WO2014196287A1 - 内視鏡システム - Google Patents

内視鏡システム Download PDF

Info

Publication number
WO2014196287A1
WO2014196287A1 PCT/JP2014/061896 JP2014061896W WO2014196287A1 WO 2014196287 A1 WO2014196287 A1 WO 2014196287A1 JP 2014061896 W JP2014061896 W JP 2014061896W WO 2014196287 A1 WO2014196287 A1 WO 2014196287A1
Authority
WO
WIPO (PCT)
Prior art keywords
unit
output
processing device
endoscope
control unit
Prior art date
Application number
PCT/JP2014/061896
Other languages
English (en)
French (fr)
Inventor
小野 誠
秀和 信濃
Original Assignee
オリンパスメディカルシステムズ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by オリンパスメディカルシステムズ株式会社 filed Critical オリンパスメディカルシステムズ株式会社
Priority to JP2015519666A priority Critical patent/JP5889483B2/ja
Publication of WO2014196287A1 publication Critical patent/WO2014196287A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B23/00Telescopes, e.g. binoculars; Periscopes; Instruments for viewing the inside of hollow bodies; Viewfinders; Optical aiming or sighting devices
    • G02B23/24Instruments or systems for viewing the inside of hollow bodies, e.g. fibrescopes
    • G02B23/2476Non-optical details, e.g. housings, mountings, supports
    • G02B23/2484Arrangements in relation to a camera or imaging device
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B1/00Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor
    • A61B1/00002Operational features of endoscopes
    • A61B1/00004Operational features of endoscopes characterised by electronic signal processing
    • A61B1/00006Operational features of endoscopes characterised by electronic signal processing of control signals
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B1/00Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor
    • A61B1/00002Operational features of endoscopes
    • A61B1/00011Operational features of endoscopes characterised by signal transmission
    • A61B1/00013Operational features of endoscopes characterised by signal transmission using optical means
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N23/00Cameras or camera modules comprising electronic image sensors; Control thereof
    • H04N23/50Constructional details
    • H04N23/555Constructional details for picking-up images in sites, inaccessible due to their dimensions or hazardous conditions, e.g. endoscopes or borescopes
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N23/00Cameras or camera modules comprising electronic image sensors; Control thereof
    • H04N23/56Cameras or camera modules comprising electronic image sensors; Control thereof provided with illuminating means

Definitions

  • the present invention relates to an endoscope system that captures and displays an image of a body cavity of a subject such as a patient.
  • an endoscope system is used to observe an organ of a subject such as a patient.
  • An endoscope system includes, for example, an endoscope provided with an imaging element at the tip, has an elongated shape having flexibility, and has an insertion portion that is inserted into a body cavity of a subject, and the insertion portion via a cable.
  • a processing device that performs image processing of the in-vivo image captured by the image sensor and displays the in-vivo image on a display unit or the like.
  • the present invention has been made in view of the above, and an object thereof is to provide an endoscope system capable of transmitting a large-capacity signal at high speed while ensuring safety.
  • an endoscope system includes an endoscope that captures an in-vivo image of a subject by inserting a distal end portion into the body cavity of the subject,
  • An endoscope system including a processing device that is communicably connected to the endoscope and that performs predetermined image processing on the in-vivo image captured by the endoscope, wherein the endoscope is externally
  • a sensor unit that photoelectrically converts the light of the optical signal to generate an electrical signal
  • an output unit that converts the electrical signal into an optical signal and outputs the optical signal to the processing device, and the endoscope and the processing device.
  • a detection unit that detects a connection state between the output unit and an output limiting unit that limits an output of the optical signal received by the processing device based on a detection result of the detection unit.
  • the optical signal output by the unit is received, and the optical signal is converted into an electrical signal. It characterized by having a receiving unit for conversion.
  • the output limiting means is an output control unit that controls the output power of the laser beam that is the optical signal.
  • the output control unit sets the output power of the laser beam to be equal to or less than Class 1 of IEC 60825-1.
  • the output limiting means includes a shutter provided in an optical path of the optical signal, and an operation control unit that controls an opening / closing operation of the shutter.
  • the endoscope system includes, in the above invention, an open / close detection unit that detects an open / closed state of the casing of the processing device, and the output restriction unit is based on detection information by the open / close detection unit.
  • the output of the optical signal received by the light receiving unit is limited.
  • the endoscope includes a sensor unit that photoelectrically converts light from the outside to generate an electrical signal, and an output unit that converts the electrical signal to an optical signal and outputs the optical signal to the processing device.
  • a detection unit that detects a connection state between the endoscope and the processing device, and an output limiting unit that limits output of an optical signal received by the processing device based on a detection result of the detection unit. Since the device has a light receiving unit that receives the optical signal output from the output unit and converts the optical signal into an electrical signal, it is possible to transmit a large-capacity signal at high speed while ensuring safety. There is an effect that can be done.
  • FIG. 1 is a diagram illustrating a schematic configuration of an endoscope system according to the first embodiment of the present invention.
  • FIG. 2 is a block diagram illustrating a functional configuration of a main part of the endoscope system according to the first embodiment of the present invention.
  • FIG. 3 is a block diagram illustrating a functional configuration of a main part of the endoscope system according to the modified example 1-1 of the first embodiment of the present invention.
  • FIG. 4 is a block diagram illustrating a functional configuration of a main part of the endoscope system according to the modified example 1-2 of the first embodiment of the present invention.
  • FIG. 5 is a block diagram illustrating a functional configuration of a main part of the endoscope system according to the second embodiment of the present invention.
  • FIG. 6 is a block diagram illustrating a functional configuration of a main part of the endoscope system according to the modified example 2-1 of the second embodiment of the present invention.
  • FIG. 1 is a diagram illustrating a schematic configuration of an endoscope system 1 according to the first embodiment of the present invention.
  • FIG. 2 is a block diagram illustrating a functional configuration of a main part of the endoscope system 1 according to the first embodiment.
  • An endoscope system 1 shown in FIGS. 1 and 2 inserts a distal end portion into a body cavity of a subject to capture an in-vivo image of the subject, and emits the light from the distal end of the endoscope 2.
  • a light source device 3 that generates illumination light
  • a processing device 4 that performs predetermined image processing on an in-vivo image captured by the endoscope 2, and controls the overall operation of the endoscope system 1, and a processing device 4
  • the endoscope 2 includes an insertion portion 21 having an elongated shape having flexibility, an operation portion 22 that is connected to a proximal end side of the insertion portion 21 and receives input of various operation signals, and an insertion portion from the operation portion 22.
  • 21 extends in a direction different from the direction in which 21 extends, and is provided at a universal cord 23 containing various cables connected to the light source device 3 and the processing device 4 and an end portion of the universal cord 23 on the side different from the side connected to the operation unit 22.
  • the light source device 3 and the processing device 4 are each provided with a detachable connector portion 24.
  • the insertion unit 21 receives a light and performs photoelectric conversion to generate a signal.
  • the insertion unit 21 includes a distal end portion 25 including an imaging element in which pixels that are two-dimensionally arranged, and a plurality of bending pieces. It has a bending portion 26 and a long flexible tube portion 27 that is connected to the proximal end side of the bending portion 26 and has flexibility.
  • Examples of the image sensor provided at the distal end portion 25 include a CCD image sensor and a CMOS image sensor.
  • the distal end portion 25 includes a light guide 251, an illumination lens 252, a sensor portion 253, an analog front end portion 254 (hereinafter referred to as “AFE portion 254”), a P / S conversion portion 255, and an E / O conversion portion. 256, a detection unit 257, a drive control unit 258, and a control unit 259.
  • the light guide 251 is configured using glass fiber or the like, and serves as a light guide path for light emitted from the light source device 3.
  • the illumination lens 252 is provided at the tip of the light guide 251 and emits light from the ride guide 251 to the outside.
  • the sensor unit 253 generates an electric signal (imaging signal) by photoelectrically converting light.
  • a plurality of pixels each having a photodiode that accumulates electric charge according to the amount of light and an amplifier that amplifies the electric charge accumulated by the photodiode are two-dimensionally arranged, and photoelectrically converts light from the optical system.
  • a light receiving unit 253a that generates an electrical signal (imaging signal) and a reading unit 253b that reads out electrical signals generated by a plurality of pixels of the light receiving unit 253a as image information.
  • the AFE unit 254 performs noise removal and A / D conversion on the electrical signal output from the sensor unit 253. Specifically, the AFE unit 254 reduces the noise component included in the electrical signal (analog), adjusts the amplification factor (gain) of the electrical signal to maintain the output level, and performs analog / digital A / D of the electrical signal. Perform conversion.
  • the P / S conversion unit 255 performs parallel / serial conversion on the digital signal (image signal) output from the AFE unit 254.
  • the E / O conversion unit 256 converts the serial electrical signal including the pixel information output from the P / S conversion unit 255 into an optical signal and outputs the optical signal to the processing device 4.
  • the E / O conversion unit 256 includes a laser diode (LD) 256a (output unit).
  • the laser diode 256 a outputs laser light (optical signal) including pixel information to the processing device 4 under the control of the drive control unit 258.
  • the detection unit 257 outputs a connection detection signal (analog) to the processing device 4 as detection information for causing the processing device 4 to detect the connection state between the distal end portion 25 and the treatment device 4.
  • the connection detection signal includes identification information such as a unique number of the endoscope 2.
  • the drive controller 258 controls the drive of the laser diode (LD) 256a of the E / O converter 256.
  • the control unit 259 controls various operations of the distal end portion 25 according to the setting data received from the processing device 4.
  • the control unit 259 is configured using a CPU (Central Processing Unit), a register that records various programs, and the like.
  • the operation section 22 includes a bending knob 221 that bends the bending section 26 in the vertical direction and the left-right direction, a treatment instrument insertion section 222 that inserts a treatment instrument such as a biological forceps, an electric knife, and an inspection probe into the body cavity of the subject.
  • a treatment instrument such as a biological forceps, an electric knife, and an inspection probe into the body cavity of the subject.
  • it has a plurality of switches 223 which are operation input units for inputting operation instruction signals of peripheral devices such as air supply means, water supply means, and screen display control.
  • the treatment tool inserted from the treatment tool insertion portion 222 is exposed from the opening (not shown) via the treatment tool channel (not shown) of the distal end portion 25.
  • the universal cord 23 includes at least a light guide 251 and an aggregate cable in which one or a plurality of signal lines are collected.
  • the light source device 3 includes an illumination unit 31 and an illumination control unit 32.
  • the illumination unit 31 emits illumination light that illuminates the subject.
  • the illumination unit 31 includes a light source 33 and a light source driver 34.
  • the light source 33 is configured using a white LED, and generates white light under the control of the illumination control unit 32.
  • Light generated by the light source 33 is emitted from the distal end portion 25 toward the subject via a condenser lens (not shown) and a light guide 251.
  • the light source driver 34 causes the light source 33 to generate white light by supplying current to the light source 33 under the control of the illumination control unit 32.
  • the illumination control unit 32 controls the illumination unit 31 to emit and turn off illumination light. Further, the illumination control unit 32 controls the intensity of the illumination light emitted from the illumination unit 31, such as keeping the intensity of the illumination light emitted from the illumination unit 31 constant.
  • the processing device 4 includes an O / E conversion unit 401, an S / P conversion unit 402, an image processing unit 403, an analog-digital conversion circuit (ADC) 404, an input unit 405, a recording unit 406, and a control unit. 407 and a power supply unit 408.
  • ADC analog-digital conversion circuit
  • the O / E conversion unit 401 receives an optical signal including pixel information output from the distal end portion 25 and converts it into an electrical signal.
  • the O / E conversion unit 401 includes a photodiode (PD) 401a (light receiving unit) that receives (receives) light (optical signal) output from the distal end portion 25.
  • PD photodiode
  • the S / P conversion unit 402 performs serial / parallel conversion on the serial form electric signal converted by the O / E conversion unit 401 and outputs the result to the image processing unit 403.
  • the image processing unit 403 generates an image signal (in-vivo image information) to be displayed by the display device 5 based on the electrical signal (image information) input from the S / P conversion unit 402.
  • the image processing unit 403 performs predetermined image processing on the image information to generate in-vivo image information.
  • examples of the image processing include optical black reduction processing, white balance adjustment processing, color matrix calculation processing, gamma correction processing, color reproduction processing, and edge enhancement processing.
  • the image processing unit 403 outputs the image information input from the S / P conversion unit 402 to the control unit 407.
  • the ADC 404 receives the connection detection signal that is an analog signal output from the detection unit 257, converts the analog signal into a digital signal, and outputs the digital signal to the control unit 407.
  • the input unit 405 receives input of various signals such as an operation instruction signal that instructs the operation of the endoscope system 1.
  • the input unit 405 outputs the received signal to the control unit 407.
  • the recording unit 406 is realized using a semiconductor memory such as a flash memory or a DRAM (Dynamic Random Access Memory).
  • the recording unit 406 records various programs for operating the endoscope system 1 and data including various parameters necessary for the operation of the endoscope system 1.
  • the recording unit 406 records set values (maximum output value, lower limit value (limit value), and the like) related to the output power of the laser beam from the laser diode 256a.
  • the control unit 407 is configured using a CPU or the like, and performs drive control of each component including the endoscope 2 and the light source device 3, input / output control of information with respect to each component, and the like.
  • the control unit 407 transmits setting data for imaging control to the distal end portion 25 via a predetermined signal line included in the aggregate cable.
  • the control unit 407 outputs to the light source device 3 a synchronization signal including the exposure timing and readout timing of the imaging process performed by the distal end portion 25. Further, the control unit 407 outputs an operation control signal related to laser output to the endoscope 2 (the distal end portion 25) based on the connection detection signal from the detection unit 257.
  • the power supply unit 408 supplies power for operating each component to at least the endoscope 2 and the processing device 4.
  • the display device 5 receives and displays the in-vivo image corresponding to the in-vivo image information generated by the processing device 4 via the video cable.
  • the display device 5 is configured using a liquid crystal display or an organic EL (Electro Luminescence) display.
  • the control unit 407 When receiving the connection detection signal from the detection unit 257, the control unit 407 outputs an operation control signal indicating that the laser output from the laser diode 256a is not limited to the control unit 259 of the distal end portion 25.
  • the operation control signal includes information such as a setting value registered in the recording unit 406.
  • the control unit 259 When the control unit 259 receives the operation control signal indicating that the output power of the laser beam is not limited, the control unit 259 increases the output power of the laser beam to the drive control unit 258, for example, with the set output power at the maximum value, the laser beam Is output. Upon receiving this instruction, the drive control unit 258 performs control to increase the output power of the laser light from the laser diode 256a. Thereby, in the state in which the output power of the laser beam from the laser diode 256a is set to the maximum output value, the transmission process of the optical signal can be performed with the processing device 4.
  • the set value of the output power of the laser beam is set based on IEC 60825-1.
  • the maximum value of the output power of the laser beam is set based on, for example, Class 2 or Class 3 (3R) of IEC 60825-1.
  • the minimum value (limit value) of the output power of the laser beam is set based on Class 1 of IEC 60825-1.
  • IEC 60825-1 is an IEC standard that defines the safety of laser products. Class 1 of IEC60825-1 is defined as a safe laser under reasonable conditions that can be predicted during operation.
  • control unit 407 when the control unit 407 has not received the connection detection signal from the ADC 404, the control unit 407 outputs an operation control signal for limiting the output power of the laser light from the laser diode 256 a to the control unit 259 of the distal end portion 25.
  • connection part When the control unit 407 does not receive the connection detection signal, the connection part may be disconnected or the signal line may be disconnected between the endoscope 2 and the processing device 4. At this time, for example, laser light emitted from the laser diode 256a may leak to the outside.
  • the control unit 259 instructs the drive control unit 258 to reduce the output power of the laser beam.
  • the drive control unit 258 performs control to reduce the output power of the laser light from the laser diode 256a.
  • the drive control unit 258 controls the output power of the laser beam to be a preset limit value.
  • the limit value is set, for example, to be a level equal to or lower than Class 1 of IEC 60825-1.
  • the drive control unit 258 may control the output power of the laser light so as to become a set limit value, or may control the output power of the laser light to zero. Since an optical signal including image information may be being transmitted / received, it is preferable to control the output power of the laser beam to a set limit value in order to avoid a sudden communication stop. It should be noted that processing such as setting the limit value as the setting at the time of receiving the control signal and then setting the output power of the laser beam to zero at a predetermined interval may be performed.
  • the output power of the laser beam can be controlled according to the connection state between the tip portion 25 and the processing device 4.
  • the output power of the laser beam can be reduced or controlled to zero to ensure safety.
  • the output power of the laser beam can be increased while ensuring safety, and a large amount of information can be obtained in the optical signal communication processing. It becomes possible to transmit and receive at higher speed.
  • the drive control unit 258 controls the output power of the laser beam from the laser diode 256a based on the detection result by the detection unit 257, while ensuring safety, Large capacity signals can be transmitted at high speed. Thereby, in consideration of the safety by the laser beam, the laser beam (optical signal) can be transmitted and received at a higher speed.
  • FIG. 3 is a block diagram illustrating a functional configuration of a main part of the endoscope system 1a according to the modified example 1-1 of the first embodiment of the present invention.
  • the detection unit 257 outputs the connection detection signal to the processing device 4.
  • the detection unit 257a detects the connection to the control unit 259a of the distal end portion 25a. Output a signal.
  • the distal end portion 25a of the endoscope 2a according to the modification 1-1 is provided with a detection unit 257a and a control unit 259a instead of the detection unit 257 and the control unit 259, and a recording unit 281. And a power supply unit 282.
  • the recording unit 281 and the power supply unit 282 may be provided in the operation unit 22 or the like.
  • the processing device 4a includes the above-described O / E conversion unit 401, S / P conversion unit 402, image processing unit 403, input unit 405, recording unit 406, power supply unit 408, a CPU, and the like. And a control unit 407a configured to perform drive control of each component including the endoscope 2 and the light source device 3, and input / output control of information with respect to each component.
  • the detection unit 257a detects an electrical connection state between the distal end portion 25a and the treatment device 4a and outputs a connection detection signal as detection information to the control unit 259a. Specifically, for example, the detection unit 257a outputs a connection confirmation signal to the treatment device 4a (control unit 407a), and determines whether or not a signal is returned from the processing device 4a to the output signal. By determining, a connection detection signal relating to the presence or absence of an electrical connection state between the distal end portion 25a and the treatment device 4a is output.
  • the control unit 259a controls various operations of the distal end portion 25a according to the setting data received from the processing device 4a.
  • the control unit 259a is configured using a CPU, a register for recording various programs, and the like.
  • the control unit 259a receives the connection detection signal from the detection unit 257a, and outputs an operation control signal related to the output power of the laser beam based on the received connection detection signal.
  • the recording unit 281 is realized using a semiconductor memory such as a flash memory or a DRAM.
  • the recording unit 281 includes various programs for operating the distal end portion 25a, data including various parameters necessary for the operation of the distal end portion 25a, and setting values (maximum output value and the like) related to the output power of the laser light from the laser diode 256a.
  • the lower limit value (limit value) is recorded.
  • the power supply unit 282 supplies power for operating each component to at least the tip 25a.
  • the control unit 259a Upon receiving the connection detection signal from the detection unit 257a, the control unit 259a outputs an operation control signal related to the output power of the laser light from the laser diode 256a to the drive control unit 258 based on the connection detection signal.
  • control unit 259a determines whether or not the received connection detection signal is a signal indicating that the distal end portion 25a and the processing device 4a are in a connected state.
  • the control unit 259a determines that the distal end portion 25a and the processing device 4a are in the connected state, the control unit 259a outputs an operation control signal indicating that the output power of the laser beam is not limited to the drive control unit 258.
  • the drive control unit 258 refers to the recording unit 281 and controls the output power of the laser light of the laser diode 256a to be the maximum value.
  • the transmission process of the optical signal is performed with the processing device 4a.
  • control unit 259a determines that the distal end portion 25a and the processing device 4a are not connected, the control unit 259a outputs an operation control signal to the drive control unit 258 to reduce the output power of the laser beam from the laser diode 256a. .
  • the drive control unit 258 performs control to reduce the output power of the laser beam of the laser diode 256a with reference to the recording unit 281 based on the operation control signal. As a result, in the state where the output power of the laser beam is reduced by the laser diode 256a, the optical signal is transmitted to and from the processing device 4a. Note that the drive control unit 258 controls the output power of the laser light to be the above-described limit value. Further, the drive control unit 258 may control the output power of the laser light to zero.
  • the output power of the laser beam can be controlled in accordance with the connection state between the distal end portion 25a and the processing device 4a.
  • the distal end portion 25a and the processing device 4a are not connected, it is possible to ensure safety by controlling the output power of the laser light to the current light or zero to the limit value. For this reason, when the distal end portion 25a and the processing device 4a are in the connected state, the output power of the laser beam can be increased, and it becomes possible to perform higher-speed transmission and reception in the optical signal communication processing.
  • FIG. 4 is a block diagram illustrating a functional configuration of a main part of the endoscope system 1b according to the modification 1-2 of the first embodiment of the present invention.
  • the processing device 4b according to the modified example 1-2 includes a control unit 407b instead of the control unit 407, and further includes an open / close detection unit 409 that detects the opening / closing of the housing, as compared with the configuration of the first embodiment described above. Have.
  • the opening / closing detection unit 409 is configured by a sensor using light or magnetism, for example, and detects the opening / closing of the housing by this sensor, and outputs a detection signal to the control unit 407b.
  • the open / close detection unit 409 outputs a detection signal when the housing is in an open state.
  • control unit 407b When receiving the detection signal from the open / close detection unit 409, the control unit 407b outputs an operation control signal for restricting the output power of the laser light from the laser diode 256a to the control unit 259 of the distal end portion 25.
  • the drive control unit 258 controls the output power of the laser light of the laser diode 256a to be reduced or zero based on the operation control signal.
  • the laser diode 256a can reduce the output power of the laser light or turn it off.
  • the output power of the laser beam can be controlled according to the connection state between the distal end portion 25 and the processing device 4b and the open / closed state of the housing of the processing device 4b.
  • the distal end portion 25 and the processing device 4b are not connected, it is possible to ensure safety by reducing the output power of the laser beam to a limit value or controlling it to zero. For this reason, when the distal end portion 25 and the processing device 4b are in the connected state, the output power of the laser beam can be increased, and transmission / reception can be performed at higher speed in the optical signal communication processing.
  • a notification unit may be provided for notifying that the housing is in the open state when the detection result by the open / close detection unit 409 is in the open state.
  • the display device 5 may notify that it is in an open state by characters or images, or may notify by emitting sound or light using a speaker, an LED, or the like.
  • FIG. 5 is a block diagram illustrating a functional configuration of a main part of the endoscope system 1c according to the second embodiment.
  • symbol is attached
  • the laser output of the laser diode 256a is controlled.
  • communication control of optical signals is performed by the shutter 283 provided between the laser diode 256a and the processing device 4c. .
  • the distal end portion 25b of the endoscope 2b is provided with a drive control unit 258a and a control unit 259b instead of the drive control unit 258 and the control unit 259 with respect to the distal end portion 25 described above.
  • a shutter 283 is further provided. The shutter 283 is provided on the optical path of the laser light emitted from the laser diode 256a and reaching the photodiode 401a, and the opening / closing of the optical path is controlled by its own opening / closing operation.
  • the drive control unit 258a (operation control unit) controls the opening / closing drive of the shutter 283.
  • the control unit 259b controls various operations of the distal end portion 25b according to the setting data received from the processing device 4c.
  • the control unit 259b is configured using a CPU, a register for recording various programs, and the like. Further, the control unit 259b outputs an operation control signal related to the opening / closing operation of the shutter 283 based on the control signal from the control unit 407.
  • the processing device 4c according to the second embodiment is provided with a recording unit 406a instead of the recording unit 406 with respect to the processing device 4 described above.
  • the recording unit 406a is realized using a semiconductor memory such as a flash memory or a DRAM.
  • the recording unit 406a includes various programs for operating the endoscope system 1c, data including various parameters necessary for the operation of the endoscope system 1c, and setting conditions for output of laser light by driving the shutter 283 to open and close. (Opening / closing setting of the shutter 283, etc.) are recorded.
  • control unit 407 When the control unit 407 receives the connection detection signal from the detection unit 257, the control unit 407 outputs an operation control signal indicating that the output of the laser light from the laser diode 256a is not limited to the control unit 259b of the distal end portion 25b.
  • control unit 259b When the control unit 259b receives an operation control signal indicating that the output of the laser beam is not limited, the control unit 259b instructs the drive control unit 258a to open the shutter 283. Upon receiving this instruction, the drive control unit 258a opens the shutter 283. Thereby, the transmission process of an optical signal is performed between the front-end
  • control unit 407 when the control unit 407 has not received the connection detection signal from the ADC 404, the control unit 407 outputs an operation control signal for limiting the output of the laser light from the laser diode 256a to the control unit 259b of the tip end portion 25b.
  • control unit 259b When the control unit 259b receives the operation control signal for limiting the output of the laser beam, the control unit 259b instructs the drive control unit 258a to narrow the opening of the shutter 283. Upon receiving this instruction, the drive control unit 258a performs a setting to close the shutter 283 and set the light shielding state. Thereby, the optical signal which reaches
  • the output of the laser beam can be controlled in accordance with the connection state between the distal end portion 25b and the processing device 4c.
  • the laser beam reaching the processing device 4c can be blocked to ensure safety.
  • the output power of light can be increased, and transmission / reception can be performed at higher speed in optical signal communication processing.
  • the output power of the laser beam from the laser diode 256a is controlled to the maximum value.
  • high-speed communication can be realized only by opening and closing the shutter 283.
  • the drive control unit 258a controls the opening / closing operation of the shutter 283 based on the detection result by the detection unit 257 so as to control the output power of the laser light from the laser diode 256a. Therefore, the output power of the laser beam can be changed while ensuring safety. Thereby, it is possible to transmit and receive optical signals at a higher speed in consideration of safety by laser light.
  • FIG. 6 is a block diagram illustrating a functional configuration of a main part of the endoscope system 1d according to the modified example 2-1 of the second embodiment of the present invention.
  • the detection unit 257 outputs the connection detection signal to the processing device 4c.
  • the detection unit 257a detects the connection to the control unit 259c of the distal end portion 25c. Output a signal.
  • the distal end portion 25c of the endoscope 2c according to the modification 2-1 is provided with a detection unit 257a and a control unit 259c in place of the detection unit 257 and the control unit 259b with respect to the above-described distal end portion 25b, and a recording unit 281a. And a power supply unit 282.
  • the processing device 4a has the same configuration as that of the modified example 1-1 described above.
  • the control unit 259c controls various operations of the distal end portion 25c according to the setting data received from the processing device 4a.
  • the control unit 259c is configured using a CPU, a register for recording various programs, and the like.
  • the control unit 259c receives the connection detection signal from the detection unit 257a, and outputs an operation control signal related to the output of the laser light to the drive control unit 258a based on the received connection detection signal.
  • the drive control unit 258a performs control related to the opening / closing drive of the shutter 283 based on the operation control signal received from the control unit 259c.
  • the recording unit 281a is realized using a semiconductor memory such as a flash memory or a DRAM.
  • the recording unit 281a includes various programs for operating the distal end portion 25c, data including various parameters necessary for the operation of the distal end portion 25c, and setting conditions related to the output of laser light from the laser diode 256a (opening / closing setting of the shutter 283). Etc.) are recorded.
  • the control unit 259c Upon receiving the connection detection signal from the detection unit 257a, the control unit 259c outputs an operation control signal related to the output of the laser light from the laser diode 256a to the drive control unit 258a based on the connection detection signal.
  • control unit 259c determines whether or not the received connection detection signal is a signal indicating that the distal end portion 25a and the processing device 4a are in a connected state.
  • the control unit 259c outputs an operation control signal indicating that the output of the laser beam is not limited to the drive control unit 258a.
  • the drive control unit 258a controls the shutter 283 to the open state based on the operation control signal. Thereby, the transmission process of an optical signal is performed between the front-end
  • control unit 259c determines that the distal end portion 25c and the processing device 4a are not connected, the control unit 259c outputs an operation control signal for limiting the laser output from the laser diode 256a to the drive control unit 258a.
  • the drive control unit 258a Based on this operation control signal, the drive control unit 258a performs control to close the shutter 283 to block light. Thereby, the laser beam (optical signal) which reaches
  • the output power of light can be controlled in accordance with the connection state between the distal end portion 25c and the processing device 4a.
  • the distal end portion 25c and the processing device 4a are not connected, it is possible to block the laser light reaching the processing device 4a and ensure safety. For this reason, when the distal end portion 25c and the processing device 4a are in the connected state, the output power of light can be increased, and it becomes possible to perform higher-speed transmission / reception in optical signal communication processing.
  • At least the image processing unit 403 of the processing devices 4 to 4c and the endoscopes 2 to 2c are insulated. Specifically, the two are insulated by optical communication or a patient circuit.
  • a notification unit for notifying that they are in a disconnected state. It may be.
  • the display device 5 may notify that it is in a disconnected state by characters or images, or it may notify that it is in a disconnected state by emitting sound or light using a speaker, LED, or the like. Also good.
  • the communication mode between the tip and the output limiting unit can be applied as long as it uses register communication or optical communication.
  • the endoscope system according to the present invention is useful for changing the laser output while ensuring safety.

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Surgery (AREA)
  • Optics & Photonics (AREA)
  • Multimedia (AREA)
  • Signal Processing (AREA)
  • Biomedical Technology (AREA)
  • General Health & Medical Sciences (AREA)
  • Radiology & Medical Imaging (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Biophysics (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Medical Informatics (AREA)
  • Molecular Biology (AREA)
  • Animal Behavior & Ethology (AREA)
  • Pathology (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Astronomy & Astrophysics (AREA)
  • General Physics & Mathematics (AREA)
  • Endoscopes (AREA)
  • Instruments For Viewing The Inside Of Hollow Bodies (AREA)
  • Closed-Circuit Television Systems (AREA)

Abstract

 本発明にかかる内視鏡システムは、被検体の体腔内に先端部を挿入することによって被検体の体内画像を撮像する内視鏡と、内視鏡と通信可能に接続され、内視鏡が撮像した体内画像に所定の画像処理を施す処理装置とを備えた内視鏡システムであって、内視鏡は、外部からの光を光電変換して電気信号を生成するセンサ部と、電気信号を光信号に変換し、処理装置に該光信号を出力する出力部と、内視鏡と処理装置との間の接続状態を検知する検知部と、検知部の検知結果に基づき、処理装置が受光する光信号の出力を制限する出力制限手段と、を有し、処理装置は、出力部が出力した光信号を受光し、該光信号を電気信号に変換する受光部を有する。

Description

内視鏡システム
 本発明は、例えば、患者等の被検体の体腔内の画像を撮像して表示する内視鏡システムに関する。
 従来、医療分野においては、患者等の被検体の臓器を観察する際に内視鏡システムが用いられている。内視鏡システムは、例えば先端に撮像素子が設けられ、可撓性を有する細長形状をなし、被検体の体腔内に挿入される挿入部を有する内視鏡と、挿入部にケーブルを介して接続され、撮像素子が撮像した体内画像の画像処理を行って、体内画像を表示部等に表示させる処理装置とを備える。
 近年、より鮮明な画像観察を可能とする高画素数の撮像素子が開発されており、内視鏡への高画素数の撮像素子の使用が検討されている。内視鏡で高画素数の撮像素子を使用する場合、該撮像素子と処理装置との間で大容量の信号を高速に伝送するために、レーザ光を用いて信号を伝送する技術が開示されている(例えば、特許文献1~3を参照)。
特開2012-71067号公報 特開2005-279253号公報 特開2009-61032号公報
 しかしながら、上述した特許文献1~3では、安全性を考慮し、レーザ光の出力を制限せざるをえなかった。このため、撮像素子と処理装置との間でさらに高速で信号を伝送しようとした場合に、レーザ光の出力を変更することができなかった。
 本発明は、上記に鑑みてなされたものであって、安全性を確保しつつ、大容量の信号を高速に伝送することができる内視鏡システムを提供することを目的とする。
 上述した課題を解決し、目的を達成するために、本発明にかかる内視鏡システムは、被検体の体腔内に先端部を挿入することによって被検体の体内画像を撮像する内視鏡と、前記内視鏡と通信可能に接続され、前記内視鏡が撮像した前記体内画像に所定の画像処理を施す処理装置とを備えた内視鏡システムであって、前記内視鏡は、外部からの光を光電変換して電気信号を生成するセンサ部と、前記電気信号を光信号に変換し、前記処理装置に該光信号を出力する出力部と、前記内視鏡と前記処理装置との間の接続状態を検知する検知部と、前記検知部の検知結果に基づき、前記処理装置が受光する前記光信号の出力を制限する出力制限手段と、を有し、前記処理装置は、前記出力部が出力した前記光信号を受光し、該光信号を電気信号に変換する受光部を有することを特徴とする。
 また、本発明にかかる内視鏡システムは、上記発明において、前記出力制限手段は、前記光信号であるレーザ光の出力パワーを制御する出力制御部であることを特徴とする。
 また、本発明にかかる内視鏡システムは、上記発明において、前記出力制御部は、前記レーザ光の出力パワーをIEC60825-1のClass1以下に設定することを特徴とする。
 また、本発明にかかる内視鏡システムは、上記発明において、前記出力制限手段は、前記光信号の光路に設けられるシャッタと、前記シャッタの開閉動作を制御する動作制御部と、を有することを特徴とする。
 また、本発明にかかる内視鏡システムは、上記発明において、前記処理装置の筐体の開閉状態を検知する開閉検知部を備え、前記出力制限手段は、前記開閉検知部による検知情報に基づき、前記受光部が受光する前記光信号の出力を制限することを特徴とする。
 本発明によれば、内視鏡が、外部からの光を光電変換して電気信号を生成するセンサ部と、電気信号を光信号に変換し、処理装置に該光信号を出力する出力部と、内視鏡と処理装置との間の接続状態を検知する検知部と、検知部の検知結果に基づき、処理装置が受光する光信号の出力を制限する出力制限手段と、を有し、処理装置が、出力部が出力した光信号を受光し、該光信号を電気信号に変換する受光部を有するようにしたので、安全性を確保しつつ、大容量の信号を高速に伝送することができるという効果を奏する。
図1は、本発明の実施の形態1にかかる内視鏡システムの概略構成を示す図である。 図2は、本発明の実施の形態1にかかる内視鏡システムの要部の機能構成を示すブロック図である。 図3は、本発明の実施の形態1の変形例1-1にかかる内視鏡システムの要部の機能構成を示すブロック図である。 図4は、本発明の実施の形態1の変形例1-2にかかる内視鏡システムの要部の機能構成を示すブロック図である。 図5は、本発明の実施の形態2にかかる内視鏡システムの要部の機能構成を示すブロック図である。 図6は、本発明の実施の形態2の変形例2-1にかかる内視鏡システムの要部の機能構成を示すブロック図である。
 以下、本発明を実施するための形態(以下、「実施の形態」という)を説明する。実施の形態では、患者等の被検体の体腔内の画像を撮像して表示する医療用の内視鏡システムについて説明する。また、この実施の形態により、この発明が限定されるものではない。さらに、図面の記載において、同一部分には同一の符号を付して説明する。
(実施の形態1)
 図1は、本発明の実施の形態1にかかる内視鏡システム1の概略構成を示す図である。図2は、本実施の形態1にかかる内視鏡システム1の要部の機能構成を示すブロック図である。
 図1および図2に示す内視鏡システム1は、被検体の体腔内に先端部を挿入することによって被検体の体内画像を撮像する内視鏡2と、内視鏡2の先端から出射する照明光を発生する光源装置3と、内視鏡2が撮像した体内画像に所定の画像処理を施すとともに、内視鏡システム1全体の動作を統括的に制御する処理装置4と、処理装置4が画像処理を施した体内画像を表示する表示装置5と、を備える。
 内視鏡2は、可撓性を有する細長形状をなす挿入部21と、挿入部21の基端側に接続され、各種の操作信号の入力を受け付ける操作部22と、操作部22から挿入部21が延びる方向と異なる方向に延び、光源装置3および処理装置4に接続する各種ケーブルを内蔵するユニバーサルコード23と、ユニバーサルコード23の操作部22に連なる側と異なる側の端部に設けられ、光源装置3および処理装置4にそれぞれ着脱自在なコネクタ部24と、を備える。
 挿入部21は、光を受光して光電変換を行うことにより信号を生成する画素が2次元状に配列された撮像素子を内蔵した先端部25と、複数の湾曲駒によって構成された湾曲自在な湾曲部26と、湾曲部26の基端側に接続され、可撓性を有する長尺状の可撓管部27と、を有する。先端部25に設けられる撮像素子として、例えばCCDイメージセンサやCMOSイメージセンサが挙げられる。
 先端部25は、ライトガイド251と、照明レンズ252と、センサ部253と、アナログフロントエンド部254(以下、「AFE部254」という)と、P/S変換部255と、E/O変換部256と、検知部257と、駆動制御部258と、制御部259と、を有する。
 ライトガイド251は、グラスファイバ等を用いて構成されて光源装置3が発光した光の導光路をなす。
 照明レンズ252は、ライトガイド251の先端に設けられ、ライドガイド251からの光を外部に出射する。
 センサ部253は、光を光電変換して電気信号(撮像信号)を生成する。センサ部253は、光量に応じた電荷を蓄積するフォトダイオードおよびフォトダイオードが蓄積した電荷を増幅する増幅器をそれぞれ有する複数の画素が2次元状に配列され、光学系からの光を光電変換して電気信号(撮像信号)を生成する受光部253aと、受光部253aの複数の画素が生成した電気信号を画像情報として読み出す読み出し部253bと、を有する。
 AFE部254は、センサ部253が出力した電気信号に対してノイズ除去やA/D変換などを行う。具体的には、AFE部254は、電気信号(アナログ)に含まれるノイズ成分の低減や、出力レベルの維持のための電気信号の増幅率(ゲイン)の調整、アナログの電気信号のA/D変換を行う。
 P/S変換部255は、AFE部254が出力したデジタル信号(画像信号)をパラレル/シリアル変換する。
 E/O変換部256は、P/S変換部255から出力された画素情報を含むシリアル形態の電気信号を光信号に変換して処理装置4に出力する。E/O変換部256は、レーザダイオード(LD)256a(出力部)を有する。レーザダイオード256aは、駆動制御部258の制御のもと、画素情報を含むレーザ光(光信号)を処理装置4に出力する。
 検知部257は、先端部25と処置装置4との間の接続状態を処理装置4に検知させるための検知情報としての接続検知信号(アナログ)を処理装置4に出力する。接続検知信号には、内視鏡2の固有番号などの識別情報を含んでいる。
 駆動制御部258(出力制御部)は、E/O変換部256のレーザダイオード(LD)256aの駆動を制御する。
 制御部259は、処理装置4から受信した設定データに従って先端部25の各種動作を制御する。制御部259は、CPU(Central Processing Unit)や各種プログラムを記録するレジスタ等を用いて構成される。
 操作部22は、湾曲部26を上下方向および左右方向に湾曲させる湾曲ノブ221と、被検体の体腔内に生体鉗子、電気メスおよび検査プローブ等の処置具を挿入する処置具挿入部222と、処理装置4、光源装置3に加えて、送気手段、送水手段、画面表示制御等の周辺機器の操作指示信号を入力する操作入力部である複数のスイッチ223と、を有する。処置具挿入部222から挿入される処置具は、先端部25の処置具チャンネル(図示せず)を経由して開口部(図示せず)から表出する。
 ユニバーサルコード23は、ライトガイド251と、一または複数の信号線をまとめた集合ケーブルと、を少なくとも内蔵している。
 つぎに、光源装置3の構成について説明する。光源装置3は、照明部31と、照明制御部32と、を備える。
 照明部31は、被写体を照明する照明光を出射する。照明部31は、光源33と、光源ドライバ34と、を有する。
 光源33は、白色LEDを用いて構成され、照明制御部32の制御のもと、白色光を発生する。光源33が発生した光は、集光レンズ(図示せず)およびライトガイド251を経由して先端部25から被写体に向けて照射される。
 光源ドライバ34は、光源33に対して照明制御部32の制御のもとで電流を供給することにより、光源33に白色光を発生させる。
 照明制御部32は、照明部31による照明光の出射および消灯の制御を行なう。また、照明制御部32は、照明部31が出射する照明光の強度を一定に保つなど、照明部31が出射する照明光の強度を制御する。
 次に、処理装置4の構成について説明する。処理装置4は、O/E変換部401と、S/P変換部402と、画像処理部403と、アナログ-デジタル変換回路(ADC)404と、入力部405と、記録部406と、制御部407と、電源部408と、を備える。
 O/E変換部401は、先端部25から出力された画素情報を含む光信号を受信して電気信号に変換する。O/E変換部401は、先端部25から出力された光(光信号)を受光(受信)するフォトダイオード(PD)401a(受光部)を有する。
 S/P変換部402は、O/E変換部401によって変換されたシリアル形態の電気信号をシリアル/パラレル変換して画像処理部403に出力する。
 画像処理部403は、S/P変換部402から入力された電気信号(画像情報)をもとに、表示装置5が表示する画像信号(体内画像情報)を生成する。画像処理部403は、画像情報に対して、所定の画像処理を実行して体内画像情報を生成する。ここで、画像処理としては、オプティカルブラック低減処理、ホワイトバランス調整処理、カラーマトリクス演算処理、ガンマ補正処理、色再現処理、エッジ強調処理等が挙げられる。また、画像処理部403は、S/P変換部402から入力された画像情報を制御部407へ出力する。
 ADC404は、検知部257が出力したアナログ信号である接続検知信号を受信し、アナログ信号からデジタル信号に変換して制御部407に出力する。
 入力部405は、内視鏡システム1の動作を指示する動作指示信号等の各種信号の入力を受け付ける。入力部405は、受け付けた信号を制御部407に出力する。
 記録部406は、フラッシュメモリやDRAM(Dynamic Random Access Memory)等の半導体メモリを用いて実現される。記録部406は、内視鏡システム1を動作させるための各種プログラム、および内視鏡システム1の動作に必要な各種パラメータ等を含むデータを記録する。また、記録部406は、レーザダイオード256aによるレーザ光の出力パワーにかかる設定値(最大出力値や下限値(制限値)など)を記録している。
 制御部407は、CPU等を用いて構成され、内視鏡2および光源装置3を含む各構成部の駆動制御、および各構成部に対する情報の入出力制御などを行う。制御部407は、撮像制御のための設定データを、集合ケーブルに含まれる所定の信号線を介して先端部25へ送信する。制御部407は、先端部25による撮像処理の露光タイミングと読み出しタイミングを含む同期信号を光源装置3に出力する。また、制御部407は、検知部257からの接続検知信号に基づき、内視鏡2(先端部25)にレーザ出力にかかる動作制御信号を出力する。
 電源部408は、少なくとも内視鏡2および処理装置4に対して、各構成部が動作するための電力を供給する。
 表示装置5は、映像ケーブルを介して処理装置4が生成した体内画像情報に対応する体内画像を受信して表示する。表示装置5は、液晶ディスプレイまたは有機EL(Electro Luminescence)ディスプレイを用いて構成される。
 次に、先端部25と処理装置4との間の光信号の送受信におけるレーザ出力制御処理について説明する。制御部407は、検知部257からの接続検知信号を受信すると、先端部25の制御部259に対し、レーザダイオード256aによるレーザ出力を制限しない旨の動作制御信号を出力する。この動作制御信号には、記録部406に登録されている設定値などの情報も含まれる。
 制御部259は、レーザ光の出力パワーを制限しない旨の動作制御信号を受信すると、駆動制御部258に、レーザ光の出力パワーを大きく、例えば設定された最大値となる出力パワーで、レーザ光を出力するよう指示する。駆動制御部258は、この指示を受け、レーザダイオード256aによるレーザ光の出力パワーを大きくする制御を行う。これにより、レーザダイオード256aによるレーザ光の出力パワーが最大出力値に設定された状態において、処理装置4との間で光信号の伝送処理を行うことができる。
 レーザ光の出力パワーの設定値は、IEC60825-1に基づいて設定される。レーザ光の出力パワーの最大値は、例えばIEC60825-1のClass2またはClass3(3R)に基づいて設定される。また、レーザ光の出力パワーの最小値(制限値)は、IEC60825-1のClass1に基づいて設定される。ここで、IEC60825-1は、レーザ製品の安全性を規定するIEC規格である。また、IEC60825-1のClass1は、稼動時に予見できる合理的な条件の下で、安全なレーザと定義されたものである。
 一方、制御部407は、ADC404から接続検知信号を受信していない場合、先端部25の制御部259にレーザダイオード256aによるレーザ光の出力パワーを制限する旨の動作制御信号を出力する。
 制御部407が接続検知信号を受信しない場合、内視鏡2と処理装置4との間において、接続部分の離脱や信号線の断線などが生じているおそれがある。このとき、例えばレーザダイオード256aから出射されたレーザ光が、外部に漏れている可能性がある。
 このため、制御部259は、レーザ出力を制限する旨の動作制御信号を受信すると、駆動制御部258に、レーザ光の出力パワーを小さくするよう指示する。駆動制御部258は、この指示を受け、レーザダイオード256aのレーザ光の出力パワーを小さくする制御を行う。これにより、レーザダイオード256aによるレーザ光の出力パワーを小さくした状態において、処理装置4との間で光信号の伝送処理を行う。
 駆動制御部258がレーザ光の出力パワーを小さくする制御において、駆動制御部258は、レーザ光の出力パワーが予め設定された制限値となるよう制御する。制限値は、例えばIEC60825-1のClass1以下のレベルとなるように設定される。
 なお、駆動制御部258は、レーザ光の出力パワーを設定された制限値となるように制御するものであってもよいし、レーザ光の出力パワーをゼロに制御するものであってもよい。画像情報を含む光信号を送受信中の場合もあるため、突然の通信停止を回避するため、レーザ光の出力パワーを設定された制限値となるように制御することが好ましい。なお、制御信号受信時の設定として制限値に設定し、その後、所定の間隔でレーザ光の出力パワーをゼロに設定するなどの処理を行ってもよい。
 上述したレーザ出力制御処理により、先端部25と処理装置4との接続状態に応じて、レーザ光の出力パワーを制御することができる。先端部25と処理装置4とが接続されていない場合に、レーザ光の出力パワーを小さく、またはゼロに制御して安全性を確保することが可能となる。このため、先端部25と処理装置4とが接続状態にある場合は、安全性を確保したうえでレーザ光の出力パワーを大きくすることができ、光信号の通信処理において、大容量の情報を一段と高速に送受信することが可能となる。
 上述した本実施の形態1によれば、駆動制御部258が、検知部257による検知結果に基づいてレーザダイオード256aによるレーザ光の出力パワーを制御するようにしたので、安全性を確保しつつ、大容量の信号を高速に伝送することができる。これにより、レーザ光による安全性を考慮したうえで、一段と高速にレーザ光(光信号)の送受信を行なうことができる。
(変形例1-1)
 図3は、本発明の実施の形態1の変形例1-1にかかる内視鏡システム1aの要部の機能構成を示すブロック図である。上述した実施の形態1では、検知部257が処理装置4に接続検知信号を出力するものとして説明したが、本変形例1-1では、検知部257aが先端部25aの制御部259aに接続検知信号を出力する。
 本変形例1-1にかかる内視鏡2aの先端部25aは、上述した先端部25に対し、検知部257および制御部259に代えて検知部257aおよび制御部259aが設けられ、記録部281と、電源部282とをさらに備える。なお、記録部281および電源部282は、操作部22などに設けられてもよい。
 本変形例1-1にかかる処理装置4aは、上述したO/E変換部401、S/P変換部402、画像処理部403、入力部405、記録部406および電源部408と、CPU等を用いて構成され、内視鏡2および光源装置3を含む各構成部の駆動制御、および各構成部に対する情報の入出力制御などを行う制御部407aと、を備える。
 検知部257aは、先端部25aと処置装置4aとの間の電気的な接続状態を検知して検知情報としての接続検知信号を制御部259aに出力する。具体的には、検知部257aは、例えば処置装置4a(制御部407a)に対して接続確認用の信号を出力するとともに、出力した信号に対して処理装置4aから信号が返ってきたか否かを判断することによって、先端部25aと処置装置4aとの間の電気的な接続状態の有無にかかる接続検知信号を出力する。
 制御部259aは、処理装置4aから受信した設定データに従って先端部25aの各種動作を制御する。制御部259aは、CPUや各種プログラムを記録するレジスタ等を用いて構成される。また、制御部259aは、検知部257aからの接続検知信号を受信して、この受信した接続検知信号に基づき、レーザ光の出力パワーにかかる動作制御信号を出力する。
 記録部281は、フラッシュメモリやDRAM等の半導体メモリを用いて実現される。記録部281は、先端部25aを動作させるための各種プログラム、先端部25aの動作に必要な各種パラメータ等を含むデータや、レーザダイオード256aによるレーザ光の出力パワーにかかる設定値(最大出力値や下限値(制限値)など)を記録している。
 電源部282は、少なくとも先端部25aに対して、各構成部が動作するための電力を供給する。
 次に、先端部25aと処理装置4aとの間の光信号の送受信におけるレーザ出力制御処理について説明する。制御部259aは、検知部257aからの接続検知信号を受信すると、この接続検知信号に基づき、駆動制御部258に対し、レーザダイオード256aによるレーザ光の出力パワーにかかる動作制御信号を出力する。
 具体的には、制御部259aは、受信した接続検知信号が、先端部25aと処理装置4aとが接続状態にある旨の信号であるか否かを判断する。制御部259aは先端部25aと処理装置4aとが接続状態にあると判断した場合、レーザ光の出力パワーを制限しない旨の動作制御信号を駆動制御部258に出力する。
 駆動制御部258は、この動作制御信号に基づき、記録部281を参照してレーザダイオード256aのレーザ光の出力パワーが最大値となるように制御する。これにより、レーザダイオード256aによってレーザ光の出力パワー大きくした状態において、処理装置4aとの間で光信号の伝送処理を行う。
 一方、制御部259aは、先端部25aと処理装置4aとが接続状態にないと判断した場合、レーザダイオード256aによるレーザ光の出力パワーを小さくする旨の動作制御信号を駆動制御部258に出力する。
 駆動制御部258は、この動作制御信号に基づき、記録部281を参照してレーザダイオード256aのレーザ光の出力パワーを小さくする制御を行う。これにより、レーザダイオード256aによってレーザ光の出力パワーを小さくした状態において、処理装置4aとの間で光信号の伝送処理を行う。なお、駆動制御部258は、レーザ光の出力パワーを、上述した制限値となるように制御する。また、駆動制御部258は、レーザ光の出力パワーをゼロに制御してもよい。
 上述したレーザ出力制御処理により、本変形例1-1においても、先端部25aと処理装置4aとの接続状態に応じて、レーザ光の出力パワーを制御することができる。先端部25aと処理装置4aとが接続されていない場合に、レーザ光の出力パワーを制限値に現光、またはゼロに制御して安全性を確保することが可能となる。このため、先端部25aと処理装置4aとが接続状態にある場合は、レーザ光の出力パワーを大きくすることができ、光信号の通信処理において、一段と高速な送受信を行なうことが可能となる。
(変形例1-2)
 図4は、本発明の実施の形態1の変形例1-2にかかる内視鏡システム1bの要部の機能構成を示すブロック図である。変形例1-2にかかる処理装置4bは、上述した実施の形態1の構成に対し、制御部407に代えて制御部407bが設けられるとともに、筐体の開閉を検知する開閉検知部409をさらに有する。
 開閉検知部409は、例えば光や磁気を用いるセンサによって構成され、このセンサによって筐体の開閉を検知し、検知信号を制御部407bに出力する。開閉検知部409は、例えば、筐体が開放状態にある場合に検知信号を出力する。
 制御部407bは、開閉検知部409からの検知信号を受信した場合、先端部25の制御部259にレーザダイオード256aによるレーザ光の出力パワーを制限させる旨の動作制御信号を出力する。
 制御部259が動作制御信号を受信すると、駆動制御部258に、この動作制御信号に基づき、レーザダイオード256aのレーザ光の出力パワーを小さくする、またはゼロにする制御を行わせる。これにより、レーザダイオード256aによってレーザ光の出力パワーを小さく、またはオフした状態とすることができる。
 上述したレーザ出力制御処理により、先端部25と処理装置4bとの接続状態と、処理装置4bの筐体の開閉状態とに応じて、レーザ光の出力パワーを制御することができる。先端部25と処理装置4bとが接続されていない場合に、レーザ光の出力パワーを制限値に減光、またはゼロに制御して安全性を確保することが可能となる。このため、先端部25と処理装置4bとが接続状態にある場合は、レーザ光の出力パワーを大きくすることができ、光信号の通信処理において、一段と高速に送受信を行なうことが可能となる。
 なお、本変形例1-2では、開閉検知部409による検知結果が筐体が開放状態にある場合に、筐体が開放状態にある旨を報知するための報知手段が設けられていてもよい。例えば、表示装置5によって、文字または画像により開放状態にある旨を報知してもよいし、スピーカーや、LEDなどを用いて、音または光を発して報知してもよい。
(実施の形態2)
 次に、本発明の実施の形態2について説明する。図5は、本実施の形態2にかかる内視鏡システム1cの要部の機能構成を示すブロック図である。なお、上述した構成と同一の構成には同一の符号を付して説明する。上述した実施の形態1では、レーザダイオード256aのレーザ出力を制御していたが、実施の形態2では、レーザダイオード256aと処理装置4cとの間に設けられるシャッタ283によって光信号の通信制御を行なう。
 まず、本実施の形態2にかかる内視鏡2bの先端部25bは、上述した先端部25に対し、駆動制御部258および制御部259に代えて駆動制御部258aおよび制御部259bが設けられ、シャッタ283をさらに備える。シャッタ283は、レーザダイオード256aから出射されてフォトダイオード401aに到達するレーザ光の光路上に設けられ、自身の開閉動作によって該光路の開放または遮断を制御している。
 駆動制御部258a(動作制御部)は、シャッタ283の開閉駆動を制御する。
 制御部259bは、処理装置4cから受信した設定データに従って先端部25bの各種動作を制御する。制御部259bは、CPUや各種プログラムを記録するレジスタ等を用いて構成される。また、制御部259bは、制御部407からの制御信号に基づき、シャッタ283の開閉動作にかかる動作制御信号を出力する。
 本実施の形態2にかかる処理装置4cは、上述した処理装置4に対し、記録部406に代えて記録部406aが設けられる。
 記録部406aは、フラッシュメモリやDRAM等の半導体メモリを用いて実現される。記録部406aは、内視鏡システム1cを動作させるための各種プログラム、内視鏡システム1cの動作に必要な各種パラメータ等を含むデータや、シャッタ283を開閉駆動によるレーザ光の出力にかかる設定条件(シャッタ283の開閉設定など)を記録している。
 次に、先端部25bと処理装置4cとの間の光信号の送受信におけるレーザ出力制御処理について説明する。制御部407は、検知部257からの接続検知信号を受信すると、先端部25bの制御部259bに対し、レーザダイオード256aによるレーザ光の出力を制限しない旨の動作制御信号を出力する。
 制御部259bは、レーザ光の出力を制限しない旨の動作制御信号を受信すると、駆動制御部258aに、シャッタ283を開放状態とするよう指示する。駆動制御部258aは、この指示を受け、シャッタ283を開放状態とする。これにより、レーザダイオード256aによって、先端部25bと処理装置4cとの間で光信号の伝送処理が行われる。
 一方、制御部407が、ADC404から接続検知信号を受信していない場合、先端部25bの制御部259bにレーザダイオード256aによるレーザ光の出力を制限する旨の動作制御信号を出力する。
 制御部259bは、レーザ光の出力を制限する旨の動作制御信号を受信すると、駆動制御部258aに、シャッタ283の開口を絞るよう指示する。駆動制御部258aは、この指示を受け、シャッタ283を閉じて遮光状態とする設定を行う。これにより、レーザダイオード256aから処理装置4cに到達する光信号をゼロとすることができる。
 上述したレーザ出力制御処理により、先端部25bと処理装置4cとの接続状態に応じて、レーザ光の出力を制御することができる。先端部25bと処理装置4cとが接続されていない場合に、処理装置4cに到達するレーザ光を遮断して安全性を確保することが可能となる。このため、先端部25bと処理装置4cとが接続状態にある場合は、光の出力パワーを大きくすることができ、光信号の通信処理において、一段と高速に送受信を行なうことが可能となる。
 ここで、実施の形態2では、レーザダイオード256aによるレーザ光の出力パワーが最大値となるように制御されていることが好ましい。これにより、シャッタ283の開閉動作のみで、高速通信を実現することができる。
 上述した本実施の形態2によれば、駆動制御部258aが、検知部257による検知結果に基づいてシャッタ283の開閉動作を制御して、レーザダイオード256aによるレーザ光の出力パワーを制御するようにしたので、安全性を確保しつつ、レーザ光の出力パワーを変更することができる。これにより、レーザ光による安全性を考慮したうえで、一段と高速な光信号の送受信を行なうことができる。
 なお、上述した実施の形態2においても、上述した開閉検知部409を有する構成を適用することができる。
(変形例2-1)
 図6は、本発明の実施の形態2の変形例2-1にかかる内視鏡システム1dの要部の機能構成を示すブロック図である。上述した実施の形態2では、検知部257が処理装置4cに接続検知信号を出力するものとして説明したが、本変形例2-1では、検知部257aが先端部25cの制御部259cに接続検知信号を出力する。
 本変形例2-1にかかる内視鏡2cの先端部25cは、上述した先端部25bに対し、検知部257および制御部259bに代えて検知部257aおよび制御部259cが設けられ、記録部281aと、電源部282とをさらに備える。なお、処理装置4aは、上述した変形例1-1と同様の構成である。
 制御部259cは、処理装置4aから受信した設定データに従って先端部25cの各種動作を制御する。制御部259cは、CPUや各種プログラムを記録するレジスタ等を用いて構成される。また、制御部259cは、検知部257aからの接続検知信号を受信して、この受信した接続検知信号に基づき、駆動制御部258aにレーザ光の出力にかかる動作制御信号を出力する。
 駆動制御部258aは、制御部259cから受信した動作制御信号に基づいて、シャッタ283の開閉駆動にかかる制御を行う。
 記録部281aは、フラッシュメモリやDRAM等の半導体メモリを用いて実現される。記録部281aは、先端部25cを動作させるための各種プログラム、先端部25cの動作に必要な各種パラメータ等を含むデータや、レーザダイオード256aによるレーザ光の出力にかかる設定条件(シャッタ283の開閉設定など)を記録している。
 次に、先端部25cと処理装置4aとの間の光信号の送受信におけるレーザ出力制御処理について説明する。制御部259cは、検知部257aからの接続検知信号を受信すると、この接続検知信号に基づき、駆動制御部258aに対し、レーザダイオード256aによるレーザ光の出力にかかる動作制御信号を出力する。
 具体的には、制御部259cは、受信した接続検知信号が、先端部25aと処理装置4aとが接続状態にある旨の信号であるか否かを判断する。制御部259cは、制御部259cが先端部25aと処理装置4aとが接続状態にあると判断した場合、レーザ光の出力を制限しない旨の動作制御信号を駆動制御部258aに出力する。
 駆動制御部258aは、この動作制御信号に基づき、シャッタ283を開放状態に制御する。これにより、レーザダイオード256aによって、先端部25cと処理装置4aとの間で光信号の伝送処理が行われる。
 一方、制御部259cは、先端部25cと処理装置4aとが接続状態にないと判断した場合、レーザダイオード256aによるレーザ出力を制限する旨の動作制御信号を駆動制御部258aに出力する。
 駆動制御部258aは、この動作制御信号に基づき、シャッタ283を閉じて遮光状態とする制御を行う。これにより、レーザダイオード256aから処理装置4aに到達するレーザ光(光信号)を遮断することができる。
 上述したレーザ出力制御処理により、本変形例2-1においても、先端部25cと処理装置4aとの接続状態に応じて、光の出力パワーを制御することができる。先端部25cと処理装置4aとが接続されていない場合に、処理装置4aに到達するレーザ光を遮断して安全性を確保することが可能となる。このため、先端部25cと処理装置4aとが接続状態にある場合は、光の出力パワーを大きくすることができ、光信号の通信処理において、一段と高速な送受信を行なうことが可能となる。
 なお、上述した実施の形態1,2では、少なくとも処理装置4~4cの画像処理部403と、内視鏡2~2cとが絶縁されている。具体的には、光通信や患者回路により、両者の間が絶縁されている。
 また、上述した実施の形態1,2において、内視鏡2~2cと処理装置4~4cとが非接続状態である場合に、非接続状態である旨を報知するための報知手段が設けられていてもよい。例えば、表示装置5によって、文字または画像により非接続状態である旨を報知してもよいし、スピーカーや、LEDなどを用いて、音または光を発して非接続状態である旨を報知してもよい。
 また、上述した実施の形態1,2において、先端部と出力制限部との間の通信形態は、レジスタ通信や光通信を用いるものであれば適用できる。
 以上のように、本発明にかかる内視鏡システムは、安全性を確保しつつ、レーザ出力を変更することに有用である。
 1,1a,1b,1c,1d 内視鏡システム
 2,2a,2b,2c 内視鏡
 3 光源装置
 4,4a,4b,4c 処理装置
 5 表示装置
 21 挿入部
 22 操作部
 23 ユニバーサルコード
 24 コネクタ部
 25,25a,25b,25c 先端部
 26 湾曲部
 27 可撓管部
 31 照明部
 32 照明制御部
 33 光源
 34 光源ドライバ
 251 ライトガイド
 252 照明レンズ
 253 センサ部
 254 アナログフロントエンド部(AFE部)
 255 P/S変換部
 256 E/O変換部
 256a レーザダイオード
 257,257a 検知部
 258,258a 駆動制御部
 259,259a,259b,259c,407,407a,407b 制御部
 281,281a,406,406a 記録部
 282,408 電源部
 283 シャッタ
 401 O/E変換部
 401a フォトダイオード
 402 S/P変換部
 403 画像処理部
 404 アナログ-デジタル変換回路(ADC)
 405 入力部
 409 開閉検知部

Claims (5)

  1.  被検体の体腔内に先端部を挿入することによって被検体の体内画像を撮像する内視鏡と、前記内視鏡と通信可能に接続され、前記内視鏡が撮像した前記体内画像に所定の画像処理を施す処理装置とを備えた内視鏡システムであって、
     前記内視鏡は、
     外部からの光を光電変換して電気信号を生成するセンサ部と、
     前記電気信号を光信号に変換し、前記処理装置に該光信号を出力する出力部と、
     前記内視鏡と前記処理装置との間の接続状態を検知する検知部と、
     前記検知部の検知結果に基づき、前記処理装置が受光する前記光信号の出力を制限する出力制限手段と、
     を有し、
     前記処理装置は、前記出力部が出力した前記光信号を受光し、該光信号を電気信号に変換する受光部を有することを特徴とする内視鏡システム。
  2.  前記出力制限手段は、前記光信号であるレーザ光の出力パワーを制御する出力制御部であることを特徴とする請求項1に記載の内視鏡システム。
  3.  前記出力制御部は、前記レーザ光の出力パワーをIEC60825-1のClass1以下に設定することを特徴とする請求項2に記載の内視鏡システム。
  4.  前記出力制限手段は、
     前記光信号の光路に設けられるシャッタと、
     前記シャッタの開閉動作を制御する動作制御部と、
     を有することを特徴とする請求項1に記載の内視鏡システム。
  5.  前記処理装置の筐体の開閉状態を検知する開閉検知部を備え、
     前記出力制限手段は、前記開閉検知部による検知情報に基づき、前記受光部が受光する前記光信号の出力を制限することを特徴とする請求項1に記載の内視鏡システム。
PCT/JP2014/061896 2013-06-03 2014-04-28 内視鏡システム WO2014196287A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015519666A JP5889483B2 (ja) 2013-06-03 2014-04-28 内視鏡システム

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2013117127 2013-06-03
JP2013-117127 2013-06-03

Publications (1)

Publication Number Publication Date
WO2014196287A1 true WO2014196287A1 (ja) 2014-12-11

Family

ID=52007941

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/061896 WO2014196287A1 (ja) 2013-06-03 2014-04-28 内視鏡システム

Country Status (2)

Country Link
JP (1) JP5889483B2 (ja)
WO (1) WO2014196287A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017099808A (ja) * 2015-12-04 2017-06-08 オリンパス株式会社 内視鏡システムおよび情報処理装置
WO2018020721A1 (ja) * 2016-07-29 2018-02-01 オリンパス株式会社 内視鏡システム

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0553064A (ja) * 1991-08-27 1993-03-05 Olympus Optical Co Ltd 光源装置
JP2000139836A (ja) * 1998-11-10 2000-05-23 Olympus Optical Co Ltd 光源装置
JP2001149304A (ja) * 1999-11-26 2001-06-05 Olympus Optical Co Ltd 光走査プローブ装置
JP2009095551A (ja) * 2007-10-18 2009-05-07 Hoya Corp 内視鏡装置
JP2009279168A (ja) * 2008-05-22 2009-12-03 Fujinon Corp 蛍光内視鏡装置および励起光ユニット
JP2012254193A (ja) * 2011-06-09 2012-12-27 Fujifilm Corp 硬性鏡装置
JP2013033158A (ja) * 2011-08-02 2013-02-14 Olympus Corp 光源装置

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06244805A (ja) * 1993-02-17 1994-09-02 Sony Corp 光信号伝送装置
JPH1041896A (ja) * 1996-07-19 1998-02-13 Sony Corp 送受信装置および送受信方法
JP2005033401A (ja) * 2003-07-10 2005-02-03 Pioneer Electronic Corp 光送受信装置
JP2005236034A (ja) * 2004-02-19 2005-09-02 Optohub:Kk 光増幅装置

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0553064A (ja) * 1991-08-27 1993-03-05 Olympus Optical Co Ltd 光源装置
JP2000139836A (ja) * 1998-11-10 2000-05-23 Olympus Optical Co Ltd 光源装置
JP2001149304A (ja) * 1999-11-26 2001-06-05 Olympus Optical Co Ltd 光走査プローブ装置
JP2009095551A (ja) * 2007-10-18 2009-05-07 Hoya Corp 内視鏡装置
JP2009279168A (ja) * 2008-05-22 2009-12-03 Fujinon Corp 蛍光内視鏡装置および励起光ユニット
JP2012254193A (ja) * 2011-06-09 2012-12-27 Fujifilm Corp 硬性鏡装置
JP2013033158A (ja) * 2011-08-02 2013-02-14 Olympus Corp 光源装置

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017099808A (ja) * 2015-12-04 2017-06-08 オリンパス株式会社 内視鏡システムおよび情報処理装置
WO2018020721A1 (ja) * 2016-07-29 2018-02-01 オリンパス株式会社 内視鏡システム
JP6342592B1 (ja) * 2016-07-29 2018-06-13 オリンパス株式会社 内視鏡システム
US10694931B2 (en) 2016-07-29 2020-06-30 Olympus Corporation Endoscope system that measures amplitude of signal to determine state of transmission in order to adjust voltage of power supply

Also Published As

Publication number Publication date
JP5889483B2 (ja) 2016-03-22
JPWO2014196287A1 (ja) 2017-02-23

Similar Documents

Publication Publication Date Title
JP5372269B2 (ja) 撮像装置
US20160360948A1 (en) Endoscope system
JP5769892B2 (ja) 内視鏡
US8878921B2 (en) Imaging system
WO2013128764A1 (ja) 医療システム
JP6049945B2 (ja) 撮像装置および処理装置
WO2016104386A1 (ja) 調光装置、撮像システム、調光装置の作動方法および調光装置の作動プログラム
JP5810016B2 (ja) 内視鏡システム
JP5926980B2 (ja) 撮像装置および撮像システム
JP5889483B2 (ja) 内視鏡システム
US20170245743A1 (en) Endoscopic system and endoscope
WO2016117373A1 (ja) 医療機器
JP5932191B1 (ja) 伝送システムおよび処理装置
JP2015104616A (ja) 内視鏡システム
WO2015125344A1 (ja) 撮像ユニット
JP6257391B2 (ja) 内視鏡システム
WO2017122511A1 (ja) 内視鏡装置および内視鏡システム
JP6664943B2 (ja) 内視鏡システムおよび情報処理装置
JP2014226196A (ja) 内視鏡用光源装置および電子内視鏡システム
JP2019154628A (ja) 内視鏡、内視鏡システム、温度検出方法およびプログラム
JP2013172765A (ja) 内視鏡システム
JP2011139795A (ja) 内視鏡装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14807490

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2015519666

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14807490

Country of ref document: EP

Kind code of ref document: A1