WO2014196231A1 - 表示装置 - Google Patents

表示装置 Download PDF

Info

Publication number
WO2014196231A1
WO2014196231A1 PCT/JP2014/054810 JP2014054810W WO2014196231A1 WO 2014196231 A1 WO2014196231 A1 WO 2014196231A1 JP 2014054810 W JP2014054810 W JP 2014054810W WO 2014196231 A1 WO2014196231 A1 WO 2014196231A1
Authority
WO
WIPO (PCT)
Prior art keywords
light
anisotropic
liquid crystal
display
axis direction
Prior art date
Application number
PCT/JP2014/054810
Other languages
English (en)
French (fr)
Inventor
亮 荒木
滋規 田中
昌紀 景山
Original Assignee
シャープ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by シャープ株式会社 filed Critical シャープ株式会社
Priority to CN201480030902.8A priority Critical patent/CN105247411A/zh
Priority to US14/893,097 priority patent/US20160116646A1/en
Publication of WO2014196231A1 publication Critical patent/WO2014196231A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/02Diffusing elements; Afocal elements
    • G02B5/0205Diffusing elements; Afocal elements characterised by the diffusing properties
    • G02B5/0257Diffusing elements; Afocal elements characterised by the diffusing properties creating an anisotropic diffusion characteristic, i.e. distributing output differently in two perpendicular axes
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/003Light absorbing elements
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/02Diffusing elements; Afocal elements
    • G02B5/0205Diffusing elements; Afocal elements characterised by the diffusing properties
    • G02B5/0236Diffusing elements; Afocal elements characterised by the diffusing properties the diffusion taking place within the volume of the element
    • G02B5/0242Diffusing elements; Afocal elements characterised by the diffusing properties the diffusion taking place within the volume of the element by means of dispersed particles
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/02Diffusing elements; Afocal elements
    • G02B5/0273Diffusing elements; Afocal elements characterized by the use
    • G02B5/0278Diffusing elements; Afocal elements characterized by the use used in transmission
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/0001Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings specially adapted for lighting devices or systems
    • G02B6/0011Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings specially adapted for lighting devices or systems the light guides being planar or of plate-like form
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/0001Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings specially adapted for lighting devices or systems
    • G02B6/0011Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings specially adapted for lighting devices or systems the light guides being planar or of plate-like form
    • G02B6/0033Means for improving the coupling-out of light from the light guide
    • G02B6/005Means for improving the coupling-out of light from the light guide provided by one optical element, or plurality thereof, placed on the light output side of the light guide
    • G02B6/0051Diffusing sheet or layer
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/133504Diffusing, scattering, diffracting elements
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/1336Illuminating devices
    • G02F1/133602Direct backlight
    • G02F1/133606Direct backlight including a specially adapted diffusing, scattering or light controlling members
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/1336Illuminating devices
    • G02F1/133602Direct backlight
    • G02F1/133606Direct backlight including a specially adapted diffusing, scattering or light controlling members
    • G02F1/133607Direct backlight including a specially adapted diffusing, scattering or light controlling members the light controlling member including light directing or refracting elements, e.g. prisms or lenses

Definitions

  • the present invention relates to a display device.
  • the liquid crystal display device requires a backlight device as a separate illumination device because the liquid crystal panel used for this does not emit light.
  • the backlight device includes at least a light source and an optical member that applies an optical action to light from the light source and supplies the light to the liquid crystal panel as uniform planar light.
  • a liquid crystal display device provided with such a backlight device one described in Patent Document 1 below is known.
  • the viewing angle in the width direction is narrowed by anisotropy imparting means for the purpose of preventing peeping from the side, but depending on the use of the liquid crystal display device, the viewing angle is isotropic. May be required.
  • smartphones and tablet-type laptop computers which are used with a switchable orientation between portrait (portrait mode) and landscape orientation (landscape mode), the view angle is highly isotropic. Tend to be required.
  • the liquid crystal panel has a configuration in which one display pixel is constituted by unit pixels of, for example, three colors of R, G, and B, and a large number of the display pixels are arranged in parallel in a matrix.
  • one display pixel is constituted by unit pixels of, for example, three colors of R, G, and B, and a large number of the display pixels are arranged in parallel in a matrix.
  • anisotropy may occur in the emission angle distribution of the transmitted light of the liquid crystal panel. In such a case, anisotropy also occurs in the viewing angle, resulting in display quality. Can get worse.
  • the present invention has been completed based on the above circumstances, and an object thereof is to improve display quality.
  • the display device of the present invention has a display surface for displaying an image, and the first angle along the display surface has a relatively narrow emission angle range of emitted light, but is along the display surface and the An anisotropic display element having anisotropy in an emission angle distribution of emitted light in a form in which an emission angle range of emitted light is relatively wide in a second direction orthogonal to the first direction, and the anisotropic display
  • the element is arranged so as to overlap the display surface side or the opposite side with respect to the element, and the emission angle range of the emitted light is relatively wide in the first direction, whereas the second direction Is provided with an anisotropic optical member having anisotropy in the emission angle distribution of the emitted light so that the emission angle range of the emitted light becomes relatively narrow.
  • the anisotropic optical member when the anisotropic optical member is arranged so as to overlap the side opposite to the display surface side with respect to the anisotropic display element, the emitted light from the anisotropic optical member is different.
  • the anisotropic optical member when the anisotropic optical member is arranged on the display surface side with respect to the anisotropic display element, The light emitted from the anisotropic display element is transmitted through the anisotropic optical member, whereby an image is displayed on the display surface.
  • the anisotropic display element has a relatively narrow emission angle range of the emitted light in the first direction along the display surface
  • the emitted light is emitted in the second direction along the display surface and orthogonal to the first direction.
  • the output angle distribution of the output light has anisotropy so that the output angle range of the output light is relatively wide.
  • the anisotropic optical member has a relatively wide exit angle range for the emitted light in the first direction in which the exit angle range is relatively narrow in the anisotropic display element.
  • the exit angle distribution of the exit light has anisotropy so that the exit angle range of the exit light becomes relatively narrow.
  • the viewing angle related to the image displayed on the display surface is made isotropic. Thereby, the display quality of the image displayed on a display surface can be made high.
  • the anisotropic optical member emits light while diffusing, and the amount of diffused light is relatively increased in the first direction, whereas the amount of diffused light is in the second direction.
  • An anisotropic light diffusing member having light diffusion anisotropy is included at least so as to be relatively reduced. In this way, the amount of diffused light from the anisotropic light diffusing member having light diffusion anisotropy is relatively large in the first direction in which the emission angle range is relatively narrow in the anisotropic display element.
  • the emission angle range is relatively wide, whereas in the second direction where the emission angle range is relatively wide in the anisotropic display element, the amount of diffused light is relatively small so that the emission angle range is relatively small. Therefore, the viewing angle related to the image displayed on the display surface of the anisotropic display element is made isotropic.
  • the anisotropic light diffusing member has an anisotropic light diffusing particle which has a long shape and whose major axis direction is along the second direction and whose minor axis direction is along the first direction. Yes.
  • the anisotropic light diffusing particles have a relatively low degree of light diffusion in the major axis direction but a relatively high degree of light diffusion in the minor axis direction. Therefore, the anisotropic light diffusing member has anisotropic light diffusing particles arranged such that the major axis direction is along the second direction and the minor axis direction is along the first direction, so that the emission angle range in the anisotropic display element is increased.
  • the amount of diffused light is relatively small in the first direction, while the amount of diffused light is relatively large in the anisotropic display element. Thereby, the viewing angle related to the image displayed on the display surface of the anisotropic display element is isotropic.
  • the anisotropic light diffusing member includes a base material having translucency, and a translucent resin layer in which a large number of anisotropic light diffusing particles are dispersed and blended with the base material.
  • the anisotropic light diffusing particles are oriented so that the major axis direction is along the second direction and the minor axis direction is along the first direction in the translucent resin layer. In this way, the light transmitted through the anisotropic light diffusing member is dispersed and blended in the translucent resin layer so that the major axis direction is along the second direction and the minor axis direction is along the first direction. Due to the anisotropic light diffusing particles, the diffusion amount is increased in the first direction and the diffusion amount is decreased in the second direction.
  • an anisotropic light diffusing member for example, a liquid transmissive resin layer material in which a large number of anisotropic light diffusing particles are dispersed and mixed is applied to a base material and solidified to form a light transmissive resin layer.
  • the anisotropic light diffusing particles can be easily oriented because the long axis direction of the anisotropic light diffusing particles is aligned with the coating direction along with the application.
  • the anisotropic light diffusing particles are formed so as to taper from the center side to both end sides in the major axis direction. In this way, compared with the case where the anisotropic light diffusing particles have a constant thickness over the entire length in the major axis direction, when the anisotropic light diffusing member is manufactured, for example, a large number of anisotropic light diffusing particles are dispersed in the base material.
  • the light-transmitting resin layer is laminated by applying and solidifying the blended liquid light-transmitting resin layer material, the long axis direction of anisotropic light diffusing particles is more smoothly applied in the application direction with application. Can be aligned. Thereby, the orientation state of many anisotropic light-diffusion particles in a translucent resin layer can be made more appropriate.
  • the anisotropic light-diffusing particles have an elliptical cross-sectional shape cut along the long axis direction. In this way, since both ends of the anisotropic light diffusing particles in the major axis direction are rounded, when manufacturing the anisotropic light diffusing member, for example, a large number of anisotropic light diffusing particles are dispersed and blended with the base material.
  • the light-transmitting resin layer is laminated and formed by applying and solidifying the liquid light-transmitting resin layer material, it becomes difficult to cause a catch in the process of orienting the anisotropic light-diffusing particles with the application. Thereby, the long axis direction of anisotropic light diffusing particles can be aligned more smoothly along the coating direction, and the orientation state of a large number of anisotropic light diffusing particles in the translucent resin layer is made more appropriate. Can do.
  • the anisotropic light diffusing particles are formed such that a cross-sectional shape cut along the minor axis direction has a circular shape.
  • the anisotropic light diffusing member is manufactured, compared with the case where the cross-sectional shape obtained by cutting the anisotropic light diffusing particles along the short axis direction is a square shape, for example, the anisotropic light diffusing is performed on the base material.
  • a transparent resin layer is formed by applying and solidifying a liquid transparent resin layer material containing a large number of dispersed particles, it is caught in the process in which anisotropic light-diffusing particles are oriented with application. Is less likely to occur.
  • the long axis direction of the anisotropic light diffusing particles can be aligned more smoothly along the coating direction with application, and the orientation state of a large number of anisotropic light diffusing particles in the translucent resin layer can be more appropriate. Can be.
  • the anisotropic light diffusing member includes a sheet-like base material having translucency, a cross-sectional shape that protrudes from the plate surface of the base material and is cut along the one direction, and forms a substantially mountain shape. And a plurality of ridges that meander while extending along the direction and are juxtaposed along the first direction.
  • the protrusion protruding from the plate surface of the sheet-like base material has a substantially chevron-shaped cross-section cut along the first direction, so that the angle corresponding to the apex angle from the slope The attached light is emitted substantially along the first direction.
  • emitted along a 1st direction from a protruding part becomes relatively larger than the emitted light quantity radiate
  • the ridge portion meanders while extending along the second direction, and the inclined surface has a undulating shape, so that the emitted light depends on the position in the second direction on the inclined surface. The emission direction will fluctuate. Thereby, the light radiate
  • the anisotropic light diffusing member can have diffusion anisotropy so that the amount of diffused light is relatively increased in the first direction while the amount of diffused light is relatively decreased in the second direction. Therefore, the viewing angle related to the image displayed on the display surface of the anisotropic display element is isotropic.
  • the plurality of protrusions arranged along the first direction are formed so as to meander at random along the second direction. If it does in this way, the emitted light from each slope in each ridge part will be diffused at random according to the meandering shape of each ridge part. This makes it difficult for moire (interference fringes) to occur in the image displayed on the display surface of the anisotropic display element.
  • the protruding portion is formed such that at least one of the width and the height varies randomly according to the position in the second direction. In this way, since the protrusions randomly change the angle of the apex angle and the direction of the slope according to the position in the second direction, the light emitted from the slope is randomly diffused. This makes it difficult for moire (interference fringes) to occur in the image displayed on the display surface of the anisotropic display element.
  • the anisotropic light diffusing member included in the anisotropic optical member is arranged to overlap the anisotropic display element on the side opposite to the display surface side, and further, the anisotropic light diffusing member. And another optical member that transmits light, and the anisotropic light diffusing member is disposed closer to the anisotropic display element than the other optical member. ing. In this way, the light sequentially transmitted through the other optical member and the anisotropic optical member is supplied to the anisotropic display element. That is, since the light supplied to the anisotropic display element is emitted light of the anisotropic light diffusing member included in the anisotropic optical member, it relates to the image displayed on the display surface of the anisotropic display element.
  • the viewing angle is more preferably isotropic, and the image display quality is further improved.
  • the anisotropic light diffusing member is arranged so as to overlap the side opposite to the display surface side with respect to the anisotropic display element, the user of the display device directly displays the image displayed on the display surface. The display quality of the image is further improved.
  • the anisotropic optical member emits light while condensing light, and does not give a condensing function to the emitted light in the first direction, but the emitted light in the second direction. At least an anisotropic condensing member having condensing anisotropy so as to impart a condensing effect to the light.
  • the light emitted from the anisotropic light collecting member having the light collecting anisotropy is not provided with the light collecting action in the first direction in which the emission angle range is relatively narrow in the anisotropic display element.
  • the emission angle range becomes relatively wide, whereas in the second direction in the anisotropic display element, the emission angle range is relatively wide. Since the emission angle distribution is narrow, the viewing angle related to the image displayed on the display surface of the anisotropic display element is isotropic.
  • the anisotropic optical member is arranged to overlap the display surface side opposite to the anisotropic display element, and the light source and the anisotropic optical member
  • a light guide plate that is disposed on the opposite side of the anisotropic display element side and guides light from the light source, and has a light incident surface on which light from the light source is incident on an end surface.
  • a light guide plate having a light emitting surface for emitting light on a plate surface facing the direction of the isotropic optical member. In this way, the light emitted from the light source enters the light incident surface of the light guide plate, propagates through the light guide plate, and then exits from the light exit surface.
  • the light emitted from the light emitting surface is supplied to the anisotropic optical member, and is supplied from the anisotropic optical member to the anisotropic display element. Since this light guide plate makes it difficult for unevenness to occur in the light supplied to the anisotropic optical member, the optical performance of the anisotropic optical member can be exhibited well.
  • the anisotropic optical member is arranged in a form overlapping with the anisotropic display element on a side opposite to the display surface side, and has a sheet shape having a plate surface along the display surface.
  • a light source that has a light emitting surface that emits light and that is arranged in such a manner that the light emitting surface faces the plate surface of the anisotropic optical member. If it does in this way, the light emitted from the light emission surface of the light source will be irradiated toward the plate
  • the light irradiated to the anisotropic optical member is supplied from the anisotropic optical member to the anisotropic display element.
  • the light use efficiency is high, which is preferable for achieving high brightness and low power consumption. Become.
  • the anisotropic display element is arranged in a plurality of rows in parallel along the display surface, the short side direction coincides with the first direction, and the long side direction corresponds to the second direction.
  • Display pixels having a matching planar shape are formed. In this way, an image can be displayed on the display surface by emitting light from the display pixels arranged in parallel in a matrix along the display surface in the anisotropic display element. Since this display pixel has a planar shape in which the short side direction coincides with the first direction and the long side direction coincides with the second direction, the emitted light of the anisotropic display element is in the first direction. Although the emission angle range is relatively narrow, the emission angle range is relatively wide in the second direction.
  • the anisotropic display element has a relatively wide exit angle range in the first direction, whereas the exit angle distribution of the exit light is relatively narrow in the second direction. Therefore, the viewing angle related to the image displayed on the display surface of the anisotropic display element is isotropic. Thereby, the display quality of the image displayed on a display surface can be made high.
  • the anisotropic display element is a liquid crystal panel in which liquid crystal is sealed between a pair of substrates.
  • a display device can be applied as a liquid crystal display device to various uses, for example, a display of a smartphone or a tablet laptop computer.
  • FIG. 1 is an exploded perspective view showing a schematic configuration of a liquid crystal display device according to Embodiment 1 of the present invention.
  • Sectional view in the display area of the liquid crystal panel The enlarged plan view which shows the plane structure in the display area of the array substrate which comprises a liquid crystal panel
  • the enlarged plan view which shows the plane structure in the display area of CF substrate which comprises a liquid crystal panel
  • Sectional drawing which shows the cross-sectional structure along the short side direction in a liquid crystal display device
  • Sectional drawing which shows the cross-sectional structure along the long side direction in a liquid crystal display device FIG.
  • FIG. 5 is an enlarged cross-sectional view of the vicinity of the LED Cutaway perspective view of second light diffusion sheet (anisotropic light diffusion sheet) It is a top view of a 2nd light-diffusion sheet
  • the graph which shows the luminance distribution of the emitted light from the backlight apparatus which concerns on the comparative example which concerns on a comparative experiment The graph which shows the luminance distribution of the emitted light from the liquid crystal panel of the liquid crystal display device which concerns on the comparative example which concerns on a comparative experiment.
  • the graph which shows the luminance distribution of the emitted light from the liquid crystal panel of the liquid crystal display device which concerns on the Example which concerns on a comparative experiment Sectional drawing which cut
  • Cutaway perspective view of second light diffusion sheet according to Embodiment 5 of the present invention It is a top view of a 2nd light diffusion sheet, Comprising: The top view which represents roughly the arrangement
  • Cutaway perspective view of a second light diffusion sheet according to Embodiment 6 of the present invention Cutaway perspective view of second light diffusion sheet according to Embodiment 7 of the present invention
  • FIG. 9 is an enlarged plan view showing a planar configuration (array of display pixels) in a display area of a CF substrate constituting a liquid crystal panel according to Embodiment 8 of the present invention.
  • FIGS. 1 A first embodiment of the present invention will be described with reference to FIGS.
  • the liquid crystal display device 10 is illustrated.
  • a part of each drawing shows an X axis, a Y axis, and a Z axis, and each axis direction is drawn to be a direction shown in each drawing. 5 and 6 is used as a reference, and the upper side in the figure is the front side and the lower side in the figure is the back side.
  • the liquid crystal display device 10 has a horizontally long rectangular shape as a whole.
  • the liquid crystal display unit LDU which is a basic component, has a touch panel 14, a cover panel (protection panel, cover glass) 15, a casing 16, and the like. It is assumed that these parts are assembled.
  • the liquid crystal display unit LDU is arranged on the back side of the liquid crystal panel (anisotropic display element, anisotropic liquid crystal display element) 11 having a display surface DS for displaying an image on the front side and directed toward the liquid crystal panel 11.
  • a frame (housing member) 13 for holding the liquid crystal panel 11 from the front side, that is, the side opposite to the backlight device 12 side (display surface DS side). It becomes.
  • Both the touch panel 14 and the cover panel 15 are accommodated from the front side in the frame 13 constituting the liquid crystal display unit LDU, and the outer peripheral portion (including the outer peripheral end portion) is received from the back side by the frame 13.
  • the touch panel 14 is disposed at a position at a predetermined interval on the front side with respect to the liquid crystal panel 11, and the back (inner side) plate surface is a facing surface that faces the display surface DS.
  • the cover panel 15 is arranged so as to overlap the touch panel 14 on the front side, and the back (inner side) plate surface is a facing surface that is opposed to the front plate surface of the touch panel 14.
  • An antireflection film AR is interposed between the touch panel 14 and the cover panel 15 (see FIG. 7).
  • the casing 16 is assembled to the frame 13 so as to cover the liquid crystal display unit LDU from the back side.
  • a part of the frame 13 (annular portion 13 b described later), the cover panel 15, and the casing 16 constitute the appearance of the liquid crystal display device 10.
  • the liquid crystal display device 10 according to the present embodiment is mainly used for electronic devices such as smartphones and tablet laptop computers, and the screen size is about several inches to 20 inches, and is generally small or The size is classified as small and medium.
  • the liquid crystal panel 11 constituting the liquid crystal display unit LDU will be described in detail.
  • the liquid crystal panel 11 has a horizontally long rectangular shape, and as shown in FIG. 2, a pair of glass substrates 11a and 11b that are substantially transparent and have excellent translucency, and are interposed between the substrates 11a and 11b. And a liquid crystal layer 11c containing liquid crystal molecules, which are substances whose optical characteristics change with application of an electric field, and a sealing agent (not shown) in a state where both substrates 11a and 11b maintain a gap corresponding to the thickness of the liquid crystal layer 11c. Are pasted together.
  • the liquid crystal panel 11 includes a display area (a central part surrounded by a plate-surface light shielding layer 32 described later) and a non-display area (a board described later) that forms a frame surrounding the display area and does not display an image. And an outer peripheral portion overlapping with the surface light shielding layer 32.
  • the pair of substrates 11a and 11b constituting the liquid crystal panel 11 the one disposed on the front side (front side) is the CF substrate 11a, and the one disposed on the back side (back side) is the array substrate 11b.
  • alignment films 11d and 11e for aligning liquid crystal molecules contained in the liquid crystal layer 11c are formed on the inner surfaces of both the substrates 11a and 11b, respectively.
  • polarizing plates 11f and 11g are attached to the outer surface sides of both the substrates 11a and 11b, respectively.
  • the long side direction in the liquid crystal panel 11 coincides with the X-axis direction
  • the short side direction coincides with the Y-axis direction
  • the thickness direction coincides with the Z-axis direction.
  • a TFT (Thin Film11Transistor) 11k and a pixel electrode 11l which are switching elements are arranged on the X axis.
  • a large number of gate wirings are arranged in a matrix (matrix) along the direction (row direction) and the Y-axis direction (column direction), and a gate wiring having a lattice shape around the TFT 11k and the pixel electrode 11l.
  • 11m and the source wiring 11n are disposed so as to surround them.
  • the gate wiring 11m and the source wiring 11n are connected to the gate electrode and the source electrode of the TFT 11k, respectively, and the pixel electrode 11l is connected to the drain electrode of the TFT 11k.
  • a scanning signal related to the image is supplied to the gate wiring 11m, and a data signal related to the image is supplied to the source wiring 11n from a display control circuit (not shown).
  • the gate wiring 11m, the source wiring 11n, and the gate electrode, the source electrode, and the drain electrode forming the TFT 11k are each made of a metal film that has excellent conductivity and is a light shielding material.
  • the pixel electrode 11l disposed in the region surrounded by the gate wiring 11m and the source wiring 11n has a vertically long rectangular shape when viewed from above, and its short side direction coincides with the X-axis direction and the long side direction is It coincides with the Y-axis direction.
  • the pixel electrode 11l has a short side dimension of, for example, 1/3 or less of the long side dimension.
  • the pixel electrode 11l is made of a transparent electrode material having excellent translucency such as ITO (Indium Tin Oxide) or ZnO (Zinc Oxide) and conductivity.
  • an opening region that transmits light is a region excluding the TFT 11k, which is a light shielding structure, the gate wiring 11m, the source wiring 11n, and the like, that is, the pixel electrode 11l which is a light transmitting structure. It is a vertically long rectangular region that overlaps as viewed in FIG.
  • a large number of color filters 11h are arranged side by side on the CF substrate 11a at positions corresponding to the pixel electrodes 11l.
  • the color filter 11h is composed of three colored portions 11hr, 11hg, and 11hb of R (red), G (green), and B (blue).
  • the three colored portions 11hr, 11hg, and 11hb are arranged repeatedly in parallel along the X-axis direction (row direction) to form a colored portion group, and this colored portion group is arranged in the Y-axis direction (column Many are arranged along the direction.
  • the colored portions 11hr, 11hg, and 11hb constituting the color filter 11h are opposed to the pixel electrode 11l on the array substrate 11b side with the liquid crystal layer 11c sandwiched therebetween, and have a vertically long rectangular shape when viewed from above.
  • the short side direction coincides with the X-axis direction
  • the long side direction coincides with the Y-axis direction.
  • a unit pixel UPX is a set of any one of the coloring portions 11hr, 11hg, and 11hb constituting the color filter 11h and the pixel electrode 11l that is opposed to any one of the coloring portions 11hr, 11hg, and 11hb. Is configured.
  • Each colored portion 11hr, 11hg, 11hb constituting the color filter 11h has a short side dimension of, for example, 1/3 or less of the long side dimension, and the ratio of the short side dimension to the long side dimension is the above. The ratio is almost equal to that of the pixel electrode 11l.
  • a light shielding layer (black matrix) 11i for preventing color mixture is formed between the colored portions 11hr, 11hg, and 11hb constituting the color filter 11h.
  • the light shielding layer 11i is made of a light shielding material having excellent light shielding properties and has a lattice shape, and is arranged so as to overlap the gate wiring 11m and the source wiring 11n on the array substrate 11b side in a plan view.
  • an opening area that transmits light is an area excluding the light shielding layer 11i that is a light shielding structure, that is, a color filter 11h that is a light transmissive structure and a plan view. A vertically long rectangular region is superimposed.
  • a counter electrode (common electrode) 11j facing the pixel electrode 11l on the array substrate 11b side is provided on the surface of the color filter 11h and the light shielding layer 11i.
  • a reference potential is supplied to the counter electrode 11j from a display control circuit (not shown).
  • the pixel electrode 11l and the counter electrode 11j having the reference potential are interposed between the pixel electrode 11l and the counter electrode 11j having the reference potential.
  • a potential difference is generated, and the alignment state of the liquid crystal molecules contained in the liquid crystal layer 11c interposed between the electrodes 11l and 11j can be controlled based on the potential difference. Accordingly, it is possible to individually control the light transmission amount in each unit pixel UPX (each coloring portion 11hr, 11hg, 11hb) and display an image on the display surface DS of the liquid crystal panel 11.
  • the CF substrate 11a is slightly smaller in size in plan view than the array substrate 11b.
  • a set of three color electrodes 11hr, 11hg, and 11hb of R, G, and B constituting the color filter 11h and three pixel electrodes 11l facing them (a unit pixel UPX of three colors). )
  • a display pixel PX which is a display unit. Specifically, as shown in FIGS. 3 and 4, the display pixel PX has a red unit pixel having an R colored portion 11hr, a green unit pixel having a G colored portion 11hg, and a blue color having a B colored portion 11hb. It consists of unit pixels.
  • These unit pixels UPX of each color are arranged repeatedly on the plate surface of the liquid crystal panel 11 along the X-axis direction (row direction) to form a unit pixel UPX group. Many are arranged along the axial direction (column direction). Thereby, a large number of display pixels PX are arranged in parallel in a matrix (matrix shape) along the plate surfaces of both the substrates 11a and 11b, that is, the display surface DS (X-axis direction and Y-axis direction).
  • the display pixel PX has a vertically long rectangular shape in plan view, and the short side direction coincides with the X-axis direction and the long side direction coincides with the Y-axis direction.
  • the display pixel PX has a short side dimension of, for example, 1/3 or less of the long side dimension, and the ratio of the short side dimension to the long side dimension is the same ratio relating to the pixel electrode 11l described above, and the color.
  • the ratios of the colored portions 11hr, 11hg, and 11hb constituting the filter 11h are substantially equal to each other. Due to such a configuration, the liquid crystal panel 11 has anisotropy in the emission angle distribution of transmitted light, and specifically, in the X-axis direction along the short side direction of the display pixel PX. Has a relatively narrow emission angle range of transmitted light, while the emission angle range of transmitted light is relatively wide in the Y-axis direction along the long side direction of the display pixel PX.
  • the “outgoing angle range” referred to here is an angle range obtained by adding the positive and negative angle ranges formed by the traveling direction of the outgoing light transmitted through the liquid crystal panel 11 with respect to the normal direction of the display surface DS.
  • it is an angular range in which the luminance value related to the emitted light is a certain level or more (specifically, for example, half or more of the maximum luminance value).
  • a direction along the short side direction (X-axis direction) of the display pixel PX is referred to as a “first direction”
  • a direction along the long side direction of the display pixel PX (Y-axis direction) is referred to as a “second direction”.
  • the display pixels PX and the unit pixels UPX can be said to be periodic structures that are arranged in parallel with a certain periodicity along the X-axis direction and the Y-axis direction.
  • the backlight device 12 constituting the liquid crystal display unit LDU will be described in detail.
  • the backlight device 12 has a horizontally long and substantially block shape as in the liquid crystal panel 11 as a whole.
  • the backlight device 12 includes an LED (LightLEDEmitting Diode) 17 that is a light source, an LED substrate (light source substrate) 18 on which the LED 17 is mounted, and light from the LED 17.
  • LED LightLEDEmitting Diode
  • the backlight device 12 is an edge light type (side light type) of a one-side incident type in which LEDs 17 (LED substrates 18) are unevenly distributed at one end portion on the long side of the outer peripheral portion. .
  • the LED 17 has a configuration in which an LED chip is sealed with a resin material on a substrate portion fixed to the LED substrate 18.
  • the LED chip mounted on the substrate unit has one main emission wavelength, and specifically, one that emits blue light in a single color is used.
  • the resin material that seals the LED chip is dispersed and blended with a phosphor that emits a predetermined color when excited by the blue light emitted from the LED chip, and generally emits white light as a whole. It is said.
  • the phosphor for example, a yellow phosphor that emits yellow light, a green phosphor that emits green light, and a red phosphor that emits red light are used in appropriate combination, or any one of them is used. It can be used alone.
  • the LED 17 is a so-called top surface light emitting type in which a surface opposite to the mounting surface with respect to the LED substrate 18 is a light emitting surface 17a.
  • the LED substrate 18 has a long plate shape extending along the X-axis direction (the long side direction of the light guide plate 19 and the chassis 22). It is accommodated in the chassis 22 in a posture parallel to the X-axis direction and the Z-axis direction, that is, a posture orthogonal to the plate surfaces of the liquid crystal panel 11 and the light guide plate 19. That is, the LED substrate 18 has a posture in which the long side direction on the plate surface coincides with the X-axis direction, the short side direction coincides with the Z-axis direction, and the plate thickness direction orthogonal to the plate surface coincides with the Y-axis direction. It is said.
  • the LED substrate 18 is opposed to the inner surface of the light guide plate 19 (mounting surface 18a) with a predetermined interval in the Y-axis direction with respect to the end surface (light incident surface 19b) on one long side of the light guide plate 19. It is arranged in. Therefore, the alignment direction of the LED 17 and the LED substrate 18 and the light guide plate 19 substantially coincides with the Y-axis direction.
  • the LED board 18 has a length dimension that is substantially the same as the long side dimension of the light guide plate 19, and is attached to one end portion of the long side of the chassis 22 described later.
  • the mounting surface 18a is used on the inner side of the LED substrate 18, that is, the plate surface facing the light guide plate 19 side (the surface facing the light guide plate 19), as shown in FIG.
  • the mounting surface 18a is used.
  • a plurality of LEDs 17 are arranged in a line (linearly) in parallel on the mounting surface 18a of the LED substrate 18 along the length direction (X-axis direction) with a predetermined interval. That is, it can be said that a plurality of LEDs 17 are intermittently arranged in parallel along the long side direction at one end portion on the long side of the backlight device 12.
  • a wiring pattern (not shown) made of a metal film (such as copper foil) is provided on the mounting surface 18a of the LED substrate 18 and extends in the X-axis direction and connects adjacent LEDs 17 in series across the LED 17 group. And the terminal portions formed at both ends of the wiring pattern are connected to an external LED driving circuit, so that driving power can be supplied to each LED 17.
  • the base material of the LED substrate 18 is made of metal like the chassis 22, and the wiring pattern (not shown) described above is formed on the surface thereof via an insulating layer.
  • insulating materials such as a ceramic, can also be used as a material used for the base material of LED board 18.
  • the light guide plate 19 is made of a synthetic resin material (for example, acrylic) having a refractive index sufficiently higher than that of air and substantially transparent (excellent translucency).
  • the light guide plate 19 is in the form of a flat plate that is horizontally long when viewed in a plane, like the liquid crystal panel 11, and the plate surface is parallel to the plate surface (display surface DS) of the liquid crystal panel 11.
  • the light guide plate 19 has a long side direction on the plate surface corresponding to the X-axis direction, a short side direction corresponding to the Y-axis direction, and a plate thickness direction orthogonal to the plate surface corresponding to the Z-axis direction.
  • the light guide plate 19 is stacked in a position directly below the liquid crystal panel 11 and the optical sheet 20 in the chassis 22, in other words, is disposed on the opposite side of the optical sheet 20 from the liquid crystal panel 11 side.
  • One of the long-side end faces of each of the LED boards 18 on the LED substrate 18 disposed at one end of the long-side of the chassis 22 is opposed to each other. Therefore, while the alignment direction of the LED 17 (LED substrate 18) and the light guide plate 19 coincides with the Y-axis direction, the alignment direction (overlapping direction) of the optical sheet 20 (liquid crystal panel 11) and the light guide plate 19 is Z. It is coincident with the axial direction, and both alignment directions are orthogonal to each other.
  • the light guide plate 19 introduces light emitted from the LED 17 toward the light guide plate 19 along the Y-axis direction (the alignment direction of the LED 17 and the light guide plate 19) from the end surface on the long side, and transmits the light. While propagating inside, it has a function of rising up toward the optical sheet 20 side (front side, light emitting side) and emitting from the plate surface.
  • the surface facing the front side (the surface facing the liquid crystal panel 11 and the optical sheet 20) transmits internal light to the optical sheet 20 as shown in FIGS.
  • a light emission surface 19a that emits light toward the liquid crystal panel 11 is formed.
  • the pair of long side end faces that form a longitudinal shape along the X-axis direction (LED 17 alignment direction, LED board 18 long side direction)
  • one end face (left side shown in FIG. 5) is opposed to the LED 17 (LED substrate 18) with a predetermined space therebetween, and light emitted from the LED 17 is incident thereon. It is a light incident surface 19b.
  • the light incident surface 19b is a surface that is parallel to the X-axis direction and the Z-axis direction, and is a surface that is substantially orthogonal to the light emitting surface 19a. Further, the alignment direction of the LED 17 and the light incident surface 19b (light guide plate 19) coincides with the Y-axis direction and is parallel to the light emitting surface 19a. Of the outer peripheral end surfaces of the light guide plate 19, three end surfaces excluding the light incident surface 19b, specifically, a long side end surface opposite to the light incident surface 19b, and a pair of short side end surfaces. As shown in FIGS. 5 and 6, the LED 17 is an LED non-facing end surface (light source non-facing end surface) that does not face the LED 17.
  • a plate surface (opposite plate surface) 19c opposite to the light emitting surface 19a reflects the light in the light guide plate 19 as shown in FIGS.
  • a reflection sheet R that can be raised is provided so as to cover the entire area.
  • the reflection sheet R is disposed between the bottom plate 22 a of the chassis 22 and the light guide plate 19.
  • the end of the light guide plate 19 on the light incident surface 19b side is extended to the outside of the light incident surface 19b, that is, toward the LED 17, as shown in FIG.
  • a scattering portion that scatters the light in the light guide plate 19 is provided on at least one of the light exit surface 19a and the opposite plate surface 19c of the light guide plate 19 or on the surface of the reflection sheet R. Are patterned so as to have a predetermined in-plane distribution, whereby the light emitted from the light exit surface 19a is controlled to have a uniform distribution in the plane.
  • the optical sheet 20 has a horizontally long rectangular shape when viewed in a plane, like the liquid crystal panel 11 and the chassis 22.
  • the optical sheet 20 is placed on the light emission surface 19 a of the light guide plate 19 and is disposed between the liquid crystal panel 11 and the light guide plate 19, so that the emitted light supplied from the light guide plate 19 is received.
  • the light can be transmitted and emitted toward the liquid crystal panel 11 while applying a predetermined optical action to the transmitted light.
  • the optical sheet 20 is diffused into the light emitted from the light guide plate 19 and two prism sheets (light condensing members, lens sheets) 40 and 41 that condense the light emitted from the light guide plate 19.
  • a total of four sheets including two light diffusing sheets (light diffusing members) 42 and 43 that impart an action are included, and two prism sheets 40 and 41 are disposed between the two light diffusing sheets 42 and 43. Laminated and arranged in a sandwiched manner. Specifically, of the two prism sheets 40 and 41, the back side is the first prism sheet 40 and the front side is the second prism sheet 41, whereas the two light diffusion sheets 42 and 43 are Among these, when the back side is the first light diffusion sheet 42 and the front side is the second light diffusion sheet 43, the first light diffusion sheet 42 is disposed closest to the light guide plate 19, and the first light diffusion sheet 42 is disposed on the front side.
  • the prism sheet 40 is further laminated with the second prism sheet 41 on the front side thereof, and the second light diffusion sheet 43 is disposed closest to the liquid crystal panel 11.
  • the two prism sheets 40 and 41 included in the optical sheet 20 are made of sheet-like base materials 40 a and 41 a and both of the front and back plate surfaces of the base materials 40 a and 41 a. And prism portions 40b and 41b formed on the plate surface opposite to the light guide plate 19 side (liquid crystal panel 11 side).
  • the base materials 40a and 41a are made of a substantially transparent synthetic resin, and light emitted from the light guide plate 19 is incident on the plate surface on the back side (the side opposite to the prism portions 40b and 41b). ing.
  • the prism portions 40b and 41b are made of a substantially transparent synthetic resin and are composed of a large number of unit prisms 40b1 and 41b1 projecting from the front plate surface of the base materials 40a and 41a toward the front side along the Z-axis direction. It is supposed to be.
  • the unit prisms 40b1 and 41b1 are configured such that the cross-sectional shape cut along the second direction (the alignment direction of the LED 17 and the light guide plate 19 and the Y-axis direction) forms a substantially chevron and the first direction (the LED 17 and the light guide plate 19 It extends linearly along the direction orthogonal to the alignment direction (X-axis direction), and a large number of the base materials 40a and 41a are arranged in parallel along the Y-axis direction on the plate surfaces of the base materials 40a and 41a.
  • the unit prisms 40b1 and 41b1 have a substantially isosceles triangular cross section and have a pair of inclined surfaces.
  • the unit prism 40b1 has a width dimension of the second prism sheet 41.
  • the width of the unit prism 41b1 is almost the same. Accordingly, in the first prism sheet 40, the apex angle formed by the pair of inclined surfaces in the unit prism 40b1 is larger than the apex angle formed by the pair of inclined surfaces in the unit prism 41b1 of the second prism sheet 41.
  • the apex angle formed by the pair of inclined surfaces in the unit prism 41b1 of the second prism sheet 41 is substantially a right angle.
  • a large number of unit prisms 40b1 and 41b1 arranged in parallel along the second direction are arranged at equal intervals with a substantially constant arrangement interval.
  • the prism sheets 40 and 41 having such a configuration, light transmitted through the base materials 40a and 41a from the first light diffusion sheet 42 side (light guide plate 19 side) is unit prisms 40b1 and 41b in the prism portions 40b and 41b. If the incident angle with respect to each slope of 41b1 exceeds the critical angle, it is totally reflected and returned to the first light diffusion sheet 42 side (retroreflected), whereas if the incident angle does not exceed the critical angle. There, it is emitted while being refracted.
  • each prism sheet 40, 41 is regulated so that the traveling direction in the second direction is close to the front direction (the normal direction of the plate surface of each prism sheet 40, 41), and thus in the second direction.
  • a light condensing action is selectively given, and the front luminance of light supplied from the optical sheet 20 to the liquid crystal panel 11 can be improved.
  • the first light diffusion sheet 42 is sandwiched between the light guide plate 19 and the first prism sheet 40 as shown in FIGS. 10 and 11. Arrangement.
  • the first light diffusing sheet 42 is composed of a translucent resin portion 42a and isotropic light diffusing particles (spherical filler) 42b dispersed and blended in the translucent resin portion 42a.
  • the translucent resin portion 42a is mainly made of a synthetic resin material having a substantially transparent and excellent translucency such as acrylic resin, polyurethane, polyester, silicone resin, epoxy resin, and ultraviolet curable resin, and its refraction. The rate is, for example, about 1.3 to 1.6.
  • the isotropic light diffusing particles 42b are made of, for example, an inorganic material such as silica, aluminum hydroxide, and zinc oxide, and a synthetic resin material having almost transparent and excellent translucency such as an organic material such as acrylic resin, polyurethane, and polystyrene.
  • the refractive index is, for example, about 1.3 to 1.6.
  • the isotropic light diffusing particles 42b are formed in a spherical shape whose cross-sectional shape is a substantially perfect circle shape, so that the light hitting the isotropic light diffusing particles 42b can be diffused isotropically.
  • the first light diffusing sheet 42 when light emitted from the light emitting surface 19a of the light guide plate 19 is incident on the back side plate surface (light incident side plate surface) of the first light diffusing sheet 42, Light isotropically diffuses by hitting the isotropic light diffusion particles 42a mixed and dispersed in the translucent resin portion 42a, so that the first light diffusion sheet 42 has a first surface from the front surface (light-emitting side surface).
  • the emitted light diffused isotropically toward the prism sheet 40 can be supplied. That is, the first light diffusion sheet 42 has substantially the same amount of diffused light in the first direction (X-axis direction) and the second direction (Y-axis direction), and the emission angle ranges in the first direction and the second direction are substantially the same.
  • the “outgoing angle range” referred to here is a positive or negative angle formed by the traveling direction of outgoing light transmitted through the first light diffusing sheet 42 with respect to the normal direction of the plate surface of the first light diffusing sheet 42. This is an angle range obtained by adding the ranges, and is an angle range in which the luminance value related to the emitted light is a certain level or more (specifically, for example, half or more of the maximum luminance value).
  • the first light diffusion sheet 42 directivity that can be generated in the light emitted from the light guide plate 19 can be reduced. Note that the detailed configuration and function of the second light diffusion sheet 43 in the optical sheet 20 will be described later.
  • the light shielding frame 21 is formed in a substantially frame shape (frame shape) extending so as to follow the outer peripheral portion (outer peripheral end portion) of the light guide plate 19.
  • the outer peripheral portion can be pressed from the front side over almost the entire circumference.
  • the light-shielding frame 21 is made of synthetic resin and has a light-shielding property because the surface has a form of black, for example.
  • the shading frame 21 is arranged such that its inner end 21 a is interposed over the entire circumference between the outer peripheral portion of the light guide plate 19 and the LED 17 and the outer peripheral portions (outer peripheral end portions) of the liquid crystal panel 11 and the optical sheet 20. They are partitioned so that they are optically independent.
  • the light emitted from the LED 17 and not entering the light incident surface 19b or the light leaking from the end surface of the light guide plate 19 is liquid crystal panel. 11 and the optical sheet 20 can be shielded from direct light incident on each outer peripheral portion (particularly the end face).
  • the three sides (the long sides on the opposite side of the pair of short sides and the LED substrate 18) that do not overlap with the LED 17 and the LED substrate 18 in plan view are chassis. 22 has a portion that rises from the bottom plate 22a and a portion that supports the frame 13 from the back side. And the LED substrate 18 (LED 17) are covered from the front side and are bridged between a pair of short sides.
  • the light shielding frame 21 is fixed to a chassis 22 described below by fixing means such as a screw member (not shown).
  • the chassis 22 is made of a metal plate having excellent thermal conductivity, such as an aluminum plate or an electrogalvanized steel plate (SECC), and has a horizontally long rectangular shape as in the liquid crystal panel 11 as shown in FIGS.
  • SECC electrogalvanized steel plate
  • the chassis 22 (bottom plate 22a) has a long side direction that matches the X-axis direction, and a short side direction that matches the Y-axis direction.
  • the bottom plate 22a is a light guide plate support portion 22a1 that supports the light guide plate 19 from the back side (the side opposite to the light emitting surface 19a side), whereas the end on the LED substrate 18 side is stepped.
  • the board accommodating portion 22a2 bulges to the back side.
  • the substrate housing portion 22a2 has a substantially L-shaped cross section, is bent from the end portion of the light guide plate support portion 22a1, and rises toward the back side, and a rising portion.
  • 38 is composed of an accommodation bottom 39 that is bent from the rising tip of 38 and protrudes toward the side opposite to the light guide plate support 22a1 side.
  • the bent position of the rising portion 38 from the end of the light guide plate support portion 22a1 is located on the opposite side of the light incident surface 19b of the light guide plate 19 from the LED 17 side (near the center of the light guide plate support portion 22a1). .
  • a long side side plate 22b is bent from the protruding tip of the housing bottom 39 so as to rise to the front side.
  • the LED substrate 18 is attached to the side plate 22b on the long side continuous to the substrate housing portion 22a2, and the side plate 22b constitutes the substrate attachment portion 37.
  • the board mounting portion 37 has a facing surface that faces the light incident surface 19b of the light guide plate 19, and the LED substrate 18 is mounted on the facing surface.
  • the LED substrate 18 is fixed in such a manner that the plate surface opposite to the mounting surface 18a on which the LED 17 is mounted is in contact with the inner plate surface of the substrate mounting portion 37 via a substrate fixing member 25 such as a double-sided tape. ing.
  • the attached LED board 18 has a slight gap between the LED board 18 and the inner plate surface of the housing bottom 39 that forms the board housing 22a2.
  • a liquid crystal panel drive circuit board (not shown) for controlling the drive of the liquid crystal panel 11, and an LED drive circuit board (not shown) for supplying drive power to the LEDs 17.
  • a touch panel drive circuit board (not shown) for controlling the drive of the touch panel 14 is attached.
  • the heat dissipating member 23 is made of a metal plate having excellent thermal conductivity such as an aluminum plate, and as shown in FIGS. 1 and 5, one end of the long side of the chassis 22, specifically, a substrate housing for housing the LED substrate 18. It is set as the form extended along part 22a2. As shown in FIG. 7, the heat dissipating member 23 has a substantially L-shaped cross section, and is parallel to the outer surface of the substrate housing portion 22a2 and in contact with the outer surface, and the substrate housing portion 22a2. It consists of the 2nd thermal radiation part 23b parallel to the outer surface of the continuous side plate 22b (board
  • the first heat radiating portion 23a has an elongated flat plate shape extending along the X-axis direction, and the plate surface facing the front side parallel to the X-axis direction and the Y-axis direction has a receiving bottom portion 39 in the substrate receiving portion 22a2. It is contact
  • the first heat radiating portion 23a is screwed to the housing bottom 39 by a screw member SM, and has a screw insertion hole 23a1 through which the screw member SM is inserted.
  • the accommodation bottom 39 is formed with a screw hole 28 into which the screw member SM is screwed.
  • the second heat dissipating part 23b has an elongated flat plate shape extending along the X-axis direction, and a plate surface facing inward in parallel to the X-axis direction and the Z-axis direction is an outer plate in the board mounting part 37. They are arranged in a facing manner with a predetermined gap between them and the surface.
  • the frame 13 is made of a metal material having excellent thermal conductivity such as aluminum.
  • each outer peripheral portion (outer periphery) of the liquid crystal panel 11, the touch panel 14 and the cover panel 15 is used. It has a substantially horizontally long frame shape (frame shape) extending in a manner that follows the end portion.
  • press working or the like is employed as a method for manufacturing the frame 13, for example.
  • the frame 13 presses the outer peripheral portion of the liquid crystal panel 11 from the front side, and the liquid crystal panel 11 and the optical sheet stacked with each other with the chassis 22 constituting the backlight device 12.
  • the frame 13 receives the outer peripheral portions of the touch panel 14 and the cover panel 15 from the back side, and is arranged in a form interposed between the outer peripheral portions of the liquid crystal panel 11 and the touch panel 14.
  • a predetermined gap is secured between the liquid crystal panel 11 and the touch panel 14.
  • the touch panel 14 follows the cover panel 15 toward the liquid crystal panel 11. Even when it is deformed to bend, the bent touch panel 14 is less likely to interfere with the liquid crystal panel 11.
  • the frame 13 includes a frame-like portion (frame base portion, frame-like portion) 13 a that follows each outer peripheral portion of the liquid crystal panel 11, the touch panel 14, and the cover panel 15, and the outer periphery of the frame-like portion 13 a. Attached to the chassis 22 and the heat radiating member 23 projecting from the frame-like part 13a toward the back side, and an annular part (cylindrical part) 13b that continues to the end and surrounds the touch panel 14, the cover panel 15 and the casing 16 from the outer peripheral side. And an attachment plate portion 13c.
  • the frame-shaped portion 13 a has a substantially plate shape having plate surfaces parallel to the plate surfaces of the liquid crystal panel 11, the touch panel 14, and the cover panel 15, and is horizontally long when viewed in a plane. It is formed in a substantially square frame shape.
  • the frame portion 13a is relatively thicker at the outer peripheral portion 13a2 than at the inner peripheral portion 13a1, and a step (gap) GP is formed at the boundary between them.
  • the inner peripheral portion 13a1 is interposed between the outer peripheral portion of the liquid crystal panel 11 and the outer peripheral portion of the touch panel 14, whereas the outer peripheral portion 13a2 receives the outer peripheral portion of the cover panel 15 from the back side. .
  • the front plate surface of the frame-like portion 13a is almost entirely covered by the cover panel 15, the front plate surface is hardly exposed to the outside. Thereby, even if the temperature of the frame 13 is increased due to heat from the LED 17 or the like, it is difficult for the user of the liquid crystal display device 10 to directly contact the exposed portion of the frame 13, which is excellent in terms of safety.
  • a cushioning material 29 for adhering the outer peripheral portion of the liquid crystal panel 11 and holding it from the front side is fixed, whereas the front side of the inner peripheral portion 13a1 is fixed.
  • a first fixing member 30 for fixing the outer peripheral portion of the touch panel 14 while buffering is fixed to the plate surface.
  • the cushioning material 29 and the first fixing member 30 are arranged at positions overlapping each other in the inner peripheral portion 13a1 when viewed in plan.
  • a second fixing member 31 for fixing the outer peripheral portion of the cover panel 15 while buffering the outer peripheral portion of the cover panel 15 is fixed to the front plate surface of the outer peripheral portion 13a2 of the frame-like portion 13a.
  • the buffer material 29 and the fixing members 30 and 31 are arranged so as to extend along the side portions of the frame-like portion 13a excluding the corner portions at the four corners.
  • each fixing member 30 and 31 consists of a double-sided tape in which a base material has cushioning properties, for example.
  • the annular portion 13 b has a horizontally long rectangular short tube shape as viewed in plan as a whole, from the outer peripheral edge of the outer peripheral portion 13 a 2 of the frame-shaped portion 13 a toward the front side. It has the 1st cyclic
  • the outer peripheral edge of the frame-shaped portion 13a is connected to the inner peripheral surface at the substantially central portion in the axial direction (Z-axis direction) over the entire periphery.
  • the first annular portion 34 is arranged so as to surround the outer peripheral end surfaces of the touch panel 14 and the cover panel 15 arranged on the front side with respect to the frame-shaped portion 13a over the entire circumference.
  • the first annular portion 34 has an inner peripheral surface facing each outer peripheral end surface of the touch panel 14 and the cover panel 15, whereas the outer peripheral surface is exposed to the outside of the liquid crystal display device 10, and the liquid crystal display The external appearance of the side surface side of the device 10 is configured.
  • the second annular portion 35 surrounds the front end portion (attachment portion 16c) of the casing 16 disposed on the back side with respect to the frame-shaped portion 13a from the outer peripheral side.
  • the second annular portion 35 has an inner peripheral surface facing a mounting portion 16c of the casing 16 described later, whereas an outer peripheral surface is exposed to the outside of the liquid crystal display device 10 and the liquid crystal display device 10.
  • the external appearance of the side of the A frame-side hooking claw portion 35a having a cross-sectional saddle shape is formed at the projecting tip portion of the second annular portion 35, and the casing 16 is locked to the frame-side locking claw portion 35a.
  • the casing 16 can be held in the attached state.
  • the mounting plate portion 13c protrudes from the outer peripheral portion 13a2 toward the back side of the frame-shaped portion 13a and extends along each side of the frame-shaped portion 13a.
  • the plate surface is substantially orthogonal to the plate surface of the frame-like portion 13a.
  • the mounting plate portion 13c is individually arranged for each side portion of the frame-like portion 13a.
  • the mounting plate portion 13c arranged on the long side portion on the LED substrate 18 side of the frame-shaped portion 13a is such that the plate surface facing the inside contacts the outer plate surface of the second heat radiating portion 23b of the heat radiating member 23. It is attached.
  • the mounting plate portion 13c is screwed to the second heat radiating portion 23b by a screw member SM, and has a screw insertion hole 13c1 through which the screw member SM is inserted. Further, a screw hole 36 into which the screw member SM is screwed is formed in the second heat radiating portion 23b. Thereby, the heat from the LED 17 transmitted from the first heat radiating portion 23a to the second heat radiating portion 23b is transmitted to the entire plate 13 after being transmitted to the mounting plate portion 13c. Heat is dissipated. Further, the mounting plate portion 13 c is indirectly fixed to the chassis 22 through the heat radiating member 23.
  • each of the mounting plate portions 13c disposed on the long side portion and the pair of short side portions on the opposite side to the LED substrate 18 side of the frame-like portion 13a has a plate surface facing the inner side of each of the chassis 22.
  • Each of the side plates 22b is screwed with a screw member SM so as to be in contact with the outer plate surface.
  • the mounting plate portions 13c are formed with screw insertion holes 13c1 through which the screw members SM are inserted, whereas the side plates 22b are formed with screw holes 36 into which the screw members SM are screwed. .
  • Each screw member SM is attached to each attachment plate portion 13c in a form where a plurality of screw members SM are intermittently arranged along the extending direction.
  • the touch panel 14 is a position input device for a user to input position information in the plane of the display surface DS of the liquid crystal panel 11, and has a horizontally long rectangular shape.
  • a predetermined touch panel pattern (not shown) is formed on a glass substrate that is substantially transparent and has excellent translucency.
  • the touch panel 14 has a glass substrate that has a horizontally long rectangular shape when seen in a plan view like the liquid crystal panel 11, and a so-called projected capacitive touch panel on the surface facing the front side.
  • a transparent electrode portion for touch panel (not shown) constituting the pattern is formed, and a large number of transparent electrode portions for touch panel are arranged in parallel in a matrix within the surface of the substrate.
  • a terminal portion (not shown) connected to the end portion of the wiring drawn from the transparent electrode portion for the touch panel constituting the touch panel pattern is formed at one end portion on the long side of the touch panel 14.
  • a flexible substrate not shown
  • a potential is supplied from the touch panel drive circuit substrate to the transparent electrode portion for the touch panel forming the touch panel pattern.
  • the touch panel 14 is fixed so that the inner plate surface in the outer peripheral portion thereof is opposed to the inner peripheral portion 13a1 in the frame-like portion 13a of the frame 13 by the first fixing member 30 described above.
  • the cover panel 15 assembled to the frame 13 will be described.
  • the cover panel 15 is arranged so as to cover the touch panel 14 over the entire area from the front side, thereby protecting the touch panel 14 and the liquid crystal panel 11.
  • the cover panel 15 covers the entire frame-like portion 13a of the frame 13 from the front side to the entire area, and configures the appearance of the front side of the liquid crystal display device 10.
  • the cover panel 15 has a horizontally long rectangular shape and is made of a plate-like base material made of glass that is substantially transparent and has excellent translucency, and preferably made of tempered glass.
  • the tempered glass used for the cover panel 15 it is preferable to use chemically tempered glass having a chemically strengthened layer on the surface, for example, by subjecting the surface of a plate-like glass substrate to chemical strengthening treatment.
  • This chemical strengthening treatment refers to, for example, a treatment for strengthening a plate-like glass substrate by replacing alkali metal ions contained in a glass material by ion exchange with alkali metal ions having an ion radius larger than that,
  • the resulting chemically strengthened layer is a compressive stress layer (ion exchange layer) in which compressive stress remains.
  • the cover panel 15 has a horizontally long rectangular shape when viewed in a plane, like the liquid crystal panel 11 and the touch panel 14, and the size viewed in the plane is the liquid crystal panel 11 and the touch panel.
  • the cover panel 15 has an overhanging portion 15EP that projects outwardly in a bowl shape from the outer peripheral edges of the liquid crystal panel 11 and the touch panel 14 over the entire circumference.
  • This overhanging portion 15EP has a horizontally long and substantially rectangular frame shape (substantially frame shape) that surrounds the liquid crystal panel 11 and the touch panel 14, and the inner plate surface thereof is framed by the second fixing member 31 described above.
  • the frame-shaped portion 13a is fixed to the outer peripheral portion 13a2 so as to face the outer peripheral portion 13a2.
  • a central portion of the cover panel 15 that faces the touch panel 14 is laminated on the front side with respect to the touch panel 14 via an antireflection film AR.
  • a light-blocking plate is provided on the inner (back side) plate surface (the plate surface facing the touch panel 14) in the outer peripheral portion including the above-described overhanging portion 15 EP of the cover panel 15.
  • a surface light shielding layer (light shielding layer, plate surface light shielding portion) 32 is formed.
  • the plate surface light shielding layer 32 is made of a light shielding material such as a paint exhibiting black, for example, and the light shielding material is integrally provided on the plate surface by printing on the inner plate surface of the cover panel 15. It has been.
  • printing means such as screen printing and ink jet printing can be employed.
  • the plate surface light shielding layer 32 is inside the overhanging portion 15EP in addition to the entire overhanging portion 15EP of the cover panel 15, and overlaps with each of the outer peripheral portions of the touch panel 14 and the liquid crystal panel 11 in a plan view. It is formed in a range over the part to be. Therefore, the plate surface light shielding layer 32 is arranged so as to surround the display area of the liquid crystal panel 11, so that the light outside the display area can be blocked, and thus the display quality relating to the image displayed in the display area. Can be high.
  • the casing 16 is made of a synthetic resin material or a metal material, and as shown in FIGS. 1 to 6, has a substantially bowl shape that is open toward the front side.
  • the members such as the shape portion 13 a, the mounting plate portion 13 c, the chassis 22, and the heat dissipation member 23 are covered from the back side, and the appearance of the back side of the liquid crystal display device 10 is configured.
  • the casing 16 has a generally flat bottom portion 16a, a curved portion 16b that rises from the outer peripheral edge of the bottom portion 16a to the front side and has a curved cross section, and an attachment portion that rises almost straight from the outer peripheral edge of the curved portion 16b to the front side.
  • the attachment portion 16c is formed with a casing-side locking claw portion 16d having a saddle-shaped cross section.
  • the casing-side locking claw portion 16d is locked to the frame-side locking claw portion 35a of the frame 13.
  • the casing 16 can be held in the attached state with respect to the frame 13.
  • the liquid crystal panel 11 has a relatively narrow emission angle range of transmitted light in the first direction (X-axis direction) along the short side direction of the display pixel PX.
  • the emission angle distribution of the transmitted light has anisotropy so that the emission angle range of the transmitted light becomes relatively wide. .
  • the illumination light supplied from the backlight device to the liquid crystal panel 11 is isotropic, the viewing angle of the liquid crystal panel 11 is the same as the emission angle distribution of the liquid crystal panel 11. There is a concern that sex will occur.
  • the liquid crystal display device 10 may be required to have isotropic viewing angle depending on the application.
  • the liquid crystal display device 10 is portrait (portrait mode) and landscape when viewed from the user, such as a smartphone or a tablet laptop.
  • the direction is switched appropriately between (landscape mode) and used, there is a tendency that high isotropy is required for the viewing angle.
  • the field of view is different when the user views the image on the display surface DS with the liquid crystal display device 10 in the portrait orientation and when the user views the image on the display surface DS with the liquid crystal display device 10 in the landscape orientation. If the corners are different, the display quality may be significantly degraded.
  • the optical sheet 20 includes the second light diffusion sheet 43 that is an anisotropic light diffusion sheet having an emission angle distribution opposite to the emission angle distribution of the liquid crystal panel 11.
  • the second light diffusion sheet 43 is supplied via the light guide plate 19 and the other three optical sheets 20 (both prism sheets 40 and 41 and the first light diffusion sheet 42) as shown in FIGS.
  • the light emitted from the LED 17 is emitted toward the liquid crystal panel 11, and the emission angle range is relatively wide in the first direction (X-axis direction), whereas the second direction (Y-axis direction). Is anisotropy in the outgoing angle distribution of the outgoing light so that the outgoing angle range becomes relatively narrow.
  • the “outgoing angle range” referred to here is a positive or negative angle formed by the traveling direction of outgoing light transmitted through the second light diffusion sheet 43 with respect to the normal direction of the plate surface of the second light diffusion sheet 43. It is an angle range obtained by adding the ranges, and is an angle range in which the luminance value related to the emitted light is equal to or greater than a certain value (specifically, for example, half or more of the maximum luminance value).
  • a certain value specifically, for example, half or more of the maximum luminance value
  • the second light diffusion sheet 43 is disposed between the liquid crystal panel 11 and the second prism sheet 41, and is the most liquid crystal panel 11 among the optical sheets 20. It is arrange
  • the anisotropic light diffusing action is provided, and the light having the anisotropic light diffusing action is directly supplied to the liquid crystal panel 11. As shown in FIG.
  • the second light diffusion sheet 43 has a sheet-like base material 43a and the front side of the front and back plate surfaces of the base material 43a, that is, the liquid crystal panel 11 side (opposite to the light guide plate 19 side).
  • Side) plate surface (light emitting side plate surface 43a1 described below) and an anisotropic light diffusion portion 43b formed on the plate surface.
  • the base material 43a is substantially transparent and has a sheet shape having excellent translucency, and is made of a thermoplastic resin material such as PET.
  • the base plate 43 a has a front-side plate surface as a light-emitting side plate surface 43 a 1 that emits light toward the liquid crystal panel 11.
  • a thermoplastic resin material forming the base material 43a is formed as a film having a predetermined thickness, and then the film is aligned along the X-axis direction and the Y-axis direction in a high-temperature environment.
  • the base material 43a is formed by biaxial stretching.
  • the molded base material 43a has high strength and high heat resistance because the molecules of the thermoplastic resin material are oriented in the stretching direction (X-axis direction and Y-axis direction) in the manufacturing process.
  • the thickness of the base material 43a is, for example, about 25 ⁇ m to 100 ⁇ m.
  • the anisotropic light diffusing portion 43 b is a front plate surface of the base material 43 a and directly faces the liquid crystal panel 11 and emits light toward the liquid crystal panel 11. It is integrally provided on the light output side plate surface 43a1.
  • the anisotropic light diffusing portion 43b has a thickness smaller than that of the base material 43a, and specifically, for example, about 10 ⁇ m to 20 ⁇ m.
  • a large number of anisotropic light diffusion portions 43b are dispersed and blended in the translucent resin layer 43b1 having a predetermined thickness and laminated on the light output side plate surface 43a1 of the base material 43a, and the translucent resin layer 43b1.
  • the translucent resin layer 43b1 is mainly made of a synthetic resin material having substantially transparent and excellent translucency such as acrylic resin, polyurethane, polyester, silicone resin, epoxy resin, and ultraviolet curable resin.
  • a solvent is added to the synthetic resin material that is the main raw material of the translucent resin layer 43b1 to obtain a liquid state, and a large number of anisotropic light diffusion particles 43b2 are dispersed in the liquid.
  • the light-transmitting resin layer 43b1 containing the anisotropic light diffusing particles 43b2 is mixed with the base material 43a1 by solidifying after applying the liquid along a predetermined direction to the light-emitting side plate surface 43a1 of the base material 43a. 43a can be integrally laminated.
  • the translucent resin layer 43b1 has a refractive index of, for example, about 1.3 to 1.6.
  • anisotropic light diffusing particles 43b2 are dispersed and blended in the above-described translucent resin layer 43b1, and are oriented so that their postures are specific.
  • the anisotropic light diffusing particles 43b2 are made of, for example, an inorganic material such as silica, aluminum hydroxide, and zinc oxide, and a resin material having a substantially transparent and excellent translucency such as an organic material such as an acrylic resin, polyurethane, and polystyrene,
  • the refractive index is, for example, about 1.3 to 1.6.
  • the weight ratio of the anisotropic light diffusing particles 43b2 in the translucent resin layer 43b1 is, for example, about 10% by weight to 40% by weight.
  • the anisotropic light diffusing particles 43b2 have a long shape so as to have a major axis direction and a minor axis direction, and are formed in a substantially elliptical shape as a whole. Specifically, the anisotropic light diffusing particle 43b2 has a substantially elliptical cross-sectional shape cut along the long axis direction, whereas a cross-sectional shape cut along the short axis direction is a substantially circular shape. In the major axis direction, each taper is formed from the center side toward both end sides. Therefore, the anisotropic light diffusion particle 43b2 has a shape in which both end portions in the major axis direction are rounded.
  • the anisotropic light diffusing particles 43b2 are substantially symmetrical with respect to an axis of symmetry along the minor axis direction and passing through the center position in the major axis direction.
  • the anisotropic light diffusing particles 43b2 have a length dimension along the major axis direction of, for example, about 10 ⁇ m, whereas a maximum width dimension and a maximum diameter dimension along the minor axis direction of, for example, about 2 ⁇ m. However, the actual size of each of these dimensions is somewhat different at random for each anisotropic light diffusing particle 43b2.
  • the anisotropic light diffusing particles 43b2 dispersed and blended in the translucent resin layer 43b1 have a major axis direction along the second direction (Y-axis direction) and a minor axis as shown in FIGS.
  • the orientation is such that the direction is a posture along the first direction (X-axis direction). That is, the anisotropic light diffusing particle 43b2 has a long axis direction corresponding to the second direction in which the emission angle range in the transmitted light of the liquid crystal panel 11 is relatively wide, while a short axis direction is the transmitted light of the liquid crystal panel 11. Is substantially aligned with a posture (arrangement) having a specific directivity in which the emission angle range at the same coincides with the relatively narrow first direction.
  • the anisotropic light diffusing particles 43b2 are held in the above-described posture by the translucent resin layer 43b1 filled around the anisotropic light diffusing particles 43b2. Note that not all of the many anisotropic light diffusing particles 43b2 present in the translucent resin layer 43b1 have a posture that completely matches the posture as described above, and the major axis direction is in the second direction. There may be included a slightly inclined posture or a portion in which the minor axis direction is slightly inclined with respect to the first direction.
  • anisotropic light diffusion particles 43b2 are oriented in the above-described orientation, they are three-dimensionally arranged in the translucent resin layer 43b1, that is, in the X-axis direction, the Y-axis direction, and the Z-axis direction. Regarding (including the arrangement interval and the like), it is random (irregular) and can be said to be a non-periodic structure having no periodicity like the display pixel PX included in the liquid crystal panel 11.
  • a mixed liquid is prepared by dispersing and blending a large number of anisotropic light diffusion particles 43b2 in the light-transmitting resin layer 43b1 in a liquid state as described above.
  • the longitudinal anisotropic light diffusion particles 43b2 are automatically oriented (orientation, orientation) so that the major axis direction follows the application direction by the shearing force acting upon application. ) Is arranged (see FIGS. 8 to 11).
  • the long axis direction of the anisotropic light diffusing particles 43b2 is the second direction in which the emission angle range in the transmitted light of the liquid crystal panel 11 is relatively wide.
  • the minor axis direction can be easily oriented so as to coincide with the first direction in which the emission angle range in the transmitted light of the liquid crystal panel 11 is relatively narrow.
  • the anisotropic light diffusing particles 43b2 have a tapered shape, a cross-sectional shape cut along the major axis direction has an elliptical shape, and a cross-sectional shape cut along the minor axis direction has a perfect circle shape. Therefore, the orientation can be adjusted more smoothly with application.
  • the translucent resin layer 43b1 is laminated on the light emission side plate surface 43a1 of the base material 43a, and a large number of anisotropic light diffusing particles 43b2 contained therein are It is held in a state in which the direction is oriented along the second direction and the minor axis direction is oriented along the first direction.
  • the second light diffusing sheet 43 having such a configuration, when the light transmitted through the base material 43a from the second prism sheet 41 side (light guide plate 19 side) enters the anisotropic light diffusing portion 43b, as described above. It will hit the anisotropic light diffusing particles 43b2 having the shape and orientation. The light hitting the anisotropic light diffusing particle 43b2 is emitted to the front side while being diffused. The amount of diffused light is short axis of the anisotropic light diffusing particle 43b2, as shown in FIGS. The direction (first direction) is relatively large, while the long axis direction (second direction) of the anisotropic light diffusing particles 43b2 is relatively small.
  • the first direction which is the minor axis direction of the anisotropic light diffusion particle 43b2 is a strong light diffusion direction that gives a strong light diffusion action to the light.
  • the second direction which is the major axis direction of the anisotropic light diffusing particles 43b2 is a weak light diffusion direction in which the light diffusion action imparted to the light is weak, and has light diffusion anisotropy.
  • the anisotropic light diffusing unit 43b has a strong light diffusing direction that coincides with the first direction (the short side direction of the display pixel PX) in which the emission angle range in the transmitted light of the liquid crystal panel 11 is relatively narrow, whereas the weak light light
  • the diffusion direction coincides with the second direction (the long side direction of the display pixel PX) in which the emission angle range in the transmitted light of the liquid crystal panel 11 is relatively wide. Therefore, when the light to which the anisotropic light diffusing action is given by the anisotropic light diffusing portion 43b is supplied to the liquid crystal panel 11, the incident angle range of the light supplied to each display pixel PX of the liquid crystal panel 11 is the first direction. Is relatively wide, and the second direction is relatively narrow.
  • the light transmitted through each display pixel PX of the liquid crystal panel 11 and emitted from the display surface DS toward the front side is in the first direction and
  • the emission angle ranges in the second direction are substantially the same, and the emitted light is approximately isotropic.
  • the viewing angle related to the liquid crystal panel 11 is isotropic. For example, when the user views the image on the display surface DS with the liquid crystal display device 10 in the vertical orientation, the display is performed with the liquid crystal display device 10 in the horizontal orientation. The viewing angle is the same when viewing the image of the surface DS.
  • the display quality related to the image displayed on the display surface DS of the liquid crystal panel 11 can be improved.
  • the many anisotropic light diffusing particles 43b2 constituting the anisotropic light diffusing portion 43b are randomly arranged in the translucent resin layer 43b1 while being oriented in the above-described posture, so that the emitted light is randomly distributed.
  • the directivity of the emitted light can be more favorably mitigated.
  • the randomly arranged anisotropic light diffusing particles 43b2 are non-periodic structures, and therefore the arrangement of the display pixels PX of the liquid crystal panel 11 to which the emitted light is supplied (see FIGS. 3 and 4). ), The occurrence of interference fringes called moire on the liquid crystal panel 11 is suppressed.
  • the case where the optical sheet 20 (see FIGS. 10 and 11) including the second light diffusion sheet 43 is used as in the present embodiment and the second light diffusion sheet 43 as in the present embodiment are not included.
  • a comparative experiment with the case where an optical sheet (not shown) is used will be described.
  • the backlight device 12 and the liquid crystal display device 10 including the optical sheet 20 including the second light diffusing sheet 43 according to the present embodiment are taken as examples, and the second light diffusing sheet 43 is replaced with the second light diffusing sheet 43 described above.
  • the backlight device including the optical sheet using the one light diffusion sheet 42 and the liquid crystal display device are used as comparative examples, and the luminance of the emitted light from each backlight device is measured, and from each backlight device.
  • the backlight device according to the comparative example includes an optical sheet having a configuration in which the two prism sheets 40 and 41 described above are sandwiched from two sides by two first light diffusion sheets (isotropic light diffusion sheets) 42. Except for this point, the configuration is the same as that described in the above embodiment.
  • the liquid crystal panel 11 used in the comparative example and the example is the same, and the configuration is as described in the above embodiment. Referring to the drawings showing the measurement results, FIG. 12 shows the luminance distribution of the emitted light from the backlight device according to the comparative example, and FIG.
  • FIG. 13 shows the luminance of the emitted light from the liquid crystal panel 11 of the liquid crystal display device according to the comparative example.
  • FIG. 14 shows the luminance distribution of the emitted light from the backlight device 12 according to the example
  • FIG. 15 shows the luminance distribution of the emitted light from the liquid crystal panel 11 of the liquid crystal display device 10 according to the example.
  • 13 and 15 the vertical axis represents the relative luminance of the light emitted from each liquid crystal panel 11, and the horizontal axis represents the angle with respect to the front direction (the unit is “degree”).
  • the relative luminance on the vertical axis in FIGS. 12 to 15 is a relative value with the luminance value in the front direction as a reference (1.0).
  • the graphs indicated by the solid lines in FIGS. 12 to 15 represent the luminance distribution of the emitted light emitted along the first direction (X-axis direction), whereas the graphs indicated by the broken lines indicate the second direction (Y It represents the luminance distribution of outgoing light emitted along the axial direction.
  • the comparative example will be described. From the graph shown in FIG. 12, in the backlight device according to the comparative example, the emission angle range of the emitted light is substantially equal in the first direction and the second direction, and isotropic. It can be seen that the output angle distribution is excellent.
  • the brightness of the backlight device is obtained by using an optical sheet having two prism sheets 40 and 41 sandwiched between two first light diffusion sheets 42 that are isotropic light diffusion sheets as in the comparative example. This confirms that the distribution is isotropic. From the graph shown in FIG. 14, in the liquid crystal display device according to the comparative example, the emission angle range of the emitted light transmitted through the liquid crystal panel 11 is relatively narrow in the first direction, but in the second direction.
  • the exit angle distribution has anisotropy. Even if the emission angle distribution of the emitted light in the backlight device is isotropic as in the comparative example, the short side direction of each display pixel PX provided in the liquid crystal panel 11 is the same as the first direction. In addition, since the long side direction coincides with the second direction, the viewing angle of the liquid crystal display device has the same anisotropy as the emission angle distribution of the liquid crystal panel 11.
  • the backlight device 12 according to the embodiment has a relatively wide emission angle range of the emitted light in the first direction, but in the second direction. It is assumed that the emission angle distribution is relatively narrow, and the emission angle distribution has an anisotropy opposite to the emission angle distribution according to the liquid crystal panel 11. This is because the brightness distribution of the backlight device 12 is different by using the optical sheet 20 having a configuration in which the second light diffusion sheet 43 that is an anisotropic light diffusion sheet is disposed closest to the liquid crystal panel 11 as in the embodiment. This proves that it has a directionality. From the graph shown in FIG.
  • the liquid crystal display device has an isotropic emission angle distribution in which the emission angle range of the emitted light is substantially the same in the first direction and the second direction. You can see that This is because the liquid crystal panel 11 has a configuration in which the short-side direction in each display pixel PX matches the first direction and the long-side direction matches the second direction, and thus the emission angle distribution of the transmitted light.
  • the emission angle distribution according to the second light diffusion sheet 43 provided in the backlight device 12 has an anisotropy opposite to the emission angle distribution according to the liquid crystal panel 11
  • the narrowness (large or small) of the emission angle range in the first direction and the second direction is offset, and as a result, it is confirmed that the viewing angle of the liquid crystal display device 10 is isotropic. .
  • the liquid crystal display device (display device) 10 of the present embodiment has the display surface DS for displaying an image, and the emission angle range of the emitted light is in the first direction along the display surface DS. Although it is relatively narrow, the emission angle range of the emitted light is anisotropic in the second direction along the display surface DS and perpendicular to the first direction, and the emission angle distribution of the emitted light has anisotropy.
  • the liquid crystal panel (anisotropic display element) 11 and the liquid crystal panel 11 are arranged so as to overlap the liquid crystal panel 11 on the display surface DS side or the opposite side thereof.
  • the second light diffusion which is an anisotropic optical member having anisotropy in the emission angle distribution of the emitted light so that the emission angle range of the emitted light becomes relatively narrow in the second direction while being relatively wide A sheet 43.
  • the second light diffusion sheet 43 which is an anisotropic optical member
  • the second light diffusion sheet 43 which is an anisotropic optical member
  • the liquid crystal panel 11 has a relatively narrow emission angle range of the emitted light in the first direction along the display surface DS, the emitted light in the second direction along the display surface DS and orthogonal to the first direction. Since the emission angle distribution of the emitted light has anisotropy so that the emission angle range of the liquid crystal panel 11 becomes relatively wide, the emission angle distribution of the liquid crystal panel 11 has a viewing angle related to the image displayed on the display surface DS. There is a concern that the same anisotropy may occur. In that respect, the second light diffusion sheet 43, which is an anisotropic optical member, has a relatively wide emission angle range of the emitted light in the first direction where the emission angle range is relatively narrow in the liquid crystal panel 11.
  • the liquid crystal panel 11 has anisotropy in the emission angle distribution of the emitted light so that the emission angle range of the emitted light is relatively narrow in the second direction in which the emission angle range is relatively wide.
  • the viewing angle relating to the image displayed on the display surface DS of 11 is made isotropic. Thereby, the display quality of the image displayed on the display surface DS can be made high.
  • the anisotropic optical member emits light while diffusing, and the amount of diffused light is relatively large in the first direction, while the amount of diffused light is relatively large in the second direction.
  • a second light diffusion sheet (anisotropic light diffusion member) 43 having light diffusion anisotropy is included at least so as to decrease. If it does in this way, the emitted light from the 2nd light-diffusion sheet 43 which has light-diffusion anisotropy will have a relatively large amount of diffused light about the 1st direction where the emission angle range is relatively narrow in the liquid crystal panel 11.
  • the emission angle range is relatively wide, whereas in the liquid crystal panel 11 in the second direction where the emission angle range is relatively wide, the amount of diffused light is relatively small, so that the emission angle range is relatively narrow.
  • the viewing angle relating to the image displayed on the display surface DS of the liquid crystal panel 11 is isotropic.
  • the second light diffusing sheet 43 has anisotropic light diffusing particles 43b2 that are long and have a major axis direction along the second direction and a minor axis direction along the first direction. .
  • the anisotropic light diffusing particles 43b2 have a relatively low degree of light diffusion in the major axis direction but a relatively high degree of light diffusion in the minor axis direction.
  • the second light diffusing sheet 43 has anisotropic light diffusing particles 43b2 arranged such that the major axis direction is along the second direction and the minor axis direction is along the first direction, so that the emission angle in the liquid crystal panel 11 is increased.
  • the amount of diffused light is relatively increased in the first direction having a relatively narrow range, whereas the amount of diffused light is relatively decreased in the second direction having a relatively wide emission angle range in the liquid crystal panel 11.
  • the viewing angle relating to the image displayed on the display surface DS of the liquid crystal panel 11 is made isotropic.
  • the second light diffusion sheet 43 includes a base material 43a having translucency, and a translucent resin layer 43b1 laminated on the base material 43a and in which a large number of anisotropic light diffusion particles 43b2 are dispersed and blended.
  • the anisotropic light diffusing particles 43b2 are oriented so that the major axis direction is along the second direction and the minor axis direction is along the first direction in the translucent resin layer 43b1. In this way, a large amount of light transmitted through the second light diffusion sheet 43 is dispersed and blended in the translucent resin layer 43b1, and the major axis direction is along the second direction and the minor axis direction is along the first direction.
  • the anisotropic light diffusing particles 43b2 oriented as described above diffuse the light amount in the first direction so as to increase the amount of light diffused in the second direction.
  • the material of the liquid light-transmitting resin layer 43b1 in which a large number of anisotropic light-diffusing particles 43b2 are dispersed and mixed with the base material 43a is applied and solidified. If the resin layer 43b1 is laminated, the anisotropic light diffusing particles 43b2 can be easily oriented because the major axis direction of the anisotropic light diffusing particles 43b2 is aligned with the coating direction along with the coating.
  • the anisotropic light diffusing particles 43b2 are formed so as to taper from the center side toward both end sides in the major axis direction. In this way, when the second light diffusion sheet 43 is manufactured, for example, the anisotropic light diffusion particle 43b2 has a constant thickness over the entire length in the major axis direction.
  • the light-transmitting resin layer 43b1 is formed by applying and solidifying the liquid light-transmitting resin layer 43b1 in which a large number of particles 43b2 are dispersed and mixed, the long axis of the anisotropic light-diffusing particles 43b2 is applied along with the application. The direction can be aligned more smoothly along the application direction. Thereby, the orientation state of many anisotropic light-diffusion particles 43b2 in translucent resin layer 43b1 can be made more appropriate.
  • anisotropic light diffusion particle 43b2 has an elliptical cross-sectional shape cut along the long axis direction. If it does in this way, since the both ends about the major axis direction in anisotropic light diffusion particle 43b2 will become the shape rounded off, when manufacturing the 2nd light diffusion sheet 43, anisotropic light diffusion particle 43b2 with respect to base material 43a, for example.
  • the long axis direction of the anisotropic light diffusing particles 43b2 can be aligned more smoothly along the coating direction, and the orientation state of the many anisotropic light diffusing particles 43b2 in the translucent resin layer 43b1 is more appropriate. It can be.
  • the anisotropic light diffusing particles 43b2 are formed so that a cross-sectional shape cut along the minor axis direction has a circular shape. In this way, when the second light diffusion sheet 43 is manufactured, for example, with respect to the base material 43a, compared with the case where the cross-sectional shape obtained by cutting the anisotropic light diffusion particles 43b2 along the minor axis direction is a square shape.
  • the light-transmitting resin layer 43b1 is laminated and formed by applying and solidifying a material of the liquid light-transmitting resin layer 43b1 in which a large number of anisotropic light-diffusing particles 43b2 are dispersed and mixed, the anisotropic light-diffusing particles are applied along with the application.
  • the second light diffusion sheet 43 included in the anisotropic optical member is arranged so as to overlap the liquid crystal panel 11 on the side opposite to the display surface DS side, and further to the second light diffusion sheet 43.
  • the first prism sheet 40, the second prism sheet 41, and the first light diffusion sheet 42 are provided as other optical members that are arranged in an overlapping manner and transmit light.
  • the first prism sheet 40, the second prism sheet 41, and the first light diffusion sheet 42, which are optical members, are disposed closer to the liquid crystal panel 11. In this way, the first prism sheet 40, the second prism sheet 41, the first light diffusion sheet 42, and the second light diffusion sheet 43 included in the anisotropic optical member, which are other optical members, are sequentially transmitted. Light is supplied to the liquid crystal panel 11.
  • the light supplied to the liquid crystal panel 11 is emitted light from the second light diffusion sheet 43 included in the anisotropic optical member, the field of view relating to the image displayed on the display surface DS of the liquid crystal panel 11 The corners are more isotropicized, and the image display quality is further improved.
  • the second light diffusion sheet 43 is arranged so as to overlap the liquid crystal panel 11 on the side opposite to the display surface DS side, the user of the liquid crystal display device 10 is displayed on the display surface DS. The image can be directly seen, and the display quality of the image is further improved.
  • the second light diffusion sheet 43 that is an anisotropic optical member is arranged so as to overlap the liquid crystal panel 11 on the side opposite to the display surface DS side, and the LED (light source) 17 and the anisotropic A light guide plate 19 that is disposed on the side opposite to the liquid crystal panel 11 side with respect to the second light diffusing sheet 43 that is an optical member and guides the light from the LED 17.
  • the light from the LED 17 is incident on the end surface.
  • a light guide plate 19 having a light emission surface 19a for emitting light to a plate surface facing the second light diffusion sheet 43 side which is an anisotropic optical member.
  • the light emitted from the LED 17 enters the light incident surface 19b of the light guide plate 19 and propagates through the light guide plate 19, and then is emitted from the light exit surface 19a.
  • the light emitted from the light emitting surface 19a is supplied to the second light diffusion sheet 43 that is an anisotropic optical member, and is supplied to the liquid crystal panel 11 from the second light diffusion sheet 43 that is an anisotropic optical member.
  • the light guide plate 19 makes it difficult for unevenness to occur in the light supplied to the second light diffusion sheet 43 that is an anisotropic optical member, so that the optical performance of the second light diffusion sheet 43 that is an anisotropic optical member is good. Can be demonstrated.
  • the liquid crystal panel 11 has a planar shape in which a plurality of rows are arranged in parallel along the display surface DS, and the short side direction coincides with the first direction and the long side direction coincides with the second direction.
  • a display pixel PX is formed. In this way, light is emitted from the display pixels PX arranged in a matrix along the display surface DS in the liquid crystal panel 11, whereby an image can be displayed on the display surface DS. Since the display pixel PX has a planar shape in which the short side direction coincides with the first direction and the long side direction coincides with the second direction, the light emitted from the liquid crystal panel 11 is emitted in the first direction. Although the angle range is relatively narrow, the emission angle range is relatively wide in the second direction.
  • the liquid crystal panel 11 has an emission angle distribution of the emitted light so that the emission angle range is relatively wide in the first direction, whereas the emission angle range is relatively narrow in the second direction. Therefore, the viewing angle related to the image displayed on the display surface DS of the liquid crystal panel 11 is isotropic. Thereby, the display quality of the image displayed on the display surface DS can be made high.
  • the anisotropic display element is a liquid crystal panel 11 in which a liquid crystal layer (liquid crystal) 11c is sealed between a pair of substrates 11a and 11b.
  • a display device can be applied as the liquid crystal display device 10 to various uses, for example, a display of a smartphone or a tablet laptop computer.
  • Embodiment 2 A second embodiment of the present invention will be described with reference to FIG. 16 or FIG. In this Embodiment 2, what changed the structure of the optical sheet 120 is shown. In addition, the overlapping description about the same structure, an effect
  • the optical sheet 120 includes a second light diffusion sheet (anisotropic light diffusion sheet) 143 having the same configuration as that described in the first embodiment,
  • the prism sheet (anisotropic condensing member) 44 is disposed in such a manner as to be interposed between the light diffusion sheet 143 and the light guide plate 119.
  • detailed description regarding the second light diffusion sheet 143 is omitted.
  • the prism sheet 44 is a prism portion formed on a sheet-like base material 44a and the back side of the front and back plate surfaces of the base material 44a, that is, the plate surface on the light guide plate 119 side (opposite side of the liquid crystal panel side). (Anisotropic condensing part) 44b. That is, the prism sheet 44 according to the present embodiment is different from the first prism sheet 40 and the second prism sheet 41 (see FIGS. 10 and 11) described in the first embodiment in the prism portion 44b with respect to the base material 44a. Is different in that the arrangement of is reversed.
  • the base material 44a is made of a substantially transparent synthetic resin, and light emitted from the light guide plate 119 is incident on a plate surface (light incident side plate surface) on the back side (prism portion 44b side).
  • the prism portion 44b is made of a substantially transparent synthetic resin, and includes a large number of unit prisms 44b1 protruding from the back plate surface of the base material 44a toward the back side along the Z-axis direction.
  • the unit prism 44b1 has a cross-sectional shape cut along the second direction (Y-axis direction) forming a substantially mountain shape and linearly extending along the first direction (X-axis direction). A large number of plates are arranged in parallel along the second direction on the plate surface.
  • the unit prism 44b1 has a substantially isosceles triangular cross section, has a pair of slopes, and has an apex angle of, for example, a substantially right angle.
  • a large number of unit prisms 44b1 arranged in parallel along the second direction have substantially the same apex angle, base width and height dimensions, and the arrangement interval between adjacent unit prisms 44b1 is substantially constant. Arranged at intervals.
  • the incident angle of the light incident on the unit prism 44b1 forming the prism portion 44b with respect to each inclined surface of the unit prism 44b1 is a critical angle. If the incident angle does not exceed the critical angle, it is totally reflected on each inclined surface and returned to the light guide plate 119 side (retroreflected). The light is emitted while being refracted so as to rise in the direction normal to the plate surface.
  • the light propagating in the light guide plate 119 and the light emitted from the light emitting surface 119a are increasingly traveling in the direction from the LED toward the light guide plate 119 (right side along the Y-axis direction in FIG. 17). Therefore, it is possible to improve the front luminance of the light supplied from the optical sheet 120 to the liquid crystal panel by efficiently raising such light toward the front direction by the prism portion 44b.
  • the light condensing action as described above acts on light incident on the unit prism 44b1 along the second direction (the alignment direction of the LED and the light guide plate 119), but the first direction orthogonal to the second direction. It is assumed that the light incident along the line hardly acts.
  • the second direction which is the arrangement direction of the multiple unit prisms 44b1
  • the first direction which is the extending direction
  • the prism portion 44b is a periodic structure and has a property of selectively condensing in a specific direction, that is, condensing anisotropy.
  • the prism sheet 44 has a relatively wide emission angle range of the emitted light in the first direction, which is the non-condensing direction, while the emission angle range of the emitted light is in the second direction, which is the collection direction.
  • the emission angle distribution of the emitted light has anisotropy so as to be relatively narrow.
  • a second light diffusion sheet 143 having an emission angle distribution similar to that of the prism sheet 44 is disposed between the prism sheet 44 and a liquid crystal panel (not shown). Therefore, the light provided with the anisotropic light condensing action by the prism portion 44b of the prism sheet 44 is further given the anisotropic light diffusing action by the anisotropic light diffusing portion 143b of the second light diffusing sheet 143.
  • the light emission angle range becomes wider in the direction
  • the light emission angle range becomes narrower in the second direction and is supplied to the liquid crystal panel.
  • the incident angle range of light supplied to each display pixel (see FIGS. 3 and 4) of the liquid crystal panel is wider in the first direction and narrower in the second direction.
  • the light that passes through each display pixel and exits from the display surface toward the front side is more likely to have an equivalent emission angle range in the first direction and the second direction, and the emitted light becomes more isotropic.
  • the viewing angle related to the liquid crystal panel is isotropic. For example, when the user views the image on the display surface with the liquid crystal display device in the portrait orientation, and the image on the display surface with the liquid crystal display device in the landscape orientation. The viewing angle is the same when viewed. As described above, the display quality of the image displayed on the display surface of the liquid crystal panel can be improved.
  • the anisotropic optical member emits light while condensing it, and does not give a condensing function to the emitted light in the first direction.
  • a prism sheet (anisotropic condensing member) 44 having condensing anisotropy so as to impart a condensing function to the emitted light is included.
  • the light emitted from the prism sheet 44 having condensing anisotropy has a converging action in the first direction in which the exit angle range is relatively narrow in the liquid crystal panel.
  • the liquid crystal panel has an emission angle distribution in which the emission angle range is relatively narrowed by the condensing action in the second direction where the emission angle range is relatively wide in the liquid crystal panel. Therefore, the viewing angle related to the image displayed on the display surface of the liquid crystal panel is isotropic.
  • Embodiment 3 A third embodiment of the present invention will be described with reference to FIG. 18 or FIG. In this Embodiment 3, it replaces with the 2nd light-diffusion sheet described in above-mentioned Embodiment 2, and the case where the 1st light-diffusion sheet 242 is used is shown. In addition, the overlapping description about the same structure, an effect
  • the optical sheet 220 according to the present embodiment includes a first light diffusion sheet (isotropic light diffusion sheet) 242 having the same configuration as that described in the second embodiment, and a first The light diffusion sheet 242 is disposed between the light guide plate 219 and the prism sheet 244 having the same configuration as that described in the second embodiment. That is, the optical sheet 220 according to the present embodiment is composed of the first light diffusion sheet 242 having an isotropic emission angle distribution and the prism sheet 244 having anisotropy in the emission angle distribution.
  • the configuration is different from that of the second embodiment (see FIGS. 16 and 17) in which the second light diffusion sheet 143 having anisotropy in the emission angle distribution and the prism sheet 44 are used in combination.
  • detailed description of the first light diffusion sheet 242 and the prism sheet 244 is omitted.
  • the light provided with the anisotropic condensing function by the prism portion 244b of the prism sheet 244 is isotropically diffused by the first light diffusion sheet 242.
  • the exit angle distribution in the exit light from the one light diffusion sheet 242 has the same anisotropy as the exit angle distribution according to the prism sheet 244. Accordingly, when the light emitted from the first light diffusion sheet 242 is supplied to the liquid crystal panel, the incident angle range of the light supplied to each display pixel (see FIGS. 3 and 4) of the liquid crystal panel is the first.
  • the light transmitted through each display pixel of the liquid crystal panel and emitted from the display surface to the front side is in the first direction and the second direction.
  • the emission angle ranges are substantially equal, and the emitted light is approximately isotropic.
  • the viewing angle related to the liquid crystal panel is isotropic. For example, when the user views the image on the display surface with the liquid crystal display device in the portrait orientation, and the image on the display surface with the liquid crystal display device in the landscape orientation. The viewing angle is the same when viewed.
  • the display quality of the image displayed on the display surface of the liquid crystal panel can be improved.
  • the anisotropy of the emission angle distribution in the light supplied to the liquid crystal panel is lighter than that in the above-described second embodiment. It is suitable when the degree of anisotropy is mild.
  • the backlight device 312 is a direct type.
  • action, and effect as above-mentioned Embodiment 1 is abbreviate
  • the LED 317 as a light source is disposed immediately below the optical sheet 320, and the light emitting surface 317 a is on the plate surface of the optical sheet 320. It is arranged so as to face each other.
  • the backlight device 312 includes a chassis 322 provided with at least a bottom plate 322a having a plate surface parallel to the plate surface of the optical sheet 320, and an LED substrate 318 disposed on a front plate surface of the bottom plate 322a of the chassis 322.
  • the LED 317 mounted on the front surface of the LED substrate 318, the reflection sheet 45 disposed on the front surface of the LED substrate 318, and the optical sheet 320 having the same configuration as that of the first embodiment. Composed.
  • the LED substrate 318 has a plate shape extending along the plate surface (first direction and second direction) of the bottom plate 322a.
  • the LEDs 317 are arranged in parallel on the plate surface of the LED substrate 318 in a matrix form with a plurality of predetermined intervals along the first direction and the second direction.
  • the LED 317 is a so-called top surface light emitting type in which a surface opposite to the mounting surface (front side) with respect to the LED substrate 318 is a light emitting surface 317a.
  • each LED 317 included in the LED substrate 318 is irradiated toward the plate surface of the optical sheet 320 (including the second light diffusion sheet 343) facing the light emitting surface 317a, and then the optical sheet. It is supplied to the liquid crystal panel via 320. Therefore, compared with the case where the light guide plate 19 (see FIGS. 10 and 11) is used as in the first embodiment described above, the light use efficiency is high, so that the brightness and the power consumption are reduced. This is suitable for the purpose.
  • the second light diffusing sheet 343 that is an anisotropic optical member is arranged on the display surface so as to overlap the liquid crystal panel on the side opposite to the display surface side.
  • the light-emitting surface 317a has a light-emitting surface 317a that emits light, and the light-emitting surface 317a faces the plate surface of the second light diffusion sheet 343 that is an anisotropic optical member.
  • LED 317 is provided. If it does in this way, the light emitted from the light emission surface 317a of LED317 will be irradiated toward the plate surface of the 2nd light diffusion sheet 343 which is an anisotropic optical member which counters light emission surface 317a.
  • the light irradiated to the second light diffusion sheet 343 that is an anisotropic optical member is supplied to the liquid crystal panel from the second light diffusion sheet 343 that is an anisotropic optical member.
  • the light use efficiency is higher, so that the luminance is increased and the power consumption is reduced. This is suitable for achieving the above.
  • the second light diffusion sheet 443 includes a base material 443 a that forms a translucent sheet, and a plurality of protrusions 46 that protrude from the plate surface of the base material 443 a. And an anisotropic light diffusion portion 443b.
  • the base material 443a since the base material 443a has the same configuration as that of the first embodiment, detailed description thereof is omitted.
  • the anisotropic light diffusing portion 443b is integrally provided on the front side of the substrate 443a, that is, on the light-emitting side plate surface 443a1 on the liquid crystal panel side.
  • the anisotropic light diffusing portion 443b is made of a substantially transparent ultraviolet curable resin material which is a kind of photocurable resin material.
  • This ultraviolet curable resin material is made of a substantially transparent resin material such as an acrylic resin as a main raw material, and has a property of being cured (increased in viscosity or increased in viscosity) by ultraviolet rays (UV light). The rate is said to be greater than air.
  • the second light diffusion sheet 443 When the second light diffusion sheet 443 is manufactured, for example, an uncured ultraviolet curable resin material is filled in a mold for molding, and a base material 443a is applied to the opening end of the mold, thereby uncured ultraviolet light.
  • the curable resin material is disposed in contact with the light-emitting side plate surface 443a1, and in this state, the ultraviolet curable resin material is irradiated with ultraviolet rays through the base material 443a, thereby curing the ultraviolet curable resin material.
  • the isotropic light diffusion portion 443b can be formed.
  • the anisotropic light diffusion portion 443b is arranged on the front side (liquid crystal panel side) along the Z-axis direction, that is, the direction orthogonal to the plate surface of the base material 443a from the light output side plate surface 443a1 of the base material 443a. It is comprised by the many protrusion 46 which protrudes toward. As shown in FIG. 22 to FIG. 24, the protrusion 46 has a cross-sectional shape cut along the Y-axis direction (second direction) forming a substantially mountain shape and extends along the X-axis direction (first direction).
  • Each protrusion 46 has an isosceles triangle shape in cross section, and has a pair of inclined surfaces 46a with the top portion interposed therebetween.
  • the protrusion 46 has an acute apex angle, each inclined surface 46a is inclined with respect to the Y-axis direction and the Z-axis direction, and the inclination angle (vertical angle) varies depending on the position in the X-axis direction. is doing.
  • each inclined surface 46a of the ridge 46 has a wavy shape and an indefinite curved surface as a whole while facing the oblique front side along the Y-axis direction.
  • the protrusion 46 has a meandering shape, so that in addition to the inclination angle of the inclined surface 46a, the width and height of the base (the position of the top in the Z-axis direction), the Y-axis direction The position of the apex of and the like varies randomly depending on the position in the X-axis direction.
  • the multiple protrusions 46 arranged in parallel along the Y-axis direction are meandering at random without the adjacent ones being almost parallel.
  • FIG. 23 schematically shows the arrangement of the protrusions 46 in the second light diffusion sheet 443.
  • the light transmitted through the protrusion 46 is refracted at the interface between the inclined surface 46a and the external air layer as shown in FIG. As a result, the light is emitted while being angled according to the curved surface shape (undulated shape) of the slope 46a. At this time, a large amount of light emitted from the inclined surface 46a is emitted substantially along the Y-axis direction (second direction), but the emission direction is finely changed according to the position in the X-axis direction (first direction). Will be. Thereby, the light radiate
  • the amount of emitted light emitted from the protrusion 46 along the X-axis direction is relatively smaller than the amount of emitted light emitted along the Y-axis direction. Therefore, in the anisotropic light diffusing portion 443b according to the present embodiment, the Y-axis direction, which is the alignment direction of the multiple protrusions 46, is a strong light diffusing direction that imparts a strong light diffusing action to light.
  • the X-axis direction which is the extending direction of each protrusion 46 is a weak light diffusion direction in which the light diffusion action imparted to the light is weak, and has light diffusion anisotropy.
  • the second light diffusing sheet 443 has an exit angle distribution of emitted light that is the same as the second light diffusing sheet 43 (see FIGS. 8 to 11) according to the first embodiment described above. It can be said that it has sex.
  • the anisotropic light diffusing unit 443b has a strong light diffusing direction that coincides with the first direction (the short side direction of the display pixel) in which the emission angle range in the transmitted light of the liquid crystal panel is relatively narrow, whereas the weak light diffusing direction. However, the emission angle range in the transmitted light of the liquid crystal panel coincides with the relatively wide second direction (the long side direction of the display pixel).
  • the incident angle range of the light supplied to each display pixel of the liquid crystal panel is relative to the first direction.
  • the second direction is relatively narrow, the light emitted from the display surface to the front side through each display pixel of the liquid crystal panel is emitted in the first direction and the second direction.
  • the ranges are almost the same, and the emitted light is approximately isotropic.
  • the viewing angle related to the liquid crystal panel is isotropic.
  • the display quality of the image displayed on the display surface of the liquid crystal panel can be improved.
  • the slopes 46a of the ridges 46 constituting the anisotropic light diffusing portion 443b randomly vary in inclination angle and direction depending on the position in the X-axis direction, so light emitted from each slope 46a is diffused randomly. As a result, the directivity of the emitted light can be more suitably relaxed. Furthermore, since the multiple protrusions 46 constituting the anisotropic light diffusion portion 443b meander at random, the light emitted from each protrusion 46 is randomly diffused according to the meandering shape. Thus, the directivity of the emitted light can be more suitably reduced.
  • the inclination angle of the slope 46a, the width dimension of the base, the height dimension, and the like of the individual protrusions 46 constituting the anisotropic light diffusion portion 443b vary randomly according to the position in the X-axis direction.
  • the meandering shape of the adjacent protrusions 46 is random, there is interference between the arrangement of the display pixels of the liquid crystal panel to which the emitted light is supplied and the arrangement of the protrusions 46. As a result, the generation of interference fringes called moire in the liquid crystal panel is suppressed.
  • the second light diffusing sheet 443 includes a translucent sheet-like base material 443a and a cross-section that protrudes from the plate surface of the base material 443a and is cut along one direction.
  • the shape has a substantially chevron shape, and has a ridge portion 46 meandering while extending in the second direction and being juxtaposed in the first direction.
  • the protrusion 46 protruding from the plate surface of the sheet-like base material 443a has a substantially chevron-shaped cross section cut along the first direction. The angled light is emitted substantially along the first direction.
  • the emitted light quantity emitted along the 1st direction from the protruding part 46 becomes relatively larger than the emitted light quantity emitted along the 2nd direction.
  • the protrusion 46 is meandering while extending along the second direction, and the inclined surface has a undulating shape. Therefore, the emitted light depends on the position of the inclined surface in the second direction. The emission direction of fluctuates. Thereby, the light radiate
  • the second light diffusion sheet 443 has diffusion anisotropy so that the amount of diffused light is relatively increased in the first direction, while the amount of diffused light is relatively decreased in the second direction. Therefore, the viewing angle related to the image displayed on the display surface of the liquid crystal panel is made isotropic.
  • the plurality of protrusions 46 arranged along the first direction are formed so as to meander at random along the second direction.
  • the emitted light from each inclined surface in each protrusion 46 is randomly diffused according to the meandering shape of each protrusion 46. This makes it difficult for moire (interference fringes) to occur in the image displayed on the display surface of the liquid crystal panel.
  • the protrusion 46 is formed so that at least one of the width and the height varies randomly according to the position in the second direction. In this way, the protrusion 46 has the vertex angle and the direction of the slope that vary randomly according to the position in the second direction, so that the light emitted from the slope is randomly diffused. . This makes it difficult for moire (interference fringes) to occur in the image displayed on the display surface of the liquid crystal panel.
  • Embodiment 6 A sixth embodiment of the present invention will be described with reference to FIG. In this Embodiment 6, what changed the shape of the anisotropic light-diffusion particle 543b2 which the 2nd light-diffusion sheet 543 has is shown. In addition, the overlapping description about the same structure, an effect
  • the second light diffusion sheet 543 has anisotropic light diffusion particles 543b2 having a substantially cylindrical shape.
  • the anisotropic light diffusing particles 543b2 have a rectangular cross-section cut along the long axis direction (Y-axis direction, second direction), while the short-axis direction (X-axis direction, first direction).
  • the cut cross-sectional shape is a perfect circle, and the diameter dimension (dimension in the minor axis direction) is almost constant over the entire length in the major axis direction.
  • the orientation of the long axis direction is along the second direction and the short axis direction is along the first direction, so that the strong light in the anisotropic light diffusion portion 543b is obtained.
  • the light diffusion direction is made to coincide with the first direction (the short side direction of the display pixel) where the emission angle range in the transmitted light of the liquid crystal panel is relatively narrow, and the weak light diffusion direction is set to the emission angle range in the transmitted light of the liquid crystal panel Can be made to coincide with the relatively wide second direction (long side direction of the display pixel).
  • Embodiment 7 A seventh embodiment of the present invention will be described with reference to FIG. In this Embodiment 7, what changed the shape of the anisotropic light-diffusion particle 643b2 which the 2nd light-diffusion sheet 643 has is shown. In addition, the overlapping description about the same structure, an effect
  • the second light diffusion sheet 643 has anisotropic light diffusion particles 643b2 having a quadrangular prism shape as shown in FIG.
  • the anisotropic light diffusing particle 643b2 has a rectangular cross-section cut along the long axis direction (Y-axis direction, second direction), whereas the anisotropic light-diffusing particle 643b2 extends along the short axis direction (X-axis direction, first direction).
  • the cut cross-sectional shape is square, and the dimension of each side (dimension in the minor axis direction) is substantially constant over the entire length in the major axis direction.
  • the orientation of the long axis direction is along the second direction and the short axis direction is along the first direction.
  • the light diffusion direction is made to coincide with the first direction (the short side direction of the display pixel) where the emission angle range in the transmitted light of the liquid crystal panel is relatively narrow, and the weak light diffusion direction is set to the emission angle range in the transmitted light of the liquid crystal panel Can be made to coincide with the relatively wide second direction (the long side direction of the display pixel).
  • each unit pixel UPX ′ of three colors has a horizontally long rectangular shape when viewed in a plane, and the long side direction coincides with the X-axis direction and is short. While the side direction coincides with the Y-axis direction, the display pixel PX ′ composed of unit pixels UPX ′ of three colors has a horizontally long rectangular shape when viewed in a plane, and the long side direction is the X-axis direction. The short side direction coincides with the Y-axis direction.
  • the unit pixels UPX ′ of the three colors constitute a unit pixel UPX ′ group by being repeatedly arranged in parallel along the Y-axis direction, and this unit pixel UPX ′ group is formed along the X-axis direction.
  • a large number of display pixels PX ′ are arranged in parallel in a matrix in the X-axis direction and the Y-axis direction. According to such a configuration, the liquid crystal panel has a relatively wide outgoing angle range of transmitted light in the X-axis direction along the long side direction of the display pixel PX ′, whereas the short side of the display pixel PX ′.
  • the Y-axis direction is the “first direction” because the emission angle distribution of the transmitted light has anisotropy in such a manner that the emission angle range of the transmitted light becomes relatively narrow with respect to the Y-axis direction along the direction.
  • the axial direction is the “second direction”.
  • FIG. 27 only the arrangement of the coloring portions 711hr, 711hg, and 711hb constituting the color filter 711h on the CF substrate is illustrated, but the planar shape and arrangement of the pixel electrodes and the like on the array substrate are the same as those of the color filter 711h. It is supposed to be.
  • the anisotropic light diffusing particles have their long axis direction aligned with the Y axis direction and short.
  • the orientation may be such that the axial direction coincides with the X-axis direction.
  • the prism sheet is configured such that the extending direction of the unit prism matches the Y-axis direction and the parallel direction of the unit prism matches the X-axis direction. And it is sufficient.
  • the extending direction of a protrusion part is made to correspond with a Y-axis direction, and the parallel direction of a protrusion part is made into an X-axis direction. What is necessary is just to make it the structure matched.
  • each unit pixel UPX-1 of three colors has a vertically long rectangular shape when viewed in a plane, and its long side direction is Y
  • the display pixel PX-1 made up of the unit pixels UPX-1 of three colors is in the shape of a horizontally long rectangle when viewed in a plane, while it coincides with the axial direction and the short side direction coincides with the X-axis direction.
  • the present invention is also applicable to a liquid crystal panel having a configuration in which the long side direction coincides with the X-axis direction and the short side direction coincides with the Y-axis direction.
  • the emission angle distribution of the transmitted light in the liquid crystal panel is the same as that in the first embodiment.
  • each unit pixel UPX-2 of three colors has a horizontally long rectangular shape when viewed in a plane, and its long side direction is X
  • the display pixel PX-2 made up of the unit pixels UPX-2 of three colors is in the shape of a vertically long rectangle when viewed in a plane, while the axis direction coincides with the short side direction coincides with the Y axis direction.
  • the present invention is also applicable to a liquid crystal panel having a configuration in which the long side direction coincides with the Y-axis direction and the short side direction coincides with the X-axis direction. In this case, the emission angle distribution of the transmitted light in the liquid crystal panel is the same as that in the eighth embodiment.
  • each unit pixel UPX-3 of three colors has a square shape when viewed in a plane, whereas a unit of three colors
  • the display pixel PX-3 including the pixel UPX-3 has a vertically long rectangular shape when viewed in a plane, and the long side direction thereof coincides with the Y-axis direction and the short side direction thereof coincides with the X-axis direction.
  • the present invention can also be applied to a liquid crystal panel. In this case, the emission angle distribution of the transmitted light in the liquid crystal panel is the same as that in the first embodiment.
  • each of the three color unit pixels UPX-4 has a square shape when seen in a plan view.
  • the display pixel PX-4 made up of the pixels UPX-4 has a horizontally long rectangular shape when seen in a plane, the long side direction coincides with the X axis direction, and the short side direction coincides with the Y axis direction.
  • the present invention can also be applied to a liquid crystal panel. In this case, the emission angle distribution of the transmitted light in the liquid crystal panel is the same as that in the eighth embodiment.
  • the color filter 11h-5 is a four-color colored portion 11hr-5 in which Y (yellow) is added to three colors of R, G, and B. , 11hg-5, 11hb-5, and 11hy, and each of the four color unit pixels UPX-5 having the four colored portions 11hr-5, 11hg-5, 11hb-5, and 11hy, respectively, displays one display.
  • the pixel PX-5 may be configured.
  • each unit pixel UPX-5 of four colors has a vertically long rectangular shape when seen in a plan view, and its long side direction coincides with the Y-axis direction and its short side direction coincides with the X-axis direction.
  • the display pixel PX-5 including the unit pixels UPX-5 of four colors has a vertically long rectangular shape when viewed in a plane, the long side direction coincides with the Y axis direction, and the short side direction is the X axis.
  • a liquid crystal panel having a configuration matching the direction is shown. In this case, the emission angle distribution of the transmitted light in the liquid crystal panel is the same as that in the first embodiment.
  • the planar shape of each unit pixel of the four colors is a horizontally long rectangle, and the planar shape of the display pixel is a horizontally long rectangle as in the above-described eighth embodiment.
  • the planar shape of each unit pixel of the four colors may be a vertically long rectangle, and the planar shape of the display pixel may be a horizontally long rectangle.
  • the planar shape of the unit pixels of the four colors may be a horizontally long rectangle, and the planar shape of the display pixel may be a vertically long rectangle.
  • the planar shape of the unit pixels of the four colors may be a square, and the planar shape of the display pixel may be a vertically long rectangle.
  • the planar shape of each unit pixel of the four colors may be a square, and the planar shape of the display pixel may be a horizontally long rectangle. Further, the arrangement order of the unit pixels of the four colors can be changed as appropriate.
  • the color filter is composed of four colored portions in which Y (yellow) is added to the three colors R, G and B. It is also possible to add colored portions of other colors such as (cyan). In addition, the color filter may be configured to include five or more colored portions.
  • planar shape of the display pixel is rectangular has been described.
  • planar shape of the display pixel may be elliptical.
  • the optical sheet has been configured to include two prism sheets and two light diffusing sheets. It is also possible to use one or three sheets and three or one light diffusion sheet. Furthermore, the number of optical sheets can be 5 or more, or 3 or less.
  • a reflective polarizing sheet can be added or substituted. It is also possible to omit the first light diffusion sheet that is an isotropic light diffusion sheet.
  • the optical sheet has a configuration including a prism sheet and the second light diffusion sheet or the first light diffusion sheet. It is possible to add three or more diffusion sheets. It is also possible to omit the second light diffusing sheet or the first light diffusing sheet and configure the optical sheet by only one prism sheet.
  • a reflective polarizing sheet can be added or substituted.
  • the second light diffusing sheet is illustrated near the liquid crystal panel and the prism sheet is disposed near the light guide plate.
  • the second light diffusing sheet and the prism are illustrated. It is also possible to reverse the stacking order with the sheet.
  • the first light diffusing sheet is disposed near the liquid crystal panel and the prism sheet is disposed near the light guide plate.
  • the first light diffusing sheet and the prism are illustrated. It is also possible to reverse the stacking order with the sheet.
  • the second light diffusion sheet or the prism sheet which is an anisotropic optical member, can be disposed so as to overlap the display surface side of the liquid crystal panel.
  • the anisotropic light diffusing particles of the second light diffusing sheet are arranged randomly in the translucent resin layer. It is also possible to adopt a configuration in which the isotropic light diffusing particles are arranged with a certain regularity in the translucent resin layer.
  • the specific shape and size of the anisotropic light diffusing particles of the second light diffusing sheet (dimension in the major axis direction and minor axis direction) About the dimension about, etc., it can change suitably.
  • the anisotropic light diffusing particles those having an elliptical column shape or those having a cross-sectional shape cut along the minor axis direction that is a triangle or a pentagon or more polygon can be used.
  • tapered portions by providing conical portions at both ends in the long axis direction of the cylindrical portion, or both ends in the long axis direction of prismatic portions (triangular prism portions, quadrangular prism portions, etc.) It is also possible to use a tapered shape by providing pyramid portions (triangular pyramid portions, quadrangular pyramid portions, etc.) respectively.
  • anisotropic light diffusing particles in a shape in which the bottoms of two conical parts are joined back to back, or in a two pyramid part (triangular pyramid part, quadrangular pyramid part, etc.) It is also possible to use a taper shape by joining the bottoms back to back.
  • the thickness of the anisotropic light diffusion portion is smaller than the thickness of the base material of the second light diffusion sheet. It is also possible to reverse the thickness relationship so that the thickness of the anisotropic light diffusion portion is larger than the thickness of the base material.
  • the second light diffusion sheet in which a large number of protrusions arranged along the light collecting direction meander at random along the non-light collecting direction is shown. It is also possible to adopt a form in which a large number of protrusions arranged along the light direction meander in parallel with each other.
  • the protrusions that meander while extending along the non-light-collecting direction are such that the width dimension, the height dimension, and the like vary randomly according to the position in the non-light-collecting direction.
  • the second light diffusing sheet is shown, it is also possible to make the ridges meander while keeping the width and height of the ridges constant.
  • the anisotropic light diffusing portion of the second light diffusing sheet is configured by a protrusion, but other than that, for example, the first direction and the plate surface of the substrate It is also possible to configure the anisotropic light diffusing unit by using microlenses arranged in a matrix along the second direction.
  • an ultraviolet curable resin material which is a kind of photocurable resin material that is cured by ultraviolet rays, is used as the material of the protrusion (anisotropic light diffusing portion) of the second light diffusing sheet.
  • another photocurable resin material for example, the visible light curable resin material in which hardening progresses by visible light can be used.
  • a photocurable resin material that is cured by both ultraviolet rays and visible rays.
  • the anisotropic light diffusing portion of the second light diffusing sheet is composed of a large number of protrusions, so that the light diffusing direction is randomized.
  • An anisotropic light diffusing portion is formed by regularly arranging a plurality of lenticular lenses extending along the first direction along the second direction and having a substantially semicircular cross-sectional shape cut along the light direction. It is also possible to configure.
  • the LED substrate is disposed so as to face the one end surface on the long side of the light guide plate. What was arranged in the opposing shape with respect to the end surface of a side is also contained in this invention.
  • the LED substrate is disposed opposite to the pair of end surfaces on the long side of the light guide plate, or the LED substrate is disposed on the pair of end surfaces on the short side of the light guide plate. Those arranged opposite to each other are also included in the present invention.
  • the LED substrate is arranged opposite to any three end surfaces of the light guide plate, or the LED substrate is attached to all four end surfaces of the light guide plate. In addition, those arranged in an opposing manner are also included in the present invention.
  • the projected capacitive type is exemplified as the touch panel pattern of the touch panel, but other than that, the touch panel of the surface capacitive type, the resistive film type, the electromagnetic induction type, etc.
  • the present invention can also be applied to those employing patterns.
  • an image displayed on the display surface of the liquid crystal panel is separated by parallax, so that a stereoscopic image (3D image, 3D image) is displayed to the observer.
  • a parallax barrier panel switch liquid crystal panel
  • the above-described parallax barrier panel and touch panel can be used in combination.
  • the specific screen size of the liquid crystal panel can be changed as appropriate.
  • the frame is made of metal, but the frame may be made of synthetic resin.
  • the cover panel using tempered glass is shown, but it is of course possible to use a normal glass material (non-tempered glass) or a synthetic resin material that is not tempered glass.
  • the cover panel is used for the liquid crystal display device, but the cover panel may be omitted. Similarly, the touch panel can be omitted.
  • a liquid crystal display device having a horizontally long display screen is exemplified, but a liquid crystal display device having a vertically long display screen is also included in the present invention.
  • a liquid crystal display device having a square display screen is also included in the present invention.
  • the transmissive liquid crystal display device including the backlight device that is an external light source is exemplified.
  • the present invention is a transmissive display that performs display using light from the backlight device. It is also applicable to a transflective (reflection / transmission type) liquid crystal display device having both functions of reflection display that performs display using external light.
  • a TFT is used as a switching element of a liquid crystal display device.
  • the present invention can also be applied to a liquid crystal display device using a switching element other than TFT (for example, a thin film diode (TFD)).
  • a switching element other than TFT for example, a thin film diode (TFD)
  • the present invention can also be applied to a liquid crystal display device for monochrome display.
  • the liquid crystal display device used for a smartphone or a tablet-type notebook personal computer has been exemplified.
  • a vehicle-mounted information terminal, a mobile phone other than a smartphone, or a notebook computer other than a tablet-type laptop The present invention can also be applied to a liquid crystal display device used in a digital photo frame, a portable game machine, or the like.
  • the liquid crystal panel is exemplified as the “anisotropic display element”.
  • PDP plasma
  • the present invention is also applicable to a display device using a self-luminous anisotropic display element such as a display panel or an organic EL panel. In that case, it is preferable to dispose the anisotropic optical member (second light diffusion sheet or prism sheet) so as to overlap the display surface side of the self-luminous anisotropic display element. Further, in the case of using the above self-luminous anisotropic display element, it is possible to omit a backlight device (light source, light guide plate, etc.).
  • SYMBOLS 10 Liquid crystal display device (display device), 11 ... Liquid crystal panel (anisotropic display element), 11a ... CF substrate (substrate), 11b ... Array substrate (substrate), 11c ... Liquid crystal layer (liquid crystal), 17, 317 ... LED (light source), 17a, 317a ... light emitting surface, 19, 119, 219 ... light guide plate, 19a, 119a ... light emitting surface, 19b ... light incident surface, 40 ... first prism sheet (other optical member), 41 ...

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Nonlinear Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Mathematical Physics (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Dispersion Chemistry (AREA)
  • Liquid Crystal (AREA)
  • Devices For Indicating Variable Information By Combining Individual Elements (AREA)

Abstract

液晶表示装置10は、画像を表示する表示面DSを有するものであって、表示面DSに沿う第1方向については出射光の出射角度範囲が相対的に狭いものの、表示面DSに沿い且つ第1方向と直交する第2方向については出射光の出射角度範囲が相対的に広くなる形で、出射光の出射角度分布に異方性を有する液晶パネル11と、液晶パネル11に対して表示面DS側またはその反対側に重なる形で配されるものであって、第1方向については出射光の出射角度範囲が相対的に広くなるのに対し、第2方向については出射光の出射角度範囲が相対的に狭くなるよう出射光の出射角度分布に異方性を有する異方性光学部材である第2光拡散シート43と、を備える。

Description

表示装置
 本発明は、表示装置に関する。
 近年、画像表示装置の表示素子は、従来のブラウン管から液晶パネルやプラズマディスプレイパネルなどの薄型の表示パネルに移行しつつあり、画像表示装置の薄型化を可能としている。液晶表示装置は、これに用いる液晶パネルが自発光しないため、別途に照明装置としてバックライト装置を必要としている。バックライト装置は、光源と、光源からの光に光学作用を付与して均一な面状の光として液晶パネルへと供給する光学部材とを少なくとも備えている。このようなバックライト装置を備えた液晶表示装置の一例として下記特許文献1に記載されたものが知られている。この特許文献1に記載された液晶表示装置では、異方性付与手段によって光を異方的に拡散させることで、液晶表示装置の長手方向の視野角を広く、幅方向の視野角を狭くしつつも高い輝度を得られるものとされる。
特開2012-42820号公報
(発明が解決しようとする課題)
 上記した特許文献1は、横からの覗き見を防止することを目的として異方性付与手段によって幅方向の視野角を狭くしているが、液晶表示装置の用途によっては視野角に等方性が求められる場合がある。具体的には、例えばスマートフォンやタブレット型ノートパソコンのように、縦向き(ポートレートモード)と横向き(ランドスケープモード)とで向きを適宜に切り替えて使用する場合には、視野角に高い等方性が求められる傾向にある。
 ところで、液晶パネルは、例えばR,G,Bの3色の単位画素によって1つの表示画素が構成され、その表示画素が多数ずつ行列状に並列配置された構成とされている。ここで、表示画素の平面形状が長方形状となった場合には、液晶パネルの透過光の出射角度分布に異方性が生じるおそれがあり、そうなると視野角にも異方性が生じ、表示品位が悪化する可能性があった。
 本発明は上記のような事情に基づいて完成されたものであって、表示品位を改善することを目的とする。
(課題を解決するための手段)
 本発明の表示装置は、画像を表示する表示面を有するものであって、前記表示面に沿う第1方向については出射光の出射角度範囲が相対的に狭いものの、前記表示面に沿い且つ前記第1方向と直交する第2方向については出射光の出射角度範囲が相対的に広くなる形で、出射光の出射角度分布に異方性を有する異方性表示素子と、前記異方性表示素子に対して前記表示面側またはその反対側に重なる形で配されるものであって、前記第1方向については出射光の出射角度範囲が相対的に広くなるのに対し、前記第2方向については出射光の出射角度範囲が相対的に狭くなるよう出射光の出射角度分布に異方性を有する異方性光学部材と、を備える。
 このようにすれば、異方性表示素子に対して異方性光学部材が表示面側とは反対側に重なる形で配されていた場合には、異方性光学部材からの出射光が異方性表示素子を透過することで表示面に画像が表示されるのに対し、異方性表示素子に対して異方性光学部材が表示面側に重なる形で配されていた場合には、異方性表示素子からの出射光が異方性光学部材を透過することで表示面に画像が表示される。ここで、異方性表示素子は、表示面に沿う第1方向については出射光の出射角度範囲が相対的に狭いものの、表示面に沿い且つ第1方向と直交する第2方向については出射光の出射角度範囲が相対的に広くなるよう出射光の出射角度分布に異方性を有しているため、表示面に表示される画像に係る視野角に、異方性表示素子が有する出射角度分布と同じ異方性が生じることが懸念される。その点、異方性光学部材は、異方性表示素子において出射角度範囲が相対的に狭い第1方向については出射光の出射角度範囲が相対的に広くなるのに対し、異方性表示素子において出射角度範囲が相対的に広い第2方向については出射光の出射角度範囲が相対的に狭くなるよう出射光の出射角度分布に異方性を有しているから、異方性表示素子の表示面に表示される画像に係る視野角が等方化されるようになっている。これにより、表示面に表示される画像の表示品位を高いものとすることができる。
 本発明の実施態様として、次の構成が好ましい。
(1)前記異方性光学部材には、光を拡散させつつ出射させるものであって、前記第1方向については拡散光量が相対的に多くなるのに対し、前記第2方向については拡散光量が相対的に少なくなるよう光拡散異方性を有する異方性光拡散部材が少なくとも含まれている。このようにすれば、光拡散異方性を有する異方性光拡散部材からの出射光は、異方性表示素子において出射角度範囲が相対的に狭い第1方向については拡散光量が相対的に多くなることで出射角度範囲が相対的に広くなるのに対し、異方性表示素子において出射角度範囲が相対的に広い第2方向については拡散光量が相対的に少なくなることで出射角度範囲が相対的に狭くなるような出射角度分布を有していることから、異方性表示素子の表示面に表示される画像に係る視野角が等方化される。
(2)前記異方性光拡散部材は、長手状をなすとともにその長軸方向が前記第2方向に沿い且つ短軸方向が前記第1方向に沿う形で配される異方性光拡散粒子を有している。このようにすれば、異方性光拡散粒子は、その長軸方向については光の拡散度合いが相対的に低いものの、短軸方向については光を光の拡散度合いが相対的に高いものとされる。従って、異方性光拡散部材が、長軸方向が第2方向に沿い且つ短軸方向が第1方向に沿う形で配される異方性光拡散粒子を有することで、異方性表示素子において出射角度範囲が相対的に狭い第1方向については拡散光量が相対的に多くなるのに対し、異方性表示素子において出射角度範囲が相対的に広い第2方向については拡散光量が相対的に少なくなる。これにより、異方性表示素子の表示面に表示される画像に係る視野角が等方化される。
(3)前記異方性光拡散部材は、透光性を有する基材と、前記基材に対して積層されるとともに前記異方性光拡散粒子が多数分散配合される透光性樹脂層とを有しており、前記異方性光拡散粒子は、前記透光性樹脂層中において前記長軸方向が前記第2方向に沿い且つ前記短軸方向が前記第1方向に沿うよう配向されている。このようにすれば、異方性光拡散部材を透過する光は、透光性樹脂層中に多数分散配合されて長軸方向が第2方向に沿い且つ短軸方向が第1方向に沿うよう配向された異方性光拡散粒子によって第1方向については拡散光量が多くなり、第2方向については拡散光量が少なくなるよう拡散される。しかも、異方性光拡散部材の製造に際して、例えば基材に対して異方性光拡散粒子を多数分散配合した液体状の透光性樹脂層の材料を塗布し固化させることで透光性樹脂層を積層形成すれば、塗布に伴って異方性光拡散粒子の長軸方向が塗布方向に沿うように揃えられるので、異方性光拡散粒子を容易に配向させることができる。
(4)前記異方性光拡散粒子は、前記長軸方向について中央側から両端側に向けてそれぞれ先細り状をなすよう形成されている。このようにすれば、仮に異方性光拡散粒子が長軸方向について全長にわたって一定の太さとされた場合に比べると、異方性光拡散部材の製造に際して、例えば基材に対して異方性光拡散粒子を多数分散配合した液体状の透光性樹脂層の材料を塗布し固化させることで透光性樹脂層を積層形成した場合に、塗布に伴って異方性光拡散粒子の長軸方向をよりスムーズに塗布方向に沿うように揃えることができる。これにより、透光性樹脂層中における多数の異方性光拡散粒子の配向状態をより適切なものとすることができる。
(5)前記異方性光拡散粒子は、前記長軸方向に沿って切断した断面形状が楕円形状をなしている。このようにすれば、異方性光拡散粒子における長軸方向についての両端部が丸められた形状となるので、異方性光拡散部材の製造に際して、例えば基材に対して異方性光拡散粒子を多数分散配合した液体状の透光性樹脂層の材料を塗布し固化させることで透光性樹脂層を積層形成した場合に、塗布に伴って異方性光拡散粒子が配向される過程で引っ掛かりが生じ難くなる。これにより、異方性光拡散粒子の長軸方向を一層スムーズに塗布方向に沿うように揃えることができ、透光性樹脂層中における多数の異方性光拡散粒子の配向状態を一層適切なものとすることができる。
(6)前記異方性光拡散粒子は、前記短軸方向に沿って切断した断面形状が円形状をなすよう形成されている。このようにすれば、仮に異方性光拡散粒子が短軸方向に沿って切断した断面形状が角形状とされた場合に比べると、異方性光拡散部材の製造に際して、例えば基材に対して異方性光拡散粒子を多数分散配合した液体状の透光性樹脂層の材料を塗布し固化させることで透光性樹脂層を積層形成した場合に、塗布に伴って異方性光拡散粒子が配向される過程で引っ掛かりが生じ難くなる。これにより、塗布に伴って異方性光拡散粒子の長軸方向をよりスムーズに塗布方向に沿うように揃えることができ、透光性樹脂層中における多数の異方性光拡散粒子の配向状態をより適切なものとすることができる。
(7)前記異方性光拡散部材は、透光性を有するシート状の基材と、前記基材における板面から突出し、前記1方向に沿って切断した断面形状が略山形をなすとともに前記第2方向に沿って延在しつつ蛇行し且つ前記第1方向に沿って複数並列される突条部とを有する。このようにすれば、シート状の基材における板面から突出する突条部は、第1方向に沿って切断した断面形状が略山形をなしているので、斜面からは頂角に応じた角度付けをなされた光が、概ね第1方向に沿って出射される。これにより、突条部から第1方向に沿って出射される出射光量が、第2方向に沿って出射される出射光量よりも相対的に多くなる。その上で、突条部は、第2方向に沿って延在しつつ蛇行しており、斜面がうねった形状となっているから、該斜面における第2方向についての位置に応じて出射光の出射方向が変動することになる。これにより、突条部から概ね第1方向に沿って出射される光が適切に拡散される。以上により、異方性光拡散部材に、第1方向については拡散光量が相対的に多くなるのに対し、第2方向については拡散光量が相対的に少なくなるよう拡散異方性を持たせることができるので、異方性表示素子の表示面に表示される画像に係る視野角が等方化される。
(8)前記第1方向に沿って並ぶ複数の前記突条部は、前記第2方向に沿ってランダムに蛇行するよう形成されている。このようにすれば、各突条部における各斜面からの出射光は、各突条部の蛇行形状に応じてランダムに拡散される。これにより、異方性表示素子の表示面に表示される画像にモアレ(干渉縞)が生じ難くなる。
(9)前記突条部は、幅と高さとの少なくともいずれか一方が前記第2方向についての位置に応じてランダムに変動するよう形成されている。このようにすれば、突条部は、第2方向についての位置に応じて頂角の角度や斜面の向きがランダムに変動することになるので、斜面からの出射光がランダムに拡散される。これにより、異方性表示素子の表示面に表示される画像にモアレ(干渉縞)が生じ難くなる。
(10)前記異方性光学部材に含まれる前記異方性光拡散部材は、前記異方性表示素子に対して前記表示面側とは反対側に重なる形で配され、さらには前記異方性光拡散部材に対して重なる形で配されるとともに光を透過する他の光学部材が備えられており、前記異方性光拡散部材は、前記他の光学部材に比べて前記異方性表示素子の近くに配されている。このようにすれば、他の光学部材及び異方性光学部材を順次に透過した光が、異方性表示素子に供給されるようになっている。つまり、異方性表示素子に供給される光は、異方性光学部材に含まれる異方性光拡散部材の出射光となっているから、異方性表示素子の表示面に表示される画像に係る視野角がより好適に等方化され、画像の表示品位が一層優れたものとなる。また、異方性光拡散部材が異方性表示素子に対して表示面側とは反対側に重なる形で配されているから、当該表示装置の使用者は、表示面に表示された画像を直接的に見ることができ、画像の表示品位がより一層優れたものとなる。
(11)前記異方性光学部材には、光を集光させつつ出射させるものであって、前記第1方向については出射光に集光作用を付与しないものの、前記第2方向については出射光に集光作用を付与するよう集光異方性を有する異方性集光部材が少なくとも含まれている。このようにすれば、集光異方性を有する異方性集光部材からの出射光は、異方性表示素子において出射角度範囲が相対的に狭い第1方向については集光作用が付与されないことで出射角度範囲が相対的に広くなるのに対し、異方性表示素子において出射角度範囲が相対的に広い第2方向については集光作用が付与されることで出射角度範囲が相対的に狭くなるような出射角度分布を有していることから、異方性表示素子の表示面に表示される画像に係る視野角が等方化される。
(12)前記異方性光学部材は、前記異方性表示素子に対して前記表示面側とは反対側に重なる形で配されており、光源と、前記異方性光学部材に対して前記異方性表示素子側とは反対側に配されるとともに前記光源からの光を導光する導光板であって、端面に前記光源からの光が入射される光入射面を有するとともに、前記異方性光学部材側を向いた板面に光を出射する光出射面を有する導光板と、を備える。このようにすれば、光源から発せられた光は、導光板の光入射面に入射して導光板内を伝播された後に、光出射面から出射される。光出射面から出射された光は、異方性光学部材に供給され、異方性光学部材から異方性表示素子に供給される。この導光板により、異方性光学部材に供給される光にムラが生じ難くなるので、異方性光学部材の光学性能を良好に発揮させることができる。
(13)前記異方性光学部材は、前記異方性表示素子に対して前記表示面側とは反対側に重なる形で配されるとともに前記表示面に沿う板面を有するシート状をなしており、光を発する発光面を有するとともに前記発光面が前記異方性光学部材の前記板面に対して対向する形で配される光源を備える。このようにすれば、光源の発光面から発せられた光は、発光面と対向する異方性光学部材の板面に向けて照射される。異方性光学部材に照射された光は、異方性光学部材から異方性表示素子に供給される。仮に、光源と異方性光学部材との間に導光板を介在させた場合に比べると、光の利用効率が高いものとなるので、高輝度化や低消費電力化などを図る上で好適となる。
(14)前記異方性表示素子には、前記表示面に沿って複数ずつ行列状に並列配置されるとともに、短辺方向が前記第1方向と一致し且つ長辺方向が前記第2方向と一致する平面形状を有する表示画素が形成されている。このようにすれば、異方性表示素子において表示面に沿って複数ずつ行列状に並列配置された表示画素から光が出射することで、表示面に画像を表示させることができる。この表示画素は、短辺方向が第1方向と一致し且つ長辺方向が第2方向と一致する平面形状を有しているため、異方性表示素子の出射光は、第1方向については出射角度範囲が相対的に狭いものの、第2方向については出射角度範囲が相対的に広くなっている。これに対し、異方性表示素子は、第1方向については出射角度範囲が相対的に広くなるのに対し、第2方向については出射角度範囲が相対的に狭くなるよう出射光の出射角度分布を有していることから、異方性表示素子の表示面に表示される画像に係る視野角が等方化される。これにより、表示面に表示される画像の表示品位を高いものとすることができる。
(15)前記異方性表示素子は、一対の基板間に液晶を封入してなる液晶パネルとされる。このようにすれば、このような表示装置は液晶表示装置として、種々の用途、例えばスマートフォンやタブレット型ノートパソコンのディスプレイ等に適用できる。
(発明の効果)
 本発明によれば、表示品位を改善することができる。
本発明の実施形態1に係る液晶表示装置の概略構成を示す分解斜視図 液晶パネルの表示領域における断面図 液晶パネルを構成するアレイ基板の表示領域における平面構成を示す拡大平面図 液晶パネルを構成するCF基板の表示領域における平面構成を示す拡大平面図 液晶表示装置における短辺方向に沿った断面構成を示す断面図 液晶表示装置における長辺方向に沿った断面構成を示す断面図 図5のLED付近を拡大した断面図 第2光拡散シート(異方性光拡散シート)の切欠斜視図 第2光拡散シートの平面図であって、異方性光拡散粒子の配列を概略的に表す平面図 光学シート群及び導光板をX軸方向(第1方向)に沿って切断した断面図 光学シート群及び導光板をY軸方向(第2方向)に沿って切断した断面図 比較実験に係る比較例に係るバックライト装置からの出射光の輝度分布を示すグラフ 比較実験に係る比較例に係る液晶表示装置の液晶パネルからの出射光の輝度分布を示すグラフ 比較実験に係る実施例に係るバックライト装置(第2光拡散シート)からの出射光の輝度分布を示すグラフ 比較実験に係る実施例に係る液晶表示装置の液晶パネルからの出射光の輝度分布を示すグラフ 本発明の実施形態2に係る液晶表示装置のバックライト装置を構成する光学シート群及び導光板をX軸方向(第1方向)に沿って切断した断面図 液晶表示装置のバックライト装置を構成する光学シート群及び導光板をY軸方向(第2方向)に沿って切断した断面図 本発明の実施形態3に係る液晶表示装置のバックライト装置を構成する光学シート群及び導光板をX軸方向(第1方向)に沿って切断した断面図 液晶表示装置のバックライト装置を構成する光学シート群及び導光板をY軸方向(第2方向)に沿って切断した断面図 本発明の実施形態4に係る液晶表示装置のバックライト装置を構成する光学シート群及び導光板をX軸方向(第1方向)に沿って切断した断面図 液晶表示装置のバックライト装置を構成する光学シート群及び導光板をY軸方向(第2方向)に沿って切断した断面図 本発明の実施形態5に係る第2光拡散シートの切欠斜視図 第2光拡散シートの平面図であって、突条部の配列を概略的に表す平面図 液晶表示装置のバックライト装置を構成する光学シート群及び導光板をX軸方向(第1方向)に沿って切断した断面図 本発明の実施形態6に係る第2光拡散シートの切欠斜視図 本発明の実施形態7に係る第2光拡散シートの切欠斜視図 本発明の実施形態8に係る液晶パネルを構成するCF基板の表示領域における平面構成(表示画素の配列)を示す拡大平面図 本発明の他の実施形態(1)に係る液晶パネルを構成するCF基板の表示領域における平面構成(表示画素の配列)を示す拡大平面図 本発明の他の実施形態(2)に係る液晶パネルを構成するCF基板の表示領域における平面構成(表示画素の配列)を示す拡大平面図 本発明の他の実施形態(3)に係る液晶パネルを構成するCF基板の表示領域における平面構成(表示画素の配列)を示す拡大平面図 本発明の他の実施形態(4)に係る液晶パネルを構成するCF基板の表示領域における平面構成(表示画素の配列)を示す拡大平面図 本発明の他の実施形態(5)に係る液晶パネルを構成するCF基板の表示領域における平面構成(表示画素の配列)を示す拡大平面図
 <実施形態1>
 本発明の実施形態1を図1から図15によって説明する。本実施形態では、液晶表示装置10について例示する。なお、各図面の一部にはX軸、Y軸及びZ軸を示しており、各軸方向が各図面で示した方向となるように描かれている。また、上下方向については、図5及び図6を基準とし、且つ同図上側を表側とするとともに同図下側を裏側とする。
 液晶表示装置10は、図1に示すように、全体として横長な方形状をなしており、基幹部品である液晶表示ユニットLDUにタッチパネル14、カバーパネル(保護パネル、カバーガラス)15及びケーシング16などの部品を組み付けてなるものとされる。液晶表示ユニットLDUは、表側に画像を表示する表示面DSを有する液晶パネル(異方性表示素子、異方性液晶表示素子)11と、液晶パネル11の裏側に配されて液晶パネル11に向けて光を照射するバックライト装置(照明装置)12と、液晶パネル11を表側、つまりバックライト装置12側とは反対側(表示面DS側)から押さえるフレーム(筐体部材)13とを有してなる。タッチパネル14及びカバーパネル15は、共に液晶表示ユニットLDUを構成するフレーム13内に表側から収容されるとともに、外周部分(外周端部を含む)がフレーム13によって裏側から受けられている。タッチパネル14は、液晶パネル11に対して表側に所定の間隔を空けた位置に配されるとともに、裏側(内側)の板面が表示面DSと対向状をなす対向面とされている。カバーパネル15は、タッチパネル14に対して表側に重なる形で配されるとともに、裏側(内側)の板面がタッチパネル14の表側の板面と対向状をなす対向面とされている。なお、タッチパネル14とカバーパネル15との間には、反射防止フィルムARが介設されている(図7を参照)。ケーシング16は、液晶表示ユニットLDUを裏側から覆う形でフレーム13に組み付けられている。液晶表示装置10の構成部品のうち、フレーム13の一部(後述する環状部13b)、カバーパネル15及びケーシング16が液晶表示装置10の外観を構成している。本実施形態に係る液晶表示装置10は、主にスマートフォンやタブレット型ノートパソコンなどの電子機器に用いられるものであり、その画面サイズは、数インチ~20インチ程度とされ、一般的には小型または中小型に分類される大きさとされている。
 まず、液晶表示ユニットLDUを構成する液晶パネル11について詳しく説明する。液晶パネル11は、横長な方形状をなしており、図2に示すように、ほぼ透明で優れた透光性を有するガラス製の一対の基板11a,11bと、両基板11a,11b間に介在し、電界印加に伴って光学特性が変化する物質である液晶分子を含む液晶層11cとを備え、両基板11a,11bが液晶層11cの厚さ分のギャップを維持した状態で図示しないシール剤によって貼り合わせられている。この液晶パネル11は、画像が表示される表示領域(後述する板面遮光層32により囲まれた中央部分)と、表示領域を取り囲む額縁状をなすとともに画像が表示されない非表示領域(後述する板面遮光層32と重畳する外周部分)とを有している。液晶パネル11を構成する一対の基板11a,11bのうち表側(正面側)に配されるものがCF基板11aとされ、裏側(背面側)に配されるものがアレイ基板11bとされる。また、両基板11a,11bの内面側には、液晶層11cに含まれる液晶分子を配向させるための配向膜11d,11eがそれぞれ形成されている。また、両基板11a,11bの外面側には、それぞれ偏光板11f,11gが貼り付けられている。なお、液晶パネル11における長辺方向がX軸方向と一致し、短辺方向がY軸方向と一致し、さらに厚さ方向がZ軸方向と一致している。
 アレイ基板11bにおける内面側(液晶層11c側、CF基板11aとの対向面側)には、図3に示すように、スイッチング素子であるTFT(Thin Film Transistor)11k及び画素電極11lが、X軸方向(行方向)及びY軸方向(列方向)に沿ってそれぞれ多数個ずつ行列状(マトリクス状)に並んで設けられるとともに、これらTFT11k及び画素電極11lの周りには、格子状をなすゲート配線11m及びソース配線11nが取り囲むようにして配設されている。これらゲート配線11mとソース配線11nとがそれぞれTFT11kのゲート電極とソース電極とにそれぞれ接続され、画素電極11lがTFT11kのドレイン電極に接続されている。ゲート配線11mには画像に係る走査信号が、ソース配線11nには画像に係るデータ信号が、それぞれ図示しない表示制御回路から供給されるようになっている。また、ゲート配線11m及びソース配線11n、並びにTFT11kをなすゲート電極、ソース電極及びドレイン電極は、それぞれ優れた導電性を有するとともに遮光材料である金属膜からなる。ゲート配線11m及びソース配線11nにより囲まれた領域に配された画素電極11lは、平面に視て縦長の長方形状をなしており、その短辺方向がX軸方向と一致し且つ長辺方向がY軸方向と一致している。画素電極11lは、その短辺寸法が例えば長辺寸法の1/3以下の大きさとされる。また、画素電極11lは、ITO(Indium Tin Oxide:酸化インジウム錫)或いはZnO(Zinc Oxide:酸化亜鉛)といった優れた透光性を有するとともに導電性を有する透明電極材料からなる。このアレイ基板11bの表示領域において光を透過する開口領域は、遮光構造物であるTFT11k、ゲート配線11m、及びソース配線11nなどを除いた領域、つまり透光性構造物である画素電極11lと平面に視て重畳する、縦長な長方形状の領域とされる。
 一方、CF基板11aには、図4に示すように、各画素電極11lに対応した位置に多数個のカラーフィルタ11hが並んで設けられている。カラーフィルタ11hは、R(赤色),G(緑色),B(青色)の三色の着色部11hr,11hg,11hbからなるものとされている。三色の着色部11hr,11hg,11hbは、X軸方向(行方向)に沿って交互に繰り返し並列配置されることで着色部群を構成しており、この着色部群がY軸方向(列方向)に沿って多数並んで配されている。カラーフィルタ11hを構成する各着色部11hr,11hg,11hbは、上記したアレイ基板11b側の画素電極11lに対して液晶層11cを挟んで対向状をなすとともに、平面に視て縦長の長方形状をなしており、その短辺方向がX軸方向と一致し且つ長辺方向がY軸方向と一致している。カラーフィルタ11hを構成する各着色部11hr,11hg,11hbのうちのいずれか1つと、着色部11hr,11hg,11hbのうちのいずれか1つと対向する画素電極11lとの組が1つの単位画素UPXを構成している。カラーフィルタ11hを構成する各着色部11hr,11hg,11hbは、その短辺寸法が例えば長辺寸法の1/3以下の大きさとされており、その短辺寸法と長辺寸法との比率が上記した画素電極11lに係る同比率とほぼ等しくされている。カラーフィルタ11hをなす各着色部11hr,11hg,11hb間には、混色を防ぐための遮光層(ブラックマトリクス)11iが形成されている。遮光層11iは、優れた遮光性を有する遮光材料からなるとともに格子状をなしており、アレイ基板11b側のゲート配線11m及びソース配線11nと平面に視て重畳する配置とされる。このCF基板11aの表示領域において光を透過する開口領域は、遮光構造物である遮光層11iなどを除いた領域、つまり透光性構造物であるカラーフィルタ11hの各着色部と平面に視て重畳する、縦長な長方形状の領域とされる。カラーフィルタ11h及び遮光層11iの表面には、アレイ基板11b側の画素電極11lと対向する対向電極(共通電極)11jが設けられている。この対向電極11jには、図示しない表示制御回路から基準電位が供給されるようになっている。従って、ゲート配線11m及びソース配線11nに伝送された各信号に基づいて駆動されるTFT11kにより画素電極11lが充電されると、その画素電極11lと、基準電位とされた対向電極11jとの間に電位差が生じるようになっており、その電位差に基づいて両電極11l,11j間に介在する液晶層11cに含まれる液晶分子の配向状態を制御することができる。これにより、各単位画素UPX(各着色部11hr,11hg,11hb)における光の透過量を個別に制御して液晶パネル11の表示面DSに画像を表示することが可能とされる。また、CF基板11aは、平面に視た大きさがアレイ基板11bよりも一回り小さいものとされる。
 当該液晶パネル11においては、カラーフィルタ11hを構成するR,G,Bの3色の着色部11hr,11hg,11hbと、それらと対向する3つの画素電極11lとの組(3色の単位画素UPX)によって表示単位である表示画素PXが構成されている。詳しくは、表示画素PXは、図3及び図4に示すように、Rの着色部11hrを有する赤色単位画素と、Gの着色部11hgを有する緑色単位画素と、Bの着色部11hbを有する青色単位画素とからなる。これら各色の単位画素UPXは、液晶パネル11の板面においてX軸方向(行方向)に沿って繰り返し並べて配されることで、単位画素UPX群を構成しており、この単位画素UPX群がY軸方向(列方向)に沿って多数並んで配されている。これにより、表示画素PXは、両基板11a,11bの板面、つまり表示面DS(X軸方向及びY軸方向)に沿って多数ずつ行列状(マトリクス状)に並列配置されている。そして、表示画素PXは、平面に視た形状が縦長の長方形状をなしており、その短辺方向がX軸方向と一致し且つ長辺方向がY軸方向と一致している。表示画素PXは、その短辺寸法が例えば長辺寸法の1/3以下の大きさとされており、その短辺寸法と長辺寸法との比率が上記した画素電極11lに係る同比率、及びカラーフィルタ11hを構成する各着色部11hr,11hg,11hbに係る同比率とそれぞれほぼ等しくされている。このような構成に起因して、当該液晶パネル11は、透過光の出射角度分布に異方性を有するものとされており、具体的には表示画素PXの短辺方向に沿うX軸方向については透過光の出射角度範囲が相対的に狭くなるのに対し、表示画素PXの長辺方向に沿うY軸方向については透過光の出射角度範囲が相対的に広くなっている。ここで言う「出射角度範囲」とは、液晶パネル11を透過して出射する出射光の進行方向が、表示面DSの法線方向に対してなす正負の角度範囲を足し合わせた角度範囲であって、当該出射光に係る輝度値が一定以上(具体的には、例えば最大輝度値の半分以上)となる角度範囲のことである。以下では、表示画素PXの短辺方向に沿う方向(X軸方向)を「第1方向」とし、表示画素PXの長辺方向に沿う方向(Y軸方向)を「第2方向」とする。なお、表示画素PX及び単位画素UPXは、X軸方向及びY軸方向に沿って一定の周期性をもって多数個ずつ並列配置された周期性構造物である、と言える。
 続いて、液晶表示ユニットLDUを構成するバックライト装置12について詳しく説明する。バックライト装置12は、図1に示すように、全体として液晶パネル11と同様に横長の略ブロック状をなしている。バックライト装置12は、図6及び図7に示すように、光源であるLED(Light Emitting Diode:発光ダイオード)17と、LED17が実装されたLED基板(光源基板)18と、LED17からの光を導光する導光板19と、導光板19の表側に積層配置される光学シート(異方性光学部材を含む光学部材)20と、導光板19を表側から押さえる遮光フレーム21と、LED基板18、導光板19、光学シート20及び遮光フレーム21を収容するシャーシ22と、シャーシ22の外面に接する形で取り付けられる放熱部材23とを備える。このバックライト装置12は、その外周部分のうち長辺側の一端部にLED17(LED基板18)が偏在する形で配された、片側入光方式のエッジライト型(サイドライト型)とされる。
 LED17は、図5及び図7に示すように、LED基板18に固着される基板部上にLEDチップを樹脂材により封止した構成とされる。基板部に実装されるLEDチップは、主発光波長が1種類とされ、具体的には、青色を単色発光するものが用いられている。その一方、LEDチップを封止する樹脂材には、LEDチップから発せられた青色の光により励起されて所定の色を発光する蛍光体が分散配合されており、全体として概ね白色光を発するものとされる。なお、蛍光体としては、例えば黄色光を発光する黄色蛍光体、緑色光を発光する緑色蛍光体、及び赤色光を発光する赤色蛍光体の中から適宜組み合わせて用いたり、またはいずれか1つを単独で用いることができる。このLED17は、LED基板18に対する実装面とは反対側の面が発光面17aとなる、いわゆる頂面発光型とされている。
 LED基板18は、図5及び図7に示すように、X軸方向(導光板19及びシャーシ22の長辺方向)に沿って延在する、長手の板状をなしており、その板面をX軸方向及びZ軸方向に並行させた姿勢、すなわち液晶パネル11及び導光板19の板面と直交させた姿勢でシャーシ22内に収容されている。つまり、このLED基板18は、板面における長辺方向がX軸方向と、短辺方向がZ軸方向とそれぞれ一致し、さらには板面と直交する板厚方向がY軸方向と一致した姿勢とされる。LED基板18は、その内側を向いた板面(実装面18a)が導光板19における一方の長辺側の端面(光入射面19b)に対してY軸方向について所定の間隔を空けつつ対向状に配されている。従って、LED17及びLED基板18と導光板19との並び方向は、Y軸方向とほぼ一致している。このLED基板18は、その長さ寸法が導光板19の長辺寸法とほぼ同じ程度とされており、後述するシャーシ22における長辺側の一端部に取り付けられている。
 LED基板18のうち内側、つまり導光板19側を向いた板面(導光板19との対向面)には、図7に示すように、上記した構成のLED17が表面実装されており、ここが実装面18aとされる。LED17は、LED基板18の実装面18aにおいて、その長さ方向(X軸方向)に沿って複数が所定の間隔を空けつつ一列に(直線的に)並列配置されている。つまり、LED17は、バックライト装置12における長辺側の一端部において長辺方向に沿って複数ずつ間欠的に並列配置されていると言える。また、LED基板18の実装面18aには、X軸方向に沿って延在するとともにLED17群を横切って隣り合うLED17同士を直列接続する、金属膜(銅箔など)からなる配線パターン(図示せず)が形成されており、この配線パターンの両端部に形成された端子部が外部のLED駆動回路に接続されることで、駆動電力を各LED17に供給することが可能とされる。また、LED基板18の基材は、シャーシ22と同様に金属製とされ、その表面に絶縁層を介して既述した配線パターン(図示せず)が形成されている。なお、LED基板18の基材に用いる材料としては、セラミックなどの絶縁材料を用いることも可能である。
 導光板19は、図5及び図6に示すように、屈折率が空気よりも十分に高く且つほぼ透明な(透光性に優れた)合成樹脂材料(例えばアクリルなど)からなる。導光板19は、液晶パネル11と同様に平面に視て横長の方形状をなす平板状とされており、その板面が液晶パネル11の板面(表示面DS)に並行している。導光板19は、その板面における長辺方向がX軸方向と、短辺方向がY軸方向とそれぞれ一致し、且つ板面と直交する板厚方向がZ軸方向と一致している。導光板19は、シャーシ22内において液晶パネル11及び光学シート20の直下位置に積層する形、言い換えると光学シート20に対して液晶パネル11側とは反対側に配されており、その外周端面のうちの一方の長辺側の端面がシャーシ22における長辺側の一端部に配されたLED基板18の各LED17とそれぞれ対向状をなしている。従って、LED17(LED基板18)と導光板19との並び方向がY軸方向と一致するのに対して、光学シート20(液晶パネル11)と導光板19との並び方向(重なり方向)がZ軸方向と一致しており、両並び方向が互いに直交するものとされる。そして、導光板19は、LED17からY軸方向(LED17と導光板19との並び方向)に沿って導光板19へ向けて発せられた光を長辺側の端面から導入するとともに、その光を内部で伝播させつつ光学シート20側(表側、光出射側)へ向くよう立ち上げて板面から出射させる機能を有する。
 平板状をなす導光板19の板面のうち、表側を向いた面(液晶パネル11や光学シート20との対向面)は、図5及び図6に示すように、内部の光を光学シート20及び液晶パネル11側に向けて出射させる光出射面19aとなっている。導光板19における板面に対して隣り合う外周端面のうち、X軸方向(LED17の並び方向、LED基板18の長辺方向)に沿って長手状をなす一対の長辺側の端面のうちの一方(図5に示す左側)の端面は、図7に示すように、LED17(LED基板18)と所定の空間を空けて対向状をなしており、これがLED17から発せられた光が入射される光入射面19bとなっている。光入射面19bは、X軸方向及びZ軸方向に沿って並行する面とされ、光出射面19aに対して略直交する面とされる。また、LED17と光入射面19b(導光板19)との並び方向は、Y軸方向と一致しており、光出射面19aに並行している。なお、導光板19の外周端面のうち、光入射面19bを除いた3つの端面、具体的には光入射面19bとは反対側にある長辺側の端面、及び短辺側の一対の端面は、図5及び図6に示すように、それぞれLED17とは対向しないLED非対向端面(光源非対向端面)とされる。
 導光板19の板面のうち、光出射面19aとは反対側の板面(反対板面)19cには、図5及び図6に示すように、導光板19内の光を反射して表側へ立ち上げることが可能な反射シートRがその全域を覆う形で設けられている。言い換えると、反射シートRは、シャーシ22の底板22aと導光板19との間に挟まれた形で配されている。この反射シートRのうち、導光板19における光入射面19b側の端部は、図5に示すように、光入射面19bよりも外側、つまりLED17側に向けて延出されており、この延出部分によってLED17からの光を反射することで、光入射面19bへの光の入射効率を向上させることができる。なお、導光板19における光出射面19aと反対側の板面19cとの少なくともいずれか一方、または反射シートRの表面には、導光板19内の光を散乱させる散乱部(図示せず)などが所定の面内分布を持つようパターニングされており、それにより光出射面19aからの出射光が面内において均一な分布となるよう制御されている。
 光学シート20は、図5及び図6に示すように、液晶パネル11及びシャーシ22と同様に平面に視て横長の方形状をなしている。光学シート20は、導光板19の光出射面19a上に載せられていて液晶パネル11と導光板19との間に介在する形で配されることで、導光板19から供給される出射光を透過するとともにその透過光に所定の光学作用を付与しつつ液晶パネル11に向けて出射させることができる。詳しくは、光学シート20には、導光板19からの出射光に集光作用を付与する2枚のプリズムシート(集光部材、レンズシート)40,41と、導光板19からの出射光に拡散作用を付与する2枚の光拡散シート(光拡散部材)42,43との合計4枚が含まれており、2枚の光拡散シート42,43の間に2枚のプリズムシート40,41が挟み込まれる形で積層配置されている。詳しくは、2枚のプリズムシート40,41のうち、裏側のものを第1プリズムシート40とし、表側のものを第2プリズムシート41とするのに対し、2枚の光拡散シート42,43のうち、裏側のものを第1光拡散シート42とし、表側のものを第2光拡散シート43としたとき、最も導光板19の近くに第1光拡散シート42が配され、その表側に第1プリズムシート40が、さらにその表側に第2プリズムシート41が積層され、最も液晶パネル11の近くに第2光拡散シート43が配されている。
 光学シート20に含まれる2枚のプリズムシート40,41は、図10及び図11に示すように、それぞれシート状をなす基材40a,41aと、基材40a,41aの表裏両板面のうちの表側、つまり導光板19側とは反対側(液晶パネル11側)の板面に形成されたプリズム部40b,41bとから構成される。基材40a,41aは、ほぼ透明な合成樹脂製とされており、その裏側(プリズム部40b,41b側とは反対側)の板面に導光板19からの出射光が入射されるようになっている。プリズム部40b,41bは、ほぼ透明な合成樹脂製とされており、基材40a,41aにおける表側の板面からZ軸方向に沿って表側に向けて突出する多数の単位プリズム40b1,41b1からなるものとされる。この単位プリズム40b1,41b1は、第2方向(LED17と導光板19との並び方向、Y軸方向)に沿って切断した断面形状が略山形をなすとともに第1方向(LED17と導光板19との並び方向と直交する方向、X軸方向)に沿って直線的に延在しており、基材40a,41aの板面においてY軸方向に沿って多数本が並列配置されている。単位プリズム40b1,41b1は、断面形状がほぼ二等辺三角形状をなしていて、一対の斜面を有している。第1プリズムシート40は、その単位プリズム40b1の高さ寸法が第2プリズムシート41の単位プリズム41b1の高さ寸法よりも小さくなっているものの、単位プリズム40b1の幅寸法が第2プリズムシート41の単位プリズム41b1の幅寸法とほぼ同じとされる。従って、第1プリズムシート40は、単位プリズム40b1における一対の斜面がなす頂角が、第2プリズムシート41の単位プリズム41b1における一対の斜面がなす頂角よりも大きなものとされる。また、第2プリズムシート41の単位プリズム41b1における一対の斜面がなす頂角は、ほぼ直角とされている。第2方向に沿って並列した多数本の単位プリズム40b1,41b1は、配列間隔がほぼ一定で等間隔に配列されている。このような構成の各プリズムシート40,41によれば、第1光拡散シート42側(導光板19側)から基材40a,41aを透過した光は、プリズム部40b,41bにおいて単位プリズム40b1,41b1の各斜面に対する入射角が臨界角を超えていればそこで全反射されて第1光拡散シート42側に戻される(再帰反射される)のに対し、入射角が臨界角を超えていなければそこで屈折されつつ出射される。これにより、各プリズムシート40,41の出射光は、第2方向について進行方向が正面方向(各プリズムシート40,41の板面の法線方向)に近くなるよう規制され、もって第2方向について選択的に集光作用が付与されるとともに、光学シート20から液晶パネル11に供給される光の正面輝度を向上させることが可能とされている。
 光学シート20に含まれる2枚の光拡散シート42,43のうち、第1光拡散シート42は、図10及び図11に示すように、導光板19と第1プリズムシート40との間に挟み込まれた配置とされる。第1光拡散シート42は、透光性樹脂部42aと、透光性樹脂部42a中に多数分散配合される等方性光拡散粒子(球状フィラー)42bとから構成されている。透光性樹脂部42aは、例えばアクリル系樹脂、ポリウレタン、ポリエステル、シリコーン樹脂、エポキシ樹脂、紫外線硬化型樹脂などのほぼ透明で優れた透光性を有する合成樹脂材料を主原料としており、その屈折率が例えば1.3~1.6程度とされる。等方性光拡散粒子42bは、例えばシリカ、水酸化アルミニウム、酸化亜鉛などの無機材料およびアクリル系樹脂、ポリウレタン、ポリスチレンなどの有機材料のようなほぼ透明で優れた透光性を有する合成樹脂材料からなり、その屈折率は例えば1.3~1.6程度とされる。等方性光拡散粒子42bは、その断面形状が略真円形状となる球状に形成されており、それにより等方性光拡散粒子42bに当たった光を等方的に拡散させることが可能とされる。従って、この第1光拡散シート42によれば、導光板19の光出射面19aからの出射光が第1光拡散シート42における裏側の板面(入光側板面)に入射されると、その光が透光性樹脂部42a中に多数分散配合された等方性光拡散粒子42aに当たって等方的に拡散されることで、第1光拡散シート42における表側の板面(出光側板面)から第1プリズムシート40に向けて等方的に拡散した出射光を供給することができるものとされる。つまり、第1光拡散シート42は、第1方向(X軸方向)及び第2方向(Y軸方向)についての拡散光量がほぼ等しく、第1方向及び第2方向についての出射角度範囲がほぼ同じとなるよう、出射光の出射角度分布に等方性を有しており、「等方性光拡散シート(等方性光拡散部材)」である、と言える。ここで言う「出射角度範囲」とは、第1光拡散シート42を透過して出射する出射光の進行方向が、第1光拡散シート42の板面の法線方向に対してなす正負の角度範囲を足し合わせた角度範囲であって、当該出射光に係る輝度値が一定以上(具体的には、例えば最大輝度値の半分以上)となる角度範囲のことである。この第1光拡散シート42を用いることで、導光板19からの出射光に生じ得る指向性を緩和することができる。なお、光学シート20のうち、第2光拡散シート43の詳しい構成及び機能などについては後に改めて説明する。
 遮光フレーム21は、図5及び図6に示すように、導光板19の外周部分(外周端部)に倣う形で延在する略枠状(額縁状)に形成されており、導光板19の外周部分をほぼ全周にわたって表側から押さえることが可能とされる。この遮光フレーム21は、合成樹脂製とされるとともに、表面が例えば黒色を呈する形態とされることで、遮光性を有するものとされる。遮光フレーム21は、その内端部21aが導光板19の外周部分及びLED17と、液晶パネル11及び光学シート20の各外周部分(外周端部)との間に全周にわたって介在する形で配されており、これらが光学的に独立するように仕切っている。これにより、LED17から発せられて光入射面19bに入光しない光や導光板19の端面(光入射面19b及びLED17とは対向しない3つのLED非対向端面)から漏れ出した光が、液晶パネル11及び光学シート20の各外周部分(特に端面)に直接入光するのを遮光することができるものとされる。また、遮光フレーム21のうち、LED17及びLED基板18とは平面に視て重畳しない3つの各辺部(一対の短辺部とLED基板18側とは反対側の長辺部)については、シャーシ22の底板22aから立ち上がる部分と、フレーム13を裏側から支持する部分とを有しているのに対し、LED17及びLED基板18と平面に視て重畳する長辺部については、導光板19の端部及びLED基板18(LED17)を表側から覆うとともに一対の短辺部間を架橋する形で形成されている。また、この遮光フレーム21は、次述するシャーシ22に対して図示しないネジ部材などの固定手段によって固定されている。
 シャーシ22は、例えばアルミニウム板や電気亜鉛めっき綱板(SECC)などの熱伝導率に優れた金属板からなり、図5及び図6に示すように、液晶パネル11と同様に横長の方形状をなす底板22aと、底板22aにおける各辺(一対の長辺及び一対の短辺)の外端からそれぞれ表側に向けて立ち上がる側板22bとからなる。シャーシ22(底板22a)は、その長辺方向がX軸方向と一致し、短辺方向がY軸方向と一致している。底板22aは、その大部分が導光板19を裏側(光出射面19a側とは反対側)から支持する導光板支持部22a1とされるのに対し、LED基板18側の端部が段付き状に裏側に膨出する基板収容部22a2とされる。この基板収容部22a2は、図7に示すように、断面形状が略L字型をなしており、導光板支持部22a1の端部から屈曲されて裏側に向けて立ち上がる立ち上がり部38と、立ち上がり部38の立ち上がり先端部から屈曲されて導光板支持部22a1側とは反対側に向けて突出する収容底部39とからなる。この立ち上がり部38における導光板支持部22a1の端部からの屈曲位置は、導光板19の光入射面19bよりもLED17側とは反対側(導光板支持部22a1の中央寄り)に位置している。収容底部39における突出先端部からは、長辺側の側板22bが表側に立ち上がるよう屈曲形成されている。そして、この基板収容部22a2に連なる長辺側の側板22bには、LED基板18が取り付けられており、この側板22bが基板取付部37を構成している。基板取付部37は、導光板19の光入射面19bと対向状をなす対向面を有しており、この対向面にLED基板18が取り付けられている。LED基板18は、LED17が実装された実装面18aとは反対側の板面が、基板取付部37における内側の板面に対して両面テープなどの基板固着部材25を介して接する形で固着されている。取り付けられたLED基板18は、基板収容部22a2をなす収容底部39の内側の板面との間に僅かながらも隙間を有している。また、シャーシ22の底板22aにおける裏側の板面には、液晶パネル11の駆動を制御するための液晶パネル駆動回路基板(図示せず)、LED17に駆動電力を供給するLED駆動回路基板(図示せず)、タッチパネル14の駆動を制御するためのタッチパネル駆動回路基板(図示せず)などが取り付けられている。
 放熱部材23は、アルミニウム板などの熱伝導性に優れた金属板からなり、図1及び図5に示すように、シャーシ22における長辺側の一端部、詳しくはLED基板18を収容する基板収容部22a2に沿って延在する形態とされる。放熱部材23は、図7に示すように、断面形状が略L字型をなしており、基板収容部22a2の外面に並行し且つその外面に接する第1放熱部23aと、基板収容部22a2に連なる側板22b(基板取付部37)の外面に並行する第2放熱部23bとからなる。第1放熱部23aは、X軸方向に沿って延在する細長い平板状をなしており、X軸方向及びY軸方向に並行する表側を向いた板面が、基板収容部22a2における収容底部39の外面のほぼ全長にわたって当接されている。第1放熱部23aは、収容底部39に対してネジ部材SMによってネジ止めされており、ネジ部材SMを挿通するネジ挿通孔23a1を有している。また、収容底部39には、ネジ部材SMが螺合されるネジ孔28が形成されている。これにより、LED17から発せられた熱は、LED基板18、基板取付部37及び基板収容部22a2を介して第1放熱部23aへと伝達されるようになっている。なお、ネジ部材SMは、第1放熱部23aに対してその延在方向に沿って複数が間欠的に並ぶ形で取り付けられている。第2放熱部23bは、X軸方向に沿って延在する細長い平板状をなしており、X軸方向及びZ軸方向に並行する内側を向いた板面が、基板取付部37における外側の板面との間に所定の隙間を空けつつ対向状に配されている。
 続いて、液晶表示ユニットLDUを構成するフレーム13について説明する。フレーム13は、アルミニウムなどの熱伝導率に優れた金属材料からなるものとされており、図1に示すように、全体としては、液晶パネル11、タッチパネル14及びカバーパネル15の各外周部分(外周端部)に倣う形で延在する横長の略枠状(額縁状)をなしている。フレーム13の製造方法としては、例えばプレス加工などが採られている。フレーム13は、図5及び図6に示すように、液晶パネル11の外周部分を表側から押さえるとともに、バックライト装置12を構成するシャーシ22との間で、互いに積層された液晶パネル11、光学シート20及び導光板19を挟み込む形で保持している。その一方で、フレーム13は、タッチパネル14及びカバーパネル15の各外周部分を裏側から受けており、液晶パネル11とタッチパネル14との外周部分間に介在する形で配されている。これにより、液晶パネル11とタッチパネル14との間には、所定の隙間が確保されるので、例えばカバーパネル15に外力が作用したとき、カバーパネル15に追従してタッチパネル14が液晶パネル11側に撓むよう変形した場合でも、撓んだタッチパネル14が液晶パネル11に干渉し難くなっている。
 フレーム13は、図5及び図6に示すように、液晶パネル11、タッチパネル14及びカバーパネル15の各外周部分に倣う枠状部(フレーム基部、額縁状部)13aと、枠状部13aの外周端部に連なるとともにタッチパネル14、カバーパネル15及びケーシング16をそれぞれ外周側から取り囲む環状部(筒状部)13bと、枠状部13aから裏側に向けて突出してシャーシ22及び放熱部材23に取り付けられる取付板部13cとを有してなる。
 枠状部13aは、図5及び図6に示すように、液晶パネル11、タッチパネル14、及びカバーパネル15の各板面に並行する板面を有する略板状をなすとともに、平面に視て横長で略方形の枠状に形成されている。枠状部13aは、内周部分13a1よりも外周部分13a2の方が相対的に板厚が厚くなっており、両者の境界位置に段差(ギャップ)GPが形成されている。枠状部13aのうち、内周部分13a1が液晶パネル11の外周部分とタッチパネル14の外周部分との間に介在するのに対し、外周部分13a2がカバーパネル15の外周部分を裏側から受けている。このように、枠状部13aは、その表側の板面がほぼ全域にわたってカバーパネル15によって覆われることになるため、表側の板面が殆ど外部に露出することがないものとされる。これにより、フレーム13がLED17からの熱などにより温度上昇していても、液晶表示装置10の使用者がフレーム13における露出部位に直接接触し難くなるので、安全面で優れる。枠状部13aの内周部分13a1における裏側の板面には、液晶パネル11の外周部分を緩衝しつつ表側から押さえるための緩衝材29が固着されているのに対し、内周部分13a1における表側の板面には、タッチパネル14の外周部分を緩衝しつつ固着するための第1固着部材30が固着されている。これら緩衝材29及び第1固着部材30は、内周部分13a1において平面に視て互いに重畳する位置に配されている。一方、枠状部13aの外周部分13a2における表側の板面には、カバーパネル15の外周部分を緩衝しつつ固着するための第2固着部材31が固着されている。これら緩衝材29及び各固着部材30,31は、枠状部13aのうち四隅の角部を除いた各辺部に沿ってそれぞれ延在する形で配されている。また、各固着部材30,31は、例えば基材がクッション性を有する両面テープからなる。
 環状部13bは、図5及び図6に示すように、全体として平面に視て横長の方形の短角筒状をなしており、枠状部13aの外周部分13a2の外周縁から表側に向けて突出する第1環状部34と、枠状部13aの外周部分13a2の外周縁から裏側に向けて突出する第2環状部35とを有してなる。言い換えると、短角筒状をなす環状部13bは、その軸線方向(Z軸方向)についての略中央部における内周面に枠状部13aの外周縁が全周にわたって連ねられている。第1環状部34は、枠状部13aに対して表側に配されるタッチパネル14及びカバーパネル15の各外周端面を全周にわたって取り囲む形で配されている。第1環状部34は、その内周面がタッチパネル14及びカバーパネル15の各外周端面と対向状をなしているのに対し、外周面が当該液晶表示装置10の外部に露出していて液晶表示装置10における側面側の外観を構成している。一方、第2環状部35は、枠状部13aに対して裏側に配されるケーシング16における表側の端部(取付部16c)を外周側から取り囲んでいる。第2環状部35は、その内周面が後述するケーシング16の取付部16cと対向状をなしているのに対し、外周面が当該液晶表示装置10の外部に露出していて液晶表示装置10における側面側の外観を構成している。第2環状部35における突出先端部には、断面鉤型をなすフレーム側係止爪部35aが形成されており、このフレーム側係止爪部35aに対してケーシング16が係止されることで、ケーシング16を取付状態に保持することが可能とされる。
 取付板部13cは、図5及び図6に示すように、枠状部13aのうち外周部分13a2から裏側に向けて突出するとともに、枠状部13aの各辺部に沿って延在する板状をなしており、その板面が枠状部13aの板面とほぼ直交している。取付板部13cは、枠状部13aの各辺部毎に個別に配されている。枠状部13aのうちLED基板18側の長辺部に配された取付板部13cは、その内側を向いた板面が放熱部材23の第2放熱部23bにおける外側の板面が接する形で取り付けられている。この取付板部13cは、第2放熱部23bに対してネジ部材SMによってネジ止めされており、ネジ部材SMを挿通するネジ挿通孔13c1を有している。また、第2放熱部23bには、ネジ部材SMが螺合されるネジ孔36が形成されている。これにより、第1放熱部23aから第2放熱部23bへと伝達されたLED17からの熱は、取付板部13cへと伝達されてからフレーム13の全体へと伝達されることで、効率的に放熱されるようになっている。また、この取付板部13cは、放熱部材23を介してシャーシ22に対して間接的に固定されている。一方、枠状部13aのうちLED基板18側とは反対側の長辺部及び一対の短辺部にそれぞれ配された各取付板部13cは、その内側を向いた板面がシャーシ22の各側板22bにおける外側の板面に接する形でネジ部材SMによってそれぞれネジ止めされている。これらの取付板部13cには、ネジ部材SMを挿通するネジ挿通孔13c1が形成されているのに対し、各側板22bには、ネジ部材SMが螺合されるネジ孔36が形成されている。なお、各ネジ部材SMは、各取付板部13cに対してそれぞれの延在方向に沿って複数ずつが間欠的に並ぶ形で取り付けられている。
 次に、上記したフレーム13に組み付けられるタッチパネル14について説明する。タッチパネル14は、図1,図5及び図6に示すように、使用者が液晶パネル11の表示面DSの面内における位置情報を入力するための位置入力装置であり、横長な方形状をなすとともにほぼ透明で優れた透光性を有するガラス製の基板上に所定のタッチパネルパターン(図示せず)が形成されてなる。詳しくは、タッチパネル14は、液晶パネル11と同様に平面に視て横長の方形状をなすガラス製の基板を有しており、その表側を向いた板面にいわゆる投影型静電容量方式のタッチパネルパターンを構成するタッチパネル用透明電極部(図示せず)が形成されており、基板の面内においてタッチパネル用透明電極部が多数個行列状に並列配置されている。タッチパネル14における長辺側の一端部には、タッチパネルパターンを構成するタッチパネル用透明電極部から引き出された配線の端部に接続された端子部(図示せず)が形成されており、この端子部に対して図示しないフレキシブル基板が接続されることで、タッチパネル駆動回路基板からタッチパネルパターンをなすタッチパネル用透明電極部に電位が供給されるようになっている。タッチパネル14は、その外周部分における内側の板面が、既述した第1固着部材30によってフレーム13の枠状部13aにおける内周部分13a1に対して対向した状態で固着されている。
 続いて、上記したフレーム13に組み付けられるカバーパネル15について説明する。カバーパネル15は、図1,図5及び図6に示すように、タッチパネル14を表側からその全域にわたって覆う形で配されており、それによりタッチパネル14及び液晶パネル11の保護が図られている。カバーパネル15は、フレーム13における枠状部13aを表側から全域にわたって覆うとともに、液晶表示装置10における正面側の外観を構成している。カバーパネル15は、横長な方形状をなすとともにほぼ透明で優れた透光性を有するガラス製で板状の基材からなり、好ましくは強化ガラスからなる。カバーパネル15に用いられる強化ガラスとしては、例えば板状のガラス基材の表面に化学強化処理が施されることで、表面に化学強化層を備えた化学強化ガラスを用いることが好ましい。この化学強化処理は、例えばガラス材料に含まれるアルカリ金属イオンを、それよりもイオン半径が大きいアルカリ金属イオンとイオン交換により置換することで、板状のガラス基材の強化を図る処理をいい、その結果形成される化学強化層は圧縮応力が残留した圧縮応力層(イオン交換層)とされる。これにより、カバーパネル15は、機械的強度及び耐衝撃性能が高いものとされているから、その裏側に配されるタッチパネル14及び液晶パネル11が破損したり、傷付くのをより確実に防止することができる。
 カバーパネル15は、図5及び図6に示すように、液晶パネル11及びタッチパネル14と同様に平面に視て横長の方形状をなしており、その平面に視た大きさは液晶パネル11及びタッチパネル14よりも一回り大きなものとされる。従って、カバーパネル15は、液晶パネル11及びタッチパネル14における各外周縁から全周にわたって庇状に外側に張り出す張出部分15EPを有している。この張出部分15EPは、液晶パネル11及びタッチパネル14を取り囲む横長で方形の略枠状(略額縁状)をなしており、その内側の板面が、既述した第2固着部材31によってフレーム13の枠状部13aにおける外周部分13a2に対して対向した状態で固着されている。一方、カバーパネル15のうちタッチパネル14と対向状をなす中央部分は、反射防止フィルムARを介してタッチパネル14に対して表側に積層されている。
 カバーパネル15のうち上記した張出部分15EPを含む外周部分における内側(裏側)の板面(タッチパネル14側を向いた板面)には、図5及び図6に示すように、光を遮る板面遮光層(遮光層、板面遮光部)32が形成されている。板面遮光層32は、例えば黒色を呈する塗料などの遮光性材料からなるものとされ、その遮光性材料を、カバーパネル15における内側の板面に印刷することで同板面に一体的に設けられている。なお、板面遮光層32を設けるに際しては、例えばスクリーン印刷、インクジェット印刷などの印刷手段を採用することができる。板面遮光層32は、カバーパネル15のうち張出部分15EPの全域に加えて、張出部分15EPよりも内側にあって、タッチパネル14及び液晶パネル11の各外周部分と平面に視てそれぞれ重畳する部分にわたる範囲に形成されている。従って、板面遮光層32は、液晶パネル11の表示領域を取り囲む形で配されることになるので、表示領域外の光を遮ることができ、もって表示領域に表示される画像に係る表示品位を高いものとすることができる。
 続いて、上記したフレーム13に組み付けられるケーシング16について説明する。ケーシング16は、合成樹脂材料または金属材料からなるものであって、図1から図6に示すように、表側に向けて開口した略椀型(略ボウル型)をなしており、フレーム13の枠状部13a、取付板部13c、シャーシ22、及び放熱部材23などの部材を裏側から覆うとともに、液晶表示装置10における背面側の外観を構成している。ケーシング16は、概ね平坦な底部16aと、底部16aの外周縁から表側へ向けて立ち上がるとともに断面湾曲形状をなす曲部16bと、曲部16bの外周縁から表側へ向けてほぼ真っ直ぐに立ち上がる取付部16cとからなる。取付部16cには、断面鉤型をなすケーシング側係止爪部16dが形成されており、このケーシング側係止爪部16dがフレーム13のフレーム側係止爪部35aに対して係止されることで、ケーシング16をフレーム13に対して取付状態に保持することが可能とされる。
 ところで、既述した通り、本実施形態に係る液晶パネル11は、表示画素PXの短辺方向に沿う第1方向(X軸方向)については透過光の出射角度範囲が相対的に狭くなるのに対し、表示画素PXの長辺方向に沿う第2方向(Y軸方向)については透過光の出射角度範囲が相対的に広くなる形で透過光の出射角度分布に異方性を有している。このため、仮にバックライト装置から液晶パネル11に供給される照明光が等方的なものであった場合には、液晶パネル11の視野角に、液晶パネル11が有する出射角度分布と同じ異方性が生じることが懸念される。ここで、液晶表示装置10は、その用途によって視野角に等方性が求められる場合があり、例えばスマートフォンやタブレット型ノートパソコンのように、使用者から見て縦向き(ポートレートモード)と横向き(ランドスケープモード)とで向きを適宜に切り替えて使用する場合には、視野角に高い等方性が求められる傾向にある。このような使用態様においては、使用者が液晶表示装置10を縦向きとして表示面DSの画像を見た場合と、液晶表示装置10を横向きとして表示面DSの画像を見た場合とで、視野角が異なってしまうと、表示品位が著しく低下する結果を招くおそれがある。
 そこで、本実施形態では、光学シート20に、液晶パネル11が有する出射角度分布とは逆の出射角度分布を有する異方性光拡散シートである第2光拡散シート43を含ませるようにしている。この第2光拡散シート43は、図10及び図11に示すように、導光板19及び他の3枚の光学シート20(両プリズムシート40,41及び第1光拡散シート42)を介して供給されるLED17からの光を液晶パネル11に向けて出射させるものであり、第1方向(X軸方向)については出射角度範囲が相対的に広くなるのに対し、第2方向(Y軸方向)については出射角度範囲が相対的に狭くなるよう出射光の出射角度分布に異方性を有している。言い換えると、第2光拡散シート43は、透過光に付与する光拡散作用が、第1方向については拡散光量が相対的に多くなるのに対し、第2方向については拡散光量が相対的に少なくなる、といった「異方性光拡散作用」とされている。ここで言う「出射角度範囲」とは、第2光拡散シート43を透過して出射する出射光の進行方向が、第2光拡散シート43の板面の法線方向に対してなす正負の角度範囲を足し合わせた角度範囲であって、当該出射光に係る輝度値が一定以上(具体的には、例えば最大輝度値の半分以上)となる角度範囲のことである。以下、第2光拡散シート43の具体的な構成について詳しく説明する。
 第2光拡散シート43は、図10及び図11に示すように、液晶パネル11と第2プリズムシート41との間に挟み込まれた配置とされており、光学シート20の中で最も液晶パネル11の近く(導光板19からは最も遠く)に配置されている。つまり、第2光拡散シート43は、導光板19の光出射面19aを出射してから、第1光拡散シート42、第1プリズムシート40、第2プリズムシート41を順次に透過した光に対して異方性光拡散作用を付与し、その異方性光拡散作用が付与された光を液晶パネル11に対して直接的に供給している。第2光拡散シート43は、図8に示すように、シート状をなす基材43aと、基材43aの表裏両板面のうちの表側、つまり液晶パネル11側(導光板19側とは反対側)の板面(次述する出光側板面43a1)に形成された異方性光拡散部43bとから構成される。基材43aは、ほぼ透明で優れた透光性を有するシート状をなしており、例えばPETなどの熱可塑性樹脂材料からなる。基材43aは、その表側の板面が光を液晶パネル11に向けて出射する出光側板面43a1とされる。第2光拡散シート43の製造に際しては、例えば基材43aをなす熱可塑性樹脂材料を所定の厚さのフィルムとして成膜した後に、そのフィルムを高温環境下においてX軸方向及びY軸方向に沿って二軸延伸することで、基材43aを成形している。成形された基材43aは、製造過程での延伸方向(X軸方向及びY軸方向)について熱可塑性樹脂材料の分子が配向されることで、高い強度や高い耐熱性が得られている。また、基材43aの厚さは、例えば25μm~100μm程度とされる。
 異方性光拡散部43bは、図8,図10及び図11に示すように、基材43aにおける表側の板面であって、液晶パネル11と直接対向するとともに液晶パネル11に向けて光を出射する出光側板面43a1に一体的に設けられている。また、異方性光拡散部43bは、その厚さ寸法が基材43aよりは薄くなっており、具体的には例えば10μm~20μm程度とされる。異方性光拡散部43bは、基材43aにおける出光側板面43a1に対して積層される所定の厚さの膜状をなす透光性樹脂層43b1と、透光性樹脂層43b1中に多数分散配合される異方性光拡散粒子(長手状フィラー)43b2とを備えている。透光性樹脂層43b1は、例えばアクリル系樹脂、ポリウレタン、ポリエステル、シリコーン樹脂、エポキシ樹脂、紫外線硬化型樹脂などのほぼ透明で優れた透光性を有する合成樹脂材料を主原料としている。第2光拡散シート43の製造に際しては、透光性樹脂層43b1の主原料となる合成樹脂材料に溶剤などを加えることで液体状態とし、さらにその液体中に多数の異方性光拡散粒子43b2を分散配合しておき、その液体を基材43aの出光側板面43a1に対して所定の方向に沿って塗布した後に固化させることで、異方性光拡散粒子43b2を含有した透光性樹脂層43b1を基材43aに対して一体的に積層形成することができる。透光性樹脂層43b1は、屈折率が例えば1.3~1.6程度とされる。
 異方性光拡散粒子43b2は、図8及び図9に示すように、上記した透光性樹脂層43b1中に多数が分散配合されるとともに、その姿勢が特定のものとなるよう配向されている。異方性光拡散粒子43b2は、例えばシリカ、水酸化アルミニウム、酸化亜鉛などの無機材料およびアクリル系樹脂、ポリウレタン、ポリスチレンなどの有機材料のようなほぼ透明で優れた透光性を有する樹脂材料からなり、その屈折率は例えば1.3~1.6程度とされる。また、透光性樹脂層43b1中における異方性光拡散粒子43b2の重量比率は、例えば10重量%~40重量%程度とされる。異方性光拡散粒子43b2は、長軸方向及び短軸方向を有するよう長手状をなしており、全体として略楕円球状に形成されている。詳しくは、異方性光拡散粒子43b2は、長軸方向に沿って切断した断面形状が略楕円形状とされるのに対し、短軸方向に沿って切断した断面形状が略真円形状とされており、長軸方向について中央側から両端側に向けてそれぞれ先細り状をなしている。従って、異方性光拡散粒子43b2は、その長軸方向についての両端部が丸められた形状とされている。異方性光拡散粒子43b2は、短軸方向に沿うとともに長軸方向についての中央位置を通る対称軸に関して略対称形状とされる。また、異方性光拡散粒子43b2は、その長軸方向に沿う長さ寸法が例えば10μm程度とされるのに対し、短軸方向に沿う最大幅寸法及び最大径寸法が例えば2μm程度とされるのであるが、これら各寸法の実際の大きさは、各異方性光拡散粒子43b2毎にランダムに多少異なるものとされる。
 そして、透光性樹脂層43b1中に多数分散配合された異方性光拡散粒子43b2は、図8から図11に示すように、その長軸方向が第2方向(Y軸方向)に沿い且つ短軸方向が第1方向(X軸方向)に沿う姿勢となるよう配向されている。つまり、異方性光拡散粒子43b2は、長軸方向が、液晶パネル11の透過光における出射角度範囲が相対的に広い第2方向と一致するのに対し、短軸方向が、液晶パネル11の透過光における出射角度範囲が相対的に狭い第1方向と一致する、という特定の指向性をもった姿勢(配置)に概ね揃えられている。異方性光拡散粒子43b2は、その周囲に充填された透光性樹脂層43b1によって上記した姿勢に保持されている。なお、透光性樹脂層43b1中に存在する多数の異方性光拡散粒子43b2の全てが上記のような姿勢と完全に一致した姿勢をとるとは限らず、長軸方向が第2方向に対して多少傾いた姿勢となったり、短軸方向が第1方向に対して多少傾いた姿勢となるものが多少含まれていても構わない。多数の異方性光拡散粒子43b2は、上記のような姿勢に配向されているものの、透光性樹脂層43b1中における三次元的な配置、つまりX軸方向、Y軸方向及びZ軸方向についての配置(配列間隔なども含む)に関しては、ランダム(不規則)なものとされており、液晶パネル11が有する表示画素PXのような周期性を有さない、非周期性構造物であると言える。
 第2光拡散シート43の製造に際しては、既述した通り液体状態とした透光性樹脂層43b1中に多数の異方性光拡散粒子43b2を分散配合して混合液体を作成し、その混合液体を基材43aにおける出光側板面43a1に対して塗布すると、長手状をなす異方性光拡散粒子43b2は、塗布に伴って作用する剪断力によって長軸方向が塗布方向に沿うよう自動的に配向(向き、姿勢)が整えられる(図8から図11を参照)。従って、この塗布方向を第2方向(Y軸方向)と一致させることで、異方性光拡散粒子43b2をその長軸方向が液晶パネル11の透過光における出射角度範囲が相対的に広い第2方向と一致するのに対し、短軸方向が液晶パネル11の透過光における出射角度範囲が相対的に狭い第1方向と一致するよう容易に配向させることができる。このとき、異方性光拡散粒子43b2は、先細り状をなすとともに長軸方向に沿って切断した断面形状が楕円形状をなし且つ短軸方向に沿って切断した断面形状が真円形状をなしていることから、塗布に伴ってよりスムーズに配向が整えられるようになっている。基材43aに塗布した液体が固化すると、透光性樹脂層43b1が基材43aの出光側板面43a1上に積層形成されるとともに、そこに含有される多数の異方性光拡散粒子43b2が、長軸方向が第2方向に沿い且つ短軸方向が第1方向に沿う姿勢に配向された状態に保持される。
 このような構成の第2光拡散シート43によれば、第2プリズムシート41側(導光板19側)から基材43aを透過した光は、異方性光拡散部43bに入射すると、上記のような形状及び配向とされる異方性光拡散粒子43b2に対して当たることになる。異方性光拡散粒子43b2に当たった光は、拡散されつつ表側へと出射されるのであるが、その拡散光量は、図8,図10及び図11に示すように、異方性光拡散粒子43b2の短軸方向(第1方向)については相対的に多くなるのに対して、異方性光拡散粒子43b2の長軸方向(第2方向)については相対的に少なくなっている。これにより、本実施形態に係る異方性光拡散部43bは、異方性光拡散粒子43b2の短軸方向である第1方向が光により強い光拡散作用を付与する強光拡散方向とされるのに対し、異方性光拡散粒子43b2の長軸方向である第2方向が光に付与する光拡散作用が弱い弱光拡散方向とされており、光拡散異方性を有している。この異方性光拡散部43bは、強光拡散方向が、液晶パネル11の透過光における出射角度範囲が相対的に狭い第1方向(表示画素PXの短辺方向)と一致するのに対し、弱光拡散方向が、液晶パネル11の透過光における出射角度範囲が相対的に広い第2方向(表示画素PXの長辺方向)と一致することになる。従って、異方性光拡散部43bにより異方性光拡散作用が付与された光が液晶パネル11に供給されると、液晶パネル11の各表示画素PXに対して供給される光の入射角度範囲が第1方向については相対的に広く、第2方向については相対的に狭くなっているから、液晶パネル11の各表示画素PXを透過して表示面DSから表側へ向けて出射する光は、第1方向及び第2方向について出射角度範囲がほぼ同等になり、出射光が概ね等方的なものとなる。これにより、液晶パネル11に係る視野角が等方化されるので、例えば、使用者が液晶表示装置10を縦向きとして表示面DSの画像を見た場合と、液晶表示装置10を横向きとして表示面DSの画像を見た場合とで、視野角が同等になる。以上により、液晶パネル11の表示面DSに表示される画像に係る表示品位を高いものとすることができるのである。
 しかも、異方性光拡散部43bを構成する多数の異方性光拡散粒子43b2は、上記のような姿勢に配向されつつも透光性樹脂層43b1中においてランダムに配置されているので、出射光をランダムに拡散することができて出射光の指向性をより好適に緩和することができる。それに加えて、ランダムに配置された異方性光拡散粒子43b2は、非周期性構造物となっているので、出射光が供給される液晶パネル11の表示画素PXの配列(図3及び図4を参照)との間に干渉が生じ難くなっており、それにより液晶パネル11にモアレと呼ばれる干渉縞が生じるのが抑制されている。
 ここで、本実施形態のように第2光拡散シート43を含む光学シート20(図10及び図11を参照)を用いた場合と、本実施形態のような第2光拡散シート43を含まない光学シート(図示せず)を用いた場合との比較実験について説明する。この比較実験では、本実施形態に係る第2光拡散シート43を含む光学シート20を備えたバックライト装置12及び液晶表示装置10を実施例とし、第2光拡散シート43に代えて上記した第1光拡散シート42を用いた光学シートを備えたバックライト装置及び液晶表示装置を比較例とした上で、それぞれのバックライト装置からの出射光の輝度を測定するとともに、それぞれのバックライト装置からの光を液晶パネル11に照射し、その液晶パネル11からの出射光の輝度を測定しており、その測定結果を図12から図15に示す。詳しくは、比較例に係るバックライト装置は、上記した2枚のプリズムシート40,41を、2枚の第1光拡散シート(等方性光拡散シート)42により表裏から挟み込んだ構成の光学シートを備えている点を除いては、上記した実施形態に記載したものと同様の構成である。また、比較例及び実施例において用いられる液晶パネル11は、同じものであり、その構成は、上記した実施形態に記載した通りである。測定結果を示す図面について説明すると、図12は、比較例に係るバックライト装置からの出射光の輝度分布を、図13は、比較例に係る液晶表示装置の液晶パネル11からの出射光の輝度分布を、図14は、実施例に係るバックライト装置12からの出射光の輝度分布を、図15は、実施例に係る液晶表示装置10の液晶パネル11からの出射光の輝度分布を、それぞれ表している。図12及び図14では、縦軸を各バックライト装置からの出射光の相対輝度とし、横軸を正面方向に対する角度(単位は「度」)としている。また、図13及び図15では、縦軸を各液晶パネル11からの出射光の相対輝度とし、横軸を正面方向に対する角度(単位は「度」)としている。図12から図15における縦軸の相対輝度は、正面方向の輝度値を基準(1.0)とした相対値である。図12から図15において実線で示されるグラフは、第1方向(X軸方向)に沿って出射される出射光の輝度分布を表すのに対し、破線で示されるグラフは、第2方向(Y軸方向)に沿って出射される出射光の輝度分布を表している。
 比較実験の実験結果について説明する。まず、比較例に関して説明すると、図12に示されるグラフから、比較例に係るバックライト装置は、出射光の出射角度範囲が第1方向及び第2方向についてほぼ同等とされていて、等方的な出射角度分布を有していることが分かる。これは、比較例のように等方性光拡散シートである2枚の第1光拡散シート42の間に2枚のプリズムシート40,41を挟み込む構成の光学シートを用いることで、バックライト装置の輝度分布が等方的なものとなることを裏付けている。そして、図14に示されるグラフから、比較例に係る液晶表示装置は、液晶パネル11を透過した出射光の出射角度範囲が第1方向については相対的に狭くなるのに対し、第2方向については相対的に広くなっていて、出射角度分布に異方性を有していることが分かる。これは、比較例のようにバックライト装置における出射光の出射角度分布が等方性を有するものであっても、液晶パネル11に備えられる各表示画素PXにおける短辺方向が第1方向と一致し且つ長辺方向が第2方向と一致する構成であるため、液晶表示装置の視野角が、液晶パネル11の出射角度分布と同じ異方性を有する結果となっている。
 続いて、実施例に関して説明すると、図13に示されるグラフから、実施例に係るバックライト装置12は、出射光の出射角度範囲が第1方向については相対的に広いものの、第2方向については相対的に狭くなるものとされていて、出射角度分布が液晶パネル11に係る出射角度分布とは逆の異方性を有していることが分かる。これは、実施例のように異方性光拡散シートである第2光拡散シート43が最も液晶パネル11の近くに配される構成の光学シート20を用いることで、バックライト装置12の輝度分布が異方性を有するものとなることを裏付けている。そして、図15に示されるグラフから、比較例に係る液晶表示装置は、出射光の出射角度範囲が第1方向及び第2方向についてほぼ同等とされていて、等方的な出射角度分布を有していることが分かる。これは、液晶パネル11が、各表示画素PXにおける短辺方向が第1方向と一致し且つ長辺方向が第2方向と一致する構成であることに起因して、その透過光の出射角度分布に異方性を有していても、バックライト装置12に備えられる第2光拡散シート43に係る出射角度分布が、液晶パネル11に係る出射角度分布とは逆の異方性を有する関係とされることで、第1方向及び第2方向についての出射角度範囲の広狭(大小)が相殺されることになり、結果として液晶表示装置10の視野角が等方化されることを裏付けている。
 以上説明したように本実施形態の液晶表示装置(表示装置)10は、画像を表示する表示面DSを有するものであって、表示面DSに沿う第1方向については出射光の出射角度範囲が相対的に狭いものの、表示面DSに沿い且つ第1方向と直交する第2方向については出射光の出射角度範囲が相対的に広くなる形で、出射光の出射角度分布に異方性を有する液晶パネル(異方性表示素子)11と、液晶パネル11に対して表示面DS側またはその反対側に重なる形で配されるものであって、第1方向については出射光の出射角度範囲が相対的に広くなるのに対し、第2方向については出射光の出射角度範囲が相対的に狭くなるよう出射光の出射角度分布に異方性を有する異方性光学部材である第2光拡散シート43と、を備える。
 このようにすれば、液晶パネル11に対して異方性光学部材である第2光拡散シート43が表示面DS側とは反対側に重なる形で配されていた場合には、異方性光学部材である第2光拡散シート43からの出射光が液晶パネル11を透過することで表示面DSに画像が表示されるのに対し、液晶パネル11に対して異方性光学部材である第2光拡散シート43が表示面DS側に重なる形で配されていた場合には、液晶パネル11からの出射光が異方性光学部材である第2光拡散シート43を透過することで表示面DSに画像が表示される。ここで、液晶パネル11は、表示面DSに沿う第1方向については出射光の出射角度範囲が相対的に狭いものの、表示面DSに沿い且つ第1方向と直交する第2方向については出射光の出射角度範囲が相対的に広くなるよう出射光の出射角度分布に異方性を有しているため、表示面DSに表示される画像に係る視野角に、液晶パネル11が有する出射角度分布と同じ異方性が生じることが懸念される。その点、異方性光学部材である第2光拡散シート43は、液晶パネル11において出射角度範囲が相対的に狭い第1方向については出射光の出射角度範囲が相対的に広くなるのに対し、液晶パネル11において出射角度範囲が相対的に広い第2方向については出射光の出射角度範囲が相対的に狭くなるよう出射光の出射角度分布に異方性を有しているから、液晶パネル11の表示面DSに表示される画像に係る視野角が等方化されるようになっている。これにより、表示面DSに表示される画像の表示品位を高いものとすることができる。
 また、異方性光学部材には、光を拡散させつつ出射させるものであって、第1方向については拡散光量が相対的に多くなるのに対し、第2方向については拡散光量が相対的に少なくなるよう光拡散異方性を有する第2光拡散シート(異方性光拡散部材)43が少なくとも含まれている。このようにすれば、光拡散異方性を有する第2光拡散シート43からの出射光は、液晶パネル11において出射角度範囲が相対的に狭い第1方向については拡散光量が相対的に多くなることで出射角度範囲が相対的に広くなるのに対し、液晶パネル11において出射角度範囲が相対的に広い第2方向については拡散光量が相対的に少なくなることで出射角度範囲が相対的に狭くなるような出射角度分布を有していることから、液晶パネル11の表示面DSに表示される画像に係る視野角が等方化される。
 また、第2光拡散シート43は、長手状をなすとともにその長軸方向が第2方向に沿い且つ短軸方向が第1方向に沿う形で配される異方性光拡散粒子43b2を有している。このようにすれば、異方性光拡散粒子43b2は、その長軸方向については光の拡散度合いが相対的に低いものの、短軸方向については光を光の拡散度合いが相対的に高いものとされる。従って、第2光拡散シート43が、長軸方向が第2方向に沿い且つ短軸方向が第1方向に沿う形で配される異方性光拡散粒子43b2を有することで、液晶パネル11において出射角度範囲が相対的に狭い第1方向については拡散光量が相対的に多くなるのに対し、液晶パネル11において出射角度範囲が相対的に広い第2方向については拡散光量が相対的に少なくなる。これにより、液晶パネル11の表示面DSに表示される画像に係る視野角が等方化される。
 また、第2光拡散シート43は、透光性を有する基材43aと、基材43aに対して積層されるとともに異方性光拡散粒子43b2が多数分散配合される透光性樹脂層43b1とを有しており、異方性光拡散粒子43b2は、透光性樹脂層43b1中において長軸方向が第2方向に沿い且つ短軸方向が第1方向に沿うよう配向されている。このようにすれば、第2光拡散シート43を透過する光は、透光性樹脂層43b1中に多数分散配合されて長軸方向が第2方向に沿い且つ短軸方向が第1方向に沿うよう配向された異方性光拡散粒子43b2によって第1方向については拡散光量が多くなり、第2方向については拡散光量が少なくなるよう拡散される。しかも、第2光拡散シート43の製造に際して、例えば基材43aに対して異方性光拡散粒子43b2を多数分散配合した液体状の透光性樹脂層43b1の材料を塗布し固化させることで透光性樹脂層43b1を積層形成すれば、塗布に伴って異方性光拡散粒子43b2の長軸方向が塗布方向に沿うように揃えられるので、異方性光拡散粒子43b2を容易に配向させることができる。
 また、異方性光拡散粒子43b2は、長軸方向について中央側から両端側に向けてそれぞれ先細り状をなすよう形成されている。このようにすれば、仮に異方性光拡散粒子43b2が長軸方向について全長にわたって一定の太さとされた場合に比べると、第2光拡散シート43の製造に際して、例えば基材43aに対して異方性光拡散粒子43b2を多数分散配合した液体状の透光性樹脂層43b1の材料を塗布し固化させることで透光性樹脂層43b1を積層形成した場合に、塗布に伴って異方性光拡散粒子43b2の長軸方向をよりスムーズに塗布方向に沿うように揃えることができる。これにより、透光性樹脂層43b1中における多数の異方性光拡散粒子43b2の配向状態をより適切なものとすることができる。
 また、異方性光拡散粒子43b2は、長軸方向に沿って切断した断面形状が楕円形状をなしている。このようにすれば、異方性光拡散粒子43b2における長軸方向についての両端部が丸められた形状となるので、第2光拡散シート43の製造に際して、例えば基材43aに対して異方性光拡散粒子43b2を多数分散配合した液体状の透光性樹脂層43b1の材料を塗布し固化させることで透光性樹脂層43b1を積層形成した場合に、塗布に伴って異方性光拡散粒子43b2が配向される過程で引っ掛かりが生じ難くなる。これにより、異方性光拡散粒子43b2の長軸方向を一層スムーズに塗布方向に沿うように揃えることができ、透光性樹脂層43b1中における多数の異方性光拡散粒子43b2の配向状態を一層適切なものとすることができる。
 また、異方性光拡散粒子43b2は、短軸方向に沿って切断した断面形状が円形状をなすよう形成されている。このようにすれば、仮に異方性光拡散粒子43b2が短軸方向に沿って切断した断面形状が角形状とされた場合に比べると、第2光拡散シート43の製造に際して、例えば基材43aに対して異方性光拡散粒子43b2を多数分散配合した液体状の透光性樹脂層43b1の材料を塗布し固化させることで透光性樹脂層43b1を積層形成した場合に、塗布に伴って異方性光拡散粒子43b2が配向される過程で引っ掛かりが生じ難くなる。これにより、塗布に伴って異方性光拡散粒子43b2の長軸方向をよりスムーズに塗布方向に沿うように揃えることができ、透光性樹脂層43b1中における多数の異方性光拡散粒子43b2の配向状態をより適切なものとすることができる。
 また、異方性光学部材に含まれる第2光拡散シート43は、液晶パネル11に対して表示面DS側とは反対側に重なる形で配され、さらには第2光拡散シート43に対して重なる形で配されるとともに光を透過する他の光学部材として第1プリズムシート40、第2プリズムシート41及び第1光拡散シート42が備えられており、第2光拡散シート43は、他の光学部材である第1プリズムシート40、第2プリズムシート41及び第1光拡散シート42に比べて液晶パネル11の近くに配されている。このようにすれば、他の光学部材である第1プリズムシート40、第2プリズムシート41及び第1光拡散シート42及び異方性光学部材に含まれる第2光拡散シート43を順次に透過した光が、液晶パネル11に供給されるようになっている。つまり、液晶パネル11に供給される光は、異方性光学部材に含まれる第2光拡散シート43の出射光となっているから、液晶パネル11の表示面DSに表示される画像に係る視野角がより好適に等方化され、画像の表示品位が一層優れたものとなる。また、第2光拡散シート43が液晶パネル11に対して表示面DS側とは反対側に重なる形で配されているから、当該液晶表示装置10の使用者は、表示面DSに表示された画像を直接的に見ることができ、画像の表示品位がより一層優れたものとなる。
 また、異方性光学部材である第2光拡散シート43は、液晶パネル11に対して表示面DS側とは反対側に重なる形で配されており、LED(光源)17と、異方性光学部材である第2光拡散シート43に対して液晶パネル11側とは反対側に配されるとともにLED17からの光を導光する導光板19であって、端面にLED17からの光が入射される光入射面19bを有するとともに、異方性光学部材である第2光拡散シート43側を向いた板面に光を出射する光出射面19aを有する導光板19と、を備える。このようにすれば、LED17から発せられた光は、導光板19の光入射面19bに入射して導光板19内を伝播された後に、光出射面19aから出射される。光出射面19aから出射された光は、異方性光学部材である第2光拡散シート43に供給され、異方性光学部材である第2光拡散シート43から液晶パネル11に供給される。この導光板19により、異方性光学部材である第2光拡散シート43に供給される光にムラが生じ難くなるので、異方性光学部材である第2光拡散シート43の光学性能を良好に発揮させることができる。
 また、液晶パネル11には、表示面DSに沿って複数ずつ行列状に並列配置されるとともに、短辺方向が第1方向と一致し且つ長辺方向が第2方向と一致する平面形状を有する表示画素PXが形成されている。このようにすれば、液晶パネル11において表示面DSに沿って複数ずつ行列状に並列配置された表示画素PXから光が出射することで、表示面DSに画像を表示させることができる。この表示画素PXは、短辺方向が第1方向と一致し且つ長辺方向が第2方向と一致する平面形状を有しているため、液晶パネル11の出射光は、第1方向については出射角度範囲が相対的に狭いものの、第2方向については出射角度範囲が相対的に広くなっている。これに対し、液晶パネル11は、第1方向については出射角度範囲が相対的に広くなるのに対し、第2方向については出射角度範囲が相対的に狭くなるよう出射光の出射角度分布を有していることから、液晶パネル11の表示面DSに表示される画像に係る視野角が等方化される。これにより、表示面DSに表示される画像の表示品位を高いものとすることができる。
 また、異方性表示素子は、一対の基板11a,11b間に液晶層(液晶)11cを封入してなる液晶パネル11とされる。このようにすれば、このような表示装置は液晶表示装置10として、種々の用途、例えばスマートフォンやタブレット型ノートパソコンのディスプレイ等に適用できる。
 <実施形態2>
 本発明の実施形態2を図16または図17によって説明する。この実施形態2では、光学シート120の構成を変更したものを示す。なお、上記した実施形態1と同様の構造、作用及び効果について重複する説明は省略する。
 本実施形態に係る光学シート120は、図16及び図17に示すように、上記した実施形態1に記載したものと同様の構成の第2光拡散シート(異方性光拡散シート)143と、第2光拡散シート143と導光板119との間に介在する形で配されるプリズムシート(異方性集光部材)44との2枚から構成される。本実施形態では、第2光拡散シート143に関する詳しい説明は割愛する。
 プリズムシート44は、シート状をなす基材44aと、基材44aの表裏両板面のうちの裏側、つまり導光板119側(液晶パネル側とは反対側)の板面に形成されたプリズム部(異方性集光部)44bとから構成される。つまり、本実施形態に係るプリズムシート44は、上記した実施形態1に記載した第1プリズムシート40及び第2プリズムシート41(図10及び図11を参照)とは、基材44aに対するプリズム部44bの配置が表裏逆になっている点で異なっている。基材44aは、ほぼ透明な合成樹脂製とされており、その裏側(プリズム部44b側)の板面(入光側板面)に導光板119からの出射光が入射されるようになっている。プリズム部44bは、ほぼ透明な合成樹脂製とされており、基材44aにおける裏側の板面からZ軸方向に沿って裏側に向けて突出する多数の単位プリズム44b1からなるものとされる。この単位プリズム44b1は、第2方向(Y軸方向)に沿って切断した断面形状が略山形をなすとともに第1方向(X軸方向)に沿って直線的に延在しており、基材44aの板面において第2方向に沿って多数本が並列配置されている。単位プリズム44b1は、断面形状がほぼ二等辺三角形状をなしており、一対の斜面を有するとともにその頂角が例えばほぼ直角とされる。第2方向に沿って並列した多数本の単位プリズム44b1は、頂角、底辺の幅寸法及び高さ寸法が全てほぼ同一とされており、隣り合う単位プリズム44b1間の配列間隔もほぼ一定で等間隔に配列されている。このような構成のプリズムシート44におけるプリズム部44bに導光板119側から光が入射すると、プリズム部44bをなす単位プリズム44b1内に入射した光は、単位プリズム44b1の各斜面に対する入射角が臨界角を超えていれば各斜面にて全反射されて導光板119側に戻される(再帰反射される)のに対し、入射角が臨界角を超えなければ各斜面にて正面方向(基材44aの板面に対する法線方向)に向けて立ち上がるよう屈折されつつ出射される。
 ここで、導光板119内を伝播する光や光出射面119aから出射する光は、LEDから導光板119に向かう方向(図17ではY軸方向に沿う右側)に進行するものが多くなっていることから、そのような光をプリズム部44bによって正面方向に向けて効率的に立ち上げることで、光学シート120から液晶パネルに供給される光の正面輝度を向上させることが可能とされている。上記のような集光作用は、単位プリズム44b1に対して第2方向(LEDと導光板119との並び方向)に沿って入射する光には作用するものの、第2方向と直交する第1方向に沿って入射する光には殆ど作用することないものとされる。従って、本実施形態に係るプリズム部44bは、多数本の単位プリズム44b1の並び方向である第2方向が光に集光作用を付与する集光方向とされるのに対し、各単位プリズム44b1の延在方向である第1方向が光に集光作用を殆ど付与しない非集光方向とされている。以上のようにプリズム部44bは、周期性構造物であるとともに、特定の方向について選択的に集光する性質、つまり集光異方性を有している。そして、このプリズムシート44は、非集光方向である第1方向について出射光の出射角度範囲が相対的に広くなるのに対し、集光方向である第2方向について出射光の出射角度範囲が相対的に狭くなるよう、出射光の出射角度分布に異方性を有している。その上で、上記したプリズムシート44と図示しない液晶パネルとの間には、プリズムシート44と同様の出射角度分布を有する第2光拡散シート143が介在する形で配されている。従って、プリズムシート44のプリズム部44bにより異方性集光作用が付与された光は、第2光拡散シート143の異方性光拡散部143bによりさらに異方性光拡散作用が付与されることで、第1方向について出光角度範囲がより広くなるのに対して第2方向について出光角度範囲がより狭くなった状態で液晶パネルに供給されることになる。これにより、液晶パネルの各表示画素(図3及び図4を参照)に対して供給される光の入射角度範囲が第1方向についてはより広く、第2方向についてはより狭くなるから、液晶パネルの各表示画素を透過して表示面から表側へ向けて出射する光は、第1方向及び第2方向について出射角度範囲がより同等になり易くなり、出射光がより等方的なものとなる。これにより、液晶パネルに係る視野角が等方化されるので、例えば、使用者が液晶表示装置を縦向きとして表示面の画像を見た場合と、液晶表示装置を横向きとして表示面の画像を見た場合とで、視野角が同等になる。以上により、液晶パネルの表示面に表示される画像に係る表示品位を高いものとすることができるのである。
 以上説明したように本実施形態によれば、異方性光学部材には、光を集光させつつ出射させるものであって、第1方向については出射光に集光作用を付与しないものの、第2方向については出射光に集光作用を付与するよう集光異方性を有するプリズムシート(異方性集光部材)44が少なくとも含まれている。このようにすれば、集光異方性を有するプリズムシート44からの出射光は、液晶パネルにおいて出射角度範囲が相対的に狭い第1方向については集光作用が付与されないことで出射角度範囲が相対的に広くなるのに対し、液晶パネルにおいて出射角度範囲が相対的に広い第2方向については集光作用が付与されることで出射角度範囲が相対的に狭くなるような出射角度分布を有していることから、液晶パネルの表示面に表示される画像に係る視野角が等方化される。
 <実施形態3>
 本発明の実施形態3を図18または図19によって説明する。この実施形態3では、上記した実施形態2に記載された第2光拡散シートに代えて第1光拡散シート242を用いた場合を示す。なお、上記した実施形態1,2と同様の構造、作用及び効果について重複する説明は省略する。
 本実施形態に係る光学シート220は、図18及び図19に示すように、上記した実施形態2に記載したものと同様の構成の第1光拡散シート(等方性光拡散シート)242と、第1光拡散シート242と導光板219との間に介在する形で配されるとともに上記した実施形態2に記載したものと同様の構成のプリズムシート244との2枚から構成される。つまり、本実施形態に係る光学シート220が、出射角度分布が等方的な第1光拡散シート242と、出射角度分布に異方性を有するプリズムシート244とから構成されている点で、共に出射角度分布に異方性を有する第2光拡散シート143とプリズムシート44とを併用した実施形態2(図16及び図17を参照)とは構成が異なっている。なお、本実施形態では、第1光拡散シート242及びプリズムシート244に関する詳しい説明は割愛する。
 このような構成の光学シート220によれば、プリズムシート244のプリズム部244bにより異方性集光作用が付与された光は、第1光拡散シート242により等方的に拡散されるものの、第1光拡散シート242からの出射光における出射角度分布は、プリズムシート244に係る出射角度分布と同様の異方性を有している。従って、第1光拡散シート242からの出射光が液晶パネルに供給されると、液晶パネルの各表示画素(図3及び図4を参照)に対して供給される光の入射角度範囲が第1方向については相対的に広く、第2方向については相対的に狭くなるので、液晶パネルの各表示画素を透過して表示面から表側へ向けて出射する光は、第1方向及び第2方向について出射角度範囲がほぼ同等になり、出射光が概ね等方的なものとなる。これにより、液晶パネルに係る視野角が等方化されるので、例えば、使用者が液晶表示装置を縦向きとして表示面の画像を見た場合と、液晶表示装置を横向きとして表示面の画像を見た場合とで、視野角が同等になる。以上により、液晶パネルの表示面に表示される画像に係る表示品位を高いものとすることができる。このように、本実施形態は、上記した実施形態2に比べると、液晶パネルに供給される光における出射角度分布の異方性が軽度なものとなっているので、液晶パネルにおける出射角度分布の異方性の程度が軽度な場合に好適となっている。
 <実施形態4>
 本発明の実施形態4を図20または図21によって説明する。この実施形態4では、バックライト装置312を直下型とした場合を示す。なお、上記した実施形態1と同様の構造、作用及び効果について重複する説明は省略する。
 本実施形態に係るバックライト装置312は、図20及び図21に示すように、光源であるLED317が光学シート320の直下位置に配されるとともに、その発光面317aが光学シート320の板面に対して対向する形で配されている。詳しくは、バックライト装置312は、光学シート320の板面に並行する板面を有する底板322aが少なくとも備えられるシャーシ322と、シャーシ322の底板322aにおける表側の板面上に配されるLED基板318と、LED基板318における表側の板面に実装されたLED317と、LED基板318の表側の板面上に配される反射シート45と、上記した実施形態1と同様の構成の光学シート320とから構成される。LED基板318は、底板322aの板面(第1方向及び第2方向)に沿って延在する板状をなしている。LED317は、LED基板318の板面上において第1方向及び第2方向に沿って複数ずつ所定の間隔を空ける形で行列状に並列配置されている。LED317は、LED基板318に対する実装面とは反対側(表側)の面が発光面317aとなる、いわゆる頂面発光型とされている。
 LED基板318が有する各LED317の発光面317aから発せられた光は、発光面317aと対向する光学シート320(第2光拡散シート343を含む)の板面に向けて照射された後、光学シート320を介して液晶パネルへと供給される。従って、上記した実施形態1のように導光板19(図10及び図11を参照)を用いた場合に比べると、光の利用効率が高いものとなるので、高輝度化や低消費電力化などを図る上で好適となる。
 以上説明したように本実施形態によれば、異方性光学部材である第2光拡散シート343は、液晶パネルに対して表示面側とは反対側に重なる形で配されるとともに表示面に沿う板面を有するシート状をなしており、光を発する発光面317aを有するとともに発光面317aが異方性光学部材である第2光拡散シート343の板面に対して対向する形で配されるLED317を備える。このようにすれば、LED317の発光面317aから発せられた光は、発光面317aと対向する異方性光学部材である第2光拡散シート343の板面に向けて照射される。異方性光学部材である第2光拡散シート343に照射された光は、異方性光学部材である第2光拡散シート343から液晶パネルに供給される。仮に、LED317と異方性光学部材である第2光拡散シート343との間に導光板を介在させた場合に比べると、光の利用効率が高いものとなるので、高輝度化や低消費電力化などを図る上で好適となる。
 <実施形態5>
 本発明の実施形態5を図22から図24によって説明する。この実施形態5では、上記した実施形態1から、第2光拡散シート443の構成を変更したものを示す。なお、上記した実施形態1と同様の構造、作用及び効果について重複する説明は省略する。
 本実施形態に係る第2光拡散シート443は、図22に示すように、透光性を有するシート状をなす基材443aと、基材443aの板面から突出する複数の突条部46からなる異方性光拡散部443bとから構成されている。このうち、基材443aに関しては上記した実施形態1と同様の構成であるため、詳しい説明は割愛する。
 異方性光拡散部443bは、図22及び図23に示すように、基材443aにおける表側、つまり液晶パネル側の出光側板面443a1に一体的に設けられている。異方性光拡散部443bは、光硬化性樹脂材料の一種であるほぼ透明な紫外線硬化性樹脂材料からなる。この紫外線硬化性樹脂材料は、例えばアクリル樹脂などのほぼ透明な樹脂材料を主原料としていて、紫外線(UV光)によって硬化する(粘性が高まる、増粘する)性質を有するものであり、その屈折率が空気よりも大きなものとされている。第2光拡散シート443の製造に際しては、例えば未硬化の紫外線硬化性樹脂材料を成形用の型内に充填するとともに、その型の開口端に基材443aを宛うことで、未硬化の紫外線硬化性樹脂材料を出光側板面443a1に接する形で配し、その状態で基材443aを介して紫外線硬化性樹脂材料に対して紫外線を照射することで、紫外線硬化性樹脂材料を硬化させて異方性光拡散部443bを形成することができる。
 異方性光拡散部443bは、図22及び図23に示すように、基材443aの出光側板面443a1からZ軸方向、つまり基材443aの板面と直交する方向に沿って表側(液晶パネル側)に向けて突出する多数本の突条部46により構成されている。突条部46は、図22から図24に示すように、Y軸方向(第2方向)に沿って切断した断面形状が略山形をなすとともにX軸方向(第1方向)に沿って延在しつつ蛇行しており、出光側板面443a1においてY軸方向に沿って多数本が並列配置されている。各突条部46は、断面形状が概ね二等辺三角形状をなしており、頂部を挟んで一対の斜面46aを有している。突条部46は、頂角が鋭角とされており、各斜面46aがY軸方向及びZ軸方向に対して傾斜状をなすとともにその傾斜角度(頂角)がX軸方向についての位置によって変動している。つまり、突条部46の各斜面46aは、全体としては概ねY軸方向に沿って斜め表側を向きつつも、うねった形状となっていて不定形の曲面となっている。さらに詳しくは、突条部46は、蛇行形状とされることで、斜面46aの傾斜角度の他にも、底辺の幅寸法、高さ寸法(Z軸方向についての頂部の位置)、Y軸方向についての頂部の位置などがX軸方向の位置によってランダムに変動している。しかも、Y軸方向に沿って並列した多数本の突条部46は、隣り合うもの同士が殆ど並行することがなく、ランダムに蛇行している。なお、図23は、第2光拡散シート443における突条部46の配列を概略的に表したものである。
 このような構成の突条部46に基材443aから光が入射すると、図24に示すように、突条部46内を透過した光は、斜面46aと外部の空気層との界面にて屈折されることで、斜面46aの曲面形状(うねった形状)に応じた角度付けがなされつつ出射される。このとき、斜面46aからの出射光は、概ねY軸方向(第2方向)に沿って多くが出射されるものの、X軸方向(第1方向)の位置に応じて出射方向が細かに変動されることになる。これにより、突条部46からY軸方向に沿って出射される光が適切に拡散されるようになっている。一方、突条部46からX軸方向に沿って出射される出射光量は、Y軸方向に沿って出射される出射光量よりも相対的に少なくなっている。従って、本実施形態に係る異方性光拡散部443bは、多数本の突条部46の並び方向であるY軸方向が光により強い光拡散作用を付与する強光拡散方向とされるのに対し、各突条部46の延在方向であるX軸方向が光に付与する光拡散作用が弱い弱光拡散方向とされており、光拡散異方性を有している。つまり、本実施形態に係る第2光拡散シート443は、出射光の出射角度分布が、上記した実施形態1に係る第2光拡散シート43(図8から図11を参照)と同様の異方性を有している、と言える。この異方性光拡散部443bは、強光拡散方向が、液晶パネルの透過光における出射角度範囲が相対的に狭い第1方向(表示画素の短辺方向)と一致するのに対し、弱光拡散方向が、液晶パネルの透過光における出射角度範囲が相対的に広い第2方向(表示画素の長辺方向)と一致することになる。従って、異方性光拡散部443bにより異方性光拡散作用が付与された光が液晶パネルに供給されると、液晶パネルの各表示画素に対して供給される光の入射角度範囲が第1方向については相対的に広く、第2方向については相対的に狭くなっているから、液晶パネルの各表示画素を透過して表示面から表側へ向けて出射する光は、第1方向及び第2方向について出射角度範囲がほぼ同等になり、出射光が概ね等方的なものとなる。これにより、液晶パネルに係る視野角が等方化されるので、例えば、使用者が液晶表示装置を縦向きとして表示面の画像を見た場合と、液晶表示装置を横向きとして表示面の画像を見た場合とで、視野角が同等になる。以上により、液晶パネルの表示面に表示される画像に係る表示品位を高いものとすることができるのである。
 しかも、異方性光拡散部443bを構成する突条部46の各斜面46aは、X軸方向の位置によって傾斜角度や向きがランダムに変動しているので、各斜面46aからの出射光がランダムに拡散されるようになっており、もって出射光の指向性をより好適に緩和することができる。さらには、異方性光拡散部443bを構成する多数本の突条部46は、ランダムに蛇行しているから、各突条部46からの出射光がそれぞれの蛇行形状に応じてランダムに拡散されるようになっており、もって出射光の指向性をさらに好適に緩和することができる。そして、上記のように異方性光拡散部443bを構成する個々の突条部46がX軸方向の位置に応じて斜面46aの傾斜角度、底辺の幅寸法、高さ寸法などがランダムに変動しているのに加えて、隣り合う突条部46の蛇行形状がランダムになっていることから、出射光が供給される液晶パネルの表示画素の配列と、突条部46の配列との間に干渉が生じ難くなっており、それにより液晶パネルにモアレと呼ばれる干渉縞が生じるのが抑制されている。
 以上説明したように本実施形態によれば、第2光拡散シート443は、透光性を有するシート状の基材443aと、基材443aにおける板面から突出し、1方向に沿って切断した断面形状が略山形をなすとともに第2方向に沿って延在しつつ蛇行し且つ第1方向に沿って複数並列される突条部46とを有する。このようにすれば、シート状の基材443aにおける板面から突出する突条部46は、第1方向に沿って切断した断面形状が略山形をなしているので、斜面からは頂角に応じた角度付けをなされた光が、概ね第1方向に沿って出射される。これにより、突条部46から第1方向に沿って出射される出射光量が、第2方向に沿って出射される出射光量よりも相対的に多くなる。その上で、突条部46は、第2方向に沿って延在しつつ蛇行しており、斜面がうねった形状となっているから、該斜面における第2方向についての位置に応じて出射光の出射方向が変動することになる。これにより、突条部46から概ね第1方向に沿って出射される光が適切に拡散される。以上により、第2光拡散シート443に、第1方向については拡散光量が相対的に多くなるのに対し、第2方向については拡散光量が相対的に少なくなるよう拡散異方性を持たせることができるので、液晶パネルの表示面に表示される画像に係る視野角が等方化される。
 また、第1方向に沿って並ぶ複数の突条部46は、第2方向に沿ってランダムに蛇行するよう形成されている。このようにすれば、各突条部46における各斜面からの出射光は、各突条部46の蛇行形状に応じてランダムに拡散される。これにより、液晶パネルの表示面に表示される画像にモアレ(干渉縞)が生じ難くなる。
 また、突条部46は、幅と高さとの少なくともいずれか一方が第2方向についての位置に応じてランダムに変動するよう形成されている。このようにすれば、突条部46は、第2方向についての位置に応じて頂角の角度や斜面の向きがランダムに変動することになるので、斜面からの出射光がランダムに拡散される。これにより、液晶パネルの表示面に表示される画像にモアレ(干渉縞)が生じ難くなる。
 <実施形態6>
 本発明の実施形態6を図25によって説明する。この実施形態6では、第2光拡散シート543が有する異方性光拡散粒子543b2の形状を変更したものを示す。なお、上記した実施形態1と同様の構造、作用及び効果について重複する説明は省略する。
 本実施形態に係る第2光拡散シート543は、図25に示すように、略円柱状をなす異方性光拡散粒子543b2を有している。異方性光拡散粒子543b2は、長軸方向(Y軸方向、第2方向)に沿って切断した断面形状が長方形状をなすのに対し、短軸方向(X軸方向、第1方向)に沿って切断した断面形状が真円形状をなしており、長軸方向について全長にわたって径寸法(短軸方向についての寸法)がほぼ一定とされている。このような形状の異方性光拡散粒子543b2であっても、その配向を長軸方向が第2方向に沿い且つ短軸方向が第1方向に沿う形とすることで、異方性光拡散部543bにおける強光拡散方向を、液晶パネルの透過光における出射角度範囲が相対的に狭い第1方向(表示画素の短辺方向)と一致させ、且つ弱光拡散方向を、液晶パネルの透過光における出射角度範囲が相対的に広い第2方向(表示画素の長辺方向)と一致させることができる。これにより、液晶パネルの各表示画素を透過して表示面から表側へ向けて出射する光を等方化することができ、もって表示品位の改善を図ることができる。
 <実施形態7>
 本発明の実施形態7を図26によって説明する。この実施形態7では、第2光拡散シート643が有する異方性光拡散粒子643b2の形状を変更したものを示す。なお、上記した実施形態1と同様の構造、作用及び効果について重複する説明は省略する。
 本実施形態に係る第2光拡散シート643は、図26に示すように、四角柱状をなす異方性光拡散粒子643b2を有している。異方性光拡散粒子643b2は、長軸方向(Y軸方向、第2方向)に沿って切断した断面形状が長方形状をなすのに対し、短軸方向(X軸方向、第1方向)に沿って切断した断面形状が正方形状をなしており、長軸方向について全長にわたって各辺の寸法(短軸方向についての寸法)がほぼ一定とされている。このような形状の異方性光拡散粒子643b2であっても、その配向を長軸方向が第2方向に沿い且つ短軸方向が第1方向に沿う形とすることで、異方性光拡散部643bにおける強光拡散方向を、液晶パネルの透過光における出射角度範囲が相対的に狭い第1方向(表示画素の短辺方向)と一致させ、且つ弱光拡散方向を、液晶パネルの透過光における出射角度範囲が相対的に広い第2方向(表示画素の長辺方向)と一致させることができる。これにより、液晶パネルの各表示画素を透過して表示面から表側へ向けて出射する光を等方化することができ、もって表示品位の改善を図ることができる。
 <実施形態8>
 本発明の実施形態8を図27によって説明する。この実施形態8では、液晶パネルにおける表示画素PX′の平面形状及び配列を変更したものを示す。なお、上記した実施形態1と同様の構造、作用及び効果について重複する説明は省略する。
 本実施形態に係る液晶パネルは、図27に示すように、3色の各単位画素UPX′が平面に視て横長の長方形状をなしていてその長辺方向がX軸方向と一致し且つ短辺方向がY軸方向と一致しているのに対し、3色の単位画素UPX′からなる表示画素PX′が平面に視て横長の長方形状をなしていてその長辺方向がX軸方向と一致し且つ短辺方向がY軸方向と一致する、といった構成を有している。3色の各単位画素UPX′は、Y軸方向に沿って繰り返し並列する形で配されることで単位画素UPX′群を構成しており、この単位画素UPX′群がX軸方向に沿って多数並んで配されることで、表示画素PX′がX軸方向及びY軸方向について行列状に多数ずつ並列配置されている。このような構成によれば、液晶パネルは、表示画素PX′の長辺方向に沿うX軸方向については透過光の出射角度範囲が相対的に広くなるのに対し、表示画素PX′の短辺方向に沿うY軸方向については透過光の出射角度範囲が相対的に狭くなる、といった形で透過光の出射角度分布に異方性を有するため、Y軸方向が「第1方向」となり、X軸方向が「第2方向」となる。なお、図27では、CF基板におけるカラーフィルタ711hを構成する各着色部711hr,711hg,711hbの配列のみを図示しているが、アレイ基板における画素電極などの平面形状及び配列もカラーフィルタ711hと同様のものとされる。
 本実施形態に係る液晶パネルを上記した実施形態1から実施形態7と組み合わせる場合には、以下のような構成を採ることができる。すなわち、本実施形態を上記した実施形態1,2,4,6,7と組み合わせる場合には、第2光拡散シートに関して、異方性光拡散粒子をその長軸方向をY軸方向と一致させ且つ短軸方向をX軸方向と一致させた配向とすればよい。また、本実施形態を上記した実施形態2,3と組み合わせる場合には、プリズムシートに関して、単位プリズムの延在方向をY軸方向と一致させ且つ単位プリズムの並列方向をX軸方向と一致させる構成とすればよい。また、本実施形態を上記した実施形態5と組み合わせる場合には、第2光拡散シートに関して、突条部の延在方向をY軸方向と一致させ且つ突条部の並列方向をX軸方向と一致させる構成とすればよい。
 <他の実施形態>
 本発明は上記記述及び図面によって説明した実施形態に限定されるものではなく、例えば次のような実施形態も本発明の技術的範囲に含まれる。
 (1)上記した実施形態1,8の変形例として、図28に示すように、3色の各単位画素UPX-1が平面に視て縦長の長方形状をなしていてその長辺方向がY軸方向と一致し且つ短辺方向がX軸方向と一致しているのに対し、3色の単位画素UPX-1からなる表示画素PX-1が平面に視て横長の長方形状をなしていてその長辺方向がX軸方向と一致し且つ短辺方向がY軸方向と一致する、といった構成の液晶パネルにも本発明は適用可能である。この場合、液晶パネルにおける透過光の出射角度分布は、上記した実施形態1と同様のものとなる。
 (2)上記した実施形態1,8の変形例として、図29に示すように、3色の各単位画素UPX-2が平面に視て横長の長方形状をなしていてその長辺方向がX軸方向と一致し且つ短辺方向がY軸方向と一致しているのに対し、3色の単位画素UPX-2からなる表示画素PX-2が平面に視て縦長の長方形状をなしていてその長辺方向がY軸方向と一致し且つ短辺方向がX軸方向と一致する、といった構成の液晶パネルにも本発明は適用可能である。この場合、液晶パネルにおける透過光の出射角度分布は、上記した実施形態8と同様のものとなる。
 (3)上記した実施形態1,8の変形例として、図30に示すように、3色の各単位画素UPX-3が平面に視て正方形状をなしているのに対し、3色の単位画素UPX-3からなる表示画素PX-3が平面に視て縦長の長方形状をなしていてその長辺方向がY軸方向と一致し且つ短辺方向がX軸方向と一致する、といった構成の液晶パネルにも本発明は適用可能である。この場合、液晶パネルにおける透過光の出射角度分布は、上記した実施形態1と同様のものとなる。
 (4)上記した実施形態1,8の変形例として、図31に示すように、3色の各単位画素UPX-4が平面に視て正方形状をなしているのに対し、3色の単位画素UPX-4からなる表示画素PX-4が平面に視て横長の長方形状をなしていてその長辺方向がX軸方向と一致し且つ短辺方向がY軸方向と一致する、といった構成の液晶パネルにも本発明は適用可能である。この場合、液晶パネルにおける透過光の出射角度分布は、上記した実施形態8と同様のものとなる。
 (5)上記した実施形態1の変形例として、図32に示すように、カラーフィルタ11h-5がR,G,Bの3色にY(黄色)を加えた4色の着色部11hr-5,11hg-5,11hb-5,11hyからなる構成とし、それら4色の着色部11hr-5,11hg-5,11hb-5,11hyをそれぞれ備えた4色の単位画素UPX-5によって1つの表示画素PX-5が構成されていてもよい。図32は、4色の各単位画素UPX-5が平面に視て縦長の長方形状をなしていてその長辺方向がY軸方向と一致し且つ短辺方向がX軸方向と一致しているのに対し、4色の単位画素UPX-5からなる表示画素PX-5が平面に視て縦長の長方形状をなしていてその長辺方向がY軸方向と一致し且つ短辺方向がX軸方向と一致する、といった構成の液晶パネルを表している。この場合、液晶パネルにおける透過光の出射角度分布は、上記した実施形態1と同様のものとなる。
 (6)上記した(5)のさらなる変形例として、上記した実施形態8のように、4色の各単位画素の平面形状を横長の長方形とし、表示画素の平面形状を横長の長方形とすることも可能である。それ以外にも、上記した(1)のように、4色の各単位画素の平面形状を縦長の長方形とし、表示画素の平面形状を横長の長方形とすることも可能である。また、上記した(2)のように、4色の各単位画素の平面形状を横長の長方形とし、表示画素の平面形状を縦長の長方形とすることも可能である。また、上記した(3)のように、4色の各単位画素の平面形状を正方形とし、表示画素の平面形状を縦長の長方形とすることも可能である。また、上記した(4)のように、4色の各単位画素の平面形状を正方形とし、表示画素の平面形状を横長の長方形とすることも可能である。また、4色の各単位画素の並び順は適宜に変更可能である。
 (7)上記した(5)では、カラーフィルタがR,G,Bの3色にY(黄色)を加えた4色の着色部からなる構成のものを示したが、Y以外にも例えばC(シアン)などの他の色の着色部を追加することも可能である。また、カラーフィルタが5色以上の着色部からなる構成とすることも可能である。
 (8)上記した各実施形態では、表示画素を構成する各単位画素の面積比率がほぼ等しくなる構成のものを例示したが、面積比率が異なる単位画素が含まれる表示画素を備えた液晶パネルにも本発明は適用可能である。
 (9)上記した各実施形態では、表示画素の平面形状が長方形とされる場合を示したが、それ以外にも例えば、表示画素の平面形状を楕円形とすることも可能である。
 (10)上記した実施形態1,4,5では、第2光拡散シートが最も液晶パネルの近くに配される構成の光学シートについて例示したが、第2光拡散シートの配置(積層順)は適宜に変更可能である。
 (11)上記した実施形態1,4,5では、光学シートが2枚のプリズムシートと、2枚の光拡散シートとからなる構成のものを例示したが、それ以外にも例えば、プリズムシートを1枚または3枚とし、光拡散シートを3枚または1枚とすることも可能である。さらには、光学シートの枚数を5枚以上としたり、3枚以下とすることも可能である。また、集光部材であるプリズムシートや光拡散部材である光拡散シート以外に、例えば反射型偏光シートを追加または代用することも可能である。また、等方性光拡散シートである第1光拡散シートを省略することも可能である。
 (12)上記した実施形態2,3では、プリズム部が基材における導光板側の板面(入光側板面)に設けられた構成のプリズムシートを用いた場合を例示したが、プリズム部が基材における液晶パネル側の板面(出光側板面)に設けられた構成のプリズムシートを、「異方性集光部材」として用いることも可能である。
 (13)上記した実施形態2,3では、光学シートがプリズムシートと、第2光拡散シートまたは第1光拡散シートとの2枚からなる構成のものを例示したが、他のプリズムシートや光拡散シートを追加して3枚以上とすることも可能である。また、第2光拡散シートまたは第1光拡散シートを省略して1枚のプリズムシートのみにより光学シートを構成することも可能である。また、集光部材であるプリズムシートや光拡散部材である光拡散シート以外に、例えば反射型偏光シートを追加または代用することも可能である。
 (14)上記した実施形態2では、第2光拡散シートが液晶パネルの近くに、プリズムシートが導光板の近くにそれぞれ配される構成の光学シートについて例示したが、第2光拡散シートとプリズムシートとの積層順を逆にすることも可能である。
 (15)上記した実施形態3では、第1光拡散シートが液晶パネルの近くに、プリズムシートが導光板の近くにそれぞれ配される構成の光学シートについて例示したが、第1光拡散シートとプリズムシートとの積層順を逆にすることも可能である。
 (16)上記した各実施形態において、異方性光学部材である第2光拡散シートやプリズムシートを液晶パネルの表示面側に重なる形で配置することも可能である。
 (17)上記した各実施形態(実施形態3,5を除く)では、第2光拡散シートの異方性光拡散粒子が透光性樹脂層中における配置がランダムとされたものを示したが、異方性光拡散粒子が透光性樹脂層中において一定の規則性をもって配置される構成とすることも可能である。
 (18)上記した各実施形態(実施形態3,5を除く)以外にも、第2光拡散シートの異方性光拡散粒子の具体的な形状や大きさ(長軸方向についての寸法及び短軸方向についての寸法)などについては適宜に変更可能である。例えば、異方性光拡散粒子として、楕円柱状をなすものや、短軸方向に沿って切断した断面形状が三角形または五角形以上の多角形をなすものを用いることが可能である。また、異方性光拡散粒子として、円柱部における長軸方向の両端部に円錐部をそれぞれ設けることで先細り状としたものや、角柱部(三角柱部、四角柱部など)における長軸方向の両端部に角錐部(三角錐部、四角錐部など)をそれぞれ設けることで先細り状としたものを用いることも可能である。また、異方性光拡散粒子として、2つの円錐部における底部同士を背中合わせに接合したような形状とされることで先細り状としたものや、2つの角錐部(三角錐部、四角錐部など)における底部同士を背中合わせに接合したような形状とされることで先細り状としたものを用いることも可能である。
 (19)上記した各実施形態(実施形態3,5を除く)以外にも、第2光拡散シートの異方性光拡散粒子及び透光性樹脂層に用いる具体的な材料の種類や材料の屈折率の数値などについては適宜に変更可能である。例えば、透光性樹脂層に用いる材料として紫外線硬化型樹脂の他にも可視光によって硬化する可視光硬化型樹脂などを用いることが可能である。また、異方性光拡散粒子の屈折率と、透光性樹脂層の屈折率との大小関係は、自由に設定することができ、前者を後者よりも大きくしたり、逆に前者を後者よりも小さくしたり、さらには両者を同一とすることも可能である。また、異方性光拡散粒子及び透光性樹脂層に用いる材料を互いに異ならせたり同一とすることも可能である。
 (20)上記した各実施形態(実施形態3,5を除く)以外にも、第2光拡散シートの透光性樹脂層中の異方性光拡散粒子の重量比率に関する具体的な数値は、適宜に変更可能である。
 (21)上記した各実施形態(実施形態3,5を除く)では、第2光拡散シートの基材の厚さよりも異方性光拡散部の厚さの方が小さくなるものを示したが、厚さ関係を逆転させ、基材の厚さよりも異方性光拡散部の厚さの方が大きくなる構成とすることも可能である。
 (22)上記した各実施形態では、第2光拡散シートやプリズムシートの基材を二軸延伸法によって製造した場合を示したが、例えば押し出し成形法や射出成形法などの他の方法によって基材を製造することも可能である。
 (23)上記した実施形態5では、集光方向に沿って並ぶ多数本の突条部が非集光方向に沿ってランダムに蛇行する形態とされた第2光拡散シートを示したが、集光方向に沿って並ぶ多数本の突条部を互いに並行させて規則的に蛇行させる形態とすることも可能である。
 (24)上記した実施形態5では、非集光方向に沿って延在しつつ蛇行する突条部が、幅寸法や高さ寸法などが非集光方向の位置に応じてランダムに変動する形態とされた第2光拡散シートを示したが、突条部の幅寸法や高さ寸法などを一定に保ちつつも突条部を蛇行形状とすることも可能である。
 (25)上記した実施形態5では、第2光拡散シートの異方性光拡散部が突条部により構成される場合を示したが、それ以外にも例えば、基材の板面において第1方向及び第2方向に沿って多数個ずつ行列状に並列配置するマイクロレンズにより異方性光拡散部を構成することも可能である。
 (26)上記した実施形態5では、第2光拡散シートの突条部(異方性光拡散部)の材料として紫外線によって硬化が進行される光硬化性樹脂材料の一種である紫外線硬化性樹脂材料を用いた場合を示したが、他の光硬化性樹脂材料を用いることも可能であり、例えば可視光線によって硬化が進行される可視光硬化性樹脂材料を用いることができる。それ以外にも、紫外線及び可視光線の双方によって硬化が進行されるタイプの光硬化性樹脂材料を用いることも可能である。
 (27)上記した実施形態5では、第2光拡散シートの異方性光拡散部が多数の突条部により構成されることで、光の拡散方向がランダム化されたものを示したが、例えば集光方向に沿って切断した断面形状が略半円形をなすとともに第1方向に沿って延在するレンチキュラーレンズを、第2方向に沿って多数本規則的に並列配置することで異方性光拡散部を構成することも可能である。
 (28)上記した各実施形態(実施形態4を除く)では、導光板の光入射面に沿ってLED基板が1枚配される構成のものを示したが、導光板の光入射面に沿ってLED基板が2枚以上並ぶ配置構成としたものも本発明に含まれる。
 (29)上記した各実施形態(実施形態4を除く)では、LED基板を導光板における長辺側の一端面に対して対向状に配したものを示したが、LED基板を導光板における短辺側の一端面に対して対向状に配したものも本発明に含まれる。
 (30)上記した(29)以外にも、LED基板を導光板における長辺側の一対の端面に対して対向状に配したものや、LED基板を導光板における短辺側の一対の端面に対して対向状に配したものも本発明に含まれる。
 (31)上記した(29),(30)以外にも、LED基板を導光板における任意の3つの端面に対して対向状に配したものや、LED基板を導光板の4つの端面全てに対して対向状に配したものも本発明に含まれる。
 (32)上記した各実施形態では、タッチパネルのタッチパネルパターンとして投影型静電容量方式のものを例示したが、それ以外にも、表面型静電容量方式、抵抗膜方式、電磁誘導方式などのタッチパネルパターンを採用したものにも本発明は適用可能である。
 (33)上記した各実施形態に記載したタッチパネルに代えて、例えば、液晶パネルの表示面に表示される画像を視差により分離することで、立体画像(3D画像、三次元画像)として観察者に観察させるための視差バリアパターンを有する視差バリアパネル(スイッチ液晶パネル)を用いることも可能である。また、上記した視差バリアパネルとタッチパネルとを併用することも可能である。
 (34)上記した(33)に記載した視差バリアパネルにタッチパネルパターンを形成し、視差バリアパネルにタッチパネル機能を併有させることも可能である。
 (35)上記した各実施形態以外にも、液晶パネルの具体的な画面サイズは適宜に変更可能である。
 (36)上記した各実施形態では、バックライト装置の光源としてLEDを用いた場合を示したが、他の光源(例えば有機ELなど)を用いることも可能である。
 (37)上記した各実施形態では、フレームが金属製とされたものを示したが、フレームを合成樹脂製とすることも可能である。
 (38)上記した各実施形態では、カバーパネルとして化学強化処理を施した強化ガラスを用いた場合を示したが、風冷強化処理(物理強化処理)を施した強化ガラスを用いることも勿論可能である。
 (39)上記した各実施形態では、カバーパネルとして強化ガラスを用いたものを示したが、強化ガラスではない通常のガラス材(非強化ガラス)や合成樹脂材を用いることも勿論可能である。
 (40)上記した各実施形態では、液晶表示装置にカバーパネルを用いた場合を示したが、カバーパネルを省略することも可能である。同様にタッチパネルを省略することも可能である。
 (41)上記した各実施形態では、表示画面が横長なタイプの液晶表示装置を例示したが、表示画面が縦長なタイプの液晶表示装置についても本発明に含まれる。また、表示画面が正方形とされる液晶表示装置も本発明に含まれる。
 (42)上記した各実施形態では、外部光源であるバックライト装置を備えた透過型の液晶表示装置を例示したが、本発明は、バックライト装置からの光を利用して表示を行う透過表示と、外光を利用して表示を行う反射表示の両方の機能を備えた半透過型(反射透過両用型)液晶表示装置にも適用可能である。
 (43)上記した各実施形態では、液晶表示装置のスイッチング素子としてTFTを用いたが、TFT以外のスイッチング素子(例えば薄膜ダイオード(TFD))を用いた液晶表示装置にも適用可能であり、カラー表示する液晶表示装置以外にも、白黒表示する液晶表示装置にも適用可能である。
 (44)上記した各実施形態では、スマートフォンやタブレット型ノートパソコンに用いる液晶表示装置について例示したが、それ以外にも、車載型情報端末、スマートフォン以外の携帯電話、タブレット型ノートパソコン以外のノートパソコン、デジタルフォトフレーム、携帯型ゲーム機などに用いられる液晶表示装置にも本発明は適用可能である。
 (45)上記した各実施形態では、「異方性表示素子」として液晶パネルを例示したが、それ以外にも、出射光の出射角度分布に異方性を有するのであれば、例えばPDP(プラズマディスプレイパネル)や有機ELパネルなどの自発光型の異方性表示素子を用いた表示装置にも本発明は適用可能である。その場合、異方性光学部材(第2光拡散シートやプリズムシート)を、自発光型の異方性表示素子における表示面側に重なる形で配置するのが好ましい。また、上記のような自発光型の異方性表示素子を用いる場合には、バックライト装置(光源や導光板など)を省略することが可能となる。
 10…液晶表示装置(表示装置)、11…液晶パネル(異方性表示素子)、11a…CF基板(基板)、11b…アレイ基板(基板)、11c…液晶層(液晶)、17,317…LED(光源)、17a,317a…発光面、19,119,219…導光板、19a,119a…光出射面、19b…光入射面、40…第1プリズムシート(他の光学部材)、41…第2プリズムシート(他の光学部材)、42,242…第1光拡散シート(他の光学部材)、43,143,343,443,543,643…第2光拡散シート(異方性光学部材、異方性光拡散部材)、43a,443a…基材、43b1…透光性樹脂層、43b2,543b2,643b2…異方性光拡散粒子、44,244…プリズムシート(異方性光学部材、異方性集光部材)、46…突条部、DS…表示面、PX,PX′,PX-1,PX-2,PX-3,PX-4,PX-5…表示画素

Claims (15)

  1.  画像を表示する表示面を有するものであって、前記表示面に沿う第1方向については出射光の出射角度範囲が相対的に狭いものの、前記表示面に沿い且つ前記第1方向と直交する第2方向については出射光の出射角度範囲が相対的に広くなる形で、出射光の出射角度分布に異方性を有する異方性表示素子と、
     前記異方性表示素子に対して前記表示面側またはその反対側に重なる形で配されるものであって、前記第1方向については出射光の出射角度範囲が相対的に広くなるのに対し、前記第2方向については出射光の出射角度範囲が相対的に狭くなるよう出射光の出射角度分布に異方性を有する異方性光学部材と、を備える表示装置。
  2.  前記異方性光学部材には、光を拡散させつつ出射させるものであって、前記第1方向については拡散光量が相対的に多くなるのに対し、前記第2方向については拡散光量が相対的に少なくなるよう光拡散異方性を有する異方性光拡散部材が少なくとも含まれている請求項1記載の表示装置。
  3.  前記異方性光拡散部材は、長手状をなすとともにその長軸方向が前記第2方向に沿い且つ短軸方向が前記第1方向に沿う形で配される異方性光拡散粒子を有している請求項2記載の表示装置。
  4.  前記異方性光拡散部材は、透光性を有する基材と、前記基材に対して積層されるとともに前記異方性光拡散粒子が多数分散配合される透光性樹脂層とを有しており、
     前記異方性光拡散粒子は、前記透光性樹脂層中において前記長軸方向が前記第2方向に沿い且つ前記短軸方向が前記第1方向に沿うよう配向されている請求項3記載の表示装置。
  5.  前記異方性光拡散粒子は、前記長軸方向について中央側から両端側に向けてそれぞれ先細り状をなすよう形成されている請求項4記載の表示装置。
  6.  前記異方性光拡散粒子は、前記長軸方向に沿って切断した断面形状が楕円形状をなしている請求項5記載の表示装置。
  7.  前記異方性光拡散部材は、透光性を有するシート状の基材と、前記基材における板面から突出し、前記1方向に沿って切断した断面形状が略山形をなすとともに前記第2方向に沿って延在しつつ蛇行し且つ前記第1方向に沿って複数並列される突条部とを有する請求項2記載の表示装置。
  8.  前記第1方向に沿って並ぶ複数の前記突条部は、前記第2方向に沿ってランダムに蛇行するよう形成されている請求項7記載の表示装置。
  9.  前記突条部は、幅と高さとの少なくともいずれか一方が前記第2方向についての位置に応じてランダムに変動するよう形成されている請求項7または請求項8記載の表示装置。
  10.  前記異方性光学部材に含まれる前記異方性光拡散部材は、前記異方性表示素子に対して前記表示面側とは反対側に重なる形で配され、さらには前記異方性光拡散部材に対して重なる形で配されるとともに光を透過する他の光学部材が備えられており、
     前記異方性光拡散部材は、前記他の光学部材に比べて前記異方性表示素子の近くに配されている請求項2から請求項9のいずれか1項に記載の表示装置。
  11.  前記異方性光学部材には、光を集光させつつ出射させるものであって、前記第1方向については出射光に集光作用を付与しないものの、前記第2方向については出射光に集光作用を付与するよう集光異方性を有する異方性集光部材が少なくとも含まれている請求項1から請求項10のいずれか1項に記載の表示装置。
  12.  前記異方性光学部材は、前記異方性表示素子に対して前記表示面側とは反対側に重なる形で配されており、
     光源と、
     前記異方性光学部材に対して前記異方性表示素子側とは反対側に配されるとともに前記光源からの光を導光する導光板であって、端面に前記光源からの光が入射される光入射面を有するとともに、前記異方性光学部材側を向いた板面に光を出射する光出射面を有する導光板と、を備える請求項1から請求項11のいずれか1項に記載の表示装置。
  13.  前記異方性光学部材は、前記異方性表示素子に対して前記表示面側とは反対側に重なる形で配されるとともに前記表示面に沿う板面を有するシート状をなしており、
     光を発する発光面を有するとともに前記発光面が前記異方性光学部材の前記板面に対して対向する形で配される光源を備える請求項1から請求項11のいずれか1項に記載の表示装置。
  14.  前記異方性表示素子には、前記表示面に沿って複数ずつ行列状に並列配置されるとともに、短辺方向が前記第1方向と一致し且つ長辺方向が前記第2方向と一致する平面形状を有する表示画素が形成されている請求項1から請求項13のいずれか1項に記載の表示装置。
  15.  前記異方性表示素子は、一対の基板間に液晶を封入してなる液晶パネルとされる請求項1から請求項14のいずれか1項に記載の表示装置。
PCT/JP2014/054810 2013-06-04 2014-02-27 表示装置 WO2014196231A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN201480030902.8A CN105247411A (zh) 2013-06-04 2014-02-27 显示装置
US14/893,097 US20160116646A1 (en) 2013-06-04 2014-02-27 Display device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2013117782 2013-06-04
JP2013-117782 2013-06-04

Publications (1)

Publication Number Publication Date
WO2014196231A1 true WO2014196231A1 (ja) 2014-12-11

Family

ID=52007887

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/054810 WO2014196231A1 (ja) 2013-06-04 2014-02-27 表示装置

Country Status (3)

Country Link
US (1) US20160116646A1 (ja)
CN (1) CN105247411A (ja)
WO (1) WO2014196231A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105700065A (zh) * 2016-04-22 2016-06-22 京东方科技集团股份有限公司 导光板、背光模组和显示装置

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104505373B (zh) * 2014-12-19 2017-11-21 上海天马微电子有限公司 一种显示面板和显示装置及显示面板的制造方法
JP6711683B2 (ja) * 2016-04-28 2020-06-17 シャープ株式会社 光学部材の製造方法、及び、光学部材
CN109564304B (zh) * 2016-09-14 2021-07-30 株式会社巴川制纸所 反射型显示装置用光漫射膜层叠体及使用该层叠体的反射型显示装置
US10670788B2 (en) * 2016-09-14 2020-06-02 Tomoegawa Co., Ltd. Light diffusion film laminate for reflective display device and reflective display device including the same
CN107526203A (zh) * 2017-03-14 2017-12-29 惠科股份有限公司 一种显示装置及其制程
KR102310172B1 (ko) * 2017-05-25 2021-10-06 엘지디스플레이 주식회사 유기 발광 표시 장치
KR102265369B1 (ko) * 2017-06-06 2021-06-16 케이와 인코포레이티드 상부용 광 확산 시트 및 그를 구비한 백라이트 유닛
US10935842B2 (en) * 2017-08-25 2021-03-02 Nanosys, Inc. Nanostructure based display devices
CN113168037A (zh) * 2019-11-22 2021-07-23 高创(苏州)电子有限公司 玻璃背板及其制备方法、显示装置
KR102461674B1 (ko) * 2020-08-21 2022-11-02 주식회사 엘엠에스 광학필름

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009156883A (ja) * 2006-04-17 2009-07-16 Panasonic Corp 液晶表示装置およびその照明装置
JP2012042820A (ja) * 2010-08-20 2012-03-01 Oji Paper Co Ltd 異方性面発光ユニットおよび液晶表示装置
JP2013003276A (ja) * 2011-06-14 2013-01-07 Dainippon Printing Co Ltd 液晶表示装置

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE50010850D1 (de) * 2000-02-09 2005-09-01 Siemens Ag Verfahren und vorrichtung zum evakuieren eines turbinenkondensators
EP1329746B1 (en) * 2000-10-19 2012-05-30 Daicel Chemical Industries, Ltd. Anisotropic scattering sheet and its use
CN100347567C (zh) * 2002-12-06 2007-11-07 三菱丽阳株式会社 光偏转元件及光源装置
JP5244797B2 (ja) * 2007-08-02 2013-07-24 株式会社ダイセル 光拡散フィルム及びそれを備えた装置

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009156883A (ja) * 2006-04-17 2009-07-16 Panasonic Corp 液晶表示装置およびその照明装置
JP2012042820A (ja) * 2010-08-20 2012-03-01 Oji Paper Co Ltd 異方性面発光ユニットおよび液晶表示装置
JP2013003276A (ja) * 2011-06-14 2013-01-07 Dainippon Printing Co Ltd 液晶表示装置

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105700065A (zh) * 2016-04-22 2016-06-22 京东方科技集团股份有限公司 导光板、背光模组和显示装置
CN105700065B (zh) * 2016-04-22 2019-05-07 京东方科技集团股份有限公司 导光板、背光模组和显示装置

Also Published As

Publication number Publication date
CN105247411A (zh) 2016-01-13
US20160116646A1 (en) 2016-04-28

Similar Documents

Publication Publication Date Title
WO2014196231A1 (ja) 表示装置
US9971081B1 (en) Lighting device and display device
CN106133435B (zh) 照明装置和显示装置
WO2014157482A1 (ja) 照明装置及び表示装置
WO2016017487A1 (ja) 照明装置及び表示装置
US9618682B2 (en) Optical sheet and backlight unit and display device comprising the same
WO2014010523A1 (ja) 光学部材、照明装置、及び表示装置
US20160054507A1 (en) Lighting device and display device
WO2016093137A1 (ja) 照明装置及び表示装置
US10317610B2 (en) Illumination device and display device
CN107002950B (zh) 照明装置及显示装置
WO2014050651A1 (ja) 光学部材、照明装置、及び表示装置
US9921360B2 (en) Illumination device and display device
WO2015141369A1 (ja) 照明装置及び表示装置
JP2014235896A (ja) 面光源装置、表示装置および照明装置
US20150146132A1 (en) Surface light source device, display device, and lighting device
WO2016104310A1 (ja) 液晶表示装置
KR101749750B1 (ko) 백라이트 유닛 및 액정표시장치
WO2012147646A1 (ja) 光源装置、面光源装置、表示装置および照明装置
WO2014112435A1 (ja) 照明装置及び表示装置
JP2014041284A (ja) 表示装置
JP2014135121A (ja) 光源装置、面光源装置、表示装置および照明装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14807728

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 14893097

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14807728

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP