WO2014196456A1 - 尿素水噴射ノズル - Google Patents

尿素水噴射ノズル Download PDF

Info

Publication number
WO2014196456A1
WO2014196456A1 PCT/JP2014/064321 JP2014064321W WO2014196456A1 WO 2014196456 A1 WO2014196456 A1 WO 2014196456A1 JP 2014064321 W JP2014064321 W JP 2014064321W WO 2014196456 A1 WO2014196456 A1 WO 2014196456A1
Authority
WO
WIPO (PCT)
Prior art keywords
urea water
nozzle
exhaust
flow path
injection nozzle
Prior art date
Application number
PCT/JP2014/064321
Other languages
English (en)
French (fr)
Inventor
井上 剛
Original Assignee
ヤンマー株式会社
一般社団法人日本舶用工業会
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ヤンマー株式会社, 一般社団法人日本舶用工業会 filed Critical ヤンマー株式会社
Priority to KR1020157035976A priority Critical patent/KR101740580B1/ko
Priority to CN201480031314.6A priority patent/CN105247181B/zh
Priority to US14/895,325 priority patent/US10487758B2/en
Priority to DK14808320.7T priority patent/DK3006687T3/en
Priority to EP14808320.7A priority patent/EP3006687B1/en
Publication of WO2014196456A1 publication Critical patent/WO2014196456A1/ja

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/08Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous
    • F01N3/10Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust
    • F01N3/18Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust characterised by methods of operation; Control
    • F01N3/20Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust characterised by methods of operation; Control specially adapted for catalytic conversion ; Methods of operation or control of catalytic converters
    • F01N3/2066Selective catalytic reduction [SCR]
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/021Introducing corrections for particular conditions exterior to the engine
    • F02D41/0235Introducing corrections for particular conditions exterior to the engine in relation with the state of the exhaust gas treating apparatus
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05BSPRAYING APPARATUS; ATOMISING APPARATUS; NOZZLES
    • B05B7/00Spraying apparatus for discharge of liquids or other fluent materials from two or more sources, e.g. of liquid and air, of powder and gas
    • B05B7/02Spray pistols; Apparatus for discharge
    • B05B7/04Spray pistols; Apparatus for discharge with arrangements for mixing liquids or other fluent materials before discharge
    • B05B7/0416Spray pistols; Apparatus for discharge with arrangements for mixing liquids or other fluent materials before discharge with arrangements for mixing one gas and one liquid
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05BSPRAYING APPARATUS; ATOMISING APPARATUS; NOZZLES
    • B05B7/00Spraying apparatus for discharge of liquids or other fluent materials from two or more sources, e.g. of liquid and air, of powder and gas
    • B05B7/02Spray pistols; Apparatus for discharge
    • B05B7/08Spray pistols; Apparatus for discharge with separate outlet orifices, e.g. to form parallel jets, i.e. the axis of the jets being parallel, to form intersecting jets, i.e. the axis of the jets converging but not necessarily intersecting at a point
    • B05B7/0807Spray pistols; Apparatus for discharge with separate outlet orifices, e.g. to form parallel jets, i.e. the axis of the jets being parallel, to form intersecting jets, i.e. the axis of the jets converging but not necessarily intersecting at a point to form intersecting jets
    • B05B7/0815Spray pistols; Apparatus for discharge with separate outlet orifices, e.g. to form parallel jets, i.e. the axis of the jets being parallel, to form intersecting jets, i.e. the axis of the jets converging but not necessarily intersecting at a point to form intersecting jets with at least one gas jet intersecting a jet constituted by a liquid or a mixture containing a liquid for controlling the shape of the latter
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/08Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous
    • F01N3/10Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust
    • F01N3/18Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust characterised by methods of operation; Control
    • F01N3/20Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust characterised by methods of operation; Control specially adapted for catalytic conversion ; Methods of operation or control of catalytic converters
    • F01N3/206Adding periodically or continuously substances to exhaust gases for promoting purification, e.g. catalytic material in liquid form, NOx reducing agents
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/08Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous
    • F01N3/10Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust
    • F01N3/18Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust characterised by methods of operation; Control
    • F01N3/20Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust characterised by methods of operation; Control specially adapted for catalytic conversion ; Methods of operation or control of catalytic converters
    • F01N3/2066Selective catalytic reduction [SCR]
    • F01N3/208Control of selective catalytic reduction [SCR], e.g. dosing of reducing agent
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/08Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous
    • F01N3/10Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust
    • F01N3/18Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust characterised by methods of operation; Control
    • F01N3/22Control of additional air supply only, e.g. using by-passes or variable air pump drives
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N9/00Electrical control of exhaust gas treating apparatus
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2510/00Surface coverings
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2590/00Exhaust or silencing apparatus adapted to particular use, e.g. for military applications, airplanes, submarines
    • F01N2590/02Exhaust or silencing apparatus adapted to particular use, e.g. for military applications, airplanes, submarines for marine vessels or naval applications
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2610/00Adding substances to exhaust gases
    • F01N2610/02Adding substances to exhaust gases the substance being ammonia or urea
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2610/00Adding substances to exhaust gases
    • F01N2610/08Adding substances to exhaust gases with prior mixing of the substances with a gas, e.g. air
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2610/00Adding substances to exhaust gases
    • F01N2610/08Adding substances to exhaust gases with prior mixing of the substances with a gas, e.g. air
    • F01N2610/085Controlling the air supply
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2610/00Adding substances to exhaust gases
    • F01N2610/14Arrangements for the supply of substances, e.g. conduits
    • F01N2610/1453Sprayers or atomisers; Arrangement thereof in the exhaust apparatus
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2610/00Adding substances to exhaust gases
    • F01N2610/14Arrangements for the supply of substances, e.g. conduits
    • F01N2610/1453Sprayers or atomisers; Arrangement thereof in the exhaust apparatus
    • F01N2610/146Control thereof, e.g. control of injectors or injection valves
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2900/00Details of electrical control or of the monitoring of the exhaust gas treating apparatus
    • F01N2900/06Parameters used for exhaust control or diagnosing
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2900/00Details of electrical control or of the monitoring of the exhaust gas treating apparatus
    • F01N2900/06Parameters used for exhaust control or diagnosing
    • F01N2900/10Parameters used for exhaust control or diagnosing said parameters being related to the vehicle or its components
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/40Engine management systems

Definitions

  • the present invention relates to a urea water injection nozzle.
  • the present invention relates to a urea water injection nozzle in an exhaust purification device for a ship.
  • a selective reduction type NOx catalyst (DCR catalyst) is disposed inside the exhaust pipe, and ammonia is used as a reducing agent.
  • An exhaust emission control device that reduces NOx to nitrogen and water is known.
  • the urea water is supplied into the exhaust gas from the urea water injection nozzle disposed inside the exhaust pipe, and ammonia is generated from the urea water by the heat of the exhaust gas, so that NOx is reduced to nitrogen and water.
  • Patent Document 1 does not actively remove urea water from the tip of the nozzle. For this reason, depending on the direction of the nozzle and the shape of the nozzle, it is disadvantageous in that urea water remains on the surface of the nozzle and precipitation and growth of urea cannot be effectively prevented.
  • This invention is made in view of the subject which concerns, and it aims at provision of the urea water injection nozzle which can suppress precipitation and growth of urea in a urea water injection nozzle.
  • a urea water flow path and a gas flow path are configured, and a urea water injection nozzle in which urea water and a gas are mixed and injected from an injection port, and is disposed along the surface of the urea water injection nozzle.
  • the side discharge port is configured such that gas is discharged in the same direction as the urea water injection direction, and a water repellent coating layer is formed on the surface of the urea water injection nozzle.
  • the distance from the flow path where the gas and urea water are mixed to the surface decreases as the distance from the injection port increases, and urea water injection from the injection port within a predetermined range is performed.
  • the contour line in the side view of the nozzle is configured to have a constant angle with respect to the injection direction of the urea water.
  • the water repellent coating layer is a ceramic coating layer.
  • urea water adhering to the side surface of the urea water injection nozzle is easily removed by utilizing the water repellent effect at the nozzle tip and the discharge force of the gas discharged along the nozzle surface. Thereby, precipitation and growth of urea in the urea water injection nozzle can be suppressed.
  • the inclined surface is formed in the vicinity of the injection port of the urea water injection nozzle, the urea water attached in the vicinity of the injection port is easily removed. Thereby, precipitation and growth of urea in the urea water injection nozzle can be suppressed.
  • the water repellent effect is maintained even during high-temperature exhaust. Thereby, precipitation and growth of urea in the urea water injection nozzle can be suppressed.
  • the partial cross section figure which shows the urea water injection nozzle of the exhaust gas purification device which relates to one execution form of this invention.
  • an exhaust emission control device 100 for a marine engine will be described with reference to FIGS. 1 and 2.
  • “upstream side” indicates the upstream side in the fluid flow direction
  • “downstream side” indicates the downstream side in the fluid flow direction.
  • the exhaust purification device 100 is provided for one engine (for example, a main engine or an auxiliary machine in a marine engine), but the present invention is not limited to this.
  • a plurality of engines for example, auxiliary machinery in a marine engine
  • a configuration in which exhaust from the plurality of engines is collectively purified by one exhaust purification device, or a configuration in which an exhaust purification device is provided for each engine Good.
  • the exhaust pipe 21 of the engine 20 discharges exhaust from the engine 20 to the outside (atmosphere).
  • An exhaust purification device 100 is provided in the exhaust pipe 21.
  • the exhaust pipe 21 is provided with a branch pipe 21c and exhaust switching valves 21b and 21c for switching an exhaust passage route on the upstream side of the exhaust purification device 100.
  • the branch pipe 21 a is connected to the exhaust pipe 21.
  • the exhaust gas switching valve 21b is disposed inside the exhaust pipe 21 upstream of the exhaust purification device 100 and downstream of the branch pipe 21a.
  • the exhaust gas switching valve 21c is disposed inside the branch pipe 21c.
  • the exhaust gas switching valves 21b and 21c are configured to be able to open and close in conjunction with each other. Specifically, the exhaust switching valves 21b and 21c close the exhaust switching valve 21c when the exhaust switching valve 21b is open, and open the exhaust switching valve 21c when the exhaust switching valve 21b is closed. Configured to do. Thereby, when the exhaust gas switching valve 21b is in the open state and the exhaust gas switching valve 21c is in the closed state, the exhaust pipe 21 constitutes a path through which the exhaust gas is supplied to the exhaust gas purification device 100 (state in FIG. 1).
  • the exhaust pipe 21 has a path through which the exhaust gas is not purified by the exhaust gas purification device 100 and is released to the outside (atmosphere) through the branch pipe 21c. Constitute.
  • an exhaust switching valve that selectively closes one of the exhaust pipe 21 and the branch pipe 21c may be provided at the connection portion of the branch pipe 21c at the connection portion of the branch pipe 21c.
  • the exhaust pipe 21 constitutes a path through which the exhaust is supplied to the exhaust purification device 100.
  • the exhaust pipe 21 constitutes a path through which the exhaust is not purified by the exhaust purification device 100 and is released to the outside (atmosphere) through the branch pipe 21c.
  • the exhaust purification device 100 purifies exhaust from the engine 20.
  • the exhaust purification device 100 includes a urea water injection nozzle 1, a pressurized air supply pump (compressor) 6, a pressurized air valve 8, a urea water supply pump 9, a switching valve 11, a NOx detection unit 12, a control unit 13, and a first supply.
  • the flow path 14, the second supply flow path 15, the NOx catalyst 18 and the like are provided.
  • the urea water injection nozzle 1 supplies urea water into the exhaust pipe 21.
  • the urea water injection nozzle 1 is provided in the exhaust pipe 21 on the downstream side of the exhaust gas switching valve 21b.
  • the urea water injection nozzle 1 is composed of a tubular member, and is provided so that one side (downstream side) thereof is inserted from the outside to the inside of the exhaust pipe 21.
  • the urea water injection nozzle 1 includes a double pipe 2, a liquid nozzle 3, an air nozzle 4, a nut 5, and the like (see FIG. 2).
  • the pressurized air supply pump (compressor) 6 supplies pressurized air to the air tank 7.
  • the pressurized air supply pump 6 supplies air after being pressurized (compressed).
  • the pressurized air supply pump 6 supplies air to the air tank 7 when the pressure of the air tank 7 falls below a predetermined pressure, and stops when the pressure of the air tank 7 reaches a predetermined pressure.
  • the pressurized air valve 8 communicates or blocks the flow path of the pressurized air.
  • the pressurized air valve 8 is provided in the second supply flow path 15.
  • the pressurized air valve 8 can be switched to the position V and the position W by sliding the spool. In the pressurized air valve 8, when the spool is in the position V, the second supply flow path 15 is blocked. Therefore, pressurized air is not supplied to the urea water injection nozzle 1. When the spool is in the position W, the pressurized air valve 8 communicates with the second supply flow path 15. Therefore, pressurized air is supplied to the urea water injection nozzle 1.
  • the urea water supply pump 9 supplies urea water to the urea water injection nozzle 1.
  • the urea water supply pump 9 is provided in the first supply flow path 14.
  • the urea water supply pump 9 supplies urea water in the urea water tank 10 to the urea water injection nozzle 1 through the first supply flow path 14 at a predetermined flow rate.
  • the switching valve 11 switches the urea water flow path.
  • the switching valve 11 is provided on the downstream side of the urea water supply pump 9 in the first supply flow path 14.
  • a drain pot 16 is connected to the switching valve 11 via a flow path 15a.
  • the switching valve 11 can be switched to position X and position Y by sliding the spool. In the switching valve 11, when the spool is in the position X, the first supply flow path 14 is shut off, and the urea water injection nozzle 1 and the drain pot 16 are communicated. When the spool is in the position Y, the switching valve 11 is communicated with the first supply flow path 14. Therefore, urea water is supplied to the urea water injection nozzle 1.
  • the NOx detection unit 12 detects the NOx emission amount contained in the exhaust of the engine 20.
  • the NOx detection unit 12 is composed of a NOx sensor or the like, and is disposed in the middle of the exhaust pipe 21 and upstream of the NOx catalyst 18.
  • the control unit 13 controls the urea water supply pump 9, the switching valve 11, the pressurized air valve 8, the exhaust switching valves 21b and 21c, and the like.
  • the control unit 13 stores various programs and data for controlling the urea water supply pump 9, the switching valve 11, the pressurized air valve 8, the exhaust gas switching valves 21 b and 21 c, and the like, and the exhaust gas regulation sea area map M 1.
  • the control unit 13 may be configured such that a CPU, ROM, RAM, HDD, or the like is connected by a bus, or may be configured by a one-chip LDI or the like. Further, the control unit 13 can be configured integrally with the ECU 22 that controls the engine 20.
  • the control unit 13 is connected to the ECU 22, the pressurized air valve 8, the urea water supply pump 9, the switching valve 11, and the exhaust switching valves 21b and 21c, respectively.
  • the control unit 13 is connected to a GPS (global positioning system) device 23.
  • the control unit 13 can acquire various types of information related to the engine 20 from the ECU 22.
  • the control unit 13 is connected to the NOx detection unit 12 and can acquire the NOx emission amount detected by the NOx detection unit 12.
  • the control unit 13 is connected to a GPS (global positioning system) device 23 and can acquire the current position of the exhaust purification device 100 detected by the GPS device 23.
  • the control unit 13 can control the pressurized air valve 8, the urea water supply pump 9, the switching valve 11, and the exhaust switching valves 21b and 21c, respectively.
  • the NOx catalyst 18 promotes the NOx reduction reaction.
  • the NOx catalyst 18 is disposed inside the exhaust pipe 21 and downstream of the urea water injection nozzle 1.
  • the NOx catalyst 18 promotes a reaction of reducing NOx contained in exhaust gas into nitrogen and water by ammonia generated by heat and hydrolysis of urea water.
  • the control device 13 acquires the current position detected by the GPS device 23, and the current position is a regulated sea area where the current position is exhausted from the regulated sea area map M1. It is determined whether or not.
  • the control device 13 determines that the current position is in the exhaust restricted sea area, the control device 13 controls the exhaust switching valve 21b to be opened and the exhaust switching valve 21c to be closed. That is, the exhaust gas is purified by the exhaust gas purification device 100 and then discharged to the outside.
  • the control device 13 determines that the current position is not in the exhaust restriction area, the control device 13 controls the exhaust switching valve 21b to be closed and the exhaust switching valve 21c to be opened.
  • control apparatus 13 can also acquire the opening / closing signal of the exhaust gas switching valve 21b * 21c by manual, and can control the exhaust gas switching valve 21b * 21c according to the opening / closing signal.
  • the method of the urea water injection nozzle 1 is not limited to the present embodiment, and may be an external mixing type urea injection nozzle.
  • the urea water injection nozzle 1 includes a double pipe 2, a liquid nozzle 3, an air nozzle 4, and a nut 5.
  • the double pipe 2 is a main component of the urea water injection nozzle 1 and constitutes a urea water flow path and a pressurized air flow path.
  • the double pipe 2 is arranged such that the downstream side is located inside the exhaust pipe 21 and the upstream side is located outside the exhaust pipe 21.
  • the downstream end of the double pipe 2 is arranged upstream of the NOx catalyst 18 arranged inside the exhaust pipe 21.
  • the double pipe 2 includes an outer pipe 2b and an inner pipe 2a disposed inside the outer pipe 2b.
  • the inner pipe 2a includes a urea water flow path 2c that is a flow path of urea water.
  • a gas channel 2d that is a channel for pressurized air is formed in the gap between the inner tube 2a and the outer tube 2b.
  • a connecting portion (not shown) that can be connected to the exhaust pipe 21 in a watertight manner is formed in the middle part of the outside of the outer pipe 2b.
  • a female screw portion 2e and a male screw portion 2f are formed at the downstream end portion of the inner tube 2a and the downstream end portion of the outer tube 2b.
  • a urea water supply port 2g that communicates with the urea water flow path 2c and a gas supply port 2h that communicates with the gas flow path 2d are configured.
  • the liquid nozzle 3 is for injecting urea water.
  • the liquid nozzle 3 is formed from a substantially cylindrical member and is disposed on the downstream side of the double pipe 2.
  • the downstream end of the liquid nozzle 3 is formed in a substantially conical shape with the axial center as the center.
  • a substantially columnar convex portion 3a is formed in the central portion of the downstream end portion so as to protrude in the axial direction.
  • a male screw portion 3b is formed at the upstream end of the liquid nozzle 3 so as to protrude in the axial direction.
  • the urea water flow path 3c is formed in the axial center part of the liquid nozzle 3 so that the whole liquid nozzle 3 may be penetrated to the axial direction from the external thread part 3b to the convex part 3a.
  • the urea water flow path 3c is reduced in diameter toward the downstream side in the middle, and is formed so that the inner diameter of the downstream end of the urea water flow path 3c is smaller than the inner diameter of the upstream end of the urea water flow path 3c. .
  • the male screw portion 3 b is screwed into the female screw portion 2 e of the double pipe 2.
  • the double pipe 2 and the liquid nozzle 3 are connected, and the urea water flow path 3c and the urea water flow path 2c of the double pipe 2 are communicated.
  • urea water can be supplied to the urea water flow channel 3c from the urea water flow channel 2c of the double pipe 2.
  • the air nozzle 4 is for spraying atomized urea water.
  • the air nozzle 4 is formed from a substantially cylindrical member.
  • the air nozzle 4 is disposed on the downstream side of the liquid nozzle 3 so that the upstream end contacts the downstream end of the double pipe 2.
  • a hole having a substantially conical diameter-reducing portion that is reduced in diameter toward the downstream side in the middle portion is formed in the axial center portion of the air nozzle 4 so as to penetrate from the upstream end toward the downstream end.
  • the upstream end of the hole is formed to have an inner diameter to the extent that a compressed air can pass even if the downstream end of the liquid nozzle 3 is inserted.
  • a urea water mixing channel 4d is formed at the axial center of the reduced diameter side end of the reduced diameter portion.
  • An injection port 4f which is an opening of the mixing channel 4d, is formed at the downstream end of the air nozzle 4.
  • a collar portion 4 a is formed on the side surface of the upstream end portion of the air nozzle 4.
  • the downstream side of the air nozzle 4 is formed in a substantially bullet shape with the injection port 4f as the apex.
  • the side surface (surface) on the downstream side of the air nozzle 4 is within a predetermined range L in a side view (side surface direction of the axis C of the air nozzle 4) from the injection port 4f.
  • a surface 4b having a curved surface is formed such that the distance from the mixing flow path 4d decreases as the nozzle 4f approaches the injection port 4f.
  • the air nozzle 4 has a surface 4c formed in a predetermined range D centered on the injection port 4f in front view (in the direction of the axis C of the air nozzle 4).
  • the surface 4c is formed such that a contour line within a predetermined range D in a side view of the air nozzle 4 is at a constant angle ⁇ with respect to the axis C. That is, the downstream side of the air nozzle 4 is formed in a substantially truncated cone shape with the injection port 4f as the center.
  • the air nozzle 4 has an inclined surface having a constant inclination angle ⁇ so as to surround the air nozzle 4 adjacent to the injection port 4f.
  • a water repellent coating layer 4 h is formed on the surface 4 b and the surface 4 c of the air nozzle 4.
  • the water-repellent coating layer 4h suppresses adhesion of urea water that is a liquid.
  • the water repellent coating layer 4h is composed of a ceramic coating layer that can be used even at an exhaust temperature of about 300 ° C to 350 ° C. The exhaust temperature varies greatly depending on the load state of the engine 20. Therefore, the water-repellent coating layer 4h is suitably a ceramic coating layer having a higher heat resistance than a fluorine coating which is a general heat-resistant coating having a heat-resistant temperature of about 250 ° C. Thereby, the air nozzle 4 can remove urea water from the surface easily.
  • the air nozzle 4 is connected to the double pipe 2 by a nut 5.
  • the downstream end of the liquid nozzle 3 is inserted into the hole on the upstream side of the air nozzle 4.
  • a gap is formed between the hole of the air nozzle 4 and the liquid nozzle 3.
  • the gap is configured to communicate with the gas channel 2d of the double pipe 2 and the mixing channel 4d as the gas channel 4e.
  • urea water is supplied from the urea water flow path 3c of the liquid nozzle 3 to the mixing flow path 4d, and pressurized air is supplied from the gas flow path 4e. That is, the air nozzle 4 is configured to be capable of injecting urea water from the injection port 4f by being screwed into the double pipe 2.
  • one or more branch flow paths 4g are formed so as to communicate with the holes of the air nozzle 4 from the side surface. That is, the branch flow path 4g is formed to communicate with the gas flow path 4e from the side surface of the air nozzle 4.
  • the branch flow path 4g is formed to communicate with the gas flow path 4e from the side surface of the air nozzle 4.
  • pressurized air is supplied to the gas flow path 4e, a part of the pressurized air is discharged to the side surface of the air nozzle 4 through the branch flow path 4g.
  • the number of the branch flow paths 4g and the flow path inner diameter of the branch flow paths 4g are determined according to the amount of pressurized air discharged to the side surface of the air nozzle 4.
  • the nut 5 fastens the double pipe 2 and the air nozzle 4.
  • a stepped portion 5 a that is engaged with the flange portion 4 a of the air nozzle 4 is formed on the inner diameter of the nut 5.
  • a female screw portion 5b that is screwed into the male screw portion 2f of the double pipe 2 is formed on the upstream side of the stepped portion 5a.
  • the downstream side of the stepped portion 5a is formed with an inner diameter that allows the air nozzle 4 to be inserted without a gap.
  • a diameter-expanded portion is formed in a portion on the downstream side of the stepped portion 5 a and facing the branch flow path 4 g of the air nozzle 4.
  • the downstream side of the enlarged diameter portion is formed with an inner diameter that is slightly larger than the outer diameter of the air nozzle 4.
  • the nut 5 is fixed by screwing the female screw portion 5b to the male screw portion 2f of the double pipe 2 so that the stepped portion 5a is engaged with the flange portion 4a of the air nozzle 4.
  • the upstream end of the air nozzle 4 is closely fixed to the downstream end of the double pipe 2.
  • a space 5 c in which gas stays is constituted by the enlarged diameter portion of the nut 5 and the side surface of the air nozzle 4.
  • the space 5 c is configured to be able to supply pressurized air via the branch flow path 4 g of the air nozzle 4.
  • a slit 5d is formed between the nut 5 and the air nozzle 4 on the downstream side of the space 5c. That is, the slit 5 d is configured along the side surface so as to surround the air nozzle 4. Further, the slit 5d communicates with the space 5c. That is, the pressurized air supplied to the space 5c can be discharged from the slit 5d along the side surface of the air nozzle 4 toward the downstream side of the space 5c, which is the same direction as the urea water injection direction. Composed. In this way, the side surface of the air nozzle 4 is formed with a slit 5d that is a side surface discharge port through which pressurized air is discharged.
  • the urea water injection nozzle 1 includes the liquid nozzle 3 and the air nozzle 4 that inject urea water at one end (downstream side), and is configured to inject urea water toward the NOx catalyst 18. Is done.
  • the configuration of the urea water injection nozzle 1 is particularly limited in the present embodiment, although the urea water flow channel 3c, the gas flow channel 4e, and the mixing flow channel 4d are configured from the liquid nozzle 3 and the air nozzle 4.
  • the urea water flow path 3c, the gas flow path 4e, and the mixing flow path 4d should just be comprised, respectively.
  • the control unit 13 sets the switching valve 11 to the position Y, so that the urea water is injected into the urea water injection nozzle 1 ( It is supplied to the urea water supply port 2g of the double pipe 2).
  • the urea water is the urea water flow path 2c of the double pipe 2 and the urea of the liquid nozzle 3 at a predetermined pressure as indicated by the black arrows in FIG.
  • the water is injected from the convex portion 3a of the liquid nozzle 3 to the mixing channel 4d of the air nozzle 4 through the water channel 3c.
  • the control unit 13 sets the pressurized air valve 8 to the position W, so that pressurized air is supplied to the gas supply port 2h of the urea water injection nozzle 1 (double pipe 2). Is done.
  • the pressurized air is gas from the gas flow path 2d of the double pipe 2 and the air nozzle 4 at a predetermined pressure as indicated by the white arrow in FIG. 4 (a). It is injected into the mixing flow path 4d of the air nozzle 4 through the flow path 4e.
  • the urea water collides with the pressurized air inside the mixing flow path 4 d of the air nozzle 4 and is atomized, and is injected from the injection port 4 f of the air nozzle 4.
  • Part of the pressurized air supplied to the gas flow path 4e of the air nozzle 4 is supplied to the space 5c through the branch flow path 4g.
  • the pressurized air supplied to the space 5c is discharged from the slit 5d toward the downstream side of the air nozzle 4 (on the injection port 4f side) with a uniform pressure.
  • the pressurized air discharged from the slit 5d advances so as to wrap the air nozzle 4 along the side surface of the air nozzle 4 due to its viscosity.
  • the pressurized air reaches the injection port 4f by traveling on the surface 4b and the surface 4c which are side surfaces of the air nozzle 4 formed in a cannonball shape.
  • the control unit 13 sets the position of the switching valve 11 to the position X, so that the urea water injection nozzle 1 ( The supply of urea water to the urea water supply port 2g of the double pipe 2) is stopped. Accordingly, the urea water supply port 2 g of the double pipe 2 is opened to the atmosphere via the first supply flow path 14 and the switching valve 11. Even if urea water adheres to the surface after the pressurized air from the slit 5d is stopped, the air nozzle 4 flows down from the surface due to the effect of the water-repellent coating layer 4h formed on the surface 4b and the surface 4c. Water adhesion is suppressed.
  • the air nozzle 4 can be connected to the surface 4b and the surface even if urea water adheres around the injection port 4f.
  • the surface 4c formed so as to surround the injection port 4f is caused to flow downward and the adhesion of urea water is suppressed.
  • the side surface of the urea water injection nozzle 1 is utilized by utilizing the water repellent effect at the tip of the air nozzle 4 and the discharge force of pressurized air, which is a gas discharged along the surface 4b and the surface 4c of the air nozzle 4.
  • the urea water adhering to (surface) is easily removed. Thereby, precipitation and growth of urea in the air nozzle 4 can be suppressed.
  • the surface 4c having a slope is formed in the vicinity of the injection port 4f of the urea water injection nozzle 1, the urea water adhering to the vicinity of the injection port 4f is easily removed. Thereby, precipitation and growth of urea in the air nozzle 4 can be suppressed.
  • the water repellent effect can be maintained even when placed in high-temperature exhaust. Thereby, precipitation and growth of urea in the air nozzle 4 can be suppressed.
  • the present invention can be used for the technology of a urea water injection nozzle in an exhaust purification device.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Health & Medical Sciences (AREA)
  • Toxicology (AREA)
  • Exhaust Gas After Treatment (AREA)
  • Exhaust Gas Treatment By Means Of Catalyst (AREA)
  • Nozzles (AREA)

Abstract

尿素水噴射ノズルにおける尿素の析出および成長を抑制することができる尿素水噴射ノズルの提供を目的とする。本実施形態に係る尿素水噴射ノズル(1)は、尿素水流路(2c)・(3c)と気体流路(2d)・(4e)とが構成され、尿素水と気体とが混合されて噴射口(4f)から噴射される尿素水噴射ノズル(1)であって、尿素水噴射ノズル(1)の表面(4c)・(4d)に沿って尿素水の噴射方向と同一の方向に気体が吐出されるように側面吐出口であるスリット(5d)が構成され、尿素水噴射ノズル(1)の表面(4c)・(4d)に撥水コーティング層(4h)が形成されたものである。

Description

尿素水噴射ノズル
 本発明は、尿素水噴射ノズルに関する。特に、船舶用の排気浄化装置における尿素水噴射ノズルに関する。
 従来、内燃機関から排出される排気に含まれるNOx(窒素酸化物)を低減させるために、排気管の内部に選択還元型のNOx触媒(DCR触媒)を配設し、アンモニアを還元剤として、NOxを窒素と水とに還元する排気浄化装置が知られている。排気管の内部に配置される尿素水噴射ノズルから尿素水を排気中に供給し、排気の熱によって尿素水からアンモニアを生成することでNOxを窒素と水に還元するものである。
 このような排気浄化装置においては、尿素水噴射ノズルの表面に残留している尿素水の水分が排気の熱によって蒸発することで尿素が析出および成長し、排気管が閉塞されてしまう問題があった。そこで、尿素水噴射ノズルの先端に撥水コーティング層を形成して尿素水噴射ノズルの表面に尿素水が付着し難くしたものが公知である。例えば特許文献1のごとくである。
 しかし、特許文献1に記載されているノズルは、尿素水をノズルの先端から積極的に除去するものではない。このため、ノズルの向きやノズルの形状によっては、尿素水がノズルの表面に残留して尿素の析出および成長を効果的に防止できない点で不利であった。
特開2009-41502号公報
 本発明は係る課題を鑑みてなされたものであり、尿素水噴射ノズルにおける尿素の析出および成長を抑制することができる尿素水噴射ノズルの提供を目的とする。
 本発明の解決しようとする課題は以上の如くであり、次にこの課題を解決するための手段を説明する。
 即ち、本発明においては、尿素水流路と気体流路とが構成され、尿素水と気体とが混合されて噴射口から噴射される尿素水噴射ノズルであって、尿素水噴射ノズルの表面に沿って尿素水の噴射方向と同一の方向に気体が吐出されるように側面吐出口が構成され、尿素水噴射ノズルの表面に撥水コーティング層が形成されたものである。
 即ち、本発明においては、前記噴射口に近接するにつれて気体と尿素水とが混合される流路から前記表面までの距離が短くなるように形成され、噴射口から所定の範囲内における尿素水噴射ノズルの側面視での輪郭線が尿素水の噴射方向に対して一定の角度になるように構成されたものである。
 即ち、本発明においては、前記撥水コーティング層は、セラミックコーティング層であるものである。
 本発明の効果として、以下に示すような効果を奏する。
 本願に係る発明によれば、ノズル先端の撥水効果とノズル表面にそって吐出される気体の吐出力を利用して、尿素水噴射ノズルの側面に付着した尿素水が容易に除去される。これにより、尿素水噴射ノズルにおける尿素の析出および成長を抑制することができる。
 本願に係る発明によれば、尿素水噴射ノズルの噴射口近傍に斜面が形成されるので噴射口の近傍に付着した尿素水が容易に除去される。これにより、尿素水噴射ノズルにおける尿素の析出および成長を抑制することができる。
 本願に係る発明によれば、高温の排気中でも撥水効果が維持される。これにより、尿素水噴射ノズルにおける尿素の析出および成長を抑制することができる。
本発明の一実施形態に係る排気浄化装置の構成を示す図。 本発明の一実施形態に係る排気浄化装置の尿素水噴射ノズルを示す一部断面図。 (a)図2における尿素水噴射ノズルの先端部を示す側面視拡大図(b)図3(a)における尿素水噴射ノズルのA矢視図。 (a)本発明の一実施形態に係る排気浄化装置の尿素水噴射ノズルから尿素水を排気管の内部に供給している状態を示す断面図(b)図4(a)における尿素水噴射ノズルのB矢視図。
 以下に、図1および図2を用いて本発明の一実施形態に係る舶用エンジンの排気浄化装置100について説明する。なお、本実施形態における「上流側」とは流体の流れ方向における上流側を示し、「下流側」とは流体の流れ方向における下流側を示す。本実施形態において、一のエンジン(例えば、舶用エンジンにおける主機もしくは補機)に対して排気浄化装置100を設ける構成としているがこれに限定されるものでない。複数のエンジン(例えば、舶用エンジンにおける補機)が設置されている場合において、複数のエンジンからの排気をまとめて一の排気浄化装置で浄化する構成や、エンジン毎に排気浄化装置を設ける構成でもよい。
 始めに、エンジン20の排気管21について説明する。図1に示すように、排気管21は、エンジン20からの排気を外部(大気)に排出するものである。排気管21には、排気浄化装置100が設けられている。また、排気管21には、排気浄化装置100の上流側に分岐管21cと排気の通過経路を切り替える排気切替弁21b・21cとが設けられている。分岐管21aは、排気管21に接続されている。排気切替弁21bは、排気浄化装置100の上流側であって分岐管21aの下流側の排気管21の内部に配置されている。排気切替弁21cは、分岐管21cの内部に配置されている。
 排気切替弁21b・21cは、互いに連動して開閉可能に構成されている。具体的には、排気切替弁21b・21cは、排気切替弁21bが開状態のときに排気切替弁21cを閉状態にし、排気切替弁21bが閉状態のときに排気切替弁21cを開状態にするように構成される。これにより、排気切替弁21bが開状態かつ排気切替弁21cが閉状態の場合、排気管21は、排気が排気浄化装置100に供給される経路を構成する(図1の状態)。一方、排気切替弁21bが閉状態かつ排気切替弁21cが開状態の場合、排気管21は、排気が排気浄化装置100で浄化されずに分岐管21cを通じて外部(大気)に放出される経路を構成する。
 また、別実施形態として、分岐管21cの接続部分に排気管21と分岐管21cとのいずれか一方を選択的に閉状態にする排気切替弁を分岐管21cの接続部分に設ける構成としてもよい。分岐管21cが閉状態の場合、排気管21は、排気が排気浄化装置100に供給される経路を構成する。一方、排気管21が閉状態の場合、排気管21は、排気が排気浄化装置100で浄化されずに分岐管21cを通じて外部(大気)に放出される経路を構成する。
 次に、排気浄化装置100について説明する。排気浄化装置100は、エンジン20からの排気を浄化するものである。排気浄化装置100は、尿素水噴射ノズル1、加圧空気供給ポンプ(コンプレッサ)6、加圧空気弁8、尿素水供給ポンプ9、切替弁11、NOx検出部12、制御部13、第一供給流路14、第二供給流路15、NOx触媒18等を具備する。
 尿素水噴射ノズル1は、尿素水を排気管21の内部に供給するものである。尿素水噴射ノズル1は、排気管21において排気切替弁21bの下流側に設けられる。尿素水噴射ノズル1は、管状部材から構成され、その一側(下流側)を排気管21の外部から内部へ挿通するようにして設けられる。この尿素水噴射ノズル1は、二重管2、液ノズル3、空気ノズル4、ナット5等を具備する(図2参照)。
 加圧空気供給ポンプ(コンプレッサ)6は、加圧空気をエアタンク7に供給するものである。加圧空気供給ポンプ6は、空気を加圧(圧縮)して供給する。加圧空気供給ポンプ6は、エアタンク7の圧力が所定の圧力を下回った場合、空気をエアタンク7に供給し、エアタンク7の圧力が所定の圧力に達すると停止する。
 加圧空気弁8は、加圧空気の流路を連通または遮断するものである。加圧空気弁8は、第二供給流路15に設けられる。加圧空気弁8は、スプールを摺動させることにより位置Vおよび位置Wに切り換えることが可能である。加圧空気弁8は、スプールが位置Vの状態にある場合、第二供給流路15は遮断される。従って、尿素水噴射ノズル1には、加圧空気が供給されない。加圧空気弁8は、スプールが位置Wの状態にある場合、第二供給流路15は連通される。従って、尿素水噴射ノズル1には、加圧空気が供給される。
 尿素水供給ポンプ9は、尿素水噴射ノズル1に尿素水を供給するものである。尿素水供給ポンプ9は、第一供給流路14に設けられる。尿素水供給ポンプ9は、尿素水タンク10内の尿素水を所定の流量で第一供給流路14を介して尿素水噴射ノズル1に供給する。
 切替弁11は、尿素水の流路を切り替えるものである。切替弁11は、第一供給流路14の尿素水供給ポンプ9の下流側に設けられる。切替弁11には、ドレンポット16が流路15aを介して接続されている。切替弁11は、スプールを摺動させることにより位置Xおよび位置Yに切り換えることが可能である。切替弁11は、スプールが位置Xの状態にある場合、第一供給流路14は遮断され、尿素水噴射ノズル1とドレンポット16とが連通される。切替弁11は、スプールが位置Yの状態にある場合、第一供給流路14は連通される。従って、尿素水噴射ノズル1には、尿素水が供給される。
 NOx検出部12は、エンジン20の排気に含まれるNOx排出量を検出するものである。NOx検出部12は、NOxセンサ等から構成され、排気管21の途中部であってNOx触媒18よりも上流側に配置される。
 制御部13は、尿素水供給ポンプ9、切替弁11、加圧空気弁8、排気切替弁21b・21c等を制御する。制御部13には、尿素水供給ポンプ9、切替弁11、加圧空気弁8、排気切替弁21b・21c等を制御するための種々のプログラムやデータおよび排気の規制海域マップM1が格納される。制御部13は、CPU、ROM、RAM、HDD等がバスで接続される構成であってもよく、あるいはワンチップのLDI等からなる構成であってもよい。また、制御部13は、エンジン20を制御するECU22と一体的に構成することも可能である。
 制御部13は、ECU22、加圧空気弁8、尿素水供給ポンプ9、切替弁11および排気切替弁21b・21cにそれぞれ接続される。また、制御部13は、GPS(全地球測位システム)装置23に接続される。
 制御部13は、ECU22からエンジン20に関する各種情報をそれぞれ取得することが可能である。制御部13は、NOx検出部12と接続され、NOx検出部12が検出するNOx排出量を取得することが可能である。制御部13は、GPS(全地球測位システム)装置23に接続され、GPS装置23が検出した排気浄化装置100の現在位置を取得することが可能である。また、制御部13は、加圧空気弁8、尿素水供給ポンプ9、切替弁11および排気切替弁21b・21cをそれぞれ制御することが可能である。
 NOx触媒18は、NOxの還元反応を促進させるものである。NOx触媒18は排気管21の内部であって、尿素水噴射ノズル1よりも下流側に配置される。NOx触媒18は、尿素水が熱・加水分解されて生成されるアンモニアが排気に含まれるNOxを窒素と水とに還元する反応を促進させる。
 このように構成される排気浄化装置100において、例えば船舶に搭載されている場合、制御装置13は、GPS装置23が検出した現在位置を取得し、規制海域マップM1から現在位置が排気の規制海域であるか否か判断する。制御装置13は、現在位置が排気の規制海域であると判断した場合、排気切替弁21bを開状態かつ排気切替弁21cを閉状態に制御する。すなわち、排気は、排気浄化装置100によって浄化された後に外部へ排出される。制御装置13は、現在位置が排気の規制海域でないと判断した場合、排気切替弁21bを閉状態かつ排気切替弁21cを開状態に制御する。すなわち、排気は、排気浄化装置で浄化されずに分岐管21aを通じて外部へ排出される。なお、制御装置13は、手動による排気切替弁21b・21cの開閉信号を取得し、開閉信号に従って排気切替弁21b・21cを制御することも可能である。
 次に、図2および図3を用いて、内部混合式の尿素水噴射ノズル1について具体的に説明する。なお、尿素水噴射ノズル1の方式は、本実施形態に限定されるものではなく、外部混合式の尿素噴射ノズルでもよい。
 図2に示すように、尿素水噴射ノズル1は、二重管2、液ノズル3、空気ノズル4、ナット5を具備する。
 二重管2は、尿素水噴射ノズル1の主たる構成部材であり、尿素水の流路と加圧空気の流路とを構成する。二重管2は、下流側が排気管21の内部に位置し、上流側が排気管21の外部に位置するように配置される。二重管2の下流側端部は、排気管21の内部に配置されるNOx触媒18の上流側に配置される。
 二重管2は、外管2bと、外管2bの内部に配置される内管2aとから構成される。内管2aには、尿素水の流路である尿素水流路2cが構成される。内管2aと外管2bとの隙間には、加圧空気の流路である気体流路2dが構成される。外管2bの外側の途中部には、排気管21と水密的に接続可能な図示しない接続部が構成される。内管2aの下流側端部および外管2bの下流側端部には、雌ネジ部2eおよび雄ネジ部2fが形成される。二重管2の上流側端部には、尿素水流路2cと連通される尿素水供給ポート2gと、気体流路2dと連通される気体供給ポート2hとが構成される。
 液ノズル3は、尿素水が噴射されるものである。液ノズル3は、略円筒状の部材から形成され、二重管2の下流側に配置される。液ノズル3の下流側端部は軸心部を中心として略円錐状に形成される。下流側端部の中心部には、略円柱状の凸部3aが軸方向に突出して形成される。液ノズル3の上流側端部には、雄ネジ部3bが軸方向に突出するように形成される。さらに、液ノズル3の軸心部には、尿素水流路3cが雄ネジ部3bから凸部3aまで液ノズル3全体を軸方向に貫通するように形成される。この尿素水流路3cは、途中部で下流側に向けて縮径され、尿素水流路3cの下流側端部の内径が尿素水流路3cの上流側端部の内径より小さくなるように形成される。
 液ノズル3は、雄ネジ部3bが二重管2の雌ネジ部2eに螺合される。これにより、二重管2と液ノズル3とが接続されて、尿素水流路3cと二重管2の尿素水流路2cとが連通される。こうして、尿素水流路3cに、二重管2の尿素水流路2cから尿素水が供給可能に構成される。
 空気ノズル4は、霧化された尿素水が噴射されるものである。空気ノズル4は略円柱状の部材から形成される。空気ノズル4は、上流側端が二重管2の下流側端部に当接するようにして液ノズル3の下流側に配置される。空気ノズル4の軸心部には、途中部で下流側に向かって縮径する略円錐状の縮径部を有する孔が、上流側端から下流側端に向けて、貫通するように形成される。孔の上流側端部は、液ノズル3の下流側端部を挿入しても圧縮空気が通過可能な空間が構成される程度の内径に形成される。縮径部の縮径側端の軸心部には、尿素水の混合流路4dが形成される。そして、空気ノズル4の下流側端部には、混合流路4dの開口部である噴射口4fが形成される。
 空気ノズル4の上流側端部の側面には、つば部4aが形成される。空気ノズル4の下流側は、噴射口4fを頂点とする略砲弾状に形成される。具体的には、図3に示すように、空気ノズル4の下流側の側面(表面)は、噴射口4fから側面視(空気ノズル4の軸線Cの側面方向)での所定の範囲L内において、噴射口4fに近接するにつれて混合流路4dからの距離が短くなる曲面からなる表面4bが形成される。さらに、空気ノズル4は、正面視(空気ノズル4の軸線C方向)での噴射口4fを中心とする所定の範囲D内において、表面4cが形成される。表面4cは、空気ノズル4の側面視での所定の範囲D内の輪郭線が軸線Cに対して一定の角度θになるように形成される。つまり、空気ノズル4の下流側は、噴射口4fを中心とした略円錐台状に形成される。これにより、空気ノズル4は、噴射口4fに隣接して囲むように一定の傾斜角θの斜面を有する。
 空気ノズル4の表面4bおよび表面4cには、撥水コーティング層4hが形成されている。撥水コーティング層4hは、液体である尿素水の付着を抑制するものである。撥水コーティング層4hは、300℃から350℃程度の排気温度中でも使用可能なセラミックコーティング層から構成される。排気温度は、エンジン20の負荷状態によって大きく変動する。従って、撥水コーティング層4hは、耐熱温度が250℃程度の一般的な耐熱性コーティングであるフッ素コーティングよりも耐熱性の高いセラミックコーティング層が適している。これにより、空気ノズル4は、容易に表面から尿素水を除去することができる。
 図2に示すように、空気ノズル4は、ナット5により二重管2に接続される。空気ノズル4の上流側の孔には、液ノズル3の下流側端部が挿入される。この際、空気ノズル4の孔と液ノズル3との間に隙間が形成される。当該隙間は、気体流路4eとして二重管2の気体流路2dと混合流路4dとに連通するように構成される。こうして、混合流路4dには、液ノズル3の尿素水流路3cから尿素水が供給され、気体流路4eから加圧空気が供給される。つまり、空気ノズル4は、二重管2に螺合されることで、噴射口4fから尿素水が噴射可能に構成される。
 空気ノズル4には、その側面から空気ノズル4の孔に連通するように一以上の分岐流路4gが形成される。つまり、分岐流路4gは、空気ノズル4の側面から気体流路4eに連通するように形成される。気体流路4eに加圧空気が供給されると分岐流路4gを介して空気ノズル4の側面に加圧空気の一部が吐出される。分岐流路4gは、空気ノズル4の側面に吐出させる加圧空気の量に応じて、分岐流路4gの数や、流路内径が決定される。
 ナット5は、二重管2と空気ノズル4とを締結する。ナット5の内径には、空気ノズル4のつば部4aに係合される段付部5aが形成される。段付部5aの上流側は、二重管2の雄ネジ部2fに螺合される雌ネジ部5bが形成される。段付部5aの下流側は、空気ノズル4が隙間無く挿入可能な程度の内径に形成される。また、段付部5aの下流側であって、空気ノズル4の分岐流路4gに対向する部分に拡径部が形成される。当該拡径部の下流側は、空気ノズル4の外径よりもわずかに大きい内径に形成される。
 ナット5は、空気ノズル4のつば部4aに段付部5aが係合するようにして二重管2の雄ネジ部2fに雌ネジ部5bを螺合して固定される。これにより、空気ノズル4の上流側端部が二重管2の下流側端部に密接して固定される。この際、ナット5の拡径部と空気ノズル4の側面とから気体が滞留する空間5cが構成される。これにより、空間5cは、空気ノズル4の分岐流路4gを介して加圧空気が供給可能に構成される。
 図2および図3に示すように、空間5cよりも下流側のナット5と空気ノズル4との間には、スリット5dが構成される。つまり、スリット5dは、空気ノズル4を囲むようにして側面に沿って構成される。さらに、スリット5dは、空間5cに連通されている。すなわち、空間5cに供給される加圧空気は、スリット5dから空気ノズル4の側面にそって尿素水の噴射方向と同一の方向である空間5cの下流側にむけて加圧空気が吐出可能に構成される。このようにして、空気ノズル4の側面には、加圧空気が吐出される側面吐出口であるスリット5dが構成される。
 以上より、尿素水噴射ノズル1は、一側(下流側)端部に尿素水を噴射する液ノズル3、および空気ノズル4を具備し、NOx触媒18に向けて尿素水を噴射するように構成される。なお、尿素水噴射ノズル1の構成は、本実施形態において、液ノズル3と空気ノズル4とから尿素水流路3c、気体流路4e、および混合流路4dを構成しているが、特に限定するものではなく、尿素水流路3c、気体流路4e、および混合流路4dがそれぞれ構成されていればよい。
 以下では、図1、図2、および図4を用いて、尿素水噴射ノズル1の動作態様について説明する。
 図1に示すように、排気管21の内部に尿素水の供給(噴射)が開始される場合、制御部13が切替弁11を位置Yとすることによって、尿素水が尿素水噴射ノズル1(二重管2)の尿素水供給ポート2gに供給される。図2、および図4(a)に示すように、尿素水は、図4(a)における黒塗り矢印の如く、所定の圧力で二重管2の尿素水流路2c、および液ノズル3の尿素水流路3cを介して、液ノズル3の凸部3aから空気ノズル4の混合流路4dに噴射される。
 この状態で、図1に示すように、制御部13が加圧空気弁8を位置Wとすることによって、加圧空気が尿素水噴射ノズル1(二重管2)の気体供給ポート2hに供給される。図2、および図4(a)に示すように、加圧空気は、図4(a)における白抜き矢印の如く、所定の圧力で二重管2の気体流路2d、空気ノズル4の気体流路4eを介して、空気ノズル4の混合流路4dに噴射される。この結果、尿素水は、空気ノズル4の混合流路4dの内部で加圧空気と衝突して霧化され、空気ノズル4の噴射口4fから噴射される。
 空気ノズル4の気体流路4eに供給された加圧空気の一部は、分岐流路4gを介して空間5cに供給される。空間5cに供給された加圧空気は、均一な圧力でスリット5dから空気ノズル4の下流側(噴射口4f側)に向けて吐出される。スリット5dから吐出された加圧空気は、その粘性によって空気ノズル4の側面にそって空気ノズル4を包み込むように進む。加圧空気は、砲弾状に形成されている空気ノズル4の側面である表面4bと表面4cとにそってその表面上を進むことで噴射口4fに到達する。これにより、噴射口4fから噴射された尿素水が空気ノズル4の表面4bと表面4cとに近づいてきても加圧空気によって吹き飛ばされる。また、空気ノズル4の表面4bと表面4cとに付着した尿素水は、撥水コーティング層4hの効果により加圧空気によって容易に吹き飛ばされる。
 図1に示すように、排気管21の内部への尿素水の供給(噴射)が停止される場合、制御部13が切替弁11のポジションを位置Xとすることによって、尿素水噴射ノズル1(二重管2)の尿素水供給ポート2gへの尿素水の供給が停止される。これに伴い、二重管2の尿素水供給ポート2gは、第一供給流路14、切替弁11、を介して大気開放される。空気ノズル4は、スリット5dからの加圧空気が停止した後に尿素水がその表面に付着しても、表面4bと表面4cと形成された撥水コーティング層4hの効果によりその表面から流れ落ちて尿素水の付着が抑制される。
 また、空気ノズル4の噴射口4fが上方に向くように尿素水噴射ノズル1が配置されている場合、空気ノズル4は、噴射口4fの周囲に尿素水が付着しても、表面4bと表面4cと形成された撥水コーティング層4hの効果に加え、噴射口4fを囲むようにして形成された表面4cの傾斜によって下方に流れ落ちて尿素水の付着が抑制される。
 以上のごとく、空気ノズル4先端の撥水効果と空気ノズル4の表面4bと表面4cとにそって吐出される気体である加圧空気の吐出力を利用して、尿素水噴射ノズル1の側面(表面)に付着した尿素水が容易に除去される。これにより、空気ノズル4における尿素の析出および成長を抑制することができる。
 また、尿素水噴射ノズル1の噴射口4fの近傍に斜面を有する表面4cが形成されるので噴射口4fの近傍に付着した尿素水が容易に除去される。これにより、空気ノズル4における尿素の析出および成長を抑制することができる。
 また、高温の排気中に配置されても撥水効果を維持することが出来る。これにより、空気ノズル4における尿素の析出および成長を抑制することができる。
 本発明は、排気浄化装置における尿素水噴射ノズルの技術に利用することが可能である。
  1 尿素水噴射ノズル
 2c 尿素水流路
 3c 尿素水流路
 2d 気体流路
 4c 表面
 4d 表面
 4e 気体流路
 4f 噴射口
 5d スリット

Claims (3)

  1.  尿素水流路と気体流路とが構成され、尿素水と気体とが混合されて噴射口から噴射される尿素水噴射ノズルであって、
     尿素水噴射ノズルの表面に沿って尿素水の噴射方向と同一の方向に気体が吐出されるように側面吐出口が構成され、尿素水噴射ノズルの表面に撥水コーティング層が形成された尿素水噴射ノズル。
  2.  前記噴射口に近接するにつれて気体と尿素水とが混合される流路から前記表面までの距離が短くなるように形成され、噴射口から所定の範囲内における尿素水噴射ノズルの側面視での輪郭線が尿素水の噴射方向に対して一定の角度になるように構成される請求項1に記載の尿素水噴射ノズル。
  3.  前記撥水コーティング層は、セラミックコーティング層である請求項1または請求項2に記載の尿素水噴射ノズル。
PCT/JP2014/064321 2013-06-04 2014-05-29 尿素水噴射ノズル WO2014196456A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
KR1020157035976A KR101740580B1 (ko) 2013-06-04 2014-05-29 요소수 분사 노즐
CN201480031314.6A CN105247181B (zh) 2013-06-04 2014-05-29 尿素水喷射嘴
US14/895,325 US10487758B2 (en) 2013-06-04 2014-05-29 Urea solution spray nozzle
DK14808320.7T DK3006687T3 (en) 2013-06-04 2014-05-29 SPRAY NOZE FOR UREA SOLUTION
EP14808320.7A EP3006687B1 (en) 2013-06-04 2014-05-29 Urea solution spray nozzle

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2013118011A JP6166103B2 (ja) 2013-06-04 2013-06-04 尿素水噴射ノズル
JP2013-118011 2013-06-04

Publications (1)

Publication Number Publication Date
WO2014196456A1 true WO2014196456A1 (ja) 2014-12-11

Family

ID=52008102

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/064321 WO2014196456A1 (ja) 2013-06-04 2014-05-29 尿素水噴射ノズル

Country Status (7)

Country Link
US (1) US10487758B2 (ja)
EP (1) EP3006687B1 (ja)
JP (1) JP6166103B2 (ja)
KR (1) KR101740580B1 (ja)
CN (1) CN105247181B (ja)
DK (1) DK3006687T3 (ja)
WO (1) WO2014196456A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111206977A (zh) * 2018-11-21 2020-05-29 卡特彼勒公司 通道式还原剂混合装置

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6392177B2 (ja) * 2015-06-29 2018-09-19 株式会社パウレック スプレーノズル及びその洗浄方法
CN109838295B (zh) * 2017-11-29 2022-12-02 博世动力总成有限公司 柴油发动机的尾气后处理系统及压力波动幅度确定方法
JP6954109B2 (ja) * 2017-12-27 2021-10-27 いすゞ自動車株式会社 尿素水噴射装置
US10894237B2 (en) 2018-11-15 2021-01-19 Caterpillar Inc. Reductant nozzle with concave impinging surface
US10953373B2 (en) * 2018-11-15 2021-03-23 Caterpillar Inc. Reductant nozzle with radial air injection
US10888885B2 (en) 2018-11-15 2021-01-12 Caterpillar Inc. Reductant nozzle with swirling spray pattern
US11534728B2 (en) 2018-11-15 2022-12-27 Caterpillar Inc. Reductant nozzle with helical channel design
JP2020176602A (ja) * 2019-04-22 2020-10-29 株式会社デンソー 流体噴射装置及び流体噴射システム
KR102596285B1 (ko) * 2020-03-30 2023-11-01 세메스 주식회사 타워 리프트, 타워 리프트 구동 방법 및 기계 판독 가능 매체
CN111889247A (zh) * 2020-08-14 2020-11-06 广西励领农业科技有限公司 一种设有新型喷头结构的喷雾机
CN112855313A (zh) * 2021-03-29 2021-05-28 河北亚大汽车塑料制品有限公司 汽车尿素管的连接工艺
US20220364490A1 (en) * 2021-05-11 2022-11-17 Caterpillar Inc. Exhaust fluid injector assembly
DE102022120146A1 (de) * 2022-08-10 2024-02-15 Glatt Gesellschaft Mit Beschränkter Haftung Düsenanordnung

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09310660A (ja) * 1996-05-21 1997-12-02 Mitsubishi Electric Corp 電磁式燃料噴射弁
JP2003083055A (ja) * 2001-09-12 2003-03-19 Denso Corp 排気浄化装置
JP2008019773A (ja) * 2006-07-12 2008-01-31 Toyota Motor Corp 内燃機関の燃料噴射弁
JP2009041502A (ja) 2007-08-10 2009-02-26 Hino Motors Ltd 尿素添加ノズル
JP2011080437A (ja) * 2009-10-08 2011-04-21 Yanmar Co Ltd 排気浄化装置
WO2013191134A1 (ja) * 2012-06-21 2013-12-27 ヤンマー株式会社 尿素水噴射ノズル

Family Cites Families (27)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5141693B1 (ja) * 1971-05-24 1976-11-11
US4036434A (en) * 1974-07-15 1977-07-19 Aerojet-General Corporation Fluid delivery nozzle with fluid purged face
US4080099A (en) * 1976-05-02 1978-03-21 Brunswick Corporation Propeller
US4241656A (en) * 1978-11-17 1980-12-30 Smith R. P. M. Corporation Self-cleaning nozzle for lithographic printing dampeners
CA1159356A (en) * 1979-10-25 1983-12-27 Kurt Skoog Method and device for producing microdroplets of fluid
JPS57194064A (en) * 1981-05-22 1982-11-29 Alloy Koki Kk Spraying device suitable for spraying of high viscosity liquid
JPH04101059A (ja) * 1990-08-13 1992-04-02 Japan Electron Control Syst Co Ltd アシストエア式フューエルインジェクタ
DE19961947A1 (de) * 1999-12-22 2001-06-28 Bosch Gmbh Robert Vorrichtung und Verfahren zur Erzeugung eines Reduktionsmittel-Luftgemisches
DE19963394A1 (de) * 1999-12-28 2001-07-05 Bosch Gmbh Robert Vorrichtung zur Aerosolbildung und Vorrichtung zur Nachbehandlung von Abgasen
DE10040571A1 (de) * 2000-08-18 2002-02-28 Bosch Gmbh Robert Vorrichtung zur Erzeugung eines Reduktionsmittel-Luft-Gemisches
JP3657922B2 (ja) * 2002-05-10 2005-06-08 株式会社東京機械製作所 スプレー式湿し水供給装置
US20050284957A1 (en) * 2002-09-23 2005-12-29 Spraying Systems Co. External mix air atomizing spray nozzle assembly
CA2549755C (en) * 2003-12-23 2012-05-15 Yara International Asa Spraying device and method for fluidised bed granulation
US7621465B2 (en) * 2005-11-10 2009-11-24 Nordson Corporation Air annulus cut off nozzle to reduce stringing and method
DE102006009147A1 (de) * 2006-02-24 2007-08-30 Wurz, Dieter, Prof. Dr.-Ing. Zweistoffdüse mit Weitwinkelstrahl
EP2538049B1 (en) * 2007-03-30 2015-03-18 Continental Automotive Systems US, Inc. Reductant delivery unit for selective catalytic reduction
DE102007044272A1 (de) * 2007-09-17 2009-04-02 Wurz, Dieter, Prof. Dr.-Ing. Vielloch- oder Bündelkopfdüse ohne und mit Druckluftunterstützung
DE102009037828A1 (de) * 2008-11-11 2010-05-20 Wurz, Dieter, Prof. Dr. Zweistoffdüse, Bündeldüse und Verfahren zum Zerstäuben von Fluiden
US9631528B2 (en) * 2009-09-03 2017-04-25 Clean Emissions Technologies, Inc. Vehicle reduced emission deployment
US8839611B2 (en) * 2010-05-05 2014-09-23 Cummins Power Generation Ip, Inc Exhaust injection muffler
US8756921B2 (en) * 2011-01-10 2014-06-24 Paccar Inc Reductant delivery device
DE102011003356A1 (de) * 2011-01-31 2012-08-02 Robert Bosch Gmbh Vorrichtung zur Abgabe eines Reduktionsmittels in einen Abgaskanal einer Brennkraftmaschine
DE102011010641A1 (de) * 2011-02-09 2012-08-09 Emitec France S.A.S Injektor für eine Harnstoff-Wasser-Lösung
US8985088B2 (en) * 2012-07-31 2015-03-24 General Electric Company Systems and methods for controlling exhaust gas recirculation
DE102011107609A1 (de) * 2011-06-30 2013-01-03 Albonair Gmbh Reduktionsmitteleinspritzdüse und Verfahren zur Herstellung einer Reduktionsmitteleinspritzdüse
US10061745B2 (en) * 2012-04-01 2018-08-28 Zonar Sytems, Inc. Method and apparatus for matching vehicle ECU programming to current vehicle operating conditions
US10238554B2 (en) * 2013-06-28 2019-03-26 Daio Paper Corporation Absorbent products having an absorber with a body fluid inflow portion and a superabsorbent resin

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09310660A (ja) * 1996-05-21 1997-12-02 Mitsubishi Electric Corp 電磁式燃料噴射弁
JP2003083055A (ja) * 2001-09-12 2003-03-19 Denso Corp 排気浄化装置
JP2008019773A (ja) * 2006-07-12 2008-01-31 Toyota Motor Corp 内燃機関の燃料噴射弁
JP2009041502A (ja) 2007-08-10 2009-02-26 Hino Motors Ltd 尿素添加ノズル
JP2011080437A (ja) * 2009-10-08 2011-04-21 Yanmar Co Ltd 排気浄化装置
WO2013191134A1 (ja) * 2012-06-21 2013-12-27 ヤンマー株式会社 尿素水噴射ノズル

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111206977A (zh) * 2018-11-21 2020-05-29 卡特彼勒公司 通道式还原剂混合装置

Also Published As

Publication number Publication date
EP3006687B1 (en) 2018-08-01
CN105247181B (zh) 2018-04-03
KR101740580B1 (ko) 2017-06-08
EP3006687A4 (en) 2017-05-24
DK3006687T3 (en) 2018-10-29
JP6166103B2 (ja) 2017-07-19
US10487758B2 (en) 2019-11-26
EP3006687A1 (en) 2016-04-13
KR20160008642A (ko) 2016-01-22
JP2014234793A (ja) 2014-12-15
CN105247181A (zh) 2016-01-13
US20160108838A1 (en) 2016-04-21

Similar Documents

Publication Publication Date Title
JP6166103B2 (ja) 尿素水噴射ノズル
JP6108427B2 (ja) 尿素水噴射ノズル
KR101831750B1 (ko) 배기 정화 장치
US10024213B2 (en) Diesel exhaust fluid deposit mitigation
KR100974982B1 (ko) 엔진용 배기 정화 장치
US9422844B2 (en) Exhaust purification device for engine
WO2017064877A1 (ja) 船舶の排気ガス浄化装置
JP5010662B2 (ja) 排気浄化装置
US10012124B2 (en) Angled and compact exhaust gas aftertreatment device
WO2017064878A1 (ja) 船舶の排気ガス浄化装置
JP2014005745A (ja) 尿素水噴射装置
CN105569882B (zh) 内燃机
WO2023047913A1 (ja) 排気管
US8713918B2 (en) Device for purification of exhaust gases of an internal combustion engine
US20080163616A1 (en) Apparatus for Mixing a Liquid Medium Into a Gaseous Medium
US6045054A (en) Air shroud for air assist fuel injector
JP2016098714A (ja) 内燃機関の尿素水噴射システム、内燃機関及び内燃機関の尿素水噴射方法
JP2016196821A (ja) 還元剤供給装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14808320

Country of ref document: EP

Kind code of ref document: A1

DPE1 Request for preliminary examination filed after expiration of 19th month from priority date (pct application filed from 20040101)
WWE Wipo information: entry into national phase

Ref document number: 14895325

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20157035976

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 2014808320

Country of ref document: EP