WO2014199557A1 - タイヤ接地状態推定方法 - Google Patents

タイヤ接地状態推定方法 Download PDF

Info

Publication number
WO2014199557A1
WO2014199557A1 PCT/JP2014/002491 JP2014002491W WO2014199557A1 WO 2014199557 A1 WO2014199557 A1 WO 2014199557A1 JP 2014002491 W JP2014002491 W JP 2014002491W WO 2014199557 A1 WO2014199557 A1 WO 2014199557A1
Authority
WO
WIPO (PCT)
Prior art keywords
tire
correlation strength
state
correlation
threshold value
Prior art date
Application number
PCT/JP2014/002491
Other languages
English (en)
French (fr)
Inventor
加藤 博
貴久 神藏
桜井 良
泰史 花塚
泰通 若尾
Original Assignee
株式会社ブリヂストン
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社ブリヂストン filed Critical 株式会社ブリヂストン
Priority to US14/889,931 priority Critical patent/US10352827B2/en
Priority to CN201480033660.8A priority patent/CN105283365B/zh
Priority to EP14810150.4A priority patent/EP2995520B1/en
Publication of WO2014199557A1 publication Critical patent/WO2014199557A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01MTESTING STATIC OR DYNAMIC BALANCE OF MACHINES OR STRUCTURES; TESTING OF STRUCTURES OR APPARATUS, NOT OTHERWISE PROVIDED FOR
    • G01M17/00Testing of vehicles
    • G01M17/007Wheeled or endless-tracked vehicles
    • G01M17/02Tyres
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60CVEHICLE TYRES; TYRE INFLATION; TYRE CHANGING; CONNECTING VALVES TO INFLATABLE ELASTIC BODIES IN GENERAL; DEVICES OR ARRANGEMENTS RELATED TO TYRES
    • B60C11/00Tyre tread bands; Tread patterns; Anti-skid inserts
    • B60C11/24Wear-indicating arrangements
    • B60C11/246Tread wear monitoring systems
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60CVEHICLE TYRES; TYRE INFLATION; TYRE CHANGING; CONNECTING VALVES TO INFLATABLE ELASTIC BODIES IN GENERAL; DEVICES OR ARRANGEMENTS RELATED TO TYRES
    • B60C23/00Devices for measuring, signalling, controlling, or distributing tyre pressure or temperature, specially adapted for mounting on vehicles; Arrangement of tyre inflating devices on vehicles, e.g. of pumps or of tanks; Tyre cooling arrangements
    • B60C23/02Signalling devices actuated by tyre pressure
    • B60C23/04Signalling devices actuated by tyre pressure mounted on the wheel or tyre
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60CVEHICLE TYRES; TYRE INFLATION; TYRE CHANGING; CONNECTING VALVES TO INFLATABLE ELASTIC BODIES IN GENERAL; DEVICES OR ARRANGEMENTS RELATED TO TYRES
    • B60C23/00Devices for measuring, signalling, controlling, or distributing tyre pressure or temperature, specially adapted for mounting on vehicles; Arrangement of tyre inflating devices on vehicles, e.g. of pumps or of tanks; Tyre cooling arrangements
    • B60C23/06Signalling devices actuated by deformation of the tyre, e.g. tyre mounted deformation sensors or indirect determination of tyre deformation based on wheel speed, wheel-centre to ground distance or inclination of wheel axle
    • B60C23/061Signalling devices actuated by deformation of the tyre, e.g. tyre mounted deformation sensors or indirect determination of tyre deformation based on wheel speed, wheel-centre to ground distance or inclination of wheel axle by monitoring wheel speed
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60TVEHICLE BRAKE CONTROL SYSTEMS OR PARTS THEREOF; BRAKE CONTROL SYSTEMS OR PARTS THEREOF, IN GENERAL; ARRANGEMENT OF BRAKING ELEMENTS ON VEHICLES IN GENERAL; PORTABLE DEVICES FOR PREVENTING UNWANTED MOVEMENT OF VEHICLES; VEHICLE MODIFICATIONS TO FACILITATE COOLING OF BRAKES
    • B60T8/00Arrangements for adjusting wheel-braking force to meet varying vehicular or ground-surface conditions, e.g. limiting or varying distribution of braking force
    • B60T8/17Using electrical or electronic regulation means to control braking
    • B60T8/172Determining control parameters used in the regulation, e.g. by calculations involving measured or detected parameters
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W40/00Estimation or calculation of non-directly measurable driving parameters for road vehicle drive control systems not related to the control of a particular sub unit, e.g. by using mathematical models
    • B60W40/02Estimation or calculation of non-directly measurable driving parameters for road vehicle drive control systems not related to the control of a particular sub unit, e.g. by using mathematical models related to ambient conditions
    • B60W40/06Road conditions
    • B60W40/068Road friction coefficient
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01LMEASURING FORCE, STRESS, TORQUE, WORK, MECHANICAL POWER, MECHANICAL EFFICIENCY, OR FLUID PRESSURE
    • G01L17/00Devices or apparatus for measuring tyre pressure or the pressure in other inflated bodies
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N3/00Investigating strength properties of solid materials by application of mechanical stress
    • G01N3/56Investigating resistance to wear or abrasion
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60TVEHICLE BRAKE CONTROL SYSTEMS OR PARTS THEREOF; BRAKE CONTROL SYSTEMS OR PARTS THEREOF, IN GENERAL; ARRANGEMENT OF BRAKING ELEMENTS ON VEHICLES IN GENERAL; PORTABLE DEVICES FOR PREVENTING UNWANTED MOVEMENT OF VEHICLES; VEHICLE MODIFICATIONS TO FACILITATE COOLING OF BRAKES
    • B60T2210/00Detection or estimation of road or environment conditions; Detection or estimation of road shapes
    • B60T2210/10Detection or estimation of road conditions
    • B60T2210/12Friction
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60TVEHICLE BRAKE CONTROL SYSTEMS OR PARTS THEREOF; BRAKE CONTROL SYSTEMS OR PARTS THEREOF, IN GENERAL; ARRANGEMENT OF BRAKING ELEMENTS ON VEHICLES IN GENERAL; PORTABLE DEVICES FOR PREVENTING UNWANTED MOVEMENT OF VEHICLES; VEHICLE MODIFICATIONS TO FACILITATE COOLING OF BRAKES
    • B60T2230/00Monitoring, detecting special vehicle behaviour; Counteracting thereof
    • B60T2230/02Side slip angle, attitude angle, floating angle, drift angle

Definitions

  • the present invention relates to a tire contact state estimation method for estimating information related to a contact state of a tire mounted on a vehicle to a road surface.
  • Patent Document 1 describes a technique in which a vehicle speed and a steering angle of a running vehicle are detected, and a friction coefficient of a road surface in contact with a tire is estimated based on these detected values.
  • the present invention has an object to solve such problems of the prior art, and the object of the present invention is to estimate a plurality of pieces of information related to the tire ground contact state without using a complicated system.
  • An object of the present invention is to provide a method for estimating a tire ground contact state.
  • the tire ground contact state estimation method of the present invention includes an information acquisition step for acquiring information on the rotation speed, braking / driving force, slip angle and generated lateral force of the tire, and information on the rotation speed acquired in the information acquisition step.
  • the road surface state in contact with the tire, the internal pressure state of the tire and the wear state of the tire An estimation step of estimating at least two of them.
  • the road surface state in contact with the tire, the internal pressure state of the tire, and the wear state of the tire Therefore, it is possible to easily estimate a plurality of pieces of information related to the contact state of the tire on the road surface necessary for safe driving without using a complicated system.
  • the change detection step it is detected whether an average value of the first correlation strength for a predetermined period has increased or decreased to a first threshold value or more with respect to the first reference value. And detecting whether the average value of the second correlation strength for the predetermined period has increased or decreased to a second threshold value or more with respect to the second reference value, and estimating the internal pressure state of the tire in the estimating step.
  • the detection result of the change detection step used is that in which the predetermined period is set longer than the detection result of the change detection step used when estimating the road surface state in contact with the tire in the estimation step. Is preferred.
  • the change in the correlation strength caused by the change in the road surface condition and the change in the correlation strength caused by the change in the tire internal pressure state can be accurately determined in consideration of the time axis.
  • the estimation accuracy of information related to the contact state of the tire with respect to the road surface by the tire contact state estimation method can be improved.
  • the change detection step it is detected whether an average value of the first correlation strength for a predetermined period has increased or decreased to a first threshold value or more with respect to the first reference value. And detecting whether the average value of the second correlation strength for the predetermined period has increased or decreased to a second threshold value or more with respect to the second reference value, and estimating the wear state of the tire in the estimation step.
  • the detection result of the change detection step used is set to have the predetermined period longer than the detection result of the change detection step used when estimating the road surface state in contact with the tire and the internal pressure state of the tire in the estimation step.
  • a change in correlation strength caused by a change in tire internal pressure state and a change in correlation strength caused by a change in tire wear state can be accurately determined in consideration of the time axis. Therefore, it is possible to improve the estimation accuracy of information related to the contact state of the tire with respect to the road surface by the tire contact state estimation method.
  • the present invention it is possible to provide a tire ground contact state estimation method capable of estimating a plurality of information related to the tire ground contact state without using a complicated system.
  • FIG. 1 is a schematic configuration diagram of a tire condition estimation system that implements a tire ground contact condition estimation method according to an embodiment of the present invention. It is a figure which shows the correspondence of the strength of the correlation strength of the information obtained with the tire state estimation system shown in FIG. 1, and the information regarding the contact state of a tire. It is a characteristic diagram which shows an example of the time change of each correlation strength when it penetrate
  • a tire ground contact state estimation method includes a road surface state in contact with a tire, an internal pressure state of the tire, and tire wear as information on a ground contact state of a tire mounted on a vehicle (for example, an automobile). Estimate the state. For example, for the road surface state where the tire is in contact, it is estimated whether the road surface is a dry asphalt road surface or a low friction road surface such as an ice road surface, a snow road surface, etc. It is estimated whether or not the tire has fallen beyond the allowable range, and for the tire wear state, it is estimated whether or not the tread surface of the tire has worn beyond the allowable amount from the new state.
  • the road surface state where the tire is in contact is a low friction road surface
  • the internal pressure state of the tire has dropped from the normal value to an allowable range or more
  • the tire wear state has worn beyond the allowable amount from the new state
  • This tire ground contact state estimation method is a vehicle equipped with a plurality of tires and can change the traveling direction by steering the tire, for example, using an engine (internal combustion engine) as a drive source
  • the present invention can be applied to various types of vehicles such as those using an electric motor as a drive source and those using both an engine and an electric motor as drive sources.
  • This tire ground contact state estimation method can be carried out using a tire state estimation system 2 mounted on the vehicle 1 as shown in FIG.
  • the tire state estimation system 2 includes a wheel speed detection device 3, a wheel braking / driving force detection device 4, a steering angle detection device 5, and a steering force detection device 6.
  • the wheel speed detection device 3 detects the wheel speed, that is, the rotation speed of a tire (not shown) mounted on the vehicle 1, and outputs the detection data to the control device 7.
  • the wheel speed detecting device 3 for example, a rotation sensor attached to the hub of each wheel for an antilock brake system can be used.
  • the wheel speed detection device 3 is not limited to the rotation sensor for the anti-lock brake system, but may be any other configuration as long as it can detect the rotation of the tire.
  • the wheel braking / driving force detection device 4 detects a braking force and a driving force applied to the tire, and outputs detection data to the control device 7.
  • the braking force acting in the direction of decreasing the tire rotation speed and the driving force acting in the direction of increasing the tire rotation speed are collectively referred to as braking / driving force.
  • the wheel braking / driving force detection device 4 detects, for example, the entire driving force generated by the electric motor from the power consumption of the electric motor, and the entire driving force. Is distributed to each tire at a ratio proportional to the rotational speed thereof, so that the driving force of the tire can be calculated.
  • the tire braking force is detected by detecting the entire braking force generated by the electric motor from the amount of power generated by the electric motor.
  • a configuration may also be adopted in which power is distributed to each tire at a ratio proportional to the rotational speed. Information on the power consumption and power generation amount of the electric motor can be obtained from the motor control device.
  • the wheel braking / driving force detection device 4 estimates the braking / driving force of the tire from the behavior of the traveling vehicle 1, for example. It can be configured.
  • the braking / driving force of the tire is calculated using a vehicle model based on a pre-measured load, vehicle yaw rate, longitudinal acceleration, lateral acceleration, etc., or mapped in advance corresponding to the vehicle behavior. It can be set as the structure calculated
  • the steering angle detection device 5 detects the steering angle when the tire is steered, and outputs the detected steering angle to the control device 7 as information on the slip angle.
  • the steering angle can be used as information relating to the slip angle, that is, a physical quantity that changes in response to a change in the slip angle.
  • an angle sensor that is provided in a steering column or the like for a power steering device and detects a rotation angle of the steering can be used.
  • the steering angle detection device 5 is not limited to the angle sensor for the power steering device described above, and detects the traveling direction of the vehicle 1 using a configuration using other sensors, an optical sensor attached to the vehicle 1, or the like. A configuration may also be adopted in which the slip angle is directly detected from the result and the steering angle of the tire.
  • the steering force detection device 6 detects a steering force necessary for steering the tire, that is, a steering reaction force generated when the tire is steered, and outputs the detected steering reaction force to the control device 7. Generally, since the generated lateral force of the tire increases in proportion to the increase in the steering reaction force of the tire, the steering reaction force is used as information relating to the generated lateral force of the tire, that is, a physical quantity that changes in response to the change of the generated lateral force. Can do.
  • a torque sensor provided in a steering column or the like for a power steering device can be used.
  • the steering force detection device 6 is not limited to the torque sensor for the power steering device, and any other configuration may be used as long as it can detect the steering reaction force and the generated lateral force of the tire. You can also.
  • the generated lateral force of the tire is a lateral force generated in the tire against the centrifugal force when the vehicle turns (the direction opposite to the centrifugal force).
  • the control device 7 to which the detection values (detection data) from the devices 3 to 6 are input is configured as an arithmetic processing device (microcomputer) including a CPU, a memory, and the like, for example.
  • microcomputer arithmetic processing device
  • vehicle-mounted computers such as ECU (engine control unit) mounted in the vehicle 1
  • ECU engine control unit
  • each of the devices 3 to 6 can be connected to the control device 7 via an in-vehicle network (in-vehicle LAN) such as CAN provided in the vehicle 1.
  • in-vehicle network in-vehicle LAN
  • the control device 7 acquires information related to the rotation speed of the tire based on input from the wheel speed detection device 3, and acquires information related to tire braking / driving force based on input from the wheel braking / driving force detection device 4.
  • the information on the tire slip angle (steering angle information) is acquired by the input from the steering angle detecting device 5, and the information on the generated lateral force of the tire (the steering reaction force information) is obtained by the input from the steering force detecting device 6. It can be acquired (information acquisition step). If the information acquired by the control device 7 has a value corresponding to the desired information, the calculated value calculated from the detected value is the detected value of each of the devices 3 to 6 itself. It may be.
  • the control device 7 may calculate the correlation strength between the rotational speed and the braking / driving force as the first correlation strength from the acquired information regarding the rotational speed (wheel speed) of the tire and the information regarding the braking / driving force of the tire. Yes (correlation strength calculation step). Further, the control device 7 determines the first difference between the tire slip angle and the generated lateral force of the tire from the acquired information on the slip angle (steering angle) and the information on the generated lateral force (steering reaction force) of the tire. Two correlation strengths can be calculated (correlation strength calculation step). That is, in the present embodiment, the control device 7 calculates the second correlation strength between the tire slip angle and the generated lateral force from the tire steering angle and the steering reaction force.
  • the correlation strength in the above is an index indicating the strength of correlation between both acquired values (detected values) and corresponds to a correlation coefficient.
  • the correlation strength in the correlation strength calculation step can be calculated using a statistical processing method generally called pattern recognition, such as an independent component analysis method.
  • the control device 7 can detect whether the calculated first correlation strength has increased or decreased to a first threshold value or more with respect to a predetermined first reference value (change detection step). Further, the control device 7 can detect whether the calculated second correlation strength has increased or decreased to a second threshold value or more with respect to a predetermined second reference value (change detection step).
  • the first reference value, the second reference value, the first threshold value, and the second threshold value are calculated from, for example, a result of a running test performed in an appropriate tire ground contact state and stored in advance in a storage unit such as a memory of the control device 7. ing.
  • a running test is performed on a dry asphalt road surface (friction coefficient ⁇ 1.0) with a new vehicle equipped with a tire with a specified internal pressure, and the tire rotation speed, braking / driving force, steering in an appropriate state in this running test. Angle and steering reaction force are measured. Then, the correlation strength between the rotational speed and the braking / driving force when the tire ground contact state calculated from the measured value in the running test is appropriate is stored as the first reference value in the storage means, and the tire ground contact state is determined. The correlation strength between the steering angle and the steering reaction force in the proper case is set as the second reference value and stored in the storage means.
  • the first correlation strength and the second correlation calculated in the correlation strength calculation step are used instead of the first reference value and the second reference value previously stored in the storage means by the above method.
  • the average value of the intensity from the present time to the previous predetermined period can also be used as the first reference value and the second reference value.
  • the first threshold value and the second threshold value are determined to be appropriate values based on the results of running tests performed by changing the road surface condition, the tire internal pressure condition, and the tire wear condition, and are stored in the storage means in advance.
  • the These threshold values are preferably set to values at which it is determined that the safe traveling of the vehicle 1 cannot be maintained when the correlation strength further increases or decreases with respect to the case where the tire ground contact state is appropriate.
  • each threshold value when estimating the change of a road surface state, when estimating the change of the internal pressure of a tire, the some threshold value matched with each when estimating the wear state of a tire One or more can be arbitrarily set. Moreover, the value of each threshold value can be made different between the increase side and the decrease side with respect to each reference value. Furthermore, each threshold value is not limited to an absolute value.
  • the threshold value is an absolute value
  • the first relative intensity or A relative value having a predetermined width with respect to the average value of the second relative intensity over a predetermined period and changing in accordance with the change in the relative intensity can also be used.
  • the control device 7 shows the correspondence pattern shown in FIG. 2 for the increase or decrease of the first correlation strength with respect to the first reference value or more and the increase or decrease of the second correlation strength with respect to the second reference value or more.
  • the change in tire braking / driving force is a low friction road. Since the friction becomes smaller at, the change in the rotational speed of the tire becomes larger than in the case of an appropriate road surface condition.
  • the reaction force applied to the tire from the road surface when the tire slip angle changes is smaller than in the case of an appropriate road surface state, the change in the generated lateral force of the tire with respect to the change in the tire slip angle is It is smaller than in the case of an appropriate road surface condition. In other words, as shown in FIG.
  • the control device 7 detects that the correlation strength between the tire rotation speed and the braking / driving force of the tire has increased in the change detection step, and also the tire slip angle. When it is detected that the correlation strength between the tire and the generated lateral force of the tire has weakened, it can be estimated that the road surface state has changed from an appropriate state to a low friction road.
  • the control device 7 detects that the correlation strength between the rotational speed of the tire and the braking / driving force of the tire has weakened in the change detection step and also detects the slip of the tire When it is detected that the correlation strength between the corner and the generated lateral force of the tire has become weak, it can be estimated that the internal pressure state of the tire has fallen beyond the allowable range.
  • the groove area of the tread pattern on the tire surface generally decreases, that is, the groove area ratio on the tire surface decreases and the effective friction coefficient increases, so the change in tire rotation speed changes.
  • the reaction force of the road surface with respect to the tire increases, and the response amount of the tire rotation speed to the change in the braking / driving force of the tire decreases.
  • a change in the generated lateral force of the tire with respect to a change in the tire slip angle becomes large. That is, from the viewpoint of the correlation strength, when the wear of the tire progresses, the first correlation strength between the tire rotation speed and the braking / driving force of the tire becomes weaker, and the tire slip angle and the generated lateral force of the tire The second correlation strength between the two becomes stronger.
  • the control device 7 detects that the correlation strength between the rotational speed of the tire and the braking / driving force of the tire has weakened in the change detection step and also detects the slip of the tire When it is detected that the correlation strength between the corner and the generated lateral force of the tire is strong, it can be estimated that the tire is excessively worn beyond an allowable range.
  • a display device 8 such as a monitor is connected to the control device 7. And the control apparatus 7 can display the said abnormality on the display apparatus 8, when the abnormality of the ground-contact state to the road surface of a tire is detected.
  • a warning may be issued from a speaker or the like provided in the vehicle 1 together with a warning display by the display device 8 or alone.
  • the display device 8 the speaker, and the like, those previously mounted on the vehicle 1 such as those used for a navigation system can be used.
  • the vehicle 1 by connecting the communication device 9 such as a communication card or a portable terminal to the control device 7 and transferring the warning information from the control device 7 to the server 11 installed in the management office 10 etc. outside the vehicle.
  • It can also be constructed as a system capable of confirming abnormality of the ground contact state of the tire with a monitor (web screen or the like) 12 in the management office 10.
  • the management office 10 that has confirmed the abnormality of the ground contact state of the tire can prepare for replacement of the tire of the vehicle 1, for example. Further, it is possible to grasp a place where the road surface is slippery from the warning information transferred to the management office 10 and display it on the map.
  • map information on which a slippery place is displayed is transmitted to the information receiving device 13 mounted on the vehicle 1 including other vehicles, and the map information is shared by many vehicles 1.
  • the information receiving device 13 for example, a device used for receiving traffic information or the like in a navigation system or the like can be used.
  • Each detection value for calculating the first correlation strength and the second correlation strength can be detected using the existing detection devices 3 to 6 etc. mounted on the vehicle 1, and the control device. 7, display device 8, information receiving device 13, etc. that are already mounted on the vehicle 1 can be used, so that it is not necessary to add a new sensor or device, and the tire state for carrying out this tire ground contact state estimation method
  • the estimation system 2 can be configured simply and inexpensively.
  • step S1 the detection devices (sensors) 3 to 6 mounted on the vehicle 1 detect wheel speed (tire rotational speed), tire braking / driving force, steering angle, and steering reaction force, and detect them. A value is input to the control device 7 (information acquisition step).
  • step S2 the first correlation strength between the tire rotational speed and the tire braking / driving force is calculated from these detected values, and between the tire slip angle and the generated lateral force of the tire. A second correlation strength is calculated (correlation strength calculation step).
  • step S3 When each correlation strength is calculated, in step S3, the first correlation strength is compared with the first reference value, and the second correlation strength is compared with the second reference value.
  • step S4 it is determined whether or not the first correlation strength has increased or decreased with respect to the first reference value to be equal to or greater than the first threshold value, and the second correlation strength is greater than or equal to the second threshold value with respect to the second reference value. It is determined whether the number has increased or decreased (change detection step).
  • step S4 when it is determined that the first correlation strength has increased or decreased to a first threshold value or more with respect to the first reference value, and the second correlation strength has increased or decreased to a second threshold value or more with respect to the second reference value.
  • step S5 the tire contact state determination process is performed, and from the pattern shown in FIG.
  • the road surface state in contact with the tire is a low friction road, and the internal pressure state of the tire is lowered from a normal value to an allowable range or more.
  • step S4 when at least one of the first correlation strength and the second correlation strength has not increased or decreased to the first threshold value or the second threshold value with respect to the first reference value or the second reference value, or the first If both the correlation strength and the second correlation strength increase above the first threshold and the second threshold, the routine returns to step S1. If an abnormality is detected in the contact state of the tire on the road surface in step S4, a warning is displayed on the display device 8 in step S6, and warning processing such as transmission of abnormality information from the communication device 9 to the server 11 is performed.
  • FIG. 5 is a diagram schematically showing temporal changes in the correlation strengths.
  • a change in road surface condition, a change in tire internal pressure, and a change in tire wear have different change rates.
  • the progress of tire wear changes at a rate of change in units of years
  • the internal pressure of the tire changes at a rate of change of days or months
  • the road surface condition for example, the slipperiness of the road surface in seconds. It changes at the changing speed. Therefore, in the tire ground contact state estimation method of the present invention, it is preferable to further improve the estimation accuracy by the following method using the feature that these estimation objects have temporal differences in their changing speeds. .
  • an average value of the first correlation strength for a predetermined period retroactive from the present time is calculated, and it is detected whether the average value has increased or decreased to a first threshold value or more with respect to the first reference value.
  • the average value of the two correlation strengths in the predetermined period going back from the present time is calculated, and it is detected whether the average value has increased or decreased to a second threshold value or more with respect to the second reference value.
  • the estimation step when estimating the internal pressure state of the tire, the predetermined period for calculating the average value of each correlation strength is set longer than when estimating the road surface state in contact with the tire, A change in the internal pressure state of the tire is detected in the change detection step using the average value calculated by the period.
  • the predetermined period for calculating the average value of each correlation strength is set longer than when estimating the internal pressure state of the tire, and the calculation is performed based on the predetermined period.
  • the tire wear state is detected in the change detection step using the average value.
  • the average value of the predetermined period is used as the first correlation strength and the second correlation strength, and each state of the change in the road surface state, the change in the tire internal pressure state, and the change in the tire wear state is estimated.
  • the first correlation strength and the second correlation strength to be used those calculated by differentiating the predetermined period can be used to further increase the estimation accuracy of the tire ground contact state.
  • the detection sensitivity of the change in the internal pressure state of the tire and the change in the wear state of the tire is reduced, and the road surface state Only changes can be accurately estimated.
  • the average value of the first correlation strength and the second correlation strength is used as an average value in which the predetermined period is a daily unit or a monthly unit, thereby reducing the detection sensitivity of changes in road surface conditions and tire wear conditions. Only the change in the internal pressure state can be accurately estimated.
  • an average value with a predetermined period as a year unit for example, one year
  • an average value of the first correlation strength and the second correlation strength can be substantially It is possible to accurately estimate only the change in the wear state of the tire (the degree of progress of wear).
  • a wheel speed detection device, a wheel braking / driving force detection device, a steering angle detection device, and a steering force detection device are mounted on an electric vehicle using an electric motor as a drive source.
  • each device is connected to the control device via an in-vehicle network (in-vehicle LAN) such as CAN provided in the vehicle.
  • the tire driving force is calculated by detecting the entire driving force from the power consumption of the electric motor and distributing the entire driving force to each tire at a ratio proportional to the wheel speed.
  • a second threshold was set.
  • the tire size was 195 / 65R17, and the normal internal pressure was 230 kPa.
  • the vehicle was run on a straight road, and during the run, the steering was not fixed, but the straight running was maintained by minute steering.
  • the tire contact speed was estimated based on the tire contact state estimation method of the present invention. And the braking / driving force of the tire, that is, the first correlation strength is increased, and the correlation between the tire slip angle and the generated lateral force of the tire, that is, the second correlation strength is decreased. It was possible to estimate that the road surface was low friction.
  • the tire contact speed estimation method correlated the tire rotation speed and the tire braking / driving force with respect to an appropriate tire contact condition. It is possible to estimate that the internal pressure of the tire has decreased by detecting that the relationship, that is, the first correlation strength and the correlation between the tire slip angle and the generated lateral force of the tire, that is, the second correlation strength, have all weakened. It was.
  • a tire worn to the slip sign in place of the new tire (inner pressure is in a normal state) is mounted on the vehicle and traveled on a dry asphalt road.
  • the correlation between the tire rotation speed and the braking / driving force of the tire, that is, the first correlation strength is weak, and the correlation between the tire slip angle and the generated lateral force of the tire, that is, the second correlation strength is increased. It was possible to estimate that the wear of the tire was progressing.
  • the tire steering reaction force is used as the information on the generated lateral force of the tire, but the information on the tire generated lateral force changes with the steering of the tire in the same manner as the tire generated lateral force.
  • the self-aligning torque to be used may be used.
  • the estimation step estimates the three states of the road surface state in contact with the tire, the internal pressure state of the tire, and the wear state of the tire. At least two of these three states are estimated. It can also be configured to estimate one state.
  • Vehicle 2 Tire condition estimation system 3: Wheel speed detection device 4: Wheel braking / driving force detection device 5: Steering angle detection device 6: Steering force detection device 7: Control device

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Transportation (AREA)
  • Analytical Chemistry (AREA)
  • Pathology (AREA)
  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Immunology (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Automation & Control Theory (AREA)
  • Mathematical Physics (AREA)
  • Control Of Driving Devices And Active Controlling Of Vehicle (AREA)
  • Tires In General (AREA)
  • Measuring Fluid Pressure (AREA)
  • Regulating Braking Force (AREA)

Abstract

 タイヤの、回転速度、制駆動力、スリップ角及び発生横力に関する情報を取得する情報取得ステップと、情報取得ステップで取得した回転速度に関する情報と制駆動力に関する情報とから、回転速度と制駆動力との間の第1相関強度を算出するとともに、情報取得ステップで取得したスリップ角に関する情報と発生横力に関する情報とから、スリップ角と発生横力との間の第2相関強度を算出する相関強度算出ステップと、相関強度算出ステップにおいて算出した第1相関強度が、所定の第1基準値に対して第1閾値以上に増加または減少したかを検出するとともに、相関強度算出ステップにおいて算出した第2相関強度が、所定の第2基準値に対して第2閾値以上に増加または減少したかを検出する変化検出ステップと、変化検出ステップの検出結果に基づいて、タイヤが接する路面状態、タイヤの内圧状態およびタイヤの摩耗状態のうちの少なくとも2つ以上を推定する推定ステップと、を有する。

Description

タイヤ接地状態推定方法
 本発明は、車両に装着されたタイヤの路面への接地状態に関する情報を推定するタイヤ接地状態推定方法に関する。
 自動車等の車両の走行安全性を確保するために、車両に装着されたタイヤの路面への接地状態に関する情報を把握することが行われている。
 例えば特許文献1には、走行中の車両の車速と操舵角を検出し、これらの検出値に基づいてタイヤが接する路面の摩擦係数を推定するようにした技術が記載されている。
特開2012-153290号公報
 しかしながら、特許文献1に示される方法では、車速、操舵角および路面摩擦係数の推定値に基づいて前輪SAT(セルフアライニングトルク)推定値等を算出するとともにこれらの実測値を検出し、推定値と実測値との誤差に基づき補正した値として路面摩擦係数を推定するようにしているので、安全走行のために必要なタイヤの路面への接地状態に関する情報を得るためのシステムが複雑になるという問題があった。
 本発明は、従来技術が抱えるこのような問題を解決することを課題とするものであり、その目的とするところは、複雑なシステムを用いることなく、タイヤ接地状態に関する複数の情報を推定することができるタイヤ接地状態推定方法を提供することにある。
 本発明のタイヤ接地状態推定方法は、前記タイヤの、回転速度、制駆動力、スリップ角及び発生横力に関する情報を取得する情報取得ステップと、前記情報取得ステップで取得した前記回転速度に関する情報と前記制駆動力に関する情報とから、該回転速度と該制駆動力との間の第1相関強度を算出するとともに、前記情報取得ステップで取得した前記スリップ角に関する情報と前記発生横力に関する情報とから、該スリップ角と該発生横力との間の第2相関強度を算出する相関強度算出ステップと、前記相関強度算出ステップにおいて算出した前記第1相関強度が、所定の第1基準値に対して第1閾値以上に増加または減少したかを検出するとともに、前記相関強度算出ステップにおいて算出した前記第2相関強度が、所定の第2基準値に対して第2閾値以上に増加または減少したかを検出する変化検出ステップと、前記変化検出ステップの検出結果に基づいて、前記タイヤが接する路面状態、前記タイヤの内圧状態および前記タイヤの摩耗状態のうちの少なくとも2つ以上を推定する推定ステップと、を有することを特徴とする。
 本発明によれば、タイヤの、回転速度、制駆動力、スリップ角および発生横力に関する4つの情報の相関強度の強弱に基づいて、タイヤが接する路面状態、タイヤの内圧状態およびタイヤの摩耗状態のうちの少なくとも2つ以上を推定することができるので、安全走行のために必要なタイヤの路面への接地状態に関する複数の情報を、複雑なシステムを用いることなく容易に推定することができる。
 本発明のタイヤ接地状態推定方法では、前記変化検出ステップにおいては、前記第1相関強度の所定期間の平均値が前記第1基準値に対して第1閾値以上に増加または減少したかを検出するとともに前記第2相関強度の前記所定期間の平均値が前記第2基準値に対して第2閾値以上に増加または減少したかを検出し、前記推定ステップにおいて前記タイヤの内圧状態を推定する場合に用いられる前記変化検出ステップの検出結果は、前記推定ステップにおいて前記タイヤが接する路面状態を推定する場合に用いられる前記変化検出ステップの検出結果よりも、前記所定期間が長く設定されたものであるのが好ましい。
 この構成によれば、路面状態の変化を要因とする相関強度の変化とタイヤ内圧状態の変化を要因とする相関強度の変化とを、時間軸を考慮して精度よく判別することができるので、このタイヤ接地状態推定方法によるタイヤの路面への接地状態に関する情報の推定精度を高めることができる。
 本発明のタイヤ接地状態推定方法では、前記変化検出ステップにおいては、前記第1相関強度の所定期間の平均値が前記第1基準値に対して第1閾値以上に増加または減少したかを検出するとともに前記第2相関強度の前記所定期間の平均値が前記第2基準値に対して第2閾値以上に増加または減少したかを検出し、前記推定ステップにおいて前記タイヤの摩耗状態を推定する場合に用いられる前記変化検出ステップの検出結果は、前記推定ステップにおいて前記タイヤが接する路面状態および前記タイヤの内圧状態を推定する場合に用いられる前記変化検出ステップの検出結果よりも、前記所定期間が長く設定されたものであるのが好ましい。
 この構成によれば、タイヤ内圧状態の変化を要因とする相関強度の変化とタイヤの摩耗状態の変化を要因とする相関強度の変化とを、時間軸を考慮して精度よく判別することができるので、このタイヤ接地状態推定方法によるタイヤの路面への接地状態に関する情報の推定精度を高めることができる。
 本発明によれば、複雑なシステムを用いることなく、タイヤ接地状態に関する複数の情報を推定することができるタイヤ接地状態推定方法を提供することができる。
本発明の一実施の形態であるタイヤ接地状態推定方法を実施するタイヤ状態推定システムの概略構成図である。 図1に示すタイヤ状態推定システムで得られた情報の相関強度の強弱とタイヤの接地状態に関する情報との対応関係を示す図である。 ドライアスファルト路から低摩擦路に侵入したときの各相関強度の時間変化の一例を示す特性線図である。 本発明の一実施の形態であるタイヤ接地状態推定方法のフローチャート図である。 各相関強度の時間変化を模式的に示す図である。
 以下に図面を参照しつつ、この発明の実施の形態について例示説明する。
 本発明の一実施の形態であるタイヤ接地状態推定方法は、車両(例えば自動車)に装着されたタイヤの路面への接地状態に関する情報として、タイヤが接する路面状態、タイヤの内圧状態およびタイヤの摩耗状態を推定する。例えば、タイヤが接する路面状態については、当該路面がドライアスファルト路面であるかアイス路面、雪路面等の低摩擦路面であるかを推定し、タイヤの内圧状態についてはタイヤの内圧が正規の値から許容範囲以上に低下したか否かを推定し、タイヤの摩耗状態についてはタイヤのトレッド面が新品状態から許容量以上に摩耗したか否かを推定する。そして、タイヤが接する路面状態が低摩擦路面であること、タイヤの内圧状態が正規の値から許容範囲以上に低下したこと、およびタイヤの摩耗状態が新品状態から許容量以上に摩耗したことのうちの少なくとも何れか1つが推定されたときに、タイヤの路面への接地状態が異常であると検知することができる。
 このタイヤ接地状態推定方法は、複数のタイヤが装着された車両であってタイヤの操舵により進行方向を変更することができるものであれば、例えば、エンジン(内燃機関)を駆動源としたもの、電動モータを駆動源としたもの、エンジンと電動モータの両方を駆動源としたものなど、種々のタイプの車両に適用することができる。
 このタイヤ接地状態推定方法は、例えば図1に示すように、車両1に搭載されるタイヤ状態推定システム2を用いて実施することができる。このタイヤ状態推定システム2は車輪速検出装置3、車輪制駆動力検出装置4、操舵角検出装置5、操舵力検出装置6を備えている。
 車輪速検出装置3は車輪速つまり車両1に装着されたタイヤ(不図示)の回転速度を検出し、その検出データを制御装置7に出力する。この車輪速検出装置3としては、例えばアンチロックブレーキシステム用として各車輪のハブに取り付けられている回転センサを用いることができる。なお、車輪速検出装置3は、上記アンチロックブレーキシステム用の回転センサに限らず、タイヤの回転を検出することができるものであれば他の構成のものを用いることもできる。
 車輪制駆動力検出装置4はタイヤに加えられる制動力および駆動力を検出し、その検出データを制御装置7に出力する。ここでは、タイヤの回転速度を減少させる方向に作用する制動力とタイヤの回転速度を増加させる方向に作用する駆動力とを総じて制駆動力と呼ぶこととする。
 車両1が電動モータを駆動源とした電気自動車の場合、車輪制駆動力検出装置4は、例えば、電動モータの消費電力から電動モータが生じた全体の駆動力を検出し、この全体の駆動力を各タイヤにその回転速度に比例した比率で配分することによりタイヤの駆動力を算出する構成のものとすることができる。この場合、タイヤの制動力は、車両1が電動モータの回生ブレーキのみで減速しているときには、電動モータが発生する発電量から電動モータが生じた全体の制動力を検出し、この全体の制動力を各タイヤにその回転速度に比例した比率で配分して算出する構成とすることもできる。電動モータの消費電力や発電量の情報はモータ制御装置から得ることができる。
 車両1が電気自動車以外の場合や電気自動車において回生ブレーキ以外の制動手段で制動する場合では、車輪制駆動力検出装置4は、例えば、走行する車両1の挙動からタイヤの制駆動力を推定する構成とすることができる。この場合、タイヤの制駆動力を、予め計測した荷重、車両のヨーレート、前後加速度、横加速度等から車両モデルを用いて算出し、あるいは予め車両挙動に対応してマップ化しておいた制駆動力から対応する値を抽出することにより求める構成とすることができる。
 操舵角検出装置5はタイヤを操舵したときの操舵角を検出し、検出した操舵角をスリップ角に関する情報として制御装置7に出力する。一般に、タイヤの操舵角の増加に比例してスリップ角が大きくなるので、スリップ角に関する情報つまりスリップ角の変化に対応して変化する物理量として操舵角を用いることができる。操舵角検出装置5としては、例えば、パワーステアリング装置用としてステアリングコラム等に設けられてステアリングの回転角度を検出する角度センサを用いることができる。なお、操舵角検出装置5は、上記パワーステアリング装置用の角度センサに限らず、他のセンサを用いた構成や、車両1に取り付けた光学センサ等により車両1の進行方向を検出し、この検出結果とタイヤの操舵角からスリップ角を直接検出する構成とすることもできる。
 操舵力検出装置6はタイヤを操舵するのに必要な操舵力つまりタイヤを操舵したときに生じる操舵反力を検出し、検出した操舵反力を制御装置7に出力する。一般に、タイヤの操舵反力の増加に比例してタイヤの発生横力が大きくなるので、タイヤの発生横力に関する情報つまり発生横力の変化に対応して変化する物理量として操舵反力を用いることができる。操舵力検出装置6としては、例えば、パワーステアリング装置用としてステアリングコラム等に設けられるトルクセンサを用いることができる。なお、操舵力検出装置6としては、上記パワーステアリング装置用のトルクセンサに限らず、操舵反力やタイヤの発生横力を検出することができるものであれば、他の構成のものを用いることもできる。なお、タイヤの発生横力とは、車両の旋回時にその遠心力に抗してタイヤに発生する横方向(遠心力と反対の方向)の力のことである。
 各装置3~6からの検出値(検出データ)が入力される制御装置7は、例えばCPUやメモリ等を備えた演算処理装置(マイクロコンピュータ)として構成される。この制御装置7としては、例えば、車両1に搭載されたECU(エンジンコントロールユニット)等の車載コンピュータを用いることができる。この場合、各装置3~6を車両1に設けられたCAN等の車内ネットワーク(車内LAN)により制御装置7に接続する構成とすることができる。
 上記のように、制御装置7は、車輪速検出装置3からの入力によりタイヤの回転速度に関する情報を取得し、車輪制駆動力検出装置4からの入力によりタイヤの制駆動力に関する情報を取得し、操舵角検出装置5からの入力によりタイヤのスリップ角に関する情報(操舵角の情報)を取得し、操舵力検出装置6からの入力によりタイヤの発生横力に関する情報(操舵反力の情報)を取得することができる(情報取得ステップ)。なお、これら制御装置7が取得する情報は、所望の情報に対応する値を有するものであれば、各装置3~6の検出値それ自体であっても、当該検出値から算出された算出値であってもよい。
 制御装置7は、取得したタイヤの、回転速度に関する情報(車輪速)とタイヤの制駆動力に関する情報とから回転速度と制駆動力との間の相関強度を第1相関強度として算出することができる(相関強度算出ステップ)。また、制御装置7は、取得したタイヤの、スリップ角に関する情報(操舵角)とタイヤの発生横力に関する情報(操舵反力)とからタイヤのスリップ角とタイヤの発生横力との間の第2相関強度を算出することができる(相関強度算出ステップ)。つまり、本実施の形態では、制御装置7はタイヤのスリップ角と発生横力との間の第2相関強度を、タイヤの操舵角と操舵反力とから算出している。
 なお、上記における相関強度とは、両取得値(検出値)の相関関係の強度を示す指標であり、相関係数に該当するものである。上記相関強度算出ステップにおける相関強度は、例えば独立成分分析手法など、一般的にパターン認識と称される統計処理手法を用いて算出することができる。
 制御装置7は、算出した第1相関強度が所定の第1基準値に対して第1閾値以上に増加または減少したかを検出することができる(変化検出ステップ)。また、制御装置7は、算出した第2相関強度が所定の第2基準値に対して第2閾値以上に増加または減少したかを検出することができる(変化検出ステップ)。第1基準値、第2基準値、第1閾値および第2閾値は、例えば、適正なタイヤ接地状態で行った走行試験の結果から算出され、予め制御装置7のメモリ等の記憶手段に格納されている。つまり、ドライアスファルト路面(摩擦係数μ≒1.0)において新品、規定の内圧のタイヤを装着した車両で走行試験を行い、この走行試験において適正な状態におけるタイヤの回転速度、制駆動力、操舵角、操舵反力が計測される。そして、この走行試験における計測値から算出されたタイヤ接地状態が適正の場合における回転速度と制駆動力との間の相関強度が第1基準値とされて記憶手段に格納され、タイヤ接地状態が適正の場合における操舵角と操舵反力との間の相関強度が第2基準値とされて記憶手段に格納されている。なお、路面状態を推定する場合には、上記の手法により予め記憶手段に格納した第1基準値および第2基準値に代えて、上記相関強度算出ステップで算出した第1相関強度および第2相関強度の現時点から前の所定期間の平均値を第1基準値および第2基準値として用いることもできる。
 一方、第1閾値および第2閾値は、路面状態、タイヤの内圧状態、タイヤの摩耗状態を種々変化させて行った走行試験の結果を踏まえて適正な値に定められ、予め記憶手段に格納される。これらの閾値は、例えば、タイヤ接地状態が適正な場合に対して各相関強度がこれ以上増加または減少すると、車両1の安全走行が維持できないと判断される値に設定されるのがよい。なお、これらの第1閾値および第2閾値としては、路面状態の変化を推定する場合、タイヤの内圧の変化を推定する場合、タイヤの摩耗状態を推定する場合のそれぞれに対応させた複数の閾値を設定するなど、任意に1つ以上設定することができる。また、各基準値に対する増加側と減少側とで各閾値の値を相違させることもできる。さらに、各閾値は絶対値に限らず、例えば、タイヤの摩耗状態の変化を推定する場合には閾値を絶対値とするとともに、路面状態の変化を推定する場合には閾値として第1相対強度または第2相対強度の所定期間の平均値に対して所定の幅を有し、当該相対強度の変化に対応して変化する相対値とすることもできる。
 制御装置7は、第1相関強度の第1基準値に対する第1閾値以上の増減と、第2相関強度の第2基準値に対する第2閾値以上の増減とを、図2に示す対応関係のパターンに当てはめることにより、タイヤが接地する路面状態、タイヤの内圧状態およびタイヤの摩耗状態を推定することができる(推定ステップ)。なお、図2においては、相関強度が基準値に対して閾値以上に増加した場合に当該相関強度が強くなったことを示す「強」を表示し、相関強度が基準値に対して閾値以上に減少した場合に当該相関強度が弱くなったことを示す「弱」を表示している。
 車両1が走行する路面が、適正な路面状態つまりドライアスファルト路面(μ≒1.0)よりも低い低摩係数の低摩擦路である場合、タイヤの制駆動力の変化に関しては、低摩擦路においては摩擦が小さくなるので、タイヤの回転速度の変化は適正な路面状態の場合に比べて大きくなる。一方、タイヤのスリップ角が変化したときに路面からタイヤに加えられる反力は、適正な路面状態の場合に比べて小さくなるので、タイヤのスリップ角の変化に対するタイヤの発生横力の変化は、適正な路面状態の場合に比べて小さくなる。つまり、図3に示すように、相関強度の面から見ると、車両1が走行する路面状態が適正なドライアスファルト路面から低摩擦路に変化すると、タイヤの回転速度と制駆動力との相関強度が強くなり、タイヤのスリップ角とタイヤの発生横力との間の相関強度が弱くなる。このようなパターンを図2に示す対応関係に当てはめ、制御装置7は、変化検出ステップにおいてタイヤの回転速度とタイヤの制駆動力との相関強度が強くなったことを検出するとともにタイヤのスリップ角とタイヤの発生横力との間の相関強度が弱くなったことを検出したときに、路面状態が適正な状態から低摩擦路に変化したことを推定することができる。
 車両1に装着されたタイヤの内圧が正規の内圧よりも低くなった場合には、タイヤのバネ定数が正規の状態よりも小さくなるため、タイヤの制駆動力の変化に対するタイヤの回転速度の変化の応答が遅れ、また、タイヤのスリップ角の変化に対するタイヤの発生横力の変化の応答が遅れることになる。つまり、相関強度の面から見ると、タイヤの内圧が正規の値よりも低下すると、タイヤの回転速度とタイヤの制駆動力との間の第1相関強度とタイヤのスリップ角とタイヤの発生横力との間の第2相関強度が共に弱くなる。このようなパターンを図2に示す対応関係に当てはめて、制御装置7は、変化検出ステップにおいてタイヤの回転速度とタイヤの制駆動力との相関強度が弱くなったことを検出するとともにタイヤのスリップ角とタイヤの発生横力との間の相関強度が弱くなったことを検出したときに、タイヤの内圧状態が許容範囲以上に低下したことを推定することができる。
 タイヤの摩耗が進展した場合には、一般にタイヤ表面のトレッドパターンの溝面積が小さくなり、つまりタイヤ表面における溝面積率が低下して実効的な摩擦係数が上昇するため、タイヤの回転速度の変化に対する路面の反力が大きくなり、タイヤの制駆動力の変化に対するタイヤの回転速度の応答量は小さくなる。一方、タイヤのスリップ角の変化に対するタイヤの発生横力の変化は大きくなる。つまり、相関強度の面から見ると、タイヤの摩耗が進展すると、タイヤの回転速度とタイヤの制駆動力との間の第1相関強度が弱くなり、タイヤのスリップ角とタイヤの発生横力との間の第2相関強度が強くなる。このようなパターンを図2に示す対応関係に当てはめて、制御装置7は、変化検出ステップにおいてタイヤの回転速度とタイヤの制駆動力との相関強度が弱くなったことを検出するとともにタイヤのスリップ角とタイヤの発生横力との間の相関強度が強くなったことを検出したときに、タイヤが許容範囲以上に過摩耗したことを推定することができる。
 図1に示すように、制御装置7にはモニタ等の表示装置8が接続されている。そして、制御装置7は、タイヤの路面への接地状態の異常を検知したときに、表示装置8に当該異常を表示することができる。なお、タイヤ接地状態の異常を検知したときに、表示装置8による警告の表示とともにまたは単独で、車両1に設けられたスピーカ等から警告を発するようにすることもできる。なお、表示装置8やスピーカ等としては、ナビゲーションシステム用として用いられているものなど、予め車両1に搭載されているものを用いることができる。
 また、制御装置7に通信カードや携帯端末等の通信機器9を接続し、制御装置7から車外の管理事務所10等に設置したサーバ11へ警告情報を転送することにより、車両1で生じたタイヤの接地状態の異常を管理事務所10内のモニタ(ウェブ画面等)12で確認できるシステムとして構築することもできる。このように、タイヤの接地状態の異常を確認した管理事務所10は、例えば、車両1のタイヤの交換の準備を行うことができる。また、管理事務所10に転送された警告情報から路面が滑り易い場所を把握し、これを地図上に表示させることもできる。さらに、滑り易い場所が表示された地図情報を他の車両も含めた車両1に搭載された情報受信装置13に送信し、当該地図情報を多数の車両1で共有するシステムとして構築することもできる。情報受信装置13としては、例えば、ナビゲーションシステム等において交通情報等を受信するために用いられているものを用いることができる。
 このような構成により、タイヤの状態や路面状態が適正な状態であることを確認しつつ走行をすることが可能となり、またタイヤが不適正な状態、路面状態が危険な状態であるときには、これらの情報を運転者に認識させ、または危険な路面があることを周囲の車両に周知させることができるので、車両の安全な走行を実現することができる。
 第1相関強度と第2相関強度を算出するための各検出値は、何れも、車両1に搭載されている既存の検出装置3~6等を用いて検出することができ、また、制御装置7や表示装置8、情報受信装置13等として既に車両1に搭載されているものを用いることができるので、新たなセンサや機器の追加を不要として、このタイヤ接地状態推定方法を実施するタイヤ状態推定システム2を簡素で安価な構成することができる。
 このような本発明の一実施の形態であるタイヤ接地状態推定方法の手順を図4に示すフローチャートに基づき説明すると、以下の通りである。
 まず、ステップS1において車両1に搭載された各検出装置(センサ)3~6により、車輪速(タイヤの回転速度)、タイヤの制駆動力、操舵角および操舵反力が検出され、これらの検出値が制御装置7に入力される(情報取得ステップ)。次に、ステップS2において、これらの検出値から、タイヤの回転速度とタイヤの制駆動力との間の第1相関強度が算出されるとともにタイヤのスリップ角とタイヤの発生横力との間の第2相関強度が算出される(相関強度算出ステップ)。各相関強度が算出されると、ステップS3において、第1相関強度が第1基準値と比較され、第2相関強度が第2基準値と比較される。そして、ステップS4において、第1相関強度が第1基準値に対して第1閾値以上に増減したか否かが判断されるとともに第2相関強度が第2基準値に対して第2閾値以上に増減したか否かが判断される(変化検出ステップ)。
 ステップS4において、第1相関強度が第1基準値に対して第1閾値以上に増減し、且つ、第2相関強度が第2基準値に対して第2閾値以上に増減したと判断されると、ステップS5において、タイヤ接地状態判定処理が成され、図2に示すパターンから、タイヤが接する路面状態が低摩擦路となったこと、タイヤの内圧状態が正規の値から許容範囲以上に低下したこと、およびタイヤの摩耗状態が新品状態から許容量以上に摩耗したことを推定し(推定ステップ)、タイヤの接地状態の異常が検知される。なお、ステップS4において、第1相関強度および第2相関強度の少なくとも一方が第1基準値または第2基準値に対して第1閾値または第2閾値以上に増減しなかった場合、または、第1相関強度および第2相関強度の両方が第1閾値および第2閾値以上に増加した場合には、ルーチンはステップS1にリターンされる。
 ステップS4においてタイヤの路面への接地状態に異常が検知されると、ステップS6において表示装置8に警告が表示され、異常情報が通信機器9からサーバ11に送信される等の警告処理が成される。
 図5は各相関強度の時間変化を模式的に示す図である。
 図5に示すように、路面状態の変化、タイヤの内圧の変化およびタイヤの摩耗の変化は、それぞれ互いに大きく異なる変化速度を持つ。一般的な使用環境下では、タイヤの摩耗の進展は年単位の変化速度で変化し、タイヤの内圧は日ないし月単位の変化速度で変化し、路面状態、例えば路面の滑り易さは秒単位の変化速度で変化する。そこで、本発明のタイヤ接地状態推定方法においては、これらの推定対象がその変化速度に時間的な相違を有するという特徴を利用して、以下の手法により推定精度をさらに高めるようにするのが好ましい。
 すなわち、変化検出ステップにおいて、第1相関強度の現時点から遡った所定期間の平均値を算出し、当該平均値が第1基準値に対して第1閾値以上に増減したかを検出するとともに、第2相関強度の現時点から遡った前記所定期間の平均値を算出し、当該平均値が第2基準値に対して第2閾値以上に増減したかを検出する構成とする。そして、推定ステップにおいては、タイヤの内圧状態を推定する場合には、タイヤが接する路面状態を推定する場合よりも、各相関強度の平均値を算出する際の所定期間を長く設定し、当該所定期間により算出された平均値を用いて変化検出ステップにおいてタイヤの内圧状態の変化を検出する。同様に、タイヤの摩耗状態を推定する場合には、タイヤの内圧状態を推定する場合よりも、各相関強度の平均値を算出する際の所定期間を長く設定し、当該所定期間により算出された平均値を用いて変化検出ステップにおいてタイヤの摩耗状態を検出する。このように、第1相関強度および第2相関強度としてその所定期間の平均値を用いるとともに、路面状態の変化、タイヤの内圧状態の変化およびタイヤの摩耗状態の変化の各状態を推定する場合に用いる第1相関強度および第2相関強度として、当該所定期間を相違させて算出したものを用いることにより、タイヤ接地状態の推定精度をさらに高めることができる。
 例えば、第1相関強度と第2相関強度の平均値として所定期間を数秒とした平均値を用いることにより、タイヤの内圧状態の変化およびタイヤの摩耗状態の変化の検出感度を下げて路面状態の変化のみを精度良く推定することができる。一方、第1相関強度と第2相関強度の平均値として所定期間を日単位または月単位とした平均値を用いることにより、路面状態の変化およびタイヤの摩耗状態の変化の検出感度を下げてタイヤの内圧状態の変化のみを精度良く推定することができる。さらに、第1相関強度と第2相関強度の平均値として所定期間を年単位(例えば1年)とした平均値を用いることにより、路面状態の変化およびタイヤの内圧状態の変化の情報を実質的に消失させてタイヤの摩耗状態の変化(摩耗の進展度合い)のみを精度良く推定することができる。
 次に、本発明の実施例を説明する。
 電動モータを駆動源とした電気自動車に、車輪速検出装置、車輪制駆動力検出装置、操舵角検出装置および操舵力検出装置を装着した。本実施例では、各装置は、車両に設けられたCAN等の車内ネットワーク(車内LAN)により制御装置に接続した。
 タイヤの駆動力については、電動モータの消費電力から全体の駆動力を検出し、この全体の駆動力を各タイヤにその車輪速に比例した比率で配分して算出する構成とした。
 新品,正規の内圧状態のタイヤを上記車両に装着し、ドライアスファルト路(μ≒1.0)を試験走行させた試験結果に基づいて、第1基準値、第2基準値、第1閾値および第2閾値を設定した。なお、タイヤのサイズは195/65R17、正規内圧は230kPaとした。また、何れの走行試験においても、車両を直線路で走行させ、その走行においては操舵を固定せず、微小な操舵によって直線走行を維持した。
 上記状態のタイヤを上記車両に装着し、低摩擦路(μ≒0.3)を走行させたところ、本発明のタイヤ接地状態推定方法により、適正なタイヤの接地状態に対してタイヤの回転速度とタイヤの制駆動力との相関関係つまり第1相関強度が強くなり、タイヤのスリップ角とタイヤの発生横力との相関関係つまり第2相関強度が弱くなったことを検出し、路面状態が低摩擦路面であることを推定することができた。
 上記タイヤの内圧を170kPaに変更しドライアスファルト路を走行させたところ、本発明のタイヤ接地状態推定方法により、適正なタイヤの接地状態に対してタイヤの回転速度とタイヤの制駆動力との相関関係つまり第1相関強度およびタイヤのスリップ角とタイヤの発生横力の相関関係つまり第2相関強度の何れもが弱くなったことを検出し、タイヤの内圧が低下したことを推定することができた。
 上記新品タイヤに代えてスリップサインまで摩耗したタイヤ(内圧は正規の状態である)を上記車両に装着し、ドライアスファルト路を走行させたところ、本発明のタイヤ接地状態推定方法により、適正なタイヤの接地状態に対してタイヤの回転速度とタイヤの制駆動力との相関関係つまり第1相関強度が弱くなり、タイヤのスリップ角とタイヤの発生横力の相関関係つまり第2相関強度が強くなったことを検出し、タイヤの摩耗が進展していることを推定することができた。
 本発明は前記実施の形態または実施例に限定されるものではなく、その要旨を逸脱しない範囲で種々変更可能であることはいうまでもない。例えば、前記実施の形態においては、タイヤの発生横力に関する情報としてタイヤの操舵反力を用いているが、タイヤ発生横力に関する情報として、タイヤ発生横力と同様にタイヤの操舵に伴って変化するセルフアライニングトルクを用いるようにしてもよい。
 また、上記実施の形態においては、推定ステップにおいて、タイヤが接する路面状態、タイヤの内圧状態およびタイヤの摩耗状態の3つの状態を推定するようにしているが、これらの3つの状態のうち少なくとも2つの状態を推定するように構成することもできる。
1:車両  2:タイヤ状態推定システム  3:車輪速検出装置  4:車輪制駆動力検出装置  5:操舵角検出装置  6:操舵力検出装置  7:制御装置

Claims (3)

  1.  車両に装着されたタイヤの路面への接地状態に関する情報を推定するタイヤ接地状態推定方法であって、
     前記タイヤの、回転速度、制駆動力、スリップ角及び発生横力に関する情報を取得する情報取得ステップと、
     前記情報取得ステップで取得した前記回転速度に関する情報と前記制駆動力に関する情報とから、該回転速度と該制駆動力との間の第1相関強度を算出するとともに、前記情報取得ステップで取得した前記スリップ角に関する情報と前記発生横力に関する情報とから、該スリップ角と該発生横力との間の第2相関強度を算出する相関強度算出ステップと、
     前記相関強度算出ステップにおいて算出した前記第1相関強度が、所定の第1基準値に対して第1閾値以上に増加または減少したかを検出するとともに、前記相関強度算出ステップにおいて算出した前記第2相関強度が、所定の第2基準値に対して第2閾値以上に増加または減少したかを検出する変化検出ステップと、
     前記変化検出ステップの検出結果に基づいて、前記タイヤが接する路面状態、前記タイヤの内圧状態および前記タイヤの摩耗状態のうちの少なくとも2つ以上を推定する推定ステップと、を有することを特徴とするタイヤ接地状態推定方法。
  2.  前記変化検出ステップにおいては、前記第1相関強度の所定期間の平均値が前記第1基準値に対して第1閾値以上に増加または減少したかを検出するとともに前記第2相関強度の前記所定期間の平均値が前記第2基準値に対して第2閾値以上に増加または減少したかを検出し、
     前記推定ステップにおいて前記タイヤの内圧状態を推定する場合に用いられる前記変化検出ステップの検出結果は、前記推定ステップにおいて前記タイヤが接する路面状態を推定する場合に用いられる前記変化検出ステップの検出結果よりも、前記所定期間が長く設定されたものである、請求項1に記載のタイヤ接地状態推定方法。
  3.  前記変化検出ステップにおいては、前記第1相関強度の所定期間の平均値が前記第1基準値に対して第1閾値以上に増加または減少したかを検出するとともに前記第2相関強度の前記所定期間の平均値が前記第2基準値に対して第2閾値以上に増加または減少したかを検出し、
     前記推定ステップにおいて前記タイヤの摩耗状態を推定する場合に用いられる前記変化検出ステップの検出結果は、前記推定ステップにおいて前記タイヤが接する路面状態および前記タイヤの内圧状態を推定する場合に用いられる前記変化検出ステップの検出結果よりも、前記所定期間が長く設定されたものである、請求項1または2に記載のタイヤ接地状態推定方法。
PCT/JP2014/002491 2013-06-12 2014-05-12 タイヤ接地状態推定方法 WO2014199557A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US14/889,931 US10352827B2 (en) 2013-06-12 2014-05-12 Tire contact state estimation method
CN201480033660.8A CN105283365B (zh) 2013-06-12 2014-05-12 轮胎接地状态估计方法
EP14810150.4A EP2995520B1 (en) 2013-06-12 2014-05-12 Tire grounded state estimation method

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2013124029A JP5993804B2 (ja) 2013-06-12 2013-06-12 タイヤ接地状態推定方法
JP2013-124029 2013-06-12

Publications (1)

Publication Number Publication Date
WO2014199557A1 true WO2014199557A1 (ja) 2014-12-18

Family

ID=52021881

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/002491 WO2014199557A1 (ja) 2013-06-12 2014-05-12 タイヤ接地状態推定方法

Country Status (5)

Country Link
US (1) US10352827B2 (ja)
EP (1) EP2995520B1 (ja)
JP (1) JP5993804B2 (ja)
CN (1) CN105283365B (ja)
WO (1) WO2014199557A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106156059A (zh) * 2015-03-30 2016-11-23 重庆邮电大学 一种数据处理方法及其设备

Families Citing this family (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6365503B2 (ja) * 2015-10-27 2018-08-01 株式会社Soken 路面状況推定装置
JP6673766B2 (ja) * 2016-06-30 2020-03-25 株式会社ブリヂストン 路面状態判別方法
US11090985B2 (en) * 2016-12-06 2021-08-17 Joerg PIEPER Method and device for detecting absolute friction wear on at least one tire of a vehicle
CN107554206B (zh) * 2017-02-13 2019-06-04 徐州金茂源车业有限公司 一种用于电动车的轮径调节系统
US20180272813A1 (en) * 2017-03-23 2018-09-27 The Goodyear Tire & Rubber Company Model based tire wear estimation system and method
DE102017111077A1 (de) * 2017-05-22 2018-11-22 Lsp Innovative Automotive Systems Gmbh Bremsvorrichtung, insbesondere für elektrisch angetriebene Kraftfahrzeuge
CN109203876A (zh) * 2017-07-07 2019-01-15 杭州中策车空间汽车服务有限公司 集成轮胎组网的风控处理方法和系统
CN108973544B (zh) * 2018-08-16 2020-09-08 杭州容大智造科技有限公司 一种利用电流检测轮胎气压的设备
CN109017166B (zh) * 2018-08-16 2020-09-08 杭州容大智造科技有限公司 一种利用声音检测轮胎气压的设备
US10987977B2 (en) * 2018-10-26 2021-04-27 Toyota Motor North America, Inc. Systems and methods for measuring tire wear using embedded image sensors
IT201800020212A1 (it) * 2018-12-19 2020-06-19 Maserati Spa Procedimento per la stima della pressione degli pneumatici di un veicolo.
JP7219649B2 (ja) * 2019-03-25 2023-02-08 株式会社Subaru 車両の制御装置及び車両の制御方法
JP7367404B2 (ja) * 2019-09-04 2023-10-24 株式会社Soken タイヤ装置
CN113567883B (zh) * 2021-07-20 2024-08-23 维沃移动通信有限公司 接地装置、接地检测方法和电子设备
US12073666B1 (en) * 2023-11-02 2024-08-27 Monliz Llc Systems and methods for integrated diagnostics of real-time driving characteristics

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003211925A (ja) * 2002-01-23 2003-07-30 Sumitomo Rubber Ind Ltd タイヤ空気圧低下警報方法および装置、ならびにタイヤ減圧判定のプログラム
JP2004345521A (ja) * 2003-05-22 2004-12-09 Fuji Heavy Ind Ltd 車両の路面摩擦係数推定装置
WO2005016670A1 (ja) * 2003-08-19 2005-02-24 Kabushiki Kaisha Bridgestone センサ内蔵タイヤ及びタイヤ状態推定方法
JP2006138668A (ja) * 2004-11-10 2006-06-01 Sumitomo Rubber Ind Ltd タイヤ空気圧低下警報装置および方法
JP2010195325A (ja) * 2009-02-26 2010-09-09 Nissan Motor Co Ltd 車両接地面摩擦状態推定装置及びその方法
JP2012153290A (ja) 2011-01-27 2012-08-16 Nissan Motor Co Ltd タイヤ接地状態推定装置

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3116686B2 (ja) * 1993-10-14 2000-12-11 三菱自動車工業株式会社 車両用左右駆動力調整装置
JP3409702B2 (ja) * 1997-07-18 2003-05-26 株式会社豊田中央研究所 車輪状態推定装置
JP2001171504A (ja) * 1999-12-16 2001-06-26 Nissan Motor Co Ltd 路面摩擦係数推定装置
JP3887203B2 (ja) * 2001-10-11 2007-02-28 本田技研工業株式会社 車体速度の推定装置
EP2514640B1 (en) * 2001-12-21 2015-08-05 Kabushiki Kaisha Bridgestone Method and apparatus for estimation of road condition and tire running state, ABS and car control making use thereof
FI124059B (fi) * 2008-09-19 2014-02-28 Aalto Korkeakoulusaeaetioe Parannus ajoneuvojen ajonhallintajärjestelmiin

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003211925A (ja) * 2002-01-23 2003-07-30 Sumitomo Rubber Ind Ltd タイヤ空気圧低下警報方法および装置、ならびにタイヤ減圧判定のプログラム
JP2004345521A (ja) * 2003-05-22 2004-12-09 Fuji Heavy Ind Ltd 車両の路面摩擦係数推定装置
WO2005016670A1 (ja) * 2003-08-19 2005-02-24 Kabushiki Kaisha Bridgestone センサ内蔵タイヤ及びタイヤ状態推定方法
JP2006138668A (ja) * 2004-11-10 2006-06-01 Sumitomo Rubber Ind Ltd タイヤ空気圧低下警報装置および方法
JP2010195325A (ja) * 2009-02-26 2010-09-09 Nissan Motor Co Ltd 車両接地面摩擦状態推定装置及びその方法
JP2012153290A (ja) 2011-01-27 2012-08-16 Nissan Motor Co Ltd タイヤ接地状態推定装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2995520A4 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106156059A (zh) * 2015-03-30 2016-11-23 重庆邮电大学 一种数据处理方法及其设备
CN106156059B (zh) * 2015-03-30 2022-12-09 重庆邮电大学 一种数据处理方法及其设备

Also Published As

Publication number Publication date
EP2995520B1 (en) 2017-07-05
EP2995520A4 (en) 2016-04-06
JP5993804B2 (ja) 2016-09-14
EP2995520A1 (en) 2016-03-16
US20160109331A1 (en) 2016-04-21
CN105283365A (zh) 2016-01-27
JP2014240253A (ja) 2014-12-25
US10352827B2 (en) 2019-07-16
CN105283365B (zh) 2017-07-18

Similar Documents

Publication Publication Date Title
JP5993804B2 (ja) タイヤ接地状態推定方法
EP2955078B1 (en) Tire classfication
US11458776B2 (en) Tread wear monitoring system and method
US9821815B2 (en) Estimating adhesion potential by assessing rolling radius
US8290662B2 (en) System and method for tire cornering power estimation and monitoring
KR101745093B1 (ko) 차량의 타이어 공기압 모니터링 장치 및 방법
WO2013011992A1 (ja) 路面状態推定方法、及び路面状態推定装置
US11458777B2 (en) Tread wear monitoring system and method
JP2016034826A (ja) タイヤ摩耗を決定するためのシステムおよび方法
US10052957B2 (en) Control of regenerative braking in an electric or hybrid vehicle
JP2008247126A (ja) タイヤ摩耗警報方法
US20080156086A1 (en) Method of estimating a risk of a lack of connecting with the ground for a motor vehicle
Cheli Cyber tyre: A novel sensor to improve vehicle's safety
US20160163134A1 (en) Method for detecting the detachment of a sensor device mounted in a wheel of a vehicle
US20230150462A1 (en) Vibration based mu detection
JP4028842B2 (ja) タイヤ空気圧低下検出方法および装置、ならびにタイヤ減圧判定のプログラム
JP5686363B2 (ja) 路面摩擦係数推定装置
JP5705051B2 (ja) 路面状態推定方法、及び路面状態推定装置
JP4672333B2 (ja) タイヤ識別装置および方法
KR102187711B1 (ko) 나침반을 이용한 커브 수막현상 평가 방법
JP4536089B2 (ja) タイヤ空気圧低下検出方法および装置、ならびにタイヤ減圧判定のプログラム

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201480033660.8

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14810150

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 14889931

Country of ref document: US

REEP Request for entry into the european phase

Ref document number: 2014810150

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2014810150

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE