WO2014196924A1 - Système et procédé pour convertir une matière plastique/caoutchouc en carburant hydrocarboné par un procédé thermo-catalytique - Google Patents

Système et procédé pour convertir une matière plastique/caoutchouc en carburant hydrocarboné par un procédé thermo-catalytique Download PDF

Info

Publication number
WO2014196924A1
WO2014196924A1 PCT/SG2013/000234 SG2013000234W WO2014196924A1 WO 2014196924 A1 WO2014196924 A1 WO 2014196924A1 SG 2013000234 W SG2013000234 W SG 2013000234W WO 2014196924 A1 WO2014196924 A1 WO 2014196924A1
Authority
WO
WIPO (PCT)
Prior art keywords
silicate
operative
carbonate
reactor
oxide
Prior art date
Application number
PCT/SG2013/000234
Other languages
English (en)
Inventor
Sivaraj DHESINGH
Original Assignee
Enviro-Power Pte Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Enviro-Power Pte Ltd filed Critical Enviro-Power Pte Ltd
Priority to SG2013081963A priority Critical patent/SG2013081963A/en
Priority to PCT/SG2013/000234 priority patent/WO2014196924A1/fr
Priority to EP13857672.3A priority patent/EP2834323A4/fr
Priority to TW103118854A priority patent/TW201502174A/zh
Publication of WO2014196924A1 publication Critical patent/WO2014196924A1/fr

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10KPURIFYING OR MODIFYING THE CHEMICAL COMPOSITION OF COMBUSTIBLE GASES CONTAINING CARBON MONOXIDE
    • C10K1/00Purifying combustible gases containing carbon monoxide
    • C10K1/04Purifying combustible gases containing carbon monoxide by cooling to condense non-gaseous materials
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G1/00Production of liquid hydrocarbon mixtures from oil-shale, oil-sand, or non-melting solid carbonaceous or similar materials, e.g. wood, coal
    • C10G1/10Production of liquid hydrocarbon mixtures from oil-shale, oil-sand, or non-melting solid carbonaceous or similar materials, e.g. wood, coal from rubber or rubber waste
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10KPURIFYING OR MODIFYING THE CHEMICAL COMPOSITION OF COMBUSTIBLE GASES CONTAINING CARBON MONOXIDE
    • C10K1/00Purifying combustible gases containing carbon monoxide
    • C10K1/08Purifying combustible gases containing carbon monoxide by washing with liquids; Reviving the used wash liquors
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10LFUELS NOT OTHERWISE PROVIDED FOR; NATURAL GAS; SYNTHETIC NATURAL GAS OBTAINED BY PROCESSES NOT COVERED BY SUBCLASSES C10G, C10K; LIQUEFIED PETROLEUM GAS; ADDING MATERIALS TO FUELS OR FIRES TO REDUCE SMOKE OR UNDESIRABLE DEPOSITS OR TO FACILITATE SOOT REMOVAL; FIRELIGHTERS
    • C10L2200/00Components of fuel compositions
    • C10L2200/04Organic compounds
    • C10L2200/0461Fractions defined by their origin
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10LFUELS NOT OTHERWISE PROVIDED FOR; NATURAL GAS; SYNTHETIC NATURAL GAS OBTAINED BY PROCESSES NOT COVERED BY SUBCLASSES C10G, C10K; LIQUEFIED PETROLEUM GAS; ADDING MATERIALS TO FUELS OR FIRES TO REDUCE SMOKE OR UNDESIRABLE DEPOSITS OR TO FACILITATE SOOT REMOVAL; FIRELIGHTERS
    • C10L2290/00Fuel preparation or upgrading, processes or apparatus therefore, comprising specific process steps or apparatus units
    • C10L2290/02Combustion or pyrolysis
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10LFUELS NOT OTHERWISE PROVIDED FOR; NATURAL GAS; SYNTHETIC NATURAL GAS OBTAINED BY PROCESSES NOT COVERED BY SUBCLASSES C10G, C10K; LIQUEFIED PETROLEUM GAS; ADDING MATERIALS TO FUELS OR FIRES TO REDUCE SMOKE OR UNDESIRABLE DEPOSITS OR TO FACILITATE SOOT REMOVAL; FIRELIGHTERS
    • C10L2290/00Fuel preparation or upgrading, processes or apparatus therefore, comprising specific process steps or apparatus units
    • C10L2290/54Specific separation steps for separating fractions, components or impurities during preparation or upgrading of a fuel
    • C10L2290/543Distillation, fractionation or rectification for separating fractions, components or impurities during preparation or upgrading of a fuel

Definitions

  • the present disclosure relates to a system and a method for thermo-catalytic process.
  • the present invention relates to a system and a method for converting
  • plastic/rubber waste to an alternative hydrocarbon fuel using thermo-catalytic process plastic/rubber waste to an alternative hydrocarbon fuel using thermo-catalytic process.
  • alternative fuels include biodiesel, bioalcohol (methanol, ethanol, butanol), chemically stored electricity (batteries and fuel cells), hydrogen, non-fossil methane, non-fossil natural gas, vegetable oil, and other biomass sources.
  • waste source comprising potential valuable resources
  • plastic and rubber waste Throughout the world millions of tons of waste plastic and rubber are produced every year. The disposal of these wastes is difficult as burning is prohibited in most of the countries due to the air pollution concerns, and landfilling requires huge space and can lead to contamination. As a result, these wastes accumulate creating a major environmental hazard.
  • a preferred way to dispose these wastes is to recover the valuable carbonaceous material there from. The recovered carbonaceous material can be used as a fuel source.
  • US Patent No. 5414169 discloses another method for obtain ing hyd rocarbon oil from waste plastic material or waste rubber material. The method comprises su bjecting the waste material to thermal cracking so as to obtain a thermal cracking product. The thermal cracking product is liquefied in the presence of a catalyst, causing a liquid phase cracking reaction of the liquefied product, to produce a cracking product. The cracking product so obtained is cooled to obtain the hydrocarbon oil.
  • Still another method for catalytically cracking waste plastics is disclosed in US Patent No. 8350104, by which polyethylene composed of linear chain molecules can be decomposed at a low temperature and very little residue is produced.
  • the method comprises loading the waste plastic as a raw material in a reaction vessel into a granular FCC catalyst heated to a temperature between 350 to 500 9 C to decompose and gasify the waste particles in contact with the catalyst.
  • a catalyst for the low-temperature pyrolysis of hydrocarbon-containing polymer materials mainly intended for use in recycling of rubber waste materials, is disclosed in US Patent No. 6743746.
  • the catalyst is prepared from a carbon-iron component in the form of microscopic carbon particles and ultra-dispersed iron particles.
  • the catalyst further contains a metal- carbon component.
  • a process for vaporizing rubber and separating the vaporized rubber into its usable components is disclosed in US Patent No. 6538166.
  • the process comprises heating a quantity of rubber in an atmosphere at a negative pressure and at a temperature between 340 and 510 -C to obtain vaporized rubber.
  • a venturi separator sprays the vaporized rubber with oil having a boiling temperature greater than 175 -C. The oil binds to heavy oil in the hydrocarbon constituents in the vaporized rubber.
  • a remaining portion of the vaporized rubber is condensed such that light oils in the hydrocarbon constituents liquefy and are separated from hydrocarbon gases.
  • a major drawback of the traditional methods is that the conversion process of the solid waste into gaseous state is hardly controllable. Further, the raw material generally needs a pre-treatment, which increases the process time, labor and energy consumption. Com monly, the process comprises two separate steps for thermal cracking and catalytic cracking, both being conducted at high temperatures, thus the process demands very high energy usage.
  • the known catalysts have a low efficiency, particularly at low tem perature, thus
  • a system (100) of converting solid waste of plastics/rubber into hydrocarbon fuel comprising: (i) a thermal cracking reactor (110) for cracking the solid waste and a catalyst as feed at a temperature in the range of 200-475 °C to obtain a catalytic thermal cracking product containing a gaseous hydrocarbon stream and a coke residue; and (ii) a condenser (120) for receiving said gaseous hydrocarbon stream and cooling said gaseous hydrocarbon stream to obtain an at least partly condensate stream containing a liquid hydrocarbon oil of smaller molecules and non-condensable gaseous hydrocarbons, wherein said thermal cracking reactor (110) having an operative top side-wall (103) and an operative bottom side-wall (105) is positioned in horizontal and comprising a feed inlet (104) at one end and a gas outlet (116) at an opposite end on said operative top side-wall (103),
  • Another object of the present invention is to provide a method of converting solid waste of plastics/rubber into hydrocarbon fuel, said system (100) comprising the steps of: (i) feeding the solid waste together with a catalyst into a thermal cracking reactor (110) which is horizontally positioned, wherein the cracking reactor (110) is provided with an operative top side-wall (103) and an operative bottom side-wall (105), a residue outlet (118) at said operative bottom side-wall (103), having a feed inlet (104) at one end thereof and a gas outlet (116) at the opposite end on the operative top side-wall (103), and an agitator device (106) centrally positioned between the side-walls (103,105) along the operative longitudinal axis of the reactor (110); (ii) subjecting the solid waste in the reactor to thermal cracking at a temperature in the range of 200 to 475 C to obtain a catalytic thermal cracking product containing a gaseous hydrocarbon stream and coke residue; (iii)receiving the gas
  • an object of the present disclosure is to provide a system and a method of converting solid waste of plastics/rubber into hydrocarbon fuel with great efficient.
  • Another object of the present disclosure is to provide a system and a method of converting solid waste of plastics/rubber into hydrocarbon fuel, which is simple, cost-effective, conserves energy, and produces minimum residue and by-products.
  • Yet another object of the present disclosure is to provide a system and a method of converting solid waste of plastics/rubber into hydrocarbon fuel, which provides improved catalyst activity.
  • Still another object of the present invention is to provide a system for converting solid waste of plastics/rubber into hydrocarbon fuel, further comprising an oil storage tank (142) which is in operative communication with the condenser (120) to receive condensate stream from the condenser (120).
  • Yet still another object of the present invention is to provide a method for converting solid waste of plastics/rubber into hydrocarbon fuel, wherein the catalyst is selected from the group consisting of aluminum silicate, barium silicate, beryllium silicate, calcium silicate, iron silicate, magnesium silicate, manganese silicate, potassium silicate, sodium silicate, zirconium silicate, copper silicate, tin silicate, iron silicate, lead silicate, tungsten silicate, cesium silicate lithium silicate, aluminum, bismuth, copper (cuprum), iron (ferrum), lead, magnesium, manganese, nickel, tin (stannum), tungsten, zinc, aluminum oxide, bismuth oxide, copper (cuprum) oxide, iron (ferrum) oxide, lead oxide, magnesium oxide, manganese oxide, nickel oxide, tin (stannum) oxide, tungsten oxide, zinc oxide, aluminum carbonate, calcium carbonate, sodium carbonate, bismuth carbonate, copper (cuprum) carbonate, iron (ferrum) carbonate, lead carbonate, magnesium
  • an object of the present invention is to provide a method for converting solid waste of plastics/rubber into hydrocarbon fuel, wherein the catalyst is a mixture containing at least one metal silicate, at least one metal oxide, at least one zeolite type compound, and at least one additive.
  • Another object of the present invention is to provide a method for converting solid waste of plastics/rubber into hydrocarbon fuel, wherein the catalyst is a mixture containing at least one metal silicate, at least one metal oxide, at least one zeolite type compound, and at least one additive.
  • a further object of the present invention is to provide a method for converting solid waste of plastics/rubber into hydrocarbon fuel, wherein the catalyst has a particle size in the range of 0.1 mm to 10mm.
  • FIG. 1 is a schematic view showing shows a thermal cracking arrangement according to the present invention
  • FIG. 2 is a simplified explanatory flow diagram showing the process of thermal cracking in accordance with the present invention
  • FIG. 3 is a schematic view showing the conversion of feed to obtain the gaseous
  • the present disclosure envisages a system and a method thereof for efficiently producing a clean hydrocarbon oil of smaller molecules having a high calorific value from solid plastic or rubber waste.
  • the system of the present disclosure is simple, cost-effective, conserves energy, and produces minimum residue and by-products.
  • the system of the present disclosure further enhances the catalyst activity.
  • the method provides a better control over the temperature of the liquid fraction and thereby greatly improves the efficiency of the cracking process and the yield.
  • FIG.1 of the accompanying drawing illustrates a preferred embodiment of the present system and method of converting solid plastic or rubber waste to hydrocarbon oil in accordance with the present invention.
  • the present system for performing a batch process to convert solid plastic/rubber waste to hydrocarbon fuel is referenced by the numeral 100 in the Fig.1.
  • the system 100 comprises a thermal cracking reactor 110 for cracking a feed of the solid plastic/rubber waste in the presence of a catalyst.
  • the reactor 110 is horizontally positioned and includes an operative top side-wall 103 and an operative bottom side-wall 105.
  • a feed inlet 104 is provided at one end of the operative top side-wall 103 and a gas outlet 116 is provided at a second opposite end of the operative top side-wall 103.
  • a residue outlet 118 is provided at the operative bottom side-wall 105.
  • An agitator device 106 is centrally positioned between the side-walls 103 & 105, placed along the operative longitudinal axis of the reactor 110.
  • the screw-type agitator device 106 is operated by means of a motor 102.
  • the horizontally positioned reactor 110 is supported by means of beam support 112 and 114.
  • the reactor 110 comprises a heating means 108.
  • a first temperature gauge 122 is provided in the reactor 110 to monitor the temperature conditions in the
  • the solid plastic/rubber waste denoted as SW and the catalyst denoted as CT are fed in the reactor 110 through the feed inlet 104.
  • heavy oil may be added along with the feed.
  • all air from the reactor 110 is removed to create a vacuum.
  • the ratio of the catalyst CT to the solid waste is typically in the range of 0.01:1 to 0.05:1.
  • the catalyst preferably has a particle size in the range of 0.1 mm to 10 mm and the solid waste is shredded to have a particle size of less than 20 mm.
  • the catalyst is typically a mixture containing at least one metal silicate, at least one metal oxide, at least one zeolite type compound, and at least one additive.
  • the catalyst is selected from a group consisting of aluminum silicate, barium silicate, beryllium silicate, calcium silicate, iron silicate, magnesium silicate, manganese silicate, potassium silicate, sodium silicate, zirconium silicate, copper silicate, tin silicate, iron silicate, lead silicate, tungsten silicate, cesium silicate lithium silicate, aluminum, bismuth, copper (cuprum), iron (ferrum), lead, magnesium, manganese, nickel, tin (stannum), tungsten, zinc, aluminum oxide, bismuth oxide, copper (cuprum) oxide, iron (ferrum) oxide, lead oxide, magnesium oxide, manganese oxide, nickel oxide, tin (stannum) oxide, tungsten oxide, zinc oxide, aluminum carbonate, calcium carbonate, sodium carbonate, bismuth carbonate, copper (cuprum) carbonate, iron (ferrum
  • the feed is gradually pushed downwards along the operative longitudinal axis of the reactor 110 by the agitator device 106 to enable complete gasification of the hydrocarbons in the solid waste.
  • the feed is cracked at a temperature in the range of 200 to 475 9 C to obtain a catalytic thermal cracking product containing a gaseous hydrocarbon stream and coke residue.
  • the mechanisms of catalytic thermal cracking are as follows:
  • - end chain cracking the polymer is broken up from the end group successively yielding the corresponding monomer
  • - random chain cracking long chain polymer/hydrocarbon chain is broken up randomly into fragment of uneven length of lower hydrocarbons
  • the catalyst provides a large reactive surface and better selectivity.
  • the catalyst facilitates the cracking of the plastic at lower temperature than a normal pyrolysis process. Thus the catalyst decreases the retention time and increases the rate of the reaction.
  • the coke residue is discharged at the residue outlet 118 and the gaseous hydrocarbon stream is discharged at the gas outlet 116.
  • a second temperature gauge 123 is provided to monitor the temperature of the gaseous hydrocarbon denoted as GH stream leaving the reactor 110.
  • a condenser 120 is provided in operative communication with the gas outlet 116 of the reactor 110 for receiving the gaseous hydrocarbon stream. The condenser receives cold water at a temperature between 5 to 25 ⁇ C via a water inlet 126 for cooling the gaseous hydrocarbon stream to obtain an at least partly condensate stream containing a liquid hydrocarbon oil of smaller molecules and non-condensable gaseous hydrocarbons. The heated water thereby obtained is discharged at the water outlet 124.
  • the condenser 120 is supported by support stands 128.
  • An oil storage tank 142 is provided in operative communication with the condenser 120 to receive the condensate stream.
  • the condensate stream from the condenser 120 is collected in the oil storage tank 142.
  • the storage tank 142 is provided with a pressure gauge 130.
  • the liquid hydrocarbon oil can be discharged via an oil outlet 140.
  • the non-condensable gaseous hydrocarbons are conveyed through scrubbing units.
  • the scrubbing units are selected from a sodium hydroxide (1 to 5% solution) scrubbing unit 143, a calcium hydroxide (1 to 5% solution) scrubbing unit 144 and a water scrubbing unit 145.
  • the scrubbing units are provided in operative communication with the oil storage tank 142 for receiving the non-condensable gaseous hydrocarbons for purifying.
  • the scrubbing units are provided with a pressure gauge 130.
  • the purified non-condensable gaseous hydrocarbons are then conveyed to a burner chamber 134 through a non- condensable gas outlet 132.
  • the burner chamber 134 is adapted to burn the non- condensable gases as a flame 136.
  • the burner chamber 134 is supported on a burner stand 138.
  • the process yield for plastic waste is 70 - 85% oil, 10 - 20% coke and 5 - 10% non- condensable gases.
  • the process yield for rubber waste is 40 - 50% oil, 30 - 50% coke, and 5 - 10% non-condensable gas.
  • the hydrocarbon oil is suitable for use as a raw material in the manufacturing of polymers, petroleum, or as a liquid fuel in industrial processes or as a fuel for combustion engines such as boilers, or as a bunker fuel.
  • the coke residue can be used as a fuel in thermal power plants and metallurgical industries.
  • FIG. 2 is a simplified explanatory flow diagram showing the process of thermal cracking in accordance with the present invention. In accordance with the present invention, the method comprises the steps of:
  • Step SI (i) feeding the solid waste together with a catalyst into a thermal cracking
  • Step S2 (ii) subjecting the solid waste in the reactor to thermal cracking at a temperature in the range of 200 to 475 C to obtain a catalytic thermal cracking product containing a gaseous hydrocarbon stream and coke residue CR;
  • Step S3 receiving the gaseous hydrocarbon stream in a condenser 120 and
  • Step S4 (iv) cooling the gaseous hydrocarbon GH stream in the condenser 120 to obtain an at least partly condensate streaming containing a liquid hydrocarbon oil of smaller molecules and non-condensable gaseous hydrocarbons GH;
  • Step S5 (v) collecting the condensate stream in an oil storage tank and conveying the non-condensable gaseous hydrocarbons to scrubbing unit to purify the non- condensable gaseous hydrocarbons GH ; and Step 6 :(vi) passing the purified non-condensable gaseous hydrocarbons to a burner chamber (134) for burning.
  • FIG. 3 is a schematic view showing the conversion of feed to obtain the gaseous
  • the solid waste denoted as SW and a catalyst denoted as CT are fed into the reactor 110.
  • a heavy oil, denoted as HO may be added along with the feed.
  • the product from the process includes gas hydrocarbon GH and a coke residue CR.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Combustion & Propulsion (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Wood Science & Technology (AREA)
  • Production Of Liquid Hydrocarbon Mixture For Refining Petroleum (AREA)

Abstract

L'invention concerne un système (100) de conversion de déchet solide de matières plastiques/caoutchouc en carburant hydrocarboné, ledit système (100) comprenant : (i) un réacteur de craquage thermique (110) pour craquer le déchet solide et un catalyseur comme alimentation à une température dans la plage de 200-475°C pour obtenir un produit de craquage thermique catalytique contenant un courant hydrocarboné gazeux et un résidu de coke ; et (ii) un condenseur (120) pour recevoir ledit courant hydrocarboné gazeux et refroidir ledit courant hydrocarboné gazeux pour obtenir au moins un courant partiellement condensé contenant une huile hydrocarbonée liquide de molécules plus petites et des hydrocarbures gazeux non condensables, ledit réacteur de craquage thermique (110) ayant une paroi latérale supérieure fonctionnelle (103) et une paroi latérale inférieure fonctionnelle (105) étant positionné à l'horizontale et comprenant un orifice d'entrée d'alimentation (104) à une extrémité et un orifice de sortie de gaz (116) à une extrémité opposée sur ladite paroi latérale supérieure fonctionnelle (103), un orifice de sortie de résidu (118) à ladite paroi latérale inférieure fonctionnelle (103), et un dispositif agitateur (106) positionné de façon centrale entre lesdites parois latérales (103, 105) le long de l'axe longitudinal de fonctionnement dudit réacteur (110), et le condenseur (120) étant en communication fonctionnelle avec ledit orifice de sortie de gaz (116) dudit réacteur (110). Un procédé de conversion de matière plastique/caoutchouc en hydrocarbure par un procédé thermo-catalytique est également décrit.
PCT/SG2013/000234 2013-06-04 2013-06-04 Système et procédé pour convertir une matière plastique/caoutchouc en carburant hydrocarboné par un procédé thermo-catalytique WO2014196924A1 (fr)

Priority Applications (4)

Application Number Priority Date Filing Date Title
SG2013081963A SG2013081963A (en) 2013-06-04 2013-06-04 System and method for converting plastic/rubber to hydrocarbon fuel by thermo-catalytic process
PCT/SG2013/000234 WO2014196924A1 (fr) 2013-06-04 2013-06-04 Système et procédé pour convertir une matière plastique/caoutchouc en carburant hydrocarboné par un procédé thermo-catalytique
EP13857672.3A EP2834323A4 (fr) 2013-06-04 2013-06-04 Système et procédé pour convertir une matière plastique/caoutchouc en carburant hydrocarboné par un procédé thermo-catalytique
TW103118854A TW201502174A (zh) 2013-06-04 2014-05-29 以熱催化法將塑膠/橡膠轉換爲碳氫燃料的系統及方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/SG2013/000234 WO2014196924A1 (fr) 2013-06-04 2013-06-04 Système et procédé pour convertir une matière plastique/caoutchouc en carburant hydrocarboné par un procédé thermo-catalytique

Publications (1)

Publication Number Publication Date
WO2014196924A1 true WO2014196924A1 (fr) 2014-12-11

Family

ID=52008433

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/SG2013/000234 WO2014196924A1 (fr) 2013-06-04 2013-06-04 Système et procédé pour convertir une matière plastique/caoutchouc en carburant hydrocarboné par un procédé thermo-catalytique

Country Status (4)

Country Link
EP (1) EP2834323A4 (fr)
SG (1) SG2013081963A (fr)
TW (1) TW201502174A (fr)
WO (1) WO2014196924A1 (fr)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106590748A (zh) * 2016-12-22 2017-04-26 中国科学院山西煤炭化学研究所 一种皮革废料催化热解气化的方法
CN106590747A (zh) * 2016-12-22 2017-04-26 中国科学院山西煤炭化学研究所 一种城市垃圾催化热解气化的方法
CN109158100A (zh) * 2018-09-28 2019-01-08 广东省环境科学研究院 一种催化裂解废塑料生产燃料油的催化剂及其制备方法
WO2020044375A1 (fr) * 2018-08-29 2020-03-05 Indian Institute Of Technology Delhi Processus et système de réacteur catalytique en deux étapes pour la production d'hydrocarbures liquides à partir de déchets plastiques
CN111992242A (zh) * 2020-09-04 2020-11-27 重庆市环卫集团有限公司 一种废塑料催化裂解用催化剂及燃料油的制备方法
CN116240042A (zh) * 2023-03-11 2023-06-09 中国石油化工股份有限公司 一种废塑料催化裂解生产烯烃的方法及装置

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5457250A (en) * 1993-08-21 1995-10-10 Hoechst Aktiengesellschaft Process for the preparation of synthesis gas
WO2000064998A1 (fr) * 1999-04-26 2000-11-02 Zmuda Henryk Procede de transformation de dechets de polyolefine en hydrocarbures et installation a cet effet
WO2009069161A1 (fr) * 2007-11-29 2009-06-04 Energy & Ecology S.R.L. Procédé de dépolymérisation thermocatalytique de matière plastique
WO2010024700A1 (fr) * 2008-09-01 2010-03-04 Thurgau Investment Group Ag Procédé de dépolymérisation thermocatalytique de déchets de matière plastique, système pour la dépolymérisation thermocatalytique de déchets de matière plastique et réacteur pour la dépolymérisation thermocatalytique de déchets de matière plastique
WO2012172527A2 (fr) * 2011-06-17 2012-12-20 Amit Tandon Procédé et appareil pour recyclage continu de déchets de matière plastique dans des carburants liquides

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62195084A (ja) * 1986-02-20 1987-08-27 Hakusan Kogyo Kk 樹脂系廃棄物から油を回収する装置
US7932424B2 (en) * 2006-01-26 2011-04-26 Kitakyushu Foundation For The Advancement Of Industry, Science And Technology Method for catalytically cracking waste plastics and apparatus for catalytically cracking waste plastics
US20120217150A1 (en) * 2006-11-06 2012-08-30 Kostek Sr Stanislaw Methods and apparatus for pyrolyzing material
KR101162612B1 (ko) * 2011-11-30 2012-07-04 이엔에프씨 주식회사 폐원료로부터의 오일 생성 시스템 및 그 촉매

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5457250A (en) * 1993-08-21 1995-10-10 Hoechst Aktiengesellschaft Process for the preparation of synthesis gas
WO2000064998A1 (fr) * 1999-04-26 2000-11-02 Zmuda Henryk Procede de transformation de dechets de polyolefine en hydrocarbures et installation a cet effet
WO2009069161A1 (fr) * 2007-11-29 2009-06-04 Energy & Ecology S.R.L. Procédé de dépolymérisation thermocatalytique de matière plastique
WO2010024700A1 (fr) * 2008-09-01 2010-03-04 Thurgau Investment Group Ag Procédé de dépolymérisation thermocatalytique de déchets de matière plastique, système pour la dépolymérisation thermocatalytique de déchets de matière plastique et réacteur pour la dépolymérisation thermocatalytique de déchets de matière plastique
WO2012172527A2 (fr) * 2011-06-17 2012-12-20 Amit Tandon Procédé et appareil pour recyclage continu de déchets de matière plastique dans des carburants liquides

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2834323A4 *

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106590748A (zh) * 2016-12-22 2017-04-26 中国科学院山西煤炭化学研究所 一种皮革废料催化热解气化的方法
CN106590747A (zh) * 2016-12-22 2017-04-26 中国科学院山西煤炭化学研究所 一种城市垃圾催化热解气化的方法
WO2020044375A1 (fr) * 2018-08-29 2020-03-05 Indian Institute Of Technology Delhi Processus et système de réacteur catalytique en deux étapes pour la production d'hydrocarbures liquides à partir de déchets plastiques
CN109158100A (zh) * 2018-09-28 2019-01-08 广东省环境科学研究院 一种催化裂解废塑料生产燃料油的催化剂及其制备方法
CN111992242A (zh) * 2020-09-04 2020-11-27 重庆市环卫集团有限公司 一种废塑料催化裂解用催化剂及燃料油的制备方法
CN111992242B (zh) * 2020-09-04 2023-05-16 重庆市环卫集团有限公司 一种废塑料催化裂解用催化剂及燃料油的制备方法
CN116240042A (zh) * 2023-03-11 2023-06-09 中国石油化工股份有限公司 一种废塑料催化裂解生产烯烃的方法及装置

Also Published As

Publication number Publication date
TW201502174A (zh) 2015-01-16
EP2834323A1 (fr) 2015-02-11
SG2013081963A (en) 2015-12-30
EP2834323A4 (fr) 2015-10-07

Similar Documents

Publication Publication Date Title
Hassan et al. Co-pyrolysis of sugarcane bagasse and waste high-density polyethylene: Synergistic effect and product distributions
Syamsiro et al. Fuel oil production from municipal plastic wastes in sequential pyrolysis and catalytic reforming reactors
Mishra et al. Pyrolysis of waste lubricating oil/waste motor oil to generate high-grade fuel oil: A comprehensive review
Lam et al. Progress in waste oil to sustainable energy, with emphasis on pyrolysis techniques
Islam et al. Thermal recycling of solid tire wastes for alternative liquid fuel: the first commercial step in Bangladesh
Nkosi et al. A review and discussion of waste tyre pyrolysis and derived products
WO2014196924A1 (fr) Système et procédé pour convertir une matière plastique/caoutchouc en carburant hydrocarboné par un procédé thermo-catalytique
EP3311969A1 (fr) Dispositif pour la destruction thermique de déchets de polyéthylène et de polypropylène
Muh et al. Biomass conversion to fuels and value-added chemicals: a comprehensive review of the thermochemical processes
Karaosmanoǧlu et al. Fuel properties of pyrolytic oil of the straw and stalk of rape plant
US7880044B2 (en) Conversion of biogas to liquid fuels
Rajmohan et al. Perspectives on bio-oil recovery from plastic waste
EP3312223B1 (fr) Procédé de destruction thermique de déchets de polyéthylène et de polypropylène
IT201800004367A1 (it) Procedimento per la produzione di combustibile da materiale contenente carbonio
Bosnjakovica et al. Biofuel from plastic waste
Chalov et al. Oil Residue Pyrolysis Process in the Presence of Aluminosilicates.
Daniyan et al. A framework for the production of renewable energy from waste tyre pyrolysis
Hornung et al. Combined heat and power generation from solid biomass derived bioliquids and syngas by TCR®-upgrade of TCR-liquids by hydrodeoxygenation
DK3094708T3 (en) Liquid biofuels
Mahmud et al. Production, Characterization and Evaluation of Pyrolysis Oil from Tyre Wastes Available in Bangladesh
RU2453523C2 (ru) Процесс получения жидких углеводородов путем расщепления молекул углерода и водорода
Huffman et al. The characterization of fast pyrolysis bio-oils
CN1842584A (zh) 回收方法和系统
Isicheli et al. Pyrolytic conversion of waste plastics using African apple seed-based activated carbon catalyst
Jahirul et al. A Review on the Thermochemical Recycling of Waste Tyres to Oil for Automobile Engine Application. Energies 2021, 14, 3837

Legal Events

Date Code Title Description
REEP Request for entry into the european phase

Ref document number: 2013857672

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2013857672

Country of ref document: EP

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13857672

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE