以上の異なる関数を切り換えて用いることとしてもよい。これにより、本実施形態の等化器および、それを用いた偏光分離器を含むシステムを最適化することが可能である。 Note that the filter coefficient update formula need not use the same update formula from the start of polarization separation processing until operation. It is possible to use an update formula suitable for each situation, such as high speed required from the start time to stabilization and stability required during operation. For example, when calculating the update amount of the filter coefficient, two or more different functions may be switched and used as the cost function. Thereby, it is possible to optimize the system including the equalizer of the present embodiment and the polarization separator using the equalizer.
 上述の実施形態による偏光分離器においては、光信号の変調方式としてQPSK方式を用いた場合を例として説明した。しかし、これに限らず、他の変調方式による光信号を用いる場合であっても、CMAにより偏光分離することが可能な光信号に対しては、本実施形態の偏光分離器を適用することが可能である。 In the polarization separator according to the above-described embodiment, the case where the QPSK method is used as the optical signal modulation method has been described as an example. However, the present invention is not limited to this, and the polarization separator of the present embodiment can be applied to an optical signal that can be polarized and separated by CMA even when an optical signal of another modulation method is used. Is possible.
 例えば、8QAM、16QAM等の偏光多重QAM信号に対しても、RDE(Radius Directed Equalization)方式を用いて偏光分離できることが知られている(例えば、非特許文献1参照)。このRDE方式は、複数の目標値を有するCMA方式として特徴付けられるので、本実施形態による偏光分離器を適用することができる。 For example, it is known that polarization-demultiplexed QAM signals such as 8QAM and 16QAM can be polarized and separated using an RDE (Radius Directed Equalization) method (see, for example, Non-Patent Document 1). Since this RDE method is characterized as a CMA method having a plurality of target values, the polarization separator according to the present embodiment can be applied.
 偏光分離アルゴリズムとして、このような複数の目標値を有するRDEを用いる場合、出力シンボルの原点からの距離に応じて複数の目標値の中から何れか一つ(個別目標値)を選択する。そして、出力シンボルの原点からの距離と選択された個別目標値との誤差に基づいて、フィルタ係数の更新量を演算する。そしてこのとき、出力シンボルの移動量がそれぞれの個別目標値に関して点対称となるように、フィルタ係数の更新量を演算する構成とすることができる。 When an RDE having a plurality of target values is used as the polarization separation algorithm, one (individual target value) is selected from a plurality of target values according to the distance from the origin of the output symbol. Then, the update amount of the filter coefficient is calculated based on the error between the distance from the origin of the output symbol and the selected individual target value. At this time, the update amount of the filter coefficient can be calculated so that the movement amount of the output symbol is point-symmetric with respect to each individual target value.
 以上に説明したように、QPSK以外の変調方式を用いる場合においても、本実施形態の偏光分離器を適用することにより、再生した受信光信号のコンスタレーションの歪を小さくすることができる。 As described above, even when a modulation method other than QPSK is used, by applying the polarization separator of this embodiment, the constellation distortion of the reproduced received optical signal can be reduced.
 また、出力シンボルが理想シンボル点から大きく離れている場合は、出力シンボルに大きな光雑音が付加されている可能性が高い。したがって、このような出力シンボルに対しては、フィルタ係数を更新する処理は実施しないとすることにより、光雑音の影響をさらに低減することが可能となる。具体的には例えば、第1のフィルタ係数を用いて取得した出力シンボルと理想シンボル点との距離である出力シンボル離間距離が、所定値よりも小さい場合は、算出したフィルタ係数の更新量を用いて第1のフィルタ係数を更新する。一方、出力シンボル離間距離が所定値以上である場合は、算出したフィルタ係数の更新量を用いて第1のフィルタ係数を更新する処理は行わない、こととすることができる。 Also, if the output symbol is far away from the ideal symbol point, there is a high possibility that large optical noise is added to the output symbol. Therefore, the effect of optical noise can be further reduced by not performing the process of updating the filter coefficient for such output symbols. Specifically, for example, when the output symbol separation distance, which is the distance between the output symbol acquired using the first filter coefficient and the ideal symbol point, is smaller than a predetermined value, the calculated update amount of the filter coefficient is used. To update the first filter coefficient. On the other hand, when the output symbol separation distance is equal to or greater than the predetermined value, the process of updating the first filter coefficient using the calculated update amount of the filter coefficient may not be performed.
 本発明は上記実施形態に限定されることなく、請求の範囲に記載した発明の範囲内で、種々の変形が可能であり、それらも本発明の範囲内に含まれるものであることはいうまでもない。 The present invention is not limited to the above-described embodiment, and various modifications are possible within the scope of the invention described in the claims, and it goes without saying that these are also included in the scope of the present invention. Nor.
 この出願は、2013年6月14日に出願された日本出願特願2013-125513を基礎とする優先権を主張し、その開示の全てをここに取り込む。 This application claims priority based on Japanese Patent Application No. 2013-125513 filed on June 14, 2013, the entire disclosure of which is incorporated herein.
 100  等化器
 111~114  フィルタ手段
 121、122  フィルタ係数更新手段
 200  関連する光受信器
 210  90度ハイブリッド
 221~224  光ディテクタ
 231~234  アナログ-ディジタル変換器(ADC)
 240  偏光分離部
 241~244  フィルタ部
 245、246  フィルタ係数更新部
 251、252  光搬送波周波数偏差・光位相偏差補償部
 261、262  シンボル識別部
DESCRIPTION OF SYMBOLS 100 Equalizer 111-114 Filter means 121, 122 Filter coefficient update means 200 Related optical receiver 210 90 degree hybrid 221-224 Optical detector 231-234 Analog-digital converter (ADC)
240 Polarization Separation Units 241 to 244 Filter Units 245, 246 Filter Coefficient Update Units 251, 252 Optical Carrier Frequency Deviation / Optical Phase Deviation Compensation Units 261, 262 Symbol Identification Units

Claims (10)

  1. フィルタ係数に基づいてフィルタ処理を行うフィルタ手段と、
     前記フィルタ手段の出力信号の包絡線が一定となるように前記フィルタ係数を更新するフィルタ係数更新手段を有し、
     前記フィルタ係数更新手段は、
      前記出力信号から、前記出力信号のコンスタレーション上の位置である出力シンボルとコンスタレーション上の原点との距離である出力シンボル距離を算出し、
      第1のフィルタ係数を用いて取得した前記出力信号から算出した第1の出力シンボル距離と、前記第1のフィルタ係数を更新した第2のフィルタ係数を用いて取得した前記出力信号から算出した第2の出力シンボル距離との差である出力シンボル移動量を算出し、
      前記第1の出力シンボル距離に対する前記出力シンボル移動量の変化が、前記第1の出力シンボル距離の所定の目標値を中心として点対称となるように前記フィルタ係数の更新量を算出する
     等化器。
    Filter means for performing filtering based on the filter coefficient;
    Filter coefficient updating means for updating the filter coefficient so that the envelope of the output signal of the filter means is constant;
    The filter coefficient update means includes
    From the output signal, an output symbol distance that is a distance between an output symbol that is a position on the constellation of the output signal and an origin on the constellation is calculated,
    The first output symbol distance calculated from the output signal acquired using the first filter coefficient and the output signal calculated from the output signal acquired using the second filter coefficient obtained by updating the first filter coefficient. 2 calculates an output symbol movement amount that is a difference from the output symbol distance of 2;
    An update amount of the filter coefficient is calculated such that a change in the output symbol movement amount with respect to the first output symbol distance is point-symmetric about a predetermined target value of the first output symbol distance. .
  2. 請求項1に記載した等化器において、
     前記目標値は、異なる複数の個別目標値を含み、
     前記フィルタ係数更新手段は、前記第1の出力シンボル距離に基づいて一の前記個別目標値を選択し、前記第1の出力シンボル距離に対する前記出力シンボル移動量の変化が、選択した前記個別目標値を中心として点対称となるように前記フィルタ係数の更新量を算出する
     等化器。
    The equalizer of claim 1,
    The target value includes a plurality of different individual target values,
    The filter coefficient updating means selects one individual target value based on the first output symbol distance, and a change in the output symbol movement amount with respect to the first output symbol distance is the selected individual target value. An equalizer that calculates an update amount of the filter coefficient so as to be point-symmetric with respect to.
  3. フィルタ係数に基づいてフィルタ処理を行うフィルタ手段と、
     前記フィルタ手段の出力信号の包絡線が一定となるように前記フィルタ係数を更新するフィルタ係数更新手段を有し、
     前記フィルタ係数更新手段は、前記出力信号の関数であって、前記出力信号の絶対値が前記出力信号の振幅の所定の目標値と等しくなる点を中心とする点対称な関数を用いて前記フィルタ係数の更新量を算出する
     等化器。
    Filter means for performing filtering based on the filter coefficient;
    Filter coefficient updating means for updating the filter coefficient so that the envelope of the output signal of the filter means is constant;
    The filter coefficient updating means is a function of the output signal, and uses the point symmetric function centered on a point where the absolute value of the output signal is equal to a predetermined target value of the amplitude of the output signal. An equalizer that calculates the amount of coefficient updates.
  4. 請求項3に記載した等化器において、
     前記関数は、2次関数である
     等化器。
    The equalizer according to claim 3, wherein
    The function is a quadratic function equalizer.
  5. 請求項3に記載した等化器において、
     前記関数は、1次関数である
     等化器。
    The equalizer according to claim 3, wherein
    The function is a linear function equalizer.
  6. 偏光多重信号光を構成する第1の受信光と、前記第1の受信光の偏光方向と直交する偏光方向を有する第2の受信光を、それぞれ光電変換した第1の受信信号と第2の受信信号を入力し、フィルタ係数に基づいてフィルタ処理を行うフィルタ手段と、
     前記フィルタ手段の出力信号の包絡線が一定となるように前記フィルタ係数を更新するフィルタ係数更新手段を有し、
     前記フィルタ係数更新手段は、
      前記出力信号から、前記出力信号のコンスタレーション上の位置である出力シンボルとコンスタレーション上の原点との距離である出力シンボル距離を算出し、
      第1のフィルタ係数を用いて取得した前記出力信号から算出した第1の出力シンボル距離と、前記第1のフィルタ係数を更新した第2のフィルタ係数を用いて取得した前記出力信号から算出した第2の出力シンボル距離との差である出力シンボル移動量を算出し、
      前記第1の出力シンボル距離に対する前記出力シンボル移動量の変化が、前記第1の出力シンボル距離の所定の目標値を中心として点対称となるように前記フィルタ係数の更新量を算出する
     偏光分離器。
    The first received light and the second received light obtained by photoelectrically converting the first received light constituting the polarization multiplexed signal light and the second received light having a polarization direction orthogonal to the polarization direction of the first received light, respectively. Filter means for inputting a received signal and performing filter processing based on a filter coefficient;
    Filter coefficient updating means for updating the filter coefficient so that the envelope of the output signal of the filter means is constant;
    The filter coefficient update means includes
    From the output signal, an output symbol distance that is a distance between an output symbol that is a position on the constellation of the output signal and an origin on the constellation is calculated,
    The first output symbol distance calculated from the output signal acquired using the first filter coefficient and the output signal calculated from the output signal acquired using the second filter coefficient obtained by updating the first filter coefficient. 2 calculates an output symbol movement amount that is a difference from the output symbol distance of 2;
    The amount of update of the filter coefficient is calculated so that a change in the amount of movement of the output symbol with respect to the first output symbol distance is point-symmetric about a predetermined target value of the first output symbol distance. .
  7. 入力信号に対して、フィルタ係数に基づいてフィルタ処理を行うことにより出力信号を出力し、
      前記出力信号から、前記出力信号のコンスタレーション上の位置である出力シンボルとコンスタレーション上の原点との距離である出力シンボル距離を算出し、
      第1のフィルタ係数を用いて取得した前記出力信号から算出した第1の出力シンボル距離と、前記第1のフィルタ係数を更新した第2のフィルタ係数を用いて取得した前記出力信号から算出した第2の出力シンボル距離との差である出力シンボル移動量を算出し、
      前記第1の出力シンボル距離に対する前記出力シンボル移動量の変化が、前記第1の出力シンボル距離の所定の目標値を中心として点対称となるように前記フィルタ係数の更新量を算出する
     等化方法。
    An output signal is output by performing a filtering process on the input signal based on the filter coefficient,
    From the output signal, an output symbol distance that is a distance between an output symbol that is a position on the constellation of the output signal and an origin on the constellation is calculated,
    The first output symbol distance calculated from the output signal acquired using the first filter coefficient and the output signal calculated from the output signal acquired using the second filter coefficient obtained by updating the first filter coefficient. 2 calculates an output symbol movement amount that is a difference from the output symbol distance of 2;
    An equalization method for calculating an update amount of the filter coefficient so that a change in the output symbol movement amount with respect to the first output symbol distance is point-symmetric about a predetermined target value of the first output symbol distance .
  8. 請求項7に記載した等化方法において、
     前記第1のフィルタ係数を用いて取得した出力シンボルと理想シンボル点との距離である出力シンボル離間距離が、所定値よりも小さい場合は、前記フィルタ係数の更新量を用いて前記第1のフィルタ係数を更新し、
     前記出力シンボル離間距離が所定値以上である場合は、前記フィルタ係数の更新量を用いて前記第1のフィルタ係数を更新する処理は行わない
     等化方法。
    The equalization method according to claim 7,
    When the output symbol separation distance, which is the distance between the output symbol acquired using the first filter coefficient and the ideal symbol point, is smaller than a predetermined value, the first filter is used using the update amount of the filter coefficient. Update the coefficient,
    If the output symbol separation distance is greater than or equal to a predetermined value, the process of updating the first filter coefficient using the update amount of the filter coefficient is not performed.
  9. 入力信号に対して、フィルタ係数に基づいてフィルタ処理を行うことにより出力信号を出力し、
     前記出力信号の関数であって、前記出力信号の絶対値が前記出力信号の振幅の所定の目標値と等しくなる点を中心とする点対称な関数が、前記出力信号に対してとる前記関数の値を算出し、
     前記関数の値に、前記入力信号を2乗ノルムで正規化した値と、前記出力信号の複素共役をノルムで正規化した値とを乗算することにより前記フィルタ係数の更新量を算出し、
     前記フィルタ係数に前記更新量を加算した値を更新フィルタ係数とし、
     前記更新フィルタ係数を用いて前記フィルタ処理を行う
     等化方法。
    An output signal is output by performing a filtering process on the input signal based on the filter coefficient,
    A function of the output signal, which is a point-symmetric function centered on a point where the absolute value of the output signal is equal to a predetermined target value of the amplitude of the output signal. Calculate the value,
    The update value of the filter coefficient is calculated by multiplying the value of the function by a value obtained by normalizing the input signal with a square norm and a value obtained by normalizing the complex conjugate of the output signal with the norm,
    A value obtained by adding the update amount to the filter coefficient is an update filter coefficient,
    An equalization method for performing the filtering process using the updated filter coefficient.
  10. 請求項9に記載した等化方法において、
     前記フィルタ係数の更新量を算出する際に、前記関数として二以上の異なる関数を切り換えて用いる
     等化方法。
    The equalization method according to claim 9,
    An equalization method that uses two or more different functions as the function when the update amount of the filter coefficient is calculated.
PCT/JP2014/002991 2013-06-14 2014-06-05 Equalizer, polarization separator using same, and equalization method WO2014199601A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015522526A JP6314979B2 (en) 2013-06-14 2014-06-05 Equalizer, polarization separator using the same, and equalization method

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2013125513 2013-06-14
JP2013-125513 2013-06-14

Publications (1)

Publication Number Publication Date
WO2014199601A1 true WO2014199601A1 (en) 2014-12-18

Family

ID=52021918

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/002991 WO2014199601A1 (en) 2013-06-14 2014-06-05 Equalizer, polarization separator using same, and equalization method

Country Status (2)

Country Link
JP (1) JP6314979B2 (en)
WO (1) WO2014199601A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7425165B1 (en) 2022-11-24 2024-01-30 Nttイノベーティブデバイス株式会社 Adaptive equalization circuit, adaptive equalization method, and receiving device

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06120779A (en) * 1992-05-15 1994-04-28 Fujitsu Ltd Adaptive reception circuit
US6337878B1 (en) * 1999-03-03 2002-01-08 Nxt Wave Communications Adaptive equalizer with decision directed constant modulus algorithm
JP2002280941A (en) * 2001-03-19 2002-09-27 Toshiba Corp Adaptive equalizer, receiver and tap coefficient calculation method
JP2010109705A (en) * 2008-10-30 2010-05-13 Fujitsu Ltd Optical transmission and reception system, optical transmitter, optical receiver, and optical transmission and reception method
JP2012124782A (en) * 2010-12-09 2012-06-28 Fujitsu Ltd Digital coherent optical receiver, adaptive equalization type equalizer and digital coherent optical communication method
WO2012118215A1 (en) * 2011-03-02 2012-09-07 日本電気株式会社 Light receiver, polarizing beam splitter, and light-receiving method
JP2013034065A (en) * 2011-08-01 2013-02-14 Nec Corp Polarization-multiplexing optical receiver, polarization-multiplexing system, and polarization-multiplexing optical receiving method

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06120779A (en) * 1992-05-15 1994-04-28 Fujitsu Ltd Adaptive reception circuit
US6337878B1 (en) * 1999-03-03 2002-01-08 Nxt Wave Communications Adaptive equalizer with decision directed constant modulus algorithm
JP2002280941A (en) * 2001-03-19 2002-09-27 Toshiba Corp Adaptive equalizer, receiver and tap coefficient calculation method
JP2010109705A (en) * 2008-10-30 2010-05-13 Fujitsu Ltd Optical transmission and reception system, optical transmitter, optical receiver, and optical transmission and reception method
JP2012124782A (en) * 2010-12-09 2012-06-28 Fujitsu Ltd Digital coherent optical receiver, adaptive equalization type equalizer and digital coherent optical communication method
WO2012118215A1 (en) * 2011-03-02 2012-09-07 日本電気株式会社 Light receiver, polarizing beam splitter, and light-receiving method
JP2013034065A (en) * 2011-08-01 2013-02-14 Nec Corp Polarization-multiplexing optical receiver, polarization-multiplexing system, and polarization-multiplexing optical receiving method

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
S. R. THAKALLAPALLI ET AL.: "A new error function for fast phase recovery of QAM signals in CMA blind equalizers", 2003 IEEE WORKSHOP ON STATISTICAL SIGNAL PROCESSING, 2003, pages 70 - 73, XP010699795, DOI: doi:10.1109/SSP.2003.1289342 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7425165B1 (en) 2022-11-24 2024-01-30 Nttイノベーティブデバイス株式会社 Adaptive equalization circuit, adaptive equalization method, and receiving device

Also Published As

Publication number Publication date
JPWO2014199601A1 (en) 2017-02-23
JP6314979B2 (en) 2018-04-25

Similar Documents

Publication Publication Date Title
JP6206545B1 (en) Transmission characteristic compensation apparatus, transmission characteristic compensation method, and communication apparatus
JP4968415B2 (en) DIGITAL FILTER DEVICE, DIGITAL FILTERING METHOD, AND DIGITAL FILTER DEVICE CONTROL PROGRAM
US8913901B2 (en) System and method for blind equalization and carrier phase recovery in a quadrature amplitude modulated system
JP4791536B2 (en) Optical electric field receiver, optical multilevel signal receiver, and optical transmission system
JP6065618B2 (en) Adaptive equalizer tap coefficient correction method and optical receiver
JP5120507B2 (en) Optical receiver, polarization separation device, and polarization separation method
JP6127848B2 (en) Equalizer coefficient updating apparatus, method, receiver, and optical communication system
WO2012118215A1 (en) Light receiver, polarizing beam splitter, and light-receiving method
JP2020141294A (en) Signal processing method, signal processing device, and communication system
JP5312384B2 (en) Digital sample processing method, digital sample processing apparatus, and program
JP5316736B1 (en) Digital receiver and waveform compensation method
JP2011142583A (en) Light receiving device and light receiving method
JP6519479B2 (en) Frequency deviation compensation method and frequency deviation compensation method
JP6107807B2 (en) Optical transmitter, optical communication system, and optical communication method
US9608735B2 (en) MIMO equalization optimized for baud rate clock recovery in coherent DP-QPSK metro systems
WO2015025468A1 (en) Frequency deviation compensation scheme, frequency deviation compensation method, and storage medium
JP6314979B2 (en) Equalizer, polarization separator using the same, and equalization method
EP2487813B1 (en) Polarization de-multiplex for multilevel signals
JP6396016B2 (en) Optical receiver and optical signal receiving method
EP4099584B1 (en) Mitigation of equalization-enhanced phase noise in a coherent optical receiver
JP2016009915A (en) Digital filter and digital coherent receiver

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14810925

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2015522526

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14810925

Country of ref document: EP

Kind code of ref document: A1