WO2014198188A1 - 飞行器控制系统 - Google Patents

飞行器控制系统 Download PDF

Info

Publication number
WO2014198188A1
WO2014198188A1 PCT/CN2014/079119 CN2014079119W WO2014198188A1 WO 2014198188 A1 WO2014198188 A1 WO 2014198188A1 CN 2014079119 W CN2014079119 W CN 2014079119W WO 2014198188 A1 WO2014198188 A1 WO 2014198188A1
Authority
WO
WIPO (PCT)
Prior art keywords
flight
communication chip
control system
data
aircraft
Prior art date
Application number
PCT/CN2014/079119
Other languages
English (en)
French (fr)
Inventor
田瑜
江文彦
Original Assignee
Tian Yu
Jiang Wenyan
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tian Yu, Jiang Wenyan filed Critical Tian Yu
Publication of WO2014198188A1 publication Critical patent/WO2014198188A1/zh

Links

Classifications

    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B15/00Systems controlled by a computer
    • G05B15/02Systems controlled by a computer electric

Definitions

  • the present invention relates to an aircraft control system, and more particularly to an aircraft control system for controlling the flight state of a model aircraft. Background technique
  • model aircraft there are two main control modes for model aircraft on the market: a special remote control combined with a model aircraft scheme and a smartphone or tablet combined with a model aircraft scheme.
  • the scheme in which the dedicated remote controller integrates the model aircraft is the traditional control scheme of the model aircraft.
  • the remote control contains an operating handle and controls the launch pad. Due to the size and cost constraints of the remote control, there are usually no or only a few simple color lights or a small indicator screen to display the working status of the remote control.
  • the remote control transmitter board generally has only a simple single chip machine to support the work. Therefore, the solution is difficult to improve the operator's sense of use.
  • the smart phone or tablet combined with the model aircraft solution utilizes an existing smart phone or the like as a remote controller of the model aircraft, which has the advantage of low cost, which is due to the direct use of the existing smart phone, thereby reducing the cost of the remote controller; And powerful, the smartphone's operating system can be configured with a variety of parameters and can take advantage of existing smartphone displays.
  • the disadvantage is that when the aircraft is being operated, since there is no professional remote control handle, the operation accuracy and operability of the aircraft are much worse.
  • the operational accuracy and operability of the model aircraft are in turn a sense of use that is mainly pursued by the model flyer, so the solution seriously affects the operator's sense of use. Summary of the invention
  • the technical problem to be solved by the present invention is to overcome the defects of the remote control mode of the model aircraft of the prior art, which has poor operability and single function, and provides a remote control system and an aircraft control system thereof.
  • the invention adopts a smart terminal module and a professional remote controller handle. The combination of these enables a high-performance control solution.
  • the present invention provides an aircraft control system including a model aircraft, the model aircraft including an flight control board for acquiring flight state data of the model aircraft and a video acquisition board for acquiring video data,
  • the aircraft control system further includes a remote control system and a relay station, wherein the flight control board further includes a third communication chip, and the flight control board receives the third remote communication chip to receive the remote control system.
  • the flight control data ;
  • the video capture board further includes a fourth communication chip, where the relay station is configured to receive the video capture board The video data transmitted by the fourth communication chip is forwarded to the remote control system.
  • the third communication chip of the flight control board of the present invention establishes a link relationship with the first communication chip of the remote control system
  • the fourth communication chip of the video acquisition board establishes a link relationship with the second communication chip of the intelligent terminal module of the remote control system. . Therefore, the flight control data is transmitted only to the third communication chip through the first communication chip, and the same video data is transmitted only to the second communication chip through the fourth communication chip.
  • the relay station used in the present invention is used for forwarding video data, thereby overcoming the influence of signal attenuation on video data transmission during signal transmission. Therefore, the relay station can use any forwarding device having a signal forwarding and gain function, such as a relay station, to increase the communication distance and expand the coverage of the device.
  • the present invention also provides an aircraft control system including a model aircraft, the model aircraft including an flight control board for acquiring flight state data of the model aircraft and a video acquisition board for collecting video data.
  • the aircraft control system further includes a remote control system, wherein the flight control board further includes a third communication chip, and the flight control board receives the Flight control data;
  • the video capture board further includes a fourth communication chip, and the video capture board transmits video data to the remote control system via the public communication network via the fourth communication chip.
  • the public communication network refers to a communication network used in current mobile communication, such as a 3G/4G communication network, but the present invention does not limit the type of the public communication network, and any network that can be used for public information data transmission. Both can be applied to the present invention.
  • the remote control system includes a smart terminal module, the smart terminal module includes a second communication chip, the remote control system further includes a control unit, and the control unit includes a flight for acquiring a control model aircraft.
  • a control data collector for controlling data, the second communication chip receiving video data of the model aircraft.
  • control data collector includes a processor, a plurality of remote control levers, and a plurality of remote control switches; the control unit further includes a first communication chip;
  • the processor collects flight control data input by a user through the remote control lever and the remote control switch, and the first communication chip transmits the flight control data to a model aircraft.
  • the first communication chip is further configured to receive flight state data.
  • the flight state data in the present invention is signal data collected by the model aircraft in the prior art and used to characterize the flight state of the model aircraft.
  • the first communication chip is a 2.4G/5.8G ISM (Industrial Scientific Medical Band) FSK (Frequency Shift Keying) transceiver.
  • ISM Industrial Scientific Medical Band
  • FSK Frequency Shift Keying
  • the remote control system includes a smart terminal module, and the smart terminal module includes a second communication core
  • the remote control system further includes a control data collector as described above, wherein the second communication chip receives video data of the model aircraft.
  • control data collector transmits flight state data of the model aircraft received by the first communication chip to the intelligent terminal module.
  • control data collector passes a USART (Universal Synchronous/Asynchronous Serial Receiver/Transmitter) interface, a USB (Universal Serial Bus) interface, and an I2C interface (Inter- Integrated Circuit).
  • USART Universal Synchronous/Asynchronous Serial Receiver/Transmitter
  • USB Universal Serial Bus
  • I2C Inter- Integrated Circuit
  • the line bus) or an SPI interface (high speed synchronous serial port) transmits the flight status data to the intelligent terminal module.
  • the smart terminal module further includes a display screen; the display screen displays the flight state data and/or the video data.
  • the flight state data in the present invention is signal data collected by the model aircraft in the prior art and used to characterize the flight state of the model aircraft.
  • the intelligent terminal module is further configured to generate a flight state configuration parameter
  • the control data collector reads the flight state configuration parameter, and sends the flight state configuration parameter and the flight control data to the model aircraft jointly by the first communication chip, or the second communication chip sets the flight state Configuration parameters are sent to the model aircraft.
  • the flight state configuration parameter in the present invention may be supplementary parameter data of the flight control data input by the user through the intelligent terminal module, parameter data of configuring flight state of the model aircraft, parameter data preset by the user, or model aircraft-based
  • the flight state is passed through parameter data such as empirical formulas.
  • the contents of the flight configuration parameters are not limited in the present invention, and any parameters related to flight attitude, state, and control recognized by those skilled in the art may be used as the flight state configuration parameters of the present invention.
  • the second communication chip is a 2.4G/5.8G WIFKwireless fidelity communication chip, a 3G (third generation communication technology) communication chip or a 4G (fourth generation communication technology) communication chip.
  • the flight control board further transmits the flight state data to the remote control system by using the third communication chip, and the third communication chip further receives the smart terminal module by using the first communication chip.
  • the generated flight state configuration parameters control the flight state of the model aircraft.
  • the flight control board further transmits the flight state data to the remote control system by using the third communication chip, and the flight control board further receives the fourth communication chip of the video capture board.
  • the flight state data and flight loading configuration parameters of the present invention may be transmitted via any of the above link paths.
  • the flight control board of the present invention can not only control the flight state of the model aircraft based on the control signal, but also Sets the working status of each component in the model aircraft.
  • the flight control board when the third communication chip is unable to receive the flight control data, the flight control board sends request information through a fourth communication chip of the video capture board, and forwards to the a remote control system; after the remote control system receives the request information, the remote control system sends the flight control data generated by the control data collector and the flight state configuration parameters generated by the intelligent terminal module through the second communication chip, and passes through The relay station forwards to the video capture board;
  • the flight control board receives the flight control data and flight state configuration parameters through a fourth communication chip of the video capture board, and further transmits the flight state data to the smart terminal module by using the fourth communication chip.
  • the link when the communication link between the flight control board and the control data collector is disconnected, that is, when the link between the first communication chip and the third communication chip is disconnected, the link may be Data such as transmitted flight control data is transmitted through a link established between the video capture board and the intelligent terminal module.
  • the transmission distance of the first communication chip of the control data collector is generally small, when the model aircraft exceeds the transmission distance of the first communication chip, the transmission distance of the third communication chip in the intelligent terminal module is long.
  • the third communication chip is a 2.4G/5.8G ISM FSK transceiver
  • the fourth communication chip is a 2.4G/5.8G WIFI communication chip, a 3G communication chip or a 4G communication chip.
  • the video capture board exchanges data with the flight control board through a serial communication interface.
  • the serial communication interface is a US ART interface, an SPI interface (serial peripheral interface), an RS232 interface or an RS485 interface (an asynchronous transmission standard interface established by the American Electronics Industry Association).
  • the flight control board, the video acquisition board, the intelligent terminal module and the control data collector in the aircraft control system of the present invention each have a communication chip.
  • the flight control data, flight state data, and flight state configuration parameters may be in the Any transmission between the communication chips, as long as the flight control data and flight state configuration parameters are finally transmitted to the flight control board, and the flight state data is finally transmitted to the intelligent terminal module, and the video data can only be The video capture board and the communication chip of the intelligent terminal module are transmitted.
  • the smart terminal module as described above further includes a video processing module, a storage module, an input module, and a ground station data cache module;
  • the video processing module is configured to convert the flight state data and/or the video data into a display signal output to the display screen;
  • the storage module is configured to store the flight state data and/or the video data
  • the input module is configured to read in an input parameter, and generate the flight state configuration parameter based on the parameter;
  • the ground station data cache module is configured to cache flight trajectory data, flight attitude adjustment data, flight state adjustment data, positioning data, and map data sent by the ground station.
  • the video processing module, the storage module and the input module in the present invention are all conventional components in the smart terminal module, so no further details are provided herein.
  • the ground station data cache module of the present invention may be added to the intelligent terminal module by means of a buffer. Since the amount of data of the ground station data is large, the present invention establishes a separate ground station data cache in the smart terminal module. Modules to avoid the memory of a large number of intelligent terminal modules.
  • the smart terminal module further includes a voice synthesis module and a speaker for converting the flight state data into a voice signal and outputting through a speaker.
  • the smart terminal module further includes a voice recognition module and a microphone, and the voice recognition module generates parameter data based on the voice control signal collected by the microphone, and the input module further generates a location based on the parameter data. Flight status configuration parameters.
  • the voice synthesizing module, the speaker, the voice recognition module and the microphone in the present invention are also conventional components or modules in the prior art intelligent terminal module, and therefore will not be described in detail herein.
  • the smart terminal module is separately divided into various modules according to functions, so that in implementing the present invention, the functions of each module can be implemented in one or more software and/or hardware. .
  • the remote control system of the present invention and the aircraft control system thereof have the advantages of having both a professional remote controller operating handle and a smart terminal module, so that the flight control precision and the operability are utilized while utilizing the intelligence.
  • the high performance and multiple implementations of the terminal modules enable a high-performance control solution.
  • Figure 1 is a block diagram showing the structure of an embodiment 1 of an aircraft control system of the present invention.
  • FIG. 2 is a schematic structural diagram of a smart terminal module according to Embodiment 1 of the present invention.
  • FIG. 3 is a schematic structural diagram of a control data collector according to Embodiment 1 of the present invention.
  • Figure 4 is a schematic view showing the structure of a second embodiment of the aircraft control system of the present invention.
  • Figure 5 is a schematic view showing the structure of a fourth embodiment of the aircraft control system of the present invention.
  • FIG. 6 is a schematic view showing the structure of Embodiment 5 of the aircraft control system of the present invention. detailed description
  • the aircraft control system in this embodiment includes a remote control system 1, a model aircraft 2, and a relay station 3, wherein the relay station 3 can adopt a relay station or the like to increase the communication distance and the extended coverage.
  • the remote control system 1 includes a control unit and an intelligent terminal module 12.
  • the control unit includes a control data collector 11 and a 2.4G ISM FSK transceiver 114.
  • the control data collector 11 of the present embodiment includes a processor 111, two remote control levers 112, and two remote control switches 113.
  • the processor 111 collects the operation of the remote control rod 112 and the remote control switch 113 by the user, and the signals generated by the operation of the remote control rod 112 and the remote control switch 113 constitute a flight of the control model aircraft. Control data.
  • the 2.4G ISM FSK transceiver 114 described in this embodiment is used for data interaction with the model aircraft 2.
  • the number of the remote control lever 112 and the remote control switch 113 can be arbitrarily set based on the needs of the actual model aircraft control command, and is not limited to the number in the embodiment.
  • the smart terminal module 12 of the present embodiment includes a video processing module 121a, a display screen 121b, a storage module 122, an input module 123, a voice synthesis module 125, a speaker 126, and a voice recognition module. 127. A microphone 128 and a WIFI communication chip 1211.
  • the video processing module 121a is configured to convert the flight state data into a display signal output to the display screen 121b of the smart terminal module 12, and the display screen 121b displays correspondingly.
  • the storage module 122 is configured to store the flight state data.
  • the input module 125 is configured to read in the input parameters and generate flight state configuration parameters based on the parameters. The flight state configuration parameters in this embodiment are used to adjust and supplement the flight state data.
  • the speech synthesis module 125 is configured to convert flight status data into a speech signal and output to the outside through the speaker 126 so that the user can hear the speech signal containing the content of the flight status data.
  • the voice recognition module 127 generates parameter data based on the voice control signal collected by the microphone 128, and the input module 123 further generates a flight state configuration parameter based on the parameter data.
  • the WIFI communication chip 1211 in the embodiment is used for data interaction with the model aircraft 2.
  • the smart terminal module 2 of the present embodiment is configured by using an intelligent system such as iOS, Android (Android), and Symbian (Symbian), and is configured accordingly to form the smart terminal module 2 in the embodiment.
  • the model aircraft 2 includes an flight control board 21, wherein the flight control board includes a 2.4G ISM FSK transceiver 212, the 2.4G ISM FSK transceiver 212 and the 2.4G ISM.
  • the FSK transceiver 114 matches and performs corresponding data interaction, namely the 2.4G ISM FSK transceiver 212 and the 2.4G ISM FSK transceiver
  • the flight control board 21 controls the flight motion of the model aircraft 2 based on the received flight control data, and accordingly acquires flight state data composed of state data of various components of the model aircraft 2.
  • the model aircraft 2 of the aircraft control system of the present embodiment further includes a video capture board 22, wherein the video capture board 22 includes a WIFI communication chip 222, and the WIFI communication chip 222 and the WIFI communication chip 1211 are established. Data links, and transfer data such as video data.
  • the video capture board 22 is used to collect video data, such as a flight image captured by a camera in the model airplane 2.
  • the control data collector 11 in the embodiment performs data transmission with the intelligent terminal module 12 through the USART interface.
  • the control data collector 11 and the intelligent terminal module 12 in the embodiment can also perform data transmission by using a communication mode such as a USART interface, a USB interface, an I2C interface, or an SPI interface.
  • the data transmission process of this embodiment is as follows:
  • the processor 111 of the control data collector 11 collects flight control data generated by the user's operation of the remote control lever 112 and the remote control switch 113.
  • the 2.4G ISM FSK transceiver 114 then transmits the flight control data to the flight control board 21, or the processor 111 receives the flight state configuration parameters jointly generated by the various modules of the intelligent terminal module 12 through the USART interface. And transmitting the flight control data and flight state configuration parameters to the flight control board 21 via the 2.4G ISM FSK transceiver 114.
  • the flight control board 21 controls the flight operation of the model aircraft 2 based on the flight control data, or the flight control data and the flight state configuration parameters received by the 2.4G ISM FSK transceiver 212, while the flight control board 21 also passes the The 2.4G ISM FSK transceiver 212 transmits flight state data for the model aircraft to the 2.4G ISM FSK transceiver 114 that it matches.
  • the 2.4G ISM FSK transceiver 114 receives the flight state data and transmits it to the smart terminal module 12 through the USB interface, after which the smart terminal module 12 video processing module 121a converts the flight state data into a display signal output to the The display screen 121b of the smart terminal module 12 is then displayed correspondingly.
  • the video capture board 22 always sends the video data to the relay station 3 through the WIFI communication chip 222, and the relay station 3 forwards the video data to the WIFI communication chip 1211 of the intelligent terminal module 12. At the same time, it can also gain the signal data transmitted by it, which can expand the signal coverage.
  • the video processing module 121a of the smart terminal module 12 converts the video data received by the WIFI communication chip 1211 into a display signal output to the display screen 121b of the smart terminal module 12, and then the display screen 121b displays correspondingly.
  • the difference between the present embodiment and the flight control system of the embodiment 1 is that the video capture board 22 and the flight control board 21 in the embodiment perform data transmission through the SPI interface.
  • the user can also use other serial communication interfaces, such as the USART interface, RS232 interface or RS485 interface, to transmit the flight control data.
  • the data transmission procedure of Embodiment 1 is improved in this embodiment. Therefore, as shown in FIG. 4, the data transmission process of this embodiment is as follows:
  • the processor 111 of the control data collector 11 collects flight control data generated by the user's operation of the remote control lever 112 and the remote control switch 113.
  • the 2.4G ISM FSK transceiver 114 then transmits the flight control data to the flight control board 21 and transmits the flight control data to the flight control board 21 via the 2.4G ISM FSK transceiver 114.
  • the WIFI communication chip 1211 of the intelligent terminal module 12 transmits the flight state configuration parameters jointly generated by the respective modules to the relay station 3, and the relay station 3 forwards the flight state configuration parameter gain to the video capture card 22 .
  • the WIFI communication chip 222 of the video capture card 22 receives the flight state configuration parameters forwarded by the relay station 3, and transmits the flight state configuration parameters to the flight control board 21 through the SPI interface.
  • the flight control board 21 controls the flight operation of the model aircraft 2 based on the received flight control data and flight state configuration parameters, while the flight control board 21 also passes the flight of the model aircraft through the 2.4G ISM FSK transceiver 212. Status data is sent to the 2.4G ISM FSK transceiver 114 that matches it.
  • the 2.4G ISM FSK transceiver 114 receives the flight state data and transmits it to the smart terminal module 12 through the USB interface, after which the smart terminal module 12 video processing module 121a converts the flight state data into a display signal output to the The display screen 121b of the smart terminal module 12 is then displayed correspondingly.
  • the video capture board 22 always sends the video data to the relay station 3 through the WIFI communication chip 222, and the relay station 3 forwards the video data to the smart terminal module after gaining the video data.
  • the WIFI communication chip 1211 of 12, and the video processing module 121a of the intelligent terminal module 12 converts the video data received by the WIFI communication chip 1211 into a display signal output to the display screen 121b of the intelligent terminal module 12, and then the display screen 121b is displayed accordingly.
  • Embodiment 2 This embodiment is based on a further improvement of Embodiment 2, the 2.4G ISM FSK transceiver described in Embodiment 2.
  • a communication link is established between the 114 and the 2.4G ISM FSK transceiver 212.
  • a communication connection is also established between the WIFI communication chip 1211, the relay station 3, and the WIFI communication chip 222.
  • the model aircraft and the remote control system are When the distance between the two exceeds the transmission distance of the 2.4G ISM FSK transceiver, the model aircraft will lose control, because the WIFI communication chip itself has a longer communication distance, and the WIFI communication using the relay station 3 as the communication link node has a farther distance.
  • the communication distance in this embodiment, the communication link of the WIFI communication chip 222, the relay station 3, and the WIFI communication chip 1211 of the video capture board 22 is used to continue to transmit flight control data and the like, thereby continuing to control the flight of the model aircraft, and also expanding The remote distance of the model aircraft.
  • the flight control board 21 passes the WIFI communication of the video collection board 22.
  • the chip 222 transmits request information to the relay station 3, which gains and forwards the request information to the remote control system 1.
  • the remote control system 1 After the remote control system 1 receives the request information, the remote control system 1 transmits the flight control data generated by the control data collector 11 and the flight state configuration parameters generated by the intelligent terminal module 12 through the WIFI communication of the intelligent terminal module 12.
  • the chip 1211 is sent to the relay station 3, and is forwarded to the video capture board 22 through the relay station 3 after passing through the gain.
  • the flight control board 21 receives the flight control data and flight state configuration parameters through the WIFI communication chip 222 of the video capture board 22, and also transmits the flight state data to the relay station 3 through the WIFI communication chip 222.
  • the relay station 3 gains and forwards the flight state data to the intelligent terminal module 12.
  • the smart terminal module 12 video processing module 121a converts the flight state data into a display signal output to the display screen 121b of the smart terminal module 12, and then the display screen 121b displays accordingly.
  • Embodiment 1 can coexist with the same flight control system, and the flight control system can adopt different data transmission processes according to its own transmission needs.
  • the difference between the embodiment and the flight control system of the embodiment 1 is as follows: as shown in FIG. 5, in this embodiment, the relay station is removed, and the WIFI communication chip 222 of the video capture board 22 and the smart terminal module 12 are WIFI
  • the communication chip 1211 is replaced with a 3G communication chip 222a and a 3G communication chip 121la.
  • the video capture board 22 and the intelligent terminal module 12 utilize a public communication network to establish a communication link.
  • a communication chip matched with the public communication network such as a 4G communication chip, may be used to establish a communication link between the video collection board 22 and the intelligent terminal module 12 by using a public communication network, thereby realizing data transmission.
  • the processor 111 of the control data collector 11 collects flight control data generated by the user's operation of the remote control lever 112 and the remote control switch 113.
  • the 2.4G ISM FSK transceiver 114 then transmits the flight control data to the flight control board 21, or the processor 111 receives the flight state configuration jointly generated by each module of the mobile intelligent terminal module 12 through the USART interface.
  • the flight control data and flight state configuration parameters are transmitted to the flight control board 21 via the 2.4G ISM FSK transceiver 114.
  • the flight control board 21 controls the flight operation of the model aircraft 2 based on the flight control data, or the flight control data and the flight state configuration parameters received by the 2.4G ISM FSK transceiver 212, while the flight control board 21 also passes the The 2.4G ISM FSK transceiver 212 transmits flight state data for the model aircraft to the 2.4G ISM FSK transceiver 114 that it matches.
  • the 2.4G ISM FSK transceiver 114 receives the flight state data and transmits it to the mobile intelligent terminal module 12 through the USB interface, after which the mobile intelligent terminal module 12 video processing module 121a converts the flight state data into a display signal output to The display screen 121b of the mobile intelligent terminal module 12 is then displayed correspondingly.
  • the video capture board 22 always sends the video data to the 3G communication chip 1211a of the mobile intelligent terminal module 12 through the 3G communication chip 222a, and the video processing module 121a of the mobile intelligent terminal module 12 will 3G.
  • the video data received by the communication chip 1211a is converted into a display signal output to the display screen 121b of the mobile intelligent terminal module 12, and then the display screen 121b is displayed accordingly.
  • the difference between the present embodiment and the flight control system of the embodiment 4 is that: in the embodiment, the video capture board 22 and the flight control board 21 perform data transmission through an SPI interface.
  • the user can also use other serial communication interfaces, such as the USART interface, RS232 interface or RS485 interface, to transmit the flight control data.
  • the data transmission process of this embodiment is as follows:
  • the processor 111 of the control data collector 11 collects the user's remote control rod 112 and the remote control The flight control data generated by the operation of the switch 113 is controlled.
  • the 2.4G ISM FSK transceiver 114 then transmits the flight control data to the flight control board 21 and transmits the flight control data to the flight control board 21 via the 2.4G ISM FSK transceiver 114.
  • the 3G communication chip 1211a of the mobile intelligent terminal module 12 transmits the flight state configuration parameters jointly generated by the respective modules to the video capture card 22.
  • the 3G communication chip 222a of the video capture card 22 receives the flight state configuration parameters and transmits to the flight control board 21 through the SPI interface.
  • the flight control board 21 controls the flight operation of the model aircraft 2 based on the received flight control data and flight state configuration parameters, while the flight control board 21 also passes the flight of the model aircraft through the 2.4G ISM FSK transceiver 212. Status data is sent to the 2.4G ISM FSK transceiver 114 that matches it.
  • the 2.4G ISM FSK transceiver 114 receives the flight state data and transmits it to the mobile intelligent terminal module 12 through the USB interface, after which the mobile intelligent terminal module 12 video processing module 121a converts the flight state data into a display signal output to The display screen 121b of the mobile intelligent terminal module 12 is then displayed correspondingly.
  • the video capture board 22 always sends the video data to the 3G communication chip 1211a of the mobile intelligent terminal module 12 through the 3G communication chip 222a, and the video processing module 121a of the mobile intelligent terminal module 12 will 3G.
  • the video data received by the communication chip 1211a is converted into a display signal output to the display screen 121b of the mobile intelligent terminal module 12, and then the display screen 121b is displayed accordingly.
  • This embodiment is based on a further improvement of the embodiment 5, and the improvement principle is the same as that of the embodiment 3, and will not be described again here.
  • the workflow when the 2.4G ISM FSK transceiver 114 and the 2.4G ISM FSK transceiver 212 can communicate with each other is the same as that of the fifth embodiment, and therefore will not be described in detail herein.
  • the flight control board 21 When the 2.4G ISM FSK transceiver 212 of the flight control board 21 cannot receive the flight control data sent by the 2.4G ISM FSK transceiver 114, the flight control board 21 communicates through the 3G communication of the video capture board 22.
  • the chip 222a transmits request information to the remote control system 1.
  • the remote control system 1 After the remote control system 1 receives the request information, the remote control system 1 passes the flight control data generated by the control data collector 11 and the flight state configuration parameters generated by the mobile intelligent terminal module 12 through the mobile intelligent terminal module 12.
  • the 3G communication chip 1211a is sent to the video capture board 22.
  • the flight control board 21 receives the flight control data and flight state configuration parameters through the 3G communication chip 222a of the video capture board 22, and also transmits the flight state data to the mobile intelligence through the 3G communication chip 222a. Terminal module 12.
  • the mobile intelligent terminal module 12 video processing module 121a converts the flight state data into a display signal output to the display screen 121b of the mobile intelligent terminal module 12, and then the display screen 121b displays accordingly.
  • Embodiment 4 can coexist with the same flight control system, and the flight control system can adopt different data transmission processes according to its own transmission needs.

Abstract

本发明公开了一种飞行器控制系统。所述控制数据采集器包括一处理器、多个遥控杆和多个遥控开关;所述主控单元包括一处理器和一第一通信芯片,所述第一通信芯片将所述遥控杆和遥控开关采集的飞行控制数据发送至模型飞行器。所述遥控系统,包括一智能终端模块,所述智能终端模块包括一第二通信芯片,所述遥控系统还包括一如上所述的控制数据采集器,所述第一通信芯片将所述飞行控制数据发送至模型飞行器。所述飞行器控制系统包括一模型飞行器和如上所述遥控系统。本发明在实现了飞行控制精度高,操作性好的同时利用了智能终端模块的高性能和多种实现,从而实现了高性能的控制方案。

Description

飞行器控制系统 技术领域
本发明涉及一种飞行器控制系统, 特别是涉及一种用于控制模型飞行器的飞行状态 的飞行器控制系统。 背景技术
目前市面上的模型飞行器, 主要的控制方式为两种: 专用遥控器结合模型飞行器的 方案以及智能手机或平板电脑结合模型飞行器方案。
其中专用遥控器集合模型飞行器的方案是模型飞行器传统的控制方案。 遥控器含有 操作手柄以及控制发射板等。 遥控器由于体积和成本的限制, 一般没有或只有几个简单 的彩色灯或很小的指示屏幕来显示遥控器的工作状态, 遥控发射板一般也只有简单的单 片机支持工作。 所以所述方案难以提高操作者的使用感。
其中智能手机或平板电脑结合模型飞行器方案利用现有的智能手机等作为模型飞行 器的遥控器使用, 其优点是成本低, 这是由于直接使用现有的智能手机, 所以减少了遥 控器的成本; 而且功能强大, 智能手机的操作系统可以完成各种参数设计, 且可以利用 现有的智能手机显示屏。 但是其缺点是在操控飞机时, 由于没有专业的遥控手柄, 对飞 机的操作精度和操作性都要差很多。 而模型飞行器的操作精度和操作性又是使用模型飞 行器人员主要追求的使用感, 所以所述方案严重地影响操作者的使用感。 发明内容
本发明要解决的技术问题是为了克服现有技术的模型飞行器的遥控方式操作性差和 功能单一的缺陷, 提供一种遥控系统及其飞行器控制系统, 本发明通过智能终端模块和 专业的遥控器手柄的结合, 从而实现高性能的控制方案。
本发明是通过下述技术方案来解决上述技术问题的:
本发明提供了一种飞行器控制系统, 其包括一模型飞行器, 所述模型飞行器包括用 于采集所述模型飞行器的飞行状态数据的一飞控板和用于采集视频数据的一视频采集板, 其特点是, 所述飞行器控制系统还包括一遥控系统和一中继站, 其中所述飞控板还包括 一第三通信芯片, 所述飞控板通过所述第三通信芯片接收所述遥控系统发送的所述飞行 控制数据;
所述视频采集板还包括一第四通信芯片, 所述中继站用于接收所述视频采集板通过 所述第四通信芯片发送的视频数据并转发至所述遥控系统。
本发明中所述飞控板的第三通信芯片与遥控系统的第一通信芯片建立链接关系, 所 述视频采集板的第四通信芯片与遥控系统的智能终端模块的第二通信芯片建立链接关系。 所以飞行控制数据仅通过第一通信芯片传输至第三通信芯片, 同样视频数据也仅通过第 四通信芯片传输至第二通信芯片。
其中本发明中所述中继站用于视频数据的转发, 从而克服信号传输过程中信号衰减 对视频数据传输的影响。 所以所述中继站可以采用任何具有信号转发和增益功能的转发 装置, 例如中继台等增大通讯距离, 扩展覆盖范围的设备。
本发明还提供了一种飞行器控制系统, 其包括一模型飞行器, 所述模型飞行器包括 用于采集所述模型飞行器的飞行状态数据的一飞控板和用于采集视频数据的一视频采集 板, 其特点是, 所述飞行器控制系统还包括一遥控系统, 其中所述飞控板还包括一第三 通信芯片, 所述飞控板通过所述第三通信芯片接收所述遥控系统发送的所述飞行控制数 据;
所述视频采集板还包括一第四通信芯片, 所述视频采集板通过所述第四通信芯片通 过一公众通讯网络将视频数据发送至所述遥控系统。
其中所述公众通讯网络是指目前移动通讯中所使用的通讯网络, 例如 3G/4G通讯网 络等, 但是本发明并不限制所述公众通讯网络的类型, 任何能够用于公众信息数据传输 的网络都可以应用于本发明中。
较佳地, 所述遥控系统包括一智能终端模块, 所述智能终端模块包括一第二通信芯 片, 所述遥控系统还包括一控制单元, 所述控制单元包括一用于采集控制模型飞行器的 飞行控制数据的控制数据采集器, 所述第二通信芯片接收所述模型飞行器的视频数据。
较佳地, 所述控制数据采集器包括一处理器、 多个遥控杆和多个遥控开关; 所述控 制单元还包括一第一通信芯片;
其中所述处理器通过所述遥控杆和所述遥控开关采集用户输入的飞行控制数据, 所 述第一通信芯片将所述飞行控制数据发送至模型飞行器。
较佳地, 所述第一通信芯片还用于接收飞行状态数据。
本发明中所述飞行状态数据为现有技术中模型飞行器采集并用于表征模型飞行器的 飞行状态的信号数据。
较佳地, 所述第一通信芯片为 2.4G/5.8G ISM (Industrial Scientific Medical Band 工 业科研医药频段) FSK (频移键控) 收发器。
较佳地, 所述遥控系统包括一智能终端模块, 所述智能终端模块包括一第二通信芯 片, 所述遥控系统还包括一如上所述的控制数据采集器, 其中所述第二通信芯片接收所 述模型飞行器的视频数据。
较佳地, 所述控制数据采集器将第一通信芯片接收的所述模型飞行器的飞行状态数 据发送至所述智能终端模块。
较佳地, 所述控制数据采集器通过一 USART (通用同步 /异步串行接收 /发送器) 接 口、 一 USB (通用串行总线) 接口、 一 I2C接口 (Inter- Integrated Circuit, 两线式串行 总线)或一 SPI接口(高速同步串行口)将所述飞行状态数据发送至所述智能终端模块。
较佳地, 所述智能终端模块还包括一显示屏; 所述显示屏显示所述飞行状态数据和 / 或所述视频数据。
本发明中所述飞行状态数据为现有技术中模型飞行器采集并用于表征模型飞行器的 飞行状态的信号数据。
较佳地, 所述智能终端模块还用于生成一飞行状态配置参数;
所述控制数据采集器读入所述飞行状态配置参数, 并通过第一通信芯片将所述飞行 状态配置参数和飞行控制数据共同发送至模型飞行器, 或者所述第二通信芯片将所述飞 行状态配置参数发送至模型飞行器。
本发明中所述飞行状态配置参数可以是用户通过智能终端模块输入的对飞行控制数 据的补充参数数据、 配置模型飞行器的飞行状态的参数数据、 用户预设的参数数据或用 于基于模型飞行器的飞行状态通过经验公式等参数数据。 本发明中并不限制所述飞行状 态配置参数的内容, 本领域技术人员所认知的任何与飞行姿态、 状态和控制等有关的参 数均可以作为本发明的所述飞行状态配置参数。
较佳地,所述第二通信芯片为 2.4G/5.8G WIFKwireless fidelity无线保真)通信芯片、 3G (第三代通信技术)通信芯片或 4G (第四代通信技术)通信芯片等。 较佳地, 所述飞 控板还通过所述第三通信芯片将所述飞行状态数据发送至所述遥控系统, 所述第三通信 芯片还通过所述第一通信芯片接收所述智能终端模块生成的飞行状态配置参数控制模型 飞行器的飞行状态。
较佳地, 所述飞控板还通过所述第三通信芯片将所述飞行状态数据发送至所述遥控 系统, 所述飞控板还通过所述视频采集板的第四通信芯片接收所述中继站转发的由所述 智能终端模块生成的飞行状态配置参数。
本发明中所述飞行状态数据和飞行装填配置参数可以通过上述任意一个链接通路传 输。
而且本发明的飞控板不但可以基于控制信号控制模型飞行器的飞行状态, 还可以采 集模型飞行器中各个部件的工作状态。
较佳地, 当所述第三通信芯片无法接收到所述飞行控制数据时, 所述飞控板通过所 述视频采集板的第四通信芯片发送请求信息, 并经过所述中继站转发至所述遥控系统; 所述遥控系统收到所述请求信息后, 所述遥控系统将所述控制数据采集器生成的飞 行控制数据和智能终端模块生成的飞行状态配置参数通过第二通信芯片发送, 并经过所 述中继站转发至所述视频采集板;
所述飞控板通过所述视频采集板的第四通信芯片接收所述飞行控制数据和飞行状态 配置参数, 并还通过所述第四通信芯片发送所述飞行状态数据至所述智能终端模块。
本发明中当所述飞控板和控制数据采集器之间的通信链路断开时, 即第一通信芯片 和第三通信芯片之间的链路断开时, 可以将所述链路中传输的飞行控制数据等数据通过 所述视频采集板和智能终端模块中间建立的链路传输。
由于所述控制数据采集器的第一通信芯片传输距离一般比较小, 所以本发明中当模 型飞行器超出所述第一通信芯片传输距离时, 利用智能终端模块中第三通信芯片的传输 距离长的特点来保证模型飞行器始终能够获得飞行控制数据等, 因而模型飞行器始终处 于用户控制之下。
较佳地, 所述第三通信芯片为 2.4G/5.8G ISM FSK 收发器, 所述第四通信芯片为 2.4G/5.8G WIFI通信芯片、 3G通信芯片或 4G通信芯片等。
较佳地, 所述视频采集板通过一串行通信接口与所述飞控板交互数据。
较佳地, 所述串行通信接口为 US ART接口、 SPI接口 (串行外设接口)、 RS232接 口或 RS485接口 (美国电子工业协会所制定的异步传输标准接口) 等。
本发明的飞行器控制系统中的飞控板、 视频采集板、 智能终端模块和控制数据采集 器均具有通信芯片, 此时, 所述飞行控制数据、 飞行状态数据、 飞行状态配置参数可以 在所述各个通信芯片之间任意传输, 只要所述飞行控制数据和飞行状态配置参数最终传 输至所述飞控板、 所述飞行状态数据最终传输至智能终端模块即可, 此外所述视频数据 仅能在所述视频采集板和智能终端模块的通信芯片之间传输。
较佳地, 如上所述的智能终端模块中还包括一视频处理模块、 一存储模块、 一输入 模块和一地面站数据缓存模块;
其中所述视频处理模块用于将所述飞行状态数据和 /或所述视频数据转化为显示信 号输出至所述显示屏;
所述存储模块用于存储所述飞行状态数据和 /或所述视频数据;
所述输入模块用于读入输入的参数, 并基于所述参数生成所述飞行状态配置参数; 所述地面站数据缓存模块用于缓存地面站发送的飞行轨迹数据、飞行姿态调整数据、 飞行状态调整数据、 定位数据和地图数据等。
本发明中所述视频处理模块、存储模块和输入模块均为智能终端模块中惯用的部件, 所以此处对其不再做详细赘述。
本发明的所述地面站数据缓存模块可以采用缓存器的方式添加至智能终端模块中, 由于地面站数据的数据量很大, 所以本发明中通过在智能终端模块中建立单独的地面站 数据缓存模块来避免占用大量智能终端模块的存储器。
优选地, 所述智能终端模块中还包括一语音合成模块和一扬声器, 用于将所述飞行 状态数据转化为语音信号, 并通过扬声器输出。
优选地, 所述智能终端模块中还包括一语音识别模块和一麦克风, 所述语音识别模 块基于所述麦克风采集的语音控制信号, 生成参数数据, 所述输入模块还基于所述参数 数据生成所述飞行状态配置参数。
本发明中所述语音合成模块、 扬声器、 语音识别模块和麦克风同样均为现有技术的 智能终端模块中惯用部件或模块, 所以此处不再详细赘述。
为了便于描述, 本发明中将所述智能终端模块按照功能划分为各种模块进行分别描 述, 所以在实施本发明时, 可以把各模块的功能在同一个或多个软件和 /或硬件中实现。
在符合本领域常识的基础上, 上述各优选条件, 可任意组合, 即得本发明各较佳实 例。
本发明的积极进步效果在于:
本发明的遥控系统及其飞行器控制系统的优点是既有专业的遥控器的操作手柄, 又 有利用智能终端模块的多功能, 所以在实现了飞行控制精度高, 操作性好的同时利用了 智能终端模块的高性能和多种实现, 从而实现了高性能的控制方案。 附图说明
图 1为本发明的飞行器控制系统的实施例 1的结构示意图。
图 2为本发明的实施例 1的智能终端模块的结构示意图。
图 3为本发明的实施例 1的控制数据采集器的结构示意图。
图 4为本发明的飞行器控制系统的实施例 2的结构示意图。
图 5为本发明的飞行器控制系统的实施例 4的结构示意图。
图 6为本发明的飞行器控制系统的实施例 5的结构示意图。 具体实施方式
下面通过实施例的方式进一步说明本发明, 但并不因此将本发明限制在所述的实施 例范围之中。
实施例 1
本实施例中所述飞行器控制系统如图 1所示,包括一遥控系统 1、一模型飞机 2和一 中继站 3,其中所述中继站 3可以采用中继台等增大通讯距离和扩展覆盖范围的设备,所 述遥控系统 1包括一控制单元和一智能终端模块 12, 所述控制单元包括一控制数据采集 器 11和一 2.4G ISM FSK收发器 114。
而且如图 2所示, 本实施例的所述控制数据采集器 11包括一处理器 111、 两个遥控 杆 112以及两个遥控开关 113。
其中所述处理器 111采集用户对所述遥控杆 112和所述遥控开关 113的操作, 所述 用户对所述遥控杆 112和所述遥控开关 113的操作生成的信号构成了控制模型飞机的飞 行控制数据。
本实施例中所述 2.4G ISM FSK收发器 114用于与模型飞机 2进行数据交互。
此外所述遥控杆 112和遥控开关 113的数量可以基于实际模型飞机控制命令的需要 任意设置, 并不仅限于本实施例中的数量。
本实施例的智能终端模块 12如图 3所示,包括一视频处理模块 121a、一显示屏 121b、 一存储模块 122、 一输入模块 123、 一语音合成模块 125、 一扬声器 126、 一语音识别模 块 127、 一麦克风 128和一 WIFI通信芯片 1211。
其中所述视频处理模块 121a用于将飞行状态数据转化为显示信号输出至所述智能终 端模块 12的显示屏 121b, 所述显示屏 121b进行相应地显示。 所述存储模块 122用于存 储所述飞行状态数据。 所述输入模块 125用于读入输入的参数, 并基于所述参数生成飞 行状态配置参数。 本实施例中所述飞行状态配置参数用于对飞行状态数据进行调整和补 充。
所述语音合成模块 125用于将飞行状态数据转化为语音信号并通过扬声器 126输出 至外部, 从而用户可以听到包含飞行状态数据的内容的语音信号。
所述语音识别模块 127基于所述麦克风 128采集的语音控制信号, 生成参数数据, 所述输入模块 123还基于所述参数数据生成飞行状态配置参数。
本实施例中所述 WIFI通信芯片 1211用于与模型飞机 2进行数据交互。
其中本实施例的智能终端模块 2采用 iOS、 Android (安卓)、 Symbian (塞班) 等智 能系统, 并进行相应地配置后构成本实施例中所述智能终端模块 2。 如图 1所示, 所述模型飞机 2包括一飞控板 21, 其中所述飞控板中包括一 2.4G ISM FSK收发器 212, 所述 2.4G ISM FSK收发器 212与所述 2.4G ISM FSK收发器 114匹配 并进行相应的数据交互, 即所述 2.4G ISM FSK收发器 212和所述 2.4G ISM FSK收发器
114之间建立数据链接。 其中所述飞控板 21基于接收到的飞行控制数据控制模型飞机 2 的飞行动作, 并相应地采集模型飞机 2的各个部件的状态数据构成的飞行状态数据。
本实施例的飞行器控制系统的模型飞机 2中还包括一视频采集板 22, 其中所述视频 采集板 22包括一 WIFI通信芯片 222,所述 WIFI通信芯片 222和所述 WIFI通信芯片 1211 之间建立数据链接, 并传输视频数据等数据。
其中所述视频采集板 22用于采集视频数据,例如模型飞机 2中摄像头采集的飞行影 像等。
本实施例中所述控制数据采集器 11通过 USART接口与智能终端模块 12进行数据传 输。此外本实施例中所述控制数据采集器 11和智能终端模块 12还可以采用 USART接口、 USB接口、 I2C接口或 SPI接口等通信方式进行数据传输。
如图 1所示, 本实施例的数据传输的流程如下:
首先所述控制数据采集器 11的所述处理器 111采集用户对所述遥控杆 112和所述遥 控开关 113的操作生成的飞行控制数据。
然后所述 2.4G ISM FSK收发器 114将所述飞行控制数据发送至所述飞控板 21, 或 者所述处理器 111通过 USART接口接收所述智能终端模块 12各个模块共同生成的飞行 状态配置参数,并通过所述 2.4G ISM FSK收发器 114将所述飞行控制数据和飞行状态配 置参数发送至所述飞控板 21。
此后飞控板 21基于 2.4G ISM FSK收发器 212接收的飞行控制数据、 或飞行控制数 据和飞行状态配置参数控制模型飞机 2的飞行动作, 与此同时, 所述飞控板 21还通过所 述 2.4G ISM FSK收发器 212将模型飞机的飞行状态数据发送至与其匹配的所述 2.4G ISM FSK收发器 114。
最后, 所述 2.4G ISM FSK收发器 114接收所述飞行状态数据, 并通过 USB接口传 输至智能终端模块 12, 此后智能终端模块 12视频处理模块 121a将飞行状态数据转化为 显示信号输出至所述智能终端模块 12的显示屏 121b, 然后所述显示屏 121b进行相应地 显示。
在上述流程进行的同时,所述视频采集板 22始终将视频数据通过 WIFI通信芯片 222 发送至所述中继站 3, 所述中继站 3在转发所述视频数据至智能终端模块 12的 WIFI通 信芯片 1211的同时, 还能对其发送的视频数据进行增益从而能够扩大信号覆盖范围, 而 且此后所述智能终端模块 12的视频处理模块 121a将 WIFI通信芯片 1211接收的视频数 据转化为显示信号输出至所述智能终端模块 12的显示屏 121b, 然后所述显示屏 121b进 行相应地显示。
实施例 2
本实施例中与实施例 1飞行控制系统的区别在于:本实施例中所述视频采集板 22和 所述飞控板 21之间通过 SPI接口的方式进行数据传输。此外用户还可以采用其他串行通 信接口, 例如 USART接口、 RS232接口或 RS485接口等来传输所述飞行控制数据。
而且本实施例中改进了实施例 1的数据传输流程。 所以如图 4所示, 本实施例的数 据传输的流程如下:
首先所述控制数据采集器 11的所述处理器 111采集用户对所述遥控杆 112和所述遥 控开关 113的操作生成的飞行控制数据。
然后所述 2.4G ISM FSK收发器 114将所述飞行控制数据发送至所述飞控板 21, 并 通过所述 2.4G ISM FSK收发器 114将所述飞行控制数据发送至所述飞控板 21, 与此同 时,所述智能终端模块 12的 WIFI通信芯片 1211将各个模块共同生成的飞行状态配置参 数发送至中继站 3,所述中继站 3将飞行状态配置参数增益后转发至所述视频采集卡 22。
所述视频采集卡 22的 WIFI通信芯片 222接收所述中继站 3转发的所述飞行状态配 置参数, 并通过 SPI接口传输至飞控板 21。
此后飞控板 21基于接收的飞行控制数据和飞行状态配置参数控制模型飞机 2的飞行 动作, 与此同时, 所述飞控板 21还通过所述 2.4G ISM FSK收发器 212将模型飞机的飞 行状态数据发送至与其匹配的所述 2.4G ISM FSK收发器 114。
最后, 所述 2.4G ISM FSK收发器 114接收所述飞行状态数据, 并通过 USB接口传 输至智能终端模块 12, 此后智能终端模块 12视频处理模块 121a将飞行状态数据转化为 显示信号输出至所述智能终端模块 12的显示屏 121b, 然后所述显示屏 121b进行相应地 显示。
在上述流程进行的同时,所述视频采集板 22始终将视频数据通过 WIFI通信芯片 222 发送至所述中继站 3,所述中继站 3将所述视频数据增益后再转发所述视频数据至智能终 端模块 12的 WIFI通信芯片 1211, 而且所述智能终端模块 12的视频处理模块 121a将 WIFI通信芯片 1211接收的视频数据转化为显示信号输出至所述智能终端模块 12的显示 屏 121b, 然后所述显示屏 121b进行相应地显示。
实施例 3
本实施例是基于实施例 2的进一步改进, 在实施例 2中所述 2.4G ISM FSK收发器 114与 2.4G ISM FSK收发器 212之间建立了通信链接,同样,所述 WIFI通信芯片 1211、 中继站 3和 WIFI通信芯片 222之间也建立了通信连接。
由于 2.4G ISM FSK收发器的信号传输距离小于 WIFI通信芯片, 而且实施例 2中飞 控板 21接收的飞行控制信号都是通过 2.4G ISM FSK收发器完成的, 所以当模型飞机与 遥控系统之间的距离超过 2.4G ISM FSK收发器的传输距离时, 模型飞机将失去控制, 由 于 WIFI通信芯片自身具有更远的通信距离, 并且采用了中继站 3作为通信链路节点的 WIFI通信具有更远的通信距离, 所以本实施例中利用视频采集板 22的 WIFI通信芯片 222、 中继站 3和 WIFI通信芯片 1211的通信链路来继续传送飞行控制数据等, 因而能够 继续控制模型飞机的飞行, 而且也拓展了模型飞机的遥控距离。
所以本实施例中当所述 2.4G ISM FSK收发器 114与 2.4G ISM FSK收发器 212之间 还能够进行通信时的工作流程与实施例 2相同, 所以此处不再详细赘述。
当所述 2.4G ISM FSK收发器 114与 2.4G ISM FSK收发器 212之间通信链接断开时, 所述飞行器控制系统的工作原理如下:
当飞控板 21的 2.4G ISM FSK收发器 212无法接收到所述 2.4G ISM FSK收发器 114 发送的所述飞行控制数据时, 所述飞控板 21通过所述视频采集板 22的 WIFI通信芯片 222发送请求信息至中继站 3,所述中继站 3增益并转发所述请求信息至所述遥控系统 1。
所述遥控系统 1收到所述请求信息后, 所述遥控系统 1将所述控制数据采集器 11生 成的飞行控制数据和智能终端模块 12生成的飞行状态配置参数通过智能终端模块 12的 WIFI通信芯片 1211发送至中继站 3,在经过增益后通过所述中继站 3转发至所述视频采 集板 22。
所述飞控板 21通过所述视频采集板 22的 WIFI通信芯片 222接收所述飞行控制数据 和飞行状态配置参数,并还通过所述 WIFI通信芯片 222发送所述飞行状态数据至中继站 3, 所述中继站 3增益并转发所述飞行状态数据至所述智能终端模块 12。
此后智能终端模块 12视频处理模块 121a将飞行状态数据转化为显示信号输出至所 述智能终端模块 12的显示屏 121b, 然后所述显示屏 121b进行相应地显示。
而且本领域技术人员应该认识到实施例 1、实施例 2和实施例 3的数据传输的流程能 够并存与同一个飞行控制系统, 飞行控制系统可以根据自身的传输需要采用不同的数据 传输的流程。
实施例 4
本实施例中与实施例 1飞行控制系统的区别在于: 如图 5所示, 本实施例中摒除了 中继站, 并将所述视频采集板 22的 WIFI通信芯片 222和所述智能终端模块 12的 WIFI 通信芯片 1211替换为 3G通信芯片 222a和 3G通信芯片 121 la。 从而所述视频采集板 22 和所述智能终端模块 12利用公众通讯网络来建立通信链路。
此外本实施例中还可以采用 4G通信芯片等与公众通讯网络匹配的通信芯片利用公 众通讯网络来建立所述视频采集板 22和所述智能终端模块 12之间通信链路, 从而实现 数据的传输。
本实施例的数据传输的流程如下:
首先所述控制数据采集器 11的所述处理器 111采集用户对所述遥控杆 112和所述遥 控开关 113的操作生成的飞行控制数据。
然后所述 2.4G ISM FSK收发器 114将所述飞行控制数据发送至所述飞控板 21, 或 者所述处理器 111通过 USART接口接收所述移动智能终端模块 12各个模块共同生成的 飞行状态配置参数,并通过所述 2.4G ISM FSK收发器 114将所述飞行控制数据和飞行状 态配置参数发送至所述飞控板 21。
此后飞控板 21基于 2.4G ISM FSK收发器 212接收的飞行控制数据、 或飞行控制数 据和飞行状态配置参数控制模型飞机 2的飞行动作, 与此同时, 所述飞控板 21还通过所 述 2.4G ISM FSK收发器 212将模型飞机的飞行状态数据发送至与其匹配的所述 2.4G ISM FSK收发器 114。
最后, 所述 2.4G ISM FSK收发器 114接收所述飞行状态数据, 并通过 USB接口传 输至移动智能终端模块 12, 此后移动智能终端模块 12视频处理模块 121a将飞行状态数 据转化为显示信号输出至所述移动智能终端模块 12的显示屏 121b,然后所述显示屏 121b 进行相应地显示。
在上述流程进行的同时, 所述视频采集板 22始终将视频数据通过 3G通信芯片 222a 发送至移动智能终端模块 12的 3G通信芯片 1211a, 而且所述移动智能终端模块 12的视 频处理模块 121a将 3G通信芯片 1211a接收的视频数据转化为显示信号输出至所述移动 智能终端模块 12的显示屏 121b, 然后所述显示屏 121b进行相应地显示。
实施例 5
本实施例中与实施例 4的飞行控制系统的区别在于: 本实施例中所述视频采集板 22 和所述飞控板 21之间通过 SPI接口的方式进行数据传输。此外用户还可以采用其他串行 通信接口, 例如 USART接口、 RS232接口或 RS485接口等来传输所述飞行控制数据。
而且本实施例中改进了实施例 4的数据传输流程。 所以如图 6所示, 本实施例的数 据传输的流程如下:
首先所述控制数据采集器 11的所述处理器 111采集用户对所述遥控杆 112和所述遥 控开关 113的操作生成的飞行控制数据。
然后所述 2.4G ISM FSK收发器 114将所述飞行控制数据发送至所述飞控板 21, 并 通过所述 2.4G ISM FSK收发器 114将所述飞行控制数据发送至所述飞控板 21, 与此同 时, 所述移动智能终端模块 12的 3G通信芯片 1211a将各个模块共同生成的飞行状态配 置参数发送至视频采集卡 22。
所述视频采集卡 22的 3G通信芯片 222a接收所述飞行状态配置参数, 并通过 SPI 接口传输至飞控板 21。
此后飞控板 21基于接收的飞行控制数据和飞行状态配置参数控制模型飞行器 2的飞 行动作, 与此同时, 所述飞控板 21还通过所述 2.4G ISM FSK收发器 212将模型飞行器 的飞行状态数据发送至与其匹配的所述 2.4G ISM FSK收发器 114。
最后, 所述 2.4G ISM FSK收发器 114接收所述飞行状态数据, 并通过 USB接口传 输至移动智能终端模块 12, 此后移动智能终端模块 12视频处理模块 121a将飞行状态数 据转化为显示信号输出至所述移动智能终端模块 12的显示屏 121b,然后所述显示屏 121b 进行相应地显示。
在上述流程进行的同时, 所述视频采集板 22始终将视频数据通过 3G通信芯片 222a 发送至移动智能终端模块 12的 3G通信芯片 1211a, 而且所述移动智能终端模块 12的视 频处理模块 121a将 3G通信芯片 1211a接收的视频数据转化为显示信号输出至所述移动 智能终端模块 12的显示屏 121b, 然后所述显示屏 121b进行相应地显示。
实施例 6
本实施例是基于实施例 5的进一步改进, 其改进原理与实施例 3相同这里就不再赘 述。
而其本实施例中当所述 2.4G ISM FSK收发器 114与 2.4G ISM FSK收发器 212之间 还能够进行通信时的工作流程与实施例 5相同, 所以此处也不再详细赘述。
当所述 2.4G ISM FSK收发器 114与 2.4G ISM FSK收发器 212之间通信链接断开时, 所述飞行器控制系统的工作原理如下:
当飞控板 21的 2.4G ISM FSK收发器 212无法接收到所述 2.4G ISM FSK收发器 114 发送的所述飞行控制数据时,所述飞控板 21通过所述视频采集板 22的 3G通信芯片 222a 发送请求信息至所述遥控系统 1。
所述遥控系统 1收到所述请求信息后, 所述遥控系统 1将所述控制数据采集器 11生 成的飞行控制数据和移动智能终端模块 12生成的飞行状态配置参数通过移动智能终端模 块 12的 3G通信芯片 1211a发送至所述视频采集板 22。 所述飞控板 21通过所述视频采集板 22的 3G通信芯片 222a接收所述飞行控制数据 和飞行状态配置参数, 并还通过所述 3G通信芯片 222a发送所述飞行状态数据至所述移 动智能终端模块 12。
此后移动智能终端模块 12视频处理模块 121a将飞行状态数据转化为显示信号输出 至所述移动智能终端模块 12的显示屏 121b, 然后所述显示屏 121b进行相应地显示。
而且本领域技术人员应该认识到实施例 4、实施例 5和实施例 6的数据传输的流程能 够并存与同一个飞行控制系统, 飞行控制系统可以根据自身的传输需要采用不同的数据 传输的流程。
本说明书中的各个实施例均采用递进的方式描述, 各个实施例之间相同相似的部分 互相参见即可, 每个实施例重点说明的都是与其他实施例的不同之处。
虽然以上描述了本发明的具体实施方式, 但是本领域的技术人员应当理解, 这些仅 是举例说明, 在不背离本发明的原理和实质的前提下, 可以对这些实施方式做出多种变 更或修改。 因此, 本发明的保护范围由所附权利要求书限定。

Claims

权利要求
1、 一种飞行器控制系统, 其包括一模型飞行器, 所述模型飞行器包括用于采集所述 模型飞行器的飞行状态数据的一飞控板和用于采集视频数据的一视频采集板, 其特征在 于, 所述飞行器控制系统还包括一遥控系统和一中继站, 其中所述飞控板还包括一第三 通信芯片, 所述飞控板通过所述第三通信芯片接收所述遥控系统发送的所述飞行控制数 据;
所述视频采集板还包括一第四通信芯片, 所述中继站用于接收所述视频采集板通过 所述第四通信芯片发送的视频数据并转发至所述遥控系统。
2、 一种飞行器控制系统, 其包括一模型飞行器, 所述模型飞行器包括用于采集所述 模型飞行器的飞行状态数据的一飞控板和用于采集视频数据的一视频采集板, 其特征在 于, 所述飞行器控制系统还包括一遥控系统, 其中所述飞控板还包括一第三通信芯片, 所述飞控板通过所述第三通信芯片接收的所述遥控系统发送的所述飞行控制数据; 所述视频采集板还包括一第四通信芯片, 所述视频采集板通过所述第四通信芯片通 过一公众通讯网络将视频数据发送至所述遥控系统。
3、 如权利要求 1-2中至少一项所述的飞行器控制系统, 其特征在于, 所述遥控系统 包括一智能终端模块, 所述智能终端模块包括一第二通信芯片, 所述遥控系统还包括一 控制单元, 所述控制单元包括一用于采集控制模型飞行器的飞行控制数据的控制数据采 集器, 所述第二通信芯片接收所述模型飞行器的视频数据。
4、 如权利要求 3所述的飞行器控制系统, 其特征在于, 所述控制数据采集器包括一 处理器、 多个遥控杆和多个遥控开关; 所述控制单元还包括一第一通信芯片;
其中所述处理器通过所述遥控杆和所述遥控开关采集用户输入的飞行控制数据, 所 述第一通信芯片将所述飞行控制数据发送至模型飞行器。
5、 如权利要求 4所述的飞行器控制系统, 其特征在于, 所述第一通信芯片还用于接 收飞行状态数据。
6、 如权利要求 4-5中至少一项所述的飞行器控制系统, 其特征在于, 所述第一通信 芯片为 2.4G/5.8G ISM FSK收发器。
7、 如权利要求 4-6中至少一项所述的飞行器控制系统, 其特征在于, 所述控制单元 还将第一通信芯片接收的所述模型飞行器的飞行状态数据发送至所述智能终端模块。
8、 如权利要求 7所述的飞行器控制系统, 其特征在于, 所述智能终端模块还用于生 成一飞行状态配置参数;
所述控制单元接收所述飞行状态配置参数, 并通过第一通信芯片将所述飞行状态配 置参数和飞行控制数据共同发送至模型飞行器。
9、 如权利要求 7-8中至少一项所述的飞行器控制系统, 其特征在于, 所述控制单元 通过一 USART接口、 一 USB接口、 一 I2C接口或一 SPI接口将所述飞行状态数据发送 至所述智能终端模块。
10、 如权利要求 3-9 中至少一项所述的飞行器控制系统, 其特征在于, 所述智能终 端模块还包括一显示屏; 所述显示屏显示所述飞行状态数据和 /或所述视频数据。
11、 如权利要求 3-10中至少一项所述的飞行器控制系统, 其特征在于, 所述第二通 信芯片为 2.4G/5.8G WIFI通信芯片、 3G通信芯片或 4G通信芯片。
12、 如权利要求 5-11中至少一项所述的飞行器控制系统, 其特征在于, 所述智能终 端模块中还包括一视频处理模块、 一存储模块和一输入模块;
其中所述视频处理模块用于将所述飞行状态数据和 /或所述视频数据转化为显示信 号输出至所述显示屏;
所述存储模块用于存储所述飞行状态数据和 /或所述视频数据;
所述输入模块用于读入输入的参数, 并基于所述参数生成所述飞行状态配置参数。
13、 如权利要求 5-12中至少一项所述的飞行器控制系统, 其特征在于, 所述智能终 端模块中还包括一语音合成模块和一扬声器,用于将所述飞行状态数据转化为语音信号, 并通过扬声器输出。
14、 如权利要求 12-13 中至少一项所述的飞行器控制系统, 其特征在于, 所述智能 终端模块中还包括一语音识别模块和一麦克风, 所述语音识别模块基于所述麦克风采集 的语音控制信号, 生成参数数据, 所述输入模块还基于所述参数数据生成所述飞行状态 配置参数。
15、 如权利要求 8-14中至少一项所述的飞行器控制系统, 其特征在于, 所述飞控板 还通过所述第三通信芯片将所述飞行状态数据发送至所述遥控系统, 所述第三通信芯片 还通过所述第一通信芯片接收所述智能终端模块生成的飞行状态配置参数控制模型飞行 器的飞行状态。
16、 如权利要求 8-15中至少一项所述的飞行器控制系统, 其特征在于, 所述飞控板 还通过所述第三通信芯片将所述飞行状态数据发送至所述遥控系统, 所述飞控板还通过 所述视频采集板的第四通信芯片接收所述中继站转发的由所述智能终端模块生成的飞行 状态配置参数。
17、 如权利要求 8-16中至少一项所述的飞行器控制系统, 其特征在于, 当所述第三 通信芯片无法接收到所述飞行控制数据时, 所述飞控板通过所述视频采集板的第四通信 芯片发送请求信息, 并经过所述中继站转发至所述遥控系统;
所述遥控系统收到所述请求信息后, 所述遥控系统将所述控制数据采集器生成的飞 行控制数据和智能终端模块生成的飞行状态配置参数通过第二通信芯片发送, 并经过所 述中继站转发至所述视频采集板;
所述飞控板通过所述视频采集板的第四通信芯片接收所述飞行控制数据和飞行状态 配置参数, 并还通过所述第四通信芯片发送所述飞行状态数据至所述智能终端模块。
18、 如权利要求 1-17中至少一项所述的飞行器控制系统, 其特征在于, 所述第三通 信芯片为 2.4G/5.8G ISM FSK收发器, 所述第四通信芯片为 2.4G/5.8G WIFI通信芯片、 3G通信芯片或 4G通信芯片。
19、 如权利要求 1-18中至少一项所述的飞行器控制系统, 其特征在于, 所述视频采 集板通过一串行通信接口与所述飞控板交互数据。
20、如权利要求 19所述的飞行器控制系统,其特征在于,所述串行通信接口为 USART 接口、 SPI接口、 RS232接口或 RS485接口。
PCT/CN2014/079119 2013-06-13 2014-06-04 飞行器控制系统 WO2014198188A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201310234039.5 2013-06-13
CN201310234039.5A CN104238469B (zh) 2013-06-13 2013-06-13 飞行器控制系统

Publications (1)

Publication Number Publication Date
WO2014198188A1 true WO2014198188A1 (zh) 2014-12-18

Family

ID=52021644

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2014/079119 WO2014198188A1 (zh) 2013-06-13 2014-06-04 飞行器控制系统

Country Status (3)

Country Link
CN (1) CN104238469B (zh)
HK (1) HK1205295A1 (zh)
WO (1) WO2014198188A1 (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104750113A (zh) * 2015-04-01 2015-07-01 深圳市华海技术有限公司 飞行器及其遥控方法
CN105812814A (zh) * 2016-03-24 2016-07-27 湖南优象科技有限公司 一种基于无人机视频的飞参数据可视化编码传输方法
CN108600976A (zh) * 2018-04-02 2018-09-28 中国人民解放军海军工程大学 一种基于MESH结构的WiFi移动无线音视频通信系统

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104765309A (zh) * 2015-04-08 2015-07-08 何春旺 遥控器、遥控行驶装置、遥控行驶装置控制系统及其方法
CN105430761B (zh) * 2015-10-30 2018-12-11 小米科技有限责任公司 建立无线网络连接的方法、装置及系统
CN109217910B (zh) * 2017-07-05 2021-04-20 昊翔电能运动科技(昆山)有限公司 基于无人机的信号中继方法和系统
CN109426273A (zh) * 2017-08-29 2019-03-05 深圳市道通智能航空技术有限公司 一种飞行器控制方法及装置
CN111708374A (zh) * 2020-06-22 2020-09-25 西北工业大学 一种分布式动力无人机控制系统

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101592955A (zh) * 2009-04-08 2009-12-02 孙卓 一种全自动无人飞行器控制系统
CN202838027U (zh) * 2012-09-28 2013-03-27 佛山市安尔康姆航拍科技有限公司 一种无人飞行器一体化地面站设备
CN203414782U (zh) * 2013-06-13 2014-01-29 昊翔电能运动科技(昆山)有限公司 飞行器控制系统
CN203414817U (zh) * 2013-06-13 2014-01-29 昊翔电能运动科技(昆山)有限公司 遥控系统及其飞行器控制系统
CN203490821U (zh) * 2013-06-13 2014-03-19 昊翔电能运动科技(昆山)有限公司 智能显示遥控器和飞行控制系统

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB8807676D0 (en) * 1988-03-31 1988-05-05 Westland Helicopters Helicopter control systems
CN100495275C (zh) * 2006-11-24 2009-06-03 中国科学院沈阳自动化研究所 小型无人直升机自主飞行控制系统
CN201000576Y (zh) * 2007-01-26 2008-01-02 青岛天骄无人机遥感技术有限公司 无人机飞行控制系统

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101592955A (zh) * 2009-04-08 2009-12-02 孙卓 一种全自动无人飞行器控制系统
CN202838027U (zh) * 2012-09-28 2013-03-27 佛山市安尔康姆航拍科技有限公司 一种无人飞行器一体化地面站设备
CN203414782U (zh) * 2013-06-13 2014-01-29 昊翔电能运动科技(昆山)有限公司 飞行器控制系统
CN203414817U (zh) * 2013-06-13 2014-01-29 昊翔电能运动科技(昆山)有限公司 遥控系统及其飞行器控制系统
CN203490821U (zh) * 2013-06-13 2014-03-19 昊翔电能运动科技(昆山)有限公司 智能显示遥控器和飞行控制系统

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104750113A (zh) * 2015-04-01 2015-07-01 深圳市华海技术有限公司 飞行器及其遥控方法
CN105812814A (zh) * 2016-03-24 2016-07-27 湖南优象科技有限公司 一种基于无人机视频的飞参数据可视化编码传输方法
CN105812814B (zh) * 2016-03-24 2018-12-28 湖南优象科技有限公司 一种基于无人机视频的飞参数据可视化编码传输方法
CN108600976A (zh) * 2018-04-02 2018-09-28 中国人民解放军海军工程大学 一种基于MESH结构的WiFi移动无线音视频通信系统

Also Published As

Publication number Publication date
HK1205295A1 (zh) 2015-12-11
CN104238469A (zh) 2014-12-24
CN104238469B (zh) 2018-01-16

Similar Documents

Publication Publication Date Title
WO2014198188A1 (zh) 飞行器控制系统
CN104238564A (zh) 遥控系统及其飞行器控制系统
US10820098B2 (en) Wireless microphone system, control method and audio-video conference system
CN211702218U (zh) 音视频传输装置及音视频传输系统
CN203414817U (zh) 遥控系统及其飞行器控制系统
CN209526823U (zh) 一种无线投屏中转设备及无线投屏系统
CN203414782U (zh) 飞行器控制系统
WO2014186930A1 (zh) 可触控智能机顶盒装置及智能多媒体播放系统
CN103501424B (zh) Tdma+tdd制式高速图传系统及通信控制方法和工作方法
WO2017000475A1 (zh) 一种体感控制方法与装置
CN203350718U (zh) 遥控系统及其飞行器控制系统
CN104238382A (zh) 遥控系统及其飞行器控制系统
CN104238561B (zh) 遥控系统及其飞行器控制系统
CN203483857U (zh) 遥控系统及其飞行器控制系统
WO2024037025A1 (zh) 无线通信电路、蓝牙通信切换方法和电子设备
CN108259978A (zh) 一种带有无线路由器的有线同屏器
CN203554492U (zh) 控制器局域网总线智能接口装置及一种卫星
CN206060971U (zh) 一种多功能智能投影仪
WO2011113255A1 (zh) 一种实现游戏远程对战的方法及系统
CN105430297A (zh) 多视频格式向iidc协议视频格式转换的自动控制系统
CN109618128A (zh) 一种车联网环境下无线视频多跳传输系统
CN203299805U (zh) 一种无线影音传输设备
CN202524481U (zh) 微型多路无线图像音频传输系统
CN203368730U (zh) 一种高保真5.1声道无线音响系统
CN103269469A (zh) 一种高保真5.1声道无线音响系统

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14810410

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 26/04/2016)

122 Ep: pct application non-entry in european phase

Ref document number: 14810410

Country of ref document: EP

Kind code of ref document: A1