WO2014198180A1 - 有机物料干馏裂解气化炉、处理系统和方法 - Google Patents

有机物料干馏裂解气化炉、处理系统和方法 Download PDF

Info

Publication number
WO2014198180A1
WO2014198180A1 PCT/CN2014/078332 CN2014078332W WO2014198180A1 WO 2014198180 A1 WO2014198180 A1 WO 2014198180A1 CN 2014078332 W CN2014078332 W CN 2014078332W WO 2014198180 A1 WO2014198180 A1 WO 2014198180A1
Authority
WO
WIPO (PCT)
Prior art keywords
organic material
dry
gasification furnace
gas
processing system
Prior art date
Application number
PCT/CN2014/078332
Other languages
English (en)
French (fr)
Inventor
隋建国
由甲
由里
隋荣恒
吴班
Original Assignee
山东汉菱电气有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from CN201310254205.8A external-priority patent/CN103881737B/zh
Application filed by 山东汉菱电气有限公司 filed Critical 山东汉菱电气有限公司
Priority to BR112015030168-1A priority Critical patent/BR112015030168B1/pt
Publication of WO2014198180A1 publication Critical patent/WO2014198180A1/zh

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10BDESTRUCTIVE DISTILLATION OF CARBONACEOUS MATERIALS FOR PRODUCTION OF GAS, COKE, TAR, OR SIMILAR MATERIALS
    • C10B53/00Destructive distillation, specially adapted for particular solid raw materials or solid raw materials in special form
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10BDESTRUCTIVE DISTILLATION OF CARBONACEOUS MATERIALS FOR PRODUCTION OF GAS, COKE, TAR, OR SIMILAR MATERIALS
    • C10B19/00Heating of coke ovens by electrical means
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10KPURIFYING OR MODIFYING THE CHEMICAL COMPOSITION OF COMBUSTIBLE GASES CONTAINING CARBON MONOXIDE
    • C10K1/00Purifying combustible gases containing carbon monoxide
    • C10K1/08Purifying combustible gases containing carbon monoxide by washing with liquids; Reviving the used wash liquors
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10KPURIFYING OR MODIFYING THE CHEMICAL COMPOSITION OF COMBUSTIBLE GASES CONTAINING CARBON MONOXIDE
    • C10K1/00Purifying combustible gases containing carbon monoxide
    • C10K1/08Purifying combustible gases containing carbon monoxide by washing with liquids; Reviving the used wash liquors
    • C10K1/10Purifying combustible gases containing carbon monoxide by washing with liquids; Reviving the used wash liquors with aqueous liquids
    • C10K1/101Purifying combustible gases containing carbon monoxide by washing with liquids; Reviving the used wash liquors with aqueous liquids with water only
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E50/00Technologies for the production of fuel of non-fossil origin
    • Y02E50/10Biofuels, e.g. bio-diesel

Definitions

  • the invention relates to the technical field of organic material processing, in particular to an organic material dry cracking gasification furnace, a processing system and a processing method for treating organic materials. Background technique
  • the present invention aims to solve at least one of the technical problems existing in the prior art. To this end, the present invention is required to provide an organic material processing system that utilizes existing organic materials such as garbage, low-grade foam coal, etc., to the greatest extent without pollution.
  • the present invention needs to provide an organic material processing method which can minimize the environmental impact of organic materials and maximize the utilization value of organic materials.
  • the present invention needs to provide an organic material dry cracking gasification furnace, which can utilize existing organic materials such as garbage, low-order foam coal, etc. to the greatest extent without pollution. Make the most of this organic material.
  • An organic material processing system includes: an organic material dry cracking gasification furnace, the organic material dry cracking gasification furnace is formed with a feed port and has an air outlet at the top and a discharge port at the bottom The organic material enters the organic material dry cracking gasification furnace from the feed port to isolate air from drying and is discharged from the discharge port, and the generated dry helium gas is discharged from the gas outlet;
  • a dry helium scrubbing device is connected downstream of the organic material dry cracking gasification furnace and receives and scrubs the dry helium gas discharged from the gas outlet.
  • the organic material such as garbage, low-order coal, oil shale foam, etc. is first introduced into the organic material dry cracking gasification furnace for drying and drying.
  • Helium will dry again
  • the helium gas is sequentially introduced into the dry helium gas washing equipment and the self-cleaning heat exchange equipment, and is subjected to washing purification and treatment, and finally, a clean combustible dry gas and a light tar can be obtained, thereby reducing the environmental impact of the organic materials.
  • the combustible energy can also be obtained, thereby maximizing the utilization value of the organic material.
  • organic material processing system has the following additional technical features:
  • the organic material processing system may further include a self-cleaning heat exchange device connected downstream of the dry helium gas washing device to self-clean the washed dry helium gas Dispose of to obtain the desired flammable dry gas.
  • the organic material dry cracking gasification furnace comprises: a cracking gasification furnace body, wherein the gas outlet is disposed at a top of the cracking gasification furnace body; a plurality of dry chambers, the plurality of dry chambers juxtaposed In the cracking gasification furnace body and adjacent two of the dry chambers are spaced apart from each other, the discharge openings are respectively provided at the bottom of each of the dry chambers; and an electric heating rod, the electric heating A rod is vertically disposed in the plurality of dry chambers to insulate the materials in the plurality of dry chambers from air to produce solid carbonaceous materials, dry helium gas, and light tar.
  • the organic material dry cracking gasification furnace further comprises: an upper silo, the top of the top silo is open, and the bottom of the top silo and the organic material dry pyrolysis gas The feed inlet of the furnace is connected; and an automatic feeding device is disposed between the bottom of the top silo and the feed port of the organic material dry cracking gasification furnace to control the top material The material in the silo is supplied to the cracking gasifier body.
  • the feed port of the organic material dry cracking gasification furnace is further provided with a distribution channel for distributing materials, and the distribution channel is configured to uniformly introduce the material into the cracked gas.
  • the distribution channel is configured to uniformly introduce the material into the cracked gas.
  • the distribution passage is formed in an inverted Y shape and includes an upper passage, a first lower passage, and a second lower passage that communicate with each other, wherein a top end of the upper passage and a bottom of the top silo Connected, and the bottoms of the first lower passage and the second lower passage respectively lead to the cracking gasifier body.
  • the organic material dry cracking gasification furnace further includes a distributing device, and the distributing device is disposed under the feeding port to distribute the material supplied to the feeding port,
  • the cloth distributing device comprises: a supporting member, the supporting member extends in a longitudinal direction of the cracking gasification furnace body; a plurality of retaining members, one end of each of the retaining members is connected to the supporting member and the other end is laterally Extending to the inner wall adjacent to the cracking gasifier body.
  • a vent hole is formed in the support member, and a vent pipe is connected to the vent hole, and one end of the vent pipe is connected to the air outlet.
  • the method further includes: a plurality of automatic sealing and discharging devices, wherein the plurality of automatic sealing and discharging devices are respectively disposed at discharge openings of the plurality of drying chambers to open and close the discharge opening.
  • the dry helium scrubbing apparatus comprises a primary dry helium scrubber
  • the primary The dry helium scrubbing tower comprises: a first tower body, an upper portion of the first tower body having a first dry helium gas inlet and a top portion having a first circulating water inlet, and a first drying chamber having a first drying chamber a gas outlet and a water oil inlet at a lower portion thereof; and a water seal tank, wherein the water seal tank communicates with the first tower body through the water oil inlet, and a first tar overflow port is formed at an upper portion of the water seal tank .
  • the method further includes: a water distribution box, the water distribution box is disposed at a top of the first tower, and the first circulating water inlet is disposed on the water distribution box.
  • the primary dry helium scrubber further comprises: a plurality of side by side, vertically extending first venturis, the plurality of first venturis being disposed at the first tower a body, and a top end of the plurality of first venturi tubes is lower than the first dry helium gas inlet; a plurality of first water spray tubes, one end of each of the first water spray tubes and the water distribution box Connecting and extending the other end into the corresponding first venturi to flush the dry helium gas entering from the first dry helium gas inlet; and the second venturi, the second venturi being located The inside of the tower is located below the plurality of first venturi tubes.
  • the dry helium gas washing apparatus further comprises a secondary dry helium scrubber, the secondary dry helium scrubber comprising: a second tower body, the lower portion of the second tower body having a second dry helium gas inlet and a second dry helium gas outlet at the top; a second water spray pipe, the second water spray pipe extending from the middle of the second tower body into the second tower body;
  • the heat exchange trays are distributed, and the plurality of distribution heat exchange trays are disposed along a radial direction of the second tower body and spaced apart from each other in the up and down direction.
  • the secondary dry helium scrubber further comprises: a water seal cylinder, the upper portion of the water seal cylinder has a second tar overflow port; and a washing liquid drain pipe, the washing liquid drain One end of the tube is in communication with a lower portion of the second tower body and the second end extends into a lower portion of the water seal cylinder, a lower end of the water seal cylinder being lower than a lower end of the second tower body to be the second Condensed water in the tower body is discharged into the water seal cylinder.
  • the second dry helium gas inlet is connected to a dry helium gas pipe, and the other end of the dry helium gas pipe extends upwardly above the top of the second tower body.
  • the lower portion of the second tower body is further provided with a cleaning port, and the cleaning port is lower than the one end of the washing liquid drain pipe.
  • the self-cleaning heat exchange device comprises at least one stage self-cleaning heat exchanger, each of the self-cleaning heat exchangers comprising: a casing having a gas outlet and a lower portion at the top of the casing Having a gas inlet and a washing liquid discharge port, wherein the gas inlet is higher than the washing liquid discharge port; and a plurality of heat exchange tubes, the plurality of heat exchange tubes are distributed in a plurality of layers spaced apart from each other in the up and down direction, each The heat exchange tubes are internally provided with cooling water; a gas filter, the gas filter is disposed at a lower portion of the casing and higher than the gas inlet to filter gas entering the casing; and a plurality of a heat exchange tray, the plurality of self-cleaning heat exchange trays are arranged along a radial direction of the casing and spaced apart from each other in an up and down direction, wherein each self-cleaning heat exchange tray can be disposed in two of the heat exchange tubes Between the
  • the housing has a cooling water port, and the cooling water port communicates with the plurality of heat exchange tubes to supply cooling water.
  • the outer wall of the casing is further provided with a water wall.
  • each of the self-cleaning heat exchangers further includes: an outlet mist eliminator disposed in the casing and located below the gas outlet to be entrained in the gas Separating the droplets; a self-cleaning uniform distributor, the self-cleaning uniform distributor being disposed above the plurality of heat exchange tubes to uniformly distribute the gas in the housing; and a desulfurization scrubber, the desulfurization A scrubber is disposed within the housing and between the outlet mist eliminator and the self-cleaning uniform dispenser.
  • the gas inlet is connected to a dry helium gas pipe, and the other end of the dry helium gas pipe extends upwardly above the top of the casing.
  • the organic material processing system further includes: a washing liquid circulation container, the washing liquid circulation container and the first tar overflow port and the first circulating water of the primary dry gas scrubbing tower, respectively
  • the inlet, the second tar overflow of the second-stage dry helium scrubber is in communication with the second water spray pipe, wherein the first washing liquid produced after the initial washing in the primary dry gas scrubber is from the first Discharging the tar overflow port into the washing liquid circulation container to separate tar, dust and first condensed water, the first condensed water returning to the first circulating water inlet;
  • the secondary dry helium scrubbing tower a second washing liquid generated after the second washing is discharged from the second tar overflow port into the washing liquid circulation container to separate tar, dust and second condensed water, and the second condensed water returns to the second Water spray pipe.
  • the washing liquid circulation vessel is further connected to at least one stage self-cleaning heat exchanger to receive the discharged washing liquid.
  • the organic material is the organic material, including: domestic garbage, agricultural and sideline products straw, cotton straw, wine by-product liqueur and vinasse, plant leaves, industrial garbage, medical garbage, low-grade coal foam , oil shale foam or a mixture thereof.
  • the organic material processing method includes the following steps: S1: The organic material is insulated from air and dried at a low temperature of less than 650 degrees Celsius to produce a solid material, dry helium gas and tar; S2, washing and purifying the dry helium gas to remove tar; S3, performing primary deoiling, dehydration, desulfurization, and denamination on the dry helium gas after washing and purifying in step S2 to obtain a clean gas.
  • impurities such as tar and dust in the organic material can be separated, and deoiling, dehydrating, desulfurizing, denalyzing, deactivating naphthalene, and obtaining a clean gas can finally obtain a clean gas, which can be achieved.
  • Industrial and civil flammable gas use standards.
  • An organic material dry cracking gasification furnace comprising: a cracking gasification furnace body, wherein the cracking gasification furnace body is provided with a feed port and an air outlet; and a plurality of dry chambers, a plurality of cognac chambers are juxtaposed in the cracking gasifier body, and two adjacent cognac chambers are spaced apart, and each of the cognac chambers is provided with a discharge opening at the bottom;
  • An electric heating rod is vertically disposed in the plurality of cognac chambers to dry air from the plurality of cognac chambers to generate solid carbonaceous material and dry helium gas.
  • organic material dry cracking gasification furnace of the embodiment of the present invention it is possible to effectively treat, for example, domestic garbage, low-order coal or oil shale foam, without pollution, thereby maximizing the utilization of organic materials.
  • FIG. 1 is a schematic view of an organic material dry cracking gasification furnace according to an embodiment of the present invention
  • FIG. 2 is a schematic view of a distributing device of an organic material dry cracking gasification furnace according to an embodiment of the present invention
  • FIG. 3 is a schematic view of a primary dry helium gas washing tower according to an embodiment of the present invention
  • FIG. 4 is a schematic view of a secondary dry helium scrubber in accordance with one embodiment of the present invention.
  • Figure 5 is a schematic illustration of a self-cleaning heat exchange apparatus in accordance with one embodiment of the present invention.
  • FIG. 6 is a flow diagram of an organic material processing method in accordance with one embodiment of the present invention. detailed description
  • Connected and “connected” should be understood in a broad sense. For example, it may be a fixed connection, a detachable connection, or an integral connection; it may be a mechanical connection or an electrical connection; it may be directly connected or passed through Intermediate media Indirectly connected, it can be the internal communication between two components.
  • the specific meanings of the above terms in the present invention can be understood in the specific circumstances by those skilled in the art.
  • an organic material processing system includes an organic material dry cracking gasification furnace 100, a dry helium gas washing device, and a self-cleaning heat exchange device 300.
  • the organic material processing system can be used for treating organic materials such as domestic garbage, plant straw, low-grade coal foam and/or oil shale foam.
  • organic materials such as domestic garbage, plant straw, low-grade coal foam and/or oil shale foam.
  • an organic material processing system for processing low-rank coal foam and/or oil shale foam is exemplified.
  • the low-order coal at this point refers to all unbonded lignite, bituminous coal and anthracite.
  • the organic material processing system for treating low rank coal foam and/or oil shale foam is illustrated by way of example only, and not limited thereto, the organic material processing system according to the present invention is also It can be used to treat other types of materials to be treated, such as agricultural and sideline products straw, cotton straw, wine by-product liqueur and distiller's grains, plant leaves, industrial waste and medical waste.
  • the top of the organic material dry cracking gasification furnace 100 has a feed port and an air outlet
  • the bottom of the organic material dry cracking gasification furnace 100 has a discharge port
  • the components of the dry gas include other mixtures of various components such as formazan, hydrogen, hydrocarbons, carbon monoxide, and trace amounts of nitrogen and oxygen.
  • the dry helium scrubbing equipment is connected downstream of the organic material dry cracking gasification furnace 100 and receives and purifies the dry helium gas discharged from the gas outlet.
  • the self-cleaning heat exchange device 300 is connected downstream of the dry helium scrubbing device to treat the scrubbed cleaned helium gas to obtain a clean combustible dry gas, which can partially replace the natural gas.
  • the dry helium scrubbing device to treat the scrubbed cleaned helium gas to obtain a clean combustible dry gas, which can partially replace the natural gas.
  • the organic material is firstly introduced into the organic material dry cracking gasification furnace 100 to dry and generate dry helium gas, and then the dry helium gas is sequentially introduced into the dry helium gas.
  • the washing equipment and the self-cleaning heat exchange device 300 are subjected to washing purification and treatment, and finally, a clean combustible dry gas can be obtained, thereby reducing the environmental impact of the organic material, and by the above treatment process on the organic material, The combustible energy is obtained, so that the utilization value of the organic material can be maximized.
  • the organic material dry cracking gasification furnace 100 includes a cracking gasification furnace body 1 1 0 , multiple cognacs 1 20 and electricity heating equipment.
  • the electric heating device can be an electric heating rod 130.
  • a feed port and an air outlet are formed at the top of the cracking gasifier body 110.
  • the cracking gasification furnace body 110 defines an accommodation space for containing the material to be dried.
  • the top of the cracking gasification furnace body 110 has a feed port for supplying the material to be dried into the accommodation space, and is cracked and gasified.
  • the top of the furnace body 110 has an air outlet to discharge the gas obtained by the dryness through the air outlet.
  • a plurality of cognac chambers 120 are arranged side by side in the cracking gasification furnace body 110, and two adjacent cognac chambers 120 are spaced apart by a partition wall 121, and each of the cognac chambers 120 is provided with a discharge opening 122 at the bottom. .
  • a plurality of cognac chambers 120 are disposed in parallel with each other in the lower portion of the pyrolysis gasification furnace body 110, and adjacent cognac chambers 120 are spaced apart by a partition wall 121, and the top of the cognac chamber 120 is open.
  • each of the drying chambers 120 has a discharge opening 122 to extract dry solid materials such as smokeless fuel or powder used in the construction industry, and additives used in the cement industry.
  • the discharge port 122 is discharged. It should be understood that the number of cognac chambers 120 can be set according to actual requirements to have a better drying effect.
  • the electric heating rods 130 are vertically disposed in the plurality of dry chambers 120 to insulate the contents of the plurality of drying chambers 120 from air to produce solid carbonaceous materials, dry helium gas and tar.
  • an electric heating rod 130 is vertically disposed in each of the drying chambers 120, and the electric heating rods 130 respectively dry the air to be dried in each of the drying chambers 120. That is to say, the dry materials, such as organic materials, are completely isolated from air drying during the drying process to obtain solid carbonaceous materials, dry helium gas and tar.
  • the temperature in the drying chamber can be adjusted as desired depending on the nature of the organic material.
  • the electric heating rods 130 are vertically disposed in the plurality of dry chambers 120, and the material is prevented from falling so that the electric heating rods 130 are bent and deformed as compared with the case where the electric heating rods 130 are horizontally disposed. It should be noted that in one embodiment of the present invention, the electric heating rod 130 may also be horizontally disposed to sufficiently heat the organic material.
  • the electric heating rod 130 may use an alternating current or direct current voltage source to isolate the dry material from the air to produce a high temperature hot gas.
  • the electric heating rod 130 includes an electric heating wire and an insulating layer sleeved thereover. Because the calorific value of the produced gas is higher in this way, for example, the calorific value of the low-ranked coal foam and/or the oil shale foam is more than 4000 kcal, and the gas volume is relatively large, for example, 400 cubic meters per ton of gas produced, one for each processing.
  • the electric energy consumed by the electric heating rod only accounts for a small part of the calorific value per ton of gas produced, so the operating cost is low.
  • the gas produced by this method has a calorific value of more than 6000 kcal per square gas, and the gas volume is large, for example, 800 cubic meters per ton of gas produced, and for each ton of domestic garbage processed, electric heaters such as The electric heating rod consumes only a small fraction of the calorific value per ton of gas produced, so the operating cost is low.
  • the organic material to be dried enters the organic material dry cracking gasification furnace 100 for drying, discharging the smokeless fuel product or the powder used in the construction industry and the additive used in the cement industry, and continuously produces dry gas and tar products, among which
  • the dry gas can be a combustible gas, and the combustible gas can be used for generating electricity from an internal combustion generator set, or can be used directly by the user instead of city gas or natural gas.
  • the organic material dry cracking gasification furnace 100 according to the embodiment of the present invention can perform air-drying treatment on the organic material, which is not only environmentally friendly but also low in cost, and can fully utilize existing resources.
  • the organic material processing system can completely decompose the combustible components of the two materials, taking the lignite from Hami Lake in Xinjiang as an example.
  • the combustible gas can be completely precipitated and analyzed to produce no new external ash.
  • the raw coal into the furnace and the smokeless fuel discharged material ratio is about 1.6: 1 ton (refers to the air drying base coal foam), the discharge device is the dry discharge system equipment, without any water consumption, the discharged smokeless fuel is low temperature. Dry material.
  • the light oil recovery rate is 98% of the raw oil content, and all of them are light oils with a specific gravity of about 0.9.
  • the yield of lignite combustible gas is 400rrf/t of raw coal, and the calorific value is about 17-33MJ/rrf.
  • the dioxin obtained from the dried gas and the national effluent does not produce dioxin, and there is no heavy metal pollution, and the produced solid effluent can be used as a smokeless fuel. No need for fuel injection, not only environmentally friendly but also low cost, so that you can make full use of existing resources.
  • the organic material dry cracking gasification furnace 100 is convenient to use, and the production process is stopped and the production process is simple, and the whole process can be automated.
  • a plurality of cognac chambers 120 are arranged side by side in the horizontal direction, and each of the caesar chambers 120 extends in the up and down direction as shown in FIG.
  • the organic material dry cracking gasification furnace 100 further includes: an upper silo 141 and an automatic feeder 142.
  • the top of the top bin 141 is open, and the bottom of the top bin 141 is in communication with the feed port of the cracking gasifier body 110.
  • the top silo 141 is disposed above the cracking gasifier body 110, and the top of the top silo 141 is open to feed the material to be dried from the top of the top silo 141, the top silo
  • the bottom of the 141 is in communication with the feed port of the cracking gasifier body 110 to feed the material in the top silo 141 into the cracking gasifier body 110 through the feed port, for example, the top silo 141 is formed in a funnel shape.
  • the top silo 141 may be formed in a cylindrical shape, an elliptical cylinder shape, a long cylindrical shape or a prismatic shape, or the like.
  • an automatic feeder 142 is disposed between the bottom of the top silo 141 and the feed port of the cracking gasifier body 110 to control the supply of material in the top silo 141 into the cracking gasifier body 110.
  • the automatic feeder 142 is a valve provided on the line between the bottom of the top silo 141 and the feed port of the cracking gasifier body 110.
  • the automatic feeder device 142 is an electric valve.
  • a distribution passage 150 for dispensing material is further provided at the feed port of the cracking gasifier body 110. Referring to Figure 1, a distribution passage 150 is provided between the bottom of the top bin 141 and the top of the furnace body to distribute the material supplied to the furnace body.
  • the distribution passage 150 is formed in an inverted Y shape, and the distribution passage 150 includes an upper passage 151, a first lower passage 153, and a second lower passage 152 that communicate with each other.
  • the top end of the upper channel 151 is in communication with the bottom of the top bin 141, And the bottoms of the first lower passage 153 and the second lower passage 152 lead to the cracking gasifier body 110, respectively.
  • the upper passage 151 extends in the up and down direction, and the top of the upper passage 151 communicates with the bottom of the upper silo 141, and the bottom of the upper passage 151 is respectively connected to the top and the second lower of the first lower passage 153, respectively.
  • the top of the channel 152 is connected to each other. Specifically, the first lower channel 153 extends obliquely to the left and then vertically downwards. The second lower channel 152 extends obliquely to the right and then vertically downward. The bottoms of the lower passage 153 and the second lower passage 152 are respectively connected to the top of the cracking gasification furnace body 110 and communicate with the receiving space of the cracking gasification furnace body 110 to pass the material to be dried in the top silo 141 . The gasifier body 110 is cracked.
  • the organic material dry cracking gasification furnace 100 further includes: a distributing device 160, the distributing device 160 being disposed below the feed port to distribute the material supplied to the feed port.
  • a distributing device 160 is disposed in the accommodating space of the cracking gasification furnace body 110 and above the accommodating space to uniformly distribute the material supplied from the top silo 141 to the plurality of cognacs below. Inside the chamber 120.
  • the drape device 160 includes a support member 161 and a plurality of retaining members 162.
  • the support member 161 extends in the longitudinal direction of the cracking gasification furnace body 110 (left-right direction as shown in Fig. 1).
  • each of the stopper members 162 is attached to the support member 161, and the other end of each of the stopper members 162 extends to the inner wall of the cracking gasification furnace body 110.
  • a plurality of retaining members 162 are spaced apart from each other, and each of the retaining members 162 extends from a side wall surface of the supporting member 161 toward the inner wall of the cracking gasifier body 110, which needs to be understood. Therefore, the end of the retaining member 162 remote from the supporting member 161 can be as close as possible to the inner wall of the cracking gasification furnace body 110 to have a better cloth effect.
  • the plurality of retaining members 162 include a plurality of first retaining members and a plurality of second retaining members, and the plurality of first retaining members and the plurality of second retaining members are respectively adjacent to each other along the length of the supporting member 161
  • the spacers are spaced apart, and the plurality of first barrier members and the plurality of second barrier members are spaced apart by a predetermined distance in the width direction of the support member 161.
  • the plurality of first retaining members and the plurality of second retaining members are respectively in one-to-one correspondence in the length direction of the support member 161, as shown in FIG.
  • the present invention is not limited thereto, and in other examples of the present invention, the plurality of first barrier members and the plurality of second barrier members may also be staggered in the longitudinal direction of the support member 161 (not shown). .
  • the stopper member 162 extends in the lateral direction (the front-rear direction as shown in FIG. 1), and the stopper member 162 is substantially perpendicular to the support member 161, that is, The angle between the support member 161 and each of the retaining members 162 is approximately 90°.
  • the retaining member 162 may also be obliquely coupled to the support member 161, in which case the angle between the support member 161 and each of the retaining members 162 is approximately 0° to 90°. Or between 90° and 180°, here, it should be noted that the angle between the support member 161 and each of the retaining members 162 does not include 90°.
  • a plurality of retaining members 162 are evenly distributed on both lateral sides of the support member 161.
  • the distance between the stopper members 162 adjacent to each other in the longitudinal direction of the support member 161 is substantially equal to each other.
  • each of the support member 161 and the retaining member 162 includes a symmetrically disposed cross section.
  • the first plate and the second plate are connected to the first plate and the second plate end and form an angle of 30-180 degrees between the first plate and the second plate.
  • a vent hole is formed in the support member 161, and a vertically extending vent pipe 163 is connected to the vent hole, wherein the air outlet port is constituted by the vent pipe 163.
  • the center of the top of the support member 161 is formed with a vent hole therethrough, the vent pipe 163 extends in the vertical direction, and the bottom of the vent pipe 163 communicates with the vent hole, and the top portion thereof is cracked.
  • the top of the gasification furnace body 110 is connected, and the dry gas generated after the drying is discharged through the vent pipe 163, and the components of the dry gas may include formazan, hydrogen, hydrocarbon, carbon monoxide, carbon dioxide, nitrogen, and the like.
  • the support member 161 may further be formed with a plurality of vent holes, and the plurality of vent holes are respectively connected with a plurality of vertically extending vent pipes 163 (not shown) Out).
  • the organic material dry cracking gasification furnace 100 further includes: a plurality of automatic sealing discharge devices 170, and a plurality of automatic sealing discharge devices 170 are respectively disposed in the discharge of the plurality of drying chambers 120 Port 122 is used to open and close the discharge opening 122. As shown in FIG. 1, a plurality of automatic sealing and discharging devices 170 are respectively disposed at the bottoms of the plurality of drying chambers 120. When the automatic sealing and discharging device 170 is in an open state, the solids obtained in the cracking gasification furnace body 110 are dried. The substance can be discharged through the discharge opening 122.
  • the organic material dry cracking gasification furnace 100 further includes a sealed discharge bin 180 and a chain discharge device 200.
  • the sealed discharge bin 180 is disposed at the bottom of the cracking gasification furnace body 110, and the sealed discharge bin 180 communicates with the interior of the cracking gasification furnace body 110, wherein the bottoms of the plurality of drying chambers 120 extend into the sealed discharge bin 180
  • the solid matter obtained by the drying is discharged through the discharge port 122 and falls into the sealed discharge bin 180.
  • a chain discharge device 200 is provided in the sealed discharge bin 180 to receive and discharge the material discharged from the automatic sealing discharge device 170.
  • the organic material dry cracking gasification furnace 100 further includes: a furnace body support frame 190, and a furnace body support frame 190 is disposed on an outer side wall of the lower portion of the furnace body to support the furnace body.
  • the furnace support frame 190 is disposed at a lower portion of the furnace body and above the sealed discharge bin 180.
  • the working process of the organic material dry cracking gasification furnace 100 is as follows: The material to be dried continuously enters the organic material dry cracking gasification furnace 100, and encounters the high temperature hot gas rising from the bottom for reverse exchange, and removes the material carried outside. Moisture, the material continues to descend into the plurality of dry chambers 120 below for drying and drying, and the electric heating rods in the drying chamber 120 provide a continuous dry heat source, and then the dried solid materials such as smokeless fuel or The powder used in the construction industry and the additives used in the cement industry are discharged through the automatic sealing discharge device 170 at the bottom of the cracking gasification furnace body 110, and the gas obtained by the drying is discharged through the vent pipe 163 above the cracking gasification furnace body 110.
  • the organic material processing system may further include a primary screening device (not shown) connected to the organic material dry cracking gasification furnace 100 upstream of the organic material to be treated. Screening.
  • a primary screening device (not shown) connected to the organic material dry cracking gasification furnace 100 upstream of the organic material to be treated. Screening.
  • the particle size of the coal foam or oil shale foam may be screened to no more than 5 rrm for better drying.
  • the primary screening apparatus may include a strip screen (not shown) for screening a portion of the heavy impurities in the organic material to be treated.
  • a strip sieve can be used to remove a small amount of heavy impurities mainly composed of a metal.
  • the organic material processing system further includes a dewatering device (not shown) for dehydrating the organic material, the dewatering device being disposed in the primary screening device and the organic material dry cracking gasification furnace 100 between.
  • a dewatering device for dehydrating the organic material
  • the dewatering device being disposed in the primary screening device and the organic material dry cracking gasification furnace 100 between.
  • impurities removed by the primary screening apparatus may be subjected to dehydration treatment in a dewatering apparatus.
  • the organic material processing system when the organic material is live garbage, agricultural by-product straw, cotton straw, wine by-product liqueur and vinasse, plant leaves, industrial waste, medical waste, low-grade coal foam, oil shale foam or The mixture, the organic material processing system further includes a molding apparatus (not shown), and the molding apparatus is disposed between the dewatering apparatus and the organic material dry cracking gasification furnace 100 to mix and mix the dehydrated organic material.
  • the dry helium scrubbing apparatus can include a primary dry helium scrubber 210.
  • the primary dry scrubbing scrubber 210 may include a first column body 211 and a water seal box 212.
  • the upper portion of the first tower body 211 has a first dry helium gas inlet 2111, and the dry helium gas generated by the organic material dry cracking gasification furnace 100 is discharged from the gas outlet of the organic material dry cracking gasification furnace 100. Washing can be carried out into the first tower body 211 via the first dry helium gas inlet 2111. And the top of the first tower body 211 has a first circulating water inlet 2112. It is understood that the first circulating water inlet 2112 is located above the first dry helium inlet 2111 to allow entry from the first dry helium inlet 2111. The dry helium gas is mixed with the circulating water flowing in from the first circulating water inlet 2112 above it to complete the washing.
  • the primary dry helium scrubber 210 removes most of the dust, heavy oil, and the like from the dry helium gas.
  • a first dry helium gas outlet 2113 may be disposed in a middle portion of the first tower body 211, and the washed dry helium gas in the first tower body 211 may be discharged from the first dry helium gas outlet 2113. Continue the downstream process.
  • the lower portion of the first tower body 211 is provided with a water and oil inlet 2114.
  • a water-oil mixed liquid is generated, and the mixed liquid can be From the water oil inlet 2114, into the water seal box 212 located at the lower portion of the first tower body 211, that is, the water seal box 212 communicates with the first tower body 211 through the water oil inlet 2114, wherein the upper portion of the water seal box 212 A first tar overflow port 2121 is formed.
  • the water-oil mixed liquid flows into the water seal box 212 and the liquid level slowly rises to the first tar overflow port 2121, the water-oil mixture can overflow from the first tar.
  • the port 2121 overflows and can be collected to prevent excess water-oil mixture from being stored in the water-sealed tank 212 and diverted from the water-oil inlet 2114 into the first tower body 211.
  • the primary dry helium scrubber 210 may also be provided with a water distribution box 213.
  • the water distribution box 213 may be disposed at the top of the first tower body 211, and the first circulating water inlet 2112 is provided on the water distribution box 213.
  • the first circulating water inlet 2112 may be disposed at the top of the water distribution box 213, and a plurality of water distribution ports may be disposed on the bottom wall or the side wall of the water distribution box 213, and the circulation from the first circulating water inlet 2112
  • the water may flow out from the plurality of water distribution ports, whereby the circulating water may flow from the plurality of directions to the inside of the first tower body 211 to clean the dry helium gas.
  • the water distribution box 213 is disposed at the top of the first tower body 211. Therefore, the circulating water can be evenly distributed, and the contact area between the circulating water and the dry helium gas can be increased, and the cleaning can be more uniform.
  • the primary dry helium scrubber 210 may also include a plurality of first venturis 214, a plurality of first water spray tubes 215 and a second venturi tube 216.
  • a plurality of first venturi tubes 214, a plurality of first water spray tubes 215, and a second venturi tube 216 may be disposed in the first tower body 211.
  • a plurality of first venturis 214 may be arranged side by side and each first venturi 214 extends in a vertical direction, and the top ends of the plurality of first venturis 214 may be lower than the first stem.
  • Helium inlet 2111 one end of each of the first water spray pipes 215 (for example, the upper end shown in FIG. 3) is connected to the water distribution box 213.
  • the upper ends of each of the first water spray pipes 215 may be respectively connected to the water distribution box 213.
  • a plurality of water distribution ports, and the other end of each of the first water spray pipes 215 for example, the lower end shown in FIG.
  • first venturi tube 214 is disposed and flushed under the spray of the first water spray tube 215 within each first venturi tube 214.
  • the second venturi tube 216 may be located below the plurality of first venturi tubes 214, and the dry helium gas flushed from the plurality of first venturi tubes 214 may be collected in the second venturi tube 216 and Flows to the lower portion of the first tower body 211.
  • the dry helium scrubbing apparatus may also include a secondary dry helium scrubber 220.
  • the second stage dry helium scrubber 220 can be located downstream of the primary dry scrub column 210.
  • the secondary dry helium scrubber 220 includes a second tower body 221, a second water spray pipe 222, and a plurality of distribution heat exchange trays 223.
  • the lower portion of the second tower body 221 has a second dry helium gas inlet 2211, and the dry helium gas discharged from the first dry helium gas outlet 2113 of the primary dry scrubbing scrubber 210 can enter the second stage from the second dry helium gas inlet 2211.
  • a second wash is performed in the dry helium scrubber 220.
  • a second dry helium gas outlet 2212 may be disposed at the top of the second tower body 221, and the dry helium gas washed by the second dry scrubbing scrubber 220 may be discharged from the second dry helium gas outlet 2212 and continue downstream.
  • the secondary dry scrubbing scrubber 220 can remove light oil from dry helium and washing liquid which is not conducive to combustion.
  • the second dry helium gas inlet 2211 is connected to the dry helium gas pipe 226, and the dry gas pipe 226 is connected.
  • the other end extends upwardly above the top of the second tower body 221.
  • the second water spray pipe 222 may be provided from the middle of the second tower body 221, and the circulating water may flow from the second water spray pipe 222 and be sprayed into the second tower body.
  • the second water spray pipe 222 may be plural and spaced apart, and each of the second water spray pipes 222 may be provided with a plurality of spaced water spray ports, thereby allowing the circulating water to be sprayed more uniformly. Into the second tower, the uniformity of the flushing of the dry helium can be improved.
  • a plurality of distribution heat exchange trays 223 may be disposed along the radial direction of the second tower body 221 and spaced apart from each other in the up and down direction.
  • each of the distribution heat exchange trays 223 may be disposed along the radial direction of the second tower body 221, and the plurality of distribution heat exchange trays 223 may be spaced apart from each other in the up and down direction, respectively.
  • the composition of the dry helium gas is complex and diverse, and the density of the gas of each component is different, thereby causing the gas component having a small density to rise rapidly to the second tower body 221 in the second tower body 221.
  • the gas component having a relatively high density is relatively slow to rise, and in order to allow the multi-component gas to be uniformly discharged into the second tower body 221, the heat transfer tower can be disposed along the radial direction of the second tower body 221.
  • the disk 223, by which the heat exchange tray 223 is distributed, can resist the rapidly rising gas, and the multi-component gas can be mixed after being mixed under the heat exchange tray 223. Further, by providing a plurality of distribution heat exchange trays 223 in the up and down direction, the multi-component gas can be mixed a plurality of times and finally discharged from the second dry gas outlet 2212.
  • the secondary dry helium scrubber 220 may also include a water seal cartridge 224 and a wash liquor drain 225.
  • the upper portion of the water seal cylinder 224 has a second tar overflow port 2241, and one end of the wash liquid drain pipe 225 (for example, the upper end in FIG. 4) communicates with the lower portion of the second tower body 221, and the washing liquid drain
  • the second end of the liquid pipe 225 projects into the lower portion of the water seal cylinder 224, and the lower end of the water seal cylinder 224 is lower than the lower end of the second tower body 221 to condense water in the second tower body 221. It is discharged into the water seal cylinder 224.
  • the washing liquid can be discharged from the second tar overflow port 2241 after being collected into the water seal cylinder 224 to a certain extent, that is, when the liquid level exceeds the second tar overflow port 2241. It can also be collected to prevent the washing liquid from flowing back from the washing liquid drain pipe 225 back into the second column body 221.
  • the lower portion of the second tower body 221 may further be provided with a sweeping port 221 3 which is lower than one end of the washing liquid draining pipe 225.
  • a sweeping port 221 3 which is lower than one end of the washing liquid draining pipe 225.
  • the self-cleaning heat exchange device 300 may be disposed downstream of the second-stage dry helium scrubber 220, and the self-cleaning heat exchange device 300 includes at least one self-cleaning heat exchanger 31 0, each self-cleaning heat exchanger
  • the vessel 31 0 includes a casing 31 1 , a plurality of heat exchange tubes 31 2 , a gas filter 31 3 , and a plurality of self-cleaning heat exchange trays 31 4 .
  • the housing 311 may have a rectangular tubular gas chamber oriented in the up and down direction, and the top of the housing 311 has a gas outlet 3111 through which the dry helium gas cleaned in the self-cleaning heat exchange device 300 can be discharged.
  • the lower portion of the body 311 has a gas inlet 3112 such that dry helium gas discharged from the secondary dry helium scrubber 220 can flow from the gas inlet 3112 into the self-cleaning heat exchange device 300 for cleaning.
  • the plurality of heat exchange tubes 312 are distributed in a plurality of layers spaced apart from each other in the up and down direction, and each of the heat exchange tubes 312 may be configured to be configured in a plum blossom shape in a lateral direction (for example, a direction perpendicular to the up and down direction in Fig. 5). Cooling water is supplied to each of the heat exchange tubes 312, whereby the dry helium gas flowing out from the gas inlets 3112 flows upward and exchanges heat with each heat exchange to obtain cooling.
  • the gas filter 313 is disposed at a lower portion of the casing 311 and higher than the gas inlet 3112 to filter the gas entering the casing 311, and the plurality of self-cleaning heat exchange trays 314 are disposed along the radial direction of the casing 311 and are vertically arranged. They are spaced apart from one another, wherein each self-cleaning heat exchange tray 314 can be disposed between two of the heat exchange tubes 312. Similar to the distribution heat exchange tray 223 in the secondary dry scrubbing scrubbing tower 220, by providing the self-cleaning heat exchange tray 314, the ascending multi-component gas can be uniformly mixed and discharged.
  • the lower portion of the casing 311 is provided with a washing liquid discharge port 3113, wherein the gas inlet 3112 is higher than the washing liquid discharge port 3113, whereby the washing liquid can be discharged from the washing liquid discharge port 3113.
  • the self-cleaning heat exchange tray 314 includes three. This can reduce equipment investment and reduce costs while ensuring uniform mixing of multiple components.
  • the housing 311 may have a cooling water port 3114, and the cooling water port 3114 communicates with the plurality of heat exchange tubes 312 for supplying cooling water.
  • a water wall 315 is also provided on the outer wall of the housing 311. Thereby, cooling water can be introduced into the water wall 315 to further exchange heat with the dry helium gas in the self-cleaning heat exchange device 300 to cool it.
  • each self-cleaning heat exchanger 310 may also include an outlet lancer 316, a self-cleaning uniform distributor 317, and a desulfurization scrubber 318.
  • the outlet mist 316 is disposed in the casing 311 and is located below the gas outlet 3111 to separate the liquid droplets in the gas.
  • the self-cleaning uniform distributor 317 is disposed above the plurality of heat exchange tubes 312 to be in the housing 311.
  • the gas is evenly distributed, and a desulfurization scrubber 318 is disposed within the housing 311 between the outlet mist 316 and the self-cleaning uniform distributor 317 to desulfurize the gas.
  • the gas outlet 3111, the outlet mist 316, the desulfurization scrubber 318, the self-cleaning uniform distributor 317, and the self-cleaning heat exchange tray 314 are arranged in order from top to bottom.
  • the gas inlet 3112 is connected to a dry helium gas pipe 226, and the other end of the dry gas pipe 226 extends upwardly above the top of the casing 311.
  • the dry helium gas discharged from the secondary dry helium scrubber 220 can be first cooled from the dry helium gas pipe 226 and then cooled to the self-cleaning heat exchange device 300.
  • the cleaned gas is deoiled, dehydrated, and cooled by the self-cleaning heat exchange device 300, and the self-cleaning heat exchange device 300
  • the resulting light oil and weakly alkaline liquid can desulfurize and deodorize the gas.
  • the organic material processing system may also include a wash liquor circulation vessel (not shown).
  • the washing liquid circulation container is respectively connected with the first tar overflow port 21 21 of the primary dry scrubbing scrubber 210 and the first circulating water inlet 21 1 2, the second tar overflow overflow port 2241 of the secondary dry scrubbing scrubber 220, and
  • the second water spray pipe 222 is in communication, wherein the first washing liquid generated after the initial washing in the primary dry gas scrubbing tower 21 0 is discharged from the first tar overflow port 21 21 into the washing liquid circulation container to separate tar, dust and the first a condensed water, the first condensed water returns to the first circulating water inlet 21 1 2; the second washing liquid generated after the second washing in the secondary dry scrubbing scrubbing tower 220 is discharged from the second tar overflow port 2241 to the washing
  • the tar, the dust and the second condensed water are separated in the liquid circulation container, and the first condensed water is returned to the second water
  • impurities such as tar, dust, and the like generated by washing in the primary dry scrubbing tower 21 and the secondary dry scrubbing scrubber 220 can be separated from the condensed water, and The condensed water is sent back to the primary dry scrubber column 21 and the second dry scrubber scrubber 220 for recycling.
  • the tar after settling can be withdrawn to the tank for sale at regular intervals.
  • the washing liquid circulation container may be connected to at least one stage self-cleaning heat exchanger 31 0 to receive the discharged washing liquid, and separate impurities such as tar and dust in the washing liquid from the third condensed water, and The third condensed water is returned to the cooling water port 31 1 4 .
  • the organic material is firstly introduced into the organic material dry cracking gasification furnace 100 to dry and generate dry helium gas, and then the dry helium gas is sequentially introduced into the dry helium gas.
  • the washing equipment and the self-cleaning heat exchange device 300 are subjected to washing purification and treatment, and finally, a clean combustible dry gas can be obtained, thereby reducing the environmental impact of the organic material, and by the above treatment process on the organic material, The combustible energy is obtained, so that the utilization value of the organic material can be maximized.
  • the gas and solid emissions generated by the organic material processing system according to the embodiment of the present invention do not generate dioxins as compared with the conventionally used incineration garbage disposal method.
  • British and heavy metal pollution, no waste residue after treatment, the solid produced can be used as a smokeless fuel, its calorific value is more than 5,000 kcal per kilogram, of course, according to actual needs, the material is completely dried, and the output is used in the construction industry. Powder and additives used in the cement industry.
  • the cognac gas used for power generation is produced, taking domestic garbage as an example: The calorific value is more than 6000 kcal per cubic meter.
  • coal foams such as lignite not only can the organic material processing system according to the present invention be as high as 98. /d3 ⁇ 4 Light oil recovery rate, and the gas yield of coal lignite such as lignite can reach 400rrf / t raw coal, and the calorific value is about 7-33l ⁇ ZU/rrf.
  • the temperature inside the organic material dry cracking gasification furnace 100 can be adjusted at will, the production process is stopped and the production process is simple, and the whole process can be automated.
  • the generated combustible gas can be generated by the internal combustion type generator set. It can also be used instead of city gas or natural gas for direct use by users.
  • the process can be further applied In the following materials: agricultural and sideline products straw, cotton rod wine by-product liqueur and distiller's grains, plant leaves, industrial waste, medical waste, domestic garbage and other organic materials mixture.
  • the organic material processing system according to the present invention When the organic material processing system according to the present invention is used for cracking low-rank coal foam and oil shale foam, the production process is safe and reliable, fully automatic operation, and no waste discharge of three waste materials, so that low-cost coal becomes a smokeless fuel, reducing the environment The pollution, the application of coal is more extensive and environmentally friendly.
  • the processing method includes the following steps.
  • the organic material is isolated from air and dried to produce a solid material, dry helium gas and tar (step S1).
  • Step S1 can be completed in the organic material dry cracking gasification furnace 100.
  • step S2 The dry helium gas is subjected to washing and purifying to remove the tar (step S2).
  • This step S2 can be carried out in a dry helium scrubbing unit. Specifically, the step S2 can be carried out in the primary dry scrubber column 20 0 and the secondary dry scrubber scrubber 220.
  • step S3 The dry deuterium after washing and purifying in step S2 is subjected to primary deoiling, dehydration, desulfurization, denamination, and a clean gas is obtained (step S3).
  • impurities such as tar and dust in the organic material can be separated, and deoiling, dehydrating, desulfurizing, denaminating, and obtaining a clean gas can be obtained, and finally a clean gas can be obtained, which can be used for industrial and civil combustible gas. standard.
  • step S2 may include the following steps:
  • the initial spray washing can be carried out by circulating cooling water of 60-65 degrees.
  • the second washing can be performed by circulating the cooling water at a low temperature of 40 to 60 degrees.
  • the organic material processing method further comprises the steps of: recovering, precipitating and separating the washing liquid obtained after the treatment in steps S2 and S3 to obtain dust, tar and cooling water, and circulating the cooling water back to the process of step S2.
  • Medium step S4. Specifically, in the step S4, the washing liquid is heated to 60-65 degrees to separate the tar by natural precipitation.
  • the organic material processing method may further include a step of recovering the solid material produced in the step S1 (step S5).
  • step S1 in the case of, for example, processing an organic material such as household waste, the following steps are further included before step S1: S01: Primary screening of the organic material. This step can be carried out in a primary screening device. Specifically, the lightweight material is broken to below 5 mm. S02: Dehydrating the organic material obtained in the step S01 and crushing and pulverizing the light materials therein. This step can be done in a dewatering unit. S03: The organic material processed in step S02 is subjected to a mixed molding process.
  • step S1 For organic materials such as low rank coal foam and/or oil shale foam, the following steps are also included before step S1: S01: performing primary screening on the organic material, wherein the organic material has a particle diameter of not more than 5, S02: dehydrating the organic material obtained in step S01 and crushing and pulverizing the light material therein.
  • impurities such as tar and dust in the organic material can be separated, and deoiling, dehydrating, desulfurizing, denalyzing, deactivating naphthalene, and obtaining a clean gas can finally obtain a clean gas, which can be achieved.
  • Industrial and civil flammable gas use standards In the above organic material processing system and method of the present invention, existing organic materials such as garbage, low-order foam coal and the like can be utilized to the greatest extent without pollution, so as to maximize the full use of the organic material.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Organic Chemistry (AREA)
  • Combustion & Propulsion (AREA)
  • Materials Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Processing Of Solid Wastes (AREA)
  • Separation, Recovery Or Treatment Of Waste Materials Containing Plastics (AREA)

Abstract

一种有机物料处理装置,包括裂解炉和干馏气洗涤设备,所述裂解炉顶部具有进料口和出气口,底部具有排料口;所述干馏气洗涤设备位于裂解炉下游。一种利用上述装置处理有机物料的方法。

Description

有机物料干馏裂解气化炉、 处理系统和方法
技术领域
本发明涉及有机物料处理技术领域, 尤其是涉及一种处理有机物料的有机物料干熘 裂解气化炉、 处理系统和处理方法。 背景技术
以生活垃圾为例, 传统采用的焚烧处理方式在气体及废渣中均会产生二噁英并伴随 重金属污染。 而且焚烧处理过程中需要喷油助燃, 直接导致处理成本过高。
此外, 众所周知, 沫煤的利用率相对块煤要低很多, 如何将沫煤中的可燃气体和焦 油提取出来, 同时低阶煤末变成高质量的无烟燃料是我国乃至世界上的一大难题, 与沫 煤相类似的还有油页岩沫。
对于上述的有机物料, 如何无污染且低成本地进行处理以达到有机物料充分利用, 是本领域面临的技术难题。 发明内容
本发明旨在至少解决现有技术中存在的技术问题之一。 为此, 本发明需要提供一种 有机物料处理系统, 该处理系统可最大程度无污染地利用现有例如垃圾、低阶沫煤等的 有机物料。
此外, 本发明需要提供一种有机物料处理方法, 所述有机物料处理方法可以使得有 机物料对环境的影响最小, 且可以使有机物料利用价值最大化。
进一步地, 本发明需要提供一种有机物料干熘裂解气化炉, 所述有机物料干熘裂解 气化炉可以最大程度无污染地利用现有例如垃圾、低阶沫煤等的有机物料, 以最大程度 地利用该有机物料。
根据本发明实施例的有机物料处理系统包括: 有机物料干熘裂解气化炉, 所述有机 物料干熘裂解气化炉上形成有进料口且其顶部具有出气口、且底部具有排料口, 其中所 述有机物料从所述进料口进入所述有机物料干熘裂解气化炉内进行隔绝空气干熘且从 所述排料口排出, 产生的干熘气从所述出气口排出; 干熘气洗涤设备, 所述干熘气洗涤 设备连接在所述有机物料干熘裂解气化炉的下游且对从所述出气口排出的干熘气进行 接收并洗涤净化。
根据本发明实施例的有机物料处理系统, 通过将例如垃圾、 低阶煤末、 油页岩沫等 的有机物料首先通入到有机物料干熘裂解气化炉内, 以进行干熘并产生干熘气, 再将干 熘气依次通入到干熘气洗涤设备和自洁换热设备中, 进行洗涤净化和处理, 最终可以得 到洁净的可燃干熘气体和轻质焦油, 由此可以降低有机物料对环境的影响, 并且通过对 有机物料的上述处理过程, 还可以得到可燃能源, 从而可以使有机物料利用价值的最大 化。
另外, 根据本发明的有机物料处理系统还具有如下附加技术特征:
根据本发明的一个实施例, 有机物料处理系统可以进一步包括自洁换热设备, 所述 自洁换热设备连接在所述干熘气洗涤设备的下游以对洗涤后的干熘气进行自清洁处理, 以获得所需的可燃干熘气体。
所述有机物料干熘裂解气化炉包括: 裂解气化炉体, 其中所述出气口设在所述裂解 气化炉体的顶部; 多个干熘室, 所述多个干熘室并置在所述裂解气化炉体内且相邻的两 个所述干熘室彼此间隔开,所述排料口分别设在每个所述干熘室的底部;以及电加热棒, 所述电加热棒竖直地设在所述多个干熘室内以对所述多个干熘室内的物料进行隔绝空 气干熘以产生固体碳质物料、 干熘气和轻质焦油。
根据本发明的一个实施例, 所述有机物料干熘裂解气化炉还包括: 顶部料仓, 所述 顶部料仓的顶部敞开,所述顶部料仓的底部与所述有机物料干熘裂解气化炉的进料口连 通; 以及自动给料装置, 所述自动给料装置设在所述顶部料仓的底部与所述有机物料干 熘裂解气化炉的进料口之间以控制顶部料仓内的物料供入所述裂解气化炉体内。
根据本发明的一个实施例, 所述有机物料干熘裂解气化炉的进料口处进一步设有用 于分配物料的分配通道,所述分配通道构造成将所述物料均匀地引入所述裂解气化炉体 内。
根据本发明的一个实施例, 所述分配通道形成为倒 Y形且包括彼此连通的上通道、 第一下通道和第二下通道, 其中所述上通道的顶端与所述顶部料仓的底部连通, 且第一 下通道和第二下通道的底部分别通向所述裂解气化炉体内。
根据本发明的一个实施例, 所述有机物料干熘裂解气化炉进一步包括布料装置, 所 述布料装置设在所述进料口下方以对所述进料口供入的物料进行分配,所述布料装置包 括: 支撑件, 所述支撑件沿所述裂解气化炉体的纵向延伸; 多个挡料件, 每个所述挡料 件的一端连接在所述支撑件上且另一端沿横向延伸至邻近所述裂解气化炉体的内壁处。
根据本发明的一个实施例, 所述支撑件上形成有通气孔, 所述通气孔上连接有通气 管, 所述通气管的一端连接至所述出气口。
根据本发明的一个实施例, 进一步包括: 多个自动密封排料装置, 所述多个自动密 封排料装置分别设在多个干熘室的排料口处以打开和关闭所述排料口。
根据本发明的一个实施例, 所述干熘气洗涤设备包括初级干熘气洗涤塔, 所述初级 干熘气洗涤塔包括: 第一塔体, 所述第一塔体的上部具有第一干熘气入口且顶部具有第 一循环水入口, 所述第一塔体的中部设有第一干熘气出口且下部设有水油入口; 以及水 封箱, 所述水封箱与所述第一塔体通过所述水油入口连通, 所述水封箱的上部形成有第 一焦油溢流口。
根据本发明的一个实施例, 进一步包括: 水分配盒, 所述水分配盒设在所述第一塔 体的顶部, 且所述第一循环水入口设在所述水分配盒上。
根据本发明的一个实施例, 所述初级干熘气洗涤塔还包括: 多个并排的、 竖向延伸 的第一文氏管, 所述多个第一文氏管设在所述第一塔体内, 且所述多个第一文氏管的顶 端低于所述第一干熘气入口; 多个第一水喷洒管, 每个所述第一水喷洒管的一端与所述 水分配盒连接且另一端伸入相应的所述第一文氏管内以便对从所述第一干熘气入口进 入的干熘气进行冲洗; 以及第二文氏管, 所述第二文氏管设在所述塔体内且位于所述多 个第一文氏管下方。
根据本发明的一个实施例, 所述干熘气洗涤设备还包括二级干熘气洗涤塔, 所述二 级干熘气洗涤塔包括: 第二塔体, 所述第二塔体的下部具有第二干熘气入口且顶部具有 第二干熘气出口; 第二水喷洒管, 所述第二水喷洒管从所述第二塔体的中部伸入所述第 二塔体内; 以及多个分配换热塔盘, 所述多个分配换热塔盘沿所述第二塔体的径向设置 且沿上下方向彼此间隔开。
根据本发明的一个实施例, 所述二级干熘气洗涤塔还包括: 水封筒, 所述水封筒的 上部具有第二焦油溢流口; 以及洗涤液排液管, 所述洗涤液排液管的一端与所述第二塔 体的下部连通且第二端伸入到所述水封筒内的下部,所述水封筒的下端低于所述第二塔 体的下端以将所述第二塔体内的冷凝水排出到所述水封筒内。
根据本发明的一个实施例, 所述第二干熘气入口连接有干熘气管, 所述干熘气管的 另一端向上延伸至高出所述第二塔体的顶部。
根据本发明的一个实施例, 所述第二塔体的下部还设有清扫口, 所述清扫口低于所 述洗涤液排液管的所述一端。
根据本发明的一个实施例, 所述自洁换热设备包括至少一级自洁换热器, 每个所述 自洁换热器包括: 壳体, 所述壳体的顶部具有气体出口、 下部具有气体入口和洗涤液排 出口, 其中所述气体入口高于所述洗涤液排出口; 多个换热管, 所述多个换热管在上下 方向上分布为彼此间隔开的多层, 每个所述换热管内通有冷却水; 气体过滤器, 所述气 体过滤器设在所述壳体内的下部且高于所述气体入口以对进入所述壳体内的气体过滤; 以及多个自洁换热塔盘,所述多个自洁换热塔盘沿所述壳体的径向设置且沿上下方向彼 此间隔开, 其中每个自洁换热塔盘可设置在其中两层换热管之间。 根据本发明的一个实施例, 所述自洁换热塔盘包括三个。
根据本发明的一个实施例, 所述壳体上具有冷却水接口, 所述冷却水接口与所述多 个换热管连通以供入冷却水。
根据本发明的一个实施例, 所述壳体的外壁上还设有水冷壁。
根据本发明的一个实施例, 每个所述自洁换热器还包括: 出口扑雾器, 所述出口扑 雾器设在所述壳体内且位于所述气体出口下方以对气体中夹杂的液滴进行分离; 自洁均 布分配器,所述自洁均布分配器设在所述多个换热管上方以对所述壳体内的气体进行均 匀分配; 以及脱硫洗涤器, 所述脱硫洗涤器设在所述壳体内且位于所述出口扑雾器和所 述自洁均布分配器之间。
根据本发明的一个实施例, 所述气体入口连接有干熘气管, 所述干熘气管的另一端 向上延伸至高出所述壳体的顶部。
根据本发明的一个实施例, 所述有机物料处理系统还包括: 洗涤液循环容器, 所述 洗涤液循环容器分别与所述初级干熘气洗涤塔的第一焦油溢流口和第一循环水入口、所 述二级干熘气洗涤塔的第二焦油溢流口和第二水喷洒管连通,其中所述初级干熘气洗涤 塔内初次洗涤后产生的第一洗涤液从所述第一焦油溢流口排出到所述洗涤液循环容器 内分离出焦油、 灰尘和第一冷凝水, 所述第一冷凝水回到所述第一循环水入口; 所述二 级干熘气洗涤塔内二次洗涤后产生的第二洗涤液从所述第二焦油溢流口排出到述洗涤 液循环容器内分离出焦油、灰尘和第二冷凝水,所述第二冷凝水回到所述第二水喷洒管。
根据本发明的一个实施例, 所述洗涤液循环容器进一步与至少一级自洁换热器相连 以接收排出的洗涤液。
根据本发明的一个实施例, 所述有机物料为所述有机物料包括: 生活垃圾、 农副产 品秸秆、 棉杆、酿酒的副产品酒渣和酒糟、植物树叶、 工业垃圾、 医疗垃圾、 低阶煤沫、 油页岩沫或者其混合物。
根据本发明第二方面实施例的有机物料处理方法包括以下步骤: S1、 将所述有机物 料进行隔绝空气且低于 650摄氏度的低温热解干熘, 以产生固体物料、 干熘气和焦油; S2、 对所述干熘气进行洗涤净化以去除焦油; S3、 对步骤 S2中洗涤净化后的所述干熘 气进行初级脱油、 脱水、 脱硫、 脱萘, 以得到洁净气体。
通过采用根据本发明的有机物料处理方法, 可以将有机物料中的焦油、 灰尘等杂质 分离出来, 并进行脱油、 脱水、 脱硫、 脱萘, 并得到洁净气体, 最终可以得到洁净气体, 可以达到工业及民用可燃气使用标准。
根据本发明第三方面实施例的有机物料干熘裂解气化炉, 包括: 裂解气化炉体, 所 述裂解气化炉体设有进料口和出气口; 多个干熘室, 所述多个干熘室并置在所述裂解气 化炉体内, 且相邻的两个干熘室之间间隔开, 每个所述干熘室底部均设有排料口; 以及 电加热棒,所述电加热棒竖直地设在所述多个干熘室内以对所述多个干熘室内的物料进 行隔绝空气干熘, 以产生固体碳质物料和干熘气。
根据本发明的实施例的有机物料干熘裂解气化炉, 可以有效无污染地处理例如生活 垃圾、 低阶煤末或者油页岩沫等, 从而实现有机物料价值利用最大化。
本发明的附加方面和优点将在下面的描述中部分给出, 部分将从下面的描述中变得 明显, 或通过本发明的实践了解到。 附图说明
本发明的上述和 /或附加的方面和优点从结合下面附图对实施例的描述中将变得明 显和容易理解, 其中:
图 1是根据本发明一个实施例的有机物料干熘裂解气化炉的示意图;
图 2是根据本发明一个实施例的有机物料干熘裂解气化炉的布料装置的示意图; 图 3是根据本发明一个实施例的初级干熘气洗涤塔的示意图;
图 4是根据本发明一个实施例的二级干熘气洗涤塔的示意图;
图 5是根据本发明一个实施例的自洁换热设备的示意图; 以及
图 6为根据本发明的一个实施例的有机物料处理方法的流程图。 具体实施方式
下面详细描述本发明的实施例, 所述实施例的示例在附图中示出, 其中自始至终相 同或类似的标号表示相同或类似的元件或具有相同或类似功能的元件。下面通过参考附 图描述的实施例是示例性的, 仅用于解释本发明, 而不能理解为对本发明的限制。
在本发明的描述中, 需要理解的是, 术语"上"、 "下" "竖直"、 "水平"、 "顶"、 "底" 、 "内" 、 "外" 等指示的方位或位置关系为基于附图所示的方位或位置关系, 仅是为了便于描述本发明和简化描述,而不是指示或暗示所指的装置或元件必须具有特 定的方位、以特定的方位构造和操作, 因此不能理解为对本发明的限制。此外,术语"第 一" 、 "第二 "仅用于描述目的, 而不能理解为指示或暗示相对重要性或者隐含指明所 指示的技术特征的数量。 由此, 限定有 "第一" 、 "第二" 的特征可以明示或者隐含地 包括一个或者更多个该特征。 在本发明的描述中, 除非另有说明, "多个 "的含义是两 个或两个以上。
在本发明的描述中, 需要说明的是, 除非另有明确的规定和限定, 术语 "安装" 、
"相连" 、 "连接 "应做广义理解, 例如, 可以是固定连接, 也可以是可拆卸连接, 或 一体地连接; 可以是机械连接, 也可以是电连接; 可以是直接相连, 也可以通过中间媒 介间接相连, 可以是两个元件内部的连通。 对于本领域的普通技术人员而言, 可以具体 情况理解上述术语在本发明中的具体含义。
如图 1 -图 6所示,根据本发明实施例的有机物料处理系统包括有机物料干熘裂解气 化炉 1 00、 干熘气洗涤设备和自洁换热设备 300。
首先需要说明的是, 在本发明的实施例的描述中: "上下方向"例如图 1、 图 3-图
5中的箭头所示。 但是还需要说明的是, 该方向的指示只是出于示例的目的, 而不是为 了限制本发明的保护范围。
根据本发明实施例的有机物料处理系统, 该有机物料处理系统可用于处理生活垃 圾、 植物秸秆、 低阶煤沫和 /或油页岩沫等有机物料。 而在本公开下面的描述中, 以有 机物料处理系统用于处理低阶煤沫和 /或油页岩沫为例进行说明。需要进一步说明的是, 此处低阶煤末指的是所有不带粘性的褐煤、 烟煤和无烟煤。
当然, 本领域内的技术人员可以理解, 该有机物料处理系统用于处理低阶煤沫和 / 或油页岩沫仅作为示例进行说明, 而不限于此, 根据本发明的有机物料处理系统还可用 于处理其他类型的待处理的物料,例如农副产品秸秆、棉杆、酿酒的副产品酒渣和酒糟、 植物树叶、 工业垃圾和医疗垃圾等有机物料混合物。
如图 1和图 2所示, 有机物料干熘裂解气化炉 1 00的顶部具有进料口和出气口、 且 有机物料干熘裂解气化炉 1 00的底部具有排料口,其中有机物料从进料口进入有机物料 干熘裂解气化炉 1 00内进行隔绝空气干熘且有机物料从排料口排出,产生的干熘气从出 气口排出。 其中, 干熘气体的成分包括甲垸、 氢气、 碳氢化合物、 一氧化碳及微量氮、 氧气等多种成分的其他混合。
如图 3和图 4所示, 干熘气洗涤设备连接在有机物料干熘裂解气化炉 1 00的下游且 对从出气口排出的干熘气进行接收并洗涤净化。
如图 5所示, 自洁换热设备 300连接在干熘气洗涤设备的下游以对洗涤净化后的干 熘气进行处理以得到洁净的可燃干熘气体,该可燃干熘气体可部分替代天然气供工业及 城市燃气。
根据本发明实施例的有机物料处理系统, 通过将有机物料首先通入到有机物料干熘 裂解气化炉 1 00进行干熘并产生干熘气,再将干熘气依次通入到干熘气洗涤设备和自洁 换热设备 300中, 进行洗涤净化和处理, 最终可以得到洁净的可燃干熘气体, 由此可以 降低有机物料对环境的影响, 并且通过对有机物料的上述处理过程, 还可以得到可燃能 源, 从而可以使有机物料利用价值的最大化。
下面参照图 1, 详细描述根据本发明实施例的有机物料干熘裂解气化炉 1 00, 如图 1 所示, 该有机物料干熘裂解气化炉 1 00包括裂解气化炉体 1 1 0、 多个干熘室 1 20以及电 加热装置。 在本发明的一个实施例中, 该电加热装置可以为电加热棒 130。 进料口和出气口形成在裂解气化炉体 110的顶部。 参照图 1, 裂解气化炉体 110内 限定出容纳待干熘物料的容纳空间,裂解气化炉体 110的顶部具有进料口以向容纳空间 内供入待干熘的物料,裂解气化炉体 110的顶部具有出气口以将干熘得到的气体通过该 出气口排出。
多个干熘室 120并排设在裂解气化炉体 110内, 且相邻的两个干熘室 120之间通过 隔墙 121 间隔开, 每个干熘室 120底部均设有排料口 122。 在图 1 的示例中, 多个干熘 室 120彼此平行地设在裂解气化炉体 110的下部, 相邻的干熘室 120之间通过隔墙 121 间隔开, 干熘室 120的顶部敞开以接收从上方落下的物料, 每个干熘室 120的底部均具 有排料口 122 以将干熘得到的固体物质例如无烟燃料或建筑行业使用的粉料以及水泥 行业使用的添加剂等从该排料口 122排出。需要理解的是, 干熘室 120的数量可以根据 实际要求设置, 以具有更好的干熘效果。
电加热棒 130竖直地设在多个干熘室 120内以对多个干熘室 120内的物料进行隔绝 空气干熘以产生固体碳质物料、 干熘气和焦油。 例如在图 1 的示例中, 每个干熘室 120 内均竖直地设有电加热棒 130, 电加热棒 130分别对每个干熘室 120内的待干熘物料进 行隔绝空气干熘,也就是说,待干熘物料例如有机物料在干熘过程中完全隔绝空气干熘, 得到固体碳质物料、 干熘气和焦油。 需要理解的是, 干熘室内的温度随有机物料性质不 同可以随意调节。 而且, 电加热棒 130竖直地设在多个干熘室 120 内, 较之电加热棒 130水平设置的情况, 可防止物料落下使得电加热棒 130弯曲变形。 需要说明的是, 在 本发明的一个实施例中,电加热棒 130也可以水平地设置,以对有机物料进行充分加热。
具体而言, 电加热棒 130可使用交流或直流电压电源以对待干熘的物料进行隔绝空 气干熘以产生高温热气体。具体地,电加热棒 130包括电加热丝和套设在其外的绝缘层。 由于该方式产出气体热值较高,例如低阶煤沫和 /或油页岩沫每方气热值在 4000大卡以 上, 气量较大, 例如每吨产气 400立方以上, 每加工一吨低阶煤沫和 /或油页岩沫, 电 加热棒所消耗电能只占每吨产气量产生热值的一小部分, 因此运行成本较低。对于例如 生活垃圾的有机物料, 通过该方式产出的气体每方气热值在 6000大卡以上, 气量较大, 例如每吨产气 800立方以上, 每加工一吨生活垃圾, 电加热器例如电加热棒所消耗电能 只占每吨产气量产生热值的一小部分, 因此运行成本较低。
待干熘的有机物料进入有机物料干熘裂解气化炉 100进行干熘, 排出无烟燃料产品 或建筑行业使用的粉料及水泥行业使用的添加剂, 同时连续产生干熘气体和焦油产品, 其中产生的干熘气体可为可燃气体, 该可燃气体可用于内燃式发电机组发电, 也可以代 替城市煤气或天然气供用户直接使用。 根据本发明实施例的有机物料干熘裂解气化炉 100, 可对有机物料进行隔绝空气干 熘处理, 不仅环境友好而且成本低, 能充分利用现有资源。 以低阶质煤炭沫和油页岩沫 的工业实验结果为例看,根据本发明的有机物料处理系统可以将这两种物质中的可燃成 分全部分解出来, 以新疆哈密淖毛湖褐煤为例, 可燃气体可以全部析出和部分析出没有 外来因素产生新的灰分。 原煤入炉和无烟燃料出炉物料比为 1.6: 1 吨左右 (所指的是 空气干燥基煤沫) , 排料装置为干出料系统设备, 无任何水量消耗, 排出的无烟燃料为 低温干料。 轻质油品回收率为原料油品含量达到 98%, 并且全部为轻质油品, 比重在 0.9左右。 褐煤可燃气体产率在 400rrf/t 原煤, 热值在 17-33MJ/ rrf左右。
当对例如生活垃圾的有机物料进行隔绝空气干熘处理时, 干熘得到的气体和国体排 出物中不会产生二噁英, 且无重金属污染, 产出的固体排出物可以作为无烟燃料、 无需 喷油助燃, 不仅环境友好而且成本低廉, 从而充分利用现有资源。
另外, 该有机物料干熘裂解气化炉 100使用方便, 开始生产及停止生产过程简单, 工艺全过程可实现自动化控制。
在本发明的一个实施例中,多个干熘室 120在水平方向并排设置,且每个干熘室 120 沿上下方向延伸, 如图 1所示。
在本发明的一个实施例中, 有机物料干熘裂解气化炉 100还包括: 顶部料仓 141和 自动给料装置 142。
顶部料仓 141 的顶部敞开,顶部料仓 141的底部与裂解气化炉体 110的进料口连通。 例如在图 1 的示例中, 顶部料仓 141设在裂解气化炉体 110的上方, 顶部料仓 141 的顶 部敞开以将待干熘的物料从顶部料仓 141 的顶部供入,顶部料仓 141 的底部与裂解气化 炉体 110的进料口相连通,以将顶部料仓 141 内的物料通过该进料口供入裂解气化炉体 110内, 例如顶部料仓 141形成为漏斗形。 当然, 本发明不限于此, 在本发明的其它示 例中, 顶部料仓 141还可形成为圆柱体形、 椭圆柱体形、 长圆柱体形或棱柱体形等。
参照图 1, 自动给料装置 142设在顶部料仓 141 的底部与裂解气化炉体 110的进料 口之间以控制顶部料仓 141 内的物料供入裂解气化炉体 110内。在图 1 的示例中, 自动 给料装置 142为设在顶部料仓 141的底部与裂解气化炉体 110的进料口之间的管路上的 阀。 进一步地, 自动给料装置 142为电动阀。
进一步地,裂解气化炉体 110的进料口处进一步设有用于分配物料的分配通道 150。 参照图 1, 分配通道 150设在顶部料仓 141 的底部和炉体的顶部之间, 以分配供入炉体 内的物料。
具体地, 分配通道 150形成为倒 Y形, 且分配通道 150包括彼此连通的上通道 151、 第一下通道 153和第二下通道 152。其中上通道 151 的顶端与顶部料仓 141 的底部连通, 且第一下通道 153和第二下通道 152的底部分别通向裂解气化炉体 110内。 例如在图 1 的示例中, 上通道 151沿上下方向延伸, 且上通道 151 的顶部与顶部料 仓 141 的底部相连通, 上通道 151 的底部分别与第一下通道 153 的顶部和第二下通道 152的顶部相连通, 具体地, 第一下通道 153先斜向左向下延伸、 再竖直向下延伸, 第 二下通道 152先斜向右向下、再竖直向下延伸, 第一下通道 153和第二下通道 152的底 部分别与裂解气化炉体 110的顶部相连且与裂解气化炉体 110的容纳空间相通,以将顶 部料仓 141 内的待干熘物料通入裂解气化炉体 110内。
在本发明的一个实施例中, 有机物料干熘裂解气化炉 100 进一步包括: 布料装置 160, 布料装置 160设在进料口下方以对进料口供入的物料进行分布。 参照图 1和图 2, 布料装置 160设在裂解气化炉体 110的容纳空间内且位于容纳空间的上方,以将从顶部 料仓 141供入的物料均匀地分布到下方的多个干熘室 120内。
进一步地, 如图 1和图 2所示, 布料装置 160包括支撑件 161和多个挡料件 162。 支撑件 161沿裂解气化炉体 110的纵向 (如图 1 中所示的左右方向) 延伸。
每个挡料件 162的一端连接在支撑件 161上, 且每个挡料件 162的另一端延伸至邻 近裂解气化炉体 110的内壁处。 参照图 1和图 2, 多个挡料件 162彼此间隔开设置, 且 每个挡料件 162均从支撑件 161 的一侧壁面朝向裂解气化炉体 110的内壁的方向延伸, 需要理解的是,挡料件 162的远离支撑件 161 的一端可尽量靠近裂解气化炉体 110的内 壁, 以具有较好的布料效果。
进一步地, 多个挡料件 162包括多个第一挡料件和多个第二挡料件, 多个第一挡料 件和多个第二挡料件分别沿支撑件 161 的长度方向彼此间隔开,且多个第一挡料件和多 个第二挡料件在支撑件 161 的宽度方向上间隔开预定距离。
在本发明的其中一个示例中, 多个第一挡料件和多个第二挡料件在支撑件 161 的长 度方向上分别一一对应, 如图 2所示。 当然, 本发明不限于此, 在本发明的另一些示例 中, 多个第一挡料件和多个第二挡料件还可在支撑件 161 的长度方向上交错布置(图未 示出) 。
进一步地, 例如在图 1和图 2的示例中, 挡料件 162沿横向 (如图 1 中所示的前后 方向)延伸, 此时挡料件 162与支撑件 161大致垂直, 也就是说, 支撑件 161与每个挡 料件 162之间的夹角大致呈 90° 。 然而, 在本发明的另一些示例中, 挡料件 162还可 倾斜地连接在支撑件 161上, 此时支撑件 161与每个挡料件 162之间的夹角大致为 0° ~90° 或 90° ~180° 之间, 这里, 需要说明的是, 支撑件 161与每个挡料件 162之间的 夹角不包括 90° 。
进一步地, 多个挡料件 162均匀分布在支撑件 161 的横向两侧。 换言之, 如图 1和 图 2所示,在支撑件 161 的长度方向上彼此相邻的挡料件 162之间相互间隔开的距离大 致相等。
在本发明的一个示例中, 支撑件 161和挡料件 162的形状相同, 具体地, 如图 2所 示,支撑件 161和挡料件 162中的每一个均包括在横截面上对称设置的第一板和第二板, 第一板和第二板上端连接且第一板和第二板之间形成 30- 180度的夹角。
进一步地, 支撑件 161 上形成有通气孔, 通气孔上连接有竖向延伸的通气管 163, 其中出气口由通气管 163构成。例如在图 1和图 2的示例中, 支撑件 161 的顶部中央形 成有贯穿其的通气孔, 通气管 163沿竖直方向延伸, 且通气管 163的底部与通气孔相连 通, 其顶部与裂解气化炉体 110 的顶部相连, 干熘后产生的干熘气体经由通气管 163 排出, 干熘气体的成分可包括甲垸、 氢气、碳氢化合物、 一氧化碳、 二氧化碳、氮气等。 当然,本发明不限于此,在本发明的其它示例中,支撑件 161上还可形成有多个通气孔, 多个通气孔上分别连接有多个竖向延伸的通气管 163 (图未示出) 。
在本发明的一个实施例中, 有机物料干熘裂解气化炉 100进一步包括: 多个自动密 封排料装置 170, 多个自动密封排料装置 170分别设在多个干熘室 120的排料口 122处 以打开和关闭排料口 122。 如图 1所示, 多个自动密封排料装置 170分别设在多个干熘 室 120的底部, 当自动密封排料装置 170处于打开状态时, 裂解气化炉体 110内干熘得 到的固体物质可经由排料口 122排出。
进一步地, 参照图 1, 有机物料干熘裂解气化炉 100还包括密封排料仓 180和链式 排料装置 200。 密封排料仓 180设在裂解气化炉体 110的底部, 且密封排料仓 180与裂 解气化炉体 110内部连通, 其中多个干熘室 120的底部伸入到密封排料仓 180内, 干熘 得到的固体物质经由排料口 122排出后落入密封排料仓 180内。
链式排料装置 200设在密封排料仓 180内以接收自动密封排料装置 170排出的物料 并将其排出。
进一步地, 有机物料干熘裂解气化炉 100还包括: 炉体支撑架 190, 炉体支撑架 190 设在炉体下部的外侧壁上以对炉体进行支撑。 例如在图 1 的示例中, 炉体支撑架 190 设在炉体的下部, 且位于密封排料仓 180的上方。
有机物料干熘裂解气化炉 100的工作过程如下: 待干熘的物料连续进入有机物料干 熘裂解气化炉 100内, 遇到由底部上升来的高温热气进行逆向交换, 除去物料外部携带 的水分, 物料继续下行进入下方的多个干熘室 120 内分别进行干燥及干熘, 由干熘室 120内的电加热棒提供连续干熘热源, 之后干熘得到的固体物质例如无烟燃料或建筑行 业使用的粉料及水泥行业使用的添加剂等通过裂解气化炉体 110 底部的自动密封排料 装置 170排出, 干熘得到的气体经由裂解气化炉体 110上方的通气管 163排出。 在本发明的一些实施例中, 有机物料处理系统可以还包括初级筛分设备 (图未示 出), 初级筛分设备连接在有机物料干熘裂解气化炉 100的上游以对待处理的有机物料 进行筛分。 例如, 在本发明的一些实施例中, 对于低阶煤沫和 /或油页岩沫, 可以将煤 沫或者油页岩沫的粒径筛选为不大于 5rrm 以更好地进行干熘。
具体地, 该初级筛分设备可以包括条形筛 (图未示出) , 条形筛用于筛除待处理的 有机物料中的一部分重杂质。 具体地, 使用条形筛可以出去以金属为主的少量重杂质。
在本发明的一些实施例中, 有机物料处理系统还包括用于对有机物料进行脱水的脱 水装置(图未示出),脱水装置设在初级筛分设备和有机物料干熘裂解气化炉 100之间。 具体地, 经过初级筛分设备筛除后的杂质可以在脱水装置中进行脱水处理。
在本发明的一些实施例中, 当有机物料为活垃圾、 农副产品秸秆、 棉杆、 酿酒的副 产品酒渣和酒糟、植物树叶、工业垃圾、 医疗垃圾、低阶煤沫、油页岩沫或者其混合物, 有机物料处理系统还包括成型设备(图未示出) , 成型设备设在脱水装置和有机物料干 熘裂解气化炉 100之间以将脱水后的有机物料混合成型。
如图 3所示, 在本发明的一些实施例中, 干熘气洗涤设备可以包括初级干熘气洗涤 塔 210。 具体地, 如图 3所示, 初级干熘气洗涤塔 210可以包括第一塔体 211和水封箱 212。
其中, 第一塔体 211 的上部具有第一干熘气入口 2111, 经过有机物料干熘裂解气化 炉 100产生的干熘气, 从有机物料干熘裂解气化炉 100的出气口排出后, 可以经由该第 一干熘气入口 2111进入到第一塔体 211 内进行洗涤。 且第一塔体 211 的顶部具有第一 循环水入口 2112, 值得理解的是, 该第一循环水入口 2112位于第一干熘气入口 2111 上方,以使从第一干熘气入口 2111进入的干熘气,经与从其上方的第一循环水入口 2112 流入的循环水混合, 从而完成洗涤。初级干熘气洗涤塔 210可以除去干熘气中的大部分 灰尘、 重质油等。
如图 3所示, 第一塔体 211 的中部可以设有第一干熘气出口 2113, 在第一塔体 211 内经过洗涤的干熘气, 可以从该第一干熘气出口 2113排出并继续进行下游的工序。 第 一塔体 211 的下部设有水油入口 2114, 经过有机物料干熘裂解气化炉 100产生的干熘 气在第一塔体 211 内洗涤后, 会产生水油混合液体, 该混合液可以从该水油入口 2114 进入到位于第一塔体 211下部的水封箱 212中,即水封箱 212与第一塔体 211通过该水 油入口 2114进行连通, 其中, 水封箱 212的上部形成有第一焦油溢流口 2121, 当水油 混合液体流入到水封箱 212内、 并且液面缓慢上升到第一焦油溢流口 2121 时, 水油混 合液可以从该第一焦油溢流口 2121溢出并可对其进行收集, 以免过多的水油混合液在 该水封箱 212内储存过多而从水油入口 2114导流至第一塔体 211 内。 优选地, 如图 3所示, 初级干熘气洗涤塔 210还可以设有水分配盒 213。 该水分配 盒 213可以设在第一塔体 211 的顶部, 且第一循环水入口 2112设在水分配盒 213上。 具体地, 该第一循环水入口 2112可以设在水分配盒 213的顶部, 水分配盒 213的底壁 或侧壁上可以设置有多个水分配口, 从第一循环水入口 2112流入的循环水, 可以从多 个水分配口流出, 由此, 循环水可以从多个方向流向第一塔体 211 内部对干熘气进行清 洗, 换言之, 在第一塔体 211 的顶部设置水分配盒 213, 从而可以对循环水进行均匀地 分配, 提高循环水与干熘气的接触面积, 清洗更加均匀。
在本发明的一些可选实施例中, 初级干熘气洗涤塔 210还可以包括多个第一文氏管 214, 多个第一水喷洒管 215和第二文氏管 216。 具体地, 多个第一文氏管 214、 多个第 一水喷洒管 215和第二文氏管 216可以均设在第一塔体 211 内。
其中, 如图 3所示, 多个第一文氏管 214可以并排设置并且每个第一文氏管 214沿 竖向方向延伸, 多个第一文氏管 214的顶端可以低于第一干熘气入口 2111。 进一步地, 每个第一水喷洒管 215的一端 (例如图 3所示的上端) 与水分配盒 213连接, 具体地, 每个第一水喷洒管 215上端可以分别连接在水分配盒 213上的多个水分配口上,且每个 第一水喷洒管 215另一端(例如图 3所示的下端)可以伸入相应的第一文氏管 214内以 便对从第一干熘气入口 2111进入的干熘气进行冲洗。也就是说,多个第一水喷洒管 215 与多个第一文氏管 214—一对应的设置, 这样, 从第一干熘气入口 2111进入的干熘气, 可以分别进入到多个并排设置的第一文氏管 214内,并且在每个第一文氏管 214内的第 一水喷洒管 215的喷洒下进行冲洗。
其中, 第二文氏管 216可以位于多个第一文氏管 214下方, 从多个第一文氏管 214 中分别冲洗后的干熘气,可以在第二文氏管 216中进行汇集并向第一塔体 211 的下部流 动。
在本发明的一些实施例中, 干熘气洗涤设备还可以包括二级干熘气洗涤塔 220。 二 级干熘气洗涤塔 220可以设在初级干熘气洗涤塔 210的下游。
具体地如图 4所示, 二级干熘气洗涤塔 220包括第二塔体 221、 第二水喷洒管 222 和多个分配换热塔盘 223。第二塔体 221 的下部具有第二干熘气入口 2211, 从初级干熘 气洗涤塔 210的第一干熘气出口 2113排出的干熘气可以从第二干熘气入口 2211进入到 二级干熘气洗涤塔 220内进行二次洗涤。第二塔体 221 的顶部可以设有第二干熘气出口 2212,经过二级干熘气洗涤塔 220洗涤后的干熘气可以从该第二干熘气出口 2212排出, 并继续进行下游的工序。其中, 二级干熘气洗涤塔 220可以从除去干熘气中的轻质油以 及不利于燃烧的洗涤液体。
可选地, 如图 4所示, 第二干熘气入口 2211 连接有干熘气管 226, 干熘气管 226 的另一端向上延伸至高出第二塔体 221 的顶部。 这样, 干熘气从初级干熘气洗涤塔 21 0 排出后, 可以从干熘气管 226流入到第二塔体 221 内, 由此可以使进入到第二塔内的干 熘气首先流过一段管路进行冷却, 提高清洗效果。
其中, 第二水喷洒管 222可以从第二塔体 221 的中部设有伸入其内, 循环水可以从 该第二水喷洒管 222流入并喷洒到第二他塔体中。有利地, 第二水喷洒管 222可以是多 个且间隔设置, 并且每个第二水喷洒管 222上可以设有多个间隔开的水喷洒口, 由此可 以使循环水更加均与地喷洒到第二塔内, 进而可以提高对干熘气的冲洗的均匀性。
如图 4所示, 多个分配换热塔盘 223可以沿第二塔体 221 的径向设置且沿上下方向 彼此间隔开。 换言之, 每个分配换热塔盘 223可以沿第二塔体 221 的径向设置, 且多个 分配换热塔盘 223可以分别沿上下方向彼此间隔开。这里值得说明的是, 干熘气的成分 复杂多样, 每个成分的气体的密度不同, 由此会导致在第二塔体 221 内, 密度小的气体 成分会快速地上升到第二塔体 221顶部, 而密度大的气体成分相对上升的速度较慢, 为 了使多成分的气体能够混合均匀地排出第二塔体 221, 由此可以沿第二塔体 221 的径向 方向设置分配换热塔盘 223, 由此分配换热塔盘 223可以对快速上升的气体起到抵挡的 作用, 多成分气体可以在分配换热塔盘 223的下方进行混合后再继续上升。 进一步地, 通过设置多个沿上下方向设置多个分配换热塔盘 223, 从而可以多成分气体经过多次混 合, 最后再从第二干熘气出口 221 2排出。
可选地, 二级干熘气洗涤塔 220还可以包括水封筒 224和洗涤液排液管 225。 如图 4所示, 水封筒 224的上部具有第二焦油溢流口 2241, 洗涤液排液管 225的一端(例如 图 4中的上端) 与第二塔体 221 的下部连通, 且洗涤液排液管 225的第二端 (例如图 4 中的下端)伸入到水封筒 224内的下部, 水封筒 224的下端低于第二塔体 221 的下端以 将第二塔体 221 内的冷凝水排出到水封筒 224内。 并且通过设置第二焦油溢流口 2241, 从而可以使汇集到水封筒 224内一定程度后, 即液面超过第二焦油溢流口 2241 时, 洗 涤液可以从该第二焦油溢流口 2241排出并可以对其进行收集, 以免洗涤液从洗涤液排 液管 225逆流回到第二塔体 221 内。
如图 4所示, 在本发明的一个优选示例中, 第二塔体 221 的下部还可以设有清扫口 221 3 , 清扫口 221 3低于洗涤液排液管 225的一端。 通过设置该清扫口 221 3, 从而, 操 作人员可以从该清扫口 2213处进行杂质的清理,方便杂质或污染物沉积到第二塔体 221 底部, 甚至堵塞洗涤液排液管 225。
如图 5所示, 自洁换热设备 300可以设在二级干熘气洗涤塔 220的下游, 自洁换热 设备 300包括至少一级自洁换热器 31 0, 每个自洁换热器 31 0包括壳体 31 1、 多个换热 管 31 2、 气体过滤器 31 3和多个自洁换热塔盘 31 4。 壳体 311 内可具有沿上下方向定向的方筒状气体室, 壳体 311 的顶部具有气体出口 3111, 在自洁换热设备 300 内清洁后的干熘气可以从该气体出口 3111 排出, 壳体 311 的下部具有气体入口 3112, 这样, 从二级干熘气洗涤塔 220排出的干熘气可以从该气 体入口 3112流入到自洁换热设备 300中进行清洁。
多个换热管 312在上下方向上分布为彼此间隔开的多层, 每个换热管 312可以构造 成沿横向 (例如图 5中与上下方向相垂直的方向)构造成梅花状。 每个换热管 312内通 有冷却水, 由此, 从气体入口 3112流出的干熘气向上流动, 并与每个换热后进行换热, 得到冷却。 气体过滤器 313设在壳体 311 内的下部且高于气体入口 3112以对进入壳体 311 内的气体过滤, 多个自洁换热塔盘 314沿壳体 311 的径向设置且沿上下方向彼此间 隔开, 其中每个自洁换热塔盘 314可设置在其中两层换热管 312之间。 同二级干熘气洗 涤塔 220内的分配换热塔盘 223相似, 通过设置自洁换热塔盘 314, 从而可以使上升的 多成分气体混合均匀后排出。
其中, 壳体 311 的下部设有洗涤液排出口 3113, 其中气体入口 3112高于洗涤液排 出口 3113, 由此, 可以从该洗涤液排出口 3113排出洗涤液。
在本发明的一个具体示例中, 如图 4所示, 自洁换热塔盘 314包括三个。 由此可以 在保证多成分其他混合均匀的前提下, 减少设备投入, 降低成本。
如图 5所示, 在本发明的一个可选示例中, 壳体 311上可以具有冷却水接口 3114, 冷却水接口 3114与多个换热管 312连通以供入冷却水。
壳体 311 的外壁上还设有水冷壁 315。 以此在该水冷壁 315上可以通入冷却水, 以 进一步与自洁换热设备 300内的干熘气进行换热, 使其冷却。
在本发明的一些实施例中, 每个自洁换热器 310还可以包括出口扑雾器 316、 自洁 均布分配器 317和脱硫洗涤器 318。
出口扑雾器 316设在壳体 311 内且位于气体出口 3111 下方以对气体中夹杂的液滴 进行分离,自洁均布分配器 317设在多个换热管 312上方以对壳体 311 内的气体进行均 匀分配, 脱硫洗涤器 318设在壳体 311 内且位于出口扑雾器 316和自洁均布分配器 317 之间, 以对气体进行脱硫。
也就是说, 气体出口 3111、 出口扑雾器 316、 脱硫洗涤器 318、 自洁均布分配器 317 和自洁换热塔盘 314从上到下依次排列。
气体入口 3112连接有干熘气管 226, 干熘气管 226 的另一端向上延伸至高出壳体 311 的顶部。由此,从二级干熘气洗涤塔 220排出的干熘气,可以首先从该干熘气管 226 流动进行降温, 再到自洁换热设备 300中。
综上, 洗涤后气体经自洁换热设备 300进行脱油、 脱水、 降温, 自洁换热设备 300 产生的轻质油及弱碱性液体可以对气体进行脱硫、 脱萘。
在本发明的一些实施例中, 有机物料处理系统还可以包括洗涤液循环容器 (图未示 出) 。 洗涤液循环容器分别与初级干熘气洗涤塔 21 0的第一焦油溢流口 21 21和第一循 环水入口 21 1 2、二级干熘气洗涤塔 220的第二焦油溢流口 2241和第二水喷洒管 222连 通,其中初级干熘气洗涤塔 21 0内初次洗涤后产生的第一洗涤液从第一焦油溢流口 21 21 排出到洗涤液循环容器内分离出焦油、灰尘和第一冷凝水, 第一冷凝水回到第一循环水 入口 21 1 2 ; 二级干熘气洗涤塔 220 内二次洗涤后产生的第二洗涤液从第二焦油溢流口 2241 排出到述洗涤液循环容器内分离出焦油、 灰尘和第二冷凝水, 第一冷凝水回到第 二水喷洒管 222。
也就是说, 通过设置该洗涤液循环容器, 从而可以将初级干熘气洗涤塔 21 0进和二 级干熘气洗涤塔 220内洗涤产生的焦油、灰尘等杂质与冷凝水进行分离, 并将冷凝水送 回到初级干熘气洗涤塔 21 0进和二级干熘气洗涤塔 220内, 进行循环利用。沉降后的焦 油可以定时抽出至油罐中外售。
进一步地, 该洗涤液循环容器还可以与至少一级自洁换热器 31 0相连以接收排出的 洗涤液, 并将该洗涤液中的焦油、 灰尘等杂质与第三冷凝水进行分离, 并将该第三冷凝 水送回到冷却水接口 31 1 4。
根据本发明实施例的有机物料处理系统, 通过将有机物料首先通入到有机物料干熘 裂解气化炉 1 00进行干熘并产生干熘气,再将干熘气依次通入到干熘气洗涤设备和自洁 换热设备 300中, 进行洗涤净化和处理, 最终可以得到洁净的可燃干熘气体, 由此可以 降低有机物料对环境的影响, 并且通过对有机物料的上述处理过程, 还可以得到可燃能 源, 从而可以使有机物料利用价值的最大化。
如上所述, 对于例如生活垃圾的有机物料而言, 与现有普遍采用的焚烧垃圾处理方 式相比,根据本发明实施例的有机物料处理系统所产生的气体及固体排放物均不产生二 噁英及重金属污染, 处理后无废渣, 产出的固体可作为无烟燃料,其热值在每公斤 5000 大卡以上, 当然还可跟据实际需要, 让物料完全干熘, 产出建筑行业使用的粉料及水泥 行业使用的添加剂。 同时产出用来发电的干熘气体, 以生活垃圾为例: 热值在每立方米 6000 大卡以上。 对于例如褐煤的煤沫, 根据本发明的有机物料处理系统, 不仅可以获 得高达 98。/d¾轻质油回收率, 而且例如褐煤的煤末的气体产率可以达到 400rrf / t 原煤, 热值在 1 7- 33l\ZU/ rrf左右。
在生产过程中, 有机物料干熘裂解气化炉 1 00内部的温度可随意调节, 开始生产及 停止生产过程简单, 工艺全过程可实现自动化控制, 所产生的可燃气体既可用内燃式发 电机组发电, 也可以代替城市煤气或天然气供用户直接使用。本工艺还可以进一步适用 于如下物料: 农副产品秸秆、 棉杆酿酒的副产品酒渣和酒糟、 植物树叶、 工业垃圾、 医 疗垃圾、 生活垃圾等有机物料混合物。
当根据本发明的有机物料处理系统用于裂解低阶煤沫及油页岩沫时, 生产过程安全 可靠、 操作全自动、 无三废物质排放, 使低价煤炭变为无烟燃料, 减少对环境的污染, 煤炭的应用领域更加广泛、 环保。
下面参考图 6描述根据本发明实施例的有机物料处理方法。
如图 6所示, 该处理方法包括以下步骤。 将有机物料进行隔绝空气干熘并产生固体 物料、干熘气和焦油(步骤 S1 ) 。 步骤 S1可以在有机物料干熘裂解气化炉 1 00内完成。
对干熘气进行洗涤净化以去除焦油 (步骤 S2 ) 。 该步骤 S2可以在干熘气洗涤设备 中完成, 具体地, 该步骤 S2可以在初级干熘气洗涤塔 21 0和二级干熘气洗涤塔 220内 完成。
对步骤 S2 中洗涤净化后的干熘气进行初级脱油、 脱水、 脱硫、 脱萘, 并得到洁净 气体 (步骤 S3 ) 。 通过该步骤 S3, 可以将有机物料中的焦油、 灰尘等杂质分离出来, 并进行脱油、 脱水、 脱硫、 脱萘, 并得到洁净气体, 最终可以得到洁净气体, 可以达到 工业及民用可燃气使用标准。
进一步地, 步骤 S2可以包括如下步骤:
521、 对干熘气进行初次洗涤以去除灰尘和重质焦油。 具体地, 该步骤中, 可以通 过 60- 65度的循环冷却水进行初次喷洒洗涤。
522、 对干熘气进行二次洗涤以去除轻质焦油。 具体地, 该步骤中, 可以通过 40- 60 度的低温循环冷却水进行二次洗涤。
更进一步地, 该有机物料处理方法还包括如下步骤: 对步骤 S2和 S3中处理后得到 的洗涤液进行回收、 沉降并分离以得到灰尘、 焦油和冷却水, 冷却水循环回到步骤 S2 的处理过程中 (步骤 S4 ) 。 具体地, 在该步骤 S4中, 还包括对洗涤液加热至 60- 65度 以自然沉淀分离出焦油。
更进一步地, 如图 6中所示, 该有机物料处理方法还可以包括对步骤 S1 中产生的 固体物料进行回收的步骤 (步骤 S5 ) 。
在本发明的一些可选实施例中, 在例如处理生活垃圾等有机物料时, 在步骤 S1 之 前还包括以下步骤: S01 : 对有机物料进行初级筛分。 该步骤可以在初级筛分设备中进 行。 具体地, 该轻质物料被破碎至 5毫米以下。 S02 : 对步骤 S01得到的有机物料进行 脱水处理并对其中的轻质物料破碎粉碎。 该步骤可以在脱水装置中完成。 S03 : 对经过 步骤 S02处理的有机物料进行混合成型处理。
而对于例如低阶煤沫和 /或者油页岩沫的有机物料,在步骤 S1之前还包括以下步骤: S01 : 对所述有机物料进行初级筛分, 其中所述有机物料的粒径不大于 5, S02 : 对步 骤 S01得到的有机物料进行脱水处理并对其中的轻质物料破碎粉碎。
通过采用根据本发明的有机物料处理方法, 可以将有机物料中的焦油、 灰尘等杂质 分离出来, 并进行脱油、 脱水、 脱硫、 脱萘, 并得到洁净气体, 最终可以得到洁净气体, 可以达到工业及民用可燃气使用标准。在本发明的上述有机物料处理系统和方法中, 可 以最大程度无污染地利用现有例如垃圾、低阶沫煤等的有机物料, 以最大程度地充分利 用该有机物料。
在本说明书的描述中, 参考术语 "一个实施例"、 "一些实施例"、 "示意性实施例"、 "示 例"、 "具体示例"、 或 "一些示例"等的描述意指结合该实施例或示例描述的具体特征、 结 构、 材料或者特点包含于本发明的至少一个实施例或示例中。 在本说明书中, 对上述术语 的示意性表述不一定指的是相同的实施例或示例。 而且, 描述的具体特征、 结构、 材料或 者特点可以在任何的一个或多个实施例或示例中以合适的方式结合。
尽管已经示出和描述了本发明的实施例, 本领域的普通技术人员可以理解: 在不脱 离本发明的原理和宗旨的情况下可以对这些实施例进行多种变化、 修改、 替换和变型, 本发明的范围由权利要求及其等同物限定。

Claims

权利要求书
1、 一种有机物料处理系统, 其特征在于, 包括:
有机物料干熘裂解气化炉, 所述有机物料干熘裂解气化炉上形成有进料口且其顶部 具有出气口、且底部具有排料口, 其中所述有机物料从所述进料口进入所述有机物料干 熘裂解气化炉内进行隔绝空气干熘且从所述排料口排出,产生的干熘气从所述出气口排 出;
干熘气洗涤设备, 所述干熘气洗涤设备连接在所述有机物料干熘裂解气化炉的下游 且对从所述出气口排出的所述干熘气进行接收并洗涤净化。
2、 根据权利要求 1所述的有机物料处理系统, 其特征在于, 进一步包括: 自洁换热设备, 所述自洁换热设备连接在所述干熘气洗涤设备的下游以对洗涤后的 干熘气进行自清洁处理, 以获得所需的可燃干熘气体。
3、 根据权利要求 1 所述的有机物料处理系统, 其特征在于, 所述有机物料干熘裂 解气化炉包括:
裂解气化炉体, 所述出气口设在所述裂解气化炉体的顶部;
多个干熘室, 所述多个干熘室并置在所述裂解气化炉体内且相邻的两个所述干熘室 彼此间隔开, 所述排料口分别设在每个所述干熘室的底部; 以及
电加热棒, 所述电加热棒竖直地设在所述多个干熘室内以对所述多个干熘室内的物 料进行隔绝空气干熘以产生固体碳质物料和干熘气。
4、 根据权利要求 3所述的有机物料处理系统, 其特征在于, 所述有机物料干熘裂 解气化炉还包括:
顶部料仓, 所述顶部料仓的顶部敞开, 所述顶部料仓的底部与所述进料口连通; 以 及
自动给料装置, 所述自动给料装置设在所述顶部料仓的底部与所述进料口之间, 以 控制顶部料仓内的物料供入所述裂解气化炉体内。
5、 根据权利要求 4所述的有机物料处理系统, 其特征在于, 所述进料口处进一步 设有用于分配物料的分配通道,所述分配通道构造成将所述物料均匀地引入所述裂解气 化炉体内。
6、 根据权利要求 5所述的有机物料处理系统, 其特征在于, 所述分配通道形成为 倒 Y形且包括彼此连通的上通道、第一下通道和第二下通道, 其中所述上通道的顶端与 所述顶部料仓的底部连通,且第一下通道和第二下通道的底部分别通向所述裂解气化炉 体内。 7、 根据权利要求 4所述的有机物料处理系统, 其特征在于, 所述有机物料干熘裂 解气化炉进一步包括: 布料装置, 所述布料装置设在所述进料口下方以对所述进料口供 入的物料进行分配, 所述布料装置包括:
支撑件, 所述支撑件沿所述裂解气化炉体的纵向延伸;
多个挡料件, 每个所述挡料件的一端连接在所述支撑件上且另一端沿横向延伸至邻 近所述裂解气化炉体的内壁处。
8、 根据权利要求 7所述的有机物料处理系统, 其特征在于, 所述支撑件上形成有 通气孔, 所述通气孔上连接有通气管, 所述通气管的一端连接至所述出气口。
9、 根据权利要求 3所述的有机物料处理系统, 其特征在于, 进一步包括: 多个自动密封排料装置, 所述多个自动密封排料装置分别设在多个干熘室的排料口 处, 以打开和关闭所述排料口。
1 0、 根据权利要求 2所述的有机物料处理系统, 其特征在于, 所述干熘气洗涤设备 包括初级干熘气洗涤塔, 所述初级干熘气洗涤塔包括:
第一塔体, 所述第一塔体的上部具有第一干熘气入口且顶部具有第一循环水入口, 所述第一塔体的中部设有第一干熘气出口且下部设有水油入口; 以及
水封箱, 所述水封箱与所述第一塔体通过所述水油入口连通, 所述水封箱的上部形 成有第一焦油溢流口。
1 1、 根据权利要求 1 0所述的有机物料处理系统, 其特征在于, 进一步包括: 水分配盒, 所述水分配盒设在所述第一塔体的顶部, 且所述第一循环水入口设在所 述水分配盒上。
1 2、 根据权利要求 1 1 所述的有机物料处理系统, 其特征在于, 所述初级干熘气洗 涤塔还包括:
多个并排的、 竖向延伸的第一文氏管, 所述多个第一文氏管设在所述第一塔体内, 且所述多个第一文氏管的顶端低于所述第一干熘气入口;
多个第一水喷洒管, 每个所述第一水喷洒管的一端与所述水分配盒连接且另一端伸 入相应的所述第一文氏管内以便对从所述第一干熘气入口进入的干熘气进行冲洗;以及 第二文氏管, 所述第二文氏管设在所述塔体内且位于所述多个第一文氏管下方。
1 3、 根据权利要求 1 0 所述的有机物料处理系统, 其特征在于, 所述干熘气洗涤设 备还包括二级干熘气洗涤塔, 所述二级干熘气洗涤塔包括:
第二塔体, 所述第二塔体的下部具有第二干熘气入口且顶部具有第二干熘气出口; 第二水喷洒管, 所述第二水喷洒管从所述第二塔体的中部伸入所述第二塔体内; 以 及 多个分配换热塔盘, 所述多个分配换热塔盘沿所述第二塔体的径向设置且沿上下方 向彼此间隔开。
1 4、 根据权利要求 1 3 所述的有机物料处理系统, 其特征在于, 所述二级干熘气洗 涤塔还包括:
水封筒, 所述水封筒的上部具有第二焦油溢流口; 以及
洗涤液排液管, 所述洗涤液排液管的一端与所述第二塔体的下部连通且第二端伸入 到所述水封筒内的下部,所述水封筒的下端低于所述第二塔体的下端以将所述第二塔体 内的冷凝水排出到所述水封筒内。
1 5、 根据权利要求 1 3 所述的有机物料处理系统, 其特征在于, 所述第二干熘气入 口连接有干熘气管, 所述干熘气管的另一端向上延伸至高出所述第二塔体的顶部。
1 6、 根据权利要求 1 4 所述的有机物料处理系统, 其特征在于, 所述自洁换热设备 包括至少一级自洁换热器, 每个所述自洁换热器包括:
壳体, 所述壳体的顶部具有气体出口、 下部具有气体入口和洗涤液排出口, 其中所 述气体入口高于所述洗涤液排出口;
多个换热管, 所述多个换热管在上下方向上分布为彼此间隔开的多层, 每个所述换 热管内通有冷却水;
气体过滤器, 所述气体过滤器设在所述壳体内的下部且高于所述气体入口以对进入 所述壳体内的气体过滤; 以及
多个自洁换热塔盘, 所述多个自洁换热塔盘沿所述壳体的径向设置且沿上下方向彼 此间隔开, 其中每个自洁换热塔盘可设置在其中两层换热管之间。
1 7、 根据权利要求 1 6 所述的有机物料处理系统, 其特征在于, 所述壳体上具有冷 却水进口与出口, 所述冷却水接口与所述多个换热管连通以供入冷却水。
1 8、 根据权利要求 1 7 所述的有机物料处理系统, 其特征在于, 所述壳体的外壁上 还设有水冷壁。
1 9、 根据权利要求 1 6 所述的有机物料处理系统, 其特征在于, 每个所述自洁换热 器还包括:
出口扑雾器, 所述出口扑雾器设在所述壳体内且位于所述气体出口下方以对气体中 夹杂的液滴进行分离;
自洁均布分配器, 所述自洁均布分配器设在所述多个换热管上方以对所述壳体内的 气体进行均匀分配; 以及
脱硫洗涤器, 所述脱硫洗涤器设在所述壳体内且位于所述出口扑雾器和所述自洁均 布分配器之间。 20、 根据权利要求 1 6 所述的有机物料处理系统, 其特征在于, 所述气体入口连接 有干熘气管, 所述干熘气管的另一端向上延伸至高出所述壳体的顶部。
21、 根据权利要求 1 6所述的有机物料处理系统, 其特征在于, 还包括:
洗涤液循环容器, 所述洗涤液循环容器分别与所述初级干熘气洗涤塔的第一焦油溢 流口和第一循环水入口、 所述二级干熘气洗涤塔的第二焦油溢流口和第二水喷洒管连 通,
其中所述初级干熘气洗涤塔内初次洗涤后产生的第一洗涤液从所述第一焦油溢流 口排出到所述洗涤液循环容器内分离出焦油、灰尘和第一冷凝水, 所述第一冷凝水回到 所述第一循环水入口;
所述二级干熘气洗涤塔内二次洗涤后产生的第二洗涤液从所述第二焦油溢流口排 出到所述洗涤液循环容器内分离出焦油、灰尘和第二冷凝水, 所述第一冷凝水回到所述 第二水喷洒管。
22、 根据权利要求 21 所述的有机物料处理系统, 其特征在于, 所述洗涤液循环容 器进一步与至少一级自洁换热器相连以接收排出的洗涤液。
23、 根据权利要求 1 - 22 中任一项所述的有机物料处理系统, 其特征在于, 所述有 机物料包括: 生活垃圾、 农副产品秸秆、 棉杆、 酿酒的副产品酒渣和酒糟、 植物树叶、 工业垃圾、 医疗垃圾或者其混合物。
24、 根据权利要求 1所述的有机物料处理系统, 其特征在于, 还包括: 初级筛分设 备,所述初级筛分设备连接在所述有机物料干熘裂解气化炉的上游以对待处理的有机物 料进行筛分。
25、 根据权利要求 24 所述的有机物料处理系统, 其特征在于, 所述初级筛分设备 包括:
条形筛, 所述条形筛用于筛除所述待处理的有机物料中的一部分重杂质。
26、 根据权利要求 25 所述的有机物料处理系统, 其特征在于, 还包括: 用于对所 述有机物料进行脱水的脱水装置,所述脱水装置设在所述初级筛分设备和所述有机物料 干熘裂解气化炉之间。
27、 根据权利要求 26所述的有机物料处理系统, 其特征在于, 还包括: 成型设备, 所述成型设备设在所述脱水装置和所述有机物料干熘裂解气化炉之间以将脱水后的有 机物料混合成型。
28、 根据权利要求 1 - 22 中任一项所述的有机物料处理系统, 其特征在于, 所述有 机物料为低阶煤沫、 油页岩沫。
29、 一种有机物料处理方法, 其特征在于, 包括以下步骤: 51、 将所述有机物料进行隔绝空气且低于 650摄氏度的低温热解干熘, 以产生固体 物料、 干熘气和焦油;
52、 对所述干熘气进行洗涤净化以去除焦油; 以及
53、 对步骤 S2 中洗涤净化后的所述干熘气进行初级脱油、 脱水、 脱硫、 脱萘, 以 得到洁净气体。
30、 根据权利要求 29所述的有机物料处理方法, 其特征在于, 所述步骤 S2包括:
521、 对所述干熘气进行初次洗涤以去除灰尘和重质焦油;
522、 对所述干熘气进行二次洗涤以去除轻质焦油。
31、 根据权利要求 30所述的有机物料处理方法, 其特征在于, 所述步骤 S21 中, 通过 60- 65度的高温冷却水进行初次洗涤。
32、 根据权利要求 30所述的有机物料处理方法, 其特征在于, 所述步骤 S22中, 通过 40- 60度的低温冷却水进行二次洗涤。
33、 根据权利要求 30所述的有机物料处理方法, 其特征在于, 还包括:
54、 对步骤 S2和 S3中处理后得到的洗涤液进行回收、 沉降并分离以得到灰尘、 焦 油和冷却水, 所述冷却水循环回到步骤 S2的处理过程中。
34、 根据权利要求 33所述的有机物料处理方法, 其特征在于, 在所述步骤 S4中, 还包括对所述洗涤液控温至 60- 65度以自然沉淀分离出焦油。
35、 根据权利要求 29 所述的有机物料处理方法, 其特征在于, 所述有机物料为生 活垃圾、 农副产品秸秆、 棉杆、 酿酒的副产品酒渣和酒糟、 植物树叶、 工业垃圾、 医疗 垃圾或者其混合物, 其中在步骤 S1之前还包括以下步骤:
S01 : 对所述有机物料进行初级筛分;
S02 : 对步骤 S01得到的有机物料进行脱水处理并对其中的轻质物料破碎粉碎; S03 : 对所述有机物料进行混合成型处理。
36、 根据权利要求 35所述的有机物料处理方法, 其特征在于, 所述步骤 S01 中, 所述轻质物料被破碎至 5毫米以下。
37、 根据权利要求 34 所述的有机物料处理方法, 其特征在于, 所述有机物料为低 阶煤沫和 /或者油页岩沫, 其中在步骤 S1之前还包括以下步骤:
S01 : 对所述有机物料进行初级筛分, 其中所述有机物料的粒径不大于 5,
S02 : 对步骤 S01得到的有机物料进行脱水处理并对其中的轻质物料破碎粉碎。 38、 一种有机物料干熘裂解气化炉, 其特征在于, 包括:
裂解气化炉体, 所述裂解气化炉体设有进料口和出气口;
多个干熘室, 所述多个干熘室并置在所述裂解气化炉体内, 且相邻的两个干熘室之 间间隔开, 每个所述干熘室底部均设有排料口; 以及 电加热棒, 所述电加热棒竖直地设在所述多个干熘室内以对所述多个干熘室内的物 料进行隔绝空气干熘, 以产生固体碳质物料和干熘气。
39、 根据权利要求 38 所述的有机物料干熘裂解气化炉, 其特征在于, 所述多个干 熘室并置在所述裂解气化炉体内, 且相邻的两个所述干熘室彼此间隔开, 所述排料口分 别设在每个所述干熘室的底部。
40、 根据权利要求 38所述的有机物料干熘裂解气化炉, 其特征在于, 还包括: 顶部料仓, 所述顶部料仓的顶部敞开, 所述顶部料仓的底部与所述裂解气化炉体的 进料口连通; 以及
密封式自动给料装置, 所述密封式自动给料装置设在所述顶部料仓的底部与所述裂 解气化炉体的进料口之间以隔绝空气地控制顶部料仓内的物料供给至所述裂解气化炉 体内。
41、 根据权利要求 40所述的有机物料干熘裂解气化炉, 其特征在于, 所述顶部料 仓形成为漏斗形。
42、 根据权利要求 40所述的有机物料干熘裂解气化炉, 其特征在于, 所述密封式 自动给料装置为设在所述顶部料仓的底部与所述裂解气化炉体的进料口之间的管路上 的电动阀。
43、 根据权利要求 40所述的有机物料干熘裂解气化炉, 其特征在于, 所述裂解气 化炉体的进料口处进一步设有:
用于分配物料的分配通道, 所述分配通道构造成将所述物料均匀地引入所述裂解气 化炉体内。
44、 根据权利要求 43 所述的有机物料干熘裂解气化炉, 其特征在于, 所述分配通 道形成为倒 Y形且包括彼此连通的上通道、 第一下通道和第二下通道, 其中所述上通 道的顶端与所述顶部料仓的底部连通,且第一下通道和第二下通道的底部分别通向所述 裂解气化炉体内。
45、 根据权利要求 40-44中任一项所述的有机物料干熘裂解气化炉, 其特征在于, 进一步包括:
布料装置, 所述布料装置设在所述进料口下方, 以对所述进料口供入的物料进行均 匀分配。
46、 根据权利要求 45 所述的有机物料干熘裂解气化炉, 其特征在于, 所述布料装 置包括:
支撑件, 所述支撑件沿所述裂解气化炉体的纵向延伸;
多个挡料件, 每个所述挡料件的一端连接在所述支撑件上且另一端沿横向朝向所述 裂解气化炉体的内侧壁延伸。
47、 根据权利要求 46所述的有机物料干熘裂解气化炉, 其特征在于, 所述挡料件 沿横向延伸; 以及所述多个挡料件均匀分布在所述支撑件的横向两侧。
48、 根据权利要求 46所述的有机物料干熘裂解气化炉, 其特征在于, 所述支撑件 和所述挡料件的形状相同,且所述支撑件和所述挡料件中的每一个均包括在横截面上对 称设置的第一板和第二板,所述第一板和第二板上端连接且所述第一板和第二板之间形 成 30- 180度的夹角。
49、 根据权利要求 46所述的有机物料干熘裂解气化炉, 其特征在于, 所述支撑件 上固定设置有竖向延伸的通气管,所述通气管形成有与所述裂解气化炉体的内部相连通 的通气通道, 所述出气口形成在所述通气通道的出口端。
50、 根据权利要求 38所述的有机物料干熘裂解气化炉, 其特征在于, 进一步包括: 多个自动密封排料装置, 所述多个自动密封排料装置分别设在所述多个干熘室的所 述排料口处, 以对所述干熘室进行放料。
51、 根据权利要求 50所述的有机物料干熘裂解气化炉, 其特征在于, 还包括: 密封排料仓, 所述密封排料仓设在所述裂解气化炉体的底部且与所述裂解气化炉体 内部连通, 其中所述多个干熘室的底部伸入到所述密封排料仓内;
链式排料装置, 所述链式排料装置设在所述密封排料仓内以接收所述自动密封排料 装置排出的物料并排出。
PCT/CN2014/078332 2013-06-09 2014-05-23 有机物料干馏裂解气化炉、处理系统和方法 WO2014198180A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
BR112015030168-1A BR112015030168B1 (pt) 2013-06-09 2014-05-23 Forno de destilação a seco e gaseificação para materiais orgânicos, e sistema para processamento de materiais orgânicos

Applications Claiming Priority (8)

Application Number Priority Date Filing Date Title
CN201310231560.3 2013-06-09
CN201310231392.8 2013-06-09
CN201310231392 2013-06-09
CN201310231560 2013-06-09
CN201310254205.8 2013-06-21
CN201310254205.8A CN103881737B (zh) 2013-06-09 2013-06-21 有机物料处理系统和方法
CN201310727163.5 2013-12-25
CN201310727163.5A CN103881738B (zh) 2013-06-09 2013-12-25 有机物料处理系统

Publications (1)

Publication Number Publication Date
WO2014198180A1 true WO2014198180A1 (zh) 2014-12-18

Family

ID=51818951

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2014/078332 WO2014198180A1 (zh) 2013-06-09 2014-05-23 有机物料干馏裂解气化炉、处理系统和方法

Country Status (3)

Country Link
CN (2) CN203923096U (zh)
BR (1) BR112015030168B1 (zh)
WO (1) WO2014198180A1 (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107325834A (zh) * 2017-07-24 2017-11-07 辽宁清道夫环保工程有限公司 油污固废物处理系统和油污固废物处理方法
CN109666512A (zh) * 2019-02-18 2019-04-23 中国华能集团清洁能源技术研究院有限公司 一种下行激冷炉外移热的干煤粉加压气化装置
EP3919586A1 (de) * 2020-06-04 2021-12-08 Schuster, Reimund Vorrichtung zur herstellung von pflanzenkohle durch pyrolyse von biomasse

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014198180A1 (zh) * 2013-06-09 2014-12-18 山东汉菱电气有限公司 有机物料干馏裂解气化炉、处理系统和方法
CN105400527A (zh) * 2015-12-08 2016-03-16 北京神雾环境能源科技集团股份有限公司 热解反应器
DE102016006884A1 (de) * 2016-06-03 2017-12-07 Bernd Schottdorf Vorrichtung und Verfahren zur kontinuierlichen Herstellung von Pflanzenkohle sowie mit diesem Verfahren hergestellte Pflanzenkohle

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101230283A (zh) * 2008-02-01 2008-07-30 抚顺矿业集团有限责任公司 油母页岩干馏工艺回收方法
JP2008297464A (ja) * 2007-05-31 2008-12-11 Okawara Mfg Co Ltd 熱分解ガスの洗浄方法並びにその装置
CN102492432A (zh) * 2011-12-09 2012-06-13 新疆美特镁业有限公司 粉煤制焦设备及制焦方法
CN202898371U (zh) * 2012-11-13 2013-04-24 山东汉菱电气有限公司 用于煤气净化脱硫除油脱水的弱碱源自洁换热器

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4469488A (en) * 1980-05-27 1984-09-04 Albert Calderon Method for gasifying coal
CN2457159Y (zh) * 2000-11-24 2001-10-31 浙江省林业科学研究院 列管式移动床干馏炭化炉
CN2564574Y (zh) * 2002-03-29 2003-08-06 康成 立式炼焦炉
CN100532501C (zh) * 2006-08-25 2009-08-26 神木县三江煤化工有限责任公司 低温煤干馏方炉
CN102965129B (zh) * 2012-12-13 2014-01-15 山东汉菱电气有限公司 有机物料气化炉
WO2014198180A1 (zh) * 2013-06-09 2014-12-18 山东汉菱电气有限公司 有机物料干馏裂解气化炉、处理系统和方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008297464A (ja) * 2007-05-31 2008-12-11 Okawara Mfg Co Ltd 熱分解ガスの洗浄方法並びにその装置
CN101230283A (zh) * 2008-02-01 2008-07-30 抚顺矿业集团有限责任公司 油母页岩干馏工艺回收方法
CN102492432A (zh) * 2011-12-09 2012-06-13 新疆美特镁业有限公司 粉煤制焦设备及制焦方法
CN202898371U (zh) * 2012-11-13 2013-04-24 山东汉菱电气有限公司 用于煤气净化脱硫除油脱水的弱碱源自洁换热器

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107325834A (zh) * 2017-07-24 2017-11-07 辽宁清道夫环保工程有限公司 油污固废物处理系统和油污固废物处理方法
CN109666512A (zh) * 2019-02-18 2019-04-23 中国华能集团清洁能源技术研究院有限公司 一种下行激冷炉外移热的干煤粉加压气化装置
EP3919586A1 (de) * 2020-06-04 2021-12-08 Schuster, Reimund Vorrichtung zur herstellung von pflanzenkohle durch pyrolyse von biomasse
WO2021244920A1 (de) * 2020-06-04 2021-12-09 Schuster Reimund Vorrichtung zur herstellung von pflanzenkohle durch pyrolyse von biomasse

Also Published As

Publication number Publication date
BR112015030168A2 (pt) 2019-12-17
CN203923096U (zh) 2014-11-05
CN104232121B (zh) 2018-06-19
BR112015030168B1 (pt) 2021-04-27
CN104232121A (zh) 2014-12-24

Similar Documents

Publication Publication Date Title
WO2014198180A1 (zh) 有机物料干馏裂解气化炉、处理系统和方法
RU2516533C2 (ru) Способ и устройство для получения синтез-газа с низким содержанием смол из биомассы
WO2014198075A1 (zh) 有机物料处理系统和方法
CN103897713B (zh) 一种有机物料综合处理系统和处理方法
US9982197B2 (en) Dry distillation reactor and method for raw material of hydrocarbon with solid heat carrier
CN203128495U (zh) 一种有机物料综合处理系统
WO2014198074A1 (zh) 有机物料干馏裂解气化炉
CN107400526A (zh) 一种小粒径低阶煤低温热解方法
CN105018121A (zh) 一种煤气、焦油和活性炭的联产系统
CN204958813U (zh) 一种生物质炭和木醋液的生产装置
CN204897829U (zh) 一种煤气、焦油和活性炭的联产系统
KR101178486B1 (ko) 고분자 복합폐기물의 열분해 시 형성되는 가스를 응축하는 응축기
CN110040922A (zh) 处理罐底含油污泥的方法和处理系统
CN206428193U (zh) 一种煤加氢热解的系统
CN107286966A (zh) 一种固体垃圾资源化利用方法和系统
CN204958814U (zh) 一种粉煤低温热解系统
CN106497594A (zh) 一种煤加氢热解的系统和方法
CN102936509B (zh) 一种油页岩外热辐射式干馏系统
CN207672006U (zh) 一种油洗煤气净化装置
KR102032483B1 (ko) 저속 열분해를 통해 생성된 바이오 오일 포집 방법 및 장치
CN106047382A (zh) 一种自除尘型垃圾热解和裂解系统
CN206318943U (zh) 处理生物质的系统
CN206887022U (zh) 一种固体垃圾资源化利用系统
CN108611107A (zh) 一种低阶煤分级高效清洁利用的工艺
CN203229490U (zh) 一种油页岩外热辐射式干馏系统

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14811165

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

REG Reference to national code

Ref country code: BR

Ref legal event code: B01A

Ref document number: 112015030168

Country of ref document: BR

122 Ep: pct application non-entry in european phase

Ref document number: 14811165

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 112015030168

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20151201

ENPC Correction to former announcement of entry into national phase, pct application did not enter into the national phase

Ref document number: 112015030168

Country of ref document: BR

Kind code of ref document: A2

Free format text: ANULADA A PUBLICACAO CODIGO 1.3 NA RPI NO 2429 DE 25/07/2017 POR TER SIDO INDEVIDA.

REG Reference to national code

Ref country code: BR

Ref legal event code: B01E

Ref document number: 112015030168

Country of ref document: BR

Kind code of ref document: A2

Free format text: APRESENTAR A TRADUCAO SIMPLES DA FOLHA DE ROSTO DA CERTIDAO DE DEPOSITO DAS PRIORIDADES CN 201310231392.8 DE 09/06/2013, CN 201310231560.3 DE 09/06/2013, CN 201310254205.8 DE 21/06/2013 E CN 201310727163.5 DE 25/12/2013 OU DECLARACAO CONTENDO, OBRIGATORIAMENTE, TODOS OS DADOS IDENTIFICADORES DESTA (DEPOSITANTE(S), INVENTOR(ES), NUMERO DE REGISTRO, DATA DE DEPOSITO E TITULO), CONFORME O PARAGRAFO UNICO DO ART. 25 DA RESOLUCAO 77/2013, UMA VEZ QUE NAO FOI POSSIVEL DETERMINAR O(S) TITULAR(ES) DAS CITADAS PRIORIDADES, NEM SEUS INVENTORES, INFORMACAO NECESSARIA PARA O EXAME.FOI ENVIADO O IB/304 , ENTRETANTO, ESTE DOCUMENTO COMPROVA APENAS O ENVIO DA COPIA OFICIAL DA PRIORIDADE PARA A OMPI, MAS N

ENP Entry into the national phase

Ref document number: 112015030168

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20151201