WO2014196435A1 - Varnish, porous polyimide film produced using said varnish, and method for producing said film - Google Patents

Varnish, porous polyimide film produced using said varnish, and method for producing said film Download PDF

Info

Publication number
WO2014196435A1
WO2014196435A1 PCT/JP2014/064164 JP2014064164W WO2014196435A1 WO 2014196435 A1 WO2014196435 A1 WO 2014196435A1 JP 2014064164 W JP2014064164 W JP 2014064164W WO 2014196435 A1 WO2014196435 A1 WO 2014196435A1
Authority
WO
WIPO (PCT)
Prior art keywords
group
polyimide
film
resin fine
fine particles
Prior art date
Application number
PCT/JP2014/064164
Other languages
French (fr)
Japanese (ja)
Inventor
司 菅原
Original Assignee
東京応化工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 東京応化工業株式会社 filed Critical 東京応化工業株式会社
Priority to JP2015521408A priority Critical patent/JP6342891B2/en
Publication of WO2014196435A1 publication Critical patent/WO2014196435A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D179/00Coating compositions based on macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing nitrogen, with or without oxygen, or carbon only, not provided for in groups C09D161/00 - C09D177/00
    • C09D179/04Polycondensates having nitrogen-containing heterocyclic rings in the main chain; Polyhydrazides; Polyamide acids or similar polyimide precursors
    • C09D179/08Polyimides; Polyester-imides; Polyamide-imides; Polyamide acids or similar polyimide precursors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/409Separators, membranes or diaphragms characterised by the material
    • H01M50/411Organic material
    • H01M50/414Synthetic resins, e.g. thermoplastics or thermosetting resins
    • H01M50/423Polyamide resins
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D71/00Semi-permeable membranes for separation processes or apparatus characterised by the material; Manufacturing processes specially adapted therefor
    • B01D71/06Organic material
    • B01D71/58Other polymers having nitrogen in the main chain, with or without oxygen or carbon only
    • B01D71/62Polycondensates having nitrogen-containing heterocyclic rings in the main chain
    • B01D71/64Polyimides; Polyamide-imides; Polyester-imides; Polyamide acids or similar polyimide precursors
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D71/00Semi-permeable membranes for separation processes or apparatus characterised by the material; Manufacturing processes specially adapted therefor
    • B01D71/06Organic material
    • B01D71/58Other polymers having nitrogen in the main chain, with or without oxygen or carbon only
    • B01D71/62Polycondensates having nitrogen-containing heterocyclic rings in the main chain
    • B01D71/64Polyimides; Polyamide-imides; Polyester-imides; Polyamide acids or similar polyimide precursors
    • B01D71/641Polyamide-imides
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G73/00Macromolecular compounds obtained by reactions forming a linkage containing nitrogen with or without oxygen or carbon in the main chain of the macromolecule, not provided for in groups C08G12/00 - C08G71/00
    • C08G73/06Polycondensates having nitrogen-containing heterocyclic rings in the main chain of the macromolecule
    • C08G73/10Polyimides; Polyester-imides; Polyamide-imides; Polyamide acids or similar polyimide precursors
    • C08G73/1003Preparatory processes
    • C08G73/1007Preparatory processes from tetracarboxylic acids or derivatives and diamines
    • C08G73/1021Preparatory processes from tetracarboxylic acids or derivatives and diamines characterised by the catalyst used
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G73/00Macromolecular compounds obtained by reactions forming a linkage containing nitrogen with or without oxygen or carbon in the main chain of the macromolecule, not provided for in groups C08G12/00 - C08G71/00
    • C08G73/06Polycondensates having nitrogen-containing heterocyclic rings in the main chain of the macromolecule
    • C08G73/10Polyimides; Polyester-imides; Polyamide-imides; Polyamide acids or similar polyimide precursors
    • C08G73/1046Polyimides containing oxygen in the form of ether bonds in the main chain
    • C08G73/105Polyimides containing oxygen in the form of ether bonds in the main chain with oxygen only in the diamino moiety
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G73/00Macromolecular compounds obtained by reactions forming a linkage containing nitrogen with or without oxygen or carbon in the main chain of the macromolecule, not provided for in groups C08G12/00 - C08G71/00
    • C08G73/06Polycondensates having nitrogen-containing heterocyclic rings in the main chain of the macromolecule
    • C08G73/10Polyimides; Polyester-imides; Polyamide-imides; Polyamide acids or similar polyimide precursors
    • C08G73/1067Wholly aromatic polyimides, i.e. having both tetracarboxylic and diamino moieties aromatically bound
    • C08G73/1071Wholly aromatic polyimides containing oxygen in the form of ether bonds in the main chain
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/409Separators, membranes or diaphragms characterised by the material
    • H01M50/411Organic material
    • H01M50/414Synthetic resins, e.g. thermoplastics or thermosetting resins
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F220/00Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical or a salt, anhydride ester, amide, imide or nitrile thereof
    • C08F220/02Monocarboxylic acids having less than ten carbon atoms; Derivatives thereof
    • C08F220/52Amides or imides
    • C08F220/54Amides, e.g. N,N-dimethylacrylamide or N-isopropylacrylamide
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D133/00Coating compositions based on homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by only one carboxyl radical, or of salts, anhydrides, esters, amides, imides, or nitriles thereof; Coating compositions based on derivatives of such polymers
    • C09D133/24Homopolymers or copolymers of amides or imides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M8/1016Fuel cells with solid electrolytes characterised by the electrolyte material
    • H01M8/1018Polymeric electrolyte materials
    • H01M8/102Polymeric electrolyte materials characterised by the chemical structure of the main chain of the ion-conducting polymer
    • H01M8/1027Polymeric electrolyte materials characterised by the chemical structure of the main chain of the ion-conducting polymer having carbon, oxygen and other atoms, e.g. sulfonated polyethersulfones [S-PES]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M8/1016Fuel cells with solid electrolytes characterised by the electrolyte material
    • H01M8/1018Polymeric electrolyte materials
    • H01M8/102Polymeric electrolyte materials characterised by the chemical structure of the main chain of the ion-conducting polymer
    • H01M8/103Polymeric electrolyte materials characterised by the chemical structure of the main chain of the ion-conducting polymer having nitrogen, e.g. sulfonated polybenzimidazoles [S-PBI], polybenzimidazoles with phosphoric acid, sulfonated polyamides [S-PA] or sulfonated polyphosphazenes [S-PPh]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Definitions

  • the present invention relates to a varnish, a porous polyimide film produced using the varnish, and a production method thereof.
  • porous polyimide as a separator for a lithium ion battery, a fuel cell electrolyte membrane, a gas or liquid separation membrane, and a low dielectric constant material.
  • the method of removing the silica from the polyimide containing the silica particles and making it porous is an effective means for forming a homogeneous and dense porous polyimide film, but in order to make it porous, the polyimide film after baking is used. It was necessary to remove silica particles by treating with hydrofluoric acid.
  • hydrofluoric acid (HF) used in the method for producing a porous polyimide film using silica particles is highly dangerous, it needs to be handled with care and requires managed equipment. Therefore, a method for producing a porous polyimide film that does not use hydrofluoric acid has been desired.
  • the present invention has been made in view of the above circumstances, and by removing resin fine particles by thermal decomposition from a polyimide film containing resin fine particles, a homogeneous and high-density porous polyimide film and a separator using the same are manufactured. It aims at providing the manufacturing method which can be performed.
  • the present inventors have produced a polyimide-resin fine particle composite film at a temperature lower than the decomposition temperature of the resin fine particles contained therein, and then removed the resin fine particles by thermal decomposition, so that even if hydrofluoric acid is not used, it is homogeneous and has a high density.
  • the inventors have found that a porous polyimide film can be produced, and have completed the present invention.
  • an unfired composite film containing polyamic acid or polyimide, resin fine particles, and a condensing agent is fired at a temperature lower than the decomposition temperature of the resin fine particles to obtain a polyimide-resin fine particle composite film.
  • the second aspect of the present invention is a porous polyimide film produced by the method of the first aspect.
  • the third aspect of the present invention is a separator comprising the porous polyimide film of the second aspect.
  • a polyimide-resin fine particle composite comprising a firing step of firing an unfired composite film containing polyamic acid or polyimide, resin fine particles, and a condensing agent at a temperature lower than a decomposition temperature of the resin fine particles. It is a manufacturing method of a film
  • a fifth aspect of the present invention is a varnish containing polyamic acid or polyimide, resin fine particles, a condensing agent, and an organic solvent.
  • a homogeneous and high-density porous polyimide film and a separator using the same can be produced without using hydrofluoric acid. Can do.
  • FIG. 6 is an enlarged view of the back surface of a porous polyimide film of Comparative Example 1.
  • FIG. 1 is an enlarged view of a back surface of a porous polyimide film of Example 1.
  • FIG. 6 is an enlarged view of the back surface of a porous polyimide film of Example 2.
  • FIG. 6 is an enlarged view of the back surface of the porous polyimide film of Example 3.
  • the method for producing a porous polyimide film of the present invention comprises calcining an unfired composite film containing polyamic acid or polyimide, resin fine particles, and a condensing agent at a temperature lower than the decomposition temperature of the resin fine particles.
  • a varnish containing polyamic acid or polyimide, resin fine particles, a condensing agent, and an organic solvent is prepared.
  • the varnish is prepared by producing a polyamic acid or polyimide solution in which the following predetermined resin fine particles are dispersed.
  • an organic solvent in which fine particles are dispersed in advance and polyamic acid or polyimide are mixed at an arbitrary ratio, or tetracarboxylic dianhydride and diamine are polymerized in an organic solvent in which fine particles are dispersed in advance to form a polyamic acid. Further, it can be produced by further imidizing into a polyimide, and finally the viscosity is preferably 300 to 1500 cP, more preferably 400 to 700 cP. If the viscosity of the varnish is within this range, it is possible to form a film uniformly.
  • the fine particle / polyimide ratio is 1 to 3.5 (mass ratio) when the fine particles are baked into a polyimide-resin fine particle composite film. It is preferably 1.2 to 3 (mass ratio). Fine particles and polyamic acid or polyimide may be mixed so that the volume ratio of fine particles / polyimide is 1.5 to 4.5 when a polyimide-fine particle composite film is formed. More preferably, it is 1.8 to 3 (volume ratio). If the fine particle / polyimide mass ratio or volume ratio is equal to or higher than the lower limit value, pores having an appropriate density as a separator can be obtained. If the fine particle / polyimide mass ratio or volume ratio is equal to or lower than the upper limit value, problems such as increase in viscosity and cracks in the film occur It is possible to form a film stably without any problems.
  • the resin fine particles used in the present invention can be used without particular limitation as long as they are insoluble in the organic solvent used for the varnish and can be selectively removed after film formation. Further, those having a high sphericity and a small particle size distribution index are preferred.
  • the fine particles having these conditions are excellent in dispersibility in the varnish and can be used in a state where they are not aggregated with each other.
  • As the particle diameter (average diameter) of the fine particles used for example, those having a particle diameter of 100 to 2000 nm can be used. By satisfying these conditions, the pore diameter of the porous film obtained by removing the fine particles can be made uniform, so that the applied electric field can be made uniform, particularly when used as a separator.
  • an ordinary linear polymer or a known depolymerizable polymer can be used without limitation depending on the purpose.
  • a normal linear polymer is a polymer in which polymer molecular chains are randomly cut during thermal decomposition
  • a depolymerizable polymer is a polymer in which the polymer is decomposed into monomers during thermal decomposition. All of them disappear from the polyimide film by decomposition to monomers, low molecular weight substances, or CO 2 during heating.
  • the decomposition temperature of the resin fine particles used is preferably 200 to 320 ° C., more preferably 230 to 260 ° C. When the decomposition temperature is 200 ° C.
  • film formation can be performed even when a high-boiling solvent is used for the varnish, and the range of selection of the baking conditions for polyimide is widened. If the decomposition temperature is less than 320 ° C., only the resin fine particles can be lost without causing thermal damage to the polyimide.
  • linear polymer for example, low density or amorphous polyethylene, amorphous polypropylene, ethylene vinyl acetate copolymer resin, polyamide or the like can be used.
  • depolymerizable polymer include (meth) acrylic resins, ⁇ -methylstyrene resins, polyacetal homopolymers and copolymers.
  • the (meth) acrylic resin is obtained from alkyl (meth) acrylates such as methyl (meth) acrylate, butyl (meth) acrylate, isobutyl (meth) acrylate, 2-ethylhexyl (meth) acrylate, and the like. And a copolymer obtained by copolymerizing two or more kinds of homopolymers. Furthermore, you may use what copolymerized with the other monomer (For example, glycidyl methacrylate, styrene, etc.) which has the said (meth) acrylic-acid alkylester as a main component and can copolymerize with this.
  • alkyl (meth) acrylates such as methyl (meth) acrylate, butyl (meth) acrylate, isobutyl (meth) acrylate, 2-ethylhexyl (meth) acrylate, and the like.
  • a copolymer obtained by copo
  • ⁇ -methylstyrene resin examples include a homopolymer of ⁇ -methylstyrene and a copolymer of ⁇ -methylstyrene as a main component and other monomers copolymerizable therewith.
  • the above depolymerizable polymers may be used alone or in combination.
  • methyl methacrylate or isobutyl methacrylate alone (polymethyl methacrylate or polyisobutyl methacrylate) having a low thermal decomposition temperature, or a copolymer having a main component thereof is preferable for handling during pore formation. .
  • polyamic acid used in the present invention those obtained by polymerizing an arbitrary tetracarboxylic dianhydride and a diamine can be used without any particular limitation.
  • the amount of tetracarboxylic dianhydride and diamine used is not particularly limited, but 0.50 to 1.50 mol of diamine is preferably used relative to 1 mol of tetracarboxylic dianhydride, and 0.60 to 1. It is more preferable to use 30 mol, and it is particularly preferable to use 0.70 to 1.20 mol.
  • the tetracarboxylic dianhydride can be appropriately selected from tetracarboxylic dianhydrides conventionally used as raw materials for polyamic acid synthesis.
  • the tetracarboxylic dianhydride may be an aromatic tetracarboxylic dianhydride or an aliphatic tetracarboxylic dianhydride. From the viewpoint of the heat resistance of the resulting polyimide resin, the aromatic tetracarboxylic dianhydride may be used. Preference is given to using carboxylic dianhydrides. Tetracarboxylic dianhydride may be used in combination of two or more.
  • aromatic tetracarboxylic dianhydride examples include pyromellitic dianhydride, 1,1-bis (2,3-dicarboxyphenyl) ethane dianhydride, bis (2,3-dicarboxy Phenyl) methane dianhydride, bis (3,4-dicarboxyphenyl) methane dianhydride, 3,3 ′, 4,4′-biphenyltetracarboxylic dianhydride, 2,3,3 ′, 4′- Biphenyltetracarboxylic dianhydride, 2,2,6,6-biphenyltetracarboxylic dianhydride, 2,2-bis (3,4-dicarboxyphenyl) propane dianhydride, 2,2-bis (2 , 3-dicarboxyphenyl) propane dianhydride, 2,2-bis (3,4-dicarboxyphenyl) -1,1,1,3,3,3-hexafluoropropane dianhydride, 2,2
  • Examples of the aliphatic tetracarboxylic dianhydride include ethylene tetracarboxylic dianhydride, butane tetracarboxylic dianhydride, cyclopentane tetracarboxylic dianhydride, cyclohexane tetracarboxylic dianhydride, 1, Examples include 2,4,5-cyclohexanetetracarboxylic dianhydride, 1,2,3,4-cyclohexanetetracarboxylic dianhydride, and the like. Among these, 3,3 ′, 4,4′-biphenyltetracarboxylic dianhydride and pyromellitic dianhydride are preferable from the viewpoints of price and availability. These tetracarboxylic dianhydrides can be used alone or in combination of two or more.
  • the diamine can be appropriately selected from diamines conventionally used as a raw material for synthesizing polyamic acid.
  • This diamine may be an aromatic diamine or an aliphatic diamine, but an aromatic diamine is preferred from the viewpoint of the heat resistance of the resulting polyimide resin.
  • These diamines may be used in combination of two or more.
  • aromatic diamines include diamino compounds in which one or about 2 to 10 phenyl groups are bonded. Specifically, phenylenediamine and derivatives thereof, diaminobiphenyl compounds and derivatives thereof, diaminodiphenyl compounds and derivatives thereof, diaminotriphenyl compounds and derivatives thereof, diaminonaphthalene and derivatives thereof, aminophenylaminoindane and derivatives thereof, diaminotetraphenyl Compounds and derivatives thereof, diaminohexaphenyl compounds and derivatives thereof, and cardo-type fluorenediamine derivatives.
  • Phenylenediamine is m-phenylenediamine, p-phenylenediamine, etc., and phenylenediamine derivatives include diamines to which alkyl groups such as methyl group and ethyl group are bonded, such as 2,4-diaminotoluene, 2,4-triphenylene. Diamines and the like.
  • the diaminobiphenyl compound is a compound in which two aminophenyl groups are bonded to each other.
  • the diaminobiphenyl compound is a compound in which two aminophenyl groups are bonded to each other.
  • the diaminodiphenyl compound is a compound in which two aminophenyl groups are bonded to each other via other groups.
  • the bond is an ether bond, a sulfonyl bond, a thioether bond, a bond by alkylene or a derivative group thereof, an imino bond, an azo bond, a phosphine oxide bond, an amide bond, a ureylene bond, or the like.
  • the alkylene bond has about 1 to 6 carbon atoms, and the derivative group has one or more hydrogen atoms in the alkylene group substituted with halogen atoms or the like.
  • diaminodiphenyl compounds include 3,3′-diaminodiphenyl ether, 3,4′-diaminodiphenyl ether, 4,4′-diaminodiphenyl ether, 3,3′-diaminodiphenyl sulfone, 3,4′-diaminodiphenyl sulfone, 4,4'-diaminodiphenylsulfone, 3,3'-diaminodiphenylmethane, 3,4'-diaminodiphenylmethane, 4,4'-diaminodiphenylmethane, 4,4'-diaminodiphenyl sulfide, 3,3'-diaminodiphenyl ketone 3,4′-diaminodiphenyl ketone, 2,2-bis (p-aminophenyl) propane, 2,2′-bis (p-aminophenyl) hexafluor
  • p-phenylenediamine p-phenylenediamine, m-phenylenediamine, 2,4-diaminotoluene, and 4,4'-diaminodiphenyl ether are preferable from the viewpoint of price and availability.
  • the diaminotriphenyl compound is one in which two aminophenyl groups and one phenylene group are bonded via another group, and the other groups are the same as those of the diaminodiphenyl compound.
  • Examples of diaminotriphenyl compounds include 1,3-bis (m-aminophenoxy) benzene, 1,3-bis (p-aminophenoxy) benzene, 1,4-bis (p-aminophenoxy) benzene, and the like. be able to.
  • diaminonaphthalene examples include 1,5-diaminonaphthalene and 2,6-diaminonaphthalene.
  • aminophenylaminoindane examples include 5 or 6-amino-1- (p-aminophenyl) -1,3,3-trimethylindane.
  • diaminotetraphenyl compounds examples include 4,4′-bis (p-aminophenoxy) biphenyl, 2,2′-bis [p- (p′-aminophenoxy) phenyl] propane, 2,2′-bis [ and p- (p′-aminophenoxy) biphenyl] propane, 2,2′-bis [p- (m-aminophenoxy) phenyl] benzophenone, and the like.
  • cardo-type fluorenediamine derivatives include 9,9-bisaniline fluorene.
  • the aliphatic diamine preferably has about 2 to 15 carbon atoms, and specific examples include pentamethylene diamine, hexamethylene diamine, and heptamethylene diamine.
  • a compound in which the hydrogen atom of these diamines is substituted with at least one substituent selected from the group such as a halogen atom, a methyl group, a methoxy group, a cyano group, and a phenyl group may be used.
  • the means for producing the polyamic acid used in the present invention is not particularly limited, and for example, a known method such as a method of reacting an acid and a diamine component in an organic solvent can be used.
  • the reaction between tetracarboxylic dianhydride and diamine is usually carried out in an organic solvent.
  • the organic solvent used for the reaction of the tetracarboxylic dianhydride and the diamine is particularly capable of dissolving the tetracarboxylic dianhydride and the diamine and not reacting with the tetracarboxylic dianhydride and the diamine. It is not limited. An organic solvent can be used individually or in mixture of 2 or more types.
  • organic solvents used in the reaction of tetracarboxylic dianhydride with diamine include N-methyl-2-pyrrolidone, N, N-dimethylacetamide, N, N-diethylacetamide, N, N-dimethylformamide, N Nitrogen-containing polar solvents such as N, diethylformamide, N-methylcaprolactam, N, N, N ′, N′-tetramethylurea; ⁇ -propiolactone, ⁇ -butyrolactone, ⁇ -valerolactone, ⁇ -valerolactone Lactone polar solvents such as ⁇ -caprolactone and ⁇ -caprolactone; dimethyl sulfoxide; acetonitrile; fatty acid esters such as ethyl lactate and butyl lactate; diethylene glycol dimethyl ether, diethylene glycol diethyl ether, dioxane, tetrahydrofuran, methyl cellosolve acetate,
  • N-methyl-2-pyrrolidone N, N-dimethylacetamide, N, N-diethylacetamide, N, N-dimethylformamide, N, N- Nitrogen-containing polar solvents such as diethylformamide, N-methylcaprolactam, N, N, N ′, N′-tetramethylurea are preferred.
  • the polymerization temperature is generally ⁇ 10 to 120 ° C., preferably 5 to 30 ° C.
  • the polymerization time varies depending on the raw material composition used, but is usually 3 to 24 Hr (hour).
  • the intrinsic viscosity of the polyamic acid solution obtained under such conditions is preferably in the range of 1000 to 100,000 cP (centipoise), and more preferably in the range of 5,000 to 70,000 cP.
  • the polyimide used in the present invention is not limited to its structure and molecular weight as long as it is a soluble polyimide that can be dissolved in the organic solvent used in the varnish of the present invention.
  • a polyimide you may have a functional group which accelerates
  • a monomer to introduce a flexible bending structure into the main chain in order to obtain a polyimide soluble in an organic solvent for example, ethylenediamine, hexamethylenediamine, 1,4-diaminocyclohexane, 1,3-diaminocyclohexane, Aliphatic diamines such as 4,4′-diaminodicyclohexylmethane; 2-methyl-1,4-phenylenediamine, o-tolidine, m-tolidine, 3,3′-dimethoxybenzidine, 4,4′-diaminobenzanilide, etc.
  • an organic solvent for example, ethylenediamine, hexamethylenediamine, 1,4-diaminocyclohexane, 1,3-diaminocyclohexane, Aliphatic diamines such as 4,4′-diaminodicyclohexylmethane; 2-methyl-1,4-phenylenediamine
  • Aromatic diamines such as polyoxyethylene diamine, polyoxypropylene diamine and polyoxybutylene diamine; polysiloxane diamines; 2,3,3 ′, 4′-oxydiphthalic anhydride, 3,4,3 ′, 4′-oxydiphthalic anhydride, 2,2-bis (4- Hydroxyphenyl) propane dibenzoate-3,3 ', use of such 4,4'-tetracarboxylic dianhydride is valid.
  • a monomer having a functional group that improves the solubility in an organic solvent for example, 2,2′-bis (trifluoromethyl) -4,4′-diaminobiphenyl, 2-trifluoromethyl-1,4 It is also effective to use a fluorinated diamine such as phenylenediamine.
  • a monomer having a functional group that improves the solubility in an organic solvent for example, 2,2′-bis (trifluoromethyl) -4,4′-diaminobiphenyl, 2-trifluoromethyl-1,4
  • a fluorinated diamine such as phenylenediamine.
  • the same monomers as those described in the column for the polyamic acid can be used in combination as long as the solubility is not inhibited.
  • polyimide which can be melt
  • well-known methods such as the method of making a polyamic acid chemically imidize or heat-imidize and dissolve in an organic solvent, are used. be able to.
  • examples of such polyimide include aliphatic polyimide (total aliphatic polyimide), aromatic polyimide and the like, and aromatic polyimide is preferable.
  • the aromatic polyimide is obtained by thermally or chemically obtaining a polyamic acid having a repeating unit represented by the formula (1) by a ring-closing reaction or by dissolving a polyimide having a repeating unit represented by the formula (2) in a solvent. Good.
  • Ar represents an aryl group.
  • a condensing agent is further contained in the varnish for the purpose of firing the unfired composite film below the thermal decomposition temperature of the resin fine particles.
  • the condensing agent has an imidization promoting effect at the time of heating imidization, and any known one can be used without particular limitation as long as the unfired composite film can be fired below the thermal decomposition temperature of the resin fine particles. it can.
  • the condensing agent examples include amine compounds such as aniline, diethyl-t-butylamine, diisopropylethylamine, phenethylamine, dodecylamine, triethylamine, tributylamine, and triethanolamine; nitrogen-containing heterocyclic compounds such as imidazole and pyridine; 4 Examples thereof include a thermal base generator that decomposes with heat such as a quaternary ammonium salt or a carbamate compound to generate a base.
  • amine compounds such as aniline, diethyl-t-butylamine, diisopropylethylamine, phenethylamine, dodecylamine, triethylamine, tributylamine, and triethanolamine
  • nitrogen-containing heterocyclic compounds such as imidazole and pyridine
  • 4 Examples thereof include a thermal base generator that decomposes with heat such as a quaternary ammonium salt or a carba
  • a compound (A-1) that decomposes by heat to generate an imidazole compound can be further preferred.
  • the compound (A-1) will be described in detail.
  • the imidazole compound generated from the compound (A-1) promotes ring closure of the polyamic acid as a basic imidization catalyst.
  • the imidazole compound generated from the compound (A-1) may be an imidazole or a compound in which part or all of the hydrogen atoms bonded to the carbon atoms in the imidazole are substituted with a substituent. It is preferable that it is an imidazole compound represented by (3).
  • R 1 , R 2 , and R 3 are each independently a hydrogen atom, halogen atom, hydroxyl group, mercapto group, sulfide group, silyl group, silanol group, nitro group, nitroso group, sulfonate group, phosphino group, (A phosphinyl group, a phosphonate group, or an organic group is shown.)
  • Examples of the organic group represented by R 1 , R 2 , or R 3 include an alkyl group, an alkenyl group, a cycloalkyl group, a cycloalkenyl group, an aryl group, and an aralkyl group. This organic group may contain a hetero atom.
  • the organic group may be linear, branched or cyclic. This organic group is usually monovalent, but may be divalent or higher when forming a cyclic structure.
  • R 1 and R 2 may be bonded to each other to form a cyclic structure, and may include a hetero atom bond.
  • Examples of the cyclic structure include a heterocycloalkyl group and a heteroaryl group, and may be a condensed ring.
  • examples of the hetero atom include an oxygen atom, a nitrogen atom, and a silicon atom.
  • an ether bond, a thioether bond, a carbonyl bond, a thiocarbonyl bond, an ester bond, an amide bond, a urethane bond, an imino bond, a carbonate bond, a sulfonyl bond, and a sulfinyl bond are preferable.
  • a hydrogen atom contained in a group other than an organic group represented by R 1 , R 2 , or R 3 may be substituted with a hydrocarbon group.
  • the hydrocarbon group may be linear, branched or cyclic.
  • R 1 , R 2 , and R 3 are each independently preferably a hydrogen atom, an alkyl group having 1 to 12 carbon atoms, an aryl group having 1 to 12 carbon atoms, an alkoxy group having 1 to 12 carbon atoms, and a halogen atom.
  • a hydrogen atom is more preferable. Since imidazole in which R 1 , R 2 , and R 3 are all hydrogen atoms has a simple structure with little steric hindrance, it can easily act on polyamic acid as an imidation catalyst.
  • Compound (A-1) is not particularly limited as long as it can decompose by heat to generate an imidazole compound, preferably an imidazole compound represented by the above formula (3).
  • the skeleton derived from amines generated during exposure is an imidazole compound, preferably an imidazole compound represented by the above formula (3)
  • the compound used as compound (A-1) is obtained by substituting the skeleton derived from
  • Suitable compound (A-1) includes a compound represented by the following formula (4).
  • R 1 , R 2 , and R 3 are each independently a hydrogen atom, halogen atom, hydroxyl group, mercapto group, sulfide group, silyl group, silanol group, nitro group, nitroso group, phosphino group, sulfonate group
  • R 4 and R 5 each independently represents a hydrogen atom, a halogen atom, a hydroxyl group, a mercapto group, a sulfide group, a silyl group, a silanol group, a nitro group, a nitroso group, or a sulfino group.
  • R 6 , R 7 , R 8 , R 9 , and R 10 are each independently a hydrogen atom or a halogen atom.
  • R 6 , R 7 , R 8 , R 9 , and R 10 are two or more of them. May be bonded to form a cyclic structure and may contain a bond of a hetero atom.
  • R 1 , R 2 , and R 3 are the same as those described for the formula (3).
  • examples of the organic group represented by R 4 or R 5 include those exemplified for R 1 , R 2 , and R 3 .
  • This organic group may contain a hetero atom as in the case of R 1 , R 2 and R 3 .
  • the organic group may be linear, branched or cyclic.
  • R 4 and R 5 are each independently a hydrogen atom, an alkyl group having 1 to 10 carbon atoms, a cycloalkyl group having 4 to 13 carbon atoms, a cycloalkenyl group having 4 to 13 carbon atoms, or an aryl having 7 to 16 carbon atoms.
  • Amino group is preferably a methylthio group. More preferably, both R 4 and R 5 are hydrogen atoms, or R 4
  • examples of the organic group represented by R 6 , R 7 , R 8 , R 9 , or R 10 include those exemplified for R 1 , R 2 , and R 3 .
  • This organic group may contain a hetero atom as in the case of R 1 and R 2 .
  • the organic group may be linear, branched or cyclic.
  • R 6 , R 7 , R 8 , R 9 , and R 10 may be bonded to form a cyclic structure, and may include a hetero atom bond.
  • the cyclic structure include a heterocycloalkyl group and a heteroaryl group, and may be a condensed ring.
  • R 6 , R 7 , R 8 , R 9 , and R 10 are two or more of them bonded to each other, and R 6 , R 7 , R 8 , R 9 , and R 10 are bonded to each other.
  • a ring atom may be shared to form a condensed ring such as naphthalene, anthracene, phenanthrene, and indene.
  • R 6 , R 7 , R 8 , R 9 and R 10 are each independently a hydrogen atom, an alkyl group having 1 to 10 carbon atoms, a cycloalkyl group having 4 to 13 carbon atoms, or a cyclohexane having 4 to 13 carbon atoms.
  • R 6 , R 7 , R 8 , R 9 , and R 10 two or more of them are bonded, and R 6 , R 7 , R 8 , R 9 , and R 10 are bonded. It is also preferred if a benzene ring atom is shared to form a condensed ring such as naphthalene, anthracene, phenanthrene or indene.
  • a compound represented by the following formula (5) is preferable.
  • R 1 , R 2 , and R 3 have the same meanings as in formulas (3) and (4).
  • R 4 to R 9 have the same meanings as in formula (4).
  • R 11 is a hydrogen atom or Represents an organic group, and R 6 and R 7 do not become a hydroxyl group, and R 6 , R 7 , R 8 , and R 9 may combine with each other to form a cyclic structure. And may contain a heteroatom bond.
  • the compound represented by the formula (5) has a substituent —O—R 11 , it has excellent solubility in an organic solvent.
  • R 11 when R 11 is an organic group, examples of the organic group include those exemplified for R 1 , R 2 , and R 3 . This organic group may contain a hetero atom.
  • the organic group may be linear, branched or cyclic.
  • R 11 is preferably a hydrogen atom or an alkyl group having 1 to 12 carbon atoms, and more preferably a methyl group.
  • Suitable compounds (A-1) also include compounds represented by the following formula (6).
  • R 1 , R 2 , and R 3 are each independently a hydrogen atom, halogen atom, hydroxyl group, mercapto group, sulfide group, silyl group, silanol group, nitro group, nitroso group, phosphino group, sulfonate group, (A phosphinyl group, a phosphonato group, or an organic group.
  • R 12 represents an optionally substituted hydrocarbon group.
  • R 1 , R 2 , and R 3 are the same as those described for Formula (3).
  • R 12 is an alkyl group having 1 to 20 carbon atoms, an alkenyl group having 2 to 20 carbon atoms, an alkynyl group having 2 to 20 carbon atoms, or an optionally substituted 6 to 20 carbon atoms.
  • Examples thereof include an aryl group and an optionally substituted aralkyl group having 7 to 20 carbon atoms, and an optionally substituted aralkyl group having 7 to 20 carbon atoms is preferable.
  • the substituent include a halogen atom, a nitro group, an alkyl group having 1 to 4 carbon atoms, and an alkoxy group having 1 to 4 carbon atoms.
  • the compound represented by the formula (6) is a reaction between an imidazole compound represented by the formula (3) and a chloroformate represented by the following formula (7), an imidazole compound represented by the formula (3) and the following: It can synthesize
  • R 1 , R 2 , and R 3 have the same meaning as in formula (3).
  • R 12 has the same meaning as in formula (6).
  • the content of the condensing agent in the varnish is not particularly limited as long as the object of the present invention is not impaired.
  • the content is preferably 1 to 300 parts by mass, more preferably 1 to 50 parts by mass, and more preferably 1 to 25 parts by mass with respect to 100 parts by mass of the polyamic acid or polyimide.
  • a dispersant may be further added together with the fine particles.
  • the dispersant By adding the dispersant, the polyamic acid or polyimide and the fine particles can be mixed more uniformly, and furthermore, the fine particles in the molded precursor film can be uniformly distributed.
  • the production of the substrate provided with the release layer is performed by applying a release agent on the substrate and drying or baking.
  • a known mold release agent such as an ammonium alkylphosphate salt, fluorine-based or silicone can be used without any particular limitation.
  • the dried polyamic acid film or polyimide is peeled from the substrate to form an unfired composite film. At that time, a slight release agent remains on the peeled surface of the unfired composite film. The remaining release agent is discolored at the time of firing, and greatly affects the wettability and electrical characteristics of the film surface. Therefore, it is preferable to remove the release agent particularly when the unfired composite film is peeled from the substrate and moved to the firing step.
  • the unfired composite film peeled off from the substrate may be provided with a cleaning process using an organic solvent.
  • the organic solvent to be used can be used without particular limitation as long as it dissolves the release agent and does not dissolve or swell the unfired composite film.
  • alcohols such as methyl alcohol, ethyl alcohol, and propyl alcohol can be preferably used.
  • a cleaning method a known method such as a method of immersing a film in a cleaning solution and taking it out or a method of shower cleaning can be selected.
  • the unfired composite film after the cleaning step may be dried as it is, but the cleaning may be repeated a plurality of times using a mixed solvent of water and a water-soluble organic solvent. Good.
  • the polyimide-resin fine particle composite film composed of polyimide and fine particles can be obtained by peeling the substrate from or without peeling, and subjecting the unfired composite film to post-treatment (baking) by heating. In the firing step, it is preferable to complete imidization.
  • the firing temperature of the polyimide film varies depending on the structure of the polyamic acid and the selected condensing agent, but is set to be lower than the decomposition temperature of the applied resin fine particles within the range in which the condensing agent promotes imidization.
  • the temperature is preferably 180 to 320 ° C., more preferably 180 to 250 ° C.
  • the temperature is raised from room temperature to 230 ° C. in 3 hours and then maintained at 230 ° C. for 20 minutes, or stepwise from room temperature in increments of 50 ° C. It is also possible to use a stepwise drying-thermal imidation method such as raising the temperature to 20 ° C. (holding for 20 minutes at each step) and finally holding at 230 ° C. for 20 minutes.
  • a stepwise drying-thermal imidation method such as raising the temperature to 20 ° C. (holding for 20 minutes at each step) and finally holding at 230 ° C. for 20 minutes.
  • substrate the method of fixing the edge part of a non-baking composite film to the formwork made from SUS, etc. can also be taken.
  • the film thickness of the completed polyimide-resin fine particle composite film can be obtained by measuring and averaging the thicknesses of a plurality of locations with a micrometer, for example.
  • the average film thickness is preferably different depending on the use of the polyimide-resin fine particle composite film or the porous polyimide film. For example, when used for a separator or the like, it is preferably 5 to 500 ⁇ m. More preferably.
  • a porous polyimide film can be produced with good reproducibility by thermally decomposing and removing resin fine particles from the polyimide-resin fine particle composite film.
  • Fine particle removal is performed by maintaining at a temperature of 230 to 350 ° C. at a thermal decomposition temperature of the selected resin fine particle or a temperature equal to or higher than the thermal decomposition temperature for a certain time. If the temperature to hold is less than 350 degreeC, since a thermal deterioration is not seen in a polyimide film, it is preferable.
  • the fine particle removal is preferably performed in an atmosphere in which oxygen or water vapor is added to an inert gas.
  • Silica 700 nm silica (density: 2.2)
  • PMMA polymethyl methacrylate (density: 1.17)
  • Tetracarboxylic dianhydride, diamine, and organic solvent were put into a separable flask equipped with a stirrer, a stirring blade, a reflux condenser, and a nitrogen gas introduction tube. Nitrogen was introduced into the flask through a nitrogen gas introduction tube, and the atmosphere in the flask was changed to a nitrogen atmosphere. Next, while stirring the contents of the flask, tetracarboxylic dianhydride and diamine were reacted at 50 ° C. for 20 hours to obtain a polyamic acid solution. A condensing agent and fine particles were added to the obtained polyamic acid solution in the amounts shown in Table 1 and stirred to prepare a varnish. In Example 3, the blending amount was adjusted in advance so that the volume in the film was equivalent to that in the case of silica fine particles (the volume ratio of fine particles / polyimide was about 2.6 when a polyimide-fine particle composite film was used). .
  • Example 3 The film strength and elongation measurement results of the polyimide-resin fine particle composite films formed in Comparative Examples 1 and 2 and Examples 1 and 2 are shown in FIGS. 1 (a) and 1 (b), respectively.
  • the film strength and elongation measurement results of Example 3 were the same as those of Example 1.
  • FIG. 2 shows SEM images of the front surface, back surface, and cross section of the porous polyimide films prepared in Comparative Example 1 and Examples 1 to 3. Furthermore, enlarged SEM images of the back surfaces of Comparative Example 1 and Examples 1 to 3 are shown in FIGS. From these figures, it was confirmed that PMMA was decomposed and disappeared at 270 ° C., and that the polyimide film could be made porous in the same manner as that obtained by subjecting conventional silica to HF treatment.

Abstract

The purpose of the present invention is to provide a production method which enables the production of a homogeneous and highly dense porous polyimide film and a separator equipped with the porous polyimide film by removing resin microparticles from a polyimide film containing the resin microparticles by thermal decomposition. A method for producing a porous polyimide film according to the present invention comprises: a baking step of baking an unbaked composite film comprising a polyamic acid or polyimide, resin microparticles and a condensing agent at a temperature that is lower than the decomposition temperature of the resin microparticles to produce a polyimide-(resin microparticle) composite film; and a microparticle removal step of removing the resin microparticles from the polyimide-(resin microparticle) composite film.

Description

ワニス、それを用いて製造した多孔質ポリイミド膜、及びその製造方法Varnish, porous polyimide film produced using the same, and method for producing the same
 本発明は、ワニス、それを用いて製造した多孔質ポリイミド膜、及びその製造方法に関する。 The present invention relates to a varnish, a porous polyimide film produced using the varnish, and a production method thereof.
 近年、リチウムイオン電池のセパレータや燃料電池電解質膜、ガス又は液体の分離用膜、低誘電率材料として多孔質ポリイミドの研究がなされている。 Recently, research has been conducted on porous polyimide as a separator for a lithium ion battery, a fuel cell electrolyte membrane, a gas or liquid separation membrane, and a low dielectric constant material.
 例えば、特定の混合溶剤をポリアミド酸溶液に用い多孔質化する方法、親水性ポリマーを含むポリアミド酸を加熱イミド化した後、親水性ポリマーを取り除き多孔質化する方法、シリカ粒子を含有するポリイミドからシリカを取り除き多孔質化する方法等が公知である(特許文献1~3参照)。 For example, from a method of making a porous material using a specific mixed solvent in a polyamic acid solution, a method of heat imidizing a polyamic acid containing a hydrophilic polymer and then removing the hydrophilic polymer to make it porous, and from a polyimide containing silica particles A method of removing silica to make it porous is known (see Patent Documents 1 to 3).
 なかでも、シリカ粒子を含有するポリイミドからシリカを取り除いて多孔質化する方法は均質で緻密な多孔質ポリイミド膜を形成できる有効な手段であるが、多孔質化するために、焼成後のポリイミド膜をフッ酸で処理してシリカ粒子を取り除く必要があった。 Among them, the method of removing the silica from the polyimide containing the silica particles and making it porous is an effective means for forming a homogeneous and dense porous polyimide film, but in order to make it porous, the polyimide film after baking is used. It was necessary to remove silica particles by treating with hydrofluoric acid.
特開2007-211136号公報JP 2007-2111136 A 特開2000-044719号公報JP 2000-044719 A 特開2012-107144号公報JP 2012-107144 A
 しかしながら、上記シリカ粒子を用いる多孔質ポリイミド膜の製造方法に使用されるフッ酸(HF)は危険性が高いため、その取り扱いに注意を要する、管理された設備を必要とする、廃液処理に費用を要する等の問題があり、フッ酸を使用しない多孔質ポリイミド膜の製造方法が望まれていた。 However, since hydrofluoric acid (HF) used in the method for producing a porous polyimide film using silica particles is highly dangerous, it needs to be handled with care and requires managed equipment. Therefore, a method for producing a porous polyimide film that does not use hydrofluoric acid has been desired.
 本発明は、上記事情に鑑みてなされたものであり、樹脂微粒子を含有するポリイミド膜から加熱分解により樹脂微粒子を取り除くことにより、均質で密度の高い多孔質ポリイミド膜及びそれを用いたセパレータを製造できる製造方法を提供することを目的とする。 The present invention has been made in view of the above circumstances, and by removing resin fine particles by thermal decomposition from a polyimide film containing resin fine particles, a homogeneous and high-density porous polyimide film and a separator using the same are manufactured. It aims at providing the manufacturing method which can be performed.
 本発明者らは、含有される樹脂微粒子の分解温度未満でポリイミド-樹脂微粒子複合膜を製造した後、加熱分解によりその樹脂微粒子を取り除くことで、フッ酸を用いなくとも、均質で密度の高い多孔質ポリイミド膜を製造できることを見出し、本発明を完成するに至った。 The present inventors have produced a polyimide-resin fine particle composite film at a temperature lower than the decomposition temperature of the resin fine particles contained therein, and then removed the resin fine particles by thermal decomposition, so that even if hydrofluoric acid is not used, it is homogeneous and has a high density. The inventors have found that a porous polyimide film can be produced, and have completed the present invention.
 本発明の第一の態様は、ポリアミド酸又はポリイミド、樹脂微粒子、及び縮合剤を含有する未焼成複合膜を、上記樹脂微粒子の分解温度未満の温度で焼成してポリイミド-樹脂微粒子複合膜とする焼成工程と、上記ポリイミド-樹脂微粒子複合膜から上記樹脂微粒子を取り除く微粒子除去工程と、を有する多孔質ポリイミド膜の製造方法である。 In the first aspect of the present invention, an unfired composite film containing polyamic acid or polyimide, resin fine particles, and a condensing agent is fired at a temperature lower than the decomposition temperature of the resin fine particles to obtain a polyimide-resin fine particle composite film. A method for producing a porous polyimide film, comprising a firing step and a fine particle removal step of removing the resin fine particles from the polyimide-resin fine particle composite film.
 本発明の第二の態様は、第一の態様の方法で製造される多孔質ポリイミド膜である。 The second aspect of the present invention is a porous polyimide film produced by the method of the first aspect.
 本発明の第三の態様は、第二の態様の多孔質ポリイミド膜からなるセパレータである。 The third aspect of the present invention is a separator comprising the porous polyimide film of the second aspect.
 本発明の第四の態様は、ポリアミド酸又はポリイミド、樹脂微粒子、及び縮合剤を含有する未焼成複合膜を、前記樹脂微粒子の分解温度未満の温度で焼成する焼成工程を有するポリイミド-樹脂微粒子複合膜の製造方法である。 According to a fourth aspect of the present invention, there is provided a polyimide-resin fine particle composite comprising a firing step of firing an unfired composite film containing polyamic acid or polyimide, resin fine particles, and a condensing agent at a temperature lower than a decomposition temperature of the resin fine particles. It is a manufacturing method of a film | membrane.
 本発明の第五の態様は、ポリアミド酸又はポリイミド、樹脂微粒子、縮合剤、及び有機溶剤を含有するワニスである。 A fifth aspect of the present invention is a varnish containing polyamic acid or polyimide, resin fine particles, a condensing agent, and an organic solvent.
 本発明によれば、樹脂微粒子を含有するポリイミド膜から加熱分解により樹脂微粒子を取り除くことにより、フッ酸を用いなくとも、均質で密度の高い多孔質ポリイミド膜及びそれを用いたセパレータを製造することができる。 According to the present invention, by removing resin fine particles from a polyimide film containing resin fine particles by thermal decomposition, a homogeneous and high-density porous polyimide film and a separator using the same can be produced without using hydrofluoric acid. Can do.
本発明のワニスを用いて成膜したポリイミド-樹脂微粒子複合膜の強度を示す図である。It is a figure which shows the intensity | strength of the polyimide-resin fine particle composite film formed into a film using the varnish of this invention. 本発明の多孔質ポリイミド膜を示す図である。It is a figure which shows the porous polyimide membrane of this invention. 比較例1の多孔質ポリイミド膜裏面を拡大した図である。6 is an enlarged view of the back surface of a porous polyimide film of Comparative Example 1. FIG. 実施例1の多孔質ポリイミド膜裏面を拡大した図である。1 is an enlarged view of a back surface of a porous polyimide film of Example 1. FIG. 実施例2の多孔質ポリイミド膜裏面を拡大した図である。6 is an enlarged view of the back surface of a porous polyimide film of Example 2. FIG. 実施例3の多孔質ポリイミド膜裏面を拡大した図である。6 is an enlarged view of the back surface of the porous polyimide film of Example 3. FIG.
 以下、本発明の実施態様について詳細に説明するが、本発明は、以下の実施態様に何ら限定されるものではなく、本発明の目的の範囲内において、適宜変更を加えて実施することができる。 Hereinafter, embodiments of the present invention will be described in detail. However, the present invention is not limited to the following embodiments, and can be implemented with appropriate modifications within the scope of the object of the present invention. .
 本発明の多孔質ポリイミド膜の製造方法は、ポリアミド酸又はポリイミド、樹脂微粒子、及び縮合剤を含有する未焼成複合膜を、上記樹脂微粒子の分解温度未満の温度で焼成してポリイミド-樹脂微粒子複合膜とする焼成工程と、上記ポリイミド-樹脂微粒子複合膜から上記樹脂微粒子を取り除く微粒子除去工程と、を有する。 The method for producing a porous polyimide film of the present invention comprises calcining an unfired composite film containing polyamic acid or polyimide, resin fine particles, and a condensing agent at a temperature lower than the decomposition temperature of the resin fine particles. A baking step for forming a film, and a fine particle removing step for removing the resin fine particles from the polyimide-resin fine particle composite film.
[ワニスの製造]
 本発明の多孔質ポリイミド膜の製造方法では、まず、ポリアミド酸又はポリイミド、樹脂微粒子、縮合剤、及び有機溶剤を含有するワニスを準備する。上記ワニスの準備は、下記所定の樹脂微粒子を分散したポリアミド酸又はポリイミド溶液を製造することにより行う。
[Manufacture of varnish]
In the method for producing a porous polyimide film of the present invention, first, a varnish containing polyamic acid or polyimide, resin fine particles, a condensing agent, and an organic solvent is prepared. The varnish is prepared by producing a polyamic acid or polyimide solution in which the following predetermined resin fine particles are dispersed.
 上記ワニスは、予め微粒子が分散した有機溶剤とポリアミド酸又はポリイミドを任意の比率で混合するか、微粒子を予め分散した有機溶剤中でテトラカルボン酸二無水物及びジアミンを重合してポリアミド酸とするか、更にイミド化してポリイミドとすることで製造でき、最終的に、その粘度を300~1500cPとすることが好ましく、400~700cPの範囲がより好ましい。ワニスの粘度がこの範囲内であれば、均一に成膜をすることが可能である。 In the varnish, an organic solvent in which fine particles are dispersed in advance and polyamic acid or polyimide are mixed at an arbitrary ratio, or tetracarboxylic dianhydride and diamine are polymerized in an organic solvent in which fine particles are dispersed in advance to form a polyamic acid. Further, it can be produced by further imidizing into a polyimide, and finally the viscosity is preferably 300 to 1500 cP, more preferably 400 to 700 cP. If the viscosity of the varnish is within this range, it is possible to form a film uniformly.
 上記ワニスには、微粒子を、焼成してポリイミド-樹脂微粒子複合膜とした際に微粒子/ポリイミドの比率が1~3.5(質量比)となるように樹脂微粒子とポリアミド酸又はポリイミドとを混合でき、1.2~3(質量比)であることが好ましい。ポリイミド-微粒子複合膜とした際に微粒子/ポリイミドの体積比率が1.5~4.5となるように、微粒子とポリアミド酸又はポリイミドとを混合するとよい。1.8~3(体積比)とすることが更に好ましい。微粒子/ポリイミドの質量比又は体積比が下限値以上であれば、セパレータとして適切な密度の孔を得ることができ、上限値以下であれば、粘度の増加や膜中のひび割れ等の問題を生じることなく安定的に成膜することができる。 In the varnish, resin fine particles and polyamic acid or polyimide are mixed so that the fine particle / polyimide ratio is 1 to 3.5 (mass ratio) when the fine particles are baked into a polyimide-resin fine particle composite film. It is preferably 1.2 to 3 (mass ratio). Fine particles and polyamic acid or polyimide may be mixed so that the volume ratio of fine particles / polyimide is 1.5 to 4.5 when a polyimide-fine particle composite film is formed. More preferably, it is 1.8 to 3 (volume ratio). If the fine particle / polyimide mass ratio or volume ratio is equal to or higher than the lower limit value, pores having an appropriate density as a separator can be obtained. If the fine particle / polyimide mass ratio or volume ratio is equal to or lower than the upper limit value, problems such as increase in viscosity and cracks in the film occur It is possible to form a film stably without any problems.
<樹脂微粒子>
 本発明で用いられる樹脂微粒子は、ワニスに使用する有機溶剤に不溶で、成膜後選択的に除去可能なものなら、特に限定されること無く使用することができる。また、真球率が高く、粒径分布指数の小さいものが好ましい。これらの条件を備えた微粒子は、ワニス中での分散性に優れ、互いに凝集していない状態で使用することができる。使用する微粒子の粒径(平均直径)としては、例えば、100~2000nmのものを用いることができる。これらの条件を満たすことで、微粒子を取り除いて得られる多孔質膜の孔径を揃えることができるため、特にセパレータとして使用した場合に、印加される電界を均一化でき好ましい。
<Resin fine particles>
The resin fine particles used in the present invention can be used without particular limitation as long as they are insoluble in the organic solvent used for the varnish and can be selectively removed after film formation. Further, those having a high sphericity and a small particle size distribution index are preferred. The fine particles having these conditions are excellent in dispersibility in the varnish and can be used in a state where they are not aggregated with each other. As the particle diameter (average diameter) of the fine particles used, for example, those having a particle diameter of 100 to 2000 nm can be used. By satisfying these conditions, the pore diameter of the porous film obtained by removing the fine particles can be made uniform, so that the applied electric field can be made uniform, particularly when used as a separator.
 樹脂微粒子の材質としては、例えば、通常の線状ポリマーや公知の解重合性ポリマーから、目的に応じ限定されることなく使用できる。通常の線状ポリマーは、熱分解時にポリマーの分子鎖がランダムに切断されるポリマーであり、解重合性ポリマーは、熱分解時にポリマーが単量体に分解するポリマーである。いずれも、加熱時に、単量体、低分子量体、あるいは、COまで分解することによって、ポリイミド膜から消失する。使用される樹脂微粒子の分解温度は200~320℃であることが好ましく、230~260℃であることが更に好ましい。分解温度が200℃以上であれば、ワニスに高沸点溶剤を使用した場合も成膜を行うことができ、ポリイミドの焼成条件の選択の幅が広くなる。また、分解温度が320℃未満であれば、ポリイミドに熱的なダメージを与えることなく樹脂微粒子のみを消失させることができる。 As a material of the resin fine particles, for example, an ordinary linear polymer or a known depolymerizable polymer can be used without limitation depending on the purpose. A normal linear polymer is a polymer in which polymer molecular chains are randomly cut during thermal decomposition, and a depolymerizable polymer is a polymer in which the polymer is decomposed into monomers during thermal decomposition. All of them disappear from the polyimide film by decomposition to monomers, low molecular weight substances, or CO 2 during heating. The decomposition temperature of the resin fine particles used is preferably 200 to 320 ° C., more preferably 230 to 260 ° C. When the decomposition temperature is 200 ° C. or higher, film formation can be performed even when a high-boiling solvent is used for the varnish, and the range of selection of the baking conditions for polyimide is widened. If the decomposition temperature is less than 320 ° C., only the resin fine particles can be lost without causing thermal damage to the polyimide.
 上記線状ポリマーとしては、例えば、低密度又は非晶質のポリエチレン、非晶質ポリプロピレン、エチレン酢酸ビニル共重合樹脂、ポリアミド等を使用することができる。また、上記解重合性ポリマーとしては、例えば、(メタ)アクリル系樹脂、α-メチルスチレン系樹脂、ポリアセタール系ホモポリマーやコポリマー等をいずれも使用することができる。 As the linear polymer, for example, low density or amorphous polyethylene, amorphous polypropylene, ethylene vinyl acetate copolymer resin, polyamide or the like can be used. Examples of the depolymerizable polymer include (meth) acrylic resins, α-methylstyrene resins, polyacetal homopolymers and copolymers.
 上記(メタ)アクリル系樹脂としては、(メタ)アクリル酸メチル、(メタ)アクリル酸ブチル、(メタ)アクリル酸イソブチル、(メタ)アクリル酸2-エチルヘキシル等の(メタ)アクリル酸アルキルエステルから得られる単独ポリマーや二種以上を共重合させて得られる共重合ポリマー等が挙げられる。更に、上記(メタ)アクリル酸アルキルエステルを主成分とし、これと共重合可能な他の単量体(例えば、グリシジルメタクリレート、スチレン等)と共重合させたものを使用してもよい。 The (meth) acrylic resin is obtained from alkyl (meth) acrylates such as methyl (meth) acrylate, butyl (meth) acrylate, isobutyl (meth) acrylate, 2-ethylhexyl (meth) acrylate, and the like. And a copolymer obtained by copolymerizing two or more kinds of homopolymers. Furthermore, you may use what copolymerized with the other monomer (For example, glycidyl methacrylate, styrene, etc.) which has the said (meth) acrylic-acid alkylester as a main component and can copolymerize with this.
 上記α-メチルスチレン系樹脂としては、α-メチルスチレンの単独ポリマー、α-メチルスチレンを主成分とし、これと共重合可能な他の単量体との共重合ポリマーが挙げられる。上記解重合性ポリマーは、単独でも、組合せて使用してもよい。 Examples of the α-methylstyrene resin include a homopolymer of α-methylstyrene and a copolymer of α-methylstyrene as a main component and other monomers copolymerizable therewith. The above depolymerizable polymers may be used alone or in combination.
 これら解重合性ポリマーのうち、熱分解温度の低いメタクリル酸メチル若しくはメタクリル酸イソブチルの単独(ポリメチルメタクリレート若しくはポリイソブチルメタクリレート)、あるいはこれを主成分とする共重合ポリマーが孔形成時の取り扱い上好ましい。 Among these depolymerizable polymers, methyl methacrylate or isobutyl methacrylate alone (polymethyl methacrylate or polyisobutyl methacrylate) having a low thermal decomposition temperature, or a copolymer having a main component thereof is preferable for handling during pore formation. .
<ポリアミド酸>
 本発明に用いるポリアミド酸は、任意のテトラカルボン酸二無水物とジアミンを重合して得られるものが、特に限定されることなく使用できる。テトラカルボン酸二無水物及びジアミンの使用量は特に限定されないが、テトラカルボン酸二無水物1モルに対して、ジアミンを0.50~1.50モル用いるのが好ましく、0.60~1.30モル用いるのがより好ましく、0.70~1.20モル用いるのが特に好ましい。
<Polyamide acid>
As the polyamic acid used in the present invention, those obtained by polymerizing an arbitrary tetracarboxylic dianhydride and a diamine can be used without any particular limitation. The amount of tetracarboxylic dianhydride and diamine used is not particularly limited, but 0.50 to 1.50 mol of diamine is preferably used relative to 1 mol of tetracarboxylic dianhydride, and 0.60 to 1. It is more preferable to use 30 mol, and it is particularly preferable to use 0.70 to 1.20 mol.
 テトラカルボン酸二無水物は、従来からポリアミド酸の合成原料として使用されているテトラカルボン酸二無水物から適宜選択することができる。テトラカルボン酸二無水物は、芳香族テトラカルボン酸二無水物であっても、脂肪族テトラカルボン酸二無水物であってもよいが、得られるポリイミド樹脂の耐熱性の点から、芳香族テトラカルボン酸二無水物を使用することが好ましい。テトラカルボン酸二無水物は、2種以上を組合せて用いてもよい。 The tetracarboxylic dianhydride can be appropriately selected from tetracarboxylic dianhydrides conventionally used as raw materials for polyamic acid synthesis. The tetracarboxylic dianhydride may be an aromatic tetracarboxylic dianhydride or an aliphatic tetracarboxylic dianhydride. From the viewpoint of the heat resistance of the resulting polyimide resin, the aromatic tetracarboxylic dianhydride may be used. Preference is given to using carboxylic dianhydrides. Tetracarboxylic dianhydride may be used in combination of two or more.
 芳香族テトラカルボン酸二無水物の好適な具体例としては、ピロメリット酸二無水物、1,1-ビス(2,3-ジカルボキシフェニル)エタン二無水物、ビス(2,3-ジカルボキシフェニル)メタン二無水物、ビス(3,4-ジカルボキシフェニル)メタン二無水物、3,3’,4,4’-ビフェニルテトラカルボン酸二無水物、2,3,3’,4’-ビフェニルテトラカルボン酸二無水物、2,2,6,6-ビフェニルテトラカルボン酸二無水物、2,2-ビス(3,4-ジカルボキシフェニル)プロパン二無水物、2,2-ビス(2,3-ジカルボキシフェニル)プロパン二無水物、2,2-ビス(3,4-ジカルボキシフェニル)-1,1,1,3,3,3-へキサフルオロプロパン二無水物、2,2-ビス(2,3-ジカルボキシフェニル)-1,1,1,3,3,3-ヘキサフルオロプロパン二無水物、3,3’,4,4’-ベンゾフェノンテトラカルボン酸二無水物、ビス(3,4-ジカルボキシフェニル)エーテル二無水物、ビス(2,3-ジカルボキシフェニル)エーテル二無水物、2,2’,3,3’-ベンゾフェノンテトラカルボン酸二無水物、4,4-(p-フェニレンジオキシ)ジフタル酸二無水物、4,4-(m-フェニレンジオキシ)ジフタル酸二無水物、1,2,5,6-ナフタレンテトラカルボン二無水物、1,4,5,8-ナフタレンテトラカルボン酸二無水物、2,3,6,7-ナフタレンテトラカルボン酸二無水物、1,2,3,4-ベンゼンテトラカルボン酸二無水物、3,4,9,10-ペリレンテトラカルボン酸二無水物、2,3,6,7-アントラセンテトラカルボン酸二無水物、1,2,7,8-フェナントレンテトラカルボン酸二無水物、9,9-ビス無水フタル酸フルオレン、3,3’,4,4’-ジフェニルスルホンテトラカルボン酸二無水物等が挙げられる。脂肪族テトラカルボン酸二無水物としては、例えば、エチレンテトラカルボン酸二無水物、ブタンテトラカルボン酸二無水物、シクロペンタンテトラカルボン酸二無水物、シクロへキサンテトラカルボン酸二無水物、1,2,4,5-シクロへキサンテトラカルボン酸二無水物、1,2,3,4-シクロヘキサンテトラカルボン酸二無水物等が挙げられる。これらの中では、価格、入手容易性等から、3,3’,4,4’-ビフェニルテトラカルボン酸二無水物及びピロメリット酸二無水物が好ましい。また、これらのテトラカルボン酸二無水物は、単独あるいは二種以上混合して用いることもできる。 Preferable specific examples of the aromatic tetracarboxylic dianhydride include pyromellitic dianhydride, 1,1-bis (2,3-dicarboxyphenyl) ethane dianhydride, bis (2,3-dicarboxy Phenyl) methane dianhydride, bis (3,4-dicarboxyphenyl) methane dianhydride, 3,3 ′, 4,4′-biphenyltetracarboxylic dianhydride, 2,3,3 ′, 4′- Biphenyltetracarboxylic dianhydride, 2,2,6,6-biphenyltetracarboxylic dianhydride, 2,2-bis (3,4-dicarboxyphenyl) propane dianhydride, 2,2-bis (2 , 3-dicarboxyphenyl) propane dianhydride, 2,2-bis (3,4-dicarboxyphenyl) -1,1,1,3,3,3-hexafluoropropane dianhydride, 2,2 -Bis (2,3-dicarbox Phenyl) -1,1,1,3,3,3-hexafluoropropane dianhydride, 3,3 ′, 4,4′-benzophenone tetracarboxylic dianhydride, bis (3,4-dicarboxyphenyl) Ether dianhydride, bis (2,3-dicarboxyphenyl) ether dianhydride, 2,2 ′, 3,3′-benzophenonetetracarboxylic dianhydride, 4,4- (p-phenylenedioxy) diphthal Acid dianhydride, 4,4- (m-phenylenedioxy) diphthalic dianhydride, 1,2,5,6-naphthalene tetracarboxylic dianhydride, 1,4,5,8-naphthalene tetracarboxylic acid Anhydride, 2,3,6,7-naphthalenetetracarboxylic dianhydride, 1,2,3,4-benzenetetracarboxylic dianhydride, 3,4,9,10-perylenetetracarboxylic dianhydride , 2, , 6,7-anthracenetetracarboxylic dianhydride, 1,2,7,8-phenanthrenetetracarboxylic dianhydride, 9,9-bisphthalic anhydride fluorene, 3,3 ′, 4,4′-diphenyl Examples include sulfonetetracarboxylic dianhydride. Examples of the aliphatic tetracarboxylic dianhydride include ethylene tetracarboxylic dianhydride, butane tetracarboxylic dianhydride, cyclopentane tetracarboxylic dianhydride, cyclohexane tetracarboxylic dianhydride, 1, Examples include 2,4,5-cyclohexanetetracarboxylic dianhydride, 1,2,3,4-cyclohexanetetracarboxylic dianhydride, and the like. Among these, 3,3 ′, 4,4′-biphenyltetracarboxylic dianhydride and pyromellitic dianhydride are preferable from the viewpoints of price and availability. These tetracarboxylic dianhydrides can be used alone or in combination of two or more.
 ジアミンは、従来からポリアミド酸の合成原料として使用されているジアミンから適宜選択することができる。このジアミンは、芳香族ジアミンであっても、脂肪族ジアミンであってもよいが、得られるポリイミド樹脂の耐熱性の点から、芳香族ジアミンが好ましい。これらのジアミンは、2種以上を組合せて用いてもよい。 The diamine can be appropriately selected from diamines conventionally used as a raw material for synthesizing polyamic acid. This diamine may be an aromatic diamine or an aliphatic diamine, but an aromatic diamine is preferred from the viewpoint of the heat resistance of the resulting polyimide resin. These diamines may be used in combination of two or more.
 芳香族ジアミンとしては、フェニル基が1個あるいは2~10個程度が結合したジアミノ化合物を挙げることができる。具体的には、フェニレンジアミン及びその誘導体、ジアミノビフェニル化合物及びその誘導体、ジアミノジフェニル化合物及びその誘導体、ジアミノトリフェニル化合物及びその誘導体、ジアミノナフタレン及びその誘導体、アミノフェニルアミノインダン及びその誘導体、ジアミノテトラフェニル化合物及びその誘導体、ジアミノヘキサフェニル化合物及びその誘導体、カルド型フルオレンジアミン誘導体である。 Examples of aromatic diamines include diamino compounds in which one or about 2 to 10 phenyl groups are bonded. Specifically, phenylenediamine and derivatives thereof, diaminobiphenyl compounds and derivatives thereof, diaminodiphenyl compounds and derivatives thereof, diaminotriphenyl compounds and derivatives thereof, diaminonaphthalene and derivatives thereof, aminophenylaminoindane and derivatives thereof, diaminotetraphenyl Compounds and derivatives thereof, diaminohexaphenyl compounds and derivatives thereof, and cardo-type fluorenediamine derivatives.
 フェニレンジアミンはm-フェニレンジアミン、p-フェニレンジアミン等であり、フェニレンジアミン誘導体としては、メチル基、エチル基等のアルキル基が結合したジアミン、例えば、2,4-ジアミノトルエン、2,4-トリフェニレンジアミン等である。 Phenylenediamine is m-phenylenediamine, p-phenylenediamine, etc., and phenylenediamine derivatives include diamines to which alkyl groups such as methyl group and ethyl group are bonded, such as 2,4-diaminotoluene, 2,4-triphenylene. Diamines and the like.
 ジアミノビフェニル化合物は、2つのアミノフェニル基がフェニル基同士で結合したものである。例えば、4,4’-ジアミノビフェニル、4,4’-ジアミノ-2,2’-ビス(トリフルオロメチル)ビフェニル等である。 The diaminobiphenyl compound is a compound in which two aminophenyl groups are bonded to each other. For example, 4,4'-diaminobiphenyl, 4,4'-diamino-2,2'-bis (trifluoromethyl) biphenyl, and the like.
 ジアミノジフェニル化合物は、2つのアミノフェニル基が他の基を介してフェニル基同士で結合したものである。結合はエーテル結合、スルホニル結合、チオエーテル結合、アルキレン又はその誘導体基による結合、イミノ結合、アゾ結合、ホスフィンオキシド結合、アミド結合、ウレイレン結合等である。アルキレン結合は炭素数が1~6程度のものであり、その誘導体基はアルキレン基の水素原子の1以上がハロゲン原子等で置換されたものである。 The diaminodiphenyl compound is a compound in which two aminophenyl groups are bonded to each other via other groups. The bond is an ether bond, a sulfonyl bond, a thioether bond, a bond by alkylene or a derivative group thereof, an imino bond, an azo bond, a phosphine oxide bond, an amide bond, a ureylene bond, or the like. The alkylene bond has about 1 to 6 carbon atoms, and the derivative group has one or more hydrogen atoms in the alkylene group substituted with halogen atoms or the like.
 ジアミノジフェニル化合物の例としては、3,3’-ジアミノジフェニルエーテル、3,4’-ジアミノジフェニルエーテル、4,4’-ジアミノジフェニルエーテル、3,3’-ジアミノジフェニルスルホン、3,4’-ジアミノジフェニルスルホン、4,4’-ジアミノジフェニルスルホン、3,3’-ジアミノジフェニルメタン、3,4’-ジアミノジフェニルメタン、4,4’-ジアミノジフェニルメタン、4,4’-ジアミノジフェニルスルフィド、3,3’-ジアミノジフェニルケトン、3,4’-ジアミノジフェニルケトン、2,2-ビス(p-アミノフェニル)プロパン、2,2’-ビス(p-アミノフェニル)へキサフルオロプロパン、4-メチル-2,4-ビス(p-アミノフェニル)-1-ペンテン、4-メチル-2,4-ビス(p-アミノフェニル)-2-ぺンテン、イミノジアニリン、4-メチル-2,4-ビス(p-アミノフェニル)ペンタン、ビス(p-アミノフェニル)ホスフィンオキシド、4,4’-ジアミノアゾベンゼン、4,4’-ジアミノジフェニル尿素、4,4’-ジアミノジフェニルアミド、1,4-ビス(4-アミノフェノキシ)ベンゼン、1,3-ビス(4-アミノフェノキシ)ベンゼン、1,3-ビス(3-アミノフェノキシ)ベンゼン、4,4’-ビス(4-アミノフェノキシ)ビフェニル、ビス[4-(4-アミノフェノキシ)フェニル]スルフォン、ビス[4-(3-アミノフェノキシ)フェニル]スルフォン、2,2-ビス[4-(4-アミノフェノキシ)フェニル]プロパン、2,2-ビス[4-(4-アミノフェノキシ)フェニル]ヘキサフルオロプロパン等が挙げられる。 Examples of diaminodiphenyl compounds include 3,3′-diaminodiphenyl ether, 3,4′-diaminodiphenyl ether, 4,4′-diaminodiphenyl ether, 3,3′-diaminodiphenyl sulfone, 3,4′-diaminodiphenyl sulfone, 4,4'-diaminodiphenylsulfone, 3,3'-diaminodiphenylmethane, 3,4'-diaminodiphenylmethane, 4,4'-diaminodiphenylmethane, 4,4'-diaminodiphenyl sulfide, 3,3'-diaminodiphenyl ketone 3,4′-diaminodiphenyl ketone, 2,2-bis (p-aminophenyl) propane, 2,2′-bis (p-aminophenyl) hexafluoropropane, 4-methyl-2,4-bis ( p-aminophenyl) -1-pentene, 4-methyl- , 4-bis (p-aminophenyl) -2-pentene, iminodianiline, 4-methyl-2,4-bis (p-aminophenyl) pentane, bis (p-aminophenyl) phosphine oxide, 4,4 '-Diaminoazobenzene, 4,4'-diaminodiphenylurea, 4,4'-diaminodiphenylamide, 1,4-bis (4-aminophenoxy) benzene, 1,3-bis (4-aminophenoxy) benzene, 1 , 3-bis (3-aminophenoxy) benzene, 4,4′-bis (4-aminophenoxy) biphenyl, bis [4- (4-aminophenoxy) phenyl] sulfone, bis [4- (3-aminophenoxy) Phenyl] sulfone, 2,2-bis [4- (4-aminophenoxy) phenyl] propane, 2,2-bis [4- (4-aminophenyl) Phenoxy) phenyl] hexafluoropropane, and the like.
 これらの中では、価格、入手容易性等から、p-フェニレンジアミン、m-フェニレンジアミン、2,4-ジアミノトルエン、及び4,4’-ジアミノジフェニルエーテルが好ましい。 Of these, p-phenylenediamine, m-phenylenediamine, 2,4-diaminotoluene, and 4,4'-diaminodiphenyl ether are preferable from the viewpoint of price and availability.
 ジアミノトリフェニル化合物は、2つのアミノフェニル基と1つのフェニレン基が何れも他の基を介して結合したものであり、他の基は、ジアミノジフェニル化合物と同様のものが選ばれる。ジアミノトリフェニル化合物の例としては、1,3-ビス(m-アミノフェノキシ)ベンゼン、1,3-ビス(p-アミノフェノキシ)ベンゼン、1,4-ビス(p-アミノフェノキシ)ベンゼン等を挙げることができる。 The diaminotriphenyl compound is one in which two aminophenyl groups and one phenylene group are bonded via another group, and the other groups are the same as those of the diaminodiphenyl compound. Examples of diaminotriphenyl compounds include 1,3-bis (m-aminophenoxy) benzene, 1,3-bis (p-aminophenoxy) benzene, 1,4-bis (p-aminophenoxy) benzene, and the like. be able to.
 ジアミノナフタレンの例としては、1,5-ジアミノナフタレン及び2,6-ジアミノナフタレンを挙げることができる。 Examples of diaminonaphthalene include 1,5-diaminonaphthalene and 2,6-diaminonaphthalene.
 アミノフェニルアミノインダンの例としては、5又は6-アミノ-1-(p-アミノフェニル)-1,3,3-トリメチルインダンを挙げることができる。 Examples of aminophenylaminoindane include 5 or 6-amino-1- (p-aminophenyl) -1,3,3-trimethylindane.
 ジアミノテトラフェニル化合物の例としては、4,4’-ビス(p-アミノフェノキシ)ビフェニル、2,2’-ビス[p-(p’-アミノフェノキシ)フェニル]プロパン、2,2’-ビス[p-(p’-アミノフェノキシ)ビフェニル]プロパン、2,2’-ビス[p-(m-アミノフェノキシ)フェニル]ベンゾフェノン等を挙げることができる。 Examples of diaminotetraphenyl compounds include 4,4′-bis (p-aminophenoxy) biphenyl, 2,2′-bis [p- (p′-aminophenoxy) phenyl] propane, 2,2′-bis [ and p- (p′-aminophenoxy) biphenyl] propane, 2,2′-bis [p- (m-aminophenoxy) phenyl] benzophenone, and the like.
 カルド型フルオレンジアミン誘導体は、9,9-ビスアニリンフルオレン等が挙げられる。 Examples of cardo-type fluorenediamine derivatives include 9,9-bisaniline fluorene.
 脂肪族ジアミンは、例えば、炭素数が2~15程度のものがよく、具体的には、ペンタメチレンジアミン、へキサメチレンジアミン、へプタメチレンジアミン等が挙げられる。 The aliphatic diamine preferably has about 2 to 15 carbon atoms, and specific examples include pentamethylene diamine, hexamethylene diamine, and heptamethylene diamine.
 なお、これらのジアミンの水素原子がハロゲン原子、メチル基、メトキシ基、シアノ基、フェニル基等の群より選択される少なくとも1種の置換基により置換された化合物であってもよい。 In addition, a compound in which the hydrogen atom of these diamines is substituted with at least one substituent selected from the group such as a halogen atom, a methyl group, a methoxy group, a cyano group, and a phenyl group may be used.
 本発明で使用されるポリアミド酸を製造する手段に特に制限はなく、例えば、有機溶剤中で酸、ジアミン成分を反応させる方法等の公知の手法を用いることができる。 The means for producing the polyamic acid used in the present invention is not particularly limited, and for example, a known method such as a method of reacting an acid and a diamine component in an organic solvent can be used.
 テトラカルボン酸二無水物とジアミンとの反応は、通常、有機溶剤中で行われる。テトラカルボン酸二無水物とジアミンとの反応に使用される有機溶剤は、テトラカルボン酸二無水物及びジアミンを溶解させることができ、テトラカルボン酸二無水物及びジアミンと反応しないものであれば特に限定されない。有機溶剤は単独で又は2種以上を混合して用いることができる。 The reaction between tetracarboxylic dianhydride and diamine is usually carried out in an organic solvent. The organic solvent used for the reaction of the tetracarboxylic dianhydride and the diamine is particularly capable of dissolving the tetracarboxylic dianhydride and the diamine and not reacting with the tetracarboxylic dianhydride and the diamine. It is not limited. An organic solvent can be used individually or in mixture of 2 or more types.
 テトラカルボン酸二無水物とジアミンとの反応に用いる有機溶剤の例としては、N-メチル-2-ピロリドン、N,N-ジメチルアセトアミド、N,N-ジエチルアセトアミド、N,N-ジメチルホルムアミド、N,N-ジエチルホルムアミド、N-メチルカプロラクタム、N,N,N’,N’-テトラメチルウレア等の含窒素極性溶剤;β-プロピオラクトン、γ-ブチロラクトン、γ-バレロラクトン、δ-バレロラクトン、γ-カプロラクトン、ε-カプロラクトン等のラクトン系極性溶剤;ジメチルスルホキシド;アセトニトリル;乳酸エチル、乳酸ブチル等の脂肪酸エステル類;ジエチレングリコールジメチルエーテル、ジエチレングリコールジエチルエーテル、ジオキサン、テトラヒドロフラン、メチルセルソルブアセテート、エチルセルソルブアセテート等のエーテル類;クレゾール類等のフェノール系溶剤が挙げられる。これらの有機溶剤は単独あるいは2種以上を混合して用いることができる。有機溶剤の使用量に特に制限はないが、生成するポリアミド酸の含有量が5~50質量%とするのが望ましい。 Examples of organic solvents used in the reaction of tetracarboxylic dianhydride with diamine include N-methyl-2-pyrrolidone, N, N-dimethylacetamide, N, N-diethylacetamide, N, N-dimethylformamide, N Nitrogen-containing polar solvents such as N, diethylformamide, N-methylcaprolactam, N, N, N ′, N′-tetramethylurea; β-propiolactone, γ-butyrolactone, γ-valerolactone, δ-valerolactone Lactone polar solvents such as γ-caprolactone and ε-caprolactone; dimethyl sulfoxide; acetonitrile; fatty acid esters such as ethyl lactate and butyl lactate; diethylene glycol dimethyl ether, diethylene glycol diethyl ether, dioxane, tetrahydrofuran, methyl cellosolve acetate, e Ethers such as Roussel cellosolve acetate; include phenolic solvents cresols, and the like. These organic solvents can be used alone or in admixture of two or more. The amount of the organic solvent used is not particularly limited, but it is desirable that the content of the polyamic acid to be produced is 5 to 50% by mass.
 これらの有機溶剤の中では、生成するポリアミド酸の溶解性から、N-メチル-2-ピロリドン、N,N-ジメチルアセトアミド、N,N-ジエチルアセトアミド、N,N-ジメチルホルムアミド、N,N-ジエチルホルムアミド、N-メチルカプロラクタム、N,N,N’,N’-テトラメチルウレア等の含窒素極性溶剤が好ましい。 Among these organic solvents, N-methyl-2-pyrrolidone, N, N-dimethylacetamide, N, N-diethylacetamide, N, N-dimethylformamide, N, N- Nitrogen-containing polar solvents such as diethylformamide, N-methylcaprolactam, N, N, N ′, N′-tetramethylurea are preferred.
 重合温度は一般的には-10~120℃、好ましくは5~30℃である。重合時間は使用する原料組成により異なるが、通常は3~24Hr(時間)である。また、このような条件下で得られるポリアミド酸溶液の固有粘度は、好ましくは1000~10万cP(センチポアズ)、より一層好ましくは5000~7万cPの範囲である。 The polymerization temperature is generally −10 to 120 ° C., preferably 5 to 30 ° C. The polymerization time varies depending on the raw material composition used, but is usually 3 to 24 Hr (hour). Further, the intrinsic viscosity of the polyamic acid solution obtained under such conditions is preferably in the range of 1000 to 100,000 cP (centipoise), and more preferably in the range of 5,000 to 70,000 cP.
<ポリイミド>
 本発明に用いるポリイミドは、本発明のワニスに使用する有機溶剤に溶解可能な可溶性ポリイミドなら、その構造や分子量に限定されることなく、公知のものが使用できる。ポリイミドについて、側鎖にカルボキシ基等の縮合可能な官能基又は焼成時に架橋反応等を促進させる官能基を有していてもよい。
<Polyimide>
The polyimide used in the present invention is not limited to its structure and molecular weight as long as it is a soluble polyimide that can be dissolved in the organic solvent used in the varnish of the present invention. About a polyimide, you may have a functional group which accelerates | stimulates a crosslinking reaction etc. at the time of baking, or a functional group which can be condensed, such as a carboxy group.
 有機溶剤に可溶なポリイミドとするために、主鎖に柔軟な屈曲構造を導入するためのモノマーの使用、例えば、エチレジアミン、ヘキサメチレンジアミン、1,4-ジアミノシクロヘキサン、1,3-ジアミノシクロヘキサン、4,4’-ジアミノジシクロヘキシルメタン等の脂肪族ジアミン;2-メチルー1,4-フェニレンジアミン、o-トリジン、m-トリジン、3,3’-ジメトキシベンジジン、4,4’-ジアミノベンズアニリド等の芳香族ジアミン;ポリオキシエチレンジアミン、ポリオキシプロピレンジアミン、ポリオキシブチレンジアミン等のポリオキシアルキレンジアミン;ポリシロキサンジアミン;2,3,3’,4’-オキシジフタル酸無水物、3,4,3’,4’-オキシジフタル酸無水物、2,2-ビス(4-ヒドロキシフェニル)プロパンジベンゾエート-3,3’,4,4’-テトラカルボン酸二無水物等の使用が有効である。また、有機溶剤への溶解性を向上する官能基を有するモノマーの使用、例えば、2,2’-ビス(トリフルオロメチル)-4,4’-ジアミノビフェニル、2-トリフルオロメチル-1,4-フェニレンジアミン等のフッ素化ジアミンを使用することも有効である。更に、上記ポリイミドの溶解性を向上するためのモノマーに加えて、溶解性を阻害しない範囲で、上記ポリアミド酸の欄に記したものと同じモノマーを併用することもできる。 Use of a monomer to introduce a flexible bending structure into the main chain in order to obtain a polyimide soluble in an organic solvent, for example, ethylenediamine, hexamethylenediamine, 1,4-diaminocyclohexane, 1,3-diaminocyclohexane, Aliphatic diamines such as 4,4′-diaminodicyclohexylmethane; 2-methyl-1,4-phenylenediamine, o-tolidine, m-tolidine, 3,3′-dimethoxybenzidine, 4,4′-diaminobenzanilide, etc. Aromatic diamines; polyoxyalkylene diamines such as polyoxyethylene diamine, polyoxypropylene diamine and polyoxybutylene diamine; polysiloxane diamines; 2,3,3 ′, 4′-oxydiphthalic anhydride, 3,4,3 ′, 4′-oxydiphthalic anhydride, 2,2-bis (4- Hydroxyphenyl) propane dibenzoate-3,3 ', use of such 4,4'-tetracarboxylic dianhydride is valid. In addition, the use of a monomer having a functional group that improves the solubility in an organic solvent, for example, 2,2′-bis (trifluoromethyl) -4,4′-diaminobiphenyl, 2-trifluoromethyl-1,4 It is also effective to use a fluorinated diamine such as phenylenediamine. Furthermore, in addition to the monomer for improving the solubility of the polyimide, the same monomers as those described in the column for the polyamic acid can be used in combination as long as the solubility is not inhibited.
 本発明で用いられる、有機溶剤に溶解可能なポリイミドを製造する手段に特に制限はなく、例えば、ポリアミド酸を化学イミド化又は加熱イミド化させ、有機溶剤に溶解させる方法等の公知の手法を用いることができる。そのようなポリイミドとしては、脂肪族ポリイミド(全脂肪族ポリイミド)、芳香族ポリイミド等を挙げることができ、芳香族ポリイミドが好ましい。芳香族ポリイミドとしては、式(1)で示す繰り返し単位を有するポリアミド酸を熱又は化学的に閉環反応によって取得したもの、若しくは式(2)で示す繰り返し単位を有するポリイミドを溶媒に溶解したものでよい。式中Arはアリール基を示す。
Figure JPOXMLDOC01-appb-C000001
Figure JPOXMLDOC01-appb-C000002
There is no restriction | limiting in particular in the means to manufacture the polyimide which can be melt | dissolved in the organic solvent used by this invention, For example, well-known methods, such as the method of making a polyamic acid chemically imidize or heat-imidize and dissolve in an organic solvent, are used. be able to. Examples of such polyimide include aliphatic polyimide (total aliphatic polyimide), aromatic polyimide and the like, and aromatic polyimide is preferable. The aromatic polyimide is obtained by thermally or chemically obtaining a polyamic acid having a repeating unit represented by the formula (1) by a ring-closing reaction or by dissolving a polyimide having a repeating unit represented by the formula (2) in a solvent. Good. In the formula, Ar represents an aryl group.
Figure JPOXMLDOC01-appb-C000001
Figure JPOXMLDOC01-appb-C000002
<縮合剤>
 本発明の多孔質ポリイミド膜の製造方法では、未焼成複合膜を樹脂微粒子の熱分解温度未満で焼成することを目的として、上記ワニス中に更に縮合剤を含有させる。
<Condensation agent>
In the method for producing a porous polyimide film of the present invention, a condensing agent is further contained in the varnish for the purpose of firing the unfired composite film below the thermal decomposition temperature of the resin fine particles.
 上記縮合剤は、加熱イミド化時にイミド化促進効果を有し、未焼成複合膜を樹脂微粒子の熱分解温度未満で焼成することができれば、特に限定されること無く公知のものを使用することができる。 The condensing agent has an imidization promoting effect at the time of heating imidization, and any known one can be used without particular limitation as long as the unfired composite film can be fired below the thermal decomposition temperature of the resin fine particles. it can.
 縮合剤としては、例えば、アニリン、ジエチル-t-ブチルアミン、ジイソプルエチルアミン、フェネチルアミン、ドデシルアミン、トリエチルアミン、トリブチルアミン、トリエタノールアミン等のアミン化合物;イミダゾール、ピリジン等の含窒素複素環化合物;4級アンモニウム塩、カルバメート化合物等の熱により分解して塩基を発生する熱塩基発生剤等を挙げることができる。 Examples of the condensing agent include amine compounds such as aniline, diethyl-t-butylamine, diisopropylethylamine, phenethylamine, dodecylamine, triethylamine, tributylamine, and triethanolamine; nitrogen-containing heterocyclic compounds such as imidazole and pyridine; 4 Examples thereof include a thermal base generator that decomposes with heat such as a quaternary ammonium salt or a carbamate compound to generate a base.
 上記熱塩基発生剤としては、更に好ましいものとして、熱により分解してイミダゾール化合物を発生する化合物(A-1)を挙げることができる。以下、化合物(A-1)について詳細に説明する。 As the thermal base generator, a compound (A-1) that decomposes by heat to generate an imidazole compound can be further preferred. Hereinafter, the compound (A-1) will be described in detail.
 化合物(A-1)が発生するイミダゾール化合物は、塩基性のイミド化触媒として、ポリアミド酸の閉環を促進する。化合物(A-1)が発生するイミダゾール化合物は、イミダゾールであっても、イミダゾール中の炭素原子に結合した水素原子の一部又は全部が置換基で置換された化合物であってもよく、下記式(3)で表されるイミダゾール化合物であることが好ましい。
Figure JPOXMLDOC01-appb-C000003
(式中、R、R、及びRは、それぞれ独立に水素原子、ハロゲン原子、水酸基、メルカプト基、スルフィド基、シリル基、シラノール基、ニトロ基、ニトロソ基、スルホナト基、ホスフィノ基、ホスフィニル基、ホスホナト基、又は有機基を示す。)
The imidazole compound generated from the compound (A-1) promotes ring closure of the polyamic acid as a basic imidization catalyst. The imidazole compound generated from the compound (A-1) may be an imidazole or a compound in which part or all of the hydrogen atoms bonded to the carbon atoms in the imidazole are substituted with a substituent. It is preferable that it is an imidazole compound represented by (3).
Figure JPOXMLDOC01-appb-C000003
(Wherein R 1 , R 2 , and R 3 are each independently a hydrogen atom, halogen atom, hydroxyl group, mercapto group, sulfide group, silyl group, silanol group, nitro group, nitroso group, sulfonate group, phosphino group, (A phosphinyl group, a phosphonate group, or an organic group is shown.)
 R、R、又はRにより示される有機基としては、アルキル基、アルケニル基、シクロアルキル基、シクロアルケニル基、アリール基、アラルキル基等が挙げられる。この有機基は、ヘテロ原子を含んでいてもよい。また、この有機基は、直鎖状、分岐鎖状、環状のいずれでもよい。この有機基は、通常は1価であるが、環状構造を形成する場合等には、2価以上となり得る。 Examples of the organic group represented by R 1 , R 2 , or R 3 include an alkyl group, an alkenyl group, a cycloalkyl group, a cycloalkenyl group, an aryl group, and an aralkyl group. This organic group may contain a hetero atom. The organic group may be linear, branched or cyclic. This organic group is usually monovalent, but may be divalent or higher when forming a cyclic structure.
 R及びRは、それらが結合して環状構造を形成していてもよく、ヘテロ原子の結合を含んでいてもよい。環状構造としては、ヘテロシクロアルキル基、ヘテロアリール基等が挙げられ、縮合環であってもよい。 R 1 and R 2 may be bonded to each other to form a cyclic structure, and may include a hetero atom bond. Examples of the cyclic structure include a heterocycloalkyl group and a heteroaryl group, and may be a condensed ring.
 R、R、又はRにより示される有機基がヘテロ原子を含む場合、そのヘテロ原子としては、例えば、酸素原子、窒素原子、珪素原子が挙げられる。ヘテロ原子を含む結合の具体例としては、エーテル結合、チオエーテル結合、カルボニル結合、チオカルボニル結合、エステル結合、アミド結合、ウレタン結合、イミノ結合(-N=C(-R)-又は-C(=NR)-(ただし、Rは水素原子又は有機基を示す)。以下、同じ)、カーボネート結合、スルホニル結合、スルフィニル結合、アゾ結合等が挙げられる。中でも、イミダゾール化合物の耐熱性の観点から、エーテル結合、チオエーテル結合、カルボニル結合、チオカルボニル結合、エステル結合、アミド結合、ウレタン結合、イミノ結合、カーボネート結合、スルホニル結合、スルフィニル結合が好ましい。 When the organic group represented by R 1 , R 2 , or R 3 contains a hetero atom, examples of the hetero atom include an oxygen atom, a nitrogen atom, and a silicon atom. Specific examples of the bond containing a hetero atom include an ether bond, a thioether bond, a carbonyl bond, a thiocarbonyl bond, an ester bond, an amide bond, a urethane bond, an imino bond (—N═C (—R) — or —C (= NR)-(wherein R represents a hydrogen atom or an organic group, hereinafter the same), carbonate bond, sulfonyl bond, sulfinyl bond, azo bond and the like. Among these, from the viewpoint of heat resistance of the imidazole compound, an ether bond, a thioether bond, a carbonyl bond, a thiocarbonyl bond, an ester bond, an amide bond, a urethane bond, an imino bond, a carbonate bond, a sulfonyl bond, and a sulfinyl bond are preferable.
 R、R、又はRにより示される、有機基以外の基に含まれる水素原子は、炭化水素基によって置換されていてもよい。この炭化水素基は、直鎖状、分岐鎖状、及び環状のいずれでもよい。 A hydrogen atom contained in a group other than an organic group represented by R 1 , R 2 , or R 3 may be substituted with a hydrocarbon group. The hydrocarbon group may be linear, branched or cyclic.
 R、R、及びRとしては、それぞれ独立に水素原子、炭素数1~12のアルキル基、炭素数1~12のアリール基、炭素数1~12のアルコキシ基、及びハロゲン原子が好ましく、水素原子がより好ましい。R、R、及びRがいずれも水素原子であるイミダゾールは、立体的な障害の少ない単純な構造であるため、イミド化触媒としてポリアミド酸に容易に作用することができる。 R 1 , R 2 , and R 3 are each independently preferably a hydrogen atom, an alkyl group having 1 to 12 carbon atoms, an aryl group having 1 to 12 carbon atoms, an alkoxy group having 1 to 12 carbon atoms, and a halogen atom. A hydrogen atom is more preferable. Since imidazole in which R 1 , R 2 , and R 3 are all hydrogen atoms has a simple structure with little steric hindrance, it can easily act on polyamic acid as an imidation catalyst.
 化合物(A-1)は、熱により分解してイミダゾール化合物、好ましくは上記式(3)で表されるイミダゾール化合物を発生させることができる化合物であれば特に限定されない。従来から感光性組成物に配合されている、光の作用によりアミンを発生する化合物について、露光時に発生するアミンに由来する骨格を、イミダゾール化合物、好ましくは上記式(3)で表されるイミダゾール化合物に由来する骨格に置換することにより、化合物(A-1)として使用される化合物が得られる。 Compound (A-1) is not particularly limited as long as it can decompose by heat to generate an imidazole compound, preferably an imidazole compound represented by the above formula (3). Regarding compounds that have been conventionally blended in photosensitive compositions and generate amines by the action of light, the skeleton derived from amines generated during exposure is an imidazole compound, preferably an imidazole compound represented by the above formula (3) The compound used as compound (A-1) is obtained by substituting the skeleton derived from
 好適な化合物(A-1)としては、下記式(4)で表される化合物が挙げられる。
Figure JPOXMLDOC01-appb-C000004
(式中、R、R、及びRは、それぞれ独立に水素原子、ハロゲン原子、水酸基、メルカプト基、スルフィド基、シリル基、シラノール基、ニトロ基、ニトロソ基、ホスフィノ基、スルホナト基、ホスフィニル基、ホスホナト基、又は有機基を示す。R及びRは、それぞれ独立に水素原子、ハロゲン原子、水酸基、メルカプト基、スルフィド基、シリル基、シラノール基、ニトロ基、ニトロソ基、スルフィノ基、スルホ基、スルホナト基、ホスフィノ基、ホスフィニル基、ホスホノ基、ホスホナト基、又は有機基を示す。R、R、R、R、及びR10は、それぞれ独立に水素原子、ハロゲン原子、水酸基、メルカプト基、スルフィド基、シリル基、シラノール基、ニトロ基、ニトロソ基、スルフィノ基、スルホ基、スルホナト基、ホスフィノ基、ホスフィニル基、ホスホノ基、ホスホナト基、アミノ基、アンモニオ基、又は有機基を示す。R、R、R、R、及びR10は、それらの2つ以上が結合して環状構造を形成していてもよく、ヘテロ原子の結合を含んでいてもよい。)
Suitable compound (A-1) includes a compound represented by the following formula (4).
Figure JPOXMLDOC01-appb-C000004
(Wherein R 1 , R 2 , and R 3 are each independently a hydrogen atom, halogen atom, hydroxyl group, mercapto group, sulfide group, silyl group, silanol group, nitro group, nitroso group, phosphino group, sulfonate group, R 4 and R 5 each independently represents a hydrogen atom, a halogen atom, a hydroxyl group, a mercapto group, a sulfide group, a silyl group, a silanol group, a nitro group, a nitroso group, or a sulfino group. , Sulfo group, sulfonate group, phosphino group, phosphinyl group, phosphono group, phosphonate group, or organic group R 6 , R 7 , R 8 , R 9 , and R 10 are each independently a hydrogen atom or a halogen atom. , Hydroxyl group, mercapto group, sulfide group, silyl group, silanol group, nitro group, nitroso group, sulfino group, sulfo group , Sulfonate group, phosphino group, phosphinyl group, phosphono group, phosphonato group, amino group, ammonio group, or organic group, R 6 , R 7 , R 8 , R 9 , and R 10 are two or more of them. May be bonded to form a cyclic structure and may contain a bond of a hetero atom.)
 式(4)において、R、R、及びRは、式(3)について説明したものと同様である。 In the formula (4), R 1 , R 2 , and R 3 are the same as those described for the formula (3).
 式(4)において、R又はRにより示される有機基としては、R、R、及びRについて例示したものが挙げられる。この有機基は、R、R、及びRの場合と同様に、ヘテロ原子を含んでいてもよい。また、この有機基は、直鎖状、分岐鎖状、環状のいずれでもよい。 In the formula (4), examples of the organic group represented by R 4 or R 5 include those exemplified for R 1 , R 2 , and R 3 . This organic group may contain a hetero atom as in the case of R 1 , R 2 and R 3 . The organic group may be linear, branched or cyclic.
 R及びRとしては、それぞれ独立に水素原子、炭素数1~10のアルキル基、炭素数4~13のシクロアルキル基、炭素数4~13のシクロアルケニル基、炭素数7~16のアリールオキシアルキル基、炭素数7~20のアラルキル基、シアノ基を有する炭素数2~11のアルキル基、水酸基を有する炭素数1~10のアルキル基、炭素数1~10のアルコキシ基、炭素数2~11のアミド基、炭素数1~10のアルキルチオ基、炭素数1~10のアシル基、炭素数2~11のエステル基(-COOR又は-OCOR(ただし、Rは炭化水素基を示す。))、炭素数6~20のアリール基、電子供与性基及び/又は電子吸引性基が置換した炭素数6~20のアリール基、電子供与性基及び/又は電子吸引性基が置換したベンジル基、シアノ基、メチルチオ基であることが好ましい。より好ましくは、R及びRの両方が水素原子であるか、又はRがメチル基であり、Rが水素原子である。 R 4 and R 5 are each independently a hydrogen atom, an alkyl group having 1 to 10 carbon atoms, a cycloalkyl group having 4 to 13 carbon atoms, a cycloalkenyl group having 4 to 13 carbon atoms, or an aryl having 7 to 16 carbon atoms. An oxyalkyl group, an aralkyl group having 7 to 20 carbon atoms, an alkyl group having 2 to 11 carbon atoms having a cyano group, an alkyl group having 1 to 10 carbon atoms having a hydroxyl group, an alkoxy group having 1 to 10 carbon atoms, 2 carbon atoms An amide group having ˜11, an alkylthio group having 1 to 10 carbon atoms, an acyl group having 1 to 10 carbon atoms, and an ester group having 2 to 11 carbon atoms (—COOR or —OCOR (where R represents a hydrocarbon group)) ), Aryl groups having 6 to 20 carbon atoms, electron donating groups and / or electron withdrawing groups substituted aryl groups having 6 to 20 carbon atoms, electron donating groups and / or electron withdrawing groups substituted benzyl groups , Amino group is preferably a methylthio group. More preferably, both R 4 and R 5 are hydrogen atoms, or R 4 is a methyl group and R 5 is a hydrogen atom.
 式(4)において、R、R、R、R、又はR10により示される有機基としては、R、R、及びRにおいて例示したものが挙げられる。この有機基は、R及びRの場合と同様に、ヘテロ原子を含んでいてもよい。また、この有機基は、直鎖状、分岐鎖状、環状のいずれでもよい。 In the formula (4), examples of the organic group represented by R 6 , R 7 , R 8 , R 9 , or R 10 include those exemplified for R 1 , R 2 , and R 3 . This organic group may contain a hetero atom as in the case of R 1 and R 2 . The organic group may be linear, branched or cyclic.
 R、R、R、R、及びR10は、それらの2つ以上が結合して環状構造を形成していてもよく、ヘテロ原子の結合を含んでいてもよい。環状構造としては、ヘテロシクロアルキル基、ヘテロアリール基等が挙げられ、縮合環であってもよい。例えば、R、R、R、R、及びR10は、それらの2つ以上が結合して、R、R、R、R、及びR10が結合しているベンゼン環の原子を共有してナフタレン、アントラセン、フェナントレン、インデン等の縮合環を形成してもよい。 Two or more of R 6 , R 7 , R 8 , R 9 , and R 10 may be bonded to form a cyclic structure, and may include a hetero atom bond. Examples of the cyclic structure include a heterocycloalkyl group and a heteroaryl group, and may be a condensed ring. For example, R 6 , R 7 , R 8 , R 9 , and R 10 are two or more of them bonded to each other, and R 6 , R 7 , R 8 , R 9 , and R 10 are bonded to each other. A ring atom may be shared to form a condensed ring such as naphthalene, anthracene, phenanthrene, and indene.
 R、R、R、R、及びR10としては、それぞれ独立に水素原子、炭素数1~10のアルキル基、炭素数4~13のシクロアルキル基、炭素数4~13のシクロアルケニル基、炭素数7~16のアリールオキシアルキル基、炭素数7~20のアラルキル基、シアノ基を有する炭素数2~11のアルキル基、水酸基を有する炭素数1~10のアルキル基、炭素数1~10のアルコキシ基、炭素数2~11のアミド基、炭素数1~10のアルキルチオ基、炭素数1~10のアシル基、炭素数2~11のエステル基、炭素数6~20のアリール基、電子供与性基及び/又は電子吸引性基が置換した炭素数6~20のアリール基、電子供与性基及び/又は電子吸引性基が置換したベンジル基、シアノ基、メチルチオ基、ニトロ基であることが好ましい。 R 6 , R 7 , R 8 , R 9 and R 10 are each independently a hydrogen atom, an alkyl group having 1 to 10 carbon atoms, a cycloalkyl group having 4 to 13 carbon atoms, or a cyclohexane having 4 to 13 carbon atoms. Alkenyl group, aryloxyalkyl group having 7 to 16 carbon atoms, aralkyl group having 7 to 20 carbon atoms, alkyl group having 2 to 11 carbon atoms having a cyano group, alkyl group having 1 to 10 carbon atoms having a hydroxyl group, carbon number An alkoxy group having 1 to 10 carbon atoms, an amide group having 2 to 11 carbon atoms, an alkylthio group having 1 to 10 carbon atoms, an acyl group having 1 to 10 carbon atoms, an ester group having 2 to 11 carbon atoms, and an aryl having 6 to 20 carbon atoms Group, electron donating group and / or electron withdrawing group substituted aryl group having 6 to 20 carbon atoms, electron donating group and / or electron withdrawing group substituted benzyl group, cyano group, methylthio group, nitro group Is Door is preferable.
 また、R、R、R、R、及びR10としては、それらの2つ以上が結合して、R、R、R、R、及びR10が結合しているベンゼン環の原子を共有してナフタレン、アントラセン、フェナントレン、インデン等の縮合環を形成している場合も好ましい。 In addition, as R 6 , R 7 , R 8 , R 9 , and R 10 , two or more of them are bonded, and R 6 , R 7 , R 8 , R 9 , and R 10 are bonded. It is also preferred if a benzene ring atom is shared to form a condensed ring such as naphthalene, anthracene, phenanthrene or indene.
 上記式(4)で表される化合物の中では、下記式(5)で表される化合物が好ましい。
Figure JPOXMLDOC01-appb-C000005
(式中、R、R、及びRは、式(3)及び(4)と同義である。R~Rは式(4)と同義である。R11は、水素原子又は有機基を示す。R及びRが水酸基となることはない。R、R、R、及びRは、それらの2つ以上が結合して環状構造を形成していてもよく、ヘテロ原子の結合を含んでいてもよい。)
Among the compounds represented by the above formula (4), a compound represented by the following formula (5) is preferable.
Figure JPOXMLDOC01-appb-C000005
(Wherein R 1 , R 2 , and R 3 have the same meanings as in formulas (3) and (4). R 4 to R 9 have the same meanings as in formula (4). R 11 is a hydrogen atom or Represents an organic group, and R 6 and R 7 do not become a hydroxyl group, and R 6 , R 7 , R 8 , and R 9 may combine with each other to form a cyclic structure. And may contain a heteroatom bond.)
 式(5)で表される化合物は、置換基-O-R11を有するため、有機溶剤に対する溶解性に優れる。 Since the compound represented by the formula (5) has a substituent —O—R 11 , it has excellent solubility in an organic solvent.
 式(5)において、R11が有機基である場合、その有機基としては、R、R、及びRにおいて例示したものが挙げられる。この有機基は、ヘテロ原子を含んでいてもよい。また、この有機基は、直鎖状、分岐鎖状、環状のいずれでもよい。R11としては、水素原子、又は炭素数1~12のアルキル基が好ましく、メチル基がより好ましい。 In the formula (5), when R 11 is an organic group, examples of the organic group include those exemplified for R 1 , R 2 , and R 3 . This organic group may contain a hetero atom. The organic group may be linear, branched or cyclic. R 11 is preferably a hydrogen atom or an alkyl group having 1 to 12 carbon atoms, and more preferably a methyl group.
 好適な化合物(A-1)としては、下記式(6)で表される化合物も挙げられる。
Figure JPOXMLDOC01-appb-C000006
(式中、R、R、及びRは、それぞれ独立に水素原子、ハロゲン原子、水酸基、メルカプト基、スルフィド基、シリル基、シラノール基、ニトロ基、ニトロソ基、ホスフィノ基、スルホナト基、ホスフィニル基、ホスホナト基、又は有機基を示す。R12は、置換されていてもよい炭化水素基を示す。)
Suitable compounds (A-1) also include compounds represented by the following formula (6).
Figure JPOXMLDOC01-appb-C000006
(Wherein R 1 , R 2 , and R 3 are each independently a hydrogen atom, halogen atom, hydroxyl group, mercapto group, sulfide group, silyl group, silanol group, nitro group, nitroso group, phosphino group, sulfonate group, (A phosphinyl group, a phosphonato group, or an organic group. R 12 represents an optionally substituted hydrocarbon group.)
 式(6)において、R、R、及びRは、式(3)について説明したものと同様である。 In Formula (6), R 1 , R 2 , and R 3 are the same as those described for Formula (3).
 式(6)において、R12としては、炭素数1~20のアルキル基、炭素数2~20のアルケニル基、炭素数2~20のアルキニル基、置換されていてもよい炭素数6~20のアリール基、置換されていてもよい炭素数7~20のアラルキル基が挙げられ、置換されていてもよい炭素数7~20のアラルキル基が好ましい。上記アリール基又はアラルキル基が置換されている場合、置換基としては、ハロゲン原子、ニトロ基、炭素数1~4のアルキル基、炭素数1~4のアルコキシ基が挙げられる。 In the formula (6), R 12 is an alkyl group having 1 to 20 carbon atoms, an alkenyl group having 2 to 20 carbon atoms, an alkynyl group having 2 to 20 carbon atoms, or an optionally substituted 6 to 20 carbon atoms. Examples thereof include an aryl group and an optionally substituted aralkyl group having 7 to 20 carbon atoms, and an optionally substituted aralkyl group having 7 to 20 carbon atoms is preferable. When the aryl group or aralkyl group is substituted, examples of the substituent include a halogen atom, a nitro group, an alkyl group having 1 to 4 carbon atoms, and an alkoxy group having 1 to 4 carbon atoms.
 式(6)で表される化合物は、式(3)で表されるイミダゾール化合物と下記式(7)で表されるクロロギ酸エステルとの反応、式(3)で表されるイミダゾール化合物と下記式(8)で表されるジカーボネートとの反応、又は下記式(9)で表されるカルボニルジイミダゾール化合物と下記式(10)で表されるアルコールとの反応により合成することができる。
Figure JPOXMLDOC01-appb-C000007
(式(7)~(10)中、R、R、及びRは、式(3)と同義である。R12は式(6)と同義である。)
The compound represented by the formula (6) is a reaction between an imidazole compound represented by the formula (3) and a chloroformate represented by the following formula (7), an imidazole compound represented by the formula (3) and the following: It can synthesize | combine by reaction with the dicarbonate represented by Formula (8), or the reaction of the carbonyldiimidazole compound represented by following formula (9), and the alcohol represented by following formula (10).
Figure JPOXMLDOC01-appb-C000007
(In formulas (7) to (10), R 1 , R 2 , and R 3 have the same meaning as in formula (3). R 12 has the same meaning as in formula (6).)
 化合物(A-1)として特に好適な化合物の具体例を以下に示す。
Figure JPOXMLDOC01-appb-C000008
Specific examples of the compound particularly suitable as the compound (A-1) are shown below.
Figure JPOXMLDOC01-appb-C000008
 ワニスにおける縮合剤の含有量は、本発明の目的を阻害しない範囲で特に限定されない。その含有量は、ポリアミド酸又はポリイミド100質量に対して1~300質量部が好ましく、1~50質量部が好ましく、1~25質量部がより好ましい。 The content of the condensing agent in the varnish is not particularly limited as long as the object of the present invention is not impaired. The content is preferably 1 to 300 parts by mass, more preferably 1 to 50 parts by mass, and more preferably 1 to 25 parts by mass with respect to 100 parts by mass of the polyamic acid or polyimide.
 本発明では、ワニス中の微粒子を均一に分散することを目的に、上記微粒子とともに更に分散剤を添加してもよい。分散剤を添加することにより、ポリアミド酸又はポリイミドと微粒子とを一層均一に混合でき、更には、成形又は成膜した前駆体膜中の微粒子を均一に分布させることができる。その結果、最終的に得られる多孔質ポリイミドの表面に稠密な開口を設け、且つ、表裏面を効率よく連通させることが可能となり、フィルムの透気度が向上する。 In the present invention, for the purpose of uniformly dispersing the fine particles in the varnish, a dispersant may be further added together with the fine particles. By adding the dispersant, the polyamic acid or polyimide and the fine particles can be mixed more uniformly, and furthermore, the fine particles in the molded precursor film can be uniformly distributed. As a result, it is possible to provide a dense opening on the surface of the finally obtained porous polyimide and to allow the front and back surfaces to communicate efficiently, thereby improving the air permeability of the film.
[未焼成複合膜の製造]
 本発明のポリアミド酸又はポリイミド、樹脂微粒子、及び縮合剤を含有する未焼成複合膜の成膜は、基板上又は離型層を設けた基板上へ上記ワニスを塗布し、常圧又は真空下で0~50℃、好ましくは常圧10~30℃で乾燥して行う。
[Production of unfired composite film]
Film formation of an unfired composite film containing the polyamic acid or polyimide of the present invention, resin fine particles, and a condensing agent is performed by applying the varnish on a substrate or a substrate provided with a release layer, and under normal pressure or vacuum. The drying is carried out at 0 to 50 ° C., preferably at a normal pressure of 10 to 30 ° C.
 離型層を設けた基板の作製は、基板上に離型剤を塗布して乾燥あるいは焼き付けを行って行う。ここで使用する離型剤は、アルキルリン酸アンモニウム塩系、フッ素系又はシリコーン等の公知の離型剤が特に制限なく使用可能である。上記乾燥したポリアミド酸膜又はポリイミドを基板から剥離して未焼成複合膜とするが、その際、未焼成複合膜の剥離面にわずかながら離型剤が残存する。この残存した離型剤は、焼成時に変色したり、フィルム表面の濡れ性や電気特性に大きく影響を及ぼす。そのため、特に未焼成複合膜を基板より剥離して焼成工程に移る場合は、離型剤を取り除いておくことが好ましい。 The production of the substrate provided with the release layer is performed by applying a release agent on the substrate and drying or baking. As the mold release agent used here, a known mold release agent such as an ammonium alkylphosphate salt, fluorine-based or silicone can be used without any particular limitation. The dried polyamic acid film or polyimide is peeled from the substrate to form an unfired composite film. At that time, a slight release agent remains on the peeled surface of the unfired composite film. The remaining release agent is discolored at the time of firing, and greatly affects the wettability and electrical characteristics of the film surface. Therefore, it is preferable to remove the release agent particularly when the unfired composite film is peeled from the substrate and moved to the firing step.
 そこで、本発明では、基板より剥離した未焼成複合膜を、有機溶剤を用いて洗浄工程を設けてもよい。その場合、用いる有機溶剤は、離型剤を溶解し、未焼成複合膜を溶解又は膨潤させないものであれば、特に限定なく使用することができる。例えば、メチルアルコール、エチルアルコール、プロピルアルコール等のアルコール類が好ましく使用できる。洗浄の方法は、洗浄液にフィルムを浸漬した後取り出す方法や、シャワー洗浄する方法等の公知の方法を選択することができる。 Therefore, in the present invention, the unfired composite film peeled off from the substrate may be provided with a cleaning process using an organic solvent. In that case, the organic solvent to be used can be used without particular limitation as long as it dissolves the release agent and does not dissolve or swell the unfired composite film. For example, alcohols such as methyl alcohol, ethyl alcohol, and propyl alcohol can be preferably used. As a cleaning method, a known method such as a method of immersing a film in a cleaning solution and taking it out or a method of shower cleaning can be selected.
 続いて、洗浄液の除去を目的として、洗浄工程後の未焼成複合膜をそのまま乾燥してもよいが、水と水溶性有機溶剤との混合溶剤を用いて、更に複数回洗浄を繰り返し行ってもよい。 Subsequently, for the purpose of removing the cleaning liquid, the unfired composite film after the cleaning step may be dried as it is, but the cleaning may be repeated a plurality of times using a mixed solvent of water and a water-soluble organic solvent. Good.
[ポリイミド-樹脂微粒子複合膜の製造(焼成工程)]
 基板より剥離して、又は、剥離せずに、上記未焼成複合膜に加熱による後処理(焼成)を行ってポリイミドと微粒子とからなるポリイミド-樹脂微粒子複合膜とすることができる。焼成工程においては、イミド化を完結させることが好ましい。
[Production of polyimide-resin fine particle composite film (firing process)]
The polyimide-resin fine particle composite film composed of polyimide and fine particles can be obtained by peeling the substrate from or without peeling, and subjecting the unfired composite film to post-treatment (baking) by heating. In the firing step, it is preferable to complete imidization.
 ここで、ポリイミド膜の焼成温度は、ポリアミド酸の構造や選択した縮合剤により異なるが、縮合剤がイミド化を促進する範囲内で、高くとも適用される樹脂微粒子の分解温度未満に設定される。なかでも、180~320℃未満とすることが好ましく、180℃~250度がより好ましい。 Here, the firing temperature of the polyimide film varies depending on the structure of the polyamic acid and the selected condensing agent, but is set to be lower than the decomposition temperature of the applied resin fine particles within the range in which the condensing agent promotes imidization. . In particular, the temperature is preferably 180 to 320 ° C., more preferably 180 to 250 ° C.
 焼成を行う場合、例えば、焼成温度を230℃とするとき、室温~230℃までを3時間で昇温させた後、230℃で20分間保持させる方法や室温から50℃刻みで段階的に230℃まで昇温(各ステップ20分保持)し、最終的に230℃で20分保持させる等の段階的な乾燥-熱イミド化法を用いることもできる。また、基板より剥離して焼成する場合は、未焼成複合膜の端部をSUS製の型枠等に固定し変形を防ぐ方法を採ることもできる。 When firing is performed, for example, when the firing temperature is set to 230 ° C., the temperature is raised from room temperature to 230 ° C. in 3 hours and then maintained at 230 ° C. for 20 minutes, or stepwise from room temperature in increments of 50 ° C. It is also possible to use a stepwise drying-thermal imidation method such as raising the temperature to 20 ° C. (holding for 20 minutes at each step) and finally holding at 230 ° C. for 20 minutes. Moreover, when peeling and baking from a board | substrate, the method of fixing the edge part of a non-baking composite film to the formwork made from SUS, etc. can also be taken.
 できあがったポリイミド-樹脂微粒子複合膜の膜厚は、例えばマイクロメータ等で複数の箇所の厚さを測定し平均することで求めることができる。どのような平均膜厚が好ましいかは、ポリイミド-樹脂微粒子複合膜又は多孔質ポリイミド膜の用途によって異なるが、例えば、セパレータ等に使用する場合は、5~500μmであることが好ましく、10~100μmであることが更に好ましい。 The film thickness of the completed polyimide-resin fine particle composite film can be obtained by measuring and averaging the thicknesses of a plurality of locations with a micrometer, for example. The average film thickness is preferably different depending on the use of the polyimide-resin fine particle composite film or the porous polyimide film. For example, when used for a separator or the like, it is preferably 5 to 500 μm. More preferably.
[ポリイミド-樹脂微粒子複合膜の多孔化(微粒子除去工程)]
 ポリイミド-樹脂微粒子複合膜から、樹脂微粒子を熱分解して除去することにより、多孔質ポリイミド膜を、再現性よく製造することができる。
[Porosification of polyimide-resin particle composite membrane (particle removal process)]
A porous polyimide film can be produced with good reproducibility by thermally decomposing and removing resin fine particles from the polyimide-resin fine particle composite film.
 微粒子除去は、230~350℃であって選択した樹脂微粒子の熱分解温度又は熱分解温度以上の温度に一定時間保持することで行う。保持する温度が350℃未満であれば、ポリイミド膜に熱劣化がみられないため好ましい。微粒子除去は、不活性ガスに酸素又は水蒸気を添加した雰囲気中で行うことが好ましい。 Fine particle removal is performed by maintaining at a temperature of 230 to 350 ° C. at a thermal decomposition temperature of the selected resin fine particle or a temperature equal to or higher than the thermal decomposition temperature for a certain time. If the temperature to hold is less than 350 degreeC, since a thermal deterioration is not seen in a polyimide film, it is preferable. The fine particle removal is preferably performed in an atmosphere in which oxygen or water vapor is added to an inert gas.
 以下、実施例を示して本発明を更に具体的に説明するが、本発明の範囲は、これらの実施例に限定されるものではない。 Hereinafter, the present invention will be described more specifically with reference to examples. However, the scope of the present invention is not limited to these examples.
<実施例1~3、比較例1~2>
 実施例及び比較例では、以下に示すテトラカルボン酸二無水物、ジアミン、有機溶剤、微粒子、及び縮合剤を用いた。
・テトラカルボン酸二無水物(A)、(A1):ピロメリット酸二無水物
・ジアミン(B)、(B1):4,4’-ジアミノジフェニルエーテル
・有機溶剤(C)、(C1):N,N-ジメチルアセトアミド
・微粒子
 シリカ:700nmシリカ(密度:2.2)
 PMMA:ポリメチルメタクリレート(密度:1.17)
・縮合剤(E)
 (E1):イミダゾール
 (E2):
Figure JPOXMLDOC01-appb-C000009
<Examples 1 to 3, Comparative Examples 1 and 2>
In Examples and Comparative Examples, the following tetracarboxylic dianhydrides, diamines, organic solvents, fine particles, and condensing agents were used.
Tetracarboxylic dianhydride (A), (A1): pyromellitic dianhydride, diamine (B), (B1): 4,4′-diaminodiphenyl ether, organic solvent (C), (C1): N , N-dimethylacetamide fine particles Silica: 700 nm silica (density: 2.2)
PMMA: polymethyl methacrylate (density: 1.17)
・ Condensation agent (E)
(E1): Imidazole (E2):
Figure JPOXMLDOC01-appb-C000009
[ワニスの調製]
 撹拌機、撹拌羽根、還流冷却機、窒素ガス導入管を備えたセパラブルフラスコに、テトラカルボン酸二無水物と、ジアミンと、有機溶剤とを投入した。窒素ガス導入管よりフラスコ内に窒素を導入し、フラスコ内を窒素雰囲気とした。次いで、フラスコの内容物を撹拌しながら、50℃で20時間、テトラカルボン酸二無水物と、ジアミンとを反応させて、ポリアミド酸溶液を得た。得られたポリアミド酸溶液に、縮合剤及び微粒子を、表1に記載の量で添加し撹拌して、ワニスを調製した。なお、実施例3についてはシリカ微粒子の場合と膜中の体積が同等(ポリイミド-微粒子複合膜とした際に微粒子/ポリイミドの体積比率が約2.6)になるように予め配合量を調整した。
[Preparation of varnish]
Tetracarboxylic dianhydride, diamine, and organic solvent were put into a separable flask equipped with a stirrer, a stirring blade, a reflux condenser, and a nitrogen gas introduction tube. Nitrogen was introduced into the flask through a nitrogen gas introduction tube, and the atmosphere in the flask was changed to a nitrogen atmosphere. Next, while stirring the contents of the flask, tetracarboxylic dianhydride and diamine were reacted at 50 ° C. for 20 hours to obtain a polyamic acid solution. A condensing agent and fine particles were added to the obtained polyamic acid solution in the amounts shown in Table 1 and stirred to prepare a varnish. In Example 3, the blending amount was adjusted in advance so that the volume in the film was equivalent to that in the case of silica fine particles (the volume ratio of fine particles / polyimide was about 2.6 when a polyimide-fine particle composite film was used). .
Figure JPOXMLDOC01-appb-T000010
Figure JPOXMLDOC01-appb-T000010
[ポリイミド-樹脂微粒子複合膜の成膜]
 上記のワニスを、離型剤を塗布したガラス板にアプリケーターを用い製膜した。70℃で5分間プリベークして、膜厚25μmの未焼成複合膜を形成した。基材から未焼成複合膜を剥離後、エタノールで離型剤を除去し、比較例1は、320℃で15分間、比較例2及び実施例1~3については、230℃で15分間焼成処理を施し、イミド化を完結させた。比較例1,2及び実施例1,2の成膜したポリイミド-樹脂微粒子複合膜の膜強度及び伸びの測定結果を図1(a)及び(b)にそれぞれ示す。なお、実施例3の膜強度及び伸びの測定結果は実施例1と同等であった。
[Formation of polyimide-resin fine particle composite film]
The varnish was formed into a film using an applicator on a glass plate coated with a release agent. Prebaking was performed at 70 ° C. for 5 minutes to form an unfired composite film having a thickness of 25 μm. After peeling off the unfired composite film from the substrate, the release agent was removed with ethanol. In Comparative Example 1, the firing process was performed at 320 ° C. for 15 minutes, and in Comparative Examples 2 and Examples 1 to 3, the firing process was performed at 230 ° C. for 15 minutes. To complete imidization. The film strength and elongation measurement results of the polyimide-resin fine particle composite films formed in Comparative Examples 1 and 2 and Examples 1 and 2 are shown in FIGS. 1 (a) and 1 (b), respectively. The film strength and elongation measurement results of Example 3 were the same as those of Example 1.
[多孔質ポリイミド膜の形成(微粒子除去工程)]
 上記ポリイミド-樹脂微粒子複合膜を、実施例では、270℃で30分熱処理、比較例では、10%HF溶液中に10分間浸漬することで、それぞれ膜中に含まれる微粒子を除去した。得られた多孔質ポリイミド膜表面のSEM像を図2~5に示す。
[Porous polyimide film formation (particulate removal process)]
The polyimide-resin fine particle composite film was heat treated at 270 ° C. for 30 minutes in the example, and immersed in a 10% HF solution for 10 minutes in the comparative example, thereby removing the fine particles contained in the film. SEM images of the surface of the obtained porous polyimide film are shown in FIGS.
 図1に示した、実施例1、2と比較例1、2との比較によれば、縮合剤として(E1)又は(E2)を添加することで、230℃という低温で熱処理した場合であっても、高温における熱イミド化した比較例1と同等に膜強度が良好なポリイミド膜が得られることが分かる。これに対し、縮合剤を含まない比較例2は、膜強度が大幅に低下した。 According to the comparison between Examples 1 and 2 and Comparative Examples 1 and 2 shown in FIG. 1, the heat treatment was performed at a low temperature of 230 ° C. by adding (E1) or (E2) as a condensing agent. However, it turns out that the polyimide film | membrane with favorable film | membrane intensity | strength is obtained equivalent to the comparative example 1 which carried out the thermal imidation in high temperature. On the other hand, in Comparative Example 2 containing no condensing agent, the film strength was greatly reduced.
 図2には、比較例1及び実施例1~3で作成した多孔質ポリイミド膜の表面、裏面、断面のSEM像を示す。更に、比較例1及び実施例1~3の裏面の拡大したSEM像を、図3~6に示す。これらの図から、PMMAは270℃で分解して消失し、従来のシリカをHF処理して行うものと同様にポリイミド膜を多孔質化できることを確かめることができた。
 
FIG. 2 shows SEM images of the front surface, back surface, and cross section of the porous polyimide films prepared in Comparative Example 1 and Examples 1 to 3. Furthermore, enlarged SEM images of the back surfaces of Comparative Example 1 and Examples 1 to 3 are shown in FIGS. From these figures, it was confirmed that PMMA was decomposed and disappeared at 270 ° C., and that the polyimide film could be made porous in the same manner as that obtained by subjecting conventional silica to HF treatment.

Claims (5)

  1.  ポリアミド酸又はポリイミド、樹脂微粒子、及び縮合剤を含有する未焼成複合膜を、前記樹脂微粒子の分解温度未満の温度で焼成してポリイミド-樹脂微粒子複合膜とする焼成工程と、
     前記ポリイミド-樹脂微粒子複合膜から前記樹脂微粒子を取り除く微粒子除去工程と、
    を有する多孔質ポリイミド膜の製造方法。
    A firing step in which an unfired composite film containing polyamic acid or polyimide, resin fine particles, and a condensing agent is fired at a temperature lower than the decomposition temperature of the resin fine particles to form a polyimide-resin fine particle composite film;
    A fine particle removal step of removing the resin fine particles from the polyimide-resin fine particle composite film;
    The manufacturing method of the porous polyimide membrane which has this.
  2.  請求項1記載の方法で製造される多孔質ポリイミド膜。 A porous polyimide film produced by the method according to claim 1.
  3.  請求項2記載の多孔質ポリイミド膜からなるセパレータ。 A separator comprising the porous polyimide film according to claim 2.
  4.  ポリアミド酸又はポリイミド、樹脂微粒子、及び縮合剤を含有する未焼成複合膜を、前記樹脂微粒子の分解温度未満の温度で焼成する焼成工程を有するポリイミド-樹脂微粒子複合膜の製造方法。 A method for producing a polyimide-resin fine particle composite film comprising a baking step of baking an unfired composite film containing polyamic acid or polyimide, resin fine particles, and a condensing agent at a temperature lower than the decomposition temperature of the resin fine particles.
  5.  ポリアミド酸又はポリイミド、樹脂微粒子、縮合剤、及び有機溶剤を含有するワニス。 Varnish containing polyamide acid or polyimide, resin fine particles, condensing agent, and organic solvent.
PCT/JP2014/064164 2013-06-07 2014-05-28 Varnish, porous polyimide film produced using said varnish, and method for producing said film WO2014196435A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015521408A JP6342891B2 (en) 2013-06-07 2014-05-28 Varnish, porous polyimide film produced using the same, and method for producing the same

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2013-120410 2013-06-07
JP2013120410 2013-06-07

Publications (1)

Publication Number Publication Date
WO2014196435A1 true WO2014196435A1 (en) 2014-12-11

Family

ID=52008084

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/064164 WO2014196435A1 (en) 2013-06-07 2014-05-28 Varnish, porous polyimide film produced using said varnish, and method for producing said film

Country Status (3)

Country Link
JP (1) JP6342891B2 (en)
TW (1) TWI636076B (en)
WO (1) WO2014196435A1 (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016104309A1 (en) * 2014-12-24 2016-06-30 ユニチカ株式会社 Porous polyimide film and method for producing same
US20160279883A1 (en) * 2015-03-26 2016-09-29 Fuji Xerox Co., Ltd. Method for producing porous polyimide film, and porous polyimide film
JP2016183333A (en) * 2015-03-26 2016-10-20 富士ゼロックス株式会社 Method for producing resin particle-dispersed polyimide precursor solution, resin particle-dispersed polyimide precursor solution, resin particle-containing polyimide film, method for producing porous polyimide film, and porous polyimide film
JP2019011383A (en) * 2017-06-29 2019-01-24 富士ゼロックス株式会社 Polyimide precursor solution, manufacturing method of porous polyimide film, and porous polyimide film
JP2020152922A (en) * 2020-06-24 2020-09-24 東京応化工業株式会社 Composition containing microparticles
JPWO2019182113A1 (en) * 2018-03-23 2021-04-08 積水化成品工業株式会社 Vinyl-based resin particles and their manufacturing method
US11958922B2 (en) 2018-09-11 2024-04-16 Sekisui Plastics Co., Ltd. Vinyl-based resin particles and method for producing same

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002356577A (en) * 2001-03-15 2002-12-13 Sumitomo Bakelite Co Ltd Resin for porous insulating film, porous insulating film and production method thereof
JP2003165905A (en) * 2001-11-29 2003-06-10 Du Pont Toray Co Ltd Aromatic polyimide film, manufacturing method therefor, and use thereof
JP2004026954A (en) * 2002-06-24 2004-01-29 Mitsubishi Chemicals Corp Method of manufacturing porous material and porous material
JP2010024385A (en) * 2008-07-22 2010-02-04 Sekisui Chem Co Ltd Method for producing porous resin film, porous resin film, and cell separator
JP2010043134A (en) * 2008-08-08 2010-02-25 Nitto Denko Corp Polyimide tubular article and its preparation
JP2011012207A (en) * 2009-07-03 2011-01-20 Mitsui Chemicals Inc Resin composition, method for producing resin composition, method for producing porous polymer and porous polymer
WO2012169383A1 (en) * 2011-06-06 2012-12-13 日東電工株式会社 Polyimide porous body and method for producing same

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002356577A (en) * 2001-03-15 2002-12-13 Sumitomo Bakelite Co Ltd Resin for porous insulating film, porous insulating film and production method thereof
JP2003165905A (en) * 2001-11-29 2003-06-10 Du Pont Toray Co Ltd Aromatic polyimide film, manufacturing method therefor, and use thereof
JP2004026954A (en) * 2002-06-24 2004-01-29 Mitsubishi Chemicals Corp Method of manufacturing porous material and porous material
JP2010024385A (en) * 2008-07-22 2010-02-04 Sekisui Chem Co Ltd Method for producing porous resin film, porous resin film, and cell separator
JP2010043134A (en) * 2008-08-08 2010-02-25 Nitto Denko Corp Polyimide tubular article and its preparation
JP2011012207A (en) * 2009-07-03 2011-01-20 Mitsui Chemicals Inc Resin composition, method for producing resin composition, method for producing porous polymer and porous polymer
WO2012169383A1 (en) * 2011-06-06 2012-12-13 日東電工株式会社 Polyimide porous body and method for producing same

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5944613B1 (en) * 2014-12-24 2016-07-05 ユニチカ株式会社 Porous polyimide film and method for producing the same
CN107001681A (en) * 2014-12-24 2017-08-01 尤尼吉可株式会社 Porous polyimide film and its manufacture method
CN107001681B (en) * 2014-12-24 2018-10-12 尤尼吉可株式会社 Porous polyimide film and its manufacturing method
WO2016104309A1 (en) * 2014-12-24 2016-06-30 ユニチカ株式会社 Porous polyimide film and method for producing same
CN106009007B (en) * 2015-03-26 2020-09-11 富士施乐株式会社 Method for producing porous polyimide film, and porous polyimide film
US20160279883A1 (en) * 2015-03-26 2016-09-29 Fuji Xerox Co., Ltd. Method for producing porous polyimide film, and porous polyimide film
CN106009007A (en) * 2015-03-26 2016-10-12 富士施乐株式会社 Method for producing porous polyimide film, and porous polyimide film
JP2016183333A (en) * 2015-03-26 2016-10-20 富士ゼロックス株式会社 Method for producing resin particle-dispersed polyimide precursor solution, resin particle-dispersed polyimide precursor solution, resin particle-containing polyimide film, method for producing porous polyimide film, and porous polyimide film
US9707722B2 (en) * 2015-03-26 2017-07-18 Fuji Xerox Co., Ltd. Method for producing porous polyimide film, and porous polyimide film
US10195794B2 (en) 2015-03-26 2019-02-05 Fuji Xerox Co., Ltd. Method for producing porous polyimide film, and porous polyimide film
JP2020109189A (en) * 2015-03-26 2020-07-16 富士ゼロックス株式会社 Method for producing resin particle-dispersed polyimide precursor solution, resin particle-dispersed polyimide precursor solution, resin particle-containing polyimide film, method for producing porous polyimide film, and porous polyimide film
JP2019011383A (en) * 2017-06-29 2019-01-24 富士ゼロックス株式会社 Polyimide precursor solution, manufacturing method of porous polyimide film, and porous polyimide film
JPWO2019182113A1 (en) * 2018-03-23 2021-04-08 積水化成品工業株式会社 Vinyl-based resin particles and their manufacturing method
JP7263318B2 (en) 2018-03-23 2023-04-24 積水化成品工業株式会社 Vinyl resin particles and method for producing the same
US11958922B2 (en) 2018-09-11 2024-04-16 Sekisui Plastics Co., Ltd. Vinyl-based resin particles and method for producing same
JP2020152922A (en) * 2020-06-24 2020-09-24 東京応化工業株式会社 Composition containing microparticles

Also Published As

Publication number Publication date
TWI636076B (en) 2018-09-21
JPWO2014196435A1 (en) 2017-02-23
JP6342891B2 (en) 2018-06-13
TW201509999A (en) 2015-03-16

Similar Documents

Publication Publication Date Title
JP6342891B2 (en) Varnish, porous polyimide film produced using the same, and method for producing the same
JP6881644B2 (en) Method for producing resin particle-dispersed polyimide precursor solution, resin particle-dispersed polyimide precursor solution, resin particle-containing polyimide film, method for producing porous polyimide film, and porous polyimide film.
JP6897150B2 (en) Method for Producing Polyimide Precursor Solution, Method for Producing Polyimide Precursor Solution, and Porous Polyimide Film
JP6404028B2 (en) Method for producing porous polyimide film, method for producing separator, and varnish
JP7163582B2 (en) Polyimide precursor solution, molded article, and method for producing molded article
JP5605566B2 (en) Method for producing porous polyimide membrane
JP6596196B2 (en) Method for producing varnish for producing porous membrane
JP6950307B2 (en) Particle-dispersed polyimide precursor solution, method for producing porous polyimide film, and porous polyimide film
WO2016027825A1 (en) Varnish for porous polyimide film production and method for producing porous polyimide film using same
JP6876912B2 (en) Method for producing polyimide precursor solution and porous polyimide film
JP6747091B2 (en) Porous film and method for producing the same
WO2017038897A1 (en) Method for manufacturing porous membrane
JP7024225B2 (en) Polyimide laminated film and method for manufacturing polyimide laminated film
CN110078918B (en) Polyimide precursor solution, method for producing porous polyimide film, and porous polyimide film
JP2022151286A (en) Polyimide precursor-containing aqueous composition, method for producing polyimide film, and method for producing porous polyimide film
CN110105757B (en) Porous polyimide film blank film, method for producing same, and composition
JP6147069B2 (en) Unbaked composite film, polyimide-fine particle composite film, and method for producing porous polyimide film
JP6904109B2 (en) Method for producing polyimide precursor solution and porous polyimide film
JP7286980B2 (en) Porous polyimide membrane, Lithium-ion secondary battery separator, Lithium-ion secondary battery, and All-solid-state battery
CN114957712A (en) Polyimide precursor solution, method for producing porous polyimide film, and porous polyimide film
JP2021181552A (en) Varnish composition, method of manufacturing precursor film of polyimide porous film, and method of manufacturing polyimide porous film
CN112111219A (en) Varnish composition, precursor film of polyimide porous film, method for producing precursor film of polyimide porous film, and method for producing polyimide porous film
JP7381228B2 (en) Varnish composition, method for producing a varnish composition, method for producing a precursor film for a porous polyimide membrane, precursor film for a porous polyimide membrane, and method for producing a porous polyimide membrane
US20210238392A1 (en) Polyimide precursor-containing aqueous composition, method for producing polyimide film, and method for producing porous polyimide film
TW202225347A (en) Varnish for production of polyimide porous membrane

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14807200

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2015521408

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14807200

Country of ref document: EP

Kind code of ref document: A1